Introduce ref_ptr::new_reference
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
76727919 49#include "observable.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
37e136b1 67#include <algorithm>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 85int readnever_symbol_files; /* Never read full symbols. */
c906108c 86
c378eb4e 87/* Functions this file defines. */
c906108c 88
ecf45d2c 89static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 90 objfile_flags flags);
d7db6da9 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
31d99776
DJ
105static void symfile_find_segment_sections (struct objfile *objfile);
106
c906108c
SS
107/* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
c378eb4e 109 prepared to read. */
c906108c 110
905014d7 111struct registered_sym_fns
c256e171 112{
905014d7
SM
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
c256e171
DE
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
905014d7 122};
c256e171 123
905014d7 124static std::vector<registered_sym_fns> symtab_fns;
c906108c 125
770e7fc7
DE
126/* Values for "set print symbol-loading". */
127
128const char print_symbol_loading_off[] = "off";
129const char print_symbol_loading_brief[] = "brief";
130const char print_symbol_loading_full[] = "full";
131static const char *print_symbol_loading_enums[] =
132{
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137};
138static const char *print_symbol_loading = print_symbol_loading_full;
139
b7209cb4
FF
140/* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
c906108c 147 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 148 report all the functions that are actually present. */
c906108c
SS
149
150int auto_solib_add = 1;
c906108c 151\f
c5aa993b 152
770e7fc7
DE
153/* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161int
162print_symbol_loading_p (int from_tty, int exec, int full)
163{
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176}
177
0d14a781 178/* True if we are reading a symbol table. */
c906108c
SS
179
180int currently_reading_symtab = 0;
181
ccefe4c4
TT
182/* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
3b7bacac 184
c83dd867 185scoped_restore_tmpl<int>
ccefe4c4 186increment_reading_symtab (void)
c906108c 187{
c83dd867
TT
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
c906108c
SS
191}
192
5417f6dc
RM
193/* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
c906108c
SS
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202void
4efb68b1 203find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 204{
c5aa993b 205 asection **lowest = (asection **) obj;
c906108c 206
eb73e134 207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217}
218
62557bbc 219/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 220 an existing section table. */
62557bbc 221
37e136b1 222section_addr_info
0542c86d
PA
223build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
62557bbc 225{
0542c86d 226 const struct target_section *stp;
62557bbc 227
37e136b1 228 section_addr_info sap;
62557bbc 229
37e136b1 230 for (stp = start; stp != end; stp++)
62557bbc 231 {
2b2848e2
DE
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
37e136b1
TT
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
62557bbc
KB
240 }
241
242 return sap;
243}
244
82ccf5a5 245/* Create a section_addr_info from section offsets in ABFD. */
089b4803 246
37e136b1 247static section_addr_info
82ccf5a5 248build_section_addr_info_from_bfd (bfd *abfd)
089b4803 249{
089b4803
TG
250 struct bfd_section *sec;
251
37e136b1
TT
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
82ccf5a5 254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
37e136b1
TT
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
d76488d8 258
089b4803
TG
259 return sap;
260}
261
82ccf5a5
JK
262/* Create a section_addr_info from section offsets in OBJFILE. */
263
37e136b1 264section_addr_info
82ccf5a5
JK
265build_section_addr_info_from_objfile (const struct objfile *objfile)
266{
82ccf5a5
JK
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
37e136b1
TT
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
82ccf5a5 274 {
37e136b1 275 int sectindex = sap[i].sectindex;
82ccf5a5 276
37e136b1 277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
82ccf5a5
JK
278 }
279 return sap;
280}
62557bbc 281
e8289572 282/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 283
e8289572
JB
284static void
285init_objfile_sect_indices (struct objfile *objfile)
c906108c 286{
e8289572 287 asection *sect;
c906108c 288 int i;
5417f6dc 289
b8fbeb18 290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 291 if (sect)
b8fbeb18
EZ
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 295 if (sect)
b8fbeb18
EZ
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 299 if (sect)
b8fbeb18
EZ
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 303 if (sect)
b8fbeb18
EZ
304 objfile->sect_index_rodata = sect->index;
305
bbcd32ad
FF
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
31d99776
DJ
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
bbcd32ad
FF
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
b8fbeb18 341}
c906108c 342
c1bd25fd
DJ
343/* The arguments to place_section. */
344
345struct place_section_arg
346{
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349};
350
351/* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
2c0b251b 354static void
c1bd25fd
DJ
355place_section (bfd *abfd, asection *sect, void *obj)
356{
19ba03f4 357 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
3bd72c6f 360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 361
2711e456
DJ
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
364 return;
365
366 /* If the user specified an offset, honor it. */
65cf3563 367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
371 start_addr = (arg->lowest + align - 1) & -align;
372
c1bd25fd
DJ
373 do {
374 asection *cur_sec;
c1bd25fd 375
c1bd25fd
DJ
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
c1bd25fd
DJ
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
2711e456
DJ
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
3bd72c6f 403 break;
c1bd25fd
DJ
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
65cf3563 411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 412 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 413}
e8289572 414
4f7ae6f5 415/* Store section_addr_info as prepared (made relative and with SECTINDEX
75242ef4
JK
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
e8289572
JB
418
419void
75242ef4
JK
420relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
37e136b1 422 const section_addr_info &addrs)
e8289572
JB
423{
424 int i;
425
75242ef4 426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 427
c378eb4e 428 /* Now calculate offsets for section that were specified by the caller. */
37e136b1 429 for (i = 0; i < addrs.size (); i++)
e8289572 430 {
3189cb12 431 const struct other_sections *osp;
e8289572 432
37e136b1 433 osp = &addrs[i];
5488dafb 434 if (osp->sectindex == -1)
e8289572
JB
435 continue;
436
c378eb4e 437 /* Record all sections in offsets. */
e8289572 438 /* The section_offsets in the objfile are here filled in using
c378eb4e 439 the BFD index. */
75242ef4
JK
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442}
443
1276c759
JK
444/* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450static const char *
451addr_section_name (const char *s)
452{
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459}
460
37e136b1
TT
461/* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
82ccf5a5 464
37e136b1
TT
465static bool
466addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
82ccf5a5 468{
22e048c9 469 int retval;
82ccf5a5 470
37e136b1
TT
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
82ccf5a5 475
37e136b1 476 return a->sectindex < b->sectindex;
82ccf5a5
JK
477}
478
37e136b1 479/* Provide sorted array of pointers to sections of ADDRS. */
82ccf5a5 480
37e136b1
TT
481static std::vector<const struct other_sections *>
482addrs_section_sort (const section_addr_info &addrs)
82ccf5a5 483{
82ccf5a5
JK
484 int i;
485
37e136b1
TT
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
82ccf5a5 489
37e136b1 490 std::sort (array.begin (), array.end (), addrs_section_compar);
82ccf5a5
JK
491
492 return array;
493}
494
75242ef4 495/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
498
499void
37e136b1 500addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
75242ef4
JK
501{
502 asection *lower_sect;
75242ef4
JK
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
e8289572 515 }
75242ef4
JK
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
82ccf5a5
JK
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
37e136b1
TT
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
82ccf5a5 531
37e136b1
TT
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
82ccf5a5 535
c378eb4e
MS
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
82ccf5a5 538
37e136b1
TT
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
82ccf5a5 541
37e136b1
TT
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const struct other_sections *sect : addrs_sorted)
82ccf5a5 545 {
37e136b1 546 const char *sect_name = addr_section_name (sect->name.c_str ());
82ccf5a5 547
37e136b1
TT
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 550 sect_name) < 0)
37e136b1 551 abfd_sorted_iter++;
82ccf5a5 552
37e136b1
TT
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 555 sect_name) == 0)
82ccf5a5
JK
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
37e136b1 560 index_in_addrs = sect - addrs->data ();
82ccf5a5 561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
37e136b1 562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
82ccf5a5
JK
563
564 /* Never use the same ABFD entry twice. */
37e136b1 565 abfd_sorted_iter++;
82ccf5a5 566 }
82ccf5a5
JK
567 }
568
75242ef4
JK
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
37e136b1 579 for (i = 0; i < addrs->size (); i++)
75242ef4 580 {
37e136b1 581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
582
583 if (sect)
75242ef4 584 {
c378eb4e 585 /* This is the index used by BFD. */
37e136b1 586 (*addrs)[i].sectindex = sect->sectindex;
672d9c23 587
37e136b1 588 if ((*addrs)[i].addr != 0)
75242ef4 589 {
37e136b1
TT
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
75242ef4
JK
592 }
593 else
37e136b1 594 (*addrs)[i].addr = lower_offset;
75242ef4
JK
595 }
596 else
672d9c23 597 {
1276c759 598 /* addr_section_name transformation is not used for SECT_NAME. */
37e136b1 599 const std::string &sect_name = (*addrs)[i].name;
1276c759 600
b0fcb67f
JK
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
4d9743af
JK
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
1276c759
JK
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f 614
37e136b1
TT
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
1276c759 618 && i > 0
37e136b1 619 && (*addrs)[i - 1].name == ".dynbss"
1276c759 620 && addrs_to_abfd_addrs[i - 1] != NULL)
37e136b1 621 || (sect_name == ".sbss"
1276c759 622 && i > 0
37e136b1 623 && (*addrs)[i - 1].name == ".sdynbss"
1276c759 624 && addrs_to_abfd_addrs[i - 1] != NULL)))
37e136b1 625 warning (_("section %s not found in %s"), sect_name.c_str (),
b0fcb67f
JK
626 bfd_get_filename (abfd));
627
37e136b1
TT
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
672d9c23 630 }
75242ef4
JK
631 }
632}
633
634/* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640void
641default_symfile_offsets (struct objfile *objfile,
37e136b1 642 const section_addr_info &addrs)
75242ef4 643{
d445b2f6 644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
e8289572 650
c1bd25fd
DJ
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
2711e456
DJ
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
2711e456
DJ
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
30510692 713 offsets[cur_sec->index]);
2711e456
DJ
714 offsets[cur_sec->index] = 0;
715 }
716 }
c1bd25fd
DJ
717 }
718
e8289572 719 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 720 .rodata sections. */
e8289572
JB
721 init_objfile_sect_indices (objfile);
722}
723
31d99776
DJ
724/* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730struct symfile_segment_data *
731default_symfile_segments (bfd *abfd)
732{
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
41bf6aca 758 data = XCNEW (struct symfile_segment_data);
31d99776 759 data->num_segments = 1;
fc270c35
TT
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
762
763 num_sections = bfd_count_sections (abfd);
fc270c35 764 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786}
787
608e2dbb
TT
788/* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791static void
b15cc25c 792read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
793{
794 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 795 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 802 {
192b62ce 803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
804
805 if (abfd != NULL)
24ba069a
JK
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
192b62ce
TT
811 symbol_file_add_separate (abfd.get (), objfile->original_name,
812 add_flags, objfile);
24ba069a 813 }
608e2dbb
TT
814 }
815 if ((add_flags & SYMFILE_NO_READ) == 0)
816 require_partial_symbols (objfile, 0);
817}
818
3d6e24f0
JB
819/* Initialize entry point information for this objfile. */
820
821static void
822init_entry_point_info (struct objfile *objfile)
823{
6ef55de7
TT
824 struct entry_info *ei = &objfile->per_bfd->ei;
825
826 if (ei->initialized)
827 return;
828 ei->initialized = 1;
829
3d6e24f0
JB
830 /* Save startup file's range of PC addresses to help blockframe.c
831 decide where the bottom of the stack is. */
832
833 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
834 {
835 /* Executable file -- record its entry point so we'll recognize
836 the startup file because it contains the entry point. */
6ef55de7
TT
837 ei->entry_point = bfd_get_start_address (objfile->obfd);
838 ei->entry_point_p = 1;
3d6e24f0
JB
839 }
840 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
841 && bfd_get_start_address (objfile->obfd) != 0)
842 {
843 /* Some shared libraries may have entry points set and be
844 runnable. There's no clear way to indicate this, so just check
845 for values other than zero. */
6ef55de7
TT
846 ei->entry_point = bfd_get_start_address (objfile->obfd);
847 ei->entry_point_p = 1;
3d6e24f0
JB
848 }
849 else
850 {
851 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 852 ei->entry_point_p = 0;
3d6e24f0
JB
853 }
854
6ef55de7 855 if (ei->entry_point_p)
3d6e24f0 856 {
53eddfa6 857 struct obj_section *osect;
6ef55de7 858 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 859 int found;
3d6e24f0
JB
860
861 /* Make certain that the address points at real code, and not a
862 function descriptor. */
863 entry_point
df6d5441 864 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
865 entry_point,
866 &current_target);
867
868 /* Remove any ISA markers, so that this matches entries in the
869 symbol table. */
6ef55de7 870 ei->entry_point
df6d5441 871 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
872
873 found = 0;
874 ALL_OBJFILE_OSECTIONS (objfile, osect)
875 {
876 struct bfd_section *sect = osect->the_bfd_section;
877
878 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
879 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
880 + bfd_get_section_size (sect)))
881 {
6ef55de7 882 ei->the_bfd_section_index
53eddfa6
TT
883 = gdb_bfd_section_index (objfile->obfd, sect);
884 found = 1;
885 break;
886 }
887 }
888
889 if (!found)
6ef55de7 890 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
891 }
892}
893
c906108c
SS
894/* Process a symbol file, as either the main file or as a dynamically
895 loaded file.
896
36e4d068
JB
897 This function does not set the OBJFILE's entry-point info.
898
96baa820
JM
899 OBJFILE is where the symbols are to be read from.
900
7e8580c1
JB
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
96baa820 910
7eedccfa
PP
911 ADD_FLAGS encodes verbosity level, whether this is main symbol or
912 an extra symbol file such as dynamically loaded code, and wether
913 breakpoint reset should be deferred. */
c906108c 914
36e4d068
JB
915static void
916syms_from_objfile_1 (struct objfile *objfile,
37e136b1 917 section_addr_info *addrs,
b15cc25c 918 symfile_add_flags add_flags)
c906108c 919{
37e136b1 920 section_addr_info local_addr;
c906108c 921 struct cleanup *old_chain;
7eedccfa 922 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 923
8fb8eb5c 924 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 925
75245b24 926 if (objfile->sf == NULL)
36e4d068
JB
927 {
928 /* No symbols to load, but we still need to make sure
929 that the section_offsets table is allocated. */
d445b2f6 930 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 931 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
932
933 objfile->num_sections = num_sections;
934 objfile->section_offsets
224c3ddb
SM
935 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
936 size);
36e4d068
JB
937 memset (objfile->section_offsets, 0, size);
938 return;
939 }
75245b24 940
c906108c
SS
941 /* Make sure that partially constructed symbol tables will be cleaned up
942 if an error occurs during symbol reading. */
ed2b3126
TT
943 old_chain = make_cleanup (null_cleanup, NULL);
944 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 945
6bf667bb
DE
946 /* If ADDRS is NULL, put together a dummy address list.
