gdb.base/sym-file.exp: clean up test messages a bit.
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
CommitLineData
55aa24fb
SDJ
1/* SystemTap probe support for GDB.
2
ecd75fc8 3 Copyright (C) 2012-2014 Free Software Foundation, Inc.
55aa24fb
SDJ
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "stap-probe.h"
22#include "probe.h"
23#include "vec.h"
24#include "ui-out.h"
25#include "objfiles.h"
26#include "arch-utils.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "filenames.h"
30#include "value.h"
31#include "exceptions.h"
32#include "ax.h"
33#include "ax-gdb.h"
34#include "complaints.h"
35#include "cli/cli-utils.h"
36#include "linespec.h"
37#include "user-regs.h"
38#include "parser-defs.h"
39#include "language.h"
40#include "elf-bfd.h"
41
42#include <ctype.h>
43
44/* The name of the SystemTap section where we will find information about
45 the probes. */
46
47#define STAP_BASE_SECTION_NAME ".stapsdt.base"
48
49/* Forward declaration. */
50
51static const struct probe_ops stap_probe_ops;
52
53/* Should we display debug information for the probe's argument expression
54 parsing? */
55
ccce17b0 56static unsigned int stap_expression_debug = 0;
55aa24fb
SDJ
57
58/* The various possibilities of bitness defined for a probe's argument.
59
60 The relationship is:
61
62 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
63 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
64 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
65 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
66 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
67
68enum stap_arg_bitness
69{
70 STAP_ARG_BITNESS_UNDEFINED,
71 STAP_ARG_BITNESS_32BIT_UNSIGNED,
72 STAP_ARG_BITNESS_32BIT_SIGNED,
73 STAP_ARG_BITNESS_64BIT_UNSIGNED,
74 STAP_ARG_BITNESS_64BIT_SIGNED,
75};
76
77/* The following structure represents a single argument for the probe. */
78
79struct stap_probe_arg
80{
81 /* The bitness of this argument. */
82 enum stap_arg_bitness bitness;
83
84 /* The corresponding `struct type *' to the bitness. */
85 struct type *atype;
86
87 /* The argument converted to an internal GDB expression. */
88 struct expression *aexpr;
89};
90
91typedef struct stap_probe_arg stap_probe_arg_s;
92DEF_VEC_O (stap_probe_arg_s);
93
94struct stap_probe
95{
96 /* Generic information about the probe. This shall be the first element
97 of this struct, in order to maintain binary compatibility with the
98 `struct probe' and be able to fully abstract it. */
99 struct probe p;
100
101 /* If the probe has a semaphore associated, then this is the value of
729662a5 102 it, relative to SECT_OFF_DATA. */
55aa24fb
SDJ
103 CORE_ADDR sem_addr;
104
97c2dca0 105 /* One if the arguments have been parsed. */
55aa24fb 106 unsigned int args_parsed : 1;
97c2dca0 107
55aa24fb
SDJ
108 union
109 {
110 const char *text;
111
112 /* Information about each argument. This is an array of `stap_probe_arg',
113 with each entry representing one argument. */
114 VEC (stap_probe_arg_s) *vec;
115 }
116 args_u;
117};
118
119/* When parsing the arguments, we have to establish different precedences
120 for the various kinds of asm operators. This enumeration represents those
121 precedences.
122
123 This logic behind this is available at
124 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
125 the command "info '(as)Infix Ops'". */
126
127enum stap_operand_prec
128{
129 /* Lowest precedence, used for non-recognized operands or for the beginning
130 of the parsing process. */
131 STAP_OPERAND_PREC_NONE = 0,
132
133 /* Precedence of logical OR. */
134 STAP_OPERAND_PREC_LOGICAL_OR,
135
136 /* Precedence of logical AND. */
137 STAP_OPERAND_PREC_LOGICAL_AND,
138
139 /* Precedence of additive (plus, minus) and comparative (equal, less,
140 greater-than, etc) operands. */
141 STAP_OPERAND_PREC_ADD_CMP,
142
143 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
144 logical NOT). */
145 STAP_OPERAND_PREC_BITWISE,
146
147 /* Precedence of multiplicative operands (multiplication, division,
148 remainder, left shift and right shift). */
149 STAP_OPERAND_PREC_MUL
150};
151
152static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
153 enum stap_operand_prec prec);
154
155static void stap_parse_argument_conditionally (struct stap_parse_info *p);
156
157/* Returns 1 if *S is an operator, zero otherwise. */
158
fcf57f19 159static int stap_is_operator (const char *op);
55aa24fb
SDJ
160
161static void
162show_stapexpressiondebug (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164{
165 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
166 value);
167}
168
169/* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
170 if the operator code was not recognized. */
171
172static enum stap_operand_prec
173stap_get_operator_prec (enum exp_opcode op)
174{
175 switch (op)
176 {
177 case BINOP_LOGICAL_OR:
178 return STAP_OPERAND_PREC_LOGICAL_OR;
179
180 case BINOP_LOGICAL_AND:
181 return STAP_OPERAND_PREC_LOGICAL_AND;
182
183 case BINOP_ADD:
184 case BINOP_SUB:
185 case BINOP_EQUAL:
186 case BINOP_NOTEQUAL:
187 case BINOP_LESS:
188 case BINOP_LEQ:
189 case BINOP_GTR:
190 case BINOP_GEQ:
191 return STAP_OPERAND_PREC_ADD_CMP;
192
193 case BINOP_BITWISE_IOR:
194 case BINOP_BITWISE_AND:
195 case BINOP_BITWISE_XOR:
196 case UNOP_LOGICAL_NOT:
197 return STAP_OPERAND_PREC_BITWISE;
198
199 case BINOP_MUL:
200 case BINOP_DIV:
201 case BINOP_REM:
202 case BINOP_LSH:
203 case BINOP_RSH:
204 return STAP_OPERAND_PREC_MUL;
205
206 default:
207 return STAP_OPERAND_PREC_NONE;
208 }
209}
210
211/* Given S, read the operator in it and fills the OP pointer with its code.
