daily update
[deliverable/binutils-gdb.git] / gdb / stap-probe.c
CommitLineData
55aa24fb
SDJ
1/* SystemTap probe support for GDB.
2
3 Copyright (C) 2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "defs.h"
21#include "stap-probe.h"
22#include "probe.h"
23#include "vec.h"
24#include "ui-out.h"
25#include "objfiles.h"
26#include "arch-utils.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "filenames.h"
30#include "value.h"
31#include "exceptions.h"
32#include "ax.h"
33#include "ax-gdb.h"
34#include "complaints.h"
35#include "cli/cli-utils.h"
36#include "linespec.h"
37#include "user-regs.h"
38#include "parser-defs.h"
39#include "language.h"
40#include "elf-bfd.h"
41
42#include <ctype.h>
43
44/* The name of the SystemTap section where we will find information about
45 the probes. */
46
47#define STAP_BASE_SECTION_NAME ".stapsdt.base"
48
49/* Forward declaration. */
50
51static const struct probe_ops stap_probe_ops;
52
53/* Should we display debug information for the probe's argument expression
54 parsing? */
55
56static int stap_expression_debug = 0;
57
58/* The various possibilities of bitness defined for a probe's argument.
59
60 The relationship is:
61
62 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
63 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
64 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
65 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
66 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
67
68enum stap_arg_bitness
69{
70 STAP_ARG_BITNESS_UNDEFINED,
71 STAP_ARG_BITNESS_32BIT_UNSIGNED,
72 STAP_ARG_BITNESS_32BIT_SIGNED,
73 STAP_ARG_BITNESS_64BIT_UNSIGNED,
74 STAP_ARG_BITNESS_64BIT_SIGNED,
75};
76
77/* The following structure represents a single argument for the probe. */
78
79struct stap_probe_arg
80{
81 /* The bitness of this argument. */
82 enum stap_arg_bitness bitness;
83
84 /* The corresponding `struct type *' to the bitness. */
85 struct type *atype;
86
87 /* The argument converted to an internal GDB expression. */
88 struct expression *aexpr;
89};
90
91typedef struct stap_probe_arg stap_probe_arg_s;
92DEF_VEC_O (stap_probe_arg_s);
93
94struct stap_probe
95{
96 /* Generic information about the probe. This shall be the first element
97 of this struct, in order to maintain binary compatibility with the
98 `struct probe' and be able to fully abstract it. */
99 struct probe p;
100
101 /* If the probe has a semaphore associated, then this is the value of
102 it. */
103 CORE_ADDR sem_addr;
104
105 unsigned int args_parsed : 1;
106 union
107 {
108 const char *text;
109
110 /* Information about each argument. This is an array of `stap_probe_arg',
111 with each entry representing one argument. */
112 VEC (stap_probe_arg_s) *vec;
113 }
114 args_u;
115};
116
117/* When parsing the arguments, we have to establish different precedences
118 for the various kinds of asm operators. This enumeration represents those
119 precedences.
120
121 This logic behind this is available at
122 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
123 the command "info '(as)Infix Ops'". */
124
125enum stap_operand_prec
126{
127 /* Lowest precedence, used for non-recognized operands or for the beginning
128 of the parsing process. */
129 STAP_OPERAND_PREC_NONE = 0,
130
131 /* Precedence of logical OR. */
132 STAP_OPERAND_PREC_LOGICAL_OR,
133
134 /* Precedence of logical AND. */
135 STAP_OPERAND_PREC_LOGICAL_AND,
136
137 /* Precedence of additive (plus, minus) and comparative (equal, less,
138 greater-than, etc) operands. */
139 STAP_OPERAND_PREC_ADD_CMP,
140
141 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
142 logical NOT). */
143 STAP_OPERAND_PREC_BITWISE,
144
145 /* Precedence of multiplicative operands (multiplication, division,
146 remainder, left shift and right shift). */
147 STAP_OPERAND_PREC_MUL
148};
149
150static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
151 enum stap_operand_prec prec);
152
153static void stap_parse_argument_conditionally (struct stap_parse_info *p);
154
155/* Returns 1 if *S is an operator, zero otherwise. */
156
fcf57f19 157static int stap_is_operator (const char *op);
55aa24fb
SDJ
158
159static void
160show_stapexpressiondebug (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
164 value);
165}
166
167/* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
168 if the operator code was not recognized. */
169
170static enum stap_operand_prec
171stap_get_operator_prec (enum exp_opcode op)
172{
173 switch (op)
174 {
175 case BINOP_LOGICAL_OR:
176 return STAP_OPERAND_PREC_LOGICAL_OR;
177
178 case BINOP_LOGICAL_AND:
179 return STAP_OPERAND_PREC_LOGICAL_AND;
180
181 case BINOP_ADD:
182 case BINOP_SUB:
183 case BINOP_EQUAL:
184 case BINOP_NOTEQUAL:
185 case BINOP_LESS:
186 case BINOP_LEQ:
187 case BINOP_GTR:
188 case BINOP_GEQ:
189 return STAP_OPERAND_PREC_ADD_CMP;
190
191 case BINOP_BITWISE_IOR:
192 case BINOP_BITWISE_AND:
193 case BINOP_BITWISE_XOR:
194 case UNOP_LOGICAL_NOT:
195 return STAP_OPERAND_PREC_BITWISE;
196
197 case BINOP_MUL:
198 case BINOP_DIV:
199 case BINOP_REM:
200 case BINOP_LSH:
201 case BINOP_RSH:
202 return STAP_OPERAND_PREC_MUL;
203
204 default:
205 return STAP_OPERAND_PREC_NONE;
206 }
207}
208
209/* Given S, read the operator in it and fills the OP pointer with its code.
