Merge {i386,amd64}_linux_read_description
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
0e9f083f 63#include <string.h>
53ce3c39 64#include <sys/stat.h>
c906108c
SS
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
69150c3d 90static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
00b5771c 94static const struct sym_fns *find_sym_fns (bfd *);
c906108c 95
a14ed312 96static void decrement_reading_symtab (void *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void overlay_auto_command (char *, int);
c906108c 101
a14ed312 102static void overlay_manual_command (char *, int);
c906108c 103
a14ed312 104static void overlay_off_command (char *, int);
c906108c 105
a14ed312 106static void overlay_load_command (char *, int);
c906108c 107
a14ed312 108static void overlay_command (char *, int);
c906108c 109
a14ed312 110static void simple_free_overlay_table (void);
c906108c 111
e17a4113
UW
112static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
c906108c 114
a14ed312 115static int simple_read_overlay_table (void);
c906108c 116
a14ed312 117static int simple_overlay_update_1 (struct obj_section *);
c906108c 118
a14ed312 119static void add_filename_language (char *ext, enum language lang);
392a587b 120
a14ed312 121static void info_ext_lang_command (char *args, int from_tty);
392a587b 122
a14ed312 123static void init_filename_language_table (void);
392a587b 124
31d99776
DJ
125static void symfile_find_segment_sections (struct objfile *objfile);
126
a14ed312 127void _initialize_symfile (void);
c906108c
SS
128
129/* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
c378eb4e 131 prepared to read. */
c906108c 132
c256e171
DE
133typedef struct
134{
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140} registered_sym_fns;
00b5771c 141
c256e171
DE
142DEF_VEC_O (registered_sym_fns);
143
144static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 145
770e7fc7
DE
146/* Values for "set print symbol-loading". */
147
148const char print_symbol_loading_off[] = "off";
149const char print_symbol_loading_brief[] = "brief";
150const char print_symbol_loading_full[] = "full";
151static const char *print_symbol_loading_enums[] =
152{
153 print_symbol_loading_off,
154 print_symbol_loading_brief,
155 print_symbol_loading_full,
156 NULL
157};
158static const char *print_symbol_loading = print_symbol_loading_full;
159
b7209cb4
FF
160/* If non-zero, shared library symbols will be added automatically
161 when the inferior is created, new libraries are loaded, or when
162 attaching to the inferior. This is almost always what users will
163 want to have happen; but for very large programs, the startup time
164 will be excessive, and so if this is a problem, the user can clear
165 this flag and then add the shared library symbols as needed. Note
166 that there is a potential for confusion, since if the shared
c906108c 167 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 168 report all the functions that are actually present. */
c906108c
SS
169
170int auto_solib_add = 1;
c906108c 171\f
c5aa993b 172
770e7fc7
DE
173/* Return non-zero if symbol-loading messages should be printed.
174 FROM_TTY is the standard from_tty argument to gdb commands.
175 If EXEC is non-zero the messages are for the executable.
176 Otherwise, messages are for shared libraries.
177 If FULL is non-zero then the caller is printing a detailed message.
178 E.g., the message includes the shared library name.
179 Otherwise, the caller is printing a brief "summary" message. */
180
181int
182print_symbol_loading_p (int from_tty, int exec, int full)
183{
184 if (!from_tty && !info_verbose)
185 return 0;
186
187 if (exec)
188 {
189 /* We don't check FULL for executables, there are few such
190 messages, therefore brief == full. */
191 return print_symbol_loading != print_symbol_loading_off;
192 }
193 if (full)
194 return print_symbol_loading == print_symbol_loading_full;
195 return print_symbol_loading == print_symbol_loading_brief;
196}
197
0d14a781 198/* True if we are reading a symbol table. */
c906108c
SS
199
200int currently_reading_symtab = 0;
201
202static void
fba45db2 203decrement_reading_symtab (void *dummy)
c906108c
SS
204{
205 currently_reading_symtab--;
2cb9c859 206 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
207}
208
ccefe4c4
TT
209/* Increment currently_reading_symtab and return a cleanup that can be
210 used to decrement it. */
3b7bacac 211
ccefe4c4
TT
212struct cleanup *
213increment_reading_symtab (void)
c906108c 214{
ccefe4c4 215 ++currently_reading_symtab;
2cb9c859 216 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 217 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
218}
219
5417f6dc
RM
220/* Remember the lowest-addressed loadable section we've seen.
221 This function is called via bfd_map_over_sections.
c906108c
SS
222
223 In case of equal vmas, the section with the largest size becomes the
224 lowest-addressed loadable section.
225
226 If the vmas and sizes are equal, the last section is considered the
227 lowest-addressed loadable section. */
228
229void
4efb68b1 230find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 231{
c5aa993b 232 asection **lowest = (asection **) obj;
c906108c 233
eb73e134 234 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
235 return;
236 if (!*lowest)
237 *lowest = sect; /* First loadable section */
238 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
239 *lowest = sect; /* A lower loadable section */
240 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
241 && (bfd_section_size (abfd, (*lowest))
242 <= bfd_section_size (abfd, sect)))
243 *lowest = sect;
244}
245
d76488d8
TT
246/* Create a new section_addr_info, with room for NUM_SECTIONS. The
247 new object's 'num_sections' field is set to 0; it must be updated
248 by the caller. */
a39a16c4
MM
249
250struct section_addr_info *
251alloc_section_addr_info (size_t num_sections)
252{
253 struct section_addr_info *sap;
254 size_t size;
255
256 size = (sizeof (struct section_addr_info)
257 + sizeof (struct other_sections) * (num_sections - 1));
258 sap = (struct section_addr_info *) xmalloc (size);
259 memset (sap, 0, size);
a39a16c4
MM
260
261 return sap;
262}
62557bbc
KB
263
264/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 265 an existing section table. */
62557bbc
KB
266
267extern struct section_addr_info *
0542c86d
PA
268build_section_addr_info_from_section_table (const struct target_section *start,
269 const struct target_section *end)
62557bbc
KB
270{
271 struct section_addr_info *sap;
0542c86d 272 const struct target_section *stp;
62557bbc
KB
273 int oidx;
274
a39a16c4 275 sap = alloc_section_addr_info (end - start);
62557bbc
KB
276
277 for (stp = start, oidx = 0; stp != end; stp++)
278 {
2b2848e2
DE
279 struct bfd_section *asect = stp->the_bfd_section;
280 bfd *abfd = asect->owner;
281
282 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 283 && oidx < end - start)
62557bbc
KB
284 {
285 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
286 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
287 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
288 oidx++;
289 }
290 }
291
d76488d8
TT
292 sap->num_sections = oidx;
293
62557bbc
KB
294 return sap;
295}
296
82ccf5a5 297/* Create a section_addr_info from section offsets in ABFD. */
089b4803 298
82ccf5a5
JK
299static struct section_addr_info *
300build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
301{
302 struct section_addr_info *sap;
303 int i;
304 struct bfd_section *sec;
305
82ccf5a5
JK
306 sap = alloc_section_addr_info (bfd_count_sections (abfd));
307 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
308 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 309 {
82ccf5a5
JK
310 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
311 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 312 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
313 i++;
314 }
d76488d8
TT
315
316 sap->num_sections = i;
317
089b4803
TG
318 return sap;
319}
320
82ccf5a5
JK
321/* Create a section_addr_info from section offsets in OBJFILE. */
322
323struct section_addr_info *
324build_section_addr_info_from_objfile (const struct objfile *objfile)
325{
326 struct section_addr_info *sap;
327 int i;
328
329 /* Before reread_symbols gets rewritten it is not safe to call:
330 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
331 */
332 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 333 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
334 {
335 int sectindex = sap->other[i].sectindex;
336
337 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
338 }
339 return sap;
340}
62557bbc 341
c378eb4e 342/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
343
344extern void
345free_section_addr_info (struct section_addr_info *sap)
346{
347 int idx;
348
a39a16c4 349 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 350 xfree (sap->other[idx].name);
b8c9b27d 351 xfree (sap);
62557bbc
KB
352}
353
e8289572 354/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 355
e8289572
JB
356static void
357init_objfile_sect_indices (struct objfile *objfile)
c906108c 358{
e8289572 359 asection *sect;
c906108c 360 int i;
5417f6dc 361
b8fbeb18 362 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 363 if (sect)
b8fbeb18
EZ
364 objfile->sect_index_text = sect->index;
365
366 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 367 if (sect)
b8fbeb18
EZ
368 objfile->sect_index_data = sect->index;
369
370 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 371 if (sect)
b8fbeb18
EZ
372 objfile->sect_index_bss = sect->index;
373
374 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 375 if (sect)
b8fbeb18
EZ
376 objfile->sect_index_rodata = sect->index;
377
bbcd32ad
FF
378 /* This is where things get really weird... We MUST have valid
379 indices for the various sect_index_* members or gdb will abort.
380 So if for example, there is no ".text" section, we have to
31d99776
DJ
381 accomodate that. First, check for a file with the standard
382 one or two segments. */
383
384 symfile_find_segment_sections (objfile);
385
386 /* Except when explicitly adding symbol files at some address,
387 section_offsets contains nothing but zeros, so it doesn't matter
388 which slot in section_offsets the individual sect_index_* members
389 index into. So if they are all zero, it is safe to just point
390 all the currently uninitialized indices to the first slot. But
391 beware: if this is the main executable, it may be relocated
392 later, e.g. by the remote qOffsets packet, and then this will
393 be wrong! That's why we try segments first. */
bbcd32ad
FF
394
395 for (i = 0; i < objfile->num_sections; i++)
396 {
397 if (ANOFFSET (objfile->section_offsets, i) != 0)
398 {
399 break;
400 }
401 }
402 if (i == objfile->num_sections)
403 {
404 if (objfile->sect_index_text == -1)
405 objfile->sect_index_text = 0;
406 if (objfile->sect_index_data == -1)
407 objfile->sect_index_data = 0;
408 if (objfile->sect_index_bss == -1)
409 objfile->sect_index_bss = 0;
410 if (objfile->sect_index_rodata == -1)
411 objfile->sect_index_rodata = 0;
412 }
b8fbeb18 413}
c906108c 414
c1bd25fd
DJ
415/* The arguments to place_section. */
416
417struct place_section_arg
418{
419 struct section_offsets *offsets;
420 CORE_ADDR lowest;
421};
422
423/* Find a unique offset to use for loadable section SECT if
424 the user did not provide an offset. */
425
2c0b251b 426static void
c1bd25fd
DJ
427place_section (bfd *abfd, asection *sect, void *obj)
428{
429 struct place_section_arg *arg = obj;
430 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
431 int done;
3bd72c6f 432 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 433
2711e456
DJ
434 /* We are only interested in allocated sections. */
435 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
436 return;
437
438 /* If the user specified an offset, honor it. */
65cf3563 439 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
440 return;
441
442 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
443 start_addr = (arg->lowest + align - 1) & -align;
444
c1bd25fd
DJ
445 do {
446 asection *cur_sec;
c1bd25fd 447
c1bd25fd
DJ
448 done = 1;
449
450 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
451 {
452 int indx = cur_sec->index;
c1bd25fd
DJ
453
454 /* We don't need to compare against ourself. */
455 if (cur_sec == sect)
456 continue;
457
2711e456
DJ
458 /* We can only conflict with allocated sections. */
459 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
460 continue;
461
462 /* If the section offset is 0, either the section has not been placed
463 yet, or it was the lowest section placed (in which case LOWEST
464 will be past its end). */
465 if (offsets[indx] == 0)
466 continue;
467
468 /* If this section would overlap us, then we must move up. */
469 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
470 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
471 {
472 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
473 start_addr = (start_addr + align - 1) & -align;
474 done = 0;
3bd72c6f 475 break;
c1bd25fd
DJ
476 }
477
478 /* Otherwise, we appear to be OK. So far. */
479 }
480 }
481 while (!done);
482
65cf3563 483 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 484 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 485}
e8289572 486
75242ef4
JK
487/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
488 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
489 entries. */
e8289572
JB
490
491void
75242ef4
JK
492relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
493 int num_sections,
3189cb12 494 const struct section_addr_info *addrs)
e8289572
JB
495{
496 int i;
497
75242ef4 498 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 499
c378eb4e 500 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 501 for (i = 0; i < addrs->num_sections; i++)
e8289572 502 {
3189cb12 503 const struct other_sections *osp;
e8289572 504
75242ef4 505 osp = &addrs->other[i];
5488dafb 506 if (osp->sectindex == -1)
e8289572
JB
507 continue;
508
c378eb4e 509 /* Record all sections in offsets. */
e8289572 510 /* The section_offsets in the objfile are here filled in using
c378eb4e 511 the BFD index. */
75242ef4
JK
512 section_offsets->offsets[osp->sectindex] = osp->addr;
513 }
514}
515
1276c759
JK
516/* Transform section name S for a name comparison. prelink can split section
517 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
518 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
519 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
520 (`.sbss') section has invalid (increased) virtual address. */
521
522static const char *
523addr_section_name (const char *s)
524{
525 if (strcmp (s, ".dynbss") == 0)
526 return ".bss";
527 if (strcmp (s, ".sdynbss") == 0)
528 return ".sbss";
529
530 return s;
531}
532
82ccf5a5
JK
533/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
534 their (name, sectindex) pair. sectindex makes the sort by name stable. */
535
536static int
537addrs_section_compar (const void *ap, const void *bp)
538{
539 const struct other_sections *a = *((struct other_sections **) ap);
540 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 541 int retval;
82ccf5a5 542
1276c759 543 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
544 if (retval)
545 return retval;
546
5488dafb 547 return a->sectindex - b->sectindex;
82ccf5a5
JK
548}
549
550/* Provide sorted array of pointers to sections of ADDRS. The array is
551 terminated by NULL. Caller is responsible to call xfree for it. */
552
553static struct other_sections **
554addrs_section_sort (struct section_addr_info *addrs)
555{
556 struct other_sections **array;
557 int i;
558
559 /* `+ 1' for the NULL terminator. */
560 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 561 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
562 array[i] = &addrs->other[i];
563 array[i] = NULL;
564
565 qsort (array, i, sizeof (*array), addrs_section_compar);
566
567 return array;
568}
569
75242ef4 570/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
571 also SECTINDEXes specific to ABFD there. This function can be used to
572 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
573
574void
575addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
576{
577 asection *lower_sect;
75242ef4
JK
578 CORE_ADDR lower_offset;
579 int i;
82ccf5a5
JK
580 struct cleanup *my_cleanup;
581 struct section_addr_info *abfd_addrs;
582 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
583 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
584
585 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
586 continguous sections. */
587 lower_sect = NULL;
588 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
589 if (lower_sect == NULL)
590 {
591 warning (_("no loadable sections found in added symbol-file %s"),
592 bfd_get_filename (abfd));
593 lower_offset = 0;
e8289572 594 }
75242ef4
JK
595 else
596 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
597
82ccf5a5
JK
598 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
599 in ABFD. Section names are not unique - there can be multiple sections of
600 the same name. Also the sections of the same name do not have to be
601 adjacent to each other. Some sections may be present only in one of the
602 files. Even sections present in both files do not have to be in the same
603 order.
604
605 Use stable sort by name for the sections in both files. Then linearly
606 scan both lists matching as most of the entries as possible. */
607
608 addrs_sorted = addrs_section_sort (addrs);
609 my_cleanup = make_cleanup (xfree, addrs_sorted);
610
611 abfd_addrs = build_section_addr_info_from_bfd (abfd);
612 make_cleanup_free_section_addr_info (abfd_addrs);
613 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
614 make_cleanup (xfree, abfd_addrs_sorted);
615
c378eb4e
MS
616 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
617 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
618
619 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
620 * addrs->num_sections);
621 make_cleanup (xfree, addrs_to_abfd_addrs);
622
623 while (*addrs_sorted)
624 {
1276c759 625 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
626
627 while (*abfd_addrs_sorted
1276c759
JK
628 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
629 sect_name) < 0)
82ccf5a5
JK
630 abfd_addrs_sorted++;
631
632 if (*abfd_addrs_sorted
1276c759
JK
633 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
634 sect_name) == 0)
82ccf5a5
JK
635 {
636 int index_in_addrs;
637
638 /* Make the found item directly addressable from ADDRS. */
639 index_in_addrs = *addrs_sorted - addrs->other;
640 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
641 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
642
643 /* Never use the same ABFD entry twice. */
644 abfd_addrs_sorted++;
645 }
646
647 addrs_sorted++;
648 }
649
75242ef4
JK
650 /* Calculate offsets for the loadable sections.