212 Return 1 on success, zero if the operator was not recognized. */
213
fcf57f19
SDJ
214static enum exp_opcode
215stap_get_opcode (const char **s)
55aa24fb
SDJ
216{
217 const char c = **s;
fcf57f19 218 enum exp_opcode op;
55aa24fb
SDJ
219
220 *s += 1;
221
222 switch (c)
223 {
224 case '*':
fcf57f19 225 op = BINOP_MUL;
55aa24fb
SDJ
226 break;
227
228 case '/':
fcf57f19 229 op = BINOP_DIV;
55aa24fb
SDJ
230 break;
231
232 case '%':
fcf57f19 233 op = BINOP_REM;
55aa24fb
SDJ
234 break;
235
236 case '<':
fcf57f19 237 op = BINOP_LESS;
55aa24fb
SDJ
238 if (**s == '<')
239 {
240 *s += 1;
fcf57f19 241 op = BINOP_LSH;
55aa24fb
SDJ
242 }
243 else if (**s == '=')
244 {
245 *s += 1;
fcf57f19 246 op = BINOP_LEQ;
55aa24fb
SDJ
247 }
248 else if (**s == '>')
249 {
250 *s += 1;
fcf57f19 251 op = BINOP_NOTEQUAL;
55aa24fb
SDJ
252 }
253 break;
254
255 case '>':
fcf57f19 256 op = BINOP_GTR;
55aa24fb
SDJ
257 if (**s == '>')
258 {
259 *s += 1;
fcf57f19 260 op = BINOP_RSH;
55aa24fb
SDJ
261 }
262 else if (**s == '=')
263 {
264 *s += 1;
fcf57f19 265 op = BINOP_GEQ;
55aa24fb
SDJ
266 }
267 break;
268
269 case '|':
fcf57f19 270 op = BINOP_BITWISE_IOR;
55aa24fb
SDJ
271 if (**s == '|')
272 {
273 *s += 1;
fcf57f19 274 op = BINOP_LOGICAL_OR;
55aa24fb
SDJ
275 }
276 break;
277
278 case '&':
fcf57f19 279 op = BINOP_BITWISE_AND;
55aa24fb
SDJ
280 if (**s == '&')
281 {
282 *s += 1;
fcf57f19 283 op = BINOP_LOGICAL_AND;
55aa24fb
SDJ
284 }
285 break;
286
287 case '^':
fcf57f19 288 op = BINOP_BITWISE_XOR;
55aa24fb
SDJ
289 break;
290
291 case '!':
fcf57f19 292 op = UNOP_LOGICAL_NOT;
55aa24fb
SDJ
293 break;
294
295 case '+':
fcf57f19 296 op = BINOP_ADD;
55aa24fb
SDJ
297 break;
298
299 case '-':
fcf57f19 300 op = BINOP_SUB;
55aa24fb
SDJ
301 break;
302
303 case '=':
fcf57f19
SDJ
304 gdb_assert (**s == '=');
305 op = BINOP_EQUAL;
55aa24fb
SDJ
306 break;
307
308 default:
fcf57f19
SDJ
309 internal_error (__FILE__, __LINE__,
310 _("Invalid opcode in expression `%s' for SystemTap"
311 "probe"), *s);
55aa24fb
SDJ
312 }
313
fcf57f19 314 return op;
55aa24fb
SDJ
315}
316
317/* Given the bitness of the argument, represented by B, return the
318 corresponding `struct type *'. */
319
320static struct type *
321stap_get_expected_argument_type (struct gdbarch *gdbarch,
322 enum stap_arg_bitness b)
323{
324 switch (b)
325 {
326 case STAP_ARG_BITNESS_UNDEFINED:
327 if (gdbarch_addr_bit (gdbarch) == 32)
328 return builtin_type (gdbarch)->builtin_uint32;
329 else
330 return builtin_type (gdbarch)->builtin_uint64;
331
332 case STAP_ARG_BITNESS_32BIT_SIGNED:
333 return builtin_type (gdbarch)->builtin_int32;
334
335 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
336 return builtin_type (gdbarch)->builtin_uint32;
337
338 case STAP_ARG_BITNESS_64BIT_SIGNED:
339 return builtin_type (gdbarch)->builtin_int64;
340
341 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
342 return builtin_type (gdbarch)->builtin_uint64;
343
344 default:
345 internal_error (__FILE__, __LINE__,
346 _("Undefined bitness for probe."));
347 break;
348 }
349}
350
05c0465e
SDJ
351/* Helper function to check for a generic list of prefixes. GDBARCH
352 is the current gdbarch being used. S is the expression being
353 analyzed. If R is not NULL, it will be used to return the found
354 prefix. PREFIXES is the list of expected prefixes.
355
356 This function does a case-insensitive match.
357
358 Return 1 if any prefix has been found, zero otherwise. */
359
360static int
361stap_is_generic_prefix (struct gdbarch *gdbarch, const char *s,
362 const char **r, const char *const *prefixes)
363{
364 const char *const *p;
365
366 if (prefixes == NULL)
367 {
368 if (r != NULL)
369 *r = "";
370
371 return 1;
372 }
373
374 for (p = prefixes; *p != NULL; ++p)
97c2dca0
SDJ
375 if (strncasecmp (s, *p, strlen (*p)) == 0)
376 {
377 if (r != NULL)
378 *r = *p;
05c0465e 379
97c2dca0
SDJ
380 return 1;
381 }
05c0465e
SDJ
382
383 return 0;
384}
385
386/* Return 1 if S points to a register prefix, zero otherwise. For a
387 description of the arguments, look at stap_is_generic_prefix. */
388
389static int
390stap_is_register_prefix (struct gdbarch *gdbarch, const char *s,
391 const char **r)
392{
393 const char *const *t = gdbarch_stap_register_prefixes (gdbarch);
394
395 return stap_is_generic_prefix (gdbarch, s, r, t);
396}
397
398/* Return 1 if S points to a register indirection prefix, zero
399 otherwise. For a description of the arguments, look at
400 stap_is_generic_prefix. */
401
402static int
403stap_is_register_indirection_prefix (struct gdbarch *gdbarch, const char *s,
404 const char **r)
405{
406 const char *const *t = gdbarch_stap_register_indirection_prefixes (gdbarch);
407
408 return stap_is_generic_prefix (gdbarch, s, r, t);
409}
410
411/* Return 1 if S points to an integer prefix, zero otherwise. For a
412 description of the arguments, look at stap_is_generic_prefix.
413
414 This function takes care of analyzing whether we are dealing with
415 an expected integer prefix, or, if there is no integer prefix to be
416 expected, whether we are dealing with a digit. It does a
417 case-insensitive match. */
418
419static int
420stap_is_integer_prefix (struct gdbarch *gdbarch, const char *s,
421 const char **r)
422{
423 const char *const *t = gdbarch_stap_integer_prefixes (gdbarch);
424 const char *const *p;
425
426 if (t == NULL)
427 {
428 /* A NULL value here means that integers do not have a prefix.