210 Return 1 on success, zero if the operator was not recognized. */
211
fcf57f19
SDJ
212static enum exp_opcode
213stap_get_opcode (const char **s)
55aa24fb
SDJ
214{
215 const char c = **s;
fcf57f19 216 enum exp_opcode op;
55aa24fb
SDJ
217
218 *s += 1;
219
220 switch (c)
221 {
222 case '*':
fcf57f19 223 op = BINOP_MUL;
55aa24fb
SDJ
224 break;
225
226 case '/':
fcf57f19 227 op = BINOP_DIV;
55aa24fb
SDJ
228 break;
229
230 case '%':
fcf57f19 231 op = BINOP_REM;
55aa24fb
SDJ
232 break;
233
234 case '<':
fcf57f19 235 op = BINOP_LESS;
55aa24fb
SDJ
236 if (**s == '<')
237 {
238 *s += 1;
fcf57f19 239 op = BINOP_LSH;
55aa24fb
SDJ
240 }
241 else if (**s == '=')
242 {
243 *s += 1;
fcf57f19 244 op = BINOP_LEQ;
55aa24fb
SDJ
245 }
246 else if (**s == '>')
247 {
248 *s += 1;
fcf57f19 249 op = BINOP_NOTEQUAL;
55aa24fb
SDJ
250 }
251 break;
252
253 case '>':
fcf57f19 254 op = BINOP_GTR;
55aa24fb
SDJ
255 if (**s == '>')
256 {
257 *s += 1;
fcf57f19 258 op = BINOP_RSH;
55aa24fb
SDJ
259 }
260 else if (**s == '=')
261 {
262 *s += 1;
fcf57f19 263 op = BINOP_GEQ;
55aa24fb
SDJ
264 }
265 break;
266
267 case '|':
fcf57f19 268 op = BINOP_BITWISE_IOR;
55aa24fb
SDJ
269 if (**s == '|')
270 {
271 *s += 1;
fcf57f19 272 op = BINOP_LOGICAL_OR;
55aa24fb
SDJ
273 }
274 break;
275
276 case '&':
fcf57f19 277 op = BINOP_BITWISE_AND;
55aa24fb
SDJ
278 if (**s == '&')
279 {
280 *s += 1;
fcf57f19 281 op = BINOP_LOGICAL_AND;
55aa24fb
SDJ
282 }
283 break;
284
285 case '^':
fcf57f19 286 op = BINOP_BITWISE_XOR;
55aa24fb
SDJ
287 break;
288
289 case '!':
fcf57f19 290 op = UNOP_LOGICAL_NOT;
55aa24fb
SDJ
291 break;
292
293 case '+':
fcf57f19 294 op = BINOP_ADD;
55aa24fb
SDJ
295 break;
296
297 case '-':
fcf57f19 298 op = BINOP_SUB;
55aa24fb
SDJ
299 break;
300
301 case '=':
fcf57f19
SDJ
302 gdb_assert (**s == '=');
303 op = BINOP_EQUAL;
55aa24fb
SDJ
304 break;
305
306 default:
fcf57f19
SDJ
307 internal_error (__FILE__, __LINE__,
308 _("Invalid opcode in expression `%s' for SystemTap"
309 "probe"), *s);
55aa24fb
SDJ
310 }
311
fcf57f19 312 return op;
55aa24fb
SDJ
313}
314
315/* Given the bitness of the argument, represented by B, return the
316 corresponding `struct type *'. */
317
318static struct type *
319stap_get_expected_argument_type (struct gdbarch *gdbarch,
320 enum stap_arg_bitness b)
321{
322 switch (b)
323 {
324 case STAP_ARG_BITNESS_UNDEFINED:
325 if (gdbarch_addr_bit (gdbarch) == 32)
326 return builtin_type (gdbarch)->builtin_uint32;
327 else
328 return builtin_type (gdbarch)->builtin_uint64;
329
330 case STAP_ARG_BITNESS_32BIT_SIGNED:
331 return builtin_type (gdbarch)->builtin_int32;
332
333 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
334 return builtin_type (gdbarch)->builtin_uint32;
335
336 case STAP_ARG_BITNESS_64BIT_SIGNED:
337 return builtin_type (gdbarch)->builtin_int64;
338
339 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
340 return builtin_type (gdbarch)->builtin_uint64;
341
342 default:
343 internal_error (__FILE__, __LINE__,
344 _("Undefined bitness for probe."));
345 break;
346 }
347}
348
349/* Function responsible for parsing a register operand according to
350 SystemTap parlance. Assuming:
351
352 RP = register prefix
353 RS = register suffix
354 RIP = register indirection prefix
355 RIS = register indirection suffix
356
357 Then a register operand can be:
358
359 [RIP] [RP] REGISTER [RS] [RIS]
360
361 This function takes care of a register's indirection, displacement and
362 direct access. It also takes into consideration the fact that some
363 registers are named differently inside and outside GDB, e.g., PPC's
364 general-purpose registers are represented by integers in the assembly
365 language (e.g., `15' is the 15th general-purpose register), but inside
366 GDB they have a prefix (the letter `r') appended. */
367
368static void
369stap_parse_register_operand (struct stap_parse_info *p)
370{
371 /* Simple flag to indicate whether we have seen a minus signal before
372 certain number. */
373 int got_minus = 0;
374
375 /* Flags to indicate whether this register access is being displaced and/or
376 indirected. */
377 int disp_p = 0, indirect_p = 0;
378 struct gdbarch *gdbarch = p->gdbarch;
379
380 /* Needed to generate the register name as a part of an expression. */
381 struct stoken str;
382
383 /* Variables used to extract the register name from the probe's
384 argument. */
385 const char *start;
386 char *regname;
387 int len;
388
389 /* Prefixes for the parser. */
390 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
391 const char *reg_ind_prefix
392 = gdbarch_stap_register_indirection_prefix (gdbarch);
393 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
394 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
395 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
396 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
397
398 /* Suffixes for the parser. */
399 const char *reg_suffix = gdbarch_stap_register_suffix (gdbarch);
400 const char *reg_ind_suffix
401 = gdbarch_stap_register_indirection_suffix (gdbarch);
402 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
403 int reg_suffix_len = reg_suffix ? strlen (reg_suffix) : 0;
