Use gdb::byte_vector when reading section data
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 84int readnever_symbol_files; /* Never read full symbols. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
ecf45d2c 88static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 89 objfile_flags flags);
d7db6da9 90
00b5771c 91static const struct sym_fns *find_sym_fns (bfd *);
c906108c 92
a14ed312 93static void overlay_invalidate_all (void);
c906108c 94
a14ed312 95static void simple_free_overlay_table (void);
c906108c 96
e17a4113
UW
97static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
c906108c 99
a14ed312 100static int simple_read_overlay_table (void);
c906108c 101
a14ed312 102static int simple_overlay_update_1 (struct obj_section *);
c906108c 103
31d99776
DJ
104static void symfile_find_segment_sections (struct objfile *objfile);
105
c906108c
SS
106/* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
c378eb4e 108 prepared to read. */
c906108c 109
905014d7 110struct registered_sym_fns
c256e171 111{
905014d7
SM
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
c256e171
DE
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
905014d7 121};
c256e171 122
905014d7 123static std::vector<registered_sym_fns> symtab_fns;
c906108c 124
770e7fc7
DE
125/* Values for "set print symbol-loading". */
126
127const char print_symbol_loading_off[] = "off";
128const char print_symbol_loading_brief[] = "brief";
129const char print_symbol_loading_full[] = "full";
130static const char *print_symbol_loading_enums[] =
131{
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136};
137static const char *print_symbol_loading = print_symbol_loading_full;
138
b7209cb4
FF
139/* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
c906108c 146 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 147 report all the functions that are actually present. */
c906108c
SS
148
149int auto_solib_add = 1;
c906108c 150\f
c5aa993b 151
770e7fc7
DE
152/* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160int
161print_symbol_loading_p (int from_tty, int exec, int full)
162{
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175}
176
0d14a781 177/* True if we are reading a symbol table. */
c906108c
SS
178
179int currently_reading_symtab = 0;
180
ccefe4c4
TT
181/* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
3b7bacac 183
c83dd867 184scoped_restore_tmpl<int>
ccefe4c4 185increment_reading_symtab (void)
c906108c 186{
c83dd867
TT
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
c906108c
SS
190}
191
5417f6dc
RM
192/* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
c906108c
SS
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201void
4efb68b1 202find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 203{
c5aa993b 204 asection **lowest = (asection **) obj;
c906108c 205
eb73e134 206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216}
217
d76488d8
TT
218/* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
a39a16c4
MM
221
222struct section_addr_info *
223alloc_section_addr_info (size_t num_sections)
224{
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
a39a16c4
MM
232
233 return sap;
234}
62557bbc
KB
235
236/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 237 an existing section table. */
62557bbc
KB
238
239extern struct section_addr_info *
0542c86d
PA
240build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
62557bbc
KB
242{
243 struct section_addr_info *sap;
0542c86d 244 const struct target_section *stp;
62557bbc
KB
245 int oidx;
246
a39a16c4 247 sap = alloc_section_addr_info (end - start);
62557bbc
KB
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
2b2848e2
DE
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 255 && oidx < end - start)
62557bbc
KB
256 {
257 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
260 oidx++;
261 }
262 }
263
d76488d8
TT
264 sap->num_sections = oidx;
265
62557bbc
KB
266 return sap;
267}
268
82ccf5a5 269/* Create a section_addr_info from section offsets in ABFD. */
089b4803 270
82ccf5a5
JK
271static struct section_addr_info *
272build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
273{
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
82ccf5a5
JK
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 281 {
82ccf5a5
JK
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
285 i++;
286 }
d76488d8
TT
287
288 sap->num_sections = i;
289
089b4803
TG
290 return sap;
291}
292
82ccf5a5
JK
293/* Create a section_addr_info from section offsets in OBJFILE. */
294
295struct section_addr_info *
296build_section_addr_info_from_objfile (const struct objfile *objfile)
297{
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 305 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312}
62557bbc 313
c378eb4e 314/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
315
316extern void
317free_section_addr_info (struct section_addr_info *sap)
318{
319 int idx;
320
a39a16c4 321 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 322 xfree (sap->other[idx].name);
b8c9b27d 323 xfree (sap);
62557bbc
KB
324}
325
e8289572 326/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 327
e8289572
JB
328static void
329init_objfile_sect_indices (struct objfile *objfile)
c906108c 330{
e8289572 331 asection *sect;
c906108c 332 int i;
5417f6dc 333
b8fbeb18 334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 335 if (sect)
b8fbeb18
EZ
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 339 if (sect)
b8fbeb18
EZ
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 343 if (sect)
b8fbeb18
EZ
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 347 if (sect)
b8fbeb18
EZ
348 objfile->sect_index_rodata = sect->index;
349
bbcd32ad
FF
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
31d99776
DJ
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
bbcd32ad
FF
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
b8fbeb18 385}
c906108c 386
c1bd25fd
DJ
387/* The arguments to place_section. */
388
389struct place_section_arg
390{
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393};
394
395/* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
2c0b251b 398static void
c1bd25fd
DJ
399place_section (bfd *abfd, asection *sect, void *obj)
400{
19ba03f4 401 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
3bd72c6f 404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 405
2711e456
DJ
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
408 return;
409
410 /* If the user specified an offset, honor it. */
65cf3563 411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
415 start_addr = (arg->lowest + align - 1) & -align;
416
c1bd25fd
DJ
417 do {
418 asection *cur_sec;
c1bd25fd 419
c1bd25fd
DJ
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
c1bd25fd
DJ
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
2711e456
DJ
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
3bd72c6f 447 break;
c1bd25fd
DJ
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
65cf3563 455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 456 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 457}
e8289572 458
75242ef4
JK
459/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
e8289572
JB
462
463void
75242ef4
JK
464relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
3189cb12 466 const struct section_addr_info *addrs)
e8289572
JB
467{
468 int i;
469
75242ef4 470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 471
c378eb4e 472 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 473 for (i = 0; i < addrs->num_sections; i++)
e8289572 474 {
3189cb12 475 const struct other_sections *osp;
e8289572 476
75242ef4 477 osp = &addrs->other[i];
5488dafb 478 if (osp->sectindex == -1)
e8289572
JB
479 continue;
480
c378eb4e 481 /* Record all sections in offsets. */
e8289572 482 /* The section_offsets in the objfile are here filled in using
c378eb4e 483 the BFD index. */
75242ef4
JK
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486}
487
1276c759
JK
488/* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494static const char *
495addr_section_name (const char *s)
496{
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503}
504
82ccf5a5
JK
505/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508static int
509addrs_section_compar (const void *ap, const void *bp)
510{
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 513 int retval;
82ccf5a5 514
1276c759 515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
516 if (retval)
517 return retval;
518
5488dafb 519 return a->sectindex - b->sectindex;
82ccf5a5
JK
520}
521
522/* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525static struct other_sections **
526addrs_section_sort (struct section_addr_info *addrs)
527{
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
8d749320 532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 533 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540}
541
75242ef4 542/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
545
546void
547addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548{
549 asection *lower_sect;
75242ef4
JK
550 CORE_ADDR lower_offset;
551 int i;
82ccf5a5
JK
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
556
557 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
e8289572 566 }
75242ef4
JK
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
82ccf5a5
JK
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
c378eb4e
MS
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
82ccf5a5 590
8d749320 591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
1276c759 596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
597
598 while (*abfd_addrs_sorted
1276c759
JK
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
82ccf5a5
JK
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
1276c759
JK
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
82ccf5a5
JK
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
75242ef4
JK
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
d76488d8 631 for (i = 0; i < addrs->num_sections; i++)
75242ef4 632 {
82ccf5a5 633 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
634
635 if (sect)
75242ef4 636 {
c378eb4e 637 /* This is the index used by BFD. */
82ccf5a5 638 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
639
640 if (addrs->other[i].addr != 0)
75242ef4 641 {
82ccf5a5 642 addrs->other[i].addr -= sect->addr;
75242ef4 643 lower_offset = addrs->other[i].addr;
75242ef4
JK
644 }
645 else
672d9c23 646 addrs->other[i].addr = lower_offset;
75242ef4
JK
647 }
648 else
672d9c23 649 {
1276c759
JK
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
b0fcb67f
JK
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
4d9743af
JK
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
1276c759
JK
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 668 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
672d9c23 680 addrs->other[i].addr = 0;
5488dafb 681 addrs->other[i].sectindex = -1;
672d9c23 682 }
75242ef4 683 }
82ccf5a5
JK
684
685 do_cleanups (my_cleanup);
75242ef4
JK
686}
687
688/* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694void
695default_symfile_offsets (struct objfile *objfile,
3189cb12 696 const struct section_addr_info *addrs)
75242ef4 697{
d445b2f6 698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
e8289572 704
c1bd25fd
DJ
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
2711e456
DJ
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
2711e456
DJ
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
30510692 767 offsets[cur_sec->index]);
2711e456
DJ
768 offsets[cur_sec->index] = 0;
769 }
770 }
c1bd25fd
DJ
771 }
772
e8289572 773 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 774 .rodata sections. */
e8289572
JB
775 init_objfile_sect_indices (objfile);
776}
777
31d99776
DJ
778/* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784struct symfile_segment_data *
785default_symfile_segments (bfd *abfd)
786{
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
41bf6aca 812 data = XCNEW (struct symfile_segment_data);
31d99776 813 data->num_segments = 1;
fc270c35
TT
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
816
817 num_sections = bfd_count_sections (abfd);
fc270c35 818 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840}
841
608e2dbb
TT
842/* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845static void
b15cc25c 846read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
847{
848 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 849 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 856 {
192b62ce 857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
858
859 if (abfd != NULL)
24ba069a
JK
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
192b62ce
TT
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
24ba069a 867 }
608e2dbb
TT
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871}
872
3d6e24f0
JB
873/* Initialize entry point information for this objfile. */
874
875static void
876init_entry_point_info (struct objfile *objfile)
877{
6ef55de7
TT
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
3d6e24f0
JB
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
6ef55de7
TT
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
3d6e24f0
JB
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
6ef55de7
TT
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
3d6e24f0
JB
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 906 ei->entry_point_p = 0;
3d6e24f0
JB
907 }
908
6ef55de7 909 if (ei->entry_point_p)
3d6e24f0 910 {
53eddfa6 911 struct obj_section *osect;
6ef55de7 912 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 913 int found;
3d6e24f0
JB
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
df6d5441 918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
6ef55de7 924 ei->entry_point
df6d5441 925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
6ef55de7 936 ei->the_bfd_section_index
53eddfa6
TT
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
6ef55de7 944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
945 }
946}
947
c906108c
SS
948/* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
36e4d068
JB
951 This function does not set the OBJFILE's entry-point info.
952
96baa820
JM
953 OBJFILE is where the symbols are to be read from.
954
7e8580c1
JB
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
96baa820 964
7eedccfa
PP
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
c906108c 968
36e4d068
JB
969static void
970syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
b15cc25c 972 symfile_add_flags add_flags)
c906108c 973{
a39a16c4 974 struct section_addr_info *local_addr = NULL;
c906108c 975 struct cleanup *old_chain;
7eedccfa 976 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 977
8fb8eb5c 978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 979
75245b24 980 if (objfile->sf == NULL)
36e4d068
JB
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
d445b2f6 984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
224c3ddb
SM
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
36e4d068
JB
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
75245b24 994
c906108c
SS
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
ed2b3126
TT
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 999
6bf667bb
DE
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
c378eb4e 1002 no load address was specified. */
6bf667bb 1003 if (! addrs)
a39a16c4 1004 {
d445b2f6 1005 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
c5aa993b 1010 if (mainline)
c906108c
SS
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1013 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
9e86da07 1020 delete symfile_objfile;
adb7f338 1021 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
53a5351d 1034 and assume that <addr> is where that got loaded.