651 FIXME! Sections must be in order of increasing loadable section
652 so that contiguous sections can use the lower-offset!!!
653
654 Adjust offsets if the segments are not contiguous.
655 If the section is contiguous, its offset should be set to
656 the offset of the highest loadable section lower than it
657 (the loadable section directly below it in memory).
658 this_offset = lower_offset = lower_addr - lower_orig_addr */
659
d76488d8 660 for (i = 0; i < addrs->num_sections; i++)
75242ef4 661 {
82ccf5a5 662 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
663
664 if (sect)
75242ef4 665 {
c378eb4e 666 /* This is the index used by BFD. */
82ccf5a5 667 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
668
669 if (addrs->other[i].addr != 0)
75242ef4 670 {
82ccf5a5 671 addrs->other[i].addr -= sect->addr;
75242ef4 672 lower_offset = addrs->other[i].addr;
75242ef4
JK
673 }
674 else
672d9c23 675 addrs->other[i].addr = lower_offset;
75242ef4
JK
676 }
677 else
672d9c23 678 {
1276c759
JK
679 /* addr_section_name transformation is not used for SECT_NAME. */
680 const char *sect_name = addrs->other[i].name;
681
b0fcb67f
JK
682 /* This section does not exist in ABFD, which is normally
683 unexpected and we want to issue a warning.
684
4d9743af
JK
685 However, the ELF prelinker does create a few sections which are
686 marked in the main executable as loadable (they are loaded in
687 memory from the DYNAMIC segment) and yet are not present in
688 separate debug info files. This is fine, and should not cause
689 a warning. Shared libraries contain just the section
690 ".gnu.liblist" but it is not marked as loadable there. There is
691 no other way to identify them than by their name as the sections
1276c759
JK
692 created by prelink have no special flags.
693
694 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
695
696 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 697 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
698 || (strcmp (sect_name, ".bss") == 0
699 && i > 0
700 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
701 && addrs_to_abfd_addrs[i - 1] != NULL)
702 || (strcmp (sect_name, ".sbss") == 0
703 && i > 0
704 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
705 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
706 warning (_("section %s not found in %s"), sect_name,
707 bfd_get_filename (abfd));
708
672d9c23 709 addrs->other[i].addr = 0;
5488dafb 710 addrs->other[i].sectindex = -1;
672d9c23 711 }
75242ef4 712 }
82ccf5a5
JK
713
714 do_cleanups (my_cleanup);
75242ef4
JK
715}
716
717/* Parse the user's idea of an offset for dynamic linking, into our idea
718 of how to represent it for fast symbol reading. This is the default
719 version of the sym_fns.sym_offsets function for symbol readers that
720 don't need to do anything special. It allocates a section_offsets table
721 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
722
723void
724default_symfile_offsets (struct objfile *objfile,
3189cb12 725 const struct section_addr_info *addrs)
75242ef4 726{
d445b2f6 727 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
728 objfile->section_offsets = (struct section_offsets *)
729 obstack_alloc (&objfile->objfile_obstack,
730 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
731 relative_addr_info_to_section_offsets (objfile->section_offsets,
732 objfile->num_sections, addrs);
e8289572 733
c1bd25fd
DJ
734 /* For relocatable files, all loadable sections will start at zero.
735 The zero is meaningless, so try to pick arbitrary addresses such
736 that no loadable sections overlap. This algorithm is quadratic,
737 but the number of sections in a single object file is generally
738 small. */
739 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
740 {
741 struct place_section_arg arg;
2711e456
DJ
742 bfd *abfd = objfile->obfd;
743 asection *cur_sec;
2711e456
DJ
744
745 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
746 /* We do not expect this to happen; just skip this step if the
747 relocatable file has a section with an assigned VMA. */
748 if (bfd_section_vma (abfd, cur_sec) != 0)
749 break;
750
751 if (cur_sec == NULL)
752 {
753 CORE_ADDR *offsets = objfile->section_offsets->offsets;
754
755 /* Pick non-overlapping offsets for sections the user did not
756 place explicitly. */
757 arg.offsets = objfile->section_offsets;
758 arg.lowest = 0;
759 bfd_map_over_sections (objfile->obfd, place_section, &arg);
760
761 /* Correctly filling in the section offsets is not quite
762 enough. Relocatable files have two properties that
763 (most) shared objects do not:
764
765 - Their debug information will contain relocations. Some
766 shared libraries do also, but many do not, so this can not
767 be assumed.
768
769 - If there are multiple code sections they will be loaded
770 at different relative addresses in memory than they are
771 in the objfile, since all sections in the file will start
772 at address zero.
773
774 Because GDB has very limited ability to map from an
775 address in debug info to the correct code section,
776 it relies on adding SECT_OFF_TEXT to things which might be
777 code. If we clear all the section offsets, and set the
778 section VMAs instead, then symfile_relocate_debug_section
779 will return meaningful debug information pointing at the
780 correct sections.
781
782 GDB has too many different data structures for section
783 addresses - a bfd, objfile, and so_list all have section
784 tables, as does exec_ops. Some of these could probably
785 be eliminated. */
786
787 for (cur_sec = abfd->sections; cur_sec != NULL;
788 cur_sec = cur_sec->next)
789 {
790 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
791 continue;
792
793 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
794 exec_set_section_address (bfd_get_filename (abfd),
795 cur_sec->index,
30510692 796 offsets[cur_sec->index]);
2711e456
DJ
797 offsets[cur_sec->index] = 0;
798 }
799 }
c1bd25fd
DJ
800 }
801
e8289572 802 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 803 .rodata sections. */
e8289572
JB
804 init_objfile_sect_indices (objfile);
805}
806
31d99776
DJ
807/* Divide the file into segments, which are individual relocatable units.
808 This is the default version of the sym_fns.sym_segments function for
809 symbol readers that do not have an explicit representation of segments.
810 It assumes that object files do not have segments, and fully linked
811 files have a single segment. */
812
813struct symfile_segment_data *
814default_symfile_segments (bfd *abfd)
815{
816 int num_sections, i;
817 asection *sect;
818 struct symfile_segment_data *data;
819 CORE_ADDR low, high;
820
821 /* Relocatable files contain enough information to position each
822 loadable section independently; they should not be relocated
823 in segments. */
824 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
825 return NULL;
826
827 /* Make sure there is at least one loadable section in the file. */
828 for (sect = abfd->sections; sect != NULL; sect = sect->next)
829 {
830 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
831 continue;
832
833 break;
834 }
835 if (sect == NULL)
836 return NULL;
837
838 low = bfd_get_section_vma (abfd, sect);
839 high = low + bfd_get_section_size (sect);
840
41bf6aca 841 data = XCNEW (struct symfile_segment_data);
31d99776 842 data->num_segments = 1;
fc270c35
TT
843 data->segment_bases = XCNEW (CORE_ADDR);
844 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
845
846 num_sections = bfd_count_sections (abfd);
fc270c35 847 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
848
849 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
850 {
851 CORE_ADDR vma;
852
853 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
854 continue;
855
856 vma = bfd_get_section_vma (abfd, sect);
857 if (vma < low)
858 low = vma;
859 if (vma + bfd_get_section_size (sect) > high)
860 high = vma + bfd_get_section_size (sect);
861
862 data->segment_info[i] = 1;
863 }
864
865 data->segment_bases[0] = low;
866 data->segment_sizes[0] = high - low;
867
868 return data;
869}
870
608e2dbb
TT
871/* This is a convenience function to call sym_read for OBJFILE and
872 possibly force the partial symbols to be read. */
873
874static void
875read_symbols (struct objfile *objfile, int add_flags)
876{
877 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 878 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
879
880 /* find_separate_debug_file_in_section should be called only if there is
881 single binary with no existing separate debug info file. */
882 if (!objfile_has_partial_symbols (objfile)
883 && objfile->separate_debug_objfile == NULL
884 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
885 {
886 bfd *abfd = find_separate_debug_file_in_section (objfile);
887 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
888
889 if (abfd != NULL)
24ba069a
JK
890 {
891 /* find_separate_debug_file_in_section uses the same filename for the
892 virtual section-as-bfd like the bfd filename containing the
893 section. Therefore use also non-canonical name form for the same
894 file containing the section. */
895 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
896 objfile);
897 }
608e2dbb
TT
898
899 do_cleanups (cleanup);
900 }
901 if ((add_flags & SYMFILE_NO_READ) == 0)
902 require_partial_symbols (objfile, 0);
903}
904
3d6e24f0
JB
905/* Initialize entry point information for this objfile. */
906
907static void
908init_entry_point_info (struct objfile *objfile)
909{
6ef55de7
TT
910 struct entry_info *ei = &objfile->per_bfd->ei;
911
912 if (ei->initialized)
913 return;
914 ei->initialized = 1;
915
3d6e24f0
JB
916 /* Save startup file's range of PC addresses to help blockframe.c
917 decide where the bottom of the stack is. */
918
919 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
920 {
921 /* Executable file -- record its entry point so we'll recognize
922 the startup file because it contains the entry point. */
6ef55de7
TT
923 ei->entry_point = bfd_get_start_address (objfile->obfd);
924 ei->entry_point_p = 1;
3d6e24f0
JB
925 }
926 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
927 && bfd_get_start_address (objfile->obfd) != 0)
928 {
929 /* Some shared libraries may have entry points set and be
930 runnable. There's no clear way to indicate this, so just check
931 for values other than zero. */
6ef55de7
TT
932 ei->entry_point = bfd_get_start_address (objfile->obfd);
933 ei->entry_point_p = 1;
3d6e24f0
JB
934 }
935 else
936 {
937 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 938 ei->entry_point_p = 0;
3d6e24f0
JB
939 }
940
6ef55de7 941 if (ei->entry_point_p)
3d6e24f0 942 {
53eddfa6 943 struct obj_section *osect;
6ef55de7 944 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 945 int found;
3d6e24f0
JB
946
947 /* Make certain that the address points at real code, and not a
948 function descriptor. */
949 entry_point
df6d5441 950 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
951 entry_point,
952 &current_target);
953
954 /* Remove any ISA markers, so that this matches entries in the
955 symbol table. */
6ef55de7 956 ei->entry_point
df6d5441 957 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
958
959 found = 0;
960 ALL_OBJFILE_OSECTIONS (objfile, osect)
961 {
962 struct bfd_section *sect = osect->the_bfd_section;
963
964 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
965 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
966 + bfd_get_section_size (sect)))
967 {
6ef55de7 968 ei->the_bfd_section_index
53eddfa6
TT
969 = gdb_bfd_section_index (objfile->obfd, sect);
970 found = 1;
971 break;
972 }
973 }
974
975 if (!found)
6ef55de7 976 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
977 }
978}
979
c906108c
SS
980/* Process a symbol file, as either the main file or as a dynamically
981 loaded file.
982
36e4d068
JB
983 This function does not set the OBJFILE's entry-point info.
984
96baa820
JM
985 OBJFILE is where the symbols are to be read from.
986
7e8580c1
JB
987 ADDRS is the list of section load addresses. If the user has given
988 an 'add-symbol-file' command, then this is the list of offsets and
989 addresses he or she provided as arguments to the command; or, if
990 we're handling a shared library, these are the actual addresses the
991 sections are loaded at, according to the inferior's dynamic linker
992 (as gleaned by GDB's shared library code). We convert each address
993 into an offset from the section VMA's as it appears in the object
994 file, and then call the file's sym_offsets function to convert this
995 into a format-specific offset table --- a `struct section_offsets'.
96baa820 996
7eedccfa
PP
997 ADD_FLAGS encodes verbosity level, whether this is main symbol or
998 an extra symbol file such as dynamically loaded code, and wether
999 breakpoint reset should be deferred. */
c906108c 1000
36e4d068
JB
1001static void
1002syms_from_objfile_1 (struct objfile *objfile,
1003 struct section_addr_info *addrs,
36e4d068 1004 int add_flags)
c906108c 1005{
a39a16c4 1006 struct section_addr_info *local_addr = NULL;
c906108c 1007 struct cleanup *old_chain;
7eedccfa 1008 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1009
8fb8eb5c 1010 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1011
75245b24 1012 if (objfile->sf == NULL)
36e4d068
JB
1013 {
1014 /* No symbols to load, but we still need to make sure
1015 that the section_offsets table is allocated. */
d445b2f6 1016 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1017 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1018
1019 objfile->num_sections = num_sections;
1020 objfile->section_offsets
1021 = obstack_alloc (&objfile->objfile_obstack, size);
1022 memset (objfile->section_offsets, 0, size);
1023 return;
1024 }
75245b24 1025
c906108c
SS
1026 /* Make sure that partially constructed symbol tables will be cleaned up
1027 if an error occurs during symbol reading. */
74b7792f 1028 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1029
6bf667bb
DE
1030 /* If ADDRS is NULL, put together a dummy address list.
1031 We now establish the convention that an addr of zero means
c378eb4e 1032 no load address was specified. */
6bf667bb 1033 if (! addrs)
a39a16c4 1034 {
d445b2f6 1035 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1036 make_cleanup (xfree, local_addr);
1037 addrs = local_addr;
1038 }
1039
c5aa993b 1040 if (mainline)
c906108c
SS
1041 {
1042 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1043 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1044 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1045
1046 /* Since no error yet, throw away the old symbol table. */
1047
1048 if (symfile_objfile != NULL)
1049 {
1050 free_objfile (symfile_objfile);
adb7f338 1051 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1052 }
1053
1054 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1055 If the user wants to get rid of them, they should do "symbol-file"
1056 without arguments first. Not sure this is the best behavior
1057 (PR 2207). */
c906108c 1058
c5aa993b 1059 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1060 }
1061
1062 /* Convert addr into an offset rather than an absolute address.
1063 We find the lowest address of a loaded segment in the objfile,
53a5351d 1064 and assume that <addr> is where that got loaded.
c906108c 1065
53a5351d
JM
1066 We no longer warn if the lowest section is not a text segment (as
1067 happens for the PA64 port. */
6bf667bb 1068 if (addrs->num_sections > 0)
75242ef4 1069 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1070
1071 /* Initialize symbol reading routines for this objfile, allow complaints to
1072 appear for this new file, and record how verbose to be, then do the
c378eb4e 1073 initial symbol reading for this file. */
c906108c 1074
c5aa993b 1075 (*objfile->sf->sym_init) (objfile);
7eedccfa 1076 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1077
6bf667bb 1078 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1079
608e2dbb 1080 read_symbols (objfile, add_flags);
b11896a5 1081
c906108c
SS
1082 /* Discard cleanups as symbol reading was successful. */
1083
1084 discard_cleanups (old_chain);
f7545552 1085 xfree (local_addr);
c906108c
SS
1086}
1087
36e4d068
JB
1088/* Same as syms_from_objfile_1, but also initializes the objfile
1089 entry-point info. */
1090
6bf667bb 1091static void
36e4d068
JB
1092syms_from_objfile (struct objfile *objfile,
1093 struct section_addr_info *addrs,
36e4d068
JB
1094 int add_flags)
1095{
6bf667bb 1096 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1097 init_entry_point_info (objfile);
1098}
1099
c906108c
SS
1100/* Perform required actions after either reading in the initial
1101 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1102 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1103
c906108c 1104void
7eedccfa 1105new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1106{
c906108c 1107 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1108 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1109 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1110 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1111 {
1112 /* OK, make it the "real" symbol file. */
1113 symfile_objfile = objfile;
1114
c1e56572 1115 clear_symtab_users (add_flags);
c906108c 1116 }
7eedccfa 1117 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1118 {
69de3c6a 1119 breakpoint_re_set ();
c906108c
SS
1120 }
1121
1122 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1123 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1124}
1125
1126/* Process a symbol file, as either the main file or as a dynamically
1127 loaded file.
1128
5417f6dc 1129 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1130 A new reference is acquired by this function.