404 int reg_ind_suffix_len = reg_ind_suffix ? strlen (reg_ind_suffix) : 0;
405 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
406
407 /* Checking for a displacement argument. */
408 if (*p->arg == '+')
409 {
410 /* If it's a plus sign, we don't need to do anything, just advance the
411 pointer. */
412 ++p->arg;
413 }
414
415 if (*p->arg == '-')
416 {
417 got_minus = 1;
418 ++p->arg;
419 }
420
421 if (isdigit (*p->arg))
422 {
423 /* The value of the displacement. */
424 long displacement;
425
426 disp_p = 1;
427 displacement = strtol (p->arg, (char **) &p->arg, 10);
428
429 /* Generating the expression for the displacement. */
430 write_exp_elt_opcode (OP_LONG);
431 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
432 write_exp_elt_longcst (displacement);
433 write_exp_elt_opcode (OP_LONG);
434 if (got_minus)
435 write_exp_elt_opcode (UNOP_NEG);
436 }
437
438 /* Getting rid of register indirection prefix. */
439 if (reg_ind_prefix
440 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0)
441 {
442 indirect_p = 1;
443 p->arg += reg_ind_prefix_len;
444 }
445
446 if (disp_p && !indirect_p)
447 error (_("Invalid register displacement syntax on expression `%s'."),
448 p->saved_arg);
449
450 /* Getting rid of register prefix. */
451 if (reg_prefix && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
452 p->arg += reg_prefix_len;
453
454 /* Now we should have only the register name. Let's extract it and get
455 the associated number. */
456 start = p->arg;
457
458 /* We assume the register name is composed by letters and numbers. */
459 while (isalnum (*p->arg))
460 ++p->arg;
461
462 len = p->arg - start;
463
464 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
465 regname[0] = '\0';
466
467 /* We only add the GDB's register prefix/suffix if we are dealing with
468 a numeric register. */
469 if (gdb_reg_prefix && isdigit (*start))
470 {
471 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
472 strncpy (regname + gdb_reg_prefix_len, start, len);
473
474 if (gdb_reg_suffix)
475 strncpy (regname + gdb_reg_prefix_len + len,
476 gdb_reg_suffix, gdb_reg_suffix_len);
477
478 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
479 }
480 else
481 strncpy (regname, start, len);
482
483 regname[len] = '\0';
484
485 /* Is this a valid register name? */
486 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
487 error (_("Invalid register name `%s' on expression `%s'."),
488 regname, p->saved_arg);
489
490 write_exp_elt_opcode (OP_REGISTER);
491 str.ptr = regname;
492 str.length = len;
493 write_exp_string (str);
494 write_exp_elt_opcode (OP_REGISTER);
495
496 if (indirect_p)
497 {
498 if (disp_p)
499 write_exp_elt_opcode (BINOP_ADD);
500
501 /* Casting to the expected type. */
502 write_exp_elt_opcode (UNOP_CAST);
503 write_exp_elt_type (lookup_pointer_type (p->arg_type));
504 write_exp_elt_opcode (UNOP_CAST);
505
506 write_exp_elt_opcode (UNOP_IND);
507 }
508
509 /* Getting rid of the register name suffix. */
510 if (reg_suffix)
511 {
512 if (strncmp (p->arg, reg_suffix, reg_suffix_len) != 0)
513 error (_("Missing register name suffix `%s' on expression `%s'."),
514 reg_suffix, p->saved_arg);
515
516 p->arg += reg_suffix_len;
517 }
518
519 /* Getting rid of the register indirection suffix. */
520 if (indirect_p && reg_ind_suffix)
521 {
522 if (strncmp (p->arg, reg_ind_suffix, reg_ind_suffix_len) != 0)
523 error (_("Missing indirection suffix `%s' on expression `%s'."),
524 reg_ind_suffix, p->saved_arg);
525
526 p->arg += reg_ind_suffix_len;
527 }
528}
529
530/* This function is responsible for parsing a single operand.
531
532 A single operand can be:
533
534 - an unary operation (e.g., `-5', `~2', or even with subexpressions
535 like `-(2 + 1)')
536 - a register displacement, which will be treated as a register
537 operand (e.g., `-4(%eax)' on x86)
538 - a numeric constant, or
539 - a register operand (see function `stap_parse_register_operand')
540
541 The function also calls special-handling functions to deal with
542 unrecognized operands, allowing arch-specific parsers to be
543 created. */
544
545static void
546stap_parse_single_operand (struct stap_parse_info *p)
547{
548 struct gdbarch *gdbarch = p->gdbarch;
549
550 /* Prefixes for the parser. */
551 const char *const_prefix = gdbarch_stap_integer_prefix (gdbarch);
552 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
553 const char *reg_ind_prefix
554 = gdbarch_stap_register_indirection_prefix (gdbarch);
555 int const_prefix_len = const_prefix ? strlen (const_prefix) : 0;
556 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
557 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
558
559 /* Suffixes for the parser. */
560 const char *const_suffix = gdbarch_stap_integer_suffix (gdbarch);
55aa24fb 561 int const_suffix_len = const_suffix ? strlen (const_suffix) : 0;
55aa24fb
SDJ
562
563 /* We first try to parse this token as a "special token". */
564 if (gdbarch_stap_parse_special_token_p (gdbarch))
565 {
566 int ret = gdbarch_stap_parse_special_token (gdbarch, p);
567
568 if (ret)
569 {
570 /* If the return value of the above function is not zero,
571 it means it successfully parsed the special token.