c906108c 1035
53a5351d
JM
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
6bf667bb 1038 if (addrs->num_sections > 0)
75242ef4 1039 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
c378eb4e 1043 initial symbol reading for this file. */
c906108c 1044
c5aa993b 1045 (*objfile->sf->sym_init) (objfile);
7eedccfa 1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1047
6bf667bb 1048 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1049
608e2dbb 1050 read_symbols (objfile, add_flags);
b11896a5 1051
c906108c
SS
1052 /* Discard cleanups as symbol reading was successful. */
1053
ed2b3126 1054 objfile_holder.release ();
c906108c 1055 discard_cleanups (old_chain);
f7545552 1056 xfree (local_addr);
c906108c
SS
1057}
1058
36e4d068
JB
1059/* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
6bf667bb 1062static void
36e4d068
JB
1063syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
b15cc25c 1065 symfile_add_flags add_flags)
36e4d068 1066{
6bf667bb 1067 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1068 init_entry_point_info (objfile);
1069}
1070
c906108c
SS
1071/* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1074
e7d52ed3 1075static void
b15cc25c 1076finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1077{
c906108c 1078 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1079 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1080 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1081 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
c1e56572 1086 clear_symtab_users (add_flags);
c906108c 1087 }
7eedccfa 1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1089 {
69de3c6a 1090 breakpoint_re_set ();
c906108c
SS
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1095}
1096
1097/* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
5417f6dc 1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1101 A new reference is acquired by this function.
7904e09f 1102
9e86da07 1103 For NAME description see the objfile constructor.
24ba069a 1104
7eedccfa
PP
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1107
6bf667bb 1108 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1110
63524580
JK
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
c906108c 1114 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1115 Upon failure, jumps back to command level (never returns). */
7eedccfa 1116
7904e09f 1117static struct objfile *
b15cc25c
PA
1118symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
6bf667bb 1120 struct section_addr_info *addrs,
b15cc25c 1121 objfile_flags flags, struct objfile *parent)
c906108c
SS
1122{
1123 struct objfile *objfile;
7eedccfa 1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1125 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1129
9291a0cd 1130 if (readnow_symbol_files)
b11896a5
TT
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
97cbe998
SDJ
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
9291a0cd 1141
5417f6dc
RM
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
c906108c
SS
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1146 && mainline
c906108c 1147 && from_tty
9e2f0ad4 1148 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1149 error (_("Not confirmed."));
c906108c 1150
b15cc25c
PA
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
9e86da07 1153 objfile = new struct objfile (abfd, name, flags);
c906108c 1154
63524580
JK
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
78a4a9b9
AC
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
c378eb4e 1160 performed, or need to read an unmapped symbol table. */
b11896a5 1161 if (should_print)
c906108c 1162 {
769d7dc4
AC
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1165 else
c906108c 1166 {
55333a84
DE
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
c906108c 1170 }
c906108c 1171 }
6bf667bb 1172 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1177 all partial symbol tables for this objfile if so. */
c906108c 1178
9291a0cd 1179 if ((flags & OBJF_READNOW))
c906108c 1180 {
b11896a5 1181 if (should_print)
c906108c 1182 {
a3f17187 1183 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
ccefe4c4
TT
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1190 }
1191
b11896a5 1192 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1193 {
1194 wrap_here ("");
55333a84 1195 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1196 wrap_here ("");
1197 }
1198
b11896a5 1199 if (should_print)
c906108c 1200 {
769d7dc4
AC
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
c906108c 1203 else
55333a84 1204 printf_unfiltered (_("done.\n"));
c906108c
SS
1205 }
1206
481d0f41
JB
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
109f874e 1212 if (objfile->sf == NULL)
8caee43b
PP
1213 {
1214 observer_notify_new_objfile (objfile);
c378eb4e 1215 return objfile; /* No symbols. */
8caee43b 1216 }
109f874e 1217
e7d52ed3 1218 finish_new_objfile (objfile, add_flags);
c906108c 1219
06d3b283 1220 observer_notify_new_objfile (objfile);
c906108c 1221
ce7d4522 1222 bfd_cache_close_all ();
c906108c
SS
1223 return (objfile);
1224}
1225
24ba069a 1226/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1227 see the objfile constructor. */
9cce227f
TG
1228
1229void
b15cc25c
PA
1230symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
24ba069a 1232 struct objfile *objfile)
9cce227f 1233{
089b4803
TG
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1242
870f88f7 1243 symbol_file_add_with_addrs
24ba069a 1244 (bfd, name, symfile_flags, sap,
9cce227f 1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1246 | OBJF_USERLOADED),
1247 objfile);
089b4803
TG
1248
1249 do_cleanups (my_cleanup);
9cce227f 1250}
7904e09f 1251
eb4556d7
JB
1252/* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
6bf667bb 1254 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1255
eb4556d7 1256struct objfile *
b15cc25c
PA
1257symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
eb4556d7 1259 struct section_addr_info *addrs,
b15cc25c 1260 objfile_flags flags, struct objfile *parent)
eb4556d7 1261{
24ba069a
JK
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
eb4556d7
JB
1264}
1265
7904e09f 1266/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1268
7904e09f 1269struct objfile *
b15cc25c
PA
1270symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1272{
192b62ce 1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1274
192b62ce
TT
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
7904e09f
JB
1277}
1278
d7db6da9
FN
1279/* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
5417f6dc 1286
1adeb98a 1287void
ecf45d2c 1288symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1289{
ecf45d2c 1290 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1291}
1292
1293static void
ecf45d2c
SL
1294symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
d7db6da9 1296{
ecf45d2c 1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1298
7eedccfa 1299 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1300
d7db6da9
FN
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
b15cc25c 1305 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1306 set_initial_language ();
1adeb98a
FN
1307}
1308
1309void
1310symbol_file_clear (int from_tty)
1311{
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
0430b0d6
AS
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1316 objfile_name (symfile_objfile))
0430b0d6 1317 : !query (_("Discard symbol table? "))))
8a3fe4f8 1318 error (_("Not confirmed."));
1adeb98a 1319
0133421a
JK
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1322 no_shared_libraries (NULL, from_tty);
1323
0133421a
JK
1324 free_all_objfiles ();
1325
adb7f338 1326 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1329}
1330
c4dcb155
SM
1331/* See symfile.h. */
1332
1333int separate_debug_file_debug = 0;
1334
5b5d99cf 1335static int
a8dbfd58 1336separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
32a0e547 1341 struct stat parent_stat, abfd_stat;
904578ed 1342 int verified_as_different;
32a0e547
JK
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1348 the separate debug infos with the same basename can exist. */
32a0e547 1349
a8dbfd58 1350 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1351 return 0;
5b5d99cf 1352
c4dcb155 1353 if (separate_debug_file_debug)
a8dbfd58 1354 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
c4dcb155 1355
a8dbfd58 1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1357
192b62ce 1358 if (abfd == NULL)
5b5d99cf
JB
1359 return 0;
1360
0ba1096a 1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
32a0e547 1371
192b62ce 1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1375 {
904578ed
JK
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1378 return 0;
904578ed 1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
192b62ce 1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1385
904578ed
JK
1386 if (!file_crc_p)
1387 return 0;
1388
287ccc17
JK
1389 if (crc != file_crc)
1390 {
dccee2de
TT
1391 unsigned long parent_crc;
1392
0a93529c
GB
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
904578ed 1396
dccee2de 1397 if (!verified_as_different)
904578ed 1398 {
dccee2de 1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1400 return 0;
1401 }
1402
dccee2de 1403 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1406 name.c_str (), objfile_name (parent_objfile));
904578ed 1407
287ccc17
JK
1408 return 0;
1409 }
1410
1411 return 1;
5b5d99cf
JB
1412}
1413
aa28a74e 1414char *debug_file_directory = NULL;
920d2a44
AC
1415static void
1416show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418{
3e43a32a
MS
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1422 value);
1423}
5b5d99cf
JB
1424
1425#if ! defined (DEBUG_SUBDIRECTORY)
1426#define DEBUG_SUBDIRECTORY ".debug"
1427#endif
1428
1db33378
PP
1429/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
a8dbfd58
SM
1434 Returns the path of the file with separate debug info, or an empty
1435 string. */
1db33378 1436
a8dbfd58 1437static std::string
1db33378
PP
1438find_separate_debug_file (const char *dir,
1439 const char *canon_dir,
1440 const char *debuglink,
1441 unsigned long crc32, struct objfile *objfile)
9cce227f 1442{
c4dcb155
SM
1443 if (separate_debug_file_debug)
1444 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1445 "%s\n"), objfile_name (objfile));
1446
5b5d99cf 1447 /* First try in the same directory as the original file. */
a8dbfd58
SM
1448 std::string debugfile = dir;
1449 debugfile += debuglink;
5b5d99cf 1450
32a0e547 1451 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1452 return debugfile;
5417f6dc 1453
5b5d99cf 1454 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1455 debugfile = dir;
1456 debugfile += DEBUG_SUBDIRECTORY;
1457 debugfile += "/";
1458 debugfile += debuglink;
5b5d99cf 1459
32a0e547 1460 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1461 return debugfile;
5417f6dc 1462
24ddea62 1463 /* Then try in the global debugfile directories.