7904e09f 1131
24ba069a
JK
1132 For NAME description see allocate_objfile's definition.
1133
7eedccfa
PP
1134 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1135 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1136
6bf667bb 1137 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1138 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1139
63524580
JK
1140 PARENT is the original objfile if ABFD is a separate debug info file.
1141 Otherwise PARENT is NULL.
1142
c906108c 1143 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1144 Upon failure, jumps back to command level (never returns). */
7eedccfa 1145
7904e09f 1146static struct objfile *
24ba069a 1147symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1148 struct section_addr_info *addrs,
1149 int flags, struct objfile *parent)
c906108c
SS
1150{
1151 struct objfile *objfile;
7eedccfa 1152 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1153 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1154 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1155 && (readnow_symbol_files
1156 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1157
9291a0cd 1158 if (readnow_symbol_files)
b11896a5
TT
1159 {
1160 flags |= OBJF_READNOW;
1161 add_flags &= ~SYMFILE_NO_READ;
1162 }
9291a0cd 1163
5417f6dc
RM
1164 /* Give user a chance to burp if we'd be
1165 interactively wiping out any existing symbols. */
c906108c
SS
1166
1167 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1168 && mainline
c906108c 1169 && from_tty
9e2f0ad4 1170 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1171 error (_("Not confirmed."));
c906108c 1172
24ba069a
JK
1173 objfile = allocate_objfile (abfd, name,
1174 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1175
63524580
JK
1176 if (parent)
1177 add_separate_debug_objfile (objfile, parent);
1178
78a4a9b9
AC
1179 /* We either created a new mapped symbol table, mapped an existing
1180 symbol table file which has not had initial symbol reading
c378eb4e 1181 performed, or need to read an unmapped symbol table. */
b11896a5 1182 if (should_print)
c906108c 1183 {
769d7dc4
AC
1184 if (deprecated_pre_add_symbol_hook)
1185 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1186 else
c906108c 1187 {
55333a84
DE
1188 printf_unfiltered (_("Reading symbols from %s..."), name);
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
c906108c 1191 }
c906108c 1192 }
6bf667bb 1193 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1194
1195 /* We now have at least a partial symbol table. Check to see if the
1196 user requested that all symbols be read on initial access via either
1197 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1198 all partial symbol tables for this objfile if so. */
c906108c 1199
9291a0cd 1200 if ((flags & OBJF_READNOW))
c906108c 1201 {
b11896a5 1202 if (should_print)
c906108c 1203 {
a3f17187 1204 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1205 wrap_here ("");
1206 gdb_flush (gdb_stdout);
1207 }
1208
ccefe4c4
TT
1209 if (objfile->sf)
1210 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1211 }
1212
b11896a5 1213 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1214 {
1215 wrap_here ("");
55333a84 1216 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1217 wrap_here ("");
1218 }
1219
b11896a5 1220 if (should_print)
c906108c 1221 {
769d7dc4
AC
1222 if (deprecated_post_add_symbol_hook)
1223 deprecated_post_add_symbol_hook ();
c906108c 1224 else
55333a84 1225 printf_unfiltered (_("done.\n"));
c906108c
SS
1226 }
1227
481d0f41
JB
1228 /* We print some messages regardless of whether 'from_tty ||
1229 info_verbose' is true, so make sure they go out at the right
1230 time. */
1231 gdb_flush (gdb_stdout);
1232
109f874e 1233 if (objfile->sf == NULL)
8caee43b
PP
1234 {
1235 observer_notify_new_objfile (objfile);
c378eb4e 1236 return objfile; /* No symbols. */
8caee43b 1237 }
109f874e 1238
7eedccfa 1239 new_symfile_objfile (objfile, add_flags);
c906108c 1240
06d3b283 1241 observer_notify_new_objfile (objfile);
c906108c 1242
ce7d4522 1243 bfd_cache_close_all ();
c906108c
SS
1244 return (objfile);
1245}
1246
24ba069a
JK
1247/* Add BFD as a separate debug file for OBJFILE. For NAME description
1248 see allocate_objfile's definition. */
9cce227f
TG
1249
1250void
24ba069a
JK
1251symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1252 struct objfile *objfile)
9cce227f 1253{
15d123c9 1254 struct objfile *new_objfile;
089b4803
TG
1255 struct section_addr_info *sap;
1256 struct cleanup *my_cleanup;
1257
1258 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1259 because sections of BFD may not match sections of OBJFILE and because
1260 vma may have been modified by tools such as prelink. */
1261 sap = build_section_addr_info_from_objfile (objfile);
1262 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1263
6bf667bb 1264 new_objfile = symbol_file_add_with_addrs
24ba069a 1265 (bfd, name, symfile_flags, sap,
9cce227f 1266 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1267 | OBJF_USERLOADED),
1268 objfile);
089b4803
TG
1269
1270 do_cleanups (my_cleanup);
9cce227f 1271}
7904e09f 1272
eb4556d7
JB
1273/* Process the symbol file ABFD, as either the main file or as a
1274 dynamically loaded file.
6bf667bb 1275 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1276
eb4556d7 1277struct objfile *
24ba069a 1278symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1279 struct section_addr_info *addrs,
63524580 1280 int flags, struct objfile *parent)
eb4556d7 1281{
24ba069a
JK
1282 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1283 parent);
eb4556d7
JB
1284}
1285
7904e09f 1286/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1287 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1288
7904e09f 1289struct objfile *
69150c3d
JK
1290symbol_file_add (const char *name, int add_flags,
1291 struct section_addr_info *addrs, int flags)
7904e09f 1292{
8ac244b4
TT
1293 bfd *bfd = symfile_bfd_open (name);
1294 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1295 struct objfile *objf;
1296
24ba069a 1297 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1298 do_cleanups (cleanup);
1299 return objf;
7904e09f
JB
1300}
1301
d7db6da9
FN
1302/* Call symbol_file_add() with default values and update whatever is
1303 affected by the loading of a new main().
1304 Used when the file is supplied in the gdb command line
1305 and by some targets with special loading requirements.
1306 The auxiliary function, symbol_file_add_main_1(), has the flags
1307 argument for the switches that can only be specified in the symbol_file
1308 command itself. */
5417f6dc 1309
1adeb98a 1310void
69150c3d 1311symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1312{
d7db6da9
FN
1313 symbol_file_add_main_1 (args, from_tty, 0);
1314}
1315
1316static void
69150c3d 1317symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1318{
7dcd53a0
TT
1319 const int add_flags = (current_inferior ()->symfile_flags
1320 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1321
7eedccfa 1322 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1323
d7db6da9
FN
1324 /* Getting new symbols may change our opinion about
1325 what is frameless. */
1326 reinit_frame_cache ();
1327
7dcd53a0
TT
1328 if ((flags & SYMFILE_NO_READ) == 0)
1329 set_initial_language ();
1adeb98a
FN
1330}
1331
1332void
1333symbol_file_clear (int from_tty)
1334{
1335 if ((have_full_symbols () || have_partial_symbols ())
1336 && from_tty
0430b0d6
AS
1337 && (symfile_objfile
1338 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1339 objfile_name (symfile_objfile))
0430b0d6 1340 : !query (_("Discard symbol table? "))))
8a3fe4f8 1341 error (_("Not confirmed."));
1adeb98a 1342
0133421a
JK
1343 /* solib descriptors may have handles to objfiles. Wipe them before their
1344 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1345 no_shared_libraries (NULL, from_tty);
1346
0133421a
JK
1347 free_all_objfiles ();
1348
adb7f338 1349 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1350 if (from_tty)
1351 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1352}
1353
5b5d99cf 1354static int
287ccc17 1355separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1356 struct objfile *parent_objfile)
5b5d99cf 1357{
904578ed
JK
1358 unsigned long file_crc;
1359 int file_crc_p;
f1838a98 1360 bfd *abfd;
32a0e547 1361 struct stat parent_stat, abfd_stat;
904578ed 1362 int verified_as_different;
32a0e547
JK
1363
1364 /* Find a separate debug info file as if symbols would be present in
1365 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1366 section can contain just the basename of PARENT_OBJFILE without any
1367 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1368 the separate debug infos with the same basename can exist. */
32a0e547 1369
4262abfb 1370 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1371 return 0;
5b5d99cf 1372
08d2cd74 1373 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1374
1375 if (!abfd)
5b5d99cf
JB
1376 return 0;
1377
0ba1096a 1378 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1379
1380 Some operating systems, e.g. Windows, do not provide a meaningful
1381 st_ino; they always set it to zero. (Windows does provide a
1382 meaningful st_dev.) Do not indicate a duplicate library in that
1383 case. While there is no guarantee that a system that provides
1384 meaningful inode numbers will never set st_ino to zero, this is
1385 merely an optimization, so we do not need to worry about false
1386 negatives. */
1387
1388 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1389 && abfd_stat.st_ino != 0
1390 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1391 {
904578ed
JK
1392 if (abfd_stat.st_dev == parent_stat.st_dev
1393 && abfd_stat.st_ino == parent_stat.st_ino)
1394 {
cbb099e8 1395 gdb_bfd_unref (abfd);
904578ed
JK
1396 return 0;
1397 }
1398 verified_as_different = 1;
32a0e547 1399 }
904578ed
JK
1400 else
1401 verified_as_different = 0;
32a0e547 1402
dccee2de 1403 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1404
cbb099e8 1405 gdb_bfd_unref (abfd);
5b5d99cf 1406
904578ed
JK
1407 if (!file_crc_p)
1408 return 0;
1409
287ccc17
JK
1410 if (crc != file_crc)
1411 {
dccee2de
TT
1412 unsigned long parent_crc;
1413
904578ed
JK
1414 /* If one (or both) the files are accessed for example the via "remote:"
1415 gdbserver way it does not support the bfd_stat operation. Verify
1416 whether those two files are not the same manually. */
1417
dccee2de 1418 if (!verified_as_different)
904578ed 1419 {
dccee2de 1420 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1421 return 0;
1422 }
1423
dccee2de 1424 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1425 warning (_("the debug information found in \"%s\""
1426 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1427 name, objfile_name (parent_objfile));
904578ed 1428
287ccc17
JK
1429 return 0;
1430 }
1431
1432 return 1;
5b5d99cf
JB
1433}
1434
aa28a74e 1435char *debug_file_directory = NULL;
920d2a44
AC
1436static void
1437show_debug_file_directory (struct ui_file *file, int from_tty,
1438 struct cmd_list_element *c, const char *value)
1439{
3e43a32a
MS
1440 fprintf_filtered (file,
1441 _("The directory where separate debug "
1442 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1443 value);
1444}
5b5d99cf
JB
1445
1446#if ! defined (DEBUG_SUBDIRECTORY)
1447#define DEBUG_SUBDIRECTORY ".debug"
1448#endif
1449
1db33378
PP
1450/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1451 where the original file resides (may not be the same as
1452 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1453 looking for. CANON_DIR is the "realpath" form of DIR.
1454 DIR must contain a trailing '/'.
1455 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1456
1457static char *
1458find_separate_debug_file (const char *dir,
1459 const char *canon_dir,
1460 const char *debuglink,
1461 unsigned long crc32, struct objfile *objfile)
9cce227f 1462{
1db33378
PP
1463 char *debugdir;
1464 char *debugfile;
9cce227f 1465 int i;
e4ab2fad
JK
1466 VEC (char_ptr) *debugdir_vec;
1467 struct cleanup *back_to;
1468 int ix;
5b5d99cf 1469
1db33378 1470 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1471 i = strlen (dir);
1db33378
PP
1472 if (canon_dir != NULL && strlen (canon_dir) > i)
1473 i = strlen (canon_dir);
1ffa32ee 1474
25522fae
JK
1475 debugfile = xmalloc (strlen (debug_file_directory) + 1
1476 + i
1477 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen ("/")
1db33378 1479 + strlen (debuglink)
25522fae 1480 + 1);
5b5d99cf
JB
1481
1482 /* First try in the same directory as the original file. */
1483 strcpy (debugfile, dir);
1db33378 1484 strcat (debugfile, debuglink);
5b5d99cf 1485
32a0e547 1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1487 return debugfile;
5417f6dc 1488
5b5d99cf
JB
1489 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, DEBUG_SUBDIRECTORY);
1492 strcat (debugfile, "/");
1db33378 1493 strcat (debugfile, debuglink);
5b5d99cf 1494
32a0e547 1495 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1496 return debugfile;
5417f6dc 1497
24ddea62 1498 /* Then try in the global debugfile directories.
f888f159 1499
24ddea62
JK
1500 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1501 cause "/..." lookups. */
5417f6dc 1502
e4ab2fad
JK
1503 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1504 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1505
e4ab2fad
JK
1506 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 {
1508 strcpy (debugfile, debugdir);
aa28a74e 1509 strcat (debugfile, "/");
24ddea62 1510 strcat (debugfile, dir);
1db33378 1511 strcat (debugfile, debuglink);
aa28a74e 1512
32a0e547 1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1514 {
1515 do_cleanups (back_to);
1516 return debugfile;
1517 }
24ddea62
JK
1518
1519 /* If the file is in the sysroot, try using its base path in the
1520 global debugfile directory. */
1db33378
PP
1521 if (canon_dir != NULL
1522 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1523 strlen (gdb_sysroot)) == 0
1db33378 1524 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1525 {
e4ab2fad 1526 strcpy (debugfile, debugdir);
1db33378 1527 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1528 strcat (debugfile, "/");
1db33378 1529 strcat (debugfile, debuglink);
24ddea62 1530
32a0e547 1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1532 {
1533 do_cleanups (back_to);
1534 return debugfile;
1535 }
24ddea62 1536 }
aa28a74e 1537 }
f888f159 1538
e4ab2fad 1539 do_cleanups (back_to);
25522fae 1540 xfree (debugfile);
1db33378
PP
1541 return NULL;
1542}
1543
7edbb660 1544/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1545 If there were no directory separators in PATH, PATH will be empty
1546 string on return. */
1547
1548static void
1549terminate_after_last_dir_separator (char *path)
1550{
1551 int i;
1552
1553 /* Strip off the final filename part, leaving the directory name,
1554 followed by a slash. The directory can be relative or absolute. */
1555 for (i = strlen(path) - 1; i >= 0; i--)
1556 if (IS_DIR_SEPARATOR (path[i]))
1557 break;
1558
1559 /* If I is -1 then no directory is present there and DIR will be "". */
1560 path[i + 1] = '\0';
1561}
1562
1563/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1564 Returns pathname, or NULL. */
1565
1566char *
1567find_separate_debug_file_by_debuglink (struct objfile *objfile)
1568{
1569 char *debuglink;
1570 char *dir, *canon_dir;
1571 char *debugfile;
1572 unsigned long crc32;
1573 struct cleanup *cleanups;
1574
cc0ea93c 1575 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1576
1577 if (debuglink == NULL)
1578 {
1579 /* There's no separate debug info, hence there's no way we could
1580 load it => no warning. */
1581 return NULL;
1582 }
1583
71bdabee 1584 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1585 dir = xstrdup (objfile_name (objfile));
71bdabee 1586 make_cleanup (xfree, dir);
1db33378
PP
1587 terminate_after_last_dir_separator (dir);
1588 canon_dir = lrealpath (dir);
1589
1590 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1591 crc32, objfile);
1592 xfree (canon_dir);
1593
1594 if (debugfile == NULL)
1595 {
1596#ifdef HAVE_LSTAT
1597 /* For PR gdb/9538, try again with realpath (if different from the
1598 original). */
1599
1600 struct stat st_buf;
1601
4262abfb
JK
1602 if (lstat (objfile_name (objfile), &st_buf) == 0
1603 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1604 {
1605 char *symlink_dir;
1606
4262abfb 1607 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1608 if (symlink_dir != NULL)
1609 {
1610 make_cleanup (xfree, symlink_dir);
1611 terminate_after_last_dir_separator (symlink_dir);
1612 if (strcmp (dir, symlink_dir) != 0)
1613 {
1614 /* Different directory, so try using it. */
1615 debugfile = find_separate_debug_file (symlink_dir,
1616 symlink_dir,
1617 debuglink,
1618 crc32,
1619 objfile);
1620 }
1621 }
1622 }
1623#endif /* HAVE_LSTAT */
1624 }
aa28a74e 1625
1db33378 1626 do_cleanups (cleanups);
25522fae 1627 return debugfile;
5b5d99cf
JB
1628}
1629
c906108c
SS
1630/* This is the symbol-file command. Read the file, analyze its
1631 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1632 the command is rather bizarre:
1633
1634 1. The function buildargv implements various quoting conventions
1635 which are undocumented and have little or nothing in common with
1636 the way things are quoted (or not quoted) elsewhere in GDB.