429 We just check for a digit then. */
430 if (r != NULL)
431 *r = "";
432
433 return isdigit (*s);
434 }
435
436 for (p = t; *p != NULL; ++p)
437 {
438 size_t len = strlen (*p);
439
440 if ((len == 0 && isdigit (*s))
441 || (len > 0 && strncasecmp (s, *p, len) == 0))
442 {
443 /* Integers may or may not have a prefix. The "len == 0"
444 check covers the case when integers do not have a prefix
445 (therefore, we just check if we have a digit). The call
446 to "strncasecmp" covers the case when they have a
447 prefix. */
448 if (r != NULL)
449 *r = *p;
450
451 return 1;
452 }
453 }
454
455 return 0;
456}
457
458/* Helper function to check for a generic list of suffixes. If we are
459 not expecting any suffixes, then it just returns 1. If we are
460 expecting at least one suffix, then it returns 1 if a suffix has
461 been found, zero otherwise. GDBARCH is the current gdbarch being
462 used. S is the expression being analyzed. If R is not NULL, it
463 will be used to return the found suffix. SUFFIXES is the list of
464 expected suffixes. This function does a case-insensitive
465 match. */
466
467static int
468stap_generic_check_suffix (struct gdbarch *gdbarch, const char *s,
469 const char **r, const char *const *suffixes)
470{
471 const char *const *p;
472 int found = 0;
473
474 if (suffixes == NULL)
475 {
476 if (r != NULL)
477 *r = "";
478
479 return 1;
480 }
481
482 for (p = suffixes; *p != NULL; ++p)
483 if (strncasecmp (s, *p, strlen (*p)) == 0)
484 {
485 if (r != NULL)
486 *r = *p;
487
488 found = 1;
489 break;
490 }
491
492 return found;
493}
494
495/* Return 1 if S points to an integer suffix, zero otherwise. For a
496 description of the arguments, look at
497 stap_generic_check_suffix. */
498
499static int
500stap_check_integer_suffix (struct gdbarch *gdbarch, const char *s,
501 const char **r)
502{
503 const char *const *p = gdbarch_stap_integer_suffixes (gdbarch);
504
505 return stap_generic_check_suffix (gdbarch, s, r, p);
506}
507
508/* Return 1 if S points to a register suffix, zero otherwise. For a
509 description of the arguments, look at
510 stap_generic_check_suffix. */
511
512static int
513stap_check_register_suffix (struct gdbarch *gdbarch, const char *s,
514 const char **r)
515{
516 const char *const *p = gdbarch_stap_register_suffixes (gdbarch);
517
518 return stap_generic_check_suffix (gdbarch, s, r, p);
519}
520
521/* Return 1 if S points to a register indirection suffix, zero
522 otherwise. For a description of the arguments, look at
523 stap_generic_check_suffix. */
524
525static int
526stap_check_register_indirection_suffix (struct gdbarch *gdbarch, const char *s,
527 const char **r)
528{
529 const char *const *p = gdbarch_stap_register_indirection_suffixes (gdbarch);
530
531 return stap_generic_check_suffix (gdbarch, s, r, p);
532}
533
55aa24fb
SDJ
534/* Function responsible for parsing a register operand according to
535 SystemTap parlance. Assuming:
536
537 RP = register prefix
538 RS = register suffix
539 RIP = register indirection prefix
540 RIS = register indirection suffix
541
542 Then a register operand can be:
543
544 [RIP] [RP] REGISTER [RS] [RIS]
545
546 This function takes care of a register's indirection, displacement and
547 direct access. It also takes into consideration the fact that some
548 registers are named differently inside and outside GDB, e.g., PPC's
549 general-purpose registers are represented by integers in the assembly
550 language (e.g., `15' is the 15th general-purpose register), but inside
551 GDB they have a prefix (the letter `r') appended. */
552
553static void
554stap_parse_register_operand (struct stap_parse_info *p)
555{
556 /* Simple flag to indicate whether we have seen a minus signal before
557 certain number. */
558 int got_minus = 0;
55aa24fb
SDJ
559 /* Flags to indicate whether this register access is being displaced and/or
560 indirected. */
561 int disp_p = 0, indirect_p = 0;
562 struct gdbarch *gdbarch = p->gdbarch;
55aa24fb
SDJ
563 /* Needed to generate the register name as a part of an expression. */
564 struct stoken str;
55aa24fb
SDJ
565 /* Variables used to extract the register name from the probe's
566 argument. */
567 const char *start;
568 char *regname;
569 int len;
55aa24fb 570 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
55aa24fb 571 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
55aa24fb 572 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
55aa24fb 573 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
05c0465e
SDJ
574 const char *reg_prefix;
575 const char *reg_ind_prefix;
576 const char *reg_suffix;
577 const char *reg_ind_suffix;
55aa24fb
SDJ
578
579 /* Checking for a displacement argument. */
580 if (*p->arg == '+')
581 {
582 /* If it's a plus sign, we don't need to do anything, just advance the
583 pointer. */
584 ++p->arg;
585 }
586
587 if (*p->arg == '-')
588 {
589 got_minus = 1;
590 ++p->arg;
591 }
592
593 if (isdigit (*p->arg))
594 {
595 /* The value of the displacement. */
596 long displacement;
a0bcdaa7 597 char *endp;
55aa24fb
SDJ
598
599 disp_p = 1;
a0bcdaa7
PA
600 displacement = strtol (p->arg, &endp, 10);
601 p->arg = endp;
55aa24fb
SDJ
602
603 /* Generating the expression for the displacement. */
410a0ff2
SDJ
604 write_exp_elt_opcode (&p->pstate, OP_LONG);
605 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
606 write_exp_elt_longcst (&p->pstate, displacement);
607 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 608 if (got_minus)
410a0ff2 609 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb
SDJ
610 }
611
612 /* Getting rid of register indirection prefix. */
05c0465e 613 if (stap_is_register_indirection_prefix (gdbarch, p->arg, &reg_ind_prefix))
55aa24fb
SDJ
614 {
615 indirect_p = 1;
05c0465e 616 p->arg += strlen (reg_ind_prefix);
55aa24fb
SDJ
617 }
618
619 if (disp_p && !indirect_p)
620 error (_("Invalid register displacement syntax on expression `%s'."),
621 p->saved_arg);
622
623 /* Getting rid of register prefix. */
05c0465e
SDJ
624 if (stap_is_register_prefix (gdbarch, p->arg, &reg_prefix))
625 p->arg += strlen (reg_prefix);
55aa24fb
SDJ
626
627 /* Now we should have only the register name. Let's extract it and get
628 the associated number. */
629 start = p->arg;
630
631 /* We assume the register name is composed by letters and numbers. */
632 while (isalnum (*p->arg))
633 ++p->arg;
634
635 len = p->arg - start;
636
637 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
638 regname[0] = '\0';
639
640 /* We only add the GDB's register prefix/suffix if we are dealing with
641 a numeric register. */
642 if (gdb_reg_prefix && isdigit (*start))
643 {
644 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
645 strncpy (regname + gdb_reg_prefix_len, start, len);
646
647 if (gdb_reg_suffix)
648 strncpy (regname + gdb_reg_prefix_len + len,
649 gdb_reg_suffix, gdb_reg_suffix_len);
650
651 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
652 }
653 else
654 strncpy (regname, start, len);
655
656 regname[len] = '\0';
657
658 /* Is this a valid register name? */
659 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
660 error (_("Invalid register name `%s' on expression `%s'."),
661 regname, p->saved_arg);
662
410a0ff2 663 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
664 str.ptr = regname;
665 str.length = len;
410a0ff2
SDJ
666 write_exp_string (&p->pstate, str);
667 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
55aa24fb
SDJ
668
669 if (indirect_p)
670 {
671 if (disp_p)
410a0ff2 672 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
55aa24fb
SDJ
673
674 /* Casting to the expected type. */
410a0ff2
SDJ
675 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
676 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
677 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
55aa24fb 678
410a0ff2 679 write_exp_elt_opcode (&p->pstate, UNOP_IND);
55aa24fb
SDJ
680 }
681
682 /* Getting rid of the register name suffix. */
05c0465e
SDJ
683 if (stap_check_register_suffix (gdbarch, p->arg, &reg_suffix))
684 p->arg += strlen (reg_suffix);
685 else
686 error (_("Missing register name suffix on expression `%s'."),
687 p->saved_arg);
55aa24fb
SDJ
688
689 /* Getting rid of the register indirection suffix. */
05c0465e 690 if (indirect_p)
55aa24fb 691 {
05c0465e
SDJ
692 if (stap_check_register_indirection_suffix (gdbarch, p->arg,
693 &reg_ind_suffix))
694 p->arg += strlen (reg_ind_suffix);
695 else
696 error (_("Missing indirection suffix on expression `%s'."),
697 p->saved_arg);
55aa24fb
SDJ
698 }
699}
700
701/* This function is responsible for parsing a single operand.