f888f159 1464
24ddea62
JK
1465 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1466 cause "/..." lookups. */
5417f6dc 1467
e80aaf61
SM
1468 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1469 = dirnames_to_char_ptr_vec (debug_file_directory);
24ddea62 1470
e80aaf61 1471 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1472 {
a8dbfd58
SM
1473 debugfile = debugdir.get ();
1474 debugfile += "/";
1475 debugfile += dir;
1476 debugfile += debuglink;
aa28a74e 1477
32a0e547 1478 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1479 return debugfile;
24ddea62
JK
1480
1481 /* If the file is in the sysroot, try using its base path in the
1482 global debugfile directory. */
1db33378
PP
1483 if (canon_dir != NULL
1484 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1485 strlen (gdb_sysroot)) == 0
1db33378 1486 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1487 {
a8dbfd58
SM
1488 debugfile = debugdir.get ();
1489 debugfile += (canon_dir + strlen (gdb_sysroot));
1490 debugfile += "/";
1491 debugfile += debuglink;
24ddea62 1492
32a0e547 1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1494 return debugfile;
24ddea62 1495 }
aa28a74e 1496 }
f888f159 1497
a8dbfd58 1498 return std::string ();
1db33378
PP
1499}
1500
7edbb660 1501/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1502 If there were no directory separators in PATH, PATH will be empty
1503 string on return. */
1504
1505static void
1506terminate_after_last_dir_separator (char *path)
1507{
1508 int i;
1509
1510 /* Strip off the final filename part, leaving the directory name,
1511 followed by a slash. The directory can be relative or absolute. */
1512 for (i = strlen(path) - 1; i >= 0; i--)
1513 if (IS_DIR_SEPARATOR (path[i]))
1514 break;
1515
1516 /* If I is -1 then no directory is present there and DIR will be "". */
1517 path[i + 1] = '\0';
1518}
1519
1520/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1521 Returns pathname, or an empty string. */
1db33378 1522
a8dbfd58 1523std::string
1db33378
PP
1524find_separate_debug_file_by_debuglink (struct objfile *objfile)
1525{
1db33378 1526 unsigned long crc32;
1db33378 1527
5eae7aea
TT
1528 gdb::unique_xmalloc_ptr<char> debuglink
1529 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1530
1531 if (debuglink == NULL)
1532 {
1533 /* There's no separate debug info, hence there's no way we could
1534 load it => no warning. */
a8dbfd58 1535 return std::string ();
1db33378
PP
1536 }
1537
5eae7aea
TT
1538 std::string dir = objfile_name (objfile);
1539 terminate_after_last_dir_separator (&dir[0]);
1540 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1541
a8dbfd58
SM
1542 std::string debugfile
1543 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1544 debuglink.get (), crc32, objfile);
1db33378 1545
a8dbfd58 1546 if (debugfile.empty ())
1db33378 1547 {
1db33378
PP
1548 /* For PR gdb/9538, try again with realpath (if different from the
1549 original). */
1550
1551 struct stat st_buf;
1552
4262abfb
JK
1553 if (lstat (objfile_name (objfile), &st_buf) == 0
1554 && S_ISLNK (st_buf.st_mode))
1db33378 1555 {
5eae7aea
TT
1556 gdb::unique_xmalloc_ptr<char> symlink_dir
1557 (lrealpath (objfile_name (objfile)));
1db33378
PP
1558 if (symlink_dir != NULL)
1559 {
5eae7aea
TT
1560 terminate_after_last_dir_separator (symlink_dir.get ());
1561 if (dir != symlink_dir.get ())
1db33378
PP
1562 {
1563 /* Different directory, so try using it. */
5eae7aea
TT
1564 debugfile = find_separate_debug_file (symlink_dir.get (),
1565 symlink_dir.get (),
1566 debuglink.get (),
1db33378
PP
1567 crc32,
1568 objfile);
1569 }
1570 }
1571 }
1db33378 1572 }
aa28a74e 1573
25522fae 1574 return debugfile;
5b5d99cf
JB
1575}
1576
97cbe998
SDJ
1577/* Make sure that OBJF_{READNOW,READNEVER} are not set
1578 simultaneously. */
1579
1580static void
1581validate_readnow_readnever (objfile_flags flags)
1582{
1583 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1584 error (_("-readnow and -readnever cannot be used simultaneously"));
1585}
1586
c906108c
SS
1587/* This is the symbol-file command. Read the file, analyze its
1588 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1589 the command is rather bizarre:
1590
1591 1. The function buildargv implements various quoting conventions
1592 which are undocumented and have little or nothing in common with
1593 the way things are quoted (or not quoted) elsewhere in GDB.
1594
1595 2. Options are used, which are not generally used in GDB (perhaps
1596 "set mapped on", "set readnow on" would be better)
1597
1598 3. The order of options matters, which is contrary to GNU
c906108c
SS
1599 conventions (because it is confusing and inconvenient). */
1600
1601void
1d8b34a7 1602symbol_file_command (const char *args, int from_tty)
c906108c 1603{
c906108c
SS
1604 dont_repeat ();
1605
1606 if (args == NULL)
1607 {
1adeb98a 1608 symbol_file_clear (from_tty);
c906108c
SS
1609 }
1610 else
1611 {
b15cc25c 1612 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1613 symfile_add_flags add_flags = 0;
cb2f3a29 1614 char *name = NULL;
40fc416f
SDJ
1615 bool stop_processing_options = false;
1616 int idx;
1617 char *arg;
cb2f3a29 1618
ecf45d2c
SL
1619 if (from_tty)
1620 add_flags |= SYMFILE_VERBOSE;
1621
773a1edc 1622 gdb_argv built_argv (args);
40fc416f 1623 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1624 {
40fc416f 1625 if (stop_processing_options || *arg != '-')
7f0f8ac8 1626 {
40fc416f
SDJ
1627 if (name == NULL)
1628 name = arg;
1629 else
1630 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1631 }
40fc416f
SDJ
1632 else if (strcmp (arg, "-readnow") == 0)
1633 flags |= OBJF_READNOW;
97cbe998
SDJ
1634 else if (strcmp (arg, "-readnever") == 0)
1635 flags |= OBJF_READNEVER;
40fc416f
SDJ
1636 else if (strcmp (arg, "--") == 0)
1637 stop_processing_options = true;
1638 else
1639 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1640 }
1641
1642 if (name == NULL)
cb2f3a29 1643 error (_("no symbol file name was specified"));
40fc416f 1644
97cbe998
SDJ
1645 validate_readnow_readnever (flags);
1646
40fc416f 1647 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1648 }
1649}
1650
1651/* Set the initial language.
1652
cb2f3a29
MK
1653 FIXME: A better solution would be to record the language in the
1654 psymtab when reading partial symbols, and then use it (if known) to
1655 set the language. This would be a win for formats that encode the
1656 language in an easily discoverable place, such as DWARF. For
1657 stabs, we can jump through hoops looking for specially named
1658 symbols or try to intuit the language from the specific type of
1659 stabs we find, but we can't do that until later when we read in
1660 full symbols. */
c906108c 1661
8b60591b 1662void
fba45db2 1663set_initial_language (void)
c906108c 1664{
9e6c82ad 1665 enum language lang = main_language ();
c906108c 1666
9e6c82ad 1667 if (lang == language_unknown)
01f8c46d 1668 {
bf6d8a91 1669 char *name = main_name ();
d12307c1 1670 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1671
bf6d8a91
TT
1672 if (sym != NULL)
1673 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1674 }
cb2f3a29 1675
ccefe4c4
TT
1676 if (lang == language_unknown)
1677 {
1678 /* Make C the default language */
1679 lang = language_c;
c906108c 1680 }
ccefe4c4
TT
1681
1682 set_language (lang);
1683 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1684}
1685
cb2f3a29
MK
1686/* Open the file specified by NAME and hand it off to BFD for
1687 preliminary analysis. Return a newly initialized bfd *, which
1688 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1689 absolute). In case of trouble, error() is called. */
c906108c 1690
192b62ce 1691gdb_bfd_ref_ptr
97a41605 1692symfile_bfd_open (const char *name)
c906108c 1693{
97a41605 1694 int desc = -1;
c906108c 1695
e0cc99a6 1696 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1697 if (!is_target_filename (name))
f1838a98 1698 {
ee0c3293 1699 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1700
97a41605
GB
1701 /* Look down path for it, allocate 2nd new malloc'd copy. */
1702 desc = openp (getenv ("PATH"),
1703 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1704 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1705#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1706 if (desc < 0)
1707 {
ee0c3293 1708 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1709
ee0c3293 1710 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1711 desc = openp (getenv ("PATH"),
1712 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1713 exename, O_RDONLY | O_BINARY, &absolute_name);
1714 }
c906108c 1715#endif
97a41605 1716 if (desc < 0)
ee0c3293 1717 perror_with_name (expanded_name.get ());
cb2f3a29 1718
e0cc99a6 1719 name = absolute_name.get ();
97a41605 1720 }
c906108c 1721
192b62ce
TT
1722 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1723 if (sym_bfd == NULL)
faab9922
JK
1724 error (_("`%s': can't open to read symbols: %s."), name,
1725 bfd_errmsg (bfd_get_error ()));
97a41605 1726
192b62ce
TT
1727 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1728 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1729
192b62ce
TT
1730 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1733
1734 return sym_bfd;
c906108c
SS
1735}
1736
cb2f3a29
MK
1737/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1738 the section was not found. */
1739
0e931cf0 1740int
a121b7c1 1741get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1742{
1743 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1744
0e931cf0
JB
1745 if (sect)
1746 return sect->index;
1747 else
1748 return -1;
1749}
1750
c256e171
DE
1751/* Link SF into the global symtab_fns list.