947 We now establish the convention that an addr of zero means
c378eb4e 948 no load address was specified. */
6bf667bb 949 if (! addrs)
37e136b1 950 addrs = &local_addr;
a39a16c4 951
c5aa993b 952 if (mainline)
c906108c
SS
953 {
954 /* We will modify the main symbol table, make sure that all its users
c5aa993b 955 will be cleaned up if an error occurs during symbol reading. */
74b7792f 956 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
957
958 /* Since no error yet, throw away the old symbol table. */
959
960 if (symfile_objfile != NULL)
961 {
9e86da07 962 delete symfile_objfile;
adb7f338 963 gdb_assert (symfile_objfile == NULL);
c906108c
SS
964 }
965
966 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
967 If the user wants to get rid of them, they should do "symbol-file"
968 without arguments first. Not sure this is the best behavior
969 (PR 2207). */
c906108c 970
c5aa993b 971 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
972 }
973
974 /* Convert addr into an offset rather than an absolute address.
975 We find the lowest address of a loaded segment in the objfile,
53a5351d 976 and assume that <addr> is where that got loaded.
c906108c 977
53a5351d
JM
978 We no longer warn if the lowest section is not a text segment (as
979 happens for the PA64 port. */
37e136b1 980 if (addrs->size () > 0)
75242ef4 981 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
982
983 /* Initialize symbol reading routines for this objfile, allow complaints to
984 appear for this new file, and record how verbose to be, then do the
c378eb4e 985 initial symbol reading for this file. */
c906108c 986
c5aa993b 987 (*objfile->sf->sym_init) (objfile);
7eedccfa 988 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 989
37e136b1 990 (*objfile->sf->sym_offsets) (objfile, *addrs);
c906108c 991
608e2dbb 992 read_symbols (objfile, add_flags);
b11896a5 993
c906108c
SS
994 /* Discard cleanups as symbol reading was successful. */
995
ed2b3126 996 objfile_holder.release ();
c906108c 997 discard_cleanups (old_chain);
c906108c
SS
998}
999
36e4d068
JB
1000/* Same as syms_from_objfile_1, but also initializes the objfile
1001 entry-point info. */
1002
6bf667bb 1003static void
36e4d068 1004syms_from_objfile (struct objfile *objfile,
37e136b1 1005 section_addr_info *addrs,
b15cc25c 1006 symfile_add_flags add_flags)
36e4d068 1007{
6bf667bb 1008 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1009 init_entry_point_info (objfile);
1010}
1011
c906108c
SS
1012/* Perform required actions after either reading in the initial
1013 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1014 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1015
e7d52ed3 1016static void
b15cc25c 1017finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1018{
c906108c 1019 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1020 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1021 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1022 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1023 {
1024 /* OK, make it the "real" symbol file. */
1025 symfile_objfile = objfile;
1026
c1e56572 1027 clear_symtab_users (add_flags);
c906108c 1028 }
7eedccfa 1029 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1030 {
69de3c6a 1031 breakpoint_re_set ();
c906108c
SS
1032 }
1033
1034 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1035 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1036}
1037
1038/* Process a symbol file, as either the main file or as a dynamically
1039 loaded file.
1040
5417f6dc 1041 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1042 A new reference is acquired by this function.
7904e09f 1043
9e86da07 1044 For NAME description see the objfile constructor.
24ba069a 1045
7eedccfa
PP
1046 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1047 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1048
6bf667bb 1049 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1050 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1051
63524580
JK
1052 PARENT is the original objfile if ABFD is a separate debug info file.
1053 Otherwise PARENT is NULL.
1054
c906108c 1055 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1056 Upon failure, jumps back to command level (never returns). */
7eedccfa 1057
7904e09f 1058static struct objfile *
b15cc25c
PA
1059symbol_file_add_with_addrs (bfd *abfd, const char *name,
1060 symfile_add_flags add_flags,
37e136b1 1061 section_addr_info *addrs,
b15cc25c 1062 objfile_flags flags, struct objfile *parent)
c906108c
SS
1063{
1064 struct objfile *objfile;
7eedccfa 1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1066 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1067 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1070
9291a0cd 1071 if (readnow_symbol_files)
b11896a5
TT
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
97cbe998
SDJ
1076 else if (readnever_symbol_files
1077 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1078 {
1079 flags |= OBJF_READNEVER;
1080 add_flags |= SYMFILE_NO_READ;
1081 }
9291a0cd 1082
5417f6dc
RM
1083 /* Give user a chance to burp if we'd be
1084 interactively wiping out any existing symbols. */
c906108c
SS
1085
1086 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1087 && mainline
c906108c 1088 && from_tty
9e2f0ad4 1089 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1090 error (_("Not confirmed."));
c906108c 1091
b15cc25c
PA
1092 if (mainline)
1093 flags |= OBJF_MAINLINE;
9e86da07 1094 objfile = new struct objfile (abfd, name, flags);
c906108c 1095
63524580
JK
1096 if (parent)
1097 add_separate_debug_objfile (objfile, parent);
1098
78a4a9b9
AC
1099 /* We either created a new mapped symbol table, mapped an existing
1100 symbol table file which has not had initial symbol reading
c378eb4e 1101 performed, or need to read an unmapped symbol table. */
b11896a5 1102 if (should_print)
c906108c 1103 {
769d7dc4
AC
1104 if (deprecated_pre_add_symbol_hook)
1105 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1106 else
c906108c 1107 {
55333a84
DE
1108 printf_unfiltered (_("Reading symbols from %s..."), name);
1109 wrap_here ("");
1110 gdb_flush (gdb_stdout);
c906108c 1111 }
c906108c 1112 }
6bf667bb 1113 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1114
1115 /* We now have at least a partial symbol table. Check to see if the
1116 user requested that all symbols be read on initial access via either
1117 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1118 all partial symbol tables for this objfile if so. */
c906108c 1119
9291a0cd 1120 if ((flags & OBJF_READNOW))
c906108c 1121 {
b11896a5 1122 if (should_print)
c906108c 1123 {
a3f17187 1124 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1125 wrap_here ("");
1126 gdb_flush (gdb_stdout);
1127 }
1128
ccefe4c4
TT
1129 if (objfile->sf)
1130 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1131 }
1132
b11896a5 1133 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1134 {
1135 wrap_here ("");
55333a84 1136 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1137 wrap_here ("");
1138 }
1139
b11896a5 1140 if (should_print)
c906108c 1141 {
769d7dc4
AC
1142 if (deprecated_post_add_symbol_hook)
1143 deprecated_post_add_symbol_hook ();
c906108c 1144 else
55333a84 1145 printf_unfiltered (_("done.\n"));
c906108c
SS
1146 }
1147
481d0f41
JB
1148 /* We print some messages regardless of whether 'from_tty ||
1149 info_verbose' is true, so make sure they go out at the right
1150 time. */
1151 gdb_flush (gdb_stdout);
1152
109f874e 1153 if (objfile->sf == NULL)
8caee43b 1154 {
76727919 1155 gdb::observers::new_objfile.notify (objfile);
c378eb4e 1156 return objfile; /* No symbols. */
8caee43b 1157 }
109f874e 1158
e7d52ed3 1159 finish_new_objfile (objfile, add_flags);
c906108c 1160
76727919 1161 gdb::observers::new_objfile.notify (objfile);
c906108c 1162
ce7d4522 1163 bfd_cache_close_all ();
c906108c
SS
1164 return (objfile);
1165}
1166
24ba069a 1167/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1168 see the objfile constructor. */
9cce227f
TG
1169
1170void
b15cc25c
PA
1171symbol_file_add_separate (bfd *bfd, const char *name,
1172 symfile_add_flags symfile_flags,
24ba069a 1173 struct objfile *objfile)
9cce227f 1174{
089b4803
TG
1175 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1176 because sections of BFD may not match sections of OBJFILE and because
1177 vma may have been modified by tools such as prelink. */
37e136b1 1178 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
9cce227f 1179
870f88f7 1180 symbol_file_add_with_addrs
37e136b1 1181 (bfd, name, symfile_flags, &sap,
9cce227f 1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1183 | OBJF_USERLOADED),
1184 objfile);
9cce227f 1185}
7904e09f 1186
eb4556d7
JB
1187/* Process the symbol file ABFD, as either the main file or as a
1188 dynamically loaded file.
6bf667bb 1189 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1190
eb4556d7 1191struct objfile *
b15cc25c
PA
1192symbol_file_add_from_bfd (bfd *abfd, const char *name,
1193 symfile_add_flags add_flags,
37e136b1 1194 section_addr_info *addrs,
b15cc25c 1195 objfile_flags flags, struct objfile *parent)
eb4556d7 1196{
24ba069a
JK
1197 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1198 parent);
eb4556d7
JB
1199}
1200
7904e09f 1201/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1202 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1203
7904e09f 1204struct objfile *
b15cc25c 1205symbol_file_add (const char *name, symfile_add_flags add_flags,
37e136b1 1206 section_addr_info *addrs, objfile_flags flags)
7904e09f 1207{
192b62ce 1208 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1209
192b62ce
TT
1210 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1211 flags, NULL);
7904e09f
JB
1212}
1213
d7db6da9
FN
1214/* Call symbol_file_add() with default values and update whatever is
1215 affected by the loading of a new main().
1216 Used when the file is supplied in the gdb command line
1217 and by some targets with special loading requirements.
1218 The auxiliary function, symbol_file_add_main_1(), has the flags
1219 argument for the switches that can only be specified in the symbol_file
1220 command itself. */
5417f6dc 1221
1adeb98a 1222void
ecf45d2c 1223symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1224{
ecf45d2c 1225 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1226}
1227
1228static void
ecf45d2c
SL
1229symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1230 objfile_flags flags)
d7db6da9 1231{
ecf45d2c 1232 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1233
7eedccfa 1234 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1235
d7db6da9
FN
1236 /* Getting new symbols may change our opinion about
1237 what is frameless. */
1238 reinit_frame_cache ();
1239
b15cc25c 1240 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1241 set_initial_language ();
1adeb98a
FN
1242}
1243
1244void
1245symbol_file_clear (int from_tty)
1246{
1247 if ((have_full_symbols () || have_partial_symbols ())
1248 && from_tty
0430b0d6
AS
1249 && (symfile_objfile
1250 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1251 objfile_name (symfile_objfile))
0430b0d6 1252 : !query (_("Discard symbol table? "))))
8a3fe4f8 1253 error (_("Not confirmed."));
1adeb98a 1254
0133421a
JK
1255 /* solib descriptors may have handles to objfiles. Wipe them before their
1256 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1257 no_shared_libraries (NULL, from_tty);
1258
0133421a
JK
1259 free_all_objfiles ();
1260
adb7f338 1261 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1262 if (from_tty)
1263 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1264}
1265
c4dcb155
SM
1266/* See symfile.h. */
1267
1268int separate_debug_file_debug = 0;
1269
5b5d99cf 1270static int
a8dbfd58 1271separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1272 struct objfile *parent_objfile)
5b5d99cf 1273{
904578ed
JK
1274 unsigned long file_crc;
1275 int file_crc_p;
32a0e547 1276 struct stat parent_stat, abfd_stat;
904578ed 1277 int verified_as_different;
32a0e547
JK
1278
1279 /* Find a separate debug info file as if symbols would be present in
1280 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1281 section can contain just the basename of PARENT_OBJFILE without any
1282 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1283 the separate debug infos with the same basename can exist. */
32a0e547 1284
a8dbfd58 1285 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1286 return 0;
5b5d99cf 1287
c4dcb155 1288 if (separate_debug_file_debug)
a8dbfd58 1289 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
c4dcb155 1290
a8dbfd58 1291 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1292
192b62ce 1293 if (abfd == NULL)
5b5d99cf
JB
1294 return 0;
1295
0ba1096a 1296 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1297
1298 Some operating systems, e.g. Windows, do not provide a meaningful
1299 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1300 meaningful st_dev.) Files accessed from gdbservers that do not
1301 support the vFile:fstat packet will also have st_ino set to zero.
1302 Do not indicate a duplicate library in either case. While there
1303 is no guarantee that a system that provides meaningful inode
1304 numbers will never set st_ino to zero, this is merely an
1305 optimization, so we do not need to worry about false negatives. */
32a0e547 1306
192b62ce 1307 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1308 && abfd_stat.st_ino != 0
1309 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1310 {
904578ed
JK
1311 if (abfd_stat.st_dev == parent_stat.st_dev
1312 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1313 return 0;
904578ed 1314 verified_as_different = 1;
32a0e547 1315 }
904578ed
JK
1316 else
1317 verified_as_different = 0;
32a0e547 1318
192b62ce 1319 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1320
904578ed
JK
1321 if (!file_crc_p)
1322 return 0;
1323
287ccc17
JK
1324 if (crc != file_crc)
1325 {
dccee2de
TT
1326 unsigned long parent_crc;
1327
0a93529c
GB
1328 /* If the files could not be verified as different with
1329 bfd_stat then we need to calculate the parent's CRC
1330 to verify whether the files are different or not. */
904578ed 1331
dccee2de 1332 if (!verified_as_different)
904578ed 1333 {
dccee2de 1334 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1335 return 0;
1336 }
1337
dccee2de 1338 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1339 warning (_("the debug information found in \"%s\""
1340 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1341 name.c_str (), objfile_name (parent_objfile));
904578ed 1342
287ccc17
JK
1343 return 0;
1344 }
1345
1346 return 1;
5b5d99cf
JB
1347}
1348
aa28a74e 1349char *debug_file_directory = NULL;
920d2a44
AC
1350static void
1351show_debug_file_directory (struct ui_file *file, int from_tty,
1352 struct cmd_list_element *c, const char *value)
1353{
3e43a32a
MS
1354 fprintf_filtered (file,
1355 _("The directory where separate debug "
1356 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1357 value);
1358}
5b5d99cf
JB
1359
1360#if ! defined (DEBUG_SUBDIRECTORY)
1361#define DEBUG_SUBDIRECTORY ".debug"
1362#endif
1363
1db33378
PP
1364/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1365 where the original file resides (may not be the same as
1366 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1367 looking for. CANON_DIR is the "realpath" form of DIR.