702
703 A single operand can be:
704
705 - an unary operation (e.g., `-5', `~2', or even with subexpressions
706 like `-(2 + 1)')
707 - a register displacement, which will be treated as a register
708 operand (e.g., `-4(%eax)' on x86)
709 - a numeric constant, or
710 - a register operand (see function `stap_parse_register_operand')
711
712 The function also calls special-handling functions to deal with
713 unrecognized operands, allowing arch-specific parsers to be
714 created. */
715
716static void
717stap_parse_single_operand (struct stap_parse_info *p)
718{
719 struct gdbarch *gdbarch = p->gdbarch;
05c0465e 720 const char *int_prefix = NULL;
55aa24fb
SDJ
721
722 /* We first try to parse this token as a "special token". */
723 if (gdbarch_stap_parse_special_token_p (gdbarch))
97c2dca0
SDJ
724 if (gdbarch_stap_parse_special_token (gdbarch, p) != 0)
725 {
726 /* If the return value of the above function is not zero,
727 it means it successfully parsed the special token.
55aa24fb 728
97c2dca0
SDJ
729 If it is NULL, we try to parse it using our method. */
730 return;
731 }
55aa24fb
SDJ
732
733 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
734 {
735 char c = *p->arg;
736 int number;
55aa24fb
SDJ
737 /* We use this variable to do a lookahead. */
738 const char *tmp = p->arg;
739
97c2dca0 740 /* Skipping signal. */
55aa24fb
SDJ
741 ++tmp;
742
743 /* This is an unary operation. Here is a list of allowed tokens
744 here:
745
746 - numeric literal;
747 - number (from register displacement)
748 - subexpression (beginning with `(')
749
750 We handle the register displacement here, and the other cases
751 recursively. */
752 if (p->inside_paren_p)
753 tmp = skip_spaces_const (tmp);
754
755 if (isdigit (*tmp))
a0bcdaa7
PA
756 {
757 char *endp;
758
759 number = strtol (tmp, &endp, 10);
760 tmp = endp;
761 }
55aa24fb 762
05c0465e 763 if (!stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
55aa24fb
SDJ
764 {
765 /* This is not a displacement. We skip the operator, and deal
766 with it later. */
767 ++p->arg;
768 stap_parse_argument_conditionally (p);
769 if (c == '-')
410a0ff2 770 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
55aa24fb 771 else if (c == '~')
410a0ff2 772 write_exp_elt_opcode (&p->pstate, UNOP_COMPLEMENT);
55aa24fb
SDJ
773 }
774 else
775 {
776 /* If we are here, it means it is a displacement. The only
777 operations allowed here are `-' and `+'. */
778 if (c == '~')
779 error (_("Invalid operator `%c' for register displacement "
780 "on expression `%s'."), c, p->saved_arg);
781
782 stap_parse_register_operand (p);
783 }
784 }
785 else if (isdigit (*p->arg))
786 {
787 /* A temporary variable, needed for lookahead. */
788 const char *tmp = p->arg;
a0bcdaa7 789 char *endp;
55aa24fb
SDJ
790 long number;
791
05c0465e
SDJ
792 /* We can be dealing with a numeric constant, or with a register
793 displacement. */
a0bcdaa7
PA
794 number = strtol (tmp, &endp, 10);
795 tmp = endp;
55aa24fb
SDJ
796
797 if (p->inside_paren_p)
798 tmp = skip_spaces_const (tmp);
05c0465e
SDJ
799
800 /* If "stap_is_integer_prefix" returns true, it means we can
801 accept integers without a prefix here. But we also need to
802 check whether the next token (i.e., "tmp") is not a register
803 indirection prefix. */
804 if (stap_is_integer_prefix (gdbarch, p->arg, NULL)
805 && !stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
55aa24fb 806 {
05c0465e
SDJ
807 const char *int_suffix;
808
55aa24fb 809 /* We are dealing with a numeric constant. */
410a0ff2
SDJ
810 write_exp_elt_opcode (&p->pstate, OP_LONG);
811 write_exp_elt_type (&p->pstate,
812 builtin_type (gdbarch)->builtin_long);
813 write_exp_elt_longcst (&p->pstate, number);
814 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb
SDJ
815
816 p->arg = tmp;
817
05c0465e
SDJ
818 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
819 p->arg += strlen (int_suffix);
820 else
821 error (_("Invalid constant suffix on expression `%s'."),
822 p->saved_arg);
55aa24fb 823 }
05c0465e 824 else if (stap_is_register_indirection_prefix (gdbarch, tmp, NULL))
55aa24fb
SDJ
825 stap_parse_register_operand (p);
826 else
827 error (_("Unknown numeric token on expression `%s'."),
828 p->saved_arg);
829 }
05c0465e 830 else if (stap_is_integer_prefix (gdbarch, p->arg, &int_prefix))
55aa24fb
SDJ
831 {
832 /* We are dealing with a numeric constant. */
833 long number;
a0bcdaa7 834 char *endp;
05c0465e 835 const char *int_suffix;
55aa24fb 836
05c0465e 837 p->arg += strlen (int_prefix);
a0bcdaa7
PA
838 number = strtol (p->arg, &endp, 10);
839 p->arg = endp;
55aa24fb 840
410a0ff2
SDJ
841 write_exp_elt_opcode (&p->pstate, OP_LONG);
842 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
843 write_exp_elt_longcst (&p->pstate, number);
844 write_exp_elt_opcode (&p->pstate, OP_LONG);
55aa24fb 845
05c0465e
SDJ
846 if (stap_check_integer_suffix (gdbarch, p->arg, &int_suffix))
847 p->arg += strlen (int_suffix);
848 else
849 error (_("Invalid constant suffix on expression `%s'."),
850 p->saved_arg);
55aa24fb 851 }
05c0465e
SDJ
852 else if (stap_is_register_prefix (gdbarch, p->arg, NULL)
853 || stap_is_register_indirection_prefix (gdbarch, p->arg, NULL))
55aa24fb
SDJ
854 stap_parse_register_operand (p);
855 else
856 error (_("Operator `%c' not recognized on expression `%s'."),
857 *p->arg, p->saved_arg);
858}
859
860/* This function parses an argument conditionally, based on single or
861 non-single operands. A non-single operand would be a parenthesized
862 expression (e.g., `(2 + 1)'), and a single operand is anything that
863 starts with `-', `~', `+' (i.e., unary operators), a digit, or
864 something recognized by `gdbarch_stap_is_single_operand'. */
865
866static void
867stap_parse_argument_conditionally (struct stap_parse_info *p)
868{
97c2dca0
SDJ
869 gdb_assert (gdbarch_stap_is_single_operand_p (p->gdbarch));
870
55aa24fb
SDJ
871 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
872 || isdigit (*p->arg)
873 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
874 stap_parse_single_operand (p);
875 else if (*p->arg == '(')
876 {
877 /* We are dealing with a parenthesized operand. It means we
878 have to parse it as it was a separate expression, without
879 left-side or precedence. */
880 ++p->arg;
881 p->arg = skip_spaces_const (p->arg);
882 ++p->inside_paren_p;
883
884 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
885
886 --p->inside_paren_p;
887 if (*p->arg != ')')
888 error (_("Missign close-paren on expression `%s'."),
889 p->saved_arg);
890
891 ++p->arg;
892 if (p->inside_paren_p)
893 p->arg = skip_spaces_const (p->arg);
894 }
895 else
896 error (_("Cannot parse expression `%s'."), p->saved_arg);
897}
898
899/* Helper function for `stap_parse_argument'. Please, see its comments to
900 better understand what this function does. */
901
902static void
903stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
904 enum stap_operand_prec prec)
905{
906 /* This is an operator-precedence parser.