572
573 If it is NULL, we try to parse it using our method. */
574 return;
575 }
576 }
577
578 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
579 {
580 char c = *p->arg;
581 int number;
582
583 /* We use this variable to do a lookahead. */
584 const char *tmp = p->arg;
585
586 ++tmp;
587
588 /* This is an unary operation. Here is a list of allowed tokens
589 here:
590
591 - numeric literal;
592 - number (from register displacement)
593 - subexpression (beginning with `(')
594
595 We handle the register displacement here, and the other cases
596 recursively. */
597 if (p->inside_paren_p)
598 tmp = skip_spaces_const (tmp);
599
600 if (isdigit (*tmp))
601 number = strtol (tmp, (char **) &tmp, 10);
602
603 if (!reg_ind_prefix
604 || strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
605 {
606 /* This is not a displacement. We skip the operator, and deal
607 with it later. */
608 ++p->arg;
609 stap_parse_argument_conditionally (p);
610 if (c == '-')
611 write_exp_elt_opcode (UNOP_NEG);
612 else if (c == '~')
613 write_exp_elt_opcode (UNOP_COMPLEMENT);
614 }
615 else
616 {
617 /* If we are here, it means it is a displacement. The only
618 operations allowed here are `-' and `+'. */
619 if (c == '~')
620 error (_("Invalid operator `%c' for register displacement "
621 "on expression `%s'."), c, p->saved_arg);
622
623 stap_parse_register_operand (p);
624 }
625 }
626 else if (isdigit (*p->arg))
627 {
628 /* A temporary variable, needed for lookahead. */
629 const char *tmp = p->arg;
630 long number;
631
632 /* We can be dealing with a numeric constant (if `const_prefix' is
633 NULL), or with a register displacement. */
634 number = strtol (tmp, (char **) &tmp, 10);
635
636 if (p->inside_paren_p)
637 tmp = skip_spaces_const (tmp);
638 if (!const_prefix && reg_ind_prefix
639 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
640 {
641 /* We are dealing with a numeric constant. */
642 write_exp_elt_opcode (OP_LONG);
643 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
644 write_exp_elt_longcst (number);
645 write_exp_elt_opcode (OP_LONG);
646
647 p->arg = tmp;
648
649 if (const_suffix)
650 {
651 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
652 p->arg += const_suffix_len;
653 else
654 error (_("Invalid constant suffix on expression `%s'."),
655 p->saved_arg);
656 }
657 }
658 else if (reg_ind_prefix
659 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) == 0)
660 stap_parse_register_operand (p);
661 else
662 error (_("Unknown numeric token on expression `%s'."),
663 p->saved_arg);
664 }
665 else if (const_prefix
666 && strncmp (p->arg, const_prefix, const_prefix_len) == 0)
667 {
668 /* We are dealing with a numeric constant. */
669 long number;
670
671 p->arg += const_prefix_len;
672 number = strtol (p->arg, (char **) &p->arg, 10);
673
674 write_exp_elt_opcode (OP_LONG);
675 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
676 write_exp_elt_longcst (number);
677 write_exp_elt_opcode (OP_LONG);
678
679 if (const_suffix)
680 {
681 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
682 p->arg += const_suffix_len;
683 else
684 error (_("Invalid constant suffix on expression `%s'."),
685 p->saved_arg);
686 }
687 }
688 else if ((reg_prefix
689 && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
690 || (reg_ind_prefix
691 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0))
692 stap_parse_register_operand (p);
693 else
694 error (_("Operator `%c' not recognized on expression `%s'."),
695 *p->arg, p->saved_arg);
696}
697
698/* This function parses an argument conditionally, based on single or
699 non-single operands. A non-single operand would be a parenthesized
700 expression (e.g., `(2 + 1)'), and a single operand is anything that
701 starts with `-', `~', `+' (i.e., unary operators), a digit, or
702 something recognized by `gdbarch_stap_is_single_operand'. */
703
704static void
705stap_parse_argument_conditionally (struct stap_parse_info *p)
706{
707 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
708 || isdigit (*p->arg)
709 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
710 stap_parse_single_operand (p);
711 else if (*p->arg == '(')
712 {
713 /* We are dealing with a parenthesized operand. It means we
714 have to parse it as it was a separate expression, without
715 left-side or precedence. */
716 ++p->arg;
717 p->arg = skip_spaces_const (p->arg);
718 ++p->inside_paren_p;
719
720 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
721
722 --p->inside_paren_p;
723 if (*p->arg != ')')
724 error (_("Missign close-paren on expression `%s'."),
725 p->saved_arg);
726
727 ++p->arg;
728 if (p->inside_paren_p)
729 p->arg = skip_spaces_const (p->arg);
730 }
731 else
732 error (_("Cannot parse expression `%s'."), p->saved_arg);
733}
734
735/* Helper function for `stap_parse_argument'. Please, see its comments to
736 better understand what this function does. */
737
738static void
739stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
740 enum stap_operand_prec prec)
741{
742 /* This is an operator-precedence parser.
743
744 We work with left- and right-sides of expressions, and
745 parse them depending on the precedence of the operators
746 we find. */
747
748 if (p->inside_paren_p)
749 p->arg = skip_spaces_const (p->arg);
750
751 if (!has_lhs)
752 {
753 /* We were called without a left-side, either because this is the
754 first call, or because we were called to parse a parenthesized
755 expression. It doesn't really matter; we have to parse the
756 left-side in order to continue the process. */
757 stap_parse_argument_conditionally (p);
758 }
759
760 /* Start to parse the right-side, and to "join" left and right sides
761 depending on the operation specified.