1752 FLAVOUR is the file format that SF handles.
1753 Called on startup by the _initialize routine in each object file format
1754 reader, to register information about each format the reader is prepared
1755 to handle. */
c906108c
SS
1756
1757void
c256e171 1758add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1759{
905014d7 1760 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1761}
1762
cb2f3a29
MK
1763/* Initialize OBJFILE to read symbols from its associated BFD. It
1764 either returns or calls error(). The result is an initialized
1765 struct sym_fns in the objfile structure, that contains cached
1766 information about the symbol file. */
c906108c 1767
00b5771c 1768static const struct sym_fns *
31d99776 1769find_sym_fns (bfd *abfd)
c906108c 1770{
31d99776 1771 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1772
75245b24
MS
1773 if (our_flavour == bfd_target_srec_flavour
1774 || our_flavour == bfd_target_ihex_flavour
1775 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1776 return NULL; /* No symbols. */
75245b24 1777
905014d7
SM
1778 for (const registered_sym_fns &rsf : symtab_fns)
1779 if (our_flavour == rsf.sym_flavour)
1780 return rsf.sym_fns;
cb2f3a29 1781
8a3fe4f8 1782 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1783 bfd_get_target (abfd));
c906108c
SS
1784}
1785\f
cb2f3a29 1786
c906108c
SS
1787/* This function runs the load command of our current target. */
1788
1789static void
5fed81ff 1790load_command (const char *arg, int from_tty)
c906108c 1791{
5b3fca71
TT
1792 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1793
e5cc9f32
JB
1794 dont_repeat ();
1795
4487aabf
PA
1796 /* The user might be reloading because the binary has changed. Take
1797 this opportunity to check. */
1798 reopen_exec_file ();
1799 reread_symbols ();
1800
c906108c 1801 if (arg == NULL)
1986bccd 1802 {
5fed81ff 1803 const char *parg;
1986bccd
AS
1804 int count = 0;
1805
1806 parg = arg = get_exec_file (1);
1807
1808 /* Count how many \ " ' tab space there are in the name. */
1809 while ((parg = strpbrk (parg, "\\\"'\t ")))
1810 {
1811 parg++;
1812 count++;
1813 }
1814
1815 if (count)
1816 {
1817 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1818 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd 1819 char *ptemp = temp;
5fed81ff 1820 const char *prev;
1986bccd
AS
1821
1822 make_cleanup (xfree, temp);
1823
1824 prev = parg = arg;
1825 while ((parg = strpbrk (parg, "\\\"'\t ")))
1826 {
1827 strncpy (ptemp, prev, parg - prev);
1828 ptemp += parg - prev;
1829 prev = parg++;
1830 *ptemp++ = '\\';
1831 }
1832 strcpy (ptemp, prev);
1833
1834 arg = temp;
1835 }
1836 }
1837
c906108c 1838 target_load (arg, from_tty);
2889e661
JB
1839
1840 /* After re-loading the executable, we don't really know which
1841 overlays are mapped any more. */
1842 overlay_cache_invalid = 1;
5b3fca71
TT
1843
1844 do_cleanups (cleanup);
c906108c
SS
1845}
1846
1847/* This version of "load" should be usable for any target. Currently
1848 it is just used for remote targets, not inftarg.c or core files,
1849 on the theory that only in that case is it useful.
1850
1851 Avoiding xmodem and the like seems like a win (a) because we don't have
1852 to worry about finding it, and (b) On VMS, fork() is very slow and so
1853 we don't want to run a subprocess. On the other hand, I'm not sure how
1854 performance compares. */
917317f4 1855
917317f4
JM
1856static int validate_download = 0;
1857
e4f9b4d5
MS
1858/* Callback service function for generic_load (bfd_map_over_sections). */
1859
1860static void
1861add_section_size_callback (bfd *abfd, asection *asec, void *data)
1862{
19ba03f4 1863 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1864
2c500098 1865 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1866}
1867
a76d924d 1868/* Opaque data for load_progress. */
55089490
TT
1869struct load_progress_data
1870{
a76d924d 1871 /* Cumulative data. */
55089490
TT
1872 unsigned long write_count = 0;
1873 unsigned long data_count = 0;
1874 bfd_size_type total_size = 0;
a76d924d
DJ
1875};
1876
1877/* Opaque data for load_progress for a single section. */
55089490
TT
1878struct load_progress_section_data
1879{
1880 load_progress_section_data (load_progress_data *cumulative_,
1881 const char *section_name_, ULONGEST section_size_,
1882 CORE_ADDR lma_, gdb_byte *buffer_)
1883 : cumulative (cumulative_), section_name (section_name_),
1884 section_size (section_size_), lma (lma_), buffer (buffer_)
1885 {}
1886
a76d924d 1887 struct load_progress_data *cumulative;
cf7a04e8 1888
a76d924d 1889 /* Per-section data. */
cf7a04e8 1890 const char *section_name;
55089490 1891 ULONGEST section_sent = 0;
cf7a04e8
DJ
1892 ULONGEST section_size;
1893 CORE_ADDR lma;
1894 gdb_byte *buffer;
e4f9b4d5
MS
1895};
1896
55089490
TT
1897/* Opaque data for load_section_callback. */
1898struct load_section_data
1899{
1900 load_section_data (load_progress_data *progress_data_)
1901 : progress_data (progress_data_)
1902 {}
1903
1904 ~load_section_data ()
1905 {
1906 for (auto &&request : requests)
1907 {
1908 xfree (request.data);
1909 delete ((load_progress_section_data *) request.baton);
1910 }
1911 }
1912
1913 CORE_ADDR load_offset = 0;
1914 struct load_progress_data *progress_data;
1915 std::vector<struct memory_write_request> requests;
1916};
1917
a76d924d 1918/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1919
1920static void
1921load_progress (ULONGEST bytes, void *untyped_arg)
1922{
19ba03f4
SM
1923 struct load_progress_section_data *args
1924 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1925 struct load_progress_data *totals;
1926
1927 if (args == NULL)
1928 /* Writing padding data. No easy way to get at the cumulative
1929 stats, so just ignore this. */
1930 return;
1931
1932 totals = args->cumulative;
1933
1934 if (bytes == 0 && args->section_sent == 0)
1935 {
1936 /* The write is just starting. Let the user know we've started
1937 this section. */
112e8700
SM
1938 current_uiout->message ("Loading section %s, size %s lma %s\n",
1939 args->section_name,
1940 hex_string (args->section_size),
1941 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1942 return;
1943 }
cf7a04e8
DJ
1944
1945 if (validate_download)
1946 {
1947 /* Broken memories and broken monitors manifest themselves here
1948 when bring new computers to life. This doubles already slow
1949 downloads. */
1950 /* NOTE: cagney/1999-10-18: A more efficient implementation
1951 might add a verify_memory() method to the target vector and
1952 then use that. remote.c could implement that method using
1953 the ``qCRC'' packet. */
0efef640 1954 gdb::byte_vector check (bytes);
cf7a04e8 1955
0efef640 1956 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1957 error (_("Download verify read failed at %s"),
f5656ead 1958 paddress (target_gdbarch (), args->lma));
0efef640 1959 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1960 error (_("Download verify compare failed at %s"),
f5656ead 1961 paddress (target_gdbarch (), args->lma));
cf7a04e8 1962 }
a76d924d 1963 totals->data_count += bytes;
cf7a04e8
DJ
1964 args->lma += bytes;
1965 args->buffer += bytes;
a76d924d 1966 totals->write_count += 1;
cf7a04e8 1967 args->section_sent += bytes;
522002f9 1968 if (check_quit_flag ()
cf7a04e8
DJ
1969 || (deprecated_ui_load_progress_hook != NULL
1970 && deprecated_ui_load_progress_hook (args->section_name,
1971 args->section_sent)))
1972 error (_("Canceled the download"));
1973
1974 if (deprecated_show_load_progress != NULL)
1975 deprecated_show_load_progress (args->section_name,
1976 args->section_sent,
1977 args->section_size,
a76d924d
DJ
1978 totals->data_count,
1979 totals->total_size);
cf7a04e8
DJ
1980}
1981
e4f9b4d5
MS
1982/* Callback service function for generic_load (bfd_map_over_sections). */
1983
1984static void
1985load_section_callback (bfd *abfd, asection *asec, void *data)
1986{
19ba03f4 1987 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1988 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1989 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1990
cf7a04e8
DJ
1991 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1992 return;
e4f9b4d5 1993
cf7a04e8
DJ
1994 if (size == 0)
1995 return;
e4f9b4d5 1996
55089490
TT
1997 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1998 ULONGEST end = begin + size;
1999 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 2000 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 2001
55089490
TT
2002 load_progress_section_data *section_data
2003 = new load_progress_section_data (args->progress_data, sect_name, size,
2004 begin, buffer);
cf7a04e8 2005
55089490 2006 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
2007}
2008
dcb07cfa
PA
2009static void print_transfer_performance (struct ui_file *stream,
2010 unsigned long data_count,
2011 unsigned long write_count,
2012 std::chrono::steady_clock::duration d);
2013
c906108c 2014void
9cbe5fff 2015generic_load (const char *args, int from_tty)
c906108c 2016{
a76d924d 2017 struct load_progress_data total_progress;
55089490 2018 struct load_section_data cbdata (&total_progress);
79a45e25 2019 struct ui_out *uiout = current_uiout;
a76d924d 2020
d1a41061
PP
2021 if (args == NULL)
2022 error_no_arg (_("file to load"));
1986bccd 2023
773a1edc 2024 gdb_argv argv (args);
1986bccd 2025
ee0c3293 2026 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2027
2028 if (argv[1] != NULL)
917317f4 2029 {
f698ca8e 2030 const char *endptr;
ba5f2f8a 2031
f698ca8e 2032 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2033
2034 /* If the last word was not a valid number then
2035 treat it as a file name with spaces in. */
2036 if (argv[1] == endptr)
2037 error (_("Invalid download offset:%s."), argv[1]);
2038
2039 if (argv[2] != NULL)
2040 error (_("Too many parameters."));
917317f4 2041 }
c906108c 2042
c378eb4e 2043 /* Open the file for loading. */
ee0c3293 2044 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2045 if (loadfile_bfd == NULL)
ee0c3293 2046 perror_with_name (filename.get ());
917317f4 2047
192b62ce 2048 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2049 {
ee0c3293 2050 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2051 bfd_errmsg (bfd_get_error ()));
2052 }
c5aa993b 2053
192b62ce 2054 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2055 (void *) &total_progress.total_size);
2056
192b62ce 2057 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2058
dcb07cfa
PA
2059 using namespace std::chrono;
2060
2061 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2062
a76d924d
DJ
2063 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2064 load_progress) != 0)
2065 error (_("Load failed"));
c906108c 2066
dcb07cfa 2067 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2068
55089490 2069 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2070 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2071 uiout->text ("Start address ");
2072 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2073 uiout->text (", load size ");
2074 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2075 uiout->text ("\n");
fb14de7b 2076 regcache_write_pc (get_current_regcache (), entry);
c906108c 2077
38963c97
DJ
2078 /* Reset breakpoints, now that we have changed the load image. For
2079 instance, breakpoints may have been set (or reset, by
2080 post_create_inferior) while connected to the target but before we
2081 loaded the program. In that case, the prologue analyzer could
2082 have read instructions from the target to find the right
2083 breakpoint locations. Loading has changed the contents of that
2084 memory. */
2085
2086 breakpoint_re_set ();
2087
a76d924d
DJ
2088 print_transfer_performance (gdb_stdout, total_progress.data_count,
2089 total_progress.write_count,
dcb07cfa 2090 end_time - start_time);
c906108c
SS
2091}
2092
dcb07cfa
PA
2093/* Report on STREAM the performance of a memory transfer operation,
2094 such as 'load'. DATA_COUNT is the number of bytes transferred.