907
908 We work with left- and right-sides of expressions, and
909 parse them depending on the precedence of the operators
910 we find. */
911
97c2dca0
SDJ
912 gdb_assert (p->arg != NULL);
913
55aa24fb
SDJ
914 if (p->inside_paren_p)
915 p->arg = skip_spaces_const (p->arg);
916
917 if (!has_lhs)
918 {
919 /* We were called without a left-side, either because this is the
920 first call, or because we were called to parse a parenthesized
921 expression. It doesn't really matter; we have to parse the
922 left-side in order to continue the process. */
923 stap_parse_argument_conditionally (p);
924 }
925
926 /* Start to parse the right-side, and to "join" left and right sides
927 depending on the operation specified.
928
929 This loop shall continue until we run out of characters in the input,
930 or until we find a close-parenthesis, which means that we've reached
931 the end of a sub-expression. */
97c2dca0 932 while (*p->arg != '\0' && *p->arg != ')' && !isspace (*p->arg))
55aa24fb
SDJ
933 {
934 const char *tmp_exp_buf;
935 enum exp_opcode opcode;
936 enum stap_operand_prec cur_prec;
937
fcf57f19 938 if (!stap_is_operator (p->arg))
55aa24fb
SDJ
939 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
940 p->saved_arg);
941
942 /* We have to save the current value of the expression buffer because
943 the `stap_get_opcode' modifies it in order to get the current
944 operator. If this operator's precedence is lower than PREC, we
945 should return and not advance the expression buffer pointer. */
946 tmp_exp_buf = p->arg;
fcf57f19 947 opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
948
949 cur_prec = stap_get_operator_prec (opcode);
950 if (cur_prec < prec)
951 {
952 /* If the precedence of the operator that we are seeing now is
953 lower than the precedence of the first operator seen before
954 this parsing process began, it means we should stop parsing
955 and return. */
956 break;
957 }
958
959 p->arg = tmp_exp_buf;
960 if (p->inside_paren_p)
961 p->arg = skip_spaces_const (p->arg);
962
963 /* Parse the right-side of the expression. */
964 stap_parse_argument_conditionally (p);
965
966 /* While we still have operators, try to parse another
967 right-side, but using the current right-side as a left-side. */
97c2dca0 968 while (*p->arg != '\0' && stap_is_operator (p->arg))
55aa24fb
SDJ
969 {
970 enum exp_opcode lookahead_opcode;
971 enum stap_operand_prec lookahead_prec;
972
973 /* Saving the current expression buffer position. The explanation
974 is the same as above. */
975 tmp_exp_buf = p->arg;
fcf57f19 976 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
977 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
978
979 if (lookahead_prec <= prec)
980 {
981 /* If we are dealing with an operator whose precedence is lower
982 than the first one, just abandon the attempt. */
983 break;
984 }
985
986 /* Parse the right-side of the expression, but since we already
987 have a left-side at this point, set `has_lhs' to 1. */
988 stap_parse_argument_1 (p, 1, lookahead_prec);
989 }
990
410a0ff2 991 write_exp_elt_opcode (&p->pstate, opcode);
55aa24fb
SDJ
992 }
993}
994
995/* Parse a probe's argument.
996
997 Assuming that:
998
999 LP = literal integer prefix
1000 LS = literal integer suffix
1001
1002 RP = register prefix
1003 RS = register suffix
1004
1005 RIP = register indirection prefix
1006 RIS = register indirection suffix
1007
1008 This routine assumes that arguments' tokens are of the form:
1009
1010 - [LP] NUMBER [LS]
1011 - [RP] REGISTER [RS]
1012 - [RIP] [RP] REGISTER [RS] [RIS]
1013 - If we find a number without LP, we try to parse it as a literal integer
1014 constant (if LP == NULL), or as a register displacement.
1015 - We count parenthesis, and only skip whitespaces if we are inside them.
1016 - If we find an operator, we skip it.
1017
1018 This function can also call a special function that will try to match
1019 unknown tokens. It will return 1 if the argument has been parsed
1020 successfully, or zero otherwise. */
1021
1022static struct expression *
1023stap_parse_argument (const char **arg, struct type *atype,
1024 struct gdbarch *gdbarch)
1025{
1026 struct stap_parse_info p;
55aa24fb
SDJ
1027 struct cleanup *back_to;
1028
1029 /* We need to initialize the expression buffer, in order to begin
1030 our parsing efforts. The language here does not matter, since we
1031 are using our own parser. */
410a0ff2
SDJ
1032 initialize_expout (&p.pstate, 10, current_language, gdbarch);
1033 back_to = make_cleanup (free_current_contents, &p.pstate.expout);
55aa24fb
SDJ
1034
1035 p.saved_arg = *arg;
1036 p.arg = *arg;
1037 p.arg_type = atype;
1038 p.gdbarch = gdbarch;
1039 p.inside_paren_p = 0;
1040
1041 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
1042
1043 discard_cleanups (back_to);
1044
1045 gdb_assert (p.inside_paren_p == 0);
1046
1047 /* Casting the final expression to the appropriate type. */
410a0ff2
SDJ
1048 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
1049 write_exp_elt_type (&p.pstate, atype);
1050 write_exp_elt_opcode (&p.pstate, UNOP_CAST);
55aa24fb 1051
410a0ff2 1052 reallocate_expout (&p.pstate);
55aa24fb
SDJ
1053
1054 p.arg = skip_spaces_const (p.arg);
1055 *arg = p.arg;
1056
410a0ff2
SDJ
1057 /* We can safely return EXPOUT here. */
1058 return p.pstate.expout;
55aa24fb
SDJ
1059}
1060
1061/* Function which parses an argument string from PROBE, correctly splitting
1062 the arguments and storing their information in properly ways.