762
763 This loop shall continue until we run out of characters in the input,
764 or until we find a close-parenthesis, which means that we've reached
765 the end of a sub-expression. */
766 while (p->arg && *p->arg && *p->arg != ')' && !isspace (*p->arg))
767 {
768 const char *tmp_exp_buf;
769 enum exp_opcode opcode;
770 enum stap_operand_prec cur_prec;
771
fcf57f19 772 if (!stap_is_operator (p->arg))
55aa24fb
SDJ
773 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
774 p->saved_arg);
775
776 /* We have to save the current value of the expression buffer because
777 the `stap_get_opcode' modifies it in order to get the current
778 operator. If this operator's precedence is lower than PREC, we
779 should return and not advance the expression buffer pointer. */
780 tmp_exp_buf = p->arg;
fcf57f19 781 opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
782
783 cur_prec = stap_get_operator_prec (opcode);
784 if (cur_prec < prec)
785 {
786 /* If the precedence of the operator that we are seeing now is
787 lower than the precedence of the first operator seen before
788 this parsing process began, it means we should stop parsing
789 and return. */
790 break;
791 }
792
793 p->arg = tmp_exp_buf;
794 if (p->inside_paren_p)
795 p->arg = skip_spaces_const (p->arg);
796
797 /* Parse the right-side of the expression. */
798 stap_parse_argument_conditionally (p);
799
800 /* While we still have operators, try to parse another
801 right-side, but using the current right-side as a left-side. */
fcf57f19 802 while (*p->arg && stap_is_operator (p->arg))
55aa24fb
SDJ
803 {
804 enum exp_opcode lookahead_opcode;
805 enum stap_operand_prec lookahead_prec;
806
807 /* Saving the current expression buffer position. The explanation
808 is the same as above. */
809 tmp_exp_buf = p->arg;
fcf57f19 810 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
55aa24fb
SDJ
811 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
812
813 if (lookahead_prec <= prec)
814 {
815 /* If we are dealing with an operator whose precedence is lower
816 than the first one, just abandon the attempt. */
817 break;
818 }
819
820 /* Parse the right-side of the expression, but since we already
821 have a left-side at this point, set `has_lhs' to 1. */
822 stap_parse_argument_1 (p, 1, lookahead_prec);
823 }
824
825 write_exp_elt_opcode (opcode);
826 }
827}
828
829/* Parse a probe's argument.
830
831 Assuming that:
832
833 LP = literal integer prefix
834 LS = literal integer suffix
835
836 RP = register prefix
837 RS = register suffix
838
839 RIP = register indirection prefix
840 RIS = register indirection suffix
841
842 This routine assumes that arguments' tokens are of the form:
843
844 - [LP] NUMBER [LS]
845 - [RP] REGISTER [RS]
846 - [RIP] [RP] REGISTER [RS] [RIS]
847 - If we find a number without LP, we try to parse it as a literal integer
848 constant (if LP == NULL), or as a register displacement.
849 - We count parenthesis, and only skip whitespaces if we are inside them.
850 - If we find an operator, we skip it.
851
852 This function can also call a special function that will try to match
853 unknown tokens. It will return 1 if the argument has been parsed
854 successfully, or zero otherwise. */
855
856static struct expression *
857stap_parse_argument (const char **arg, struct type *atype,
858 struct gdbarch *gdbarch)
859{
860 struct stap_parse_info p;
55aa24fb
SDJ
861 struct cleanup *back_to;
862
863 /* We need to initialize the expression buffer, in order to begin
864 our parsing efforts. The language here does not matter, since we
865 are using our own parser. */
866 initialize_expout (10, current_language, gdbarch);
867 back_to = make_cleanup (free_current_contents, &expout);
868
869 p.saved_arg = *arg;
870 p.arg = *arg;
871 p.arg_type = atype;
872 p.gdbarch = gdbarch;
873 p.inside_paren_p = 0;
874
875 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
876
877 discard_cleanups (back_to);
878
879 gdb_assert (p.inside_paren_p == 0);
880
881 /* Casting the final expression to the appropriate type. */
882 write_exp_elt_opcode (UNOP_CAST);
883 write_exp_elt_type (atype);
884 write_exp_elt_opcode (UNOP_CAST);
885
886 reallocate_expout ();
887
888 p.arg = skip_spaces_const (p.arg);
889 *arg = p.arg;
890
891 return expout;
892}
893
894/* Function which parses an argument string from PROBE, correctly splitting
895 the arguments and storing their information in properly ways.
896
897 Consider the following argument string (x86 syntax):
898
899 `4@%eax 4@$10'
900
901 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
902 This function basically handles them, properly filling some structures with
903 this information. */
904
905static void
906stap_parse_probe_arguments (struct stap_probe *probe, struct objfile *objfile)
907{
908 const char *cur;
909 struct gdbarch *gdbarch = get_objfile_arch (objfile);
910
911 gdb_assert (!probe->args_parsed);
912 cur = probe->args_u.text;
913 probe->args_parsed = 1;
914 probe->args_u.vec = NULL;
915
916 if (!cur || !*cur || *cur == ':')
917 return;
918
919 while (*cur)
920 {
921 struct stap_probe_arg arg;
922 enum stap_arg_bitness b;
923 int got_minus = 0;
924 struct expression *expr;
925
926 memset (&arg, 0, sizeof (arg));
927
928 /* We expect to find something like:
929
930 N@OP
931
932 Where `N' can be [+,-][4,8]. This is not mandatory, so
933 we check it here. If we don't find it, go to the next
934 state. */
935 if ((*cur == '-' && cur[1] && cur[2] != '@')
936 && cur[1] != '@')
937 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
938 else
939 {
940 if (*cur == '-')
941 {
942 /* Discard the `-'. */
943 ++cur;
944 got_minus = 1;
945 }
946
947 if (*cur == '4')
948 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
949 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
950 else if (*cur == '8')
951 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
952 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
953 else
954 {
955 /* We have an error, because we don't expect anything
956 except 4 and 8. */
957 complaint (&symfile_complaints,
958 _("unrecognized bitness `%c' for probe `%s'"),
959 *cur, probe->p.name);
960 return;
961 }
962
963 arg.bitness = b;
964 arg.atype = stap_get_expected_argument_type (gdbarch, b);
965
966 /* Discard the number and the `@' sign. */
967 cur += 2;
968 }
969
970 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
971
972 if (stap_expression_debug)
973 dump_raw_expression (expr, gdb_stdlog,
974 "before conversion to prefix form");
975
976 prefixify_expression (expr);
977
978 if (stap_expression_debug)
979 dump_prefix_expression (expr, gdb_stdlog);
980
981 arg.aexpr = expr;
982
983 /* Start it over again. */
984 cur = skip_spaces_const (cur);
985
986 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
987 }
988}
989
990/* Given PROBE, returns the number of arguments present in that probe's