1637
1638 2. Options are used, which are not generally used in GDB (perhaps
1639 "set mapped on", "set readnow on" would be better)
1640
1641 3. The order of options matters, which is contrary to GNU
c906108c
SS
1642 conventions (because it is confusing and inconvenient). */
1643
1644void
fba45db2 1645symbol_file_command (char *args, int from_tty)
c906108c 1646{
c906108c
SS
1647 dont_repeat ();
1648
1649 if (args == NULL)
1650 {
1adeb98a 1651 symbol_file_clear (from_tty);
c906108c
SS
1652 }
1653 else
1654 {
d1a41061 1655 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1656 int flags = OBJF_USERLOADED;
1657 struct cleanup *cleanups;
1658 char *name = NULL;
1659
7a292a7a 1660 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1661 while (*argv != NULL)
1662 {
78a4a9b9
AC
1663 if (strcmp (*argv, "-readnow") == 0)
1664 flags |= OBJF_READNOW;
1665 else if (**argv == '-')
8a3fe4f8 1666 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1667 else
1668 {
cb2f3a29 1669 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1670 name = *argv;
78a4a9b9 1671 }
cb2f3a29 1672
c906108c
SS
1673 argv++;
1674 }
1675
1676 if (name == NULL)
cb2f3a29
MK
1677 error (_("no symbol file name was specified"));
1678
c906108c
SS
1679 do_cleanups (cleanups);
1680 }
1681}
1682
1683/* Set the initial language.
1684
cb2f3a29
MK
1685 FIXME: A better solution would be to record the language in the
1686 psymtab when reading partial symbols, and then use it (if known) to
1687 set the language. This would be a win for formats that encode the
1688 language in an easily discoverable place, such as DWARF. For
1689 stabs, we can jump through hoops looking for specially named
1690 symbols or try to intuit the language from the specific type of
1691 stabs we find, but we can't do that until later when we read in
1692 full symbols. */
c906108c 1693
8b60591b 1694void
fba45db2 1695set_initial_language (void)
c906108c 1696{
9e6c82ad 1697 enum language lang = main_language ();
c906108c 1698
9e6c82ad 1699 if (lang == language_unknown)
01f8c46d 1700 {
bf6d8a91
TT
1701 char *name = main_name ();
1702 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1703
bf6d8a91
TT
1704 if (sym != NULL)
1705 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1706 }
cb2f3a29 1707
ccefe4c4
TT
1708 if (lang == language_unknown)
1709 {
1710 /* Make C the default language */
1711 lang = language_c;
c906108c 1712 }
ccefe4c4
TT
1713
1714 set_language (lang);
1715 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1716}
1717
874f5765 1718/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1719 open it normally. Returns a new reference to the BFD. On error,
1720 returns NULL with the BFD error set. */
874f5765
TG
1721
1722bfd *
08d2cd74 1723gdb_bfd_open_maybe_remote (const char *name)
874f5765 1724{
520b0001
TT
1725 bfd *result;
1726
874f5765 1727 if (remote_filename_p (name))
520b0001 1728 result = remote_bfd_open (name, gnutarget);
874f5765 1729 else
1c00ec6b 1730 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1731
520b0001 1732 return result;
874f5765
TG
1733}
1734
cb2f3a29
MK
1735/* Open the file specified by NAME and hand it off to BFD for
1736 preliminary analysis. Return a newly initialized bfd *, which
1737 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1738 absolute). In case of trouble, error() is called. */
c906108c
SS
1739
1740bfd *
69150c3d 1741symfile_bfd_open (const char *cname)
c906108c
SS
1742{
1743 bfd *sym_bfd;
1744 int desc;
69150c3d 1745 char *name, *absolute_name;
faab9922 1746 struct cleanup *back_to;
c906108c 1747
69150c3d 1748 if (remote_filename_p (cname))
f1838a98 1749 {
69150c3d 1750 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1751 if (!sym_bfd)
69150c3d 1752 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1753 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1754
1755 if (!bfd_check_format (sym_bfd, bfd_object))
1756 {
f9a062ff 1757 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1758 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1759 bfd_errmsg (bfd_get_error ()));
1760 }
1761
1762 return sym_bfd;
1763 }
1764
69150c3d 1765 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1766
1767 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1768 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1769 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1770#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1771 if (desc < 0)
1772 {
1773 char *exename = alloca (strlen (name) + 5);
433759f7 1774
c906108c 1775 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1776 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1777 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1778 }
1779#endif
1780 if (desc < 0)
1781 {
b8c9b27d 1782 make_cleanup (xfree, name);
c906108c
SS
1783 perror_with_name (name);
1784 }
cb2f3a29 1785
cb2f3a29
MK
1786 xfree (name);
1787 name = absolute_name;
faab9922 1788 back_to = make_cleanup (xfree, name);
c906108c 1789
1c00ec6b 1790 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1791 if (!sym_bfd)
faab9922
JK
1792 error (_("`%s': can't open to read symbols: %s."), name,
1793 bfd_errmsg (bfd_get_error ()));
549c1eea 1794 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1795
1796 if (!bfd_check_format (sym_bfd, bfd_object))
1797 {
f9a062ff 1798 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1799 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1800 bfd_errmsg (bfd_get_error ()));
1801 }
cb2f3a29 1802
faab9922
JK
1803 do_cleanups (back_to);
1804
cb2f3a29 1805 return sym_bfd;
c906108c
SS
1806}
1807
cb2f3a29
MK
1808/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1809 the section was not found. */
1810
0e931cf0
JB
1811int
1812get_section_index (struct objfile *objfile, char *section_name)
1813{
1814 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1815
0e931cf0
JB
1816 if (sect)
1817 return sect->index;
1818 else
1819 return -1;
1820}
1821
c256e171
DE
1822/* Link SF into the global symtab_fns list.
1823 FLAVOUR is the file format that SF handles.
1824 Called on startup by the _initialize routine in each object file format
1825 reader, to register information about each format the reader is prepared
1826 to handle. */
c906108c
SS
1827
1828void
c256e171 1829add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1830{
c256e171
DE
1831 registered_sym_fns fns = { flavour, sf };
1832
1833 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1834}
1835
cb2f3a29
MK
1836/* Initialize OBJFILE to read symbols from its associated BFD. It
1837 either returns or calls error(). The result is an initialized
1838 struct sym_fns in the objfile structure, that contains cached
1839 information about the symbol file. */
c906108c 1840
00b5771c 1841static const struct sym_fns *
31d99776 1842find_sym_fns (bfd *abfd)
c906108c 1843{
c256e171 1844 registered_sym_fns *rsf;
31d99776 1845 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1846 int i;
c906108c 1847
75245b24
MS
1848 if (our_flavour == bfd_target_srec_flavour
1849 || our_flavour == bfd_target_ihex_flavour
1850 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1851 return NULL; /* No symbols. */
75245b24 1852
c256e171
DE
1853 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1854 if (our_flavour == rsf->sym_flavour)
1855 return rsf->sym_fns;
cb2f3a29 1856
8a3fe4f8 1857 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1858 bfd_get_target (abfd));
c906108c
SS
1859}
1860\f
cb2f3a29 1861
c906108c
SS
1862/* This function runs the load command of our current target. */
1863
1864static void
fba45db2 1865load_command (char *arg, int from_tty)
c906108c 1866{
5b3fca71
TT
1867 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1868
e5cc9f32
JB
1869 dont_repeat ();
1870
4487aabf
PA
1871 /* The user might be reloading because the binary has changed. Take
1872 this opportunity to check. */
1873 reopen_exec_file ();
1874 reread_symbols ();
1875
c906108c 1876 if (arg == NULL)
1986bccd
AS
1877 {
1878 char *parg;
1879 int count = 0;
1880
1881 parg = arg = get_exec_file (1);
1882
1883 /* Count how many \ " ' tab space there are in the name. */
1884 while ((parg = strpbrk (parg, "\\\"'\t ")))
1885 {
1886 parg++;
1887 count++;
1888 }
1889
1890 if (count)
1891 {
1892 /* We need to quote this string so buildargv can pull it apart. */
1893 char *temp = xmalloc (strlen (arg) + count + 1 );
1894 char *ptemp = temp;
1895 char *prev;
1896
1897 make_cleanup (xfree, temp);
1898
1899 prev = parg = arg;
1900 while ((parg = strpbrk (parg, "\\\"'\t ")))
1901 {
1902 strncpy (ptemp, prev, parg - prev);
1903 ptemp += parg - prev;
1904 prev = parg++;
1905 *ptemp++ = '\\';
1906 }
1907 strcpy (ptemp, prev);
1908
1909 arg = temp;
1910 }
1911 }
1912
c906108c 1913 target_load (arg, from_tty);
2889e661
JB
1914
1915 /* After re-loading the executable, we don't really know which
1916 overlays are mapped any more. */
1917 overlay_cache_invalid = 1;
5b3fca71
TT
1918
1919 do_cleanups (cleanup);
c906108c
SS
1920}
1921
1922/* This version of "load" should be usable for any target. Currently
1923 it is just used for remote targets, not inftarg.c or core files,
1924 on the theory that only in that case is it useful.
1925
1926 Avoiding xmodem and the like seems like a win (a) because we don't have
1927 to worry about finding it, and (b) On VMS, fork() is very slow and so
1928 we don't want to run a subprocess. On the other hand, I'm not sure how
1929 performance compares. */
917317f4 1930
917317f4
JM
1931static int validate_download = 0;
1932
e4f9b4d5
MS
1933/* Callback service function for generic_load (bfd_map_over_sections). */
1934
1935static void
1936add_section_size_callback (bfd *abfd, asection *asec, void *data)
1937{
1938 bfd_size_type *sum = data;
1939
2c500098 1940 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1941}
1942
1943/* Opaque data for load_section_callback. */
1944struct load_section_data {
f698ca8e 1945 CORE_ADDR load_offset;
a76d924d
DJ
1946 struct load_progress_data *progress_data;
1947 VEC(memory_write_request_s) *requests;
1948};
1949
1950/* Opaque data for load_progress. */
1951struct load_progress_data {
1952 /* Cumulative data. */
e4f9b4d5
MS
1953 unsigned long write_count;
1954 unsigned long data_count;
1955 bfd_size_type total_size;
a76d924d
DJ
1956};
1957
1958/* Opaque data for load_progress for a single section. */
1959struct load_progress_section_data {
1960 struct load_progress_data *cumulative;
cf7a04e8 1961
a76d924d 1962 /* Per-section data. */
cf7a04e8
DJ
1963 const char *section_name;
1964 ULONGEST section_sent;
1965 ULONGEST section_size;
1966 CORE_ADDR lma;
1967 gdb_byte *buffer;
e4f9b4d5
MS
1968};
1969
a76d924d 1970/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1971
1972static void
1973load_progress (ULONGEST bytes, void *untyped_arg)
1974{
a76d924d
DJ
1975 struct load_progress_section_data *args = untyped_arg;
1976 struct load_progress_data *totals;
1977
1978 if (args == NULL)
1979 /* Writing padding data. No easy way to get at the cumulative
1980 stats, so just ignore this. */
1981 return;
1982
1983 totals = args->cumulative;
1984
1985 if (bytes == 0 && args->section_sent == 0)
1986 {
1987 /* The write is just starting. Let the user know we've started
1988 this section. */
79a45e25 1989 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1990 args->section_name, hex_string (args->section_size),
f5656ead 1991 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1992 return;
1993 }
cf7a04e8
DJ
1994
1995 if (validate_download)
1996 {
1997 /* Broken memories and broken monitors manifest themselves here
1998 when bring new computers to life. This doubles already slow
1999 downloads. */
2000 /* NOTE: cagney/1999-10-18: A more efficient implementation
2001 might add a verify_memory() method to the target vector and
2002 then use that. remote.c could implement that method using
2003 the ``qCRC'' packet. */
2004 gdb_byte *check = xmalloc (bytes);
2005 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2006
2007 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 2008 error (_("Download verify read failed at %s"),
f5656ead 2009 paddress (target_gdbarch (), args->lma));
cf7a04e8 2010 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 2011 error (_("Download verify compare failed at %s"),
f5656ead 2012 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
2013 do_cleanups (verify_cleanups);
2014 }
a76d924d 2015 totals->data_count += bytes;
cf7a04e8
DJ
2016 args->lma += bytes;
2017 args->buffer += bytes;
a76d924d 2018 totals->write_count += 1;
cf7a04e8 2019 args->section_sent += bytes;
522002f9 2020 if (check_quit_flag ()
cf7a04e8
DJ
2021 || (deprecated_ui_load_progress_hook != NULL
2022 && deprecated_ui_load_progress_hook (args->section_name,
2023 args->section_sent)))
2024 error (_("Canceled the download"));
2025
2026 if (deprecated_show_load_progress != NULL)
2027 deprecated_show_load_progress (args->section_name,
2028 args->section_sent,
2029 args->section_size,
a76d924d
DJ
2030 totals->data_count,
2031 totals->total_size);
cf7a04e8
DJ
2032}
2033
e4f9b4d5
MS
2034/* Callback service function for generic_load (bfd_map_over_sections). */
2035
2036static void
2037load_section_callback (bfd *abfd, asection *asec, void *data)
2038{
a76d924d 2039 struct memory_write_request *new_request;
e4f9b4d5 2040 struct load_section_data *args = data;
a76d924d 2041 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2042 bfd_size_type size = bfd_get_section_size (asec);
2043 gdb_byte *buffer;
cf7a04e8 2044 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2045
cf7a04e8
DJ
2046 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2047 return;
e4f9b4d5 2048
cf7a04e8
DJ
2049 if (size == 0)
2050 return;
e4f9b4d5 2051
a76d924d
DJ
2052 new_request = VEC_safe_push (memory_write_request_s,
2053 args->requests, NULL);
2054 memset (new_request, 0, sizeof (struct memory_write_request));
2055 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2056 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2057 new_request->end = new_request->begin + size; /* FIXME Should size
2058 be in instead? */
a76d924d
DJ
2059 new_request->data = xmalloc (size);
2060 new_request->baton = section_data;
cf7a04e8 2061
a76d924d 2062 buffer = new_request->data;
cf7a04e8 2063
a76d924d
DJ
2064 section_data->cumulative = args->progress_data;
2065 section_data->section_name = sect_name;
2066 section_data->section_size = size;
2067 section_data->lma = new_request->begin;
2068 section_data->buffer = buffer;
cf7a04e8
DJ
2069
2070 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2071}
2072
2073/* Clean up an entire memory request vector, including load
2074 data and progress records. */
cf7a04e8 2075
a76d924d
DJ
2076static void
2077clear_memory_write_data (void *arg)
2078{
2079 VEC(memory_write_request_s) **vec_p = arg;
2080 VEC(memory_write_request_s) *vec = *vec_p;
2081 int i;
2082 struct memory_write_request *mr;
cf7a04e8 2083
a76d924d
DJ
2084 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2085 {
2086 xfree (mr->data);
2087 xfree (mr->baton);
2088 }
2089 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2090}
2091
c906108c 2092void
9cbe5fff 2093generic_load (const char *args, int from_tty)
c906108c 2094{
c906108c 2095 bfd *loadfile_bfd;
2b71414d 2096 struct timeval start_time, end_time;
917317f4 2097 char *filename;
1986bccd 2098 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2099 struct load_section_data cbdata;
a76d924d 2100 struct load_progress_data total_progress;
79a45e25 2101 struct ui_out *uiout = current_uiout;
a76d924d 2102
e4f9b4d5 2103 CORE_ADDR entry;
1986bccd 2104 char **argv;
e4f9b4d5 2105
a76d924d
DJ
2106 memset (&cbdata, 0, sizeof (cbdata));
2107 memset (&total_progress, 0, sizeof (total_progress));
2108 cbdata.progress_data = &total_progress;
2109
2110 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2111
d1a41061
PP
2112 if (args == NULL)
2113 error_no_arg (_("file to load"));
1986bccd 2114
d1a41061 2115 argv = gdb_buildargv (args);
1986bccd
AS
2116 make_cleanup_freeargv (argv);
2117
2118 filename = tilde_expand (argv[0]);
2119 make_cleanup (xfree, filename);
2120
2121 if (argv[1] != NULL)
917317f4 2122 {
f698ca8e 2123 const char *endptr;
ba5f2f8a 2124
f698ca8e 2125 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2126
2127 /* If the last word was not a valid number then
2128 treat it as a file name with spaces in. */
2129 if (argv[1] == endptr)
2130 error (_("Invalid download offset:%s."), argv[1]);
2131
2132 if (argv[2] != NULL)
2133 error (_("Too many parameters."));
917317f4 2134 }
c906108c 2135
c378eb4e 2136 /* Open the file for loading. */
1c00ec6b 2137 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2138 if (loadfile_bfd == NULL)
2139 {
2140 perror_with_name (filename);
2141 return;
2142 }
917317f4 2143
f9a062ff 2144 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2145
c5aa993b 2146 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2147 {
8a3fe4f8 2148 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2149 bfd_errmsg (bfd_get_error ()));
2150 }
c5aa993b 2151
5417f6dc 2152 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2153 (void *) &total_progress.total_size);
2154
2155 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2156
2b71414d 2157 gettimeofday (&start_time, NULL);
c906108c 2158
a76d924d
DJ
2159 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2160 load_progress) != 0)
2161 error (_("Load failed"));
c906108c 2162
2b71414d 2163 gettimeofday (&end_time, NULL);
ba5f2f8a 2164
e4f9b4d5 2165 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2166 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2167 ui_out_text (uiout, "Start address ");
f5656ead 2168 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2169 ui_out_text (uiout, ", load size ");
a76d924d 2170 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2171 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2172 /* We were doing this in remote-mips.c, I suspect it is right
2173 for other targets too. */
fb14de7b 2174 regcache_write_pc (get_current_regcache (), entry);
c906108c 2175
38963c97
DJ
2176 /* Reset breakpoints, now that we have changed the load image. For
2177 instance, breakpoints may have been set (or reset, by
2178 post_create_inferior) while connected to the target but before we
2179 loaded the program. In that case, the prologue analyzer could
2180 have read instructions from the target to find the right
2181 breakpoint locations. Loading has changed the contents of that
2182 memory. */
2183
2184 breakpoint_re_set ();
2185
7ca9f392
AC
2186 /* FIXME: are we supposed to call symbol_file_add or not? According
2187 to a comment from remote-mips.c (where a call to symbol_file_add
2188 was commented out), making the call confuses GDB if more than one
2189 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2190 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2191
a76d924d
DJ
2192 print_transfer_performance (gdb_stdout, total_progress.data_count,
2193 total_progress.write_count,
2194 &start_time, &end_time);
c906108c
SS
2195
2196 do_cleanups (old_cleanups);
2197}
2198
c378eb4e 2199/* Report how fast the transfer went. */
c906108c 2200
917317f4 2201void
d9fcf2fb 2202print_transfer_performance (struct ui_file *stream,
917317f4
JM
2203 unsigned long data_count,
2204 unsigned long write_count,
2b71414d
DJ
2205 const struct timeval *start_time,
2206 const struct timeval *end_time)
917317f4 2207{
9f43d28c 2208 ULONGEST time_count;
79a45e25 2209 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2210
2211 /* Compute the elapsed time in milliseconds, as a tradeoff between
2212 accuracy and overflow. */
2213 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2214 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2215
8b93c638
JM
2216 ui_out_text (uiout, "Transfer rate: ");
2217 if (time_count > 0)
2218 {
9f43d28c
DJ
2219 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2220
2221 if (ui_out_is_mi_like_p (uiout))
2222 {
2223 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2224 ui_out_text (uiout, " bits/sec");
2225 }
2226 else if (rate < 1024)
2227 {
2228 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2229 ui_out_text (uiout, " bytes/sec");
2230 }
2231 else
2232 {
2233 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2234 ui_out_text (uiout, " KB/sec");
2235 }
8b93c638
JM
2236 }
2237 else
2238 {
ba5f2f8a 2239 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2240 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2241 }
2242 if (write_count > 0)
2243 {
2244 ui_out_text (uiout, ", ");
ba5f2f8a 2245 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2246 ui_out_text (uiout, " bytes/write");
2247 }
2248 ui_out_text (uiout, ".\n");
c906108c
SS
2249}
2250
2251/* This function allows the addition of incrementally linked object files.