1063
1064 Consider the following argument string (x86 syntax):
1065
1066 `4@%eax 4@$10'
1067
1068 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
1069 This function basically handles them, properly filling some structures with
1070 this information. */
1071
1072static void
08a6411c 1073stap_parse_probe_arguments (struct stap_probe *probe, struct gdbarch *gdbarch)
55aa24fb
SDJ
1074{
1075 const char *cur;
55aa24fb
SDJ
1076
1077 gdb_assert (!probe->args_parsed);
1078 cur = probe->args_u.text;
1079 probe->args_parsed = 1;
1080 probe->args_u.vec = NULL;
1081
97c2dca0 1082 if (cur == NULL || *cur == '\0' || *cur == ':')
55aa24fb
SDJ
1083 return;
1084
97c2dca0 1085 while (*cur != '\0')
55aa24fb
SDJ
1086 {
1087 struct stap_probe_arg arg;
1088 enum stap_arg_bitness b;
1089 int got_minus = 0;
1090 struct expression *expr;
1091
1092 memset (&arg, 0, sizeof (arg));
1093
1094 /* We expect to find something like:
1095
1096 N@OP
1097
1098 Where `N' can be [+,-][4,8]. This is not mandatory, so
1099 we check it here. If we don't find it, go to the next
1100 state. */
97c2dca0 1101 if ((*cur == '-' && cur[1] != '\0' && cur[2] != '@')
55aa24fb
SDJ
1102 && cur[1] != '@')
1103 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
1104 else
1105 {
1106 if (*cur == '-')
1107 {
1108 /* Discard the `-'. */
1109 ++cur;
1110 got_minus = 1;
1111 }
1112
1113 if (*cur == '4')
1114 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
1115 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
1116 else if (*cur == '8')
1117 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
1118 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
1119 else
1120 {
1121 /* We have an error, because we don't expect anything
1122 except 4 and 8. */
1123 complaint (&symfile_complaints,
1124 _("unrecognized bitness `%c' for probe `%s'"),
1125 *cur, probe->p.name);
1126 return;
1127 }
1128
1129 arg.bitness = b;
1130 arg.atype = stap_get_expected_argument_type (gdbarch, b);
1131
1132 /* Discard the number and the `@' sign. */
1133 cur += 2;
1134 }
1135
1136 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
1137
1138 if (stap_expression_debug)
1139 dump_raw_expression (expr, gdb_stdlog,
1140 "before conversion to prefix form");
1141
1142 prefixify_expression (expr);
1143
1144 if (stap_expression_debug)
1145 dump_prefix_expression (expr, gdb_stdlog);
1146
1147 arg.aexpr = expr;
1148
1149 /* Start it over again. */
1150 cur = skip_spaces_const (cur);
1151
1152 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
1153 }
1154}
1155
729662a5
TT
1156/* Implementation of the get_probe_address method. */
1157
1158static CORE_ADDR
1159stap_get_probe_address (struct probe *probe, struct objfile *objfile)
1160{
1161 return probe->address + ANOFFSET (objfile->section_offsets,
1162 SECT_OFF_DATA (objfile));
1163}
1164
55aa24fb
SDJ
1165/* Given PROBE, returns the number of arguments present in that probe's
1166 argument string. */
1167
1168static unsigned
08a6411c
SDJ
1169stap_get_probe_argument_count (struct probe *probe_generic,
1170 struct frame_info *frame)
55aa24fb
SDJ
1171{
1172 struct stap_probe *probe = (struct stap_probe *) probe_generic;
08a6411c 1173 struct gdbarch *gdbarch = get_frame_arch (frame);
55aa24fb
SDJ
1174
1175 gdb_assert (probe_generic->pops == &stap_probe_ops);
1176
1177 if (!probe->args_parsed)
25f9533e 1178 {
08a6411c
SDJ
1179 if (can_evaluate_probe_arguments (probe_generic))
1180 stap_parse_probe_arguments (probe, gdbarch);
25f9533e
SDJ
1181 else
1182 {
1183 static int have_warned_stap_incomplete = 0;
1184
1185 if (!have_warned_stap_incomplete)
1186 {
1187 warning (_(
1188"The SystemTap SDT probe support is not fully implemented on this target;\n"
1189"you will not be able to inspect the arguments of the probes.\n"
1190"Please report a bug against GDB requesting a port to this target."));
1191 have_warned_stap_incomplete = 1;
1192 }
1193
1194 /* Marking the arguments as "already parsed". */
1195 probe->args_u.vec = NULL;
1196 probe->args_parsed = 1;
1197 }
1198 }
55aa24fb
SDJ
1199
1200 gdb_assert (probe->args_parsed);
1201 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1202}
1203
1204/* Return 1 if OP is a valid operator inside a probe argument, or zero
1205 otherwise. */
1206
1207static int
fcf57f19 1208stap_is_operator (const char *op)
55aa24fb 1209{
fcf57f19
SDJ
1210 int ret = 1;
1211
1212 switch (*op)
1213 {
1214 case '*':
1215 case '/':
1216 case '%':
1217 case '^':
1218 case '!':
1219 case '+':
1220 case '-':
1221 case '<':
1222 case '>':
1223 case '|':
1224 case '&':
1225 break;
1226
1227 case '=':
1228 if (op[1] != '=')
1229 ret = 0;
1230 break;
1231
1232 default:
1233 /* We didn't find any operator. */
1234 ret = 0;
1235 }
1236
1237 return ret;
55aa24fb
SDJ
1238}
1239
1240static struct stap_probe_arg *
08a6411c 1241stap_get_arg (struct stap_probe *probe, unsigned n, struct gdbarch *gdbarch)
55aa24fb
SDJ
1242{
1243 if (!probe->args_parsed)
08a6411c 1244 stap_parse_probe_arguments (probe, gdbarch);
55aa24fb
SDJ
1245
1246 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1247}
1248
25f9533e
SDJ
1249/* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1250
1251static int
1252stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1253{
1254 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
729662a5 1255 struct gdbarch *gdbarch = stap_probe->p.arch;
25f9533e
SDJ
1256
1257 /* For SystemTap probes, we have to guarantee that the method
1258 stap_is_single_operand is defined on gdbarch. If it is not, then it
1259 means that argument evaluation is not implemented on this target. */
1260 return gdbarch_stap_is_single_operand_p (gdbarch);
1261}
1262
55aa24fb
SDJ
1263/* Evaluate the probe's argument N (indexed from 0), returning a value
1264 corresponding to it. Assertion is thrown if N does not exist. */
1265
1266static struct value *
08a6411c
SDJ
1267stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n,
1268 struct frame_info *frame)
55aa24fb
SDJ
1269{
1270 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
08a6411c 1271 struct gdbarch *gdbarch = get_frame_arch (frame);
55aa24fb
SDJ
1272 struct stap_probe_arg *arg;
1273 int pos = 0;
1274
1275 gdb_assert (probe_generic->pops == &stap_probe_ops);
1276
08a6411c 1277 arg = stap_get_arg (stap_probe, n, gdbarch);
55aa24fb
SDJ
1278 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1279}
1280
1281/* Compile the probe's argument N (indexed from 0) to agent expression.