1368 DIR must contain a trailing '/'.
a8dbfd58
SM
1369 Returns the path of the file with separate debug info, or an empty
1370 string. */
1db33378 1371
a8dbfd58 1372static std::string
1db33378
PP
1373find_separate_debug_file (const char *dir,
1374 const char *canon_dir,
1375 const char *debuglink,
1376 unsigned long crc32, struct objfile *objfile)
9cce227f 1377{
c4dcb155
SM
1378 if (separate_debug_file_debug)
1379 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1380 "%s\n"), objfile_name (objfile));
1381
5b5d99cf 1382 /* First try in the same directory as the original file. */
a8dbfd58
SM
1383 std::string debugfile = dir;
1384 debugfile += debuglink;
5b5d99cf 1385
32a0e547 1386 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1387 return debugfile;
5417f6dc 1388
5b5d99cf 1389 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1390 debugfile = dir;
1391 debugfile += DEBUG_SUBDIRECTORY;
1392 debugfile += "/";
1393 debugfile += debuglink;
5b5d99cf 1394
32a0e547 1395 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1396 return debugfile;
5417f6dc 1397
24ddea62 1398 /* Then try in the global debugfile directories.
f888f159 1399
24ddea62
JK
1400 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1401 cause "/..." lookups. */
5417f6dc 1402
e80aaf61
SM
1403 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1404 = dirnames_to_char_ptr_vec (debug_file_directory);
24ddea62 1405
e80aaf61 1406 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1407 {
a8dbfd58
SM
1408 debugfile = debugdir.get ();
1409 debugfile += "/";
1410 debugfile += dir;
1411 debugfile += debuglink;
aa28a74e 1412
32a0e547 1413 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1414 return debugfile;
24ddea62
JK
1415
1416 /* If the file is in the sysroot, try using its base path in the
1417 global debugfile directory. */
1db33378
PP
1418 if (canon_dir != NULL
1419 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1420 strlen (gdb_sysroot)) == 0
1db33378 1421 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1422 {
a8dbfd58
SM
1423 debugfile = debugdir.get ();
1424 debugfile += (canon_dir + strlen (gdb_sysroot));
1425 debugfile += "/";
1426 debugfile += debuglink;
24ddea62 1427
32a0e547 1428 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1429 return debugfile;
24ddea62 1430 }
aa28a74e 1431 }
f888f159 1432
a8dbfd58 1433 return std::string ();
1db33378
PP
1434}
1435
7edbb660 1436/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1437 If there were no directory separators in PATH, PATH will be empty
1438 string on return. */
1439
1440static void
1441terminate_after_last_dir_separator (char *path)
1442{
1443 int i;
1444
1445 /* Strip off the final filename part, leaving the directory name,
1446 followed by a slash. The directory can be relative or absolute. */
1447 for (i = strlen(path) - 1; i >= 0; i--)
1448 if (IS_DIR_SEPARATOR (path[i]))
1449 break;
1450
1451 /* If I is -1 then no directory is present there and DIR will be "". */
1452 path[i + 1] = '\0';
1453}
1454
1455/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1456 Returns pathname, or an empty string. */
1db33378 1457
a8dbfd58 1458std::string
1db33378
PP
1459find_separate_debug_file_by_debuglink (struct objfile *objfile)
1460{
1db33378 1461 unsigned long crc32;
1db33378 1462
5eae7aea
TT
1463 gdb::unique_xmalloc_ptr<char> debuglink
1464 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1465
1466 if (debuglink == NULL)
1467 {
1468 /* There's no separate debug info, hence there's no way we could
1469 load it => no warning. */
a8dbfd58 1470 return std::string ();
1db33378
PP
1471 }
1472
5eae7aea
TT
1473 std::string dir = objfile_name (objfile);
1474 terminate_after_last_dir_separator (&dir[0]);
1475 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1476
a8dbfd58
SM
1477 std::string debugfile
1478 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1479 debuglink.get (), crc32, objfile);
1db33378 1480
a8dbfd58 1481 if (debugfile.empty ())
1db33378 1482 {
1db33378
PP
1483 /* For PR gdb/9538, try again with realpath (if different from the
1484 original). */
1485
1486 struct stat st_buf;
1487
4262abfb
JK
1488 if (lstat (objfile_name (objfile), &st_buf) == 0
1489 && S_ISLNK (st_buf.st_mode))
1db33378 1490 {
5eae7aea
TT
1491 gdb::unique_xmalloc_ptr<char> symlink_dir
1492 (lrealpath (objfile_name (objfile)));
1db33378
PP
1493 if (symlink_dir != NULL)
1494 {
5eae7aea
TT
1495 terminate_after_last_dir_separator (symlink_dir.get ());
1496 if (dir != symlink_dir.get ())
1db33378
PP
1497 {
1498 /* Different directory, so try using it. */
5eae7aea
TT
1499 debugfile = find_separate_debug_file (symlink_dir.get (),
1500 symlink_dir.get (),
1501 debuglink.get (),
1db33378
PP
1502 crc32,
1503 objfile);
1504 }
1505 }
1506 }
1db33378 1507 }
aa28a74e 1508
25522fae 1509 return debugfile;
5b5d99cf
JB
1510}
1511
97cbe998
SDJ
1512/* Make sure that OBJF_{READNOW,READNEVER} are not set
1513 simultaneously. */
1514
1515static void
1516validate_readnow_readnever (objfile_flags flags)
1517{
1518 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1519 error (_("-readnow and -readnever cannot be used simultaneously"));
1520}
1521
c906108c
SS
1522/* This is the symbol-file command. Read the file, analyze its
1523 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1524 the command is rather bizarre:
1525
1526 1. The function buildargv implements various quoting conventions
1527 which are undocumented and have little or nothing in common with
1528 the way things are quoted (or not quoted) elsewhere in GDB.
1529
1530 2. Options are used, which are not generally used in GDB (perhaps
1531 "set mapped on", "set readnow on" would be better)
1532
1533 3. The order of options matters, which is contrary to GNU
c906108c
SS
1534 conventions (because it is confusing and inconvenient). */
1535
1536void
1d8b34a7 1537symbol_file_command (const char *args, int from_tty)
c906108c 1538{
c906108c
SS
1539 dont_repeat ();
1540
1541 if (args == NULL)
1542 {
1adeb98a 1543 symbol_file_clear (from_tty);
c906108c
SS
1544 }
1545 else
1546 {
b15cc25c 1547 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1548 symfile_add_flags add_flags = 0;
cb2f3a29 1549 char *name = NULL;
40fc416f
SDJ
1550 bool stop_processing_options = false;
1551 int idx;
1552 char *arg;
cb2f3a29 1553
ecf45d2c
SL
1554 if (from_tty)
1555 add_flags |= SYMFILE_VERBOSE;
1556
773a1edc 1557 gdb_argv built_argv (args);
40fc416f 1558 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1559 {
40fc416f 1560 if (stop_processing_options || *arg != '-')
7f0f8ac8 1561 {
40fc416f
SDJ
1562 if (name == NULL)
1563 name = arg;
1564 else
1565 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1566 }
40fc416f
SDJ
1567 else if (strcmp (arg, "-readnow") == 0)
1568 flags |= OBJF_READNOW;
97cbe998
SDJ
1569 else if (strcmp (arg, "-readnever") == 0)
1570 flags |= OBJF_READNEVER;
40fc416f
SDJ
1571 else if (strcmp (arg, "--") == 0)
1572 stop_processing_options = true;
1573 else
1574 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1575 }
1576
1577 if (name == NULL)
cb2f3a29 1578 error (_("no symbol file name was specified"));
40fc416f 1579
97cbe998
SDJ
1580 validate_readnow_readnever (flags);
1581
40fc416f 1582 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1583 }
1584}
1585
1586/* Set the initial language.
1587
cb2f3a29
MK
1588 FIXME: A better solution would be to record the language in the
1589 psymtab when reading partial symbols, and then use it (if known) to
1590 set the language. This would be a win for formats that encode the
1591 language in an easily discoverable place, such as DWARF. For
1592 stabs, we can jump through hoops looking for specially named
1593 symbols or try to intuit the language from the specific type of
1594 stabs we find, but we can't do that until later when we read in
1595 full symbols. */
c906108c 1596
8b60591b 1597void
fba45db2 1598set_initial_language (void)
c906108c 1599{
9e6c82ad 1600 enum language lang = main_language ();
c906108c 1601
9e6c82ad 1602 if (lang == language_unknown)
01f8c46d 1603 {
bf6d8a91 1604 char *name = main_name ();
d12307c1 1605 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1606
bf6d8a91
TT
1607 if (sym != NULL)
1608 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1609 }
cb2f3a29 1610
ccefe4c4
TT
1611 if (lang == language_unknown)
1612 {
1613 /* Make C the default language */
1614 lang = language_c;
c906108c 1615 }
ccefe4c4
TT
1616
1617 set_language (lang);
1618 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1619}
1620
cb2f3a29
MK
1621/* Open the file specified by NAME and hand it off to BFD for
1622 preliminary analysis. Return a newly initialized bfd *, which
1623 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1624 absolute). In case of trouble, error() is called. */
c906108c 1625
192b62ce 1626gdb_bfd_ref_ptr
97a41605 1627symfile_bfd_open (const char *name)
c906108c 1628{
97a41605 1629 int desc = -1;
c906108c 1630
e0cc99a6 1631 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1632 if (!is_target_filename (name))
f1838a98 1633 {
ee0c3293 1634 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1635
97a41605
GB
1636 /* Look down path for it, allocate 2nd new malloc'd copy. */
1637 desc = openp (getenv ("PATH"),
1638 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1639 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1640#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1641 if (desc < 0)
1642 {
ee0c3293 1643 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1644
ee0c3293 1645 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1646 desc = openp (getenv ("PATH"),
1647 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1648 exename, O_RDONLY | O_BINARY, &absolute_name);
1649 }
c906108c 1650#endif
97a41605 1651 if (desc < 0)
ee0c3293 1652 perror_with_name (expanded_name.get ());
cb2f3a29 1653
e0cc99a6 1654 name = absolute_name.get ();
97a41605 1655 }
c906108c 1656
192b62ce
TT
1657 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1658 if (sym_bfd == NULL)
faab9922
JK
1659 error (_("`%s': can't open to read symbols: %s."), name,
1660 bfd_errmsg (bfd_get_error ()));
97a41605 1661
192b62ce
TT
1662 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1663 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1664
192b62ce
TT
1665 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1666 error (_("`%s': can't read symbols: %s."), name,
1667 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1668
1669 return sym_bfd;
c906108c
SS
1670}
1671
cb2f3a29
MK
1672/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1673 the section was not found. */
1674
0e931cf0 1675int
a121b7c1 1676get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1677{
1678 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1679
0e931cf0
JB
1680 if (sect)
1681 return sect->index;
1682 else
1683 return -1;
1684}
1685
c256e171
DE
1686/* Link SF into the global symtab_fns list.
1687 FLAVOUR is the file format that SF handles.
1688 Called on startup by the _initialize routine in each object file format
1689 reader, to register information about each format the reader is prepared
1690 to handle. */
c906108c
SS
1691
1692void
c256e171 1693add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1694{
905014d7 1695 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1696}
1697
cb2f3a29
MK
1698/* Initialize OBJFILE to read symbols from its associated BFD. It
1699 either returns or calls error(). The result is an initialized
1700 struct sym_fns in the objfile structure, that contains cached
1701 information about the symbol file. */
c906108c 1702
00b5771c 1703static const struct sym_fns *
31d99776 1704find_sym_fns (bfd *abfd)
c906108c 1705{
31d99776 1706 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1707
75245b24
MS
1708 if (our_flavour == bfd_target_srec_flavour
1709 || our_flavour == bfd_target_ihex_flavour
1710 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1711 return NULL; /* No symbols. */
75245b24 1712
905014d7
SM
1713 for (const registered_sym_fns &rsf : symtab_fns)
1714 if (our_flavour == rsf.sym_flavour)
1715 return rsf.sym_fns;
cb2f3a29 1716
8a3fe4f8 1717 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1718 bfd_get_target (abfd));
c906108c
SS
1719}
1720\f
cb2f3a29 1721
c906108c
SS
1722/* This function runs the load command of our current target. */
1723
1724static void
5fed81ff 1725load_command (const char *arg, int from_tty)
c906108c 1726{
e5cc9f32
JB
1727 dont_repeat ();
1728
4487aabf
PA
1729 /* The user might be reloading because the binary has changed. Take
1730 this opportunity to check. */
1731 reopen_exec_file ();
1732 reread_symbols ();
1733
b577b6af 1734 std::string temp;
c906108c 1735 if (arg == NULL)
1986bccd 1736 {
b577b6af 1737 const char *parg, *prev;
1986bccd 1738
b577b6af 1739 arg = get_exec_file (1);
1986bccd 1740
b577b6af
TT
1741 /* We may need to quote this string so buildargv can pull it
1742 apart. */
1743 prev = parg = arg;
1986bccd
AS
1744 while ((parg = strpbrk (parg, "\\\"'\t ")))
1745 {
b577b6af
TT
1746 temp.append (prev, parg - prev);
1747 prev = parg++;
1748 temp.push_back ('\\');
1986bccd 1749 }
b577b6af
TT
1750 /* If we have not copied anything yet, then we didn't see a
1751 character to quote, and we can just leave ARG unchanged. */
1752 if (!temp.empty ())
1986bccd 1753 {
b577b6af
TT
1754 temp.append (prev);
1755 arg = temp.c_str ();
1986bccd
AS
1756 }
1757 }
1758
c906108c 1759 target_load (arg, from_tty);
2889e661
JB
1760
1761 /* After re-loading the executable, we don't really know which
1762 overlays are mapped any more. */
1763 overlay_cache_invalid = 1;
c906108c
SS
1764}
1765
1766/* This version of "load" should be usable for any target. Currently
1767 it is just used for remote targets, not inftarg.c or core files,
1768 on the theory that only in that case is it useful.