2095 WRITE_COUNT is the number of separate write operations, or 0, if
2096 that information is not available. TIME is how long the operation
2097 lasted. */
c906108c 2098
dcb07cfa 2099static void
d9fcf2fb 2100print_transfer_performance (struct ui_file *stream,
917317f4
JM
2101 unsigned long data_count,
2102 unsigned long write_count,
dcb07cfa 2103 std::chrono::steady_clock::duration time)
917317f4 2104{
dcb07cfa 2105 using namespace std::chrono;
79a45e25 2106 struct ui_out *uiout = current_uiout;
2b71414d 2107
dcb07cfa 2108 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2109
112e8700 2110 uiout->text ("Transfer rate: ");
dcb07cfa 2111 if (ms.count () > 0)
8b93c638 2112 {
dcb07cfa 2113 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2114
112e8700 2115 if (uiout->is_mi_like_p ())
9f43d28c 2116 {
112e8700
SM
2117 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2118 uiout->text (" bits/sec");
9f43d28c
DJ
2119 }
2120 else if (rate < 1024)
2121 {
112e8700
SM
2122 uiout->field_fmt ("transfer-rate", "%lu", rate);
2123 uiout->text (" bytes/sec");
9f43d28c
DJ
2124 }
2125 else
2126 {
112e8700
SM
2127 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2128 uiout->text (" KB/sec");
9f43d28c 2129 }
8b93c638
JM
2130 }
2131 else
2132 {
112e8700
SM
2133 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2134 uiout->text (" bits in <1 sec");
8b93c638
JM
2135 }
2136 if (write_count > 0)
2137 {
112e8700
SM
2138 uiout->text (", ");
2139 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2140 uiout->text (" bytes/write");
8b93c638 2141 }
112e8700 2142 uiout->text (".\n");
c906108c
SS
2143}
2144
2145/* This function allows the addition of incrementally linked object files.
2146 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2147/* Note: ezannoni 2000-04-13 This function/command used to have a
2148 special case syntax for the rombug target (Rombug is the boot
2149 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2150 rombug case, the user doesn't need to supply a text address,
2151 instead a call to target_link() (in target.c) would supply the
c378eb4e 2152 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2153
c906108c 2154static void
2cf311eb 2155add_symbol_file_command (const char *args, int from_tty)
c906108c 2156{
5af949e3 2157 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2158 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2159 char *arg;
2acceee2
JM
2160 int argcnt = 0;
2161 int sec_num = 0;
76ad5e1e 2162 struct objfile *objf;
b15cc25c
PA
2163 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2164 symfile_add_flags add_flags = 0;
2165
2166 if (from_tty)
2167 add_flags |= SYMFILE_VERBOSE;
db162d44 2168
a39a16c4 2169 struct sect_opt
2acceee2 2170 {
a121b7c1
PA
2171 const char *name;
2172 const char *value;
a39a16c4 2173 };
db162d44 2174
a39a16c4 2175 struct section_addr_info *section_addrs;
40fc416f
SDJ
2176 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2177 bool stop_processing_options = false;
3017564a 2178 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2179
c906108c
SS
2180 dont_repeat ();
2181
2182 if (args == NULL)
8a3fe4f8 2183 error (_("add-symbol-file takes a file name and an address"));
c906108c 2184
40fc416f 2185 bool seen_addr = false;
773a1edc 2186 gdb_argv argv (args);
db162d44 2187
5b96932b
AS
2188 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2189 {
40fc416f 2190 if (stop_processing_options || *arg != '-')
41dc8db8 2191 {
40fc416f 2192 if (filename == NULL)
41dc8db8 2193 {
40fc416f
SDJ
2194 /* First non-option argument is always the filename. */
2195 filename.reset (tilde_expand (arg));
41dc8db8 2196 }
40fc416f 2197 else if (!seen_addr)
41dc8db8 2198 {
40fc416f
SDJ
2199 /* The second non-option argument is always the text
2200 address at which to load the program. */
2201 sect_opts[0].value = arg;
2202 seen_addr = true;
41dc8db8
MB
2203 }
2204 else
02ca603a 2205 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2206 }
40fc416f
SDJ
2207 else if (strcmp (arg, "-readnow") == 0)
2208 flags |= OBJF_READNOW;
97cbe998
SDJ
2209 else if (strcmp (arg, "-readnever") == 0)
2210 flags |= OBJF_READNEVER;
40fc416f
SDJ
2211 else if (strcmp (arg, "-s") == 0)
2212 {
2213 if (argv[argcnt + 1] == NULL)
2214 error (_("Missing section name after \"-s\""));
2215 else if (argv[argcnt + 2] == NULL)
2216 error (_("Missing section address after \"-s\""));
2217
2218 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2219
2220 sect_opts.push_back (sect);
2221 argcnt += 2;
2222 }
2223 else if (strcmp (arg, "--") == 0)
2224 stop_processing_options = true;
2225 else
2226 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2227 }
c906108c 2228
40fc416f
SDJ
2229 if (filename == NULL)
2230 error (_("You must provide a filename to be loaded."));
2231
97cbe998
SDJ
2232 validate_readnow_readnever (flags);
2233
927890d0
JB
2234 /* This command takes at least two arguments. The first one is a
2235 filename, and the second is the address where this file has been
2236 loaded. Abort now if this address hasn't been provided by the
2237 user. */
40fc416f 2238 if (!seen_addr)
ee0c3293
TT
2239 error (_("The address where %s has been loaded is missing"),
2240 filename.get ());
927890d0 2241
c378eb4e 2242 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2243 a sect_addr_info structure to be passed around to other
2244 functions. We have to split this up into separate print
bb599908 2245 statements because hex_string returns a local static
c378eb4e 2246 string. */
5417f6dc 2247
ee0c3293
TT
2248 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2249 filename.get ());
f978cb06 2250 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2251 make_cleanup (xfree, section_addrs);
f978cb06 2252 for (sect_opt &sect : sect_opts)
c906108c 2253 {
db162d44 2254 CORE_ADDR addr;
f978cb06
TT
2255 const char *val = sect.value;
2256 const char *sec = sect.name;
5417f6dc 2257
ae822768 2258 addr = parse_and_eval_address (val);
db162d44 2259
db162d44 2260 /* Here we store the section offsets in the order they were
c378eb4e 2261 entered on the command line. */
a121b7c1 2262 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2263 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2264 printf_unfiltered ("\t%s_addr = %s\n", sec,
2265 paddress (gdbarch, addr));
db162d44
EZ
2266 sec_num++;
2267
5417f6dc 2268 /* The object's sections are initialized when a
db162d44 2269 call is made to build_objfile_section_table (objfile).
5417f6dc 2270 This happens in reread_symbols.
db162d44
EZ
2271 At this point, we don't know what file type this is,
2272 so we can't determine what section names are valid. */
2acceee2 2273 }
d76488d8 2274 section_addrs->num_sections = sec_num;
db162d44 2275
2acceee2 2276 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2277 error (_("Not confirmed."));
c906108c 2278
ee0c3293 2279 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2280
2281 add_target_sections_of_objfile (objf);
c906108c
SS
2282
2283 /* Getting new symbols may change our opinion about what is
2284 frameless. */
2285 reinit_frame_cache ();
db162d44 2286 do_cleanups (my_cleanups);
c906108c
SS
2287}
2288\f
70992597 2289
63644780
NB
2290/* This function removes a symbol file that was added via add-symbol-file. */
2291
2292static void
2cf311eb 2293remove_symbol_file_command (const char *args, int from_tty)
63644780 2294{
63644780 2295 struct objfile *objf = NULL;
63644780 2296 struct program_space *pspace = current_program_space;
63644780
NB
2297
2298 dont_repeat ();
2299
2300 if (args == NULL)
2301 error (_("remove-symbol-file: no symbol file provided"));
2302
773a1edc 2303 gdb_argv argv (args);
63644780
NB
2304
2305 if (strcmp (argv[0], "-a") == 0)
2306 {
2307 /* Interpret the next argument as an address. */
2308 CORE_ADDR addr;
2309
2310 if (argv[1] == NULL)
2311 error (_("Missing address argument"));
2312
2313 if (argv[2] != NULL)
2314 error (_("Junk after %s"), argv[1]);
2315
2316 addr = parse_and_eval_address (argv[1]);
2317
2318 ALL_OBJFILES (objf)
2319 {
d03de421
PA
2320 if ((objf->flags & OBJF_USERLOADED) != 0
2321 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2322 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2323 break;
2324 }
2325 }
2326 else if (argv[0] != NULL)
2327 {
2328 /* Interpret the current argument as a file name. */
63644780
NB
2329
2330 if (argv[1] != NULL)
2331 error (_("Junk after %s"), argv[0]);
2332
ee0c3293 2333 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2334
2335 ALL_OBJFILES (objf)
2336 {
d03de421
PA
2337 if ((objf->flags & OBJF_USERLOADED) != 0
2338 && (objf->flags & OBJF_SHARED) != 0
63644780 2339 && objf->pspace == pspace
ee0c3293 2340 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2341 break;
2342 }
2343 }
2344
2345 if (objf == NULL)
2346 error (_("No symbol file found"));
2347
2348 if (from_tty
2349 && !query (_("Remove symbol table from file \"%s\"? "),
2350 objfile_name (objf)))
2351 error (_("Not confirmed."));
2352
9e86da07 2353 delete objf;
63644780 2354 clear_symtab_users (0);
63644780
NB
2355}
2356
c906108c 2357/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2358
c906108c 2359void
fba45db2 2360reread_symbols (void)
c906108c
SS
2361{
2362 struct objfile *objfile;
2363 long new_modtime;
c906108c
SS
2364 struct stat new_statbuf;
2365 int res;
4c404b8b 2366 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2367
2368 /* With the addition of shared libraries, this should be modified,
2369 the load time should be saved in the partial symbol tables, since
2370 different tables may come from different source files. FIXME.