2252 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2253/* Note: ezannoni 2000-04-13 This function/command used to have a
2254 special case syntax for the rombug target (Rombug is the boot
2255 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2256 rombug case, the user doesn't need to supply a text address,
2257 instead a call to target_link() (in target.c) would supply the
c378eb4e 2258 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2259
c906108c 2260static void
fba45db2 2261add_symbol_file_command (char *args, int from_tty)
c906108c 2262{
5af949e3 2263 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2264 char *filename = NULL;
d03de421 2265 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2266 char *arg;
db162d44 2267 int section_index = 0;
2acceee2
JM
2268 int argcnt = 0;
2269 int sec_num = 0;
2270 int i;
db162d44
EZ
2271 int expecting_sec_name = 0;
2272 int expecting_sec_addr = 0;
5b96932b 2273 char **argv;
76ad5e1e 2274 struct objfile *objf;
db162d44 2275
a39a16c4 2276 struct sect_opt
2acceee2 2277 {
2acceee2
JM
2278 char *name;
2279 char *value;
a39a16c4 2280 };
db162d44 2281
a39a16c4
MM
2282 struct section_addr_info *section_addrs;
2283 struct sect_opt *sect_opts = NULL;
2284 size_t num_sect_opts = 0;
3017564a 2285 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2286
a39a16c4 2287 num_sect_opts = 16;
5417f6dc 2288 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2289 * sizeof (struct sect_opt));
2290
c906108c
SS
2291 dont_repeat ();
2292
2293 if (args == NULL)
8a3fe4f8 2294 error (_("add-symbol-file takes a file name and an address"));
c906108c 2295
d1a41061 2296 argv = gdb_buildargv (args);
5b96932b 2297 make_cleanup_freeargv (argv);
db162d44 2298
5b96932b
AS
2299 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2300 {
c378eb4e 2301 /* Process the argument. */
db162d44 2302 if (argcnt == 0)
c906108c 2303 {
c378eb4e 2304 /* The first argument is the file name. */
db162d44 2305 filename = tilde_expand (arg);
3017564a 2306 make_cleanup (xfree, filename);
c906108c 2307 }
41dc8db8
MB
2308 else if (argcnt == 1)
2309 {
2310 /* The second argument is always the text address at which
2311 to load the program. */
2312 sect_opts[section_index].name = ".text";
2313 sect_opts[section_index].value = arg;
2314 if (++section_index >= num_sect_opts)
2315 {
2316 num_sect_opts *= 2;
2317 sect_opts = ((struct sect_opt *)
2318 xrealloc (sect_opts,
2319 num_sect_opts
2320 * sizeof (struct sect_opt)));
2321 }
2322 }
db162d44 2323 else
41dc8db8
MB
2324 {
2325 /* It's an option (starting with '-') or it's an argument
2326 to an option. */
41dc8db8
MB
2327 if (expecting_sec_name)
2328 {
2329 sect_opts[section_index].name = arg;
2330 expecting_sec_name = 0;
2331 }
2332 else if (expecting_sec_addr)
2333 {
2334 sect_opts[section_index].value = arg;
2335 expecting_sec_addr = 0;
2336 if (++section_index >= num_sect_opts)
2337 {
2338 num_sect_opts *= 2;
2339 sect_opts = ((struct sect_opt *)
2340 xrealloc (sect_opts,
2341 num_sect_opts
2342 * sizeof (struct sect_opt)));
2343 }
2344 }
2345 else if (strcmp (arg, "-readnow") == 0)
2346 flags |= OBJF_READNOW;
2347 else if (strcmp (arg, "-s") == 0)
2348 {
2349 expecting_sec_name = 1;
2350 expecting_sec_addr = 1;
2351 }
2352 else
2353 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2354 " [-readnow] [-s <secname> <addr>]*"));
2355 }
c906108c 2356 }
c906108c 2357
927890d0
JB
2358 /* This command takes at least two arguments. The first one is a
2359 filename, and the second is the address where this file has been
2360 loaded. Abort now if this address hasn't been provided by the
2361 user. */
2362 if (section_index < 1)
2363 error (_("The address where %s has been loaded is missing"), filename);
2364
c378eb4e 2365 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2366 a sect_addr_info structure to be passed around to other
2367 functions. We have to split this up into separate print
bb599908 2368 statements because hex_string returns a local static
c378eb4e 2369 string. */
5417f6dc 2370
a3f17187 2371 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2372 section_addrs = alloc_section_addr_info (section_index);
2373 make_cleanup (xfree, section_addrs);
db162d44 2374 for (i = 0; i < section_index; i++)
c906108c 2375 {
db162d44
EZ
2376 CORE_ADDR addr;
2377 char *val = sect_opts[i].value;
2378 char *sec = sect_opts[i].name;
5417f6dc 2379
ae822768 2380 addr = parse_and_eval_address (val);
db162d44 2381
db162d44 2382 /* Here we store the section offsets in the order they were
c378eb4e 2383 entered on the command line. */
a39a16c4
MM
2384 section_addrs->other[sec_num].name = sec;
2385 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2386 printf_unfiltered ("\t%s_addr = %s\n", sec,
2387 paddress (gdbarch, addr));
db162d44
EZ
2388 sec_num++;
2389
5417f6dc 2390 /* The object's sections are initialized when a
db162d44 2391 call is made to build_objfile_section_table (objfile).
5417f6dc 2392 This happens in reread_symbols.
db162d44
EZ
2393 At this point, we don't know what file type this is,
2394 so we can't determine what section names are valid. */
2acceee2 2395 }
d76488d8 2396 section_addrs->num_sections = sec_num;
db162d44 2397
2acceee2 2398 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2399 error (_("Not confirmed."));
c906108c 2400
76ad5e1e
NB
2401 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2402 section_addrs, flags);
2403
2404 add_target_sections_of_objfile (objf);
c906108c
SS
2405
2406 /* Getting new symbols may change our opinion about what is
2407 frameless. */
2408 reinit_frame_cache ();
db162d44 2409 do_cleanups (my_cleanups);
c906108c
SS
2410}
2411\f
70992597 2412
63644780
NB
2413/* This function removes a symbol file that was added via add-symbol-file. */
2414
2415static void
2416remove_symbol_file_command (char *args, int from_tty)
2417{
2418 char **argv;
2419 struct objfile *objf = NULL;
2420 struct cleanup *my_cleanups;
2421 struct program_space *pspace = current_program_space;
2422 struct gdbarch *gdbarch = get_current_arch ();
2423
2424 dont_repeat ();
2425
2426 if (args == NULL)
2427 error (_("remove-symbol-file: no symbol file provided"));
2428
2429 my_cleanups = make_cleanup (null_cleanup, NULL);
2430
2431 argv = gdb_buildargv (args);
2432
2433 if (strcmp (argv[0], "-a") == 0)
2434 {
2435 /* Interpret the next argument as an address. */
2436 CORE_ADDR addr;
2437
2438 if (argv[1] == NULL)
2439 error (_("Missing address argument"));
2440
2441 if (argv[2] != NULL)
2442 error (_("Junk after %s"), argv[1]);
2443
2444 addr = parse_and_eval_address (argv[1]);
2445
2446 ALL_OBJFILES (objf)
2447 {
d03de421
PA
2448 if ((objf->flags & OBJF_USERLOADED) != 0
2449 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2450 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2451 break;
2452 }
2453 }
2454 else if (argv[0] != NULL)
2455 {
2456 /* Interpret the current argument as a file name. */
2457 char *filename;
2458
2459 if (argv[1] != NULL)
2460 error (_("Junk after %s"), argv[0]);
2461
2462 filename = tilde_expand (argv[0]);
2463 make_cleanup (xfree, filename);
2464
2465 ALL_OBJFILES (objf)
2466 {
d03de421
PA
2467 if ((objf->flags & OBJF_USERLOADED) != 0
2468 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2469 && objf->pspace == pspace
2470 && filename_cmp (filename, objfile_name (objf)) == 0)
2471 break;
2472 }
2473 }
2474
2475 if (objf == NULL)
2476 error (_("No symbol file found"));
2477
2478 if (from_tty
2479 && !query (_("Remove symbol table from file \"%s\"? "),
2480 objfile_name (objf)))
2481 error (_("Not confirmed."));
2482
2483 free_objfile (objf);
2484 clear_symtab_users (0);
2485
2486 do_cleanups (my_cleanups);
2487}
2488
4ac39b97
JK
2489typedef struct objfile *objfilep;
2490
2491DEF_VEC_P (objfilep);
2492
c906108c 2493/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2494
c906108c 2495void
fba45db2 2496reread_symbols (void)
c906108c
SS
2497{
2498 struct objfile *objfile;
2499 long new_modtime;
c906108c
SS
2500 struct stat new_statbuf;
2501 int res;
4ac39b97
JK
2502 VEC (objfilep) *new_objfiles = NULL;
2503 struct cleanup *all_cleanups;
2504
2505 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2506
2507 /* With the addition of shared libraries, this should be modified,
2508 the load time should be saved in the partial symbol tables, since
2509 different tables may come from different source files. FIXME.
2510 This routine should then walk down each partial symbol table
c378eb4e 2511 and see if the symbol table that it originates from has been changed. */
c906108c 2512
c5aa993b
JM
2513 for (objfile = object_files; objfile; objfile = objfile->next)
2514 {
9cce227f
TG
2515 if (objfile->obfd == NULL)
2516 continue;
2517
2518 /* Separate debug objfiles are handled in the main objfile. */
2519 if (objfile->separate_debug_objfile_backlink)
2520 continue;
2521
02aeec7b
JB
2522 /* If this object is from an archive (what you usually create with
2523 `ar', often called a `static library' on most systems, though
2524 a `shared library' on AIX is also an archive), then you should
2525 stat on the archive name, not member name. */
9cce227f
TG
2526 if (objfile->obfd->my_archive)
2527 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2528 else
4262abfb 2529 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2530 if (res != 0)
2531 {
c378eb4e 2532 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2533 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2534 objfile_name (objfile));
9cce227f
TG
2535 continue;
2536 }
2537 new_modtime = new_statbuf.st_mtime;
2538 if (new_modtime != objfile->mtime)
2539 {
2540 struct cleanup *old_cleanups;
2541 struct section_offsets *offsets;
2542 int num_offsets;
24ba069a 2543 char *original_name;
9cce227f
TG
2544
2545 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2546 objfile_name (objfile));
9cce227f
TG
2547
2548 /* There are various functions like symbol_file_add,
2549 symfile_bfd_open, syms_from_objfile, etc., which might
2550 appear to do what we want. But they have various other
2551 effects which we *don't* want. So we just do stuff
2552 ourselves. We don't worry about mapped files (for one thing,
2553 any mapped file will be out of date). */
2554
2555 /* If we get an error, blow away this objfile (not sure if
2556 that is the correct response for things like shared
2557 libraries). */
2558 old_cleanups = make_cleanup_free_objfile (objfile);
2559 /* We need to do this whenever any symbols go away. */
2560 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2561
0ba1096a
KT
2562 if (exec_bfd != NULL
2563 && filename_cmp (bfd_get_filename (objfile->obfd),
2564 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2565 {
2566 /* Reload EXEC_BFD without asking anything. */
2567
2568 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2569 }
2570
f6eeced0
JK
2571 /* Keep the calls order approx. the same as in free_objfile. */
2572
2573 /* Free the separate debug objfiles. It will be
2574 automatically recreated by sym_read. */
2575 free_objfile_separate_debug (objfile);
2576
2577 /* Remove any references to this objfile in the global
2578 value lists. */
2579 preserve_values (objfile);
2580
2581 /* Nuke all the state that we will re-read. Much of the following
2582 code which sets things to NULL really is necessary to tell
2583 other parts of GDB that there is nothing currently there.