1769
1770 Avoiding xmodem and the like seems like a win (a) because we don't have
1771 to worry about finding it, and (b) On VMS, fork() is very slow and so
1772 we don't want to run a subprocess. On the other hand, I'm not sure how
1773 performance compares. */
917317f4 1774
917317f4
JM
1775static int validate_download = 0;
1776
e4f9b4d5
MS
1777/* Callback service function for generic_load (bfd_map_over_sections). */
1778
1779static void
1780add_section_size_callback (bfd *abfd, asection *asec, void *data)
1781{
19ba03f4 1782 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1783
2c500098 1784 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1785}
1786
a76d924d 1787/* Opaque data for load_progress. */
55089490
TT
1788struct load_progress_data
1789{
a76d924d 1790 /* Cumulative data. */
55089490
TT
1791 unsigned long write_count = 0;
1792 unsigned long data_count = 0;
1793 bfd_size_type total_size = 0;
a76d924d
DJ
1794};
1795
1796/* Opaque data for load_progress for a single section. */
55089490
TT
1797struct load_progress_section_data
1798{
1799 load_progress_section_data (load_progress_data *cumulative_,
1800 const char *section_name_, ULONGEST section_size_,
1801 CORE_ADDR lma_, gdb_byte *buffer_)
1802 : cumulative (cumulative_), section_name (section_name_),
1803 section_size (section_size_), lma (lma_), buffer (buffer_)
1804 {}
1805
a76d924d 1806 struct load_progress_data *cumulative;
cf7a04e8 1807
a76d924d 1808 /* Per-section data. */
cf7a04e8 1809 const char *section_name;
55089490 1810 ULONGEST section_sent = 0;
cf7a04e8
DJ
1811 ULONGEST section_size;
1812 CORE_ADDR lma;
1813 gdb_byte *buffer;
e4f9b4d5
MS
1814};
1815
55089490
TT
1816/* Opaque data for load_section_callback. */
1817struct load_section_data
1818{
1819 load_section_data (load_progress_data *progress_data_)
1820 : progress_data (progress_data_)
1821 {}
1822
1823 ~load_section_data ()
1824 {
1825 for (auto &&request : requests)
1826 {
1827 xfree (request.data);
1828 delete ((load_progress_section_data *) request.baton);
1829 }
1830 }
1831
1832 CORE_ADDR load_offset = 0;
1833 struct load_progress_data *progress_data;
1834 std::vector<struct memory_write_request> requests;
1835};
1836
a76d924d 1837/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1838
1839static void
1840load_progress (ULONGEST bytes, void *untyped_arg)
1841{
19ba03f4
SM
1842 struct load_progress_section_data *args
1843 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1844 struct load_progress_data *totals;
1845
1846 if (args == NULL)
1847 /* Writing padding data. No easy way to get at the cumulative
1848 stats, so just ignore this. */
1849 return;
1850
1851 totals = args->cumulative;
1852
1853 if (bytes == 0 && args->section_sent == 0)
1854 {
1855 /* The write is just starting. Let the user know we've started
1856 this section. */
112e8700
SM
1857 current_uiout->message ("Loading section %s, size %s lma %s\n",
1858 args->section_name,
1859 hex_string (args->section_size),
1860 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1861 return;
1862 }
cf7a04e8
DJ
1863
1864 if (validate_download)
1865 {
1866 /* Broken memories and broken monitors manifest themselves here
1867 when bring new computers to life. This doubles already slow
1868 downloads. */
1869 /* NOTE: cagney/1999-10-18: A more efficient implementation
1870 might add a verify_memory() method to the target vector and
1871 then use that. remote.c could implement that method using
1872 the ``qCRC'' packet. */
0efef640 1873 gdb::byte_vector check (bytes);
cf7a04e8 1874
0efef640 1875 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1876 error (_("Download verify read failed at %s"),
f5656ead 1877 paddress (target_gdbarch (), args->lma));
0efef640 1878 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1879 error (_("Download verify compare failed at %s"),
f5656ead 1880 paddress (target_gdbarch (), args->lma));
cf7a04e8 1881 }
a76d924d 1882 totals->data_count += bytes;
cf7a04e8
DJ
1883 args->lma += bytes;
1884 args->buffer += bytes;
a76d924d 1885 totals->write_count += 1;
cf7a04e8 1886 args->section_sent += bytes;
522002f9 1887 if (check_quit_flag ()
cf7a04e8
DJ
1888 || (deprecated_ui_load_progress_hook != NULL
1889 && deprecated_ui_load_progress_hook (args->section_name,
1890 args->section_sent)))
1891 error (_("Canceled the download"));
1892
1893 if (deprecated_show_load_progress != NULL)
1894 deprecated_show_load_progress (args->section_name,
1895 args->section_sent,
1896 args->section_size,
a76d924d
DJ
1897 totals->data_count,
1898 totals->total_size);
cf7a04e8
DJ
1899}
1900
e4f9b4d5
MS
1901/* Callback service function for generic_load (bfd_map_over_sections). */
1902
1903static void
1904load_section_callback (bfd *abfd, asection *asec, void *data)
1905{
19ba03f4 1906 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1907 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1908 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1909
cf7a04e8
DJ
1910 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1911 return;
e4f9b4d5 1912
cf7a04e8
DJ
1913 if (size == 0)
1914 return;
e4f9b4d5 1915
55089490
TT
1916 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1917 ULONGEST end = begin + size;
1918 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 1919 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 1920
55089490
TT
1921 load_progress_section_data *section_data
1922 = new load_progress_section_data (args->progress_data, sect_name, size,
1923 begin, buffer);
cf7a04e8 1924
55089490 1925 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
1926}
1927
dcb07cfa
PA
1928static void print_transfer_performance (struct ui_file *stream,
1929 unsigned long data_count,
1930 unsigned long write_count,
1931 std::chrono::steady_clock::duration d);
1932
c906108c 1933void
9cbe5fff 1934generic_load (const char *args, int from_tty)
c906108c 1935{
a76d924d 1936 struct load_progress_data total_progress;
55089490 1937 struct load_section_data cbdata (&total_progress);
79a45e25 1938 struct ui_out *uiout = current_uiout;
a76d924d 1939
d1a41061
PP
1940 if (args == NULL)
1941 error_no_arg (_("file to load"));
1986bccd 1942
773a1edc 1943 gdb_argv argv (args);
1986bccd 1944
ee0c3293 1945 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
1946
1947 if (argv[1] != NULL)
917317f4 1948 {
f698ca8e 1949 const char *endptr;
ba5f2f8a 1950
f698ca8e 1951 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
1952
1953 /* If the last word was not a valid number then
1954 treat it as a file name with spaces in. */
1955 if (argv[1] == endptr)
1956 error (_("Invalid download offset:%s."), argv[1]);
1957
1958 if (argv[2] != NULL)
1959 error (_("Too many parameters."));
917317f4 1960 }
c906108c 1961
c378eb4e 1962 /* Open the file for loading. */
ee0c3293 1963 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 1964 if (loadfile_bfd == NULL)
ee0c3293 1965 perror_with_name (filename.get ());
917317f4 1966
192b62ce 1967 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 1968 {
ee0c3293 1969 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
1970 bfd_errmsg (bfd_get_error ()));
1971 }
c5aa993b 1972
192b62ce 1973 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
1974 (void *) &total_progress.total_size);
1975
192b62ce 1976 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 1977
dcb07cfa
PA
1978 using namespace std::chrono;
1979
1980 steady_clock::time_point start_time = steady_clock::now ();
c906108c 1981
a76d924d
DJ
1982 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1983 load_progress) != 0)
1984 error (_("Load failed"));
c906108c 1985
dcb07cfa 1986 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 1987
55089490 1988 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 1989 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
1990 uiout->text ("Start address ");
1991 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
1992 uiout->text (", load size ");
1993 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
1994 uiout->text ("\n");
fb14de7b 1995 regcache_write_pc (get_current_regcache (), entry);
c906108c 1996
38963c97
DJ
1997 /* Reset breakpoints, now that we have changed the load image. For
1998 instance, breakpoints may have been set (or reset, by
1999 post_create_inferior) while connected to the target but before we
2000 loaded the program. In that case, the prologue analyzer could
2001 have read instructions from the target to find the right
2002 breakpoint locations. Loading has changed the contents of that
2003 memory. */
2004
2005 breakpoint_re_set ();
2006
a76d924d
DJ
2007 print_transfer_performance (gdb_stdout, total_progress.data_count,
2008 total_progress.write_count,
dcb07cfa 2009 end_time - start_time);
c906108c
SS
2010}
2011
dcb07cfa
PA
2012/* Report on STREAM the performance of a memory transfer operation,
2013 such as 'load'. DATA_COUNT is the number of bytes transferred.
2014 WRITE_COUNT is the number of separate write operations, or 0, if
2015 that information is not available. TIME is how long the operation
2016 lasted. */
c906108c 2017
dcb07cfa 2018static void
d9fcf2fb 2019print_transfer_performance (struct ui_file *stream,
917317f4
JM
2020 unsigned long data_count,
2021 unsigned long write_count,
dcb07cfa 2022 std::chrono::steady_clock::duration time)
917317f4 2023{
dcb07cfa 2024 using namespace std::chrono;
79a45e25 2025 struct ui_out *uiout = current_uiout;
2b71414d 2026
dcb07cfa 2027 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2028
112e8700 2029 uiout->text ("Transfer rate: ");
dcb07cfa 2030 if (ms.count () > 0)
8b93c638 2031 {
dcb07cfa 2032 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2033
112e8700 2034 if (uiout->is_mi_like_p ())
9f43d28c 2035 {
112e8700
SM
2036 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2037 uiout->text (" bits/sec");
9f43d28c
DJ
2038 }
2039 else if (rate < 1024)
2040 {
112e8700
SM
2041 uiout->field_fmt ("transfer-rate", "%lu", rate);
2042 uiout->text (" bytes/sec");
9f43d28c
DJ
2043 }
2044 else
2045 {
112e8700
SM
2046 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2047 uiout->text (" KB/sec");
9f43d28c 2048 }
8b93c638
JM
2049 }
2050 else
2051 {
112e8700
SM
2052 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2053 uiout->text (" bits in <1 sec");
8b93c638
JM
2054 }
2055 if (write_count > 0)
2056 {
112e8700
SM
2057 uiout->text (", ");
2058 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2059 uiout->text (" bytes/write");
8b93c638 2060 }
112e8700 2061 uiout->text (".\n");
c906108c
SS
2062}
2063
2064/* This function allows the addition of incrementally linked object files.
2065 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2066/* Note: ezannoni 2000-04-13 This function/command used to have a
2067 special case syntax for the rombug target (Rombug is the boot
2068 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2069 rombug case, the user doesn't need to supply a text address,
2070 instead a call to target_link() (in target.c) would supply the
c378eb4e 2071 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2072
c906108c 2073static void
2cf311eb 2074add_symbol_file_command (const char *args, int from_tty)
c906108c 2075{
5af949e3 2076 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2077 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2078 char *arg;
2acceee2 2079 int argcnt = 0;
76ad5e1e 2080 struct objfile *objf;
b15cc25c
PA
2081 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2082 symfile_add_flags add_flags = 0;
2083
2084 if (from_tty)
2085 add_flags |= SYMFILE_VERBOSE;
db162d44 2086
a39a16c4 2087 struct sect_opt
2acceee2 2088 {
a121b7c1
PA
2089 const char *name;
2090 const char *value;
a39a16c4 2091 };
db162d44 2092
40fc416f
SDJ
2093 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2094 bool stop_processing_options = false;
c5aa993b 2095
c906108c
SS
2096 dont_repeat ();
2097
2098 if (args == NULL)
8a3fe4f8 2099 error (_("add-symbol-file takes a file name and an address"));
c906108c 2100
40fc416f 2101 bool seen_addr = false;
773a1edc 2102 gdb_argv argv (args);
db162d44 2103
5b96932b
AS
2104 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2105 {
40fc416f 2106 if (stop_processing_options || *arg != '-')
41dc8db8 2107 {
40fc416f 2108 if (filename == NULL)
41dc8db8 2109 {
40fc416f
SDJ
2110 /* First non-option argument is always the filename. */
2111 filename.reset (tilde_expand (arg));
41dc8db8 2112 }
40fc416f 2113 else if (!seen_addr)
41dc8db8 2114 {
40fc416f
SDJ
2115 /* The second non-option argument is always the text
2116 address at which to load the program. */
2117 sect_opts[0].value = arg;
2118 seen_addr = true;
41dc8db8
MB
2119 }
2120 else
02ca603a 2121 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2122 }
40fc416f
SDJ
2123 else if (strcmp (arg, "-readnow") == 0)
2124 flags |= OBJF_READNOW;
97cbe998
SDJ
2125 else if (strcmp (arg, "-readnever") == 0)
2126 flags |= OBJF_READNEVER;
40fc416f
SDJ
2127 else if (strcmp (arg, "-s") == 0)
2128 {
2129 if (argv[argcnt + 1] == NULL)
2130 error (_("Missing section name after \"-s\""));
2131 else if (argv[argcnt + 2] == NULL)
2132 error (_("Missing section address after \"-s\""));
2133
2134 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2135
2136 sect_opts.push_back (sect);
2137 argcnt += 2;
2138 }
2139 else if (strcmp (arg, "--") == 0)
2140 stop_processing_options = true;
2141 else
2142 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2143 }
c906108c 2144
40fc416f
SDJ
2145 if (filename == NULL)
2146 error (_("You must provide a filename to be loaded."));
2147
97cbe998
SDJ
2148 validate_readnow_readnever (flags);
2149
927890d0
JB
2150 /* This command takes at least two arguments. The first one is a
2151 filename, and the second is the address where this file has been
2152 loaded. Abort now if this address hasn't been provided by the
2153 user. */
40fc416f 2154 if (!seen_addr)
ee0c3293
TT
2155 error (_("The address where %s has been loaded is missing"),
2156 filename.get ());
927890d0 2157
c378eb4e 2158 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2159 a sect_addr_info structure to be passed around to other
2160 functions. We have to split this up into separate print
bb599908 2161 statements because hex_string returns a local static
c378eb4e 2162 string. */
5417f6dc 2163
ee0c3293
TT
2164 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2165 filename.get ());
37e136b1 2166 section_addr_info section_addrs;
f978cb06 2167 for (sect_opt &sect : sect_opts)
c906108c 2168 {
db162d44 2169 CORE_ADDR addr;
f978cb06
TT
2170 const char *val = sect.value;
2171 const char *sec = sect.name;
5417f6dc 2172
ae822768 2173 addr = parse_and_eval_address (val);
db162d44 2174
db162d44 2175 /* Here we store the section offsets in the order they were
c378eb4e 2176 entered on the command line. */
37e136b1 2177 section_addrs.emplace_back (addr, sec, 0);
5af949e3
UW
2178 printf_unfiltered ("\t%s_addr = %s\n", sec,
2179 paddress (gdbarch, addr));
db162d44 2180
5417f6dc 2181 /* The object's sections are initialized when a
db162d44 2182 call is made to build_objfile_section_table (objfile).