991 argument string. */
992
993static unsigned
994stap_get_probe_argument_count (struct probe *probe_generic,
995 struct objfile *objfile)
996{
997 struct stap_probe *probe = (struct stap_probe *) probe_generic;
998
999 gdb_assert (probe_generic->pops == &stap_probe_ops);
1000
1001 if (!probe->args_parsed)
1002 stap_parse_probe_arguments (probe, objfile);
1003
1004 gdb_assert (probe->args_parsed);
1005 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1006}
1007
1008/* Return 1 if OP is a valid operator inside a probe argument, or zero
1009 otherwise. */
1010
1011static int
fcf57f19 1012stap_is_operator (const char *op)
55aa24fb 1013{
fcf57f19
SDJ
1014 int ret = 1;
1015
1016 switch (*op)
1017 {
1018 case '*':
1019 case '/':
1020 case '%':
1021 case '^':
1022 case '!':
1023 case '+':
1024 case '-':
1025 case '<':
1026 case '>':
1027 case '|':
1028 case '&':
1029 break;
1030
1031 case '=':
1032 if (op[1] != '=')
1033 ret = 0;
1034 break;
1035
1036 default:
1037 /* We didn't find any operator. */
1038 ret = 0;
1039 }
1040
1041 return ret;
55aa24fb
SDJ
1042}
1043
1044static struct stap_probe_arg *
1045stap_get_arg (struct stap_probe *probe, struct objfile *objfile, unsigned n)
1046{
1047 if (!probe->args_parsed)
1048 stap_parse_probe_arguments (probe, objfile);
1049
1050 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1051}
1052
1053/* Evaluate the probe's argument N (indexed from 0), returning a value
1054 corresponding to it. Assertion is thrown if N does not exist. */
1055
1056static struct value *
1057stap_evaluate_probe_argument (struct probe *probe_generic,
1058 struct objfile *objfile, unsigned n)
1059{
1060 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1061 struct stap_probe_arg *arg;
1062 int pos = 0;
1063
1064 gdb_assert (probe_generic->pops == &stap_probe_ops);
1065
1066 arg = stap_get_arg (stap_probe, objfile, n);
1067 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1068}
1069
1070/* Compile the probe's argument N (indexed from 0) to agent expression.
1071 Assertion is thrown if N does not exist. */
1072
1073static void
1074stap_compile_to_ax (struct probe *probe_generic, struct objfile *objfile,
1075 struct agent_expr *expr, struct axs_value *value,
1076 unsigned n)
1077{
1078 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1079 struct stap_probe_arg *arg;
1080 union exp_element *pc;
1081
1082 gdb_assert (probe_generic->pops == &stap_probe_ops);
1083
1084 arg = stap_get_arg (stap_probe, objfile, n);
1085
1086 pc = arg->aexpr->elts;
1087 gen_expr (arg->aexpr, &pc, expr, value);
1088
1089 require_rvalue (expr, value);
1090 value->type = arg->atype;
1091}
1092
1093/* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1094 as it is allocated from OBJFILE_OBSTACK. */
1095
1096static void
1097stap_probe_destroy (struct probe *probe_generic)
1098{
1099 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1100
1101 gdb_assert (probe_generic->pops == &stap_probe_ops);
1102
1103 if (probe->args_parsed)
1104 {
1105 struct stap_probe_arg *arg;
1106 int ix;
1107
1108 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1109 ++ix)
1110 xfree (arg->aexpr);
1111 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1112 }
1113}
1114
1115\f
1116
1117/* This is called to compute the value of one of the $_probe_arg*
1118 convenience variables. */
1119
1120static struct value *
1121compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1122 void *data)
1123{
1124 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1125 CORE_ADDR pc = get_frame_pc (frame);
1126 int sel = (int) (uintptr_t) data;
1127 struct objfile *objfile;
1128 struct probe *pc_probe;
1129 unsigned n_args;
1130
1131 /* SEL == -1 means "_probe_argc". */
1132 gdb_assert (sel >= -1);
1133
1134 pc_probe = find_probe_by_pc (pc, &objfile);
1135 if (pc_probe == NULL)
1136 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1137
1138 n_args
1139 = objfile->sf->sym_probe_fns->sym_get_probe_argument_count (objfile,
1140 pc_probe);
1141 if (sel == -1)
1142 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1143
1144 if (sel >= n_args)
1145 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1146 sel, n_args);
1147
1148 return objfile->sf->sym_probe_fns->sym_evaluate_probe_argument (objfile,
1149 pc_probe,
1150 sel);
1151}
1152
1153/* This is called to compile one of the $_probe_arg* convenience
1154 variables into an agent expression. */
1155
1156static void
1157compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1158 struct axs_value *value, void *data)
1159{
1160 CORE_ADDR pc = expr->scope;
1161 int sel = (int) (uintptr_t) data;
1162 struct objfile *objfile;
1163 struct probe *pc_probe;
1164 int n_probes;
1165
1166 /* SEL == -1 means "_probe_argc". */
1167 gdb_assert (sel >= -1);
1168
1169 pc_probe = find_probe_by_pc (pc, &objfile);
1170 if (pc_probe == NULL)
1171 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1172
1173 n_probes
1174 = objfile->sf->sym_probe_fns->sym_get_probe_argument_count (objfile,
1175 pc_probe);
1176 if (sel == -1)
1177 {
1178 value->kind = axs_rvalue;
1179 value->type = builtin_type (expr->gdbarch)->builtin_int;
1180 ax_const_l (expr, n_probes);
1181 return;
1182 }
1183
1184 gdb_assert (sel >= 0);
1185 if (sel >= n_probes)
1186 error (_("Invalid probe argument %d -- probe has %d arguments available"),
1187 sel, n_probes);
1188
1189 objfile->sf->sym_probe_fns->sym_compile_to_ax (objfile, pc_probe,
1190 expr, value, sel);
1191}
1192
1193\f
1194
1195/* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1196 address. SET is zero if the semaphore should be cleared, or one
1197 if it should be set. This is a helper function for `stap_semaphore_down'
1198 and `stap_semaphore_up'. */
1199
1200static void
1201stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1202{
1203 gdb_byte bytes[sizeof (LONGEST)];
1204 /* The ABI specifies "unsigned short". */
1205 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1206 ULONGEST value;
1207
1208 if (address == 0)
1209 return;
1210
1211 /* Swallow errors. */
1212 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1213 {
1214 warning (_("Could not read the value of a SystemTap semaphore."));
1215 return;
1216 }
1217
1218 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1219 gdbarch_byte_order (gdbarch));
1220 /* Note that we explicitly don't worry about overflow or
1221 underflow. */
1222 if (set)
1223 ++value;
1224 else
1225 --value;
1226
1227 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1228 gdbarch_byte_order (gdbarch), value);
1229
1230 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1231 warning (_("Could not write the value of a SystemTap semaphore."));
1232}
1233
1234/* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1235 act as reference counters, so calls to this function must be paired with
1236 calls to `stap_semaphore_down'.