2584
2585 Try to keep the freeing order compatible with free_objfile. */
2586
2587 if (objfile->sf != NULL)
2588 {
2589 (*objfile->sf->sym_finish) (objfile);
2590 }
2591
2592 clear_objfile_data (objfile);
2593
e1507e95 2594 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2595 {
2596 struct bfd *obfd = objfile->obfd;
d3846e71 2597 char *obfd_filename;
a4453b7e
TT
2598
2599 obfd_filename = bfd_get_filename (objfile->obfd);
2600 /* Open the new BFD before freeing the old one, so that
2601 the filename remains live. */
08d2cd74 2602 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2603 if (objfile->obfd == NULL)
2604 {
2605 /* We have to make a cleanup and error here, rather
2606 than erroring later, because once we unref OBFD,
2607 OBFD_FILENAME will be freed. */
2608 make_cleanup_bfd_unref (obfd);
2609 error (_("Can't open %s to read symbols."), obfd_filename);
2610 }
a4453b7e
TT
2611 gdb_bfd_unref (obfd);
2612 }
2613
24ba069a
JK
2614 original_name = xstrdup (objfile->original_name);
2615 make_cleanup (xfree, original_name);
2616
9cce227f
TG
2617 /* bfd_openr sets cacheable to true, which is what we want. */
2618 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2619 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2620 bfd_errmsg (bfd_get_error ()));
2621
2622 /* Save the offsets, we will nuke them with the rest of the
2623 objfile_obstack. */
2624 num_offsets = objfile->num_sections;
2625 offsets = ((struct section_offsets *)
2626 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2627 memcpy (offsets, objfile->section_offsets,
2628 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2629
9cce227f
TG
2630 /* FIXME: Do we have to free a whole linked list, or is this
2631 enough? */
2632 if (objfile->global_psymbols.list)
2633 xfree (objfile->global_psymbols.list);
2634 memset (&objfile->global_psymbols, 0,
2635 sizeof (objfile->global_psymbols));
2636 if (objfile->static_psymbols.list)
2637 xfree (objfile->static_psymbols.list);
2638 memset (&objfile->static_psymbols, 0,
2639 sizeof (objfile->static_psymbols));
2640
c378eb4e 2641 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2642 psymbol_bcache_free (objfile->psymbol_cache);
2643 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2644 obstack_free (&objfile->objfile_obstack, 0);
2645 objfile->sections = NULL;
2646 objfile->symtabs = NULL;
2647 objfile->psymtabs = NULL;
2648 objfile->psymtabs_addrmap = NULL;
2649 objfile->free_psymtabs = NULL;
34eaf542 2650 objfile->template_symbols = NULL;
9cce227f 2651
9cce227f
TG
2652 /* obstack_init also initializes the obstack so it is
2653 empty. We could use obstack_specify_allocation but
d82ea6a8 2654 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2655 obstack_init (&objfile->objfile_obstack);
779bd270 2656
846060df
JB
2657 /* set_objfile_per_bfd potentially allocates the per-bfd
2658 data on the objfile's obstack (if sharing data across
2659 multiple users is not possible), so it's important to
2660 do it *after* the obstack has been initialized. */
2661 set_objfile_per_bfd (objfile);
2662
24ba069a
JK
2663 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2664 original_name,
2665 strlen (original_name));
2666
779bd270
DE
2667 /* Reset the sym_fns pointer. The ELF reader can change it
2668 based on whether .gdb_index is present, and we need it to
2669 start over. PR symtab/15885 */
8fb8eb5c 2670 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2671
d82ea6a8 2672 build_objfile_section_table (objfile);
9cce227f
TG
2673 terminate_minimal_symbol_table (objfile);
2674
2675 /* We use the same section offsets as from last time. I'm not
2676 sure whether that is always correct for shared libraries. */
2677 objfile->section_offsets = (struct section_offsets *)
2678 obstack_alloc (&objfile->objfile_obstack,
2679 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2680 memcpy (objfile->section_offsets, offsets,
2681 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2682 objfile->num_sections = num_offsets;
2683
2684 /* What the hell is sym_new_init for, anyway? The concept of
2685 distinguishing between the main file and additional files
2686 in this way seems rather dubious. */
2687 if (objfile == symfile_objfile)
c906108c 2688 {
9cce227f 2689 (*objfile->sf->sym_new_init) (objfile);
c906108c 2690 }
9cce227f
TG
2691
2692 (*objfile->sf->sym_init) (objfile);
2693 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2694
2695 objfile->flags &= ~OBJF_PSYMTABS_READ;
2696 read_symbols (objfile, 0);
b11896a5 2697
9cce227f 2698 if (!objfile_has_symbols (objfile))
c906108c 2699 {
9cce227f
TG
2700 wrap_here ("");
2701 printf_unfiltered (_("(no debugging symbols found)\n"));
2702 wrap_here ("");
c5aa993b 2703 }
9cce227f
TG
2704
2705 /* We're done reading the symbol file; finish off complaints. */
2706 clear_complaints (&symfile_complaints, 0, 1);
2707
2708 /* Getting new symbols may change our opinion about what is
2709 frameless. */
2710
2711 reinit_frame_cache ();
2712
2713 /* Discard cleanups as symbol reading was successful. */
2714 discard_cleanups (old_cleanups);
2715
2716 /* If the mtime has changed between the time we set new_modtime
2717 and now, we *want* this to be out of date, so don't call stat
2718 again now. */
2719 objfile->mtime = new_modtime;
9cce227f 2720 init_entry_point_info (objfile);
4ac39b97
JK
2721
2722 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2723 }
2724 }
c906108c 2725
4ac39b97 2726 if (new_objfiles)
ea53e89f 2727 {
4ac39b97
JK
2728 int ix;
2729
ff3536bc
UW
2730 /* Notify objfiles that we've modified objfile sections. */
2731 objfiles_changed ();
2732
c1e56572 2733 clear_symtab_users (0);
4ac39b97
JK
2734
2735 /* clear_objfile_data for each objfile was called before freeing it and
2736 observer_notify_new_objfile (NULL) has been called by
2737 clear_symtab_users above. Notify the new files now. */
2738 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2739 observer_notify_new_objfile (objfile);
2740
ea53e89f
JB
2741 /* At least one objfile has changed, so we can consider that
2742 the executable we're debugging has changed too. */
781b42b0 2743 observer_notify_executable_changed ();
ea53e89f 2744 }
4ac39b97
JK
2745
2746 do_cleanups (all_cleanups);
c906108c 2747}
c906108c
SS
2748\f
2749
c5aa993b
JM
2750typedef struct
2751{
2752 char *ext;
c906108c 2753 enum language lang;
c5aa993b
JM
2754}
2755filename_language;
c906108c 2756
c5aa993b 2757static filename_language *filename_language_table;
c906108c
SS
2758static int fl_table_size, fl_table_next;
2759
2760static void
fba45db2 2761add_filename_language (char *ext, enum language lang)
c906108c
SS
2762{
2763 if (fl_table_next >= fl_table_size)
2764 {
2765 fl_table_size += 10;
5417f6dc 2766 filename_language_table =
25bf3106
PM
2767 xrealloc (filename_language_table,
2768 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2769 }
2770
4fcf66da 2771 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2772 filename_language_table[fl_table_next].lang = lang;
2773 fl_table_next++;
2774}
2775
2776static char *ext_args;
920d2a44
AC
2777static void
2778show_ext_args (struct ui_file *file, int from_tty,
2779 struct cmd_list_element *c, const char *value)
2780{
3e43a32a
MS
2781 fprintf_filtered (file,
2782 _("Mapping between filename extension "
2783 "and source language is \"%s\".\n"),
920d2a44
AC
2784 value);
2785}
c906108c
SS
2786
2787static void
26c41df3 2788set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2789{
2790 int i;
2791 char *cp = ext_args;
2792 enum language lang;
2793
c378eb4e 2794 /* First arg is filename extension, starting with '.' */
c906108c 2795 if (*cp != '.')
8a3fe4f8 2796 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2797
2798 /* Find end of first arg. */
c5aa993b 2799 while (*cp && !isspace (*cp))
c906108c
SS
2800 cp++;
2801
2802 if (*cp == '\0')
3e43a32a
MS
2803 error (_("'%s': two arguments required -- "
2804 "filename extension and language"),
c906108c
SS
2805 ext_args);
2806
c378eb4e 2807 /* Null-terminate first arg. */
c5aa993b 2808 *cp++ = '\0';
c906108c
SS
2809
2810 /* Find beginning of second arg, which should be a source language. */
529480d0 2811 cp = skip_spaces (cp);
c906108c
SS
2812
2813 if (*cp == '\0')
3e43a32a
MS
2814 error (_("'%s': two arguments required -- "
2815 "filename extension and language"),
c906108c
SS
2816 ext_args);
2817
2818 /* Lookup the language from among those we know. */
2819 lang = language_enum (cp);
2820
2821 /* Now lookup the filename extension: do we already know it? */
2822 for (i = 0; i < fl_table_next; i++)
2823 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2824 break;
2825
2826 if (i >= fl_table_next)
2827 {
c378eb4e 2828 /* New file extension. */
c906108c
SS
2829 add_filename_language (ext_args, lang);
2830 }
2831 else
2832 {
c378eb4e 2833 /* Redefining a previously known filename extension. */
c906108c
SS
2834
2835 /* if (from_tty) */
2836 /* query ("Really make files of type %s '%s'?", */
2837 /* ext_args, language_str (lang)); */
2838
b8c9b27d 2839 xfree (filename_language_table[i].ext);
4fcf66da 2840 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2841 filename_language_table[i].lang = lang;
2842 }
2843}
2844
2845static void
fba45db2 2846info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2847{
2848 int i;
2849
a3f17187 2850 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2851 printf_filtered ("\n\n");
2852 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2853 printf_filtered ("\t%s\t- %s\n",
2854 filename_language_table[i].ext,
c906108c
SS
2855 language_str (filename_language_table[i].lang));
2856}
2857
2858static void
fba45db2 2859init_filename_language_table (void)
c906108c 2860{
c378eb4e 2861 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2862 {
2863 fl_table_size = 20;
2864 fl_table_next = 0;
c5aa993b 2865 filename_language_table =
c906108c 2866 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2867 add_filename_language (".c", language_c);
6aecb9c2 2868 add_filename_language (".d", language_d);
c5aa993b
JM
2869 add_filename_language (".C", language_cplus);
2870 add_filename_language (".cc", language_cplus);
2871 add_filename_language (".cp", language_cplus);
2872 add_filename_language (".cpp", language_cplus);
2873 add_filename_language (".cxx", language_cplus);
2874 add_filename_language (".c++", language_cplus);
2875 add_filename_language (".java", language_java);
c906108c 2876 add_filename_language (".class", language_java);
da2cf7e0 2877 add_filename_language (".m", language_objc);
c5aa993b
JM
2878 add_filename_language (".f", language_fortran);
2879 add_filename_language (".F", language_fortran);
fd5700c7
JK
2880 add_filename_language (".for", language_fortran);
2881 add_filename_language (".FOR", language_fortran);
2882 add_filename_language (".ftn", language_fortran);
2883 add_filename_language (".FTN", language_fortran);
2884 add_filename_language (".fpp", language_fortran);
2885 add_filename_language (".FPP", language_fortran);
2886 add_filename_language (".f90", language_fortran);
2887 add_filename_language (".F90", language_fortran);
2888 add_filename_language (".f95", language_fortran);
2889 add_filename_language (".F95", language_fortran);
2890 add_filename_language (".f03", language_fortran);
2891 add_filename_language (".F03", language_fortran);
2892 add_filename_language (".f08", language_fortran);
2893 add_filename_language (".F08", language_fortran);
c5aa993b 2894 add_filename_language (".s", language_asm);
aa707ed0 2895 add_filename_language (".sx", language_asm);
c5aa993b 2896 add_filename_language (".S", language_asm);
c6fd39cd
PM
2897 add_filename_language (".pas", language_pascal);
2898 add_filename_language (".p", language_pascal);
2899 add_filename_language (".pp", language_pascal);
963a6417
PH
2900 add_filename_language (".adb", language_ada);
2901 add_filename_language (".ads", language_ada);
2902 add_filename_language (".a", language_ada);
2903 add_filename_language (".ada", language_ada);
dde59185 2904 add_filename_language (".dg", language_ada);
c906108c
SS
2905 }
2906}
2907
2908enum language
dd786858 2909deduce_language_from_filename (const char *filename)
c906108c
SS
2910{
2911 int i;
2912 char *cp;
2913
2914 if (filename != NULL)
2915 if ((cp = strrchr (filename, '.')) != NULL)
2916 for (i = 0; i < fl_table_next; i++)
2917 if (strcmp (cp, filename_language_table[i].ext) == 0)
2918 return filename_language_table[i].lang;
2919
2920 return language_unknown;
2921}
2922\f
2923/* allocate_symtab:
2924
2925 Allocate and partly initialize a new symbol table. Return a pointer
2926 to it. error() if no space.
2927
2928 Caller must set these fields:
c5aa993b
JM
2929 LINETABLE(symtab)
2930 symtab->blockvector
2931 symtab->dirname
2932 symtab->free_code
2933 symtab->free_ptr
c906108c
SS
2934 */
2935
2936struct symtab *
72b9f47f 2937allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2938{
52f0bd74 2939 struct symtab *symtab;
c906108c
SS
2940
2941 symtab = (struct symtab *)
4a146b47 2942 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2943 memset (symtab, 0, sizeof (*symtab));
21ea9eec
TT
2944 symtab->filename = bcache (filename, strlen (filename) + 1,
2945 objfile->per_bfd->filename_cache);
c5aa993b
JM
2946 symtab->fullname = NULL;
2947 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2948 symtab->debugformat = "unknown";
c906108c 2949
c378eb4e 2950 /* Hook it to the objfile it comes from. */
c906108c 2951
c5aa993b
JM
2952 symtab->objfile = objfile;
2953 symtab->next = objfile->symtabs;
2954 objfile->symtabs = symtab;
c906108c 2955
db0fec5c
DE
2956 /* This can be very verbose with lots of headers.
2957 Only print at higher debug levels. */
2958 if (symtab_create_debug >= 2)
45cfd468
DE
2959 {
2960 /* Be a bit clever with debugging messages, and don't print objfile
2961 every time, only when it changes. */
2962 static char *last_objfile_name = NULL;
2963
2964 if (last_objfile_name == NULL
4262abfb 2965 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2966 {
2967 xfree (last_objfile_name);
4262abfb 2968 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2969 fprintf_unfiltered (gdb_stdlog,
2970 "Creating one or more symtabs for objfile %s ...\n",
2971 last_objfile_name);
2972 }
2973 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2974 "Created symtab %s for module %s.\n",
2975 host_address_to_string (symtab), filename);
45cfd468
DE
2976 }
2977
c906108c
SS
2978 return (symtab);
2979}
c906108c 2980\f
c5aa993b 2981
c906108c 2982/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2983 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2984
2985void
c1e56572 2986clear_symtab_users (int add_flags)
c906108c
SS
2987{
2988 /* Someday, we should do better than this, by only blowing away
2989 the things that really need to be blown. */
c0501be5
DJ
2990
2991 /* Clear the "current" symtab first, because it is no longer valid.
2992 breakpoint_re_set may try to access the current symtab. */
2993 clear_current_source_symtab_and_line ();
2994
c906108c 2995 clear_displays ();
c1e56572
JK
2996 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2997 breakpoint_re_set ();
1bfeeb0f 2998 clear_last_displayed_sal ();
c906108c 2999 clear_pc_function_cache ();
06d3b283 3000 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
3001
3002 /* Clear globals which might have pointed into a removed objfile.
3003 FIXME: It's not clear which of these are supposed to persist
3004 between expressions and which ought to be reset each time. */
3005 expression_context_block = NULL;
3006 innermost_block = NULL;
8756216b
DP
3007
3008 /* Varobj may refer to old symbols, perform a cleanup. */
3009 varobj_invalidate ();
3010
c906108c
SS
3011}
3012
74b7792f
AC
3013static void
3014clear_symtab_users_cleanup (void *ignore)
3015{
c1e56572 3016 clear_symtab_users (0);
74b7792f 3017}
c906108c 3018\f
c906108c
SS
3019/* OVERLAYS:
3020 The following code implements an abstraction for debugging overlay sections.
3021
3022 The target model is as follows:
3023 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3024 same VMA, each with its own unique LMA (or load address).
c906108c 3025 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3026 sections, one by one, from the load address into the VMA address.
5417f6dc 3027 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3028 sections should be considered to be mapped from the VMA to the LMA.
3029 This information is used for symbol lookup, and memory read/write.
5417f6dc 3030 For instance, if a section has been mapped then its contents
c5aa993b 3031 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3032
3033 Two levels of debugger support for overlays are available. One is
3034 "manual", in which the debugger relies on the user to tell it which
3035 overlays are currently mapped. This level of support is
3036 implemented entirely in the core debugger, and the information about
3037 whether a section is mapped is kept in the objfile->obj_section table.
3038
3039 The second level of support is "automatic", and is only available if
3040 the target-specific code provides functionality to read the target's
3041 overlay mapping table, and translate its contents for the debugger
3042 (by updating the mapped state information in the obj_section tables).
3043
3044 The interface is as follows:
c5aa993b
JM
3045 User commands:
3046 overlay map <name> -- tell gdb to consider this section mapped
3047 overlay unmap <name> -- tell gdb to consider this section unmapped
3048 overlay list -- list the sections that GDB thinks are mapped
3049 overlay read-target -- get the target's state of what's mapped
3050 overlay off/manual/auto -- set overlay debugging state
3051 Functional interface:
3052 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3053 section, return that section.