5417f6dc 2183 This happens in reread_symbols.
db162d44
EZ
2184 At this point, we don't know what file type this is,
2185 so we can't determine what section names are valid. */
2acceee2 2186 }
db162d44 2187
2acceee2 2188 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2189 error (_("Not confirmed."));
c906108c 2190
37e136b1
TT
2191 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2192 flags);
76ad5e1e
NB
2193
2194 add_target_sections_of_objfile (objf);
c906108c
SS
2195
2196 /* Getting new symbols may change our opinion about what is
2197 frameless. */
2198 reinit_frame_cache ();
2199}
2200\f
70992597 2201
63644780
NB
2202/* This function removes a symbol file that was added via add-symbol-file. */
2203
2204static void
2cf311eb 2205remove_symbol_file_command (const char *args, int from_tty)
63644780 2206{
63644780 2207 struct objfile *objf = NULL;
63644780 2208 struct program_space *pspace = current_program_space;
63644780
NB
2209
2210 dont_repeat ();
2211
2212 if (args == NULL)
2213 error (_("remove-symbol-file: no symbol file provided"));
2214
773a1edc 2215 gdb_argv argv (args);
63644780
NB
2216
2217 if (strcmp (argv[0], "-a") == 0)
2218 {
2219 /* Interpret the next argument as an address. */
2220 CORE_ADDR addr;
2221
2222 if (argv[1] == NULL)
2223 error (_("Missing address argument"));
2224
2225 if (argv[2] != NULL)
2226 error (_("Junk after %s"), argv[1]);
2227
2228 addr = parse_and_eval_address (argv[1]);
2229
2230 ALL_OBJFILES (objf)
2231 {
d03de421
PA
2232 if ((objf->flags & OBJF_USERLOADED) != 0
2233 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2234 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2235 break;
2236 }
2237 }
2238 else if (argv[0] != NULL)
2239 {
2240 /* Interpret the current argument as a file name. */
63644780
NB
2241
2242 if (argv[1] != NULL)
2243 error (_("Junk after %s"), argv[0]);
2244
ee0c3293 2245 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2246
2247 ALL_OBJFILES (objf)
2248 {
d03de421
PA
2249 if ((objf->flags & OBJF_USERLOADED) != 0
2250 && (objf->flags & OBJF_SHARED) != 0
63644780 2251 && objf->pspace == pspace
ee0c3293 2252 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2253 break;
2254 }
2255 }
2256
2257 if (objf == NULL)
2258 error (_("No symbol file found"));
2259
2260 if (from_tty
2261 && !query (_("Remove symbol table from file \"%s\"? "),
2262 objfile_name (objf)))
2263 error (_("Not confirmed."));
2264
9e86da07 2265 delete objf;
63644780 2266 clear_symtab_users (0);
63644780
NB
2267}
2268
c906108c 2269/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2270
c906108c 2271void
fba45db2 2272reread_symbols (void)
c906108c
SS
2273{
2274 struct objfile *objfile;
2275 long new_modtime;
c906108c
SS
2276 struct stat new_statbuf;
2277 int res;
4c404b8b 2278 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2279
2280 /* With the addition of shared libraries, this should be modified,
2281 the load time should be saved in the partial symbol tables, since
2282 different tables may come from different source files. FIXME.
2283 This routine should then walk down each partial symbol table
c378eb4e 2284 and see if the symbol table that it originates from has been changed. */
c906108c 2285
c5aa993b
JM
2286 for (objfile = object_files; objfile; objfile = objfile->next)
2287 {
9cce227f
TG
2288 if (objfile->obfd == NULL)
2289 continue;
2290
2291 /* Separate debug objfiles are handled in the main objfile. */
2292 if (objfile->separate_debug_objfile_backlink)
2293 continue;
2294
02aeec7b
JB
2295 /* If this object is from an archive (what you usually create with
2296 `ar', often called a `static library' on most systems, though
2297 a `shared library' on AIX is also an archive), then you should
2298 stat on the archive name, not member name. */
9cce227f
TG
2299 if (objfile->obfd->my_archive)
2300 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2301 else
4262abfb 2302 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2303 if (res != 0)
2304 {
c378eb4e 2305 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2306 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2307 objfile_name (objfile));
9cce227f
TG
2308 continue;
2309 }
2310 new_modtime = new_statbuf.st_mtime;
2311 if (new_modtime != objfile->mtime)
2312 {
2313 struct cleanup *old_cleanups;
2314 struct section_offsets *offsets;
2315 int num_offsets;
24ba069a 2316 char *original_name;
9cce227f
TG
2317
2318 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2319 objfile_name (objfile));
9cce227f
TG
2320
2321 /* There are various functions like symbol_file_add,
2322 symfile_bfd_open, syms_from_objfile, etc., which might
2323 appear to do what we want. But they have various other
2324 effects which we *don't* want. So we just do stuff
2325 ourselves. We don't worry about mapped files (for one thing,
2326 any mapped file will be out of date). */
2327
2328 /* If we get an error, blow away this objfile (not sure if
2329 that is the correct response for things like shared
2330 libraries). */
ed2b3126
TT
2331 std::unique_ptr<struct objfile> objfile_holder (objfile);
2332
9cce227f 2333 /* We need to do this whenever any symbols go away. */
ed2b3126 2334 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2335
0ba1096a
KT
2336 if (exec_bfd != NULL
2337 && filename_cmp (bfd_get_filename (objfile->obfd),
2338 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2339 {
2340 /* Reload EXEC_BFD without asking anything. */
2341
2342 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2343 }
2344
f6eeced0
JK
2345 /* Keep the calls order approx. the same as in free_objfile. */
2346
2347 /* Free the separate debug objfiles. It will be
2348 automatically recreated by sym_read. */
2349 free_objfile_separate_debug (objfile);
2350
2351 /* Remove any references to this objfile in the global
2352 value lists. */
2353 preserve_values (objfile);
2354
2355 /* Nuke all the state that we will re-read. Much of the following
2356 code which sets things to NULL really is necessary to tell
2357 other parts of GDB that there is nothing currently there.
2358
2359 Try to keep the freeing order compatible with free_objfile. */
2360
2361 if (objfile->sf != NULL)
2362 {
2363 (*objfile->sf->sym_finish) (objfile);
2364 }
2365
2366 clear_objfile_data (objfile);
2367
e1507e95 2368 /* Clean up any state BFD has sitting around. */
a4453b7e 2369 {
192b62ce 2370 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2371 char *obfd_filename;
a4453b7e
TT
2372
2373 obfd_filename = bfd_get_filename (objfile->obfd);
2374 /* Open the new BFD before freeing the old one, so that
2375 the filename remains live. */
192b62ce
TT
2376 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2377 objfile->obfd = temp.release ();
e1507e95 2378 if (objfile->obfd == NULL)
192b62ce 2379 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2380 }
2381
24ba069a
JK
2382 original_name = xstrdup (objfile->original_name);
2383 make_cleanup (xfree, original_name);
2384
9cce227f
TG
2385 /* bfd_openr sets cacheable to true, which is what we want. */
2386 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2387 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2388 bfd_errmsg (bfd_get_error ()));
2389
2390 /* Save the offsets, we will nuke them with the rest of the
2391 objfile_obstack. */
2392 num_offsets = objfile->num_sections;
2393 offsets = ((struct section_offsets *)
2394 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2395 memcpy (offsets, objfile->section_offsets,
2396 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2397
9cce227f
TG
2398 /* FIXME: Do we have to free a whole linked list, or is this
2399 enough? */
af5bf4ad
SM
2400 objfile->global_psymbols.clear ();
2401 objfile->static_psymbols.clear ();
9cce227f 2402
c378eb4e 2403 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2404 psymbol_bcache_free (objfile->psymbol_cache);
2405 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2406
2407 /* NB: after this call to obstack_free, objfiles_changed
2408 will need to be called (see discussion below). */
9cce227f
TG
2409 obstack_free (&objfile->objfile_obstack, 0);
2410 objfile->sections = NULL;
43f3e411 2411 objfile->compunit_symtabs = NULL;
9cce227f
TG
2412 objfile->psymtabs = NULL;
2413 objfile->psymtabs_addrmap = NULL;
2414 objfile->free_psymtabs = NULL;
34eaf542 2415 objfile->template_symbols = NULL;
9cce227f 2416
9cce227f
TG
2417 /* obstack_init also initializes the obstack so it is
2418 empty. We could use obstack_specify_allocation but
d82ea6a8 2419 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2420 obstack_init (&objfile->objfile_obstack);
779bd270 2421
846060df
JB
2422 /* set_objfile_per_bfd potentially allocates the per-bfd
2423 data on the objfile's obstack (if sharing data across
2424 multiple users is not possible), so it's important to
2425 do it *after* the obstack has been initialized. */
2426 set_objfile_per_bfd (objfile);
2427
224c3ddb
SM
2428 objfile->original_name
2429 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2430 strlen (original_name));
24ba069a 2431
779bd270
DE
2432 /* Reset the sym_fns pointer. The ELF reader can change it
2433 based on whether .gdb_index is present, and we need it to
2434 start over. PR symtab/15885 */
8fb8eb5c 2435 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2436
d82ea6a8 2437 build_objfile_section_table (objfile);
9cce227f
TG
2438 terminate_minimal_symbol_table (objfile);
2439
2440 /* We use the same section offsets as from last time. I'm not
2441 sure whether that is always correct for shared libraries. */
2442 objfile->section_offsets = (struct section_offsets *)
2443 obstack_alloc (&objfile->objfile_obstack,
2444 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2445 memcpy (objfile->section_offsets, offsets,
2446 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2447 objfile->num_sections = num_offsets;
2448
2449 /* What the hell is sym_new_init for, anyway? The concept of
2450 distinguishing between the main file and additional files
2451 in this way seems rather dubious. */
2452 if (objfile == symfile_objfile)
c906108c 2453 {
9cce227f 2454 (*objfile->sf->sym_new_init) (objfile);
c906108c 2455 }
9cce227f
TG
2456
2457 (*objfile->sf->sym_init) (objfile);
2458 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2459
2460 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2461
2462 /* We are about to read new symbols and potentially also
2463 DWARF information. Some targets may want to pass addresses
2464 read from DWARF DIE's through an adjustment function before
2465 saving them, like MIPS, which may call into
2466 "find_pc_section". When called, that function will make
2467 use of per-objfile program space data.
2468
2469 Since we discarded our section information above, we have
2470 dangling pointers in the per-objfile program space data
2471 structure. Force GDB to update the section mapping
2472 information by letting it know the objfile has changed,
2473 making the dangling pointers point to correct data
2474 again. */
2475
2476 objfiles_changed ();
2477
608e2dbb 2478 read_symbols (objfile, 0);
b11896a5 2479
9cce227f 2480 if (!objfile_has_symbols (objfile))
c906108c 2481 {
9cce227f
TG
2482 wrap_here ("");
2483 printf_unfiltered (_("(no debugging symbols found)\n"));
2484 wrap_here ("");
c5aa993b 2485 }
9cce227f
TG
2486
2487 /* We're done reading the symbol file; finish off complaints. */
2488 clear_complaints (&symfile_complaints, 0, 1);
2489
2490 /* Getting new symbols may change our opinion about what is
2491 frameless. */
2492
2493 reinit_frame_cache ();
2494
2495 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2496 objfile_holder.release ();
9cce227f
TG
2497 discard_cleanups (old_cleanups);
2498
2499 /* If the mtime has changed between the time we set new_modtime
2500 and now, we *want* this to be out of date, so don't call stat
2501 again now. */
2502 objfile->mtime = new_modtime;
9cce227f 2503 init_entry_point_info (objfile);
4ac39b97 2504
4c404b8b 2505 new_objfiles.push_back (objfile);
c906108c
SS
2506 }
2507 }
c906108c 2508
4c404b8b 2509 if (!new_objfiles.empty ())
ea53e89f 2510 {
c1e56572 2511 clear_symtab_users (0);
4ac39b97
JK
2512
2513 /* clear_objfile_data for each objfile was called before freeing it and
76727919 2514 gdb::observers::new_objfile.notify (NULL) has been called by
4ac39b97 2515 clear_symtab_users above. Notify the new files now. */
4c404b8b 2516 for (auto iter : new_objfiles)
76727919 2517 gdb::observers::new_objfile.notify (objfile);
4ac39b97 2518
ea53e89f
JB
2519 /* At least one objfile has changed, so we can consider that
2520 the executable we're debugging has changed too. */
76727919 2521 gdb::observers::executable_changed.notify ();
ea53e89f 2522 }
c906108c 2523}
c906108c
SS
2524\f
2525
593e3209 2526struct filename_language
c5aa993b 2527{
593e3209
SM
2528 filename_language (const std::string &ext_, enum language lang_)
2529 : ext (ext_), lang (lang_)
2530 {}
3fcf0b0d 2531
593e3209
SM
2532 std::string ext;
2533 enum language lang;
2534};
c906108c 2535
593e3209 2536static std::vector<filename_language> filename_language_table;
c906108c 2537
56618e20
TT
2538/* See symfile.h. */
2539
2540void
2541add_filename_language (const char *ext, enum language lang)
c906108c 2542{
593e3209 2543 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2544}
2545
2546static char *ext_args;
920d2a44
AC
2547static void
2548show_ext_args (struct ui_file *file, int from_tty,
2549 struct cmd_list_element *c, const char *value)
2550{
3e43a32a
MS
2551 fprintf_filtered (file,
2552 _("Mapping between filename extension "
2553 "and source language is \"%s\".\n"),
920d2a44
AC
2554 value);
2555}
c906108c
SS
2556
2557static void
eb4c3f4a
TT
2558set_ext_lang_command (const char *args,
2559 int from_tty, struct cmd_list_element *e)
c906108c 2560{
c906108c
SS
2561 char *cp = ext_args;
2562 enum language lang;
2563
c378eb4e 2564 /* First arg is filename extension, starting with '.' */
c906108c 2565 if (*cp != '.')
8a3fe4f8 2566 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2567
2568 /* Find end of first arg. */
c5aa993b 2569 while (*cp && !isspace (*cp))
c906108c
SS
2570 cp++;
2571
2572 if (*cp == '\0')
3e43a32a
MS
2573 error (_("'%s': two arguments required -- "
2574 "filename extension and language"),
c906108c
SS
2575 ext_args);
2576
c378eb4e 2577 /* Null-terminate first arg. */
c5aa993b 2578 *cp++ = '\0';
c906108c
SS
2579
2580 /* Find beginning of second arg, which should be a source language. */
529480d0 2581 cp = skip_spaces (cp);
c906108c
SS
2582
2583 if (*cp == '\0')
3e43a32a
MS
2584 error (_("'%s': two arguments required -- "
2585 "filename extension and language"),
c906108c
SS
2586 ext_args);
2587
2588 /* Lookup the language from among those we know. */
2589 lang = language_enum (cp);
2590
593e3209 2591 auto it = filename_language_table.begin ();
c906108c 2592 /* Now lookup the filename extension: do we already know it? */
593e3209 2593 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2594 {
593e3209 2595 if (it->ext == ext_args)
3fcf0b0d
TT
2596 break;
2597 }
c906108c 2598
593e3209 2599 if (it == filename_language_table.end ())
c906108c 2600 {
c378eb4e 2601 /* New file extension. */
c906108c
SS
2602 add_filename_language (ext_args, lang);
2603 }
2604 else
2605 {
c378eb4e 2606 /* Redefining a previously known filename extension. */
c906108c
SS
2607
2608 /* if (from_tty) */
2609 /* query ("Really make files of type %s '%s'?", */
2610 /* ext_args, language_str (lang)); */
2611
593e3209 2612 it->lang = lang;
c906108c
SS
2613 }
2614}
2615
2616static void
1d12d88f 2617info_ext_lang_command (const char *args, int from_tty)
c906108c 2618{
a3f17187 2619 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2620 printf_filtered ("\n\n");
593e3209
SM
2621 for (const filename_language &entry : filename_language_table)
2622 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2623 language_str (entry.lang));
c906108c
SS
2624}
2625
c906108c 2626enum language
dd786858 2627deduce_language_from_filename (const char *filename)
c906108c 2628{
e6a959d6 2629 const char *cp;
c906108c
SS
2630
2631 if (filename != NULL)
2632 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2633 {
593e3209
SM
2634 for (const filename_language &entry : filename_language_table)
2635 if (entry.ext == cp)
2636 return entry.lang;
3fcf0b0d 2637 }
c906108c
SS
2638
2639 return language_unknown;
2640}
2641\f
43f3e411
DE
2642/* Allocate and initialize a new symbol table.