1282 Assertion is thrown if N does not exist. */
1283
1284static void
6bac7473
SDJ
1285stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1286 struct axs_value *value, unsigned n)
55aa24fb
SDJ
1287{
1288 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1289 struct stap_probe_arg *arg;
1290 union exp_element *pc;
1291
1292 gdb_assert (probe_generic->pops == &stap_probe_ops);
1293
08a6411c 1294 arg = stap_get_arg (stap_probe, n, expr->gdbarch);
55aa24fb
SDJ
1295
1296 pc = arg->aexpr->elts;
1297 gen_expr (arg->aexpr, &pc, expr, value);
1298
1299 require_rvalue (expr, value);
1300 value->type = arg->atype;
1301}
1302
1303/* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
5d9cf8a4 1304 as it is allocated on an obstack. */
55aa24fb
SDJ
1305
1306static void
1307stap_probe_destroy (struct probe *probe_generic)
1308{
1309 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1310
1311 gdb_assert (probe_generic->pops == &stap_probe_ops);
1312
1313 if (probe->args_parsed)
1314 {
1315 struct stap_probe_arg *arg;
1316 int ix;
1317
1318 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1319 ++ix)
1320 xfree (arg->aexpr);
1321 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1322 }
1323}
1324
1325\f
1326
1327/* This is called to compute the value of one of the $_probe_arg*
1328 convenience variables. */
1329
1330static struct value *
1331compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1332 void *data)
1333{
1334 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1335 CORE_ADDR pc = get_frame_pc (frame);
1336 int sel = (int) (uintptr_t) data;
729662a5 1337 struct bound_probe pc_probe;
6bac7473 1338 const struct sym_probe_fns *pc_probe_fns;
55aa24fb
SDJ
1339 unsigned n_args;
1340
1341 /* SEL == -1 means "_probe_argc". */
1342 gdb_assert (sel >= -1);
1343
6bac7473 1344 pc_probe = find_probe_by_pc (pc);
729662a5 1345 if (pc_probe.probe == NULL)
55aa24fb
SDJ
1346 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1347
729662a5 1348 n_args = get_probe_argument_count (pc_probe.probe, frame);
55aa24fb
SDJ
1349 if (sel == -1)
1350 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1351
1352 if (sel >= n_args)
1353 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1354 sel, n_args);
1355
729662a5 1356 return evaluate_probe_argument (pc_probe.probe, sel, frame);
55aa24fb
SDJ
1357}
1358
1359/* This is called to compile one of the $_probe_arg* convenience
1360 variables into an agent expression. */
1361
1362static void
1363compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1364 struct axs_value *value, void *data)
1365{
1366 CORE_ADDR pc = expr->scope;
1367 int sel = (int) (uintptr_t) data;
729662a5 1368 struct bound_probe pc_probe;
6bac7473 1369 const struct sym_probe_fns *pc_probe_fns;
2b963b68 1370 int n_args;
08a6411c 1371 struct frame_info *frame = get_selected_frame (NULL);
55aa24fb
SDJ
1372
1373 /* SEL == -1 means "_probe_argc". */
1374 gdb_assert (sel >= -1);
1375
6bac7473 1376 pc_probe = find_probe_by_pc (pc);
729662a5 1377 if (pc_probe.probe == NULL)
55aa24fb
SDJ
1378 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1379
729662a5 1380 n_args = get_probe_argument_count (pc_probe.probe, frame);
6bac7473 1381
55aa24fb
SDJ
1382 if (sel == -1)
1383 {
1384 value->kind = axs_rvalue;
1385 value->type = builtin_type (expr->gdbarch)->builtin_int;
2b963b68 1386 ax_const_l (expr, n_args);
55aa24fb
SDJ
1387 return;
1388 }
1389
1390 gdb_assert (sel >= 0);
2b963b68 1391 if (sel >= n_args)
55aa24fb 1392 error (_("Invalid probe argument %d -- probe has %d arguments available"),
2b963b68 1393 sel, n_args);
55aa24fb 1394
729662a5 1395 pc_probe.probe->pops->compile_to_ax (pc_probe.probe, expr, value, sel);
55aa24fb
SDJ
1396}
1397
1398\f
1399
1400/* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1401 address. SET is zero if the semaphore should be cleared, or one
1402 if it should be set. This is a helper function for `stap_semaphore_down'
1403 and `stap_semaphore_up'. */
1404
1405static void
1406stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1407{
1408 gdb_byte bytes[sizeof (LONGEST)];
1409 /* The ABI specifies "unsigned short". */
1410 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1411 ULONGEST value;
1412
1413 if (address == 0)
1414 return;
1415
1416 /* Swallow errors. */
1417 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1418 {
1419 warning (_("Could not read the value of a SystemTap semaphore."));
1420 return;
1421 }
1422
1423 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1424 gdbarch_byte_order (gdbarch));
1425 /* Note that we explicitly don't worry about overflow or
1426 underflow. */
1427 if (set)
1428 ++value;
1429 else
1430 --value;
1431
1432 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1433 gdbarch_byte_order (gdbarch), value);
1434
1435 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1436 warning (_("Could not write the value of a SystemTap semaphore."));
1437}
1438
1439/* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1440 act as reference counters, so calls to this function must be paired with
1441 calls to `stap_semaphore_down'.
1442
1443 This function and `stap_semaphore_down' race with another tool changing
1444 the probes, but that is too rare to care. */
1445
1446static void
729662a5
TT
1447stap_set_semaphore (struct probe *probe_generic, struct objfile *objfile,
1448 struct gdbarch *gdbarch)
55aa24fb
SDJ
1449{
1450 struct stap_probe *probe = (struct stap_probe *) probe_generic;
729662a5 1451 CORE_ADDR addr;
55aa24fb
SDJ
1452
1453 gdb_assert (probe_generic->pops == &stap_probe_ops);
1454
729662a5
TT
1455 addr = (probe->sem_addr
1456 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1457 stap_modify_semaphore (addr, 1, gdbarch);
55aa24fb
SDJ
1458}
1459
1460/* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1461
1462static void
729662a5
TT
1463stap_clear_semaphore (struct probe *probe_generic, struct objfile *objfile,
1464 struct gdbarch *gdbarch)
55aa24fb
SDJ
1465{
1466 struct stap_probe *probe = (struct stap_probe *) probe_generic;
729662a5 1467 CORE_ADDR addr;
55aa24fb
SDJ
1468
1469 gdb_assert (probe_generic->pops == &stap_probe_ops);
1470
729662a5
TT
1471 addr = (probe->sem_addr
1472 + ANOFFSET (objfile->section_offsets, SECT_OFF_DATA (objfile)));
1473 stap_modify_semaphore (addr, 0, gdbarch);
55aa24fb
SDJ
1474}
1475
1476/* Implementation of `$_probe_arg*' set of variables. */
1477
1478static const struct internalvar_funcs probe_funcs =
1479{
1480 compute_probe_arg,
1481 compile_probe_arg,
1482 NULL
1483};
1484
1485/* Helper function that parses the information contained in a
1486 SystemTap's probe. Basically, the information consists in:
1487
1488 - Probe's PC address;
1489 - Link-time section address of `.stapsdt.base' section;
1490 - Link-time address of the semaphore variable, or ZERO if the
1491 probe doesn't have an associated semaphore;
1492 - Probe's provider name;
1493 - Probe's name;
1494 - Probe's argument format
1495
1496 This function returns 1 if the handling was successful, and zero
1497 otherwise. */
1498
1499static void
1500handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1501 VEC (probe_p) **probesp, CORE_ADDR base)
1502{
1503 bfd *abfd = objfile->obfd;
1504 int size = bfd_get_arch_size (abfd) / 8;
1505 struct gdbarch *gdbarch = get_objfile_arch (objfile);
55aa24fb
SDJ
1506 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1507 CORE_ADDR base_ref;
1508 const char *probe_args = NULL;
1509 struct stap_probe *ret;
1510
5d9cf8a4 1511 ret = obstack_alloc (&objfile->per_bfd->storage_obstack, sizeof (*ret));
55aa24fb 1512 ret->p.pops = &stap_probe_ops;
729662a5 1513 ret->p.arch = gdbarch;
55aa24fb
SDJ
1514
1515 /* Provider and the name of the probe. */
fe106009 1516 ret->p.provider = (char *) &el->data[3 * size];
55aa24fb
SDJ
1517 ret->p.name = memchr (ret->p.provider, '\0',
1518 (char *) el->data + el->size - ret->p.provider);
1519 /* Making sure there is a name. */
97c2dca0 1520 if (ret->p.name == NULL)
55aa24fb
SDJ
1521 {
1522 complaint (&symfile_complaints, _("corrupt probe name when "
4262abfb
JK
1523 "reading `%s'"),
1524 objfile_name (objfile));
55aa24fb
SDJ
1525
1526 /* There is no way to use a probe without a name or a provider, so
1527 returning zero here makes sense. */
1528 return;
1529 }
1530 else
1531 ++ret->p.name;
1532
1533 /* Retrieving the probe's address. */
1534 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1535
1536 /* Link-time sh_addr of `.stapsdt.base' section. */
1537 base_ref = extract_typed_address (&el->data[size], ptr_type);
1538
1539 /* Semaphore address. */
1540 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1541
729662a5 1542 ret->p.address += base - base_ref;
97c2dca0 1543 if (ret->sem_addr != 0)
729662a5 1544 ret->sem_addr += base - base_ref;
55aa24fb
SDJ
1545
1546 /* Arguments. We can only extract the argument format if there is a valid
1547 name for this probe. */
1548 probe_args = memchr (ret->p.name, '\0',
1549 (char *) el->data + el->size - ret->p.name);
1550
1551 if (probe_args != NULL)
1552 ++probe_args;
1553
97c2dca0
SDJ
1554 if (probe_args == NULL
1555 || (memchr (probe_args, '\0', (char *) el->data + el->size - ret->p.name)
1556 != el->data + el->size - 1))
55aa24fb
SDJ
1557 {
1558 complaint (&symfile_complaints, _("corrupt probe argument when "
4262abfb
JK
1559 "reading `%s'"),
1560 objfile_name (objfile));
55aa24fb
SDJ
1561 /* If the argument string is NULL, it means some problem happened with
1562 it. So we return 0. */
1563 return;
1564 }
1565
1566 ret->args_parsed = 0;
1567 ret->args_u.text = (void *) probe_args;
1568
1569 /* Successfully created probe. */
1570 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1571}
1572
1573/* Helper function which tries to find the base address of the SystemTap
1574 base section named STAP_BASE_SECTION_NAME. */
1575
1576static void
1577get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1578{
1579 asection **ret = obj;
1580
1581 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1582 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1583 *ret = sect;
1584}
1585
1586/* Helper function which iterates over every section in the BFD file,
1587 trying to find the base address of the SystemTap base section.