5417f6dc 3054 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3055 the pc, either in its VMA or its LMA
714835d5 3056 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3057 section_is_overlay(sect): true if section's VMA != LMA
3058 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3059 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3060 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3061 overlay_mapped_address(...): map an address from section's LMA to VMA
3062 overlay_unmapped_address(...): map an address from section's VMA to LMA
3063 symbol_overlayed_address(...): Return a "current" address for symbol:
3064 either in VMA or LMA depending on whether
c378eb4e 3065 the symbol's section is currently mapped. */
c906108c
SS
3066
3067/* Overlay debugging state: */
3068
d874f1e2 3069enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3070int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3071
c906108c 3072/* Function: section_is_overlay (SECTION)
5417f6dc 3073 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3074 SECTION is loaded at an address different from where it will "run". */
3075
3076int
714835d5 3077section_is_overlay (struct obj_section *section)
c906108c 3078{
714835d5
UW
3079 if (overlay_debugging && section)
3080 {
3081 bfd *abfd = section->objfile->obfd;
3082 asection *bfd_section = section->the_bfd_section;
f888f159 3083
714835d5
UW
3084 if (bfd_section_lma (abfd, bfd_section) != 0
3085 && bfd_section_lma (abfd, bfd_section)
3086 != bfd_section_vma (abfd, bfd_section))
3087 return 1;
3088 }
c906108c
SS
3089
3090 return 0;
3091}
3092
3093/* Function: overlay_invalidate_all (void)
3094 Invalidate the mapped state of all overlay sections (mark it as stale). */
3095
3096static void
fba45db2 3097overlay_invalidate_all (void)
c906108c 3098{
c5aa993b 3099 struct objfile *objfile;
c906108c
SS
3100 struct obj_section *sect;
3101
3102 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3103 if (section_is_overlay (sect))
3104 sect->ovly_mapped = -1;
c906108c
SS
3105}
3106
714835d5 3107/* Function: section_is_mapped (SECTION)
5417f6dc 3108 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3109
3110 Access to the ovly_mapped flag is restricted to this function, so
3111 that we can do automatic update. If the global flag
3112 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3113 overlay_invalidate_all. If the mapped state of the particular
3114 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3115
714835d5
UW
3116int
3117section_is_mapped (struct obj_section *osect)
c906108c 3118{
9216df95
UW
3119 struct gdbarch *gdbarch;
3120
714835d5 3121 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3122 return 0;
3123
c5aa993b 3124 switch (overlay_debugging)
c906108c
SS
3125 {
3126 default:
d874f1e2 3127 case ovly_off:
c5aa993b 3128 return 0; /* overlay debugging off */
d874f1e2 3129 case ovly_auto: /* overlay debugging automatic */
1c772458 3130 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3131 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3132 gdbarch = get_objfile_arch (osect->objfile);
3133 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3134 {
3135 if (overlay_cache_invalid)
3136 {
3137 overlay_invalidate_all ();
3138 overlay_cache_invalid = 0;
3139 }
3140 if (osect->ovly_mapped == -1)
9216df95 3141 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3142 }
3143 /* fall thru to manual case */
d874f1e2 3144 case ovly_on: /* overlay debugging manual */
c906108c
SS
3145 return osect->ovly_mapped == 1;
3146 }
3147}
3148
c906108c
SS
3149/* Function: pc_in_unmapped_range
3150 If PC falls into the lma range of SECTION, return true, else false. */
3151
3152CORE_ADDR
714835d5 3153pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3154{
714835d5
UW
3155 if (section_is_overlay (section))
3156 {
3157 bfd *abfd = section->objfile->obfd;
3158 asection *bfd_section = section->the_bfd_section;
fbd35540 3159
714835d5
UW
3160 /* We assume the LMA is relocated by the same offset as the VMA. */
3161 bfd_vma size = bfd_get_section_size (bfd_section);
3162 CORE_ADDR offset = obj_section_offset (section);
3163
3164 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3165 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3166 return 1;
3167 }
c906108c 3168
c906108c
SS
3169 return 0;
3170}
3171
3172/* Function: pc_in_mapped_range
3173 If PC falls into the vma range of SECTION, return true, else false. */
3174
3175CORE_ADDR
714835d5 3176pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3177{
714835d5
UW
3178 if (section_is_overlay (section))
3179 {
3180 if (obj_section_addr (section) <= pc
3181 && pc < obj_section_endaddr (section))
3182 return 1;
3183 }
c906108c 3184
c906108c
SS
3185 return 0;
3186}
3187
9ec8e6a0
JB
3188/* Return true if the mapped ranges of sections A and B overlap, false
3189 otherwise. */
3b7bacac 3190
b9362cc7 3191static int
714835d5 3192sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3193{
714835d5
UW
3194 CORE_ADDR a_start = obj_section_addr (a);
3195 CORE_ADDR a_end = obj_section_endaddr (a);
3196 CORE_ADDR b_start = obj_section_addr (b);
3197 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3198
3199 return (a_start < b_end && b_start < a_end);
3200}
3201
c906108c
SS
3202/* Function: overlay_unmapped_address (PC, SECTION)
3203 Returns the address corresponding to PC in the unmapped (load) range.
3204 May be the same as PC. */
3205
3206CORE_ADDR
714835d5 3207overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3208{
714835d5
UW
3209 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3210 {
3211 bfd *abfd = section->objfile->obfd;
3212 asection *bfd_section = section->the_bfd_section;
fbd35540 3213
714835d5
UW
3214 return pc + bfd_section_lma (abfd, bfd_section)
3215 - bfd_section_vma (abfd, bfd_section);
3216 }
c906108c
SS
3217
3218 return pc;
3219}
3220
3221/* Function: overlay_mapped_address (PC, SECTION)
3222 Returns the address corresponding to PC in the mapped (runtime) range.
3223 May be the same as PC. */
3224
3225CORE_ADDR
714835d5 3226overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3227{
714835d5
UW
3228 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3229 {
3230 bfd *abfd = section->objfile->obfd;
3231 asection *bfd_section = section->the_bfd_section;
fbd35540 3232
714835d5
UW
3233 return pc + bfd_section_vma (abfd, bfd_section)
3234 - bfd_section_lma (abfd, bfd_section);
3235 }
c906108c
SS
3236
3237 return pc;
3238}
3239
5417f6dc 3240/* Function: symbol_overlayed_address
c906108c
SS
3241 Return one of two addresses (relative to the VMA or to the LMA),
3242 depending on whether the section is mapped or not. */
3243
c5aa993b 3244CORE_ADDR
714835d5 3245symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3246{
3247 if (overlay_debugging)
3248 {
c378eb4e 3249 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3250 if (section == 0)
3251 return address;
c378eb4e
MS
3252 /* If the symbol's section is not an overlay, just return its
3253 address. */
c906108c
SS
3254 if (!section_is_overlay (section))
3255 return address;
c378eb4e 3256 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3257 if (section_is_mapped (section))
3258 return address;
3259 /*
3260 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3261 * then return its LOADED address rather than its vma address!!
3262 */
3263 return overlay_unmapped_address (address, section);
3264 }
3265 return address;
3266}
3267
5417f6dc 3268/* Function: find_pc_overlay (PC)
c906108c
SS
3269 Return the best-match overlay section for PC:
3270 If PC matches a mapped overlay section's VMA, return that section.
3271 Else if PC matches an unmapped section's VMA, return that section.
3272 Else if PC matches an unmapped section's LMA, return that section. */
3273
714835d5 3274struct obj_section *
fba45db2 3275find_pc_overlay (CORE_ADDR pc)
c906108c 3276{
c5aa993b 3277 struct objfile *objfile;
c906108c
SS
3278 struct obj_section *osect, *best_match = NULL;
3279
3280 if (overlay_debugging)
3281 ALL_OBJSECTIONS (objfile, osect)
714835d5 3282 if (section_is_overlay (osect))
c5aa993b 3283 {
714835d5 3284 if (pc_in_mapped_range (pc, osect))
c5aa993b 3285 {
714835d5
UW
3286 if (section_is_mapped (osect))
3287 return osect;
c5aa993b
JM
3288 else
3289 best_match = osect;
3290 }
714835d5 3291 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3292 best_match = osect;
3293 }
714835d5 3294 return best_match;
c906108c
SS
3295}
3296
3297/* Function: find_pc_mapped_section (PC)
5417f6dc 3298 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3299 currently marked as MAPPED, return that section. Else return NULL. */
3300
714835d5 3301struct obj_section *
fba45db2 3302find_pc_mapped_section (CORE_ADDR pc)
c906108c 3303{
c5aa993b 3304 struct objfile *objfile;
c906108c
SS
3305 struct obj_section *osect;
3306
3307 if (overlay_debugging)
3308 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3309 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3310 return osect;
c906108c
SS
3311
3312 return NULL;
3313}
3314
3315/* Function: list_overlays_command
c378eb4e 3316 Print a list of mapped sections and their PC ranges. */
c906108c 3317
5d3055ad 3318static void
fba45db2 3319list_overlays_command (char *args, int from_tty)
c906108c 3320{
c5aa993b
JM
3321 int nmapped = 0;
3322 struct objfile *objfile;
c906108c
SS
3323 struct obj_section *osect;
3324
3325 if (overlay_debugging)
3326 ALL_OBJSECTIONS (objfile, osect)
714835d5 3327 if (section_is_mapped (osect))
c5aa993b 3328 {
5af949e3 3329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3330 const char *name;
3331 bfd_vma lma, vma;
3332 int size;
3333
3334 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3335 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3336 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3337 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3338
3339 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3340 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3341 puts_filtered (" - ");
5af949e3 3342 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3343 printf_filtered (", mapped at ");
5af949e3 3344 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3345 puts_filtered (" - ");
5af949e3 3346 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3347 puts_filtered ("\n");
3348
3349 nmapped++;
3350 }
c906108c 3351 if (nmapped == 0)
a3f17187 3352 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3353}
3354
3355/* Function: map_overlay_command
3356 Mark the named section as mapped (ie. residing at its VMA address). */
3357
5d3055ad 3358static void
fba45db2 3359map_overlay_command (char *args, int from_tty)
c906108c 3360{
c5aa993b
JM
3361 struct objfile *objfile, *objfile2;
3362 struct obj_section *sec, *sec2;
c906108c
SS
3363
3364 if (!overlay_debugging)
3e43a32a
MS
3365 error (_("Overlay debugging not enabled. Use "
3366 "either the 'overlay auto' or\n"
3367 "the 'overlay manual' command."));
c906108c
SS
3368
3369 if (args == 0 || *args == 0)
8a3fe4f8 3370 error (_("Argument required: name of an overlay section"));
c906108c 3371
c378eb4e 3372 /* First, find a section matching the user supplied argument. */
c906108c
SS
3373 ALL_OBJSECTIONS (objfile, sec)
3374 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3375 {
c378eb4e 3376 /* Now, check to see if the section is an overlay. */
714835d5 3377 if (!section_is_overlay (sec))
c5aa993b
JM
3378 continue; /* not an overlay section */
3379
c378eb4e 3380 /* Mark the overlay as "mapped". */
c5aa993b
JM
3381 sec->ovly_mapped = 1;
3382
3383 /* Next, make a pass and unmap any sections that are
3384 overlapped by this new section: */
3385 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3386 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3387 {
3388 if (info_verbose)
a3f17187 3389 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3390 bfd_section_name (objfile->obfd,
3391 sec2->the_bfd_section));
c378eb4e 3392 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3393 }
3394 return;
3395 }
8a3fe4f8 3396 error (_("No overlay section called %s"), args);
c906108c
SS
3397}
3398
3399/* Function: unmap_overlay_command
5417f6dc 3400 Mark the overlay section as unmapped
c906108c
SS
3401 (ie. resident in its LMA address range, rather than the VMA range). */
3402
5d3055ad 3403static void
fba45db2 3404unmap_overlay_command (char *args, int from_tty)
c906108c 3405{
c5aa993b 3406 struct objfile *objfile;
c906108c
SS
3407 struct obj_section *sec;
3408
3409 if (!overlay_debugging)
3e43a32a
MS
3410 error (_("Overlay debugging not enabled. "
3411 "Use either the 'overlay auto' or\n"
3412 "the 'overlay manual' command."));
c906108c
SS
3413
3414 if (args == 0 || *args == 0)
8a3fe4f8 3415 error (_("Argument required: name of an overlay section"));
c906108c 3416
c378eb4e 3417 /* First, find a section matching the user supplied argument. */
c906108c
SS
3418 ALL_OBJSECTIONS (objfile, sec)
3419 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3420 {
3421 if (!sec->ovly_mapped)
8a3fe4f8 3422 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3423 sec->ovly_mapped = 0;
3424 return;
3425 }
8a3fe4f8 3426 error (_("No overlay section called %s"), args);
c906108c
SS
3427}
3428
3429/* Function: overlay_auto_command
3430 A utility command to turn on overlay debugging.
c378eb4e 3431 Possibly this should be done via a set/show command. */
c906108c
SS
3432
3433static void
fba45db2 3434overlay_auto_command (char *args, int from_tty)
c906108c 3435{
d874f1e2 3436 overlay_debugging = ovly_auto;
1900040c 3437 enable_overlay_breakpoints ();
c906108c 3438 if (info_verbose)
a3f17187 3439 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3440}
3441
3442/* Function: overlay_manual_command
3443 A utility command to turn on overlay debugging.
c378eb4e 3444 Possibly this should be done via a set/show command. */
c906108c
SS
3445
3446static void
fba45db2 3447overlay_manual_command (char *args, int from_tty)
c906108c 3448{
d874f1e2 3449 overlay_debugging = ovly_on;
1900040c 3450 disable_overlay_breakpoints ();
c906108c 3451 if (info_verbose)
a3f17187 3452 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3453}
3454
3455/* Function: overlay_off_command
3456 A utility command to turn on overlay debugging.
c378eb4e 3457 Possibly this should be done via a set/show command. */
c906108c
SS
3458
3459static void
fba45db2 3460overlay_off_command (char *args, int from_tty)
c906108c 3461{
d874f1e2 3462 overlay_debugging = ovly_off;
1900040c 3463 disable_overlay_breakpoints ();
c906108c 3464 if (info_verbose)
a3f17187 3465 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3466}
3467
3468static void
fba45db2 3469overlay_load_command (char *args, int from_tty)
c906108c 3470{
e17c207e
UW
3471 struct gdbarch *gdbarch = get_current_arch ();
3472
3473 if (gdbarch_overlay_update_p (gdbarch))
3474 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3475 else
8a3fe4f8 3476 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3477}
3478
3479/* Function: overlay_command
c378eb4e 3480 A place-holder for a mis-typed command. */
c906108c 3481
c378eb4e 3482/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3483static struct cmd_list_element *overlaylist;
c906108c
SS
3484
3485static void
fba45db2 3486overlay_command (char *args, int from_tty)
c906108c 3487{
c5aa993b 3488 printf_unfiltered
c906108c 3489 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3490 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3491}
3492
c906108c
SS
3493/* Target Overlays for the "Simplest" overlay manager:
3494
5417f6dc
RM
3495 This is GDB's default target overlay layer. It works with the
3496 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3497 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3498 so targets that use a different runtime overlay manager can
c906108c
SS
3499 substitute their own overlay_update function and take over the
3500 function pointer.
3501
3502 The overlay_update function pokes around in the target's data structures
3503 to see what overlays are mapped, and updates GDB's overlay mapping with
3504 this information.
3505
3506 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3507 unsigned _novlys; /# number of overlay sections #/
3508 unsigned _ovly_table[_novlys][4] = {
3509 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3510 {..., ..., ..., ...},
3511 }
3512 unsigned _novly_regions; /# number of overlay regions #/
3513 unsigned _ovly_region_table[_novly_regions][3] = {
3514 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3515 {..., ..., ...},
3516 }
c906108c
SS
3517 These functions will attempt to update GDB's mappedness state in the
3518 symbol section table, based on the target's mappedness state.