2643 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2644
2645struct symtab *
43f3e411 2646allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2647{
43f3e411
DE
2648 struct objfile *objfile = cust->objfile;
2649 struct symtab *symtab
2650 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2651
19ba03f4
SM
2652 symtab->filename
2653 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2654 objfile->per_bfd->filename_cache);
c5aa993b
JM
2655 symtab->fullname = NULL;
2656 symtab->language = deduce_language_from_filename (filename);
c906108c 2657
db0fec5c
DE
2658 /* This can be very verbose with lots of headers.
2659 Only print at higher debug levels. */
2660 if (symtab_create_debug >= 2)
45cfd468
DE
2661 {
2662 /* Be a bit clever with debugging messages, and don't print objfile
2663 every time, only when it changes. */
2664 static char *last_objfile_name = NULL;
2665
2666 if (last_objfile_name == NULL
4262abfb 2667 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2668 {
2669 xfree (last_objfile_name);
4262abfb 2670 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2671 fprintf_unfiltered (gdb_stdlog,
2672 "Creating one or more symtabs for objfile %s ...\n",
2673 last_objfile_name);
2674 }
2675 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2676 "Created symtab %s for module %s.\n",
2677 host_address_to_string (symtab), filename);
45cfd468
DE
2678 }
2679
43f3e411
DE
2680 /* Add it to CUST's list of symtabs. */
2681 if (cust->filetabs == NULL)
2682 {
2683 cust->filetabs = symtab;
2684 cust->last_filetab = symtab;
2685 }
2686 else
2687 {
2688 cust->last_filetab->next = symtab;
2689 cust->last_filetab = symtab;
2690 }
2691
2692 /* Backlink to the containing compunit symtab. */
2693 symtab->compunit_symtab = cust;
2694
2695 return symtab;
2696}
2697
2698/* Allocate and initialize a new compunit.
2699 NAME is the name of the main source file, if there is one, or some
2700 descriptive text if there are no source files. */
2701
2702struct compunit_symtab *
2703allocate_compunit_symtab (struct objfile *objfile, const char *name)
2704{
2705 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2706 struct compunit_symtab);
2707 const char *saved_name;
2708
2709 cu->objfile = objfile;
2710
2711 /* The name we record here is only for display/debugging purposes.
2712 Just save the basename to avoid path issues (too long for display,
2713 relative vs absolute, etc.). */
2714 saved_name = lbasename (name);
224c3ddb
SM
2715 cu->name
2716 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2717 strlen (saved_name));
43f3e411
DE
2718
2719 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2720
2721 if (symtab_create_debug)
2722 {
2723 fprintf_unfiltered (gdb_stdlog,
2724 "Created compunit symtab %s for %s.\n",
2725 host_address_to_string (cu),
2726 cu->name);
2727 }
2728
2729 return cu;
2730}
2731
2732/* Hook CU to the objfile it comes from. */
2733
2734void
2735add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2736{
2737 cu->next = cu->objfile->compunit_symtabs;
2738 cu->objfile->compunit_symtabs = cu;
c906108c 2739}
c906108c 2740\f
c5aa993b 2741
b15cc25c
PA
2742/* Reset all data structures in gdb which may contain references to
2743 symbol table data. */
c906108c
SS
2744
2745void
b15cc25c 2746clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2747{
2748 /* Someday, we should do better than this, by only blowing away
2749 the things that really need to be blown. */
c0501be5
DJ
2750
2751 /* Clear the "current" symtab first, because it is no longer valid.
2752 breakpoint_re_set may try to access the current symtab. */
2753 clear_current_source_symtab_and_line ();
2754
c906108c 2755 clear_displays ();
1bfeeb0f 2756 clear_last_displayed_sal ();
c906108c 2757 clear_pc_function_cache ();
76727919 2758 gdb::observers::new_objfile.notify (NULL);
9bdcbae7
DJ
2759
2760 /* Clear globals which might have pointed into a removed objfile.
2761 FIXME: It's not clear which of these are supposed to persist
2762 between expressions and which ought to be reset each time. */
2763 expression_context_block = NULL;
aee1fcdf 2764 innermost_block.reset ();
8756216b
DP
2765
2766 /* Varobj may refer to old symbols, perform a cleanup. */
2767 varobj_invalidate ();
2768
e700d1b2
JB
2769 /* Now that the various caches have been cleared, we can re_set
2770 our breakpoints without risking it using stale data. */
2771 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2772 breakpoint_re_set ();
c906108c
SS
2773}
2774
74b7792f
AC
2775static void
2776clear_symtab_users_cleanup (void *ignore)
2777{
c1e56572 2778 clear_symtab_users (0);
74b7792f 2779}
c906108c 2780\f
c906108c
SS
2781/* OVERLAYS:
2782 The following code implements an abstraction for debugging overlay sections.
2783
2784 The target model is as follows:
2785 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2786 same VMA, each with its own unique LMA (or load address).
c906108c 2787 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2788 sections, one by one, from the load address into the VMA address.
5417f6dc 2789 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2790 sections should be considered to be mapped from the VMA to the LMA.
2791 This information is used for symbol lookup, and memory read/write.
5417f6dc 2792 For instance, if a section has been mapped then its contents
c5aa993b 2793 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2794
2795 Two levels of debugger support for overlays are available. One is
2796 "manual", in which the debugger relies on the user to tell it which
2797 overlays are currently mapped. This level of support is
2798 implemented entirely in the core debugger, and the information about
2799 whether a section is mapped is kept in the objfile->obj_section table.
2800
2801 The second level of support is "automatic", and is only available if
2802 the target-specific code provides functionality to read the target's
2803 overlay mapping table, and translate its contents for the debugger
2804 (by updating the mapped state information in the obj_section tables).
2805
2806 The interface is as follows:
c5aa993b
JM
2807 User commands:
2808 overlay map <name> -- tell gdb to consider this section mapped
2809 overlay unmap <name> -- tell gdb to consider this section unmapped
2810 overlay list -- list the sections that GDB thinks are mapped
2811 overlay read-target -- get the target's state of what's mapped
2812 overlay off/manual/auto -- set overlay debugging state
2813 Functional interface:
2814 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2815 section, return that section.
5417f6dc 2816 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2817 the pc, either in its VMA or its LMA
714835d5 2818 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2819 section_is_overlay(sect): true if section's VMA != LMA
2820 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2821 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2822 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2823 overlay_mapped_address(...): map an address from section's LMA to VMA
2824 overlay_unmapped_address(...): map an address from section's VMA to LMA
2825 symbol_overlayed_address(...): Return a "current" address for symbol:
2826 either in VMA or LMA depending on whether
c378eb4e 2827 the symbol's section is currently mapped. */
c906108c
SS
2828
2829/* Overlay debugging state: */
2830
d874f1e2 2831enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2832int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2833
c906108c 2834/* Function: section_is_overlay (SECTION)
5417f6dc 2835 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2836 SECTION is loaded at an address different from where it will "run". */
2837
2838int
714835d5 2839section_is_overlay (struct obj_section *section)
c906108c 2840{
714835d5
UW
2841 if (overlay_debugging && section)
2842 {
714835d5 2843 asection *bfd_section = section->the_bfd_section;
f888f159 2844
714835d5
UW
2845 if (bfd_section_lma (abfd, bfd_section) != 0
2846 && bfd_section_lma (abfd, bfd_section)
2847 != bfd_section_vma (abfd, bfd_section))
2848 return 1;
2849 }
c906108c
SS
2850
2851 return 0;
2852}
2853
2854/* Function: overlay_invalidate_all (void)
2855 Invalidate the mapped state of all overlay sections (mark it as stale). */
2856
2857static void
fba45db2 2858overlay_invalidate_all (void)
c906108c 2859{
c5aa993b 2860 struct objfile *objfile;
c906108c
SS
2861 struct obj_section *sect;
2862
2863 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2864 if (section_is_overlay (sect))
2865 sect->ovly_mapped = -1;
c906108c
SS
2866}
2867
714835d5 2868/* Function: section_is_mapped (SECTION)
5417f6dc 2869 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2870
2871 Access to the ovly_mapped flag is restricted to this function, so
2872 that we can do automatic update. If the global flag
2873 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2874 overlay_invalidate_all. If the mapped state of the particular
2875 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2876
714835d5
UW
2877int
2878section_is_mapped (struct obj_section *osect)
c906108c 2879{
9216df95
UW
2880 struct gdbarch *gdbarch;
2881
714835d5 2882 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2883 return 0;
2884
c5aa993b 2885 switch (overlay_debugging)
c906108c
SS
2886 {
2887 default:
d874f1e2 2888 case ovly_off:
c5aa993b 2889 return 0; /* overlay debugging off */
d874f1e2 2890 case ovly_auto: /* overlay debugging automatic */
1c772458 2891 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2892 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2893 gdbarch = get_objfile_arch (osect->objfile);
2894 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2895 {
2896 if (overlay_cache_invalid)
2897 {
2898 overlay_invalidate_all ();
2899 overlay_cache_invalid = 0;
2900 }
2901 if (osect->ovly_mapped == -1)
9216df95 2902 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2903 }
2904 /* fall thru to manual case */
d874f1e2 2905 case ovly_on: /* overlay debugging manual */
c906108c
SS
2906 return osect->ovly_mapped == 1;
2907 }
2908}
2909
c906108c
SS
2910/* Function: pc_in_unmapped_range
2911 If PC falls into the lma range of SECTION, return true, else false. */
2912
2913CORE_ADDR
714835d5 2914pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2915{
714835d5
UW
2916 if (section_is_overlay (section))
2917 {
2918 bfd *abfd = section->objfile->obfd;
2919 asection *bfd_section = section->the_bfd_section;
fbd35540 2920
714835d5
UW
2921 /* We assume the LMA is relocated by the same offset as the VMA. */
2922 bfd_vma size = bfd_get_section_size (bfd_section);
2923 CORE_ADDR offset = obj_section_offset (section);
2924
2925 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2926 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2927 return 1;
2928 }
c906108c 2929
c906108c
SS
2930 return 0;
2931}
2932
2933/* Function: pc_in_mapped_range
2934 If PC falls into the vma range of SECTION, return true, else false. */
2935
2936CORE_ADDR
714835d5 2937pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2938{
714835d5
UW
2939 if (section_is_overlay (section))
2940 {
2941 if (obj_section_addr (section) <= pc
2942 && pc < obj_section_endaddr (section))
2943 return 1;
2944 }
c906108c 2945
c906108c
SS
2946 return 0;
2947}
2948
9ec8e6a0
JB
2949/* Return true if the mapped ranges of sections A and B overlap, false
2950 otherwise. */
3b7bacac 2951
b9362cc7 2952static int
714835d5 2953sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2954{
714835d5
UW
2955 CORE_ADDR a_start = obj_section_addr (a);
2956 CORE_ADDR a_end = obj_section_endaddr (a);
2957 CORE_ADDR b_start = obj_section_addr (b);
2958 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2959
2960 return (a_start < b_end && b_start < a_end);
2961}
2962
c906108c
SS
2963/* Function: overlay_unmapped_address (PC, SECTION)
2964 Returns the address corresponding to PC in the unmapped (load) range.
2965 May be the same as PC. */
2966
2967CORE_ADDR
714835d5 2968overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2969{
714835d5
UW
2970 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2971 {
714835d5 2972 asection *bfd_section = section->the_bfd_section;
fbd35540 2973
714835d5
UW
2974 return pc + bfd_section_lma (abfd, bfd_section)
2975 - bfd_section_vma (abfd, bfd_section);
2976 }
c906108c
SS
2977
2978 return pc;
2979}
2980
2981/* Function: overlay_mapped_address (PC, SECTION)
2982 Returns the address corresponding to PC in the mapped (runtime) range.
2983 May be the same as PC. */
2984
2985CORE_ADDR
714835d5 2986overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2987{
714835d5
UW
2988 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2989 {
714835d5 2990 asection *bfd_section = section->the_bfd_section;
fbd35540 2991
714835d5
UW
2992 return pc + bfd_section_vma (abfd, bfd_section)
2993 - bfd_section_lma (abfd, bfd_section);
2994 }
c906108c
SS
2995
2996 return pc;
2997}
2998
5417f6dc 2999/* Function: symbol_overlayed_address
c906108c
SS
3000 Return one of two addresses (relative to the VMA or to the LMA),
3001 depending on whether the section is mapped or not. */
3002
c5aa993b 3003CORE_ADDR
714835d5 3004symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3005{
3006 if (overlay_debugging)
3007 {
c378eb4e 3008 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3009 if (section == 0)
3010 return address;
c378eb4e
MS
3011 /* If the symbol's section is not an overlay, just return its
3012 address. */
c906108c
SS
3013 if (!section_is_overlay (section))
3014 return address;
c378eb4e 3015 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3016 if (section_is_mapped (section))
3017 return address;
3018 /*
3019 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3020 * then return its LOADED address rather than its vma address!!