2371 This routine should then walk down each partial symbol table
c378eb4e 2372 and see if the symbol table that it originates from has been changed. */
c906108c 2373
c5aa993b
JM
2374 for (objfile = object_files; objfile; objfile = objfile->next)
2375 {
9cce227f
TG
2376 if (objfile->obfd == NULL)
2377 continue;
2378
2379 /* Separate debug objfiles are handled in the main objfile. */
2380 if (objfile->separate_debug_objfile_backlink)
2381 continue;
2382
02aeec7b
JB
2383 /* If this object is from an archive (what you usually create with
2384 `ar', often called a `static library' on most systems, though
2385 a `shared library' on AIX is also an archive), then you should
2386 stat on the archive name, not member name. */
9cce227f
TG
2387 if (objfile->obfd->my_archive)
2388 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2389 else
4262abfb 2390 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2391 if (res != 0)
2392 {
c378eb4e 2393 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2394 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2395 objfile_name (objfile));
9cce227f
TG
2396 continue;
2397 }
2398 new_modtime = new_statbuf.st_mtime;
2399 if (new_modtime != objfile->mtime)
2400 {
2401 struct cleanup *old_cleanups;
2402 struct section_offsets *offsets;
2403 int num_offsets;
24ba069a 2404 char *original_name;
9cce227f
TG
2405
2406 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2407 objfile_name (objfile));
9cce227f
TG
2408
2409 /* There are various functions like symbol_file_add,
2410 symfile_bfd_open, syms_from_objfile, etc., which might
2411 appear to do what we want. But they have various other
2412 effects which we *don't* want. So we just do stuff
2413 ourselves. We don't worry about mapped files (for one thing,
2414 any mapped file will be out of date). */
2415
2416 /* If we get an error, blow away this objfile (not sure if
2417 that is the correct response for things like shared
2418 libraries). */
ed2b3126
TT
2419 std::unique_ptr<struct objfile> objfile_holder (objfile);
2420
9cce227f 2421 /* We need to do this whenever any symbols go away. */
ed2b3126 2422 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2423
0ba1096a
KT
2424 if (exec_bfd != NULL
2425 && filename_cmp (bfd_get_filename (objfile->obfd),
2426 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2427 {
2428 /* Reload EXEC_BFD without asking anything. */
2429
2430 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2431 }
2432
f6eeced0
JK
2433 /* Keep the calls order approx. the same as in free_objfile. */
2434
2435 /* Free the separate debug objfiles. It will be
2436 automatically recreated by sym_read. */
2437 free_objfile_separate_debug (objfile);
2438
2439 /* Remove any references to this objfile in the global
2440 value lists. */
2441 preserve_values (objfile);
2442
2443 /* Nuke all the state that we will re-read. Much of the following
2444 code which sets things to NULL really is necessary to tell
2445 other parts of GDB that there is nothing currently there.
2446
2447 Try to keep the freeing order compatible with free_objfile. */
2448
2449 if (objfile->sf != NULL)
2450 {
2451 (*objfile->sf->sym_finish) (objfile);
2452 }
2453
2454 clear_objfile_data (objfile);
2455
e1507e95 2456 /* Clean up any state BFD has sitting around. */
a4453b7e 2457 {
192b62ce 2458 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2459 char *obfd_filename;
a4453b7e
TT
2460
2461 obfd_filename = bfd_get_filename (objfile->obfd);
2462 /* Open the new BFD before freeing the old one, so that
2463 the filename remains live. */
192b62ce
TT
2464 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2465 objfile->obfd = temp.release ();
e1507e95 2466 if (objfile->obfd == NULL)
192b62ce 2467 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2468 }
2469
24ba069a
JK
2470 original_name = xstrdup (objfile->original_name);
2471 make_cleanup (xfree, original_name);
2472
9cce227f
TG
2473 /* bfd_openr sets cacheable to true, which is what we want. */
2474 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2475 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2476 bfd_errmsg (bfd_get_error ()));
2477
2478 /* Save the offsets, we will nuke them with the rest of the
2479 objfile_obstack. */
2480 num_offsets = objfile->num_sections;
2481 offsets = ((struct section_offsets *)
2482 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2483 memcpy (offsets, objfile->section_offsets,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485
9cce227f
TG
2486 /* FIXME: Do we have to free a whole linked list, or is this
2487 enough? */
af5bf4ad
SM
2488 objfile->global_psymbols.clear ();
2489 objfile->static_psymbols.clear ();
9cce227f 2490
c378eb4e 2491 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2492 psymbol_bcache_free (objfile->psymbol_cache);
2493 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2494
2495 /* NB: after this call to obstack_free, objfiles_changed
2496 will need to be called (see discussion below). */
9cce227f
TG
2497 obstack_free (&objfile->objfile_obstack, 0);
2498 objfile->sections = NULL;
43f3e411 2499 objfile->compunit_symtabs = NULL;
9cce227f
TG
2500 objfile->psymtabs = NULL;
2501 objfile->psymtabs_addrmap = NULL;
2502 objfile->free_psymtabs = NULL;
34eaf542 2503 objfile->template_symbols = NULL;
9cce227f 2504
9cce227f
TG
2505 /* obstack_init also initializes the obstack so it is
2506 empty. We could use obstack_specify_allocation but
d82ea6a8 2507 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2508 obstack_init (&objfile->objfile_obstack);
779bd270 2509
846060df
JB
2510 /* set_objfile_per_bfd potentially allocates the per-bfd
2511 data on the objfile's obstack (if sharing data across
2512 multiple users is not possible), so it's important to
2513 do it *after* the obstack has been initialized. */
2514 set_objfile_per_bfd (objfile);
2515
224c3ddb
SM
2516 objfile->original_name
2517 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2518 strlen (original_name));
24ba069a 2519
779bd270
DE
2520 /* Reset the sym_fns pointer. The ELF reader can change it
2521 based on whether .gdb_index is present, and we need it to
2522 start over. PR symtab/15885 */
8fb8eb5c 2523 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2524
d82ea6a8 2525 build_objfile_section_table (objfile);
9cce227f
TG
2526 terminate_minimal_symbol_table (objfile);
2527
2528 /* We use the same section offsets as from last time. I'm not
2529 sure whether that is always correct for shared libraries. */
2530 objfile->section_offsets = (struct section_offsets *)
2531 obstack_alloc (&objfile->objfile_obstack,
2532 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2533 memcpy (objfile->section_offsets, offsets,
2534 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2535 objfile->num_sections = num_offsets;
2536
2537 /* What the hell is sym_new_init for, anyway? The concept of
2538 distinguishing between the main file and additional files
2539 in this way seems rather dubious. */
2540 if (objfile == symfile_objfile)
c906108c 2541 {
9cce227f 2542 (*objfile->sf->sym_new_init) (objfile);
c906108c 2543 }
9cce227f
TG
2544
2545 (*objfile->sf->sym_init) (objfile);
2546 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2547
2548 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2549
2550 /* We are about to read new symbols and potentially also
2551 DWARF information. Some targets may want to pass addresses
2552 read from DWARF DIE's through an adjustment function before
2553 saving them, like MIPS, which may call into
2554 "find_pc_section". When called, that function will make
2555 use of per-objfile program space data.
2556
2557 Since we discarded our section information above, we have
2558 dangling pointers in the per-objfile program space data
2559 structure. Force GDB to update the section mapping
2560 information by letting it know the objfile has changed,
2561 making the dangling pointers point to correct data
2562 again. */
2563
2564 objfiles_changed ();
2565
608e2dbb 2566 read_symbols (objfile, 0);
b11896a5 2567
9cce227f 2568 if (!objfile_has_symbols (objfile))
c906108c 2569 {
9cce227f
TG
2570 wrap_here ("");
2571 printf_unfiltered (_("(no debugging symbols found)\n"));
2572 wrap_here ("");
c5aa993b 2573 }
9cce227f
TG
2574
2575 /* We're done reading the symbol file; finish off complaints. */
2576 clear_complaints (&symfile_complaints, 0, 1);
2577
2578 /* Getting new symbols may change our opinion about what is
2579 frameless. */
2580
2581 reinit_frame_cache ();
2582
2583 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2584 objfile_holder.release ();
9cce227f
TG
2585 discard_cleanups (old_cleanups);
2586
2587 /* If the mtime has changed between the time we set new_modtime
2588 and now, we *want* this to be out of date, so don't call stat
2589 again now. */
2590 objfile->mtime = new_modtime;
9cce227f 2591 init_entry_point_info (objfile);
4ac39b97 2592
4c404b8b 2593 new_objfiles.push_back (objfile);
c906108c
SS
2594 }
2595 }
c906108c 2596
4c404b8b 2597 if (!new_objfiles.empty ())
ea53e89f 2598 {
c1e56572 2599 clear_symtab_users (0);
4ac39b97
JK
2600
2601 /* clear_objfile_data for each objfile was called before freeing it and
2602 observer_notify_new_objfile (NULL) has been called by
2603 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2604 for (auto iter : new_objfiles)
2605 observer_notify_new_objfile (iter);
4ac39b97 2606
ea53e89f
JB
2607 /* At least one objfile has changed, so we can consider that
2608 the executable we're debugging has changed too. */
781b42b0 2609 observer_notify_executable_changed ();
ea53e89f 2610 }
c906108c 2611}
c906108c
SS
2612\f
2613
593e3209 2614struct filename_language
c5aa993b 2615{
593e3209
SM
2616 filename_language (const std::string &ext_, enum language lang_)
2617 : ext (ext_), lang (lang_)
2618 {}
3fcf0b0d 2619
593e3209
SM
2620 std::string ext;
2621 enum language lang;
2622};
c906108c 2623
593e3209 2624static std::vector<filename_language> filename_language_table;
c906108c 2625
56618e20
TT
2626/* See symfile.h. */
2627
2628void
2629add_filename_language (const char *ext, enum language lang)
c906108c 2630{
593e3209 2631 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2632}
2633
2634static char *ext_args;
920d2a44
AC
2635static void
2636show_ext_args (struct ui_file *file, int from_tty,
2637 struct cmd_list_element *c, const char *value)
2638{
3e43a32a
MS
2639 fprintf_filtered (file,
2640 _("Mapping between filename extension "
2641 "and source language is \"%s\".\n"),
920d2a44
AC
2642 value);
2643}
c906108c
SS
2644
2645static void
eb4c3f4a
TT
2646set_ext_lang_command (const char *args,
2647 int from_tty, struct cmd_list_element *e)
c906108c 2648{
c906108c
SS
2649 char *cp = ext_args;
2650 enum language lang;
2651
c378eb4e 2652 /* First arg is filename extension, starting with '.' */
c906108c 2653 if (*cp != '.')