1588 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1589
1590static int
1591get_stap_base_address (bfd *obfd, bfd_vma *base)
1592{
1593 asection *ret = NULL;
1594
1595 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1596
97c2dca0 1597 if (ret == NULL)
55aa24fb
SDJ
1598 {
1599 complaint (&symfile_complaints, _("could not obtain base address for "
1600 "SystemTap section on objfile `%s'."),
1601 obfd->filename);
1602 return 0;
1603 }
1604
97c2dca0 1605 if (base != NULL)
55aa24fb
SDJ
1606 *base = ret->vma;
1607
1608 return 1;
1609}
1610
1611/* Helper function for `elf_get_probes', which gathers information about all
1612 SystemTap probes from OBJFILE. */
1613
1614static void
1615stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1616{
1617 /* If we are here, then this is the first time we are parsing the
1618 SystemTap probe's information. We basically have to count how many
1619 probes the objfile has, and then fill in the necessary information
1620 for each one. */
1621 bfd *obfd = objfile->obfd;
1622 bfd_vma base;
1623 struct sdt_note *iter;
1624 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1625
d7333987
SDJ
1626 if (objfile->separate_debug_objfile_backlink != NULL)
1627 {
1628 /* This is a .debug file, not the objfile itself. */
1629 return;
1630 }
1631
97c2dca0 1632 if (elf_tdata (obfd)->sdt_note_head == NULL)
55aa24fb
SDJ
1633 {
1634 /* There isn't any probe here. */
1635 return;
1636 }
1637
1638 if (!get_stap_base_address (obfd, &base))
1639 {
1640 /* There was an error finding the base address for the section.
1641 Just return NULL. */
1642 return;
1643 }
1644
1645 /* Parsing each probe's information. */
97c2dca0
SDJ
1646 for (iter = elf_tdata (obfd)->sdt_note_head;
1647 iter != NULL;
1648 iter = iter->next)
55aa24fb
SDJ
1649 {
1650 /* We first have to handle all the information about the
1651 probe which is present in the section. */
1652 handle_stap_probe (objfile, iter, probesp, base);
1653 }
1654
1655 if (save_probesp_len == VEC_length (probe_p, *probesp))
1656 {
1657 /* If we are here, it means we have failed to parse every known
1658 probe. */
1659 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1660 "from inferior"));
1661 return;
1662 }
1663}
1664
55aa24fb
SDJ
1665static int
1666stap_probe_is_linespec (const char **linespecp)
1667{
1668 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1669
1670 return probe_is_linespec_by_keyword (linespecp, keywords);
1671}
1672
1673static void
1674stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1675{
1676 info_probe_column_s stap_probe_column;
1677
1678 stap_probe_column.field_name = "semaphore";
1679 stap_probe_column.print_name = _("Semaphore");
1680
1681 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1682}
1683
1684static void
1685stap_gen_info_probes_table_values (struct probe *probe_generic,
55aa24fb
SDJ
1686 VEC (const_char_ptr) **ret)
1687{
1688 struct stap_probe *probe = (struct stap_probe *) probe_generic;
6bac7473 1689 struct gdbarch *gdbarch;
55aa24fb
SDJ
1690 const char *val = NULL;
1691
1692 gdb_assert (probe_generic->pops == &stap_probe_ops);
1693
729662a5 1694 gdbarch = probe->p.arch;
6bac7473 1695
97c2dca0 1696 if (probe->sem_addr != 0)
55aa24fb
SDJ
1697 val = print_core_address (gdbarch, probe->sem_addr);
1698
1699 VEC_safe_push (const_char_ptr, *ret, val);
1700}
1701
1702/* SystemTap probe_ops. */
1703
1704static const struct probe_ops stap_probe_ops =
1705{
1706 stap_probe_is_linespec,
1707 stap_get_probes,
729662a5 1708 stap_get_probe_address,
55aa24fb 1709 stap_get_probe_argument_count,
25f9533e 1710 stap_can_evaluate_probe_arguments,
55aa24fb
SDJ
1711 stap_evaluate_probe_argument,
1712 stap_compile_to_ax,
1713 stap_set_semaphore,
1714 stap_clear_semaphore,
1715 stap_probe_destroy,
1716 stap_gen_info_probes_table_header,
1717 stap_gen_info_probes_table_values,
1718};
1719
1720/* Implementation of the `info probes stap' command. */
1721
1722static void
1723info_probes_stap_command (char *arg, int from_tty)
1724{
1725 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1726}
1727
1728void _initialize_stap_probe (void);
1729
1730void
1731_initialize_stap_probe (void)
1732{
1733 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1734
ccce17b0
YQ
1735 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1736 &stap_expression_debug,
1737 _("Set SystemTap expression debugging."),
1738 _("Show SystemTap expression debugging."),
1739 _("When non-zero, the internal representation "
1740 "of SystemTap expressions will be printed."),
1741 NULL,
1742 show_stapexpressiondebug,
1743 &setdebuglist, &showdebuglist);
55aa24fb
SDJ
1744
1745 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1746 (void *) (uintptr_t) -1);
1747 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1748 (void *) (uintptr_t) 0);
1749 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1750 (void *) (uintptr_t) 1);
1751 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1752 (void *) (uintptr_t) 2);
1753 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1754 (void *) (uintptr_t) 3);
1755 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1756 (void *) (uintptr_t) 4);
1757 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1758 (void *) (uintptr_t) 5);
1759 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1760 (void *) (uintptr_t) 6);
1761 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1762 (void *) (uintptr_t) 7);
1763 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1764 (void *) (uintptr_t) 8);
1765 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1766 (void *) (uintptr_t) 9);
1767 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1768 (void *) (uintptr_t) 10);
1769 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1770 (void *) (uintptr_t) 11);
1771
1772 add_cmd ("stap", class_info, info_probes_stap_command,
1773 _("\
1774Show information about SystemTap static probes.\n\
1775Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1776Each argument is a regular expression, used to select probes.\n\
1777PROVIDER matches probe provider names.\n\
1778NAME matches the probe names.\n\
1779OBJECT matches the executable or shared library name."),
1780 info_probes_cmdlist_get ());
1781
1782}
This page took 0.351488 seconds and 4 git commands to generate.