3519
3520 To do this, we keep a cached copy of the target's _ovly_table, and
3521 attempt to detect when the cached copy is invalidated. The main
3522 entry point is "simple_overlay_update(SECT), which looks up SECT in
3523 the cached table and re-reads only the entry for that section from
c378eb4e 3524 the target (whenever possible). */
c906108c
SS
3525
3526/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3527static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3528static unsigned cache_novlys = 0;
c906108c 3529static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3530enum ovly_index
3531 {
3532 VMA, SIZE, LMA, MAPPED
3533 };
c906108c 3534
c378eb4e 3535/* Throw away the cached copy of _ovly_table. */
3b7bacac 3536
c906108c 3537static void
fba45db2 3538simple_free_overlay_table (void)
c906108c
SS
3539{
3540 if (cache_ovly_table)
b8c9b27d 3541 xfree (cache_ovly_table);
c5aa993b 3542 cache_novlys = 0;
c906108c
SS
3543 cache_ovly_table = NULL;
3544 cache_ovly_table_base = 0;
3545}
3546
9216df95 3547/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3548 Convert to host order. int LEN is number of ints. */
3b7bacac 3549
c906108c 3550static void
9216df95 3551read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3552 int len, int size, enum bfd_endian byte_order)
c906108c 3553{
c378eb4e 3554 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3555 gdb_byte *buf = alloca (len * size);
c5aa993b 3556 int i;
c906108c 3557
9216df95 3558 read_memory (memaddr, buf, len * size);
c906108c 3559 for (i = 0; i < len; i++)
e17a4113 3560 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3561}
3562
3563/* Find and grab a copy of the target _ovly_table
c378eb4e 3564 (and _novlys, which is needed for the table's size). */
3b7bacac 3565
c5aa993b 3566static int
fba45db2 3567simple_read_overlay_table (void)
c906108c 3568{
3b7344d5 3569 struct bound_minimal_symbol novlys_msym;
7c7b6655 3570 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3571 struct gdbarch *gdbarch;
3572 int word_size;
e17a4113 3573 enum bfd_endian byte_order;
c906108c
SS
3574
3575 simple_free_overlay_table ();
9b27852e 3576 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3577 if (! novlys_msym.minsym)
c906108c 3578 {
8a3fe4f8 3579 error (_("Error reading inferior's overlay table: "
0d43edd1 3580 "couldn't find `_novlys' variable\n"
8a3fe4f8 3581 "in inferior. Use `overlay manual' mode."));
0d43edd1 3582 return 0;
c906108c 3583 }
0d43edd1 3584
7c7b6655
TT
3585 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3586 if (! ovly_table_msym.minsym)
0d43edd1 3587 {
8a3fe4f8 3588 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3589 "`_ovly_table' array\n"
8a3fe4f8 3590 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3591 return 0;
3592 }
3593
7c7b6655 3594 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3595 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3596 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3597
77e371c0
TT
3598 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3599 4, byte_order);
0d43edd1
JB
3600 cache_ovly_table
3601 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3602 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3603 read_target_long_array (cache_ovly_table_base,
777ea8f1 3604 (unsigned int *) cache_ovly_table,
e17a4113 3605 cache_novlys * 4, word_size, byte_order);
0d43edd1 3606
c5aa993b 3607 return 1; /* SUCCESS */
c906108c
SS
3608}
3609
5417f6dc 3610/* Function: simple_overlay_update_1
c906108c
SS
3611 A helper function for simple_overlay_update. Assuming a cached copy
3612 of _ovly_table exists, look through it to find an entry whose vma,
3613 lma and size match those of OSECT. Re-read the entry and make sure
3614 it still matches OSECT (else the table may no longer be valid).
3615 Set OSECT's mapped state to match the entry. Return: 1 for
3616 success, 0 for failure. */
3617
3618static int
fba45db2 3619simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3620{
3621 int i, size;
fbd35540
MS
3622 bfd *obfd = osect->objfile->obfd;
3623 asection *bsect = osect->the_bfd_section;
9216df95
UW
3624 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3625 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3627
2c500098 3628 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3629 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3630 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3631 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3632 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3633 {
9216df95
UW
3634 read_target_long_array (cache_ovly_table_base + i * word_size,
3635 (unsigned int *) cache_ovly_table[i],
e17a4113 3636 4, word_size, byte_order);
fbd35540
MS
3637 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3638 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3639 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3640 {
3641 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3642 return 1;
3643 }
c378eb4e 3644 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3645 return 0;
3646 }
3647 return 0;
3648}
3649
3650/* Function: simple_overlay_update
5417f6dc
RM
3651 If OSECT is NULL, then update all sections' mapped state
3652 (after re-reading the entire target _ovly_table).
3653 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3654 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3655 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3656 re-read the entire cache, and go ahead and update all sections. */
3657
1c772458 3658void
fba45db2 3659simple_overlay_update (struct obj_section *osect)
c906108c 3660{
c5aa993b 3661 struct objfile *objfile;
c906108c 3662
c378eb4e 3663 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3664 if (osect)
c378eb4e 3665 /* Have we got a cached copy of the target's overlay table? */
c906108c 3666 if (cache_ovly_table != NULL)
9cc89665
MS
3667 {
3668 /* Does its cached location match what's currently in the
3669 symtab? */
3b7344d5 3670 struct bound_minimal_symbol minsym
9cc89665
MS
3671 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3672
3b7344d5 3673 if (minsym.minsym == NULL)
9cc89665
MS
3674 error (_("Error reading inferior's overlay table: couldn't "
3675 "find `_ovly_table' array\n"
3676 "in inferior. Use `overlay manual' mode."));
3677
77e371c0 3678 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3679 /* Then go ahead and try to look up this single section in
3680 the cache. */
3681 if (simple_overlay_update_1 (osect))
3682 /* Found it! We're done. */
3683 return;
3684 }
c906108c
SS
3685
3686 /* Cached table no good: need to read the entire table anew.
3687 Or else we want all the sections, in which case it's actually
3688 more efficient to read the whole table in one block anyway. */
3689
0d43edd1
JB
3690 if (! simple_read_overlay_table ())
3691 return;
3692
c378eb4e 3693 /* Now may as well update all sections, even if only one was requested. */
c906108c 3694 ALL_OBJSECTIONS (objfile, osect)
714835d5 3695 if (section_is_overlay (osect))
c5aa993b
JM
3696 {
3697 int i, size;
fbd35540
MS
3698 bfd *obfd = osect->objfile->obfd;
3699 asection *bsect = osect->the_bfd_section;
c5aa993b 3700
2c500098 3701 size = bfd_get_section_size (bsect);
c5aa993b 3702 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3703 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3704 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3705 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3706 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3707 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3708 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3709 }
3710 }
c906108c
SS
3711}
3712
086df311
DJ
3713/* Set the output sections and output offsets for section SECTP in
3714 ABFD. The relocation code in BFD will read these offsets, so we
3715 need to be sure they're initialized. We map each section to itself,
3716 with no offset; this means that SECTP->vma will be honored. */
3717
3718static void
3719symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3720{
3721 sectp->output_section = sectp;
3722 sectp->output_offset = 0;
3723}
3724
ac8035ab
TG
3725/* Default implementation for sym_relocate. */
3726
ac8035ab
TG
3727bfd_byte *
3728default_symfile_relocate (struct objfile *objfile, asection *sectp,
3729 bfd_byte *buf)
3730{
3019eac3
DE
3731 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3732 DWO file. */
3733 bfd *abfd = sectp->owner;
ac8035ab
TG
3734
3735 /* We're only interested in sections with relocation
3736 information. */
3737 if ((sectp->flags & SEC_RELOC) == 0)
3738 return NULL;
3739
3740 /* We will handle section offsets properly elsewhere, so relocate as if
3741 all sections begin at 0. */
3742 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3743
3744 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3745}
3746
086df311
DJ
3747/* Relocate the contents of a debug section SECTP in ABFD. The
3748 contents are stored in BUF if it is non-NULL, or returned in a
3749 malloc'd buffer otherwise.
3750
3751 For some platforms and debug info formats, shared libraries contain
3752 relocations against the debug sections (particularly for DWARF-2;
3753 one affected platform is PowerPC GNU/Linux, although it depends on
3754 the version of the linker in use). Also, ELF object files naturally
3755 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3756 the relocations in order to get the locations of symbols correct.
3757 Another example that may require relocation processing, is the
3758 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3759 debug section. */
086df311
DJ
3760
3761bfd_byte *
ac8035ab
TG
3762symfile_relocate_debug_section (struct objfile *objfile,
3763 asection *sectp, bfd_byte *buf)
086df311 3764{
ac8035ab 3765 gdb_assert (objfile->sf->sym_relocate);
086df311 3766
ac8035ab 3767 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3768}
c906108c 3769
31d99776
DJ
3770struct symfile_segment_data *
3771get_symfile_segment_data (bfd *abfd)
3772{
00b5771c 3773 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3774
3775 if (sf == NULL)
3776 return NULL;
3777
3778 return sf->sym_segments (abfd);
3779}
3780
3781void
3782free_symfile_segment_data (struct symfile_segment_data *data)
3783{
3784 xfree (data->segment_bases);
3785 xfree (data->segment_sizes);
3786 xfree (data->segment_info);
3787 xfree (data);
3788}
3789
28c32713
JB
3790/* Given:
3791 - DATA, containing segment addresses from the object file ABFD, and
3792 the mapping from ABFD's sections onto the segments that own them,
3793 and
3794 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3795 segment addresses reported by the target,
3796 store the appropriate offsets for each section in OFFSETS.
3797
3798 If there are fewer entries in SEGMENT_BASES than there are segments
3799 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3800
8d385431
DJ
3801 If there are more entries, then ignore the extra. The target may
3802 not be able to distinguish between an empty data segment and a
3803 missing data segment; a missing text segment is less plausible. */
3b7bacac 3804
31d99776 3805int
3189cb12
DE
3806symfile_map_offsets_to_segments (bfd *abfd,
3807 const struct symfile_segment_data *data,
31d99776
DJ
3808 struct section_offsets *offsets,
3809 int num_segment_bases,
3810 const CORE_ADDR *segment_bases)
3811{
3812 int i;
3813 asection *sect;
3814
28c32713
JB
3815 /* It doesn't make sense to call this function unless you have some
3816 segment base addresses. */
202b96c1 3817 gdb_assert (num_segment_bases > 0);
28c32713 3818
31d99776
DJ
3819 /* If we do not have segment mappings for the object file, we
3820 can not relocate it by segments. */
3821 gdb_assert (data != NULL);
3822 gdb_assert (data->num_segments > 0);
3823
31d99776
DJ
3824 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3825 {
31d99776
DJ
3826 int which = data->segment_info[i];
3827
28c32713
JB
3828 gdb_assert (0 <= which && which <= data->num_segments);
3829
3830 /* Don't bother computing offsets for sections that aren't
3831 loaded as part of any segment. */
3832 if (! which)
3833 continue;
3834
3835 /* Use the last SEGMENT_BASES entry as the address of any extra
3836 segments mentioned in DATA->segment_info. */
31d99776 3837 if (which > num_segment_bases)
28c32713 3838 which = num_segment_bases;
31d99776 3839
28c32713
JB
3840 offsets->offsets[i] = (segment_bases[which - 1]
3841 - data->segment_bases[which - 1]);
31d99776
DJ
3842 }
3843
3844 return 1;
3845}
3846
3847static void
3848symfile_find_segment_sections (struct objfile *objfile)
3849{
3850 bfd *abfd = objfile->obfd;
3851 int i;
3852 asection *sect;
3853 struct symfile_segment_data *data;
3854
3855 data = get_symfile_segment_data (objfile->obfd);
3856 if (data == NULL)
3857 return;
3858
3859 if (data->num_segments != 1 && data->num_segments != 2)
3860 {
3861 free_symfile_segment_data (data);
3862 return;
3863 }
3864
3865 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3866 {
31d99776
DJ
3867 int which = data->segment_info[i];
3868
3869 if (which == 1)
3870 {
3871 if (objfile->sect_index_text == -1)
3872 objfile->sect_index_text = sect->index;
3873
3874 if (objfile->sect_index_rodata == -1)
3875 objfile->sect_index_rodata = sect->index;
3876 }
3877 else if (which == 2)
3878 {
3879 if (objfile->sect_index_data == -1)
3880 objfile->sect_index_data = sect->index;
3881
3882 if (objfile->sect_index_bss == -1)
3883 objfile->sect_index_bss = sect->index;
3884 }
3885 }
3886
3887 free_symfile_segment_data (data);
3888}
3889
76ad5e1e
NB
3890/* Listen for free_objfile events. */
3891
3892static void
3893symfile_free_objfile (struct objfile *objfile)
3894{
c33b2f12
MM
3895 /* Remove the target sections owned by this objfile. */
3896 if (objfile != NULL)
76ad5e1e
NB
3897 remove_target_sections ((void *) objfile);
3898}
3899
540c2971
DE
3900/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3901 Expand all symtabs that match the specified criteria.
3902 See quick_symbol_functions.expand_symtabs_matching for details. */
3903
3904void
bb4142cf
DE
3905expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3906 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3907 enum search_domain kind,
3908 void *data)
540c2971
DE
3909{
3910 struct objfile *objfile;
3911
3912 ALL_OBJFILES (objfile)
3913 {
3914 if (objfile->sf)
bb4142cf
DE
3915 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3916 symbol_matcher, kind,
3917 data);
540c2971
DE
3918 }
3919}
3920
3921/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3922 Map function FUN over every file.
3923 See quick_symbol_functions.map_symbol_filenames for details. */
3924
3925void
bb4142cf
DE
3926map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3927 int need_fullname)
540c2971
DE
3928{
3929 struct objfile *objfile;
3930
3931 ALL_OBJFILES (objfile)
3932 {
3933 if (objfile->sf)
3934 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3935 need_fullname);
3936 }
3937}
3938
c906108c 3939void
fba45db2 3940_initialize_symfile (void)
c906108c
SS
3941{
3942 struct cmd_list_element *c;
c5aa993b 3943
76ad5e1e
NB
3944 observer_attach_free_objfile (symfile_free_objfile);
3945
1a966eab
AC
3946 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3947Load symbol table from executable file FILE.\n\
c906108c 3948The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3949to execute."), &cmdlist);
5ba2abeb 3950 set_cmd_completer (c, filename_completer);
c906108c 3951
1a966eab 3952 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3953Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3954Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3955 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3956The optional arguments are section-name section-address pairs and\n\
3957should be specified if the data and bss segments are not contiguous\n\
1a966eab 3958with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3959 &cmdlist);
5ba2abeb 3960 set_cmd_completer (c, filename_completer);
c906108c 3961
63644780
NB
3962 c = add_cmd ("remove-symbol-file", class_files,
3963 remove_symbol_file_command, _("\
3964Remove a symbol file added via the add-symbol-file command.\n\
3965Usage: remove-symbol-file FILENAME\n\
3966 remove-symbol-file -a ADDRESS\n\
3967The file to remove can be identified by its filename or by an address\n\
3968that lies within the boundaries of this symbol file in memory."),
3969 &cmdlist);
3970
1a966eab
AC
3971 c = add_cmd ("load", class_files, load_command, _("\
3972Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3973for access from GDB.\n\
3974A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3975 set_cmd_completer (c, filename_completer);
c906108c 3976
c5aa993b 3977 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3978 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3979 "overlay ", 0, &cmdlist);
3980
3981 add_com_alias ("ovly", "overlay", class_alias, 1);
3982 add_com_alias ("ov", "overlay", class_alias, 1);
3983
c5aa993b 3984 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3985 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3986
c5aa993b 3987 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3988 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3989
c5aa993b 3990 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3991 _("List mappings of overlay sections."), &overlaylist);
c906108c 3992
c5aa993b 3993 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3994 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3995 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3996 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3997 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3998 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3999 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4000 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4001
4002 /* Filename extension to source language lookup table: */
4003 init_filename_language_table ();
26c41df3
AC
4004 add_setshow_string_noescape_cmd ("extension-language", class_files,
4005 &ext_args, _("\
4006Set mapping between filename extension and source language."), _("\
4007Show mapping between filename extension and source language."), _("\
4008Usage: set extension-language .foo bar"),
4009 set_ext_lang_command,
920d2a44 4010 show_ext_args,
26c41df3 4011 &setlist, &showlist);
c906108c 4012
c5aa993b 4013 add_info ("extensions", info_ext_lang_command,
1bedd215 4014 _("All filename extensions associated with a source language."));
917317f4 4015
525226b5
AC
4016 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4017 &debug_file_directory, _("\
24ddea62
JK
4018Set the directories where separate debug symbols are searched for."), _("\
4019Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4020Separate debug symbols are first searched for in the same\n\
4021directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4022and lastly at the path of the directory of the binary with\n\
24ddea62 4023each global debug-file-directory component prepended."),
525226b5 4024 NULL,
920d2a44 4025 show_debug_file_directory,
525226b5 4026 &setlist, &showlist);
770e7fc7
DE
4027
4028 add_setshow_enum_cmd ("symbol-loading", no_class,
4029 print_symbol_loading_enums, &print_symbol_loading,
4030 _("\
4031Set printing of symbol loading messages."), _("\
4032Show printing of symbol loading messages."), _("\
4033off == turn all messages off\n\
4034brief == print messages for the executable,\n\
4035 and brief messages for shared libraries\n\
4036full == print messages for the executable,\n\
4037 and messages for each shared library."),
4038 NULL,
4039 NULL,
4040 &setprintlist, &showprintlist);
c906108c 4041}
This page took 1.991219 seconds and 4 git commands to generate.