8a3fe4f8 2654 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2655
2656 /* Find end of first arg. */
c5aa993b 2657 while (*cp && !isspace (*cp))
c906108c
SS
2658 cp++;
2659
2660 if (*cp == '\0')
3e43a32a
MS
2661 error (_("'%s': two arguments required -- "
2662 "filename extension and language"),
c906108c
SS
2663 ext_args);
2664
c378eb4e 2665 /* Null-terminate first arg. */
c5aa993b 2666 *cp++ = '\0';
c906108c
SS
2667
2668 /* Find beginning of second arg, which should be a source language. */
529480d0 2669 cp = skip_spaces (cp);
c906108c
SS
2670
2671 if (*cp == '\0')
3e43a32a
MS
2672 error (_("'%s': two arguments required -- "
2673 "filename extension and language"),
c906108c
SS
2674 ext_args);
2675
2676 /* Lookup the language from among those we know. */
2677 lang = language_enum (cp);
2678
593e3209 2679 auto it = filename_language_table.begin ();
c906108c 2680 /* Now lookup the filename extension: do we already know it? */
593e3209 2681 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2682 {
593e3209 2683 if (it->ext == ext_args)
3fcf0b0d
TT
2684 break;
2685 }
c906108c 2686
593e3209 2687 if (it == filename_language_table.end ())
c906108c 2688 {
c378eb4e 2689 /* New file extension. */
c906108c
SS
2690 add_filename_language (ext_args, lang);
2691 }
2692 else
2693 {
c378eb4e 2694 /* Redefining a previously known filename extension. */
c906108c
SS
2695
2696 /* if (from_tty) */
2697 /* query ("Really make files of type %s '%s'?", */
2698 /* ext_args, language_str (lang)); */
2699
593e3209 2700 it->lang = lang;
c906108c
SS
2701 }
2702}
2703
2704static void
1d12d88f 2705info_ext_lang_command (const char *args, int from_tty)
c906108c 2706{
a3f17187 2707 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2708 printf_filtered ("\n\n");
593e3209
SM
2709 for (const filename_language &entry : filename_language_table)
2710 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2711 language_str (entry.lang));
c906108c
SS
2712}
2713
c906108c 2714enum language
dd786858 2715deduce_language_from_filename (const char *filename)
c906108c 2716{
e6a959d6 2717 const char *cp;
c906108c
SS
2718
2719 if (filename != NULL)
2720 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2721 {
593e3209
SM
2722 for (const filename_language &entry : filename_language_table)
2723 if (entry.ext == cp)
2724 return entry.lang;
3fcf0b0d 2725 }
c906108c
SS
2726
2727 return language_unknown;
2728}
2729\f
43f3e411
DE
2730/* Allocate and initialize a new symbol table.
2731 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2732
2733struct symtab *
43f3e411 2734allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2735{
43f3e411
DE
2736 struct objfile *objfile = cust->objfile;
2737 struct symtab *symtab
2738 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2739
19ba03f4
SM
2740 symtab->filename
2741 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2742 objfile->per_bfd->filename_cache);
c5aa993b
JM
2743 symtab->fullname = NULL;
2744 symtab->language = deduce_language_from_filename (filename);
c906108c 2745
db0fec5c
DE
2746 /* This can be very verbose with lots of headers.
2747 Only print at higher debug levels. */
2748 if (symtab_create_debug >= 2)
45cfd468
DE
2749 {
2750 /* Be a bit clever with debugging messages, and don't print objfile
2751 every time, only when it changes. */
2752 static char *last_objfile_name = NULL;
2753
2754 if (last_objfile_name == NULL
4262abfb 2755 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2756 {
2757 xfree (last_objfile_name);
4262abfb 2758 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2759 fprintf_unfiltered (gdb_stdlog,
2760 "Creating one or more symtabs for objfile %s ...\n",
2761 last_objfile_name);
2762 }
2763 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2764 "Created symtab %s for module %s.\n",
2765 host_address_to_string (symtab), filename);
45cfd468
DE
2766 }
2767
43f3e411
DE
2768 /* Add it to CUST's list of symtabs. */
2769 if (cust->filetabs == NULL)
2770 {
2771 cust->filetabs = symtab;
2772 cust->last_filetab = symtab;
2773 }
2774 else
2775 {
2776 cust->last_filetab->next = symtab;
2777 cust->last_filetab = symtab;
2778 }
2779
2780 /* Backlink to the containing compunit symtab. */
2781 symtab->compunit_symtab = cust;
2782
2783 return symtab;
2784}
2785
2786/* Allocate and initialize a new compunit.
2787 NAME is the name of the main source file, if there is one, or some
2788 descriptive text if there are no source files. */
2789
2790struct compunit_symtab *
2791allocate_compunit_symtab (struct objfile *objfile, const char *name)
2792{
2793 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2794 struct compunit_symtab);
2795 const char *saved_name;
2796
2797 cu->objfile = objfile;
2798
2799 /* The name we record here is only for display/debugging purposes.
2800 Just save the basename to avoid path issues (too long for display,
2801 relative vs absolute, etc.). */
2802 saved_name = lbasename (name);
224c3ddb
SM
2803 cu->name
2804 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2805 strlen (saved_name));
43f3e411
DE
2806
2807 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2808
2809 if (symtab_create_debug)
2810 {
2811 fprintf_unfiltered (gdb_stdlog,
2812 "Created compunit symtab %s for %s.\n",
2813 host_address_to_string (cu),
2814 cu->name);
2815 }
2816
2817 return cu;
2818}
2819
2820/* Hook CU to the objfile it comes from. */
2821
2822void
2823add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2824{
2825 cu->next = cu->objfile->compunit_symtabs;
2826 cu->objfile->compunit_symtabs = cu;
c906108c 2827}
c906108c 2828\f
c5aa993b 2829
b15cc25c
PA
2830/* Reset all data structures in gdb which may contain references to
2831 symbol table data. */
c906108c
SS
2832
2833void
b15cc25c 2834clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2835{
2836 /* Someday, we should do better than this, by only blowing away
2837 the things that really need to be blown. */
c0501be5
DJ
2838
2839 /* Clear the "current" symtab first, because it is no longer valid.
2840 breakpoint_re_set may try to access the current symtab. */
2841 clear_current_source_symtab_and_line ();
2842
c906108c 2843 clear_displays ();
1bfeeb0f 2844 clear_last_displayed_sal ();
c906108c 2845 clear_pc_function_cache ();
06d3b283 2846 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2847
2848 /* Clear globals which might have pointed into a removed objfile.
2849 FIXME: It's not clear which of these are supposed to persist
2850 between expressions and which ought to be reset each time. */
2851 expression_context_block = NULL;
aee1fcdf 2852 innermost_block.reset ();
8756216b
DP
2853
2854 /* Varobj may refer to old symbols, perform a cleanup. */
2855 varobj_invalidate ();
2856
e700d1b2
JB
2857 /* Now that the various caches have been cleared, we can re_set
2858 our breakpoints without risking it using stale data. */
2859 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2860 breakpoint_re_set ();
c906108c
SS
2861}
2862
74b7792f
AC
2863static void
2864clear_symtab_users_cleanup (void *ignore)
2865{
c1e56572 2866 clear_symtab_users (0);
74b7792f 2867}
c906108c 2868\f
c906108c
SS
2869/* OVERLAYS:
2870 The following code implements an abstraction for debugging overlay sections.
2871
2872 The target model is as follows:
2873 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2874 same VMA, each with its own unique LMA (or load address).
c906108c 2875 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2876 sections, one by one, from the load address into the VMA address.
5417f6dc 2877 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2878 sections should be considered to be mapped from the VMA to the LMA.
2879 This information is used for symbol lookup, and memory read/write.
5417f6dc 2880 For instance, if a section has been mapped then its contents
c5aa993b 2881 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2882
2883 Two levels of debugger support for overlays are available. One is
2884 "manual", in which the debugger relies on the user to tell it which
2885 overlays are currently mapped. This level of support is
2886 implemented entirely in the core debugger, and the information about
2887 whether a section is mapped is kept in the objfile->obj_section table.
2888
2889 The second level of support is "automatic", and is only available if
2890 the target-specific code provides functionality to read the target's
2891 overlay mapping table, and translate its contents for the debugger
2892 (by updating the mapped state information in the obj_section tables).
2893
2894 The interface is as follows:
c5aa993b
JM
2895 User commands:
2896 overlay map <name> -- tell gdb to consider this section mapped
2897 overlay unmap <name> -- tell gdb to consider this section unmapped
2898 overlay list -- list the sections that GDB thinks are mapped
2899 overlay read-target -- get the target's state of what's mapped
2900 overlay off/manual/auto -- set overlay debugging state
2901 Functional interface:
2902 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2903 section, return that section.