3021 */
3022 return overlay_unmapped_address (address, section);
3023 }
3024 return address;
3025}
3026
5417f6dc 3027/* Function: find_pc_overlay (PC)
c906108c
SS
3028 Return the best-match overlay section for PC:
3029 If PC matches a mapped overlay section's VMA, return that section.
3030 Else if PC matches an unmapped section's VMA, return that section.
3031 Else if PC matches an unmapped section's LMA, return that section. */
3032
714835d5 3033struct obj_section *
fba45db2 3034find_pc_overlay (CORE_ADDR pc)
c906108c 3035{
c5aa993b 3036 struct objfile *objfile;
c906108c
SS
3037 struct obj_section *osect, *best_match = NULL;
3038
3039 if (overlay_debugging)
b631e59b
KT
3040 {
3041 ALL_OBJSECTIONS (objfile, osect)
3042 if (section_is_overlay (osect))
c5aa993b 3043 {
b631e59b
KT
3044 if (pc_in_mapped_range (pc, osect))
3045 {
3046 if (section_is_mapped (osect))
3047 return osect;
3048 else
3049 best_match = osect;
3050 }
3051 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3052 best_match = osect;
3053 }
b631e59b 3054 }
714835d5 3055 return best_match;
c906108c
SS
3056}
3057
3058/* Function: find_pc_mapped_section (PC)
5417f6dc 3059 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3060 currently marked as MAPPED, return that section. Else return NULL. */
3061
714835d5 3062struct obj_section *
fba45db2 3063find_pc_mapped_section (CORE_ADDR pc)
c906108c 3064{
c5aa993b 3065 struct objfile *objfile;
c906108c
SS
3066 struct obj_section *osect;
3067
3068 if (overlay_debugging)
b631e59b
KT
3069 {
3070 ALL_OBJSECTIONS (objfile, osect)
3071 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3072 return osect;
3073 }
c906108c
SS
3074
3075 return NULL;
3076}
3077
3078/* Function: list_overlays_command
c378eb4e 3079 Print a list of mapped sections and their PC ranges. */
c906108c 3080
5d3055ad 3081static void
2cf311eb 3082list_overlays_command (const char *args, int from_tty)
c906108c 3083{
c5aa993b
JM
3084 int nmapped = 0;
3085 struct objfile *objfile;
c906108c
SS
3086 struct obj_section *osect;
3087
3088 if (overlay_debugging)
b631e59b
KT
3089 {
3090 ALL_OBJSECTIONS (objfile, osect)
714835d5 3091 if (section_is_mapped (osect))
b631e59b
KT
3092 {
3093 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3094 const char *name;
3095 bfd_vma lma, vma;
3096 int size;
3097
3098 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3099 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3100 size = bfd_get_section_size (osect->the_bfd_section);
3101 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3102
3103 printf_filtered ("Section %s, loaded at ", name);
3104 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3105 puts_filtered (" - ");
3106 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3107 printf_filtered (", mapped at ");
3108 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3109 puts_filtered (" - ");
3110 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3111 puts_filtered ("\n");
3112
3113 nmapped++;
3114 }
3115 }
c906108c 3116 if (nmapped == 0)
a3f17187 3117 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3118}
3119
3120/* Function: map_overlay_command
3121 Mark the named section as mapped (ie. residing at its VMA address). */
3122
5d3055ad 3123static void
2cf311eb 3124map_overlay_command (const char *args, int from_tty)
c906108c 3125{
c5aa993b
JM
3126 struct objfile *objfile, *objfile2;
3127 struct obj_section *sec, *sec2;
c906108c
SS
3128
3129 if (!overlay_debugging)
3e43a32a
MS
3130 error (_("Overlay debugging not enabled. Use "
3131 "either the 'overlay auto' or\n"
3132 "the 'overlay manual' command."));
c906108c
SS
3133
3134 if (args == 0 || *args == 0)
8a3fe4f8 3135 error (_("Argument required: name of an overlay section"));
c906108c 3136
c378eb4e 3137 /* First, find a section matching the user supplied argument. */
c906108c
SS
3138 ALL_OBJSECTIONS (objfile, sec)
3139 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3140 {
c378eb4e 3141 /* Now, check to see if the section is an overlay. */
714835d5 3142 if (!section_is_overlay (sec))
c5aa993b
JM
3143 continue; /* not an overlay section */
3144
c378eb4e 3145 /* Mark the overlay as "mapped". */
c5aa993b
JM
3146 sec->ovly_mapped = 1;
3147
3148 /* Next, make a pass and unmap any sections that are
3149 overlapped by this new section: */
3150 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3151 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3152 {
3153 if (info_verbose)
a3f17187 3154 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3155 bfd_section_name (objfile->obfd,
3156 sec2->the_bfd_section));
c378eb4e 3157 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3158 }
3159 return;
3160 }
8a3fe4f8 3161 error (_("No overlay section called %s"), args);
c906108c
SS
3162}
3163
3164/* Function: unmap_overlay_command
5417f6dc 3165 Mark the overlay section as unmapped
c906108c
SS
3166 (ie. resident in its LMA address range, rather than the VMA range). */
3167
5d3055ad 3168static void
2cf311eb 3169unmap_overlay_command (const char *args, int from_tty)
c906108c 3170{
c5aa993b 3171 struct objfile *objfile;
7a270e0c 3172 struct obj_section *sec = NULL;
c906108c
SS
3173
3174 if (!overlay_debugging)
3e43a32a
MS
3175 error (_("Overlay debugging not enabled. "
3176 "Use either the 'overlay auto' or\n"
3177 "the 'overlay manual' command."));
c906108c
SS
3178
3179 if (args == 0 || *args == 0)
8a3fe4f8 3180 error (_("Argument required: name of an overlay section"));
c906108c 3181
c378eb4e 3182 /* First, find a section matching the user supplied argument. */
c906108c
SS
3183 ALL_OBJSECTIONS (objfile, sec)
3184 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3185 {
3186 if (!sec->ovly_mapped)
8a3fe4f8 3187 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3188 sec->ovly_mapped = 0;
3189 return;
3190 }
8a3fe4f8 3191 error (_("No overlay section called %s"), args);
c906108c
SS
3192}
3193
3194/* Function: overlay_auto_command
3195 A utility command to turn on overlay debugging.
c378eb4e 3196 Possibly this should be done via a set/show command. */
c906108c
SS
3197
3198static void
2cf311eb 3199overlay_auto_command (const char *args, int from_tty)
c906108c 3200{
d874f1e2 3201 overlay_debugging = ovly_auto;
1900040c 3202 enable_overlay_breakpoints ();
c906108c 3203 if (info_verbose)
a3f17187 3204 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3205}
3206
3207/* Function: overlay_manual_command
3208 A utility command to turn on overlay debugging.
c378eb4e 3209 Possibly this should be done via a set/show command. */
c906108c
SS
3210
3211static void
2cf311eb 3212overlay_manual_command (const char *args, int from_tty)
c906108c 3213{
d874f1e2 3214 overlay_debugging = ovly_on;
1900040c 3215 disable_overlay_breakpoints ();
c906108c 3216 if (info_verbose)
a3f17187 3217 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3218}
3219
3220/* Function: overlay_off_command
3221 A utility command to turn on overlay debugging.
c378eb4e 3222 Possibly this should be done via a set/show command. */
c906108c
SS
3223
3224static void
2cf311eb 3225overlay_off_command (const char *args, int from_tty)
c906108c 3226{
d874f1e2 3227 overlay_debugging = ovly_off;
1900040c 3228 disable_overlay_breakpoints ();
c906108c 3229 if (info_verbose)
a3f17187 3230 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3231}
3232
3233static void
2cf311eb 3234overlay_load_command (const char *args, int from_tty)
c906108c 3235{
e17c207e
UW
3236 struct gdbarch *gdbarch = get_current_arch ();
3237
3238 if (gdbarch_overlay_update_p (gdbarch))
3239 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3240 else
8a3fe4f8 3241 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3242}
3243
3244/* Function: overlay_command
c378eb4e 3245 A place-holder for a mis-typed command. */
c906108c 3246
c378eb4e 3247/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3248static struct cmd_list_element *overlaylist;
c906108c
SS
3249
3250static void
981a3fb3 3251overlay_command (const char *args, int from_tty)
c906108c 3252{
c5aa993b 3253 printf_unfiltered
c906108c 3254 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3255 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3256}
3257
c906108c
SS
3258/* Target Overlays for the "Simplest" overlay manager:
3259
5417f6dc
RM
3260 This is GDB's default target overlay layer. It works with the
3261 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3262 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3263 so targets that use a different runtime overlay manager can
c906108c
SS
3264 substitute their own overlay_update function and take over the
3265 function pointer.
3266
3267 The overlay_update function pokes around in the target's data structures
3268 to see what overlays are mapped, and updates GDB's overlay mapping with
3269 this information.
3270
3271 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3272 unsigned _novlys; /# number of overlay sections #/
3273 unsigned _ovly_table[_novlys][4] = {
438e1e42 3274 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3275 {..., ..., ..., ...},
3276 }
3277 unsigned _novly_regions; /# number of overlay regions #/
3278 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3279 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3280 {..., ..., ...},
3281 }
c906108c
SS
3282 These functions will attempt to update GDB's mappedness state in the
3283 symbol section table, based on the target's mappedness state.
3284
3285 To do this, we keep a cached copy of the target's _ovly_table, and
3286 attempt to detect when the cached copy is invalidated. The main
3287 entry point is "simple_overlay_update(SECT), which looks up SECT in
3288 the cached table and re-reads only the entry for that section from
c378eb4e 3289 the target (whenever possible). */
c906108c
SS
3290
3291/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3292static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3293static unsigned cache_novlys = 0;
c906108c 3294static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3295enum ovly_index
3296 {
438e1e42 3297 VMA, OSIZE, LMA, MAPPED
c5aa993b 3298 };
c906108c 3299
c378eb4e 3300/* Throw away the cached copy of _ovly_table. */
3b7bacac 3301
c906108c 3302static void
fba45db2 3303simple_free_overlay_table (void)
c906108c
SS
3304{
3305 if (cache_ovly_table)
b8c9b27d 3306 xfree (cache_ovly_table);
c5aa993b 3307 cache_novlys = 0;
c906108c
SS
3308 cache_ovly_table = NULL;
3309 cache_ovly_table_base = 0;
3310}
3311
9216df95 3312/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3313 Convert to host order. int LEN is number of ints. */
3b7bacac 3314
c906108c 3315static void
9216df95 3316read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3317 int len, int size, enum bfd_endian byte_order)
c906108c 3318{
c378eb4e 3319 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3320 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3321 int i;
c906108c 3322
9216df95 3323 read_memory (memaddr, buf, len * size);
c906108c 3324 for (i = 0; i < len; i++)
e17a4113 3325 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3326}
3327
3328/* Find and grab a copy of the target _ovly_table
c378eb4e 3329 (and _novlys, which is needed for the table's size). */
3b7bacac 3330
c5aa993b 3331static int
fba45db2 3332simple_read_overlay_table (void)
c906108c 3333{
3b7344d5 3334 struct bound_minimal_symbol novlys_msym;
7c7b6655 3335 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3336 struct gdbarch *gdbarch;
3337 int word_size;
e17a4113 3338 enum bfd_endian byte_order;
c906108c
SS
3339
3340 simple_free_overlay_table ();
9b27852e 3341 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3342 if (! novlys_msym.minsym)
c906108c 3343 {
8a3fe4f8 3344 error (_("Error reading inferior's overlay table: "
0d43edd1 3345 "couldn't find `_novlys' variable\n"
8a3fe4f8 3346 "in inferior. Use `overlay manual' mode."));
0d43edd1 3347 return 0;
c906108c 3348 }
0d43edd1 3349
7c7b6655
TT
3350 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3351 if (! ovly_table_msym.minsym)
0d43edd1 3352 {
8a3fe4f8 3353 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3354 "`_ovly_table' array\n"
8a3fe4f8 3355 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3356 return 0;
3357 }
3358
7c7b6655 3359 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3360 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3361 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3362
77e371c0
TT
3363 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3364 4, byte_order);
0d43edd1 3365 cache_ovly_table
224c3ddb 3366 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3367 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3368 read_target_long_array (cache_ovly_table_base,
777ea8f1 3369 (unsigned int *) cache_ovly_table,
e17a4113 3370 cache_novlys * 4, word_size, byte_order);
0d43edd1 3371
c5aa993b 3372 return 1; /* SUCCESS */
c906108c
SS
3373}
3374
5417f6dc 3375/* Function: simple_overlay_update_1
c906108c
SS
3376 A helper function for simple_overlay_update. Assuming a cached copy
3377 of _ovly_table exists, look through it to find an entry whose vma,
3378 lma and size match those of OSECT. Re-read the entry and make sure
3379 it still matches OSECT (else the table may no longer be valid).
3380 Set OSECT's mapped state to match the entry. Return: 1 for
3381 success, 0 for failure. */
3382
3383static int
fba45db2 3384simple_overlay_update_1 (struct obj_section *osect)
c906108c 3385{
764c99c1 3386 int i;
fbd35540 3387 asection *bsect = osect->the_bfd_section;
9216df95
UW
3388 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3389 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3390 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3391
c906108c 3392 for (i = 0; i < cache_novlys; i++)
fbd35540 3393 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3394 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3395 {
9216df95
UW
3396 read_target_long_array (cache_ovly_table_base + i * word_size,
3397 (unsigned int *) cache_ovly_table[i],
e17a4113 3398 4, word_size, byte_order);
fbd35540 3399 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3400 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3401 {
3402 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3403 return 1;
3404 }
c378eb4e 3405 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3406 return 0;
3407 }
3408 return 0;
3409}
3410
3411/* Function: simple_overlay_update
5417f6dc
RM
3412 If OSECT is NULL, then update all sections' mapped state
3413 (after re-reading the entire target _ovly_table).
3414 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3415 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3416 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3417 re-read the entire cache, and go ahead and update all sections. */
3418
1c772458 3419void
fba45db2 3420simple_overlay_update (struct obj_section *osect)
c906108c 3421{
c5aa993b 3422 struct objfile *objfile;
c906108c 3423
c378eb4e 3424 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3425 if (osect)
c378eb4e 3426 /* Have we got a cached copy of the target's overlay table? */
c906108c 3427 if (cache_ovly_table != NULL)
9cc89665
MS
3428 {
3429 /* Does its cached location match what's currently in the
3430 symtab? */
3b7344d5 3431 struct bound_minimal_symbol minsym
9cc89665
MS
3432 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3433
3b7344d5 3434 if (minsym.minsym == NULL)
9cc89665
MS
3435 error (_("Error reading inferior's overlay table: couldn't "
3436 "find `_ovly_table' array\n"
3437 "in inferior. Use `overlay manual' mode."));
3438
77e371c0 3439 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3440 /* Then go ahead and try to look up this single section in
3441 the cache. */
3442 if (simple_overlay_update_1 (osect))
3443 /* Found it! We're done. */
3444 return;
3445 }
c906108c
SS
3446
3447 /* Cached table no good: need to read the entire table anew.