1237
1238 This function and `stap_semaphore_down' race with another tool changing
1239 the probes, but that is too rare to care. */
1240
1241static void
1242stap_set_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1243{
1244 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1245
1246 gdb_assert (probe_generic->pops == &stap_probe_ops);
1247
1248 stap_modify_semaphore (probe->sem_addr, 1, gdbarch);
1249}
1250
1251/* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1252
1253static void
1254stap_clear_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1255{
1256 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1257
1258 gdb_assert (probe_generic->pops == &stap_probe_ops);
1259
1260 stap_modify_semaphore (probe->sem_addr, 0, gdbarch);
1261}
1262
1263/* Implementation of `$_probe_arg*' set of variables. */
1264
1265static const struct internalvar_funcs probe_funcs =
1266{
1267 compute_probe_arg,
1268 compile_probe_arg,
1269 NULL
1270};
1271
1272/* Helper function that parses the information contained in a
1273 SystemTap's probe. Basically, the information consists in:
1274
1275 - Probe's PC address;
1276 - Link-time section address of `.stapsdt.base' section;
1277 - Link-time address of the semaphore variable, or ZERO if the
1278 probe doesn't have an associated semaphore;
1279 - Probe's provider name;
1280 - Probe's name;
1281 - Probe's argument format
1282
1283 This function returns 1 if the handling was successful, and zero
1284 otherwise. */
1285
1286static void
1287handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1288 VEC (probe_p) **probesp, CORE_ADDR base)
1289{
1290 bfd *abfd = objfile->obfd;
1291 int size = bfd_get_arch_size (abfd) / 8;
1292 struct gdbarch *gdbarch = get_objfile_arch (objfile);
55aa24fb
SDJ
1293 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1294 CORE_ADDR base_ref;
1295 const char *probe_args = NULL;
1296 struct stap_probe *ret;
1297
1298 ret = obstack_alloc (&objfile->objfile_obstack, sizeof (*ret));
1299 ret->p.pops = &stap_probe_ops;
1300
1301 /* Provider and the name of the probe. */
1302 ret->p.provider = &el->data[3 * size];
1303 ret->p.name = memchr (ret->p.provider, '\0',
1304 (char *) el->data + el->size - ret->p.provider);
1305 /* Making sure there is a name. */
1306 if (!ret->p.name)
1307 {
1308 complaint (&symfile_complaints, _("corrupt probe name when "
1309 "reading `%s'"), objfile->name);
1310
1311 /* There is no way to use a probe without a name or a provider, so
1312 returning zero here makes sense. */
1313 return;
1314 }
1315 else
1316 ++ret->p.name;
1317
1318 /* Retrieving the probe's address. */
1319 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1320
1321 /* Link-time sh_addr of `.stapsdt.base' section. */
1322 base_ref = extract_typed_address (&el->data[size], ptr_type);
1323
1324 /* Semaphore address. */
1325 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1326
1327 ret->p.address += (ANOFFSET (objfile->section_offsets,
1328 SECT_OFF_TEXT (objfile))
1329 + base - base_ref);
1330 if (ret->sem_addr)
1331 ret->sem_addr += (ANOFFSET (objfile->section_offsets,
1332 SECT_OFF_DATA (objfile))
1333 + base - base_ref);
1334
1335 /* Arguments. We can only extract the argument format if there is a valid
1336 name for this probe. */
1337 probe_args = memchr (ret->p.name, '\0',
1338 (char *) el->data + el->size - ret->p.name);
1339
1340 if (probe_args != NULL)
1341 ++probe_args;
1342
1343 if (probe_args == NULL || (memchr (probe_args, '\0',
1344 (char *) el->data + el->size - ret->p.name)
1345 != el->data + el->size - 1))
1346 {
1347 complaint (&symfile_complaints, _("corrupt probe argument when "
1348 "reading `%s'"), objfile->name);
1349 /* If the argument string is NULL, it means some problem happened with
1350 it. So we return 0. */
1351 return;
1352 }
1353
1354 ret->args_parsed = 0;
1355 ret->args_u.text = (void *) probe_args;
1356
1357 /* Successfully created probe. */
1358 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1359}
1360
1361/* Helper function which tries to find the base address of the SystemTap
1362 base section named STAP_BASE_SECTION_NAME. */
1363
1364static void
1365get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1366{
1367 asection **ret = obj;
1368
1369 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1370 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1371 *ret = sect;
1372}
1373
1374/* Helper function which iterates over every section in the BFD file,
1375 trying to find the base address of the SystemTap base section.