5417f6dc 2904 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2905 the pc, either in its VMA or its LMA
714835d5 2906 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2907 section_is_overlay(sect): true if section's VMA != LMA
2908 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2909 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2910 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2911 overlay_mapped_address(...): map an address from section's LMA to VMA
2912 overlay_unmapped_address(...): map an address from section's VMA to LMA
2913 symbol_overlayed_address(...): Return a "current" address for symbol:
2914 either in VMA or LMA depending on whether
c378eb4e 2915 the symbol's section is currently mapped. */
c906108c
SS
2916
2917/* Overlay debugging state: */
2918
d874f1e2 2919enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2920int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2921
c906108c 2922/* Function: section_is_overlay (SECTION)
5417f6dc 2923 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2924 SECTION is loaded at an address different from where it will "run". */
2925
2926int
714835d5 2927section_is_overlay (struct obj_section *section)
c906108c 2928{
714835d5
UW
2929 if (overlay_debugging && section)
2930 {
714835d5 2931 asection *bfd_section = section->the_bfd_section;
f888f159 2932
714835d5
UW
2933 if (bfd_section_lma (abfd, bfd_section) != 0
2934 && bfd_section_lma (abfd, bfd_section)
2935 != bfd_section_vma (abfd, bfd_section))
2936 return 1;
2937 }
c906108c
SS
2938
2939 return 0;
2940}
2941
2942/* Function: overlay_invalidate_all (void)
2943 Invalidate the mapped state of all overlay sections (mark it as stale). */
2944
2945static void
fba45db2 2946overlay_invalidate_all (void)
c906108c 2947{
c5aa993b 2948 struct objfile *objfile;
c906108c
SS
2949 struct obj_section *sect;
2950
2951 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2952 if (section_is_overlay (sect))
2953 sect->ovly_mapped = -1;
c906108c
SS
2954}
2955
714835d5 2956/* Function: section_is_mapped (SECTION)
5417f6dc 2957 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2958
2959 Access to the ovly_mapped flag is restricted to this function, so
2960 that we can do automatic update. If the global flag
2961 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2962 overlay_invalidate_all. If the mapped state of the particular
2963 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2964
714835d5
UW
2965int
2966section_is_mapped (struct obj_section *osect)
c906108c 2967{
9216df95
UW
2968 struct gdbarch *gdbarch;
2969
714835d5 2970 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2971 return 0;
2972
c5aa993b 2973 switch (overlay_debugging)
c906108c
SS
2974 {
2975 default:
d874f1e2 2976 case ovly_off:
c5aa993b 2977 return 0; /* overlay debugging off */
d874f1e2 2978 case ovly_auto: /* overlay debugging automatic */
1c772458 2979 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2980 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2981 gdbarch = get_objfile_arch (osect->objfile);
2982 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2983 {
2984 if (overlay_cache_invalid)
2985 {
2986 overlay_invalidate_all ();
2987 overlay_cache_invalid = 0;
2988 }
2989 if (osect->ovly_mapped == -1)
9216df95 2990 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2991 }
2992 /* fall thru to manual case */
d874f1e2 2993 case ovly_on: /* overlay debugging manual */
c906108c
SS
2994 return osect->ovly_mapped == 1;
2995 }
2996}
2997
c906108c
SS
2998/* Function: pc_in_unmapped_range
2999 If PC falls into the lma range of SECTION, return true, else false. */
3000
3001CORE_ADDR
714835d5 3002pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3003{
714835d5
UW
3004 if (section_is_overlay (section))
3005 {
3006 bfd *abfd = section->objfile->obfd;
3007 asection *bfd_section = section->the_bfd_section;
fbd35540 3008
714835d5
UW
3009 /* We assume the LMA is relocated by the same offset as the VMA. */
3010 bfd_vma size = bfd_get_section_size (bfd_section);
3011 CORE_ADDR offset = obj_section_offset (section);
3012
3013 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3014 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3015 return 1;
3016 }
c906108c 3017
c906108c
SS
3018 return 0;
3019}
3020
3021/* Function: pc_in_mapped_range
3022 If PC falls into the vma range of SECTION, return true, else false. */
3023
3024CORE_ADDR
714835d5 3025pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3026{
714835d5
UW
3027 if (section_is_overlay (section))
3028 {
3029 if (obj_section_addr (section) <= pc
3030 && pc < obj_section_endaddr (section))
3031 return 1;
3032 }
c906108c 3033
c906108c
SS
3034 return 0;
3035}
3036
9ec8e6a0
JB
3037/* Return true if the mapped ranges of sections A and B overlap, false
3038 otherwise. */
3b7bacac 3039
b9362cc7 3040static int
714835d5 3041sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3042{
714835d5
UW
3043 CORE_ADDR a_start = obj_section_addr (a);
3044 CORE_ADDR a_end = obj_section_endaddr (a);
3045 CORE_ADDR b_start = obj_section_addr (b);
3046 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3047
3048 return (a_start < b_end && b_start < a_end);
3049}
3050
c906108c
SS
3051/* Function: overlay_unmapped_address (PC, SECTION)
3052 Returns the address corresponding to PC in the unmapped (load) range.
3053 May be the same as PC. */
3054
3055CORE_ADDR
714835d5 3056overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3057{
714835d5
UW
3058 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3059 {
714835d5 3060 asection *bfd_section = section->the_bfd_section;
fbd35540 3061
714835d5
UW
3062 return pc + bfd_section_lma (abfd, bfd_section)
3063 - bfd_section_vma (abfd, bfd_section);
3064 }
c906108c
SS
3065
3066 return pc;
3067}
3068
3069/* Function: overlay_mapped_address (PC, SECTION)
3070 Returns the address corresponding to PC in the mapped (runtime) range.
3071 May be the same as PC. */
3072
3073CORE_ADDR
714835d5 3074overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3075{
714835d5
UW
3076 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3077 {
714835d5 3078 asection *bfd_section = section->the_bfd_section;
fbd35540 3079
714835d5
UW
3080 return pc + bfd_section_vma (abfd, bfd_section)
3081 - bfd_section_lma (abfd, bfd_section);
3082 }
c906108c
SS
3083
3084 return pc;
3085}
3086
5417f6dc 3087/* Function: symbol_overlayed_address
c906108c
SS
3088 Return one of two addresses (relative to the VMA or to the LMA),
3089 depending on whether the section is mapped or not. */
3090
c5aa993b 3091CORE_ADDR
714835d5 3092symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3093{
3094 if (overlay_debugging)
3095 {
c378eb4e 3096 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3097 if (section == 0)
3098 return address;
c378eb4e
MS
3099 /* If the symbol's section is not an overlay, just return its
3100 address. */
c906108c
SS
3101 if (!section_is_overlay (section))
3102 return address;
c378eb4e 3103 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3104 if (section_is_mapped (section))
3105 return address;
3106 /*
3107 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3108 * then return its LOADED address rather than its vma address!!
3109 */
3110 return overlay_unmapped_address (address, section);
3111 }
3112 return address;
3113}
3114
5417f6dc 3115/* Function: find_pc_overlay (PC)
c906108c
SS
3116 Return the best-match overlay section for PC:
3117 If PC matches a mapped overlay section's VMA, return that section.
3118 Else if PC matches an unmapped section's VMA, return that section.
3119 Else if PC matches an unmapped section's LMA, return that section. */
3120
714835d5 3121struct obj_section *
fba45db2 3122find_pc_overlay (CORE_ADDR pc)
c906108c 3123{
c5aa993b 3124 struct objfile *objfile;
c906108c
SS
3125 struct obj_section *osect, *best_match = NULL;
3126
3127 if (overlay_debugging)
b631e59b
KT
3128 {
3129 ALL_OBJSECTIONS (objfile, osect)
3130 if (section_is_overlay (osect))
c5aa993b 3131 {
b631e59b
KT
3132 if (pc_in_mapped_range (pc, osect))
3133 {
3134 if (section_is_mapped (osect))
3135 return osect;
3136 else
3137 best_match = osect;
3138 }
3139 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3140 best_match = osect;
3141 }
b631e59b 3142 }
714835d5 3143 return best_match;
c906108c
SS
3144}
3145
3146/* Function: find_pc_mapped_section (PC)
5417f6dc 3147 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3148 currently marked as MAPPED, return that section. Else return NULL. */
3149
714835d5 3150struct obj_section *
fba45db2 3151find_pc_mapped_section (CORE_ADDR pc)
c906108c 3152{
c5aa993b 3153 struct objfile *objfile;
c906108c
SS
3154 struct obj_section *osect;
3155
3156 if (overlay_debugging)
b631e59b
KT
3157 {
3158 ALL_OBJSECTIONS (objfile, osect)
3159 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3160 return osect;
3161 }
c906108c
SS
3162
3163 return NULL;
3164}
3165
3166/* Function: list_overlays_command
c378eb4e 3167 Print a list of mapped sections and their PC ranges. */
c906108c 3168
5d3055ad 3169static void
2cf311eb 3170list_overlays_command (const char *args, int from_tty)
c906108c 3171{
c5aa993b
JM
3172 int nmapped = 0;
3173 struct objfile *objfile;
c906108c
SS
3174 struct obj_section *osect;
3175
3176 if (overlay_debugging)
b631e59b
KT
3177 {
3178 ALL_OBJSECTIONS (objfile, osect)
714835d5 3179 if (section_is_mapped (osect))
b631e59b
KT
3180 {
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const char *name;
3183 bfd_vma lma, vma;
3184 int size;
3185
3186 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3187 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3188 size = bfd_get_section_size (osect->the_bfd_section);
3189 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3190
3191 printf_filtered ("Section %s, loaded at ", name);
3192 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3193 puts_filtered (" - ");
3194 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3195 printf_filtered (", mapped at ");
3196 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3197 puts_filtered (" - ");
3198 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3199 puts_filtered ("\n");
3200
3201 nmapped++;
3202 }
3203 }
c906108c 3204 if (nmapped == 0)
a3f17187 3205 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3206}
3207
3208/* Function: map_overlay_command
3209 Mark the named section as mapped (ie. residing at its VMA address). */
3210
5d3055ad 3211static void
2cf311eb 3212map_overlay_command (const char *args, int from_tty)
c906108c 3213{
c5aa993b
JM
3214 struct objfile *objfile, *objfile2;
3215 struct obj_section *sec, *sec2;
c906108c
SS
3216
3217 if (!overlay_debugging)
3e43a32a
MS
3218 error (_("Overlay debugging not enabled. Use "
3219 "either the 'overlay auto' or\n"
3220 "the 'overlay manual' command."));
c906108c
SS
3221
3222 if (args == 0 || *args == 0)
8a3fe4f8 3223 error (_("Argument required: name of an overlay section"));
c906108c 3224
c378eb4e 3225 /* First, find a section matching the user supplied argument. */
c906108c
SS
3226 ALL_OBJSECTIONS (objfile, sec)
3227 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3228 {
c378eb4e 3229 /* Now, check to see if the section is an overlay. */
714835d5 3230 if (!section_is_overlay (sec))
c5aa993b
JM
3231 continue; /* not an overlay section */
3232
c378eb4e 3233 /* Mark the overlay as "mapped". */
c5aa993b
JM
3234 sec->ovly_mapped = 1;
3235
3236 /* Next, make a pass and unmap any sections that are
3237 overlapped by this new section: */
3238 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3239 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3240 {
3241 if (info_verbose)
a