3448 Or else we want all the sections, in which case it's actually
3449 more efficient to read the whole table in one block anyway. */
3450
0d43edd1
JB
3451 if (! simple_read_overlay_table ())
3452 return;
3453
c378eb4e 3454 /* Now may as well update all sections, even if only one was requested. */
c906108c 3455 ALL_OBJSECTIONS (objfile, osect)
714835d5 3456 if (section_is_overlay (osect))
c5aa993b 3457 {
764c99c1 3458 int i;
fbd35540 3459 asection *bsect = osect->the_bfd_section;
c5aa993b 3460
c5aa993b 3461 for (i = 0; i < cache_novlys; i++)
fbd35540 3462 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3463 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3464 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3465 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3466 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3467 }
3468 }
c906108c
SS
3469}
3470
086df311
DJ
3471/* Set the output sections and output offsets for section SECTP in
3472 ABFD. The relocation code in BFD will read these offsets, so we
3473 need to be sure they're initialized. We map each section to itself,
3474 with no offset; this means that SECTP->vma will be honored. */
3475
3476static void
3477symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3478{
3479 sectp->output_section = sectp;
3480 sectp->output_offset = 0;
3481}
3482
ac8035ab
TG
3483/* Default implementation for sym_relocate. */
3484
ac8035ab
TG
3485bfd_byte *
3486default_symfile_relocate (struct objfile *objfile, asection *sectp,
3487 bfd_byte *buf)
3488{
3019eac3
DE
3489 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3490 DWO file. */
3491 bfd *abfd = sectp->owner;
ac8035ab
TG
3492
3493 /* We're only interested in sections with relocation
3494 information. */
3495 if ((sectp->flags & SEC_RELOC) == 0)
3496 return NULL;
3497
3498 /* We will handle section offsets properly elsewhere, so relocate as if
3499 all sections begin at 0. */
3500 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3501
3502 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3503}
3504
086df311
DJ
3505/* Relocate the contents of a debug section SECTP in ABFD. The
3506 contents are stored in BUF if it is non-NULL, or returned in a
3507 malloc'd buffer otherwise.
3508
3509 For some platforms and debug info formats, shared libraries contain
3510 relocations against the debug sections (particularly for DWARF-2;
3511 one affected platform is PowerPC GNU/Linux, although it depends on
3512 the version of the linker in use). Also, ELF object files naturally
3513 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3514 the relocations in order to get the locations of symbols correct.
3515 Another example that may require relocation processing, is the
3516 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3517 debug section. */
086df311
DJ
3518
3519bfd_byte *
ac8035ab
TG
3520symfile_relocate_debug_section (struct objfile *objfile,
3521 asection *sectp, bfd_byte *buf)
086df311 3522{
ac8035ab 3523 gdb_assert (objfile->sf->sym_relocate);
086df311 3524
ac8035ab 3525 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3526}
c906108c 3527
31d99776
DJ
3528struct symfile_segment_data *
3529get_symfile_segment_data (bfd *abfd)
3530{
00b5771c 3531 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3532
3533 if (sf == NULL)
3534 return NULL;
3535
3536 return sf->sym_segments (abfd);
3537}
3538
3539void
3540free_symfile_segment_data (struct symfile_segment_data *data)
3541{
3542 xfree (data->segment_bases);
3543 xfree (data->segment_sizes);
3544 xfree (data->segment_info);
3545 xfree (data);
3546}
3547
28c32713
JB
3548/* Given:
3549 - DATA, containing segment addresses from the object file ABFD, and
3550 the mapping from ABFD's sections onto the segments that own them,
3551 and
3552 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3553 segment addresses reported by the target,
3554 store the appropriate offsets for each section in OFFSETS.
3555
3556 If there are fewer entries in SEGMENT_BASES than there are segments
3557 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3558
8d385431
DJ
3559 If there are more entries, then ignore the extra. The target may
3560 not be able to distinguish between an empty data segment and a
3561 missing data segment; a missing text segment is less plausible. */
3b7bacac 3562
31d99776 3563int
3189cb12
DE
3564symfile_map_offsets_to_segments (bfd *abfd,
3565 const struct symfile_segment_data *data,
31d99776
DJ
3566 struct section_offsets *offsets,
3567 int num_segment_bases,
3568 const CORE_ADDR *segment_bases)
3569{
3570 int i;
3571 asection *sect;
3572
28c32713
JB
3573 /* It doesn't make sense to call this function unless you have some
3574 segment base addresses. */
202b96c1 3575 gdb_assert (num_segment_bases > 0);
28c32713 3576
31d99776
DJ
3577 /* If we do not have segment mappings for the object file, we
3578 can not relocate it by segments. */
3579 gdb_assert (data != NULL);
3580 gdb_assert (data->num_segments > 0);
3581
31d99776
DJ
3582 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3583 {
31d99776
DJ
3584 int which = data->segment_info[i];
3585
28c32713
JB
3586 gdb_assert (0 <= which && which <= data->num_segments);
3587
3588 /* Don't bother computing offsets for sections that aren't
3589 loaded as part of any segment. */
3590 if (! which)
3591 continue;
3592
3593 /* Use the last SEGMENT_BASES entry as the address of any extra
3594 segments mentioned in DATA->segment_info. */
31d99776 3595 if (which > num_segment_bases)
28c32713 3596 which = num_segment_bases;
31d99776 3597
28c32713
JB
3598 offsets->offsets[i] = (segment_bases[which - 1]
3599 - data->segment_bases[which - 1]);
31d99776
DJ
3600 }
3601
3602 return 1;
3603}
3604
3605static void
3606symfile_find_segment_sections (struct objfile *objfile)
3607{
3608 bfd *abfd = objfile->obfd;
3609 int i;
3610 asection *sect;
3611 struct symfile_segment_data *data;
3612
3613 data = get_symfile_segment_data (objfile->obfd);
3614 if (data == NULL)
3615 return;
3616
3617 if (data->num_segments != 1 && data->num_segments != 2)
3618 {
3619 free_symfile_segment_data (data);
3620 return;
3621 }
3622
3623 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3624 {
31d99776
DJ
3625 int which = data->segment_info[i];
3626
3627 if (which == 1)
3628 {
3629 if (objfile->sect_index_text == -1)
3630 objfile->sect_index_text = sect->index;
3631
3632 if (objfile->sect_index_rodata == -1)
3633 objfile->sect_index_rodata = sect->index;
3634 }
3635 else if (which == 2)
3636 {
3637 if (objfile->sect_index_data == -1)
3638 objfile->sect_index_data = sect->index;
3639
3640 if (objfile->sect_index_bss == -1)
3641 objfile->sect_index_bss = sect->index;
3642 }
3643 }
3644
3645 free_symfile_segment_data (data);
3646}
3647
76ad5e1e
NB
3648/* Listen for free_objfile events. */
3649
3650static void
3651symfile_free_objfile (struct objfile *objfile)
3652{
c33b2f12
MM
3653 /* Remove the target sections owned by this objfile. */
3654 if (objfile != NULL)
76ad5e1e
NB
3655 remove_target_sections ((void *) objfile);
3656}
3657
540c2971
DE
3658/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3659 Expand all symtabs that match the specified criteria.
3660 See quick_symbol_functions.expand_symtabs_matching for details. */
3661
3662void
14bc53a8
PA
3663expand_symtabs_matching
3664 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3665 const lookup_name_info &lookup_name,
14bc53a8
PA
3666 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3667 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3668 enum search_domain kind)
540c2971
DE
3669{
3670 struct objfile *objfile;
3671
3672 ALL_OBJFILES (objfile)
3673 {
3674 if (objfile->sf)
bb4142cf 3675 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3676 lookup_name,
276d885b 3677 symbol_matcher,
14bc53a8 3678 expansion_notify, kind);
540c2971
DE
3679 }
3680}
3681
3682/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3683 Map function FUN over every file.
3684 See quick_symbol_functions.map_symbol_filenames for details. */
3685
3686void
bb4142cf
DE
3687map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3688 int need_fullname)
540c2971
DE
3689{
3690 struct objfile *objfile;
3691
3692 ALL_OBJFILES (objfile)
3693 {
3694 if (objfile->sf)
3695 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3696 need_fullname);
3697 }
3698}
3699
32fa66eb
SM
3700#if GDB_SELF_TEST
3701
3702namespace selftests {
3703namespace filename_language {
3704
32fa66eb
SM
3705static void test_filename_language ()
3706{
3707 /* This test messes up the filename_language_table global. */
593e3209 3708 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3709
3710 /* Test deducing an unknown extension. */
3711 language lang = deduce_language_from_filename ("myfile.blah");
3712 SELF_CHECK (lang == language_unknown);
3713
3714 /* Test deducing a known extension. */
3715 lang = deduce_language_from_filename ("myfile.c");
3716 SELF_CHECK (lang == language_c);
3717
3718 /* Test adding a new extension using the internal API. */
3719 add_filename_language (".blah", language_pascal);
3720 lang = deduce_language_from_filename ("myfile.blah");
3721 SELF_CHECK (lang == language_pascal);
3722}
3723
3724static void
3725test_set_ext_lang_command ()
3726{
3727 /* This test messes up the filename_language_table global. */
593e3209 3728 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3729
3730 /* Confirm that the .hello extension is not known. */
3731 language lang = deduce_language_from_filename ("cake.hello");
3732 SELF_CHECK (lang == language_unknown);
3733
3734 /* Test adding a new extension using the CLI command. */
3735 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3736 ext_args = args_holder.get ();
3737 set_ext_lang_command (NULL, 1, NULL);
3738
3739 lang = deduce_language_from_filename ("cake.hello");
3740 SELF_CHECK (lang == language_rust);
3741
3742 /* Test overriding an existing extension using the CLI command. */
593e3209 3743 int size_before = filename_language_table.size ();
32fa66eb
SM
3744 args_holder.reset (xstrdup (".hello pascal"));
3745 ext_args = args_holder.get ();
3746 set_ext_lang_command (NULL, 1, NULL);
593e3209 3747 int size_after = filename_language_table.size ();
32fa66eb
SM
3748
3749 lang = deduce_language_from_filename ("cake.hello");
3750 SELF_CHECK (lang == language_pascal);
3751 SELF_CHECK (size_before == size_after);
3752}
3753
3754} /* namespace filename_language */
3755} /* namespace selftests */
3756
3757#endif /* GDB_SELF_TEST */
3758
c906108c 3759void
fba45db2 3760_initialize_symfile (void)
c906108c
SS
3761{
3762 struct cmd_list_element *c;
c5aa993b 3763
76727919 3764 gdb::observers::free_objfile.attach (symfile_free_objfile);
76ad5e1e 3765
97cbe998 3766#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3767 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3768immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3769faster.\n\
3770The '-readnever' option will prevent GDB from reading the symbol file's\n\
3771symbolic debug information."
8ca2f0b9 3772
1a966eab
AC
3773 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3774Load symbol table from executable file FILE.\n\
97cbe998 3775Usage: symbol-file [-readnow | -readnever] FILE\n\
c906108c 3776The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3777to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3778 set_cmd_completer (c, filename_completer);
c906108c 3779
1a966eab 3780 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3781Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
97cbe998
SDJ
3782Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3783-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3784ADDR is the starting address of the file's text.\n\
3785Each '-s' argument provides a section name and address, and\n\
db162d44 3786should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3787with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
97cbe998 3788READNOW_READNEVER_HELP),
c906108c 3789 &cmdlist);
5ba2abeb 3790 set_cmd_completer (c, filename_completer);
c906108c 3791
63644780
NB
3792 c = add_cmd ("remove-symbol-file", class_files,
3793 remove_symbol_file_command, _("\
3794Remove a symbol file added via the add-symbol-file command.\n\
3795Usage: remove-symbol-file FILENAME\n\
3796 remove-symbol-file -a ADDRESS\n\
3797The file to remove can be identified by its filename or by an address\n\
3798that lies within the boundaries of this symbol file in memory."),
3799 &cmdlist);
3800
1a966eab
AC
3801 c = add_cmd ("load", class_files, load_command, _("\
3802Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3803for access from GDB.\n\
8ca2f0b9 3804Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3805An optional load OFFSET may also be given as a literal address.\n\
3806When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3807on its own."), &cmdlist);
5ba2abeb 3808 set_cmd_completer (c, filename_completer);
c906108c 3809
c5aa993b 3810 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3811 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3812 "overlay ", 0, &cmdlist);
3813
3814 add_com_alias ("ovly", "overlay", class_alias, 1);
3815 add_com_alias ("ov", "overlay", class_alias, 1);
3816
c5aa993b 3817 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3818 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3819
c5aa993b 3820 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3821 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3822
c5aa993b 3823 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3824 _("List mappings of overlay sections."), &overlaylist);
c906108c 3825
c5aa993b 3826 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3827 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3828 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3829 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3830 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3831 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3832 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3833 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3834
3835 /* Filename extension to source language lookup table: */
26c41df3
AC
3836 add_setshow_string_noescape_cmd ("extension-language", class_files,
3837 &ext_args, _("\
3838Set mapping between filename extension and source language."), _("\
3839Show mapping between filename extension and source language."), _("\
3840Usage: set extension-language .foo bar"),
3841 set_ext_lang_command,
920d2a44 3842 show_ext_args,
26c41df3 3843 &setlist, &showlist);
c906108c 3844
c5aa993b 3845 add_info ("extensions", info_ext_lang_command,
1bedd215 3846 _("All filename extensions associated with a source language."));
917317f4 3847
525226b5
AC
3848 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3849 &debug_file_directory, _("\
24ddea62
JK
3850Set the directories where separate debug symbols are searched for."), _("\
3851Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3852Separate debug symbols are first searched for in the same\n\
3853directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3854and lastly at the path of the directory of the binary with\n\
24ddea62 3855each global debug-file-directory component prepended."),
525226b5 3856 NULL,
920d2a44 3857 show_debug_file_directory,
525226b5 3858 &setlist, &showlist);
770e7fc7
DE
3859
3860 add_setshow_enum_cmd ("symbol-loading", no_class,
3861 print_symbol_loading_enums, &print_symbol_loading,
3862 _("\
3863Set printing of symbol loading messages."), _("\
3864Show printing of symbol loading messages."), _("\
3865off == turn all messages off\n\
3866brief == print messages for the executable,\n\
3867 and brief messages for shared libraries\n\
3868full == print messages for the executable,\n\
3869 and messages for each shared library."),
3870 NULL,
3871 NULL,
3872 &setprintlist, &showprintlist);
c4dcb155
SM
3873
3874 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3875 &separate_debug_file_debug, _("\
3876Set printing of separate debug info file search debug."), _("\
3877Show printing of separate debug info file search debug."), _("\
3878When on, GDB prints the searched locations while looking for separate debug \
3879info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3880
3881#if GDB_SELF_TEST
3882 selftests::register_test
3883 ("filename_language", selftests::filename_language::test_filename_language);
3884 selftests::register_test
3885 ("set_ext_lang_command",
3886 selftests::filename_language::test_set_ext_lang_command);
3887#endif
c906108c 3888}
This page took 2.367728 seconds and 4 git commands to generate.