1376 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1377
1378static int
1379get_stap_base_address (bfd *obfd, bfd_vma *base)
1380{
1381 asection *ret = NULL;
1382
1383 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1384
1385 if (!ret)
1386 {
1387 complaint (&symfile_complaints, _("could not obtain base address for "
1388 "SystemTap section on objfile `%s'."),
1389 obfd->filename);
1390 return 0;
1391 }
1392
1393 if (base)
1394 *base = ret->vma;
1395
1396 return 1;
1397}
1398
1399/* Helper function for `elf_get_probes', which gathers information about all
1400 SystemTap probes from OBJFILE. */
1401
1402static void
1403stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1404{
1405 /* If we are here, then this is the first time we are parsing the
1406 SystemTap probe's information. We basically have to count how many
1407 probes the objfile has, and then fill in the necessary information
1408 for each one. */
1409 bfd *obfd = objfile->obfd;
1410 bfd_vma base;
1411 struct sdt_note *iter;
1412 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1413
1414 if (!elf_tdata (obfd)->sdt_note_head)
1415 {
1416 /* There isn't any probe here. */
1417 return;
1418 }
1419
1420 if (!get_stap_base_address (obfd, &base))
1421 {
1422 /* There was an error finding the base address for the section.
1423 Just return NULL. */
1424 return;
1425 }
1426
1427 /* Parsing each probe's information. */
1428 for (iter = elf_tdata (obfd)->sdt_note_head; iter; iter = iter->next)
1429 {
1430 /* We first have to handle all the information about the
1431 probe which is present in the section. */
1432 handle_stap_probe (objfile, iter, probesp, base);
1433 }
1434
1435 if (save_probesp_len == VEC_length (probe_p, *probesp))
1436 {
1437 /* If we are here, it means we have failed to parse every known
1438 probe. */
1439 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1440 "from inferior"));
1441 return;
1442 }
1443}
1444
1445static void
1446stap_relocate (struct probe *probe_generic, CORE_ADDR delta)
1447{
1448 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1449
1450 gdb_assert (probe_generic->pops == &stap_probe_ops);
1451
1452 probe->p.address += delta;
1453 if (probe->sem_addr)
1454 probe->sem_addr += delta;
1455}
1456
1457static int
1458stap_probe_is_linespec (const char **linespecp)
1459{
1460 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1461
1462 return probe_is_linespec_by_keyword (linespecp, keywords);
1463}
1464
1465static void
1466stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1467{
1468 info_probe_column_s stap_probe_column;
1469
1470 stap_probe_column.field_name = "semaphore";
1471 stap_probe_column.print_name = _("Semaphore");
1472
1473 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1474}
1475
1476static void
1477stap_gen_info_probes_table_values (struct probe *probe_generic,
1478 struct objfile *objfile,
1479 VEC (const_char_ptr) **ret)
1480{
1481 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1482 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1483 const char *val = NULL;
1484
1485 gdb_assert (probe_generic->pops == &stap_probe_ops);
1486
1487 if (probe->sem_addr)
1488 val = print_core_address (gdbarch, probe->sem_addr);
1489
1490 VEC_safe_push (const_char_ptr, *ret, val);
1491}
1492
1493/* SystemTap probe_ops. */
1494
1495static const struct probe_ops stap_probe_ops =
1496{
1497 stap_probe_is_linespec,
1498 stap_get_probes,
1499 stap_relocate,
1500 stap_get_probe_argument_count,
1501 stap_evaluate_probe_argument,
1502 stap_compile_to_ax,
1503 stap_set_semaphore,
1504 stap_clear_semaphore,
1505 stap_probe_destroy,
1506 stap_gen_info_probes_table_header,
1507 stap_gen_info_probes_table_values,
1508};
1509
1510/* Implementation of the `info probes stap' command. */
1511
1512static void
1513info_probes_stap_command (char *arg, int from_tty)
1514{
1515 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1516}
1517
1518void _initialize_stap_probe (void);
1519
1520void
1521_initialize_stap_probe (void)
1522{
1523 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1524
1525 add_setshow_zinteger_cmd ("stap-expression", class_maintenance,
1526 &stap_expression_debug,
1527 _("Set SystemTap expression debugging."),
1528 _("Show SystemTap expression debugging."),
1529 _("When non-zero, the internal representation "
1530 "of SystemTap expressions will be printed."),
1531 NULL,
1532 show_stapexpressiondebug,
1533 &setdebuglist, &showdebuglist);
1534
1535 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1536 (void *) (uintptr_t) -1);
1537 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1538 (void *) (uintptr_t) 0);
1539 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1540 (void *) (uintptr_t) 1);
1541 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1542 (void *) (uintptr_t) 2);
1543 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1544 (void *) (uintptr_t) 3);
1545 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1546 (void *) (uintptr_t) 4);
1547 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1548 (void *) (uintptr_t) 5);
1549 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1550 (void *) (uintptr_t) 6);
1551 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1552 (void *) (uintptr_t) 7);
1553 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1554 (void *) (uintptr_t) 8);
1555 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1556 (void *) (uintptr_t) 9);
1557 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1558 (void *) (uintptr_t) 10);
1559 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1560 (void *) (uintptr_t) 11);
1561
1562 add_cmd ("stap", class_info, info_probes_stap_command,
1563 _("\
1564Show information about SystemTap static probes.\n\
1565Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1566Each argument is a regular expression, used to select probes.\n\
1567PROVIDER matches probe provider names.\n\
1568NAME matches the probe names.\n\
1569OBJECT matches the executable or shared library name."),
1570 info_probes_cmdlist_get ());
1571
1572}
This page took 0.089896 seconds and 4 git commands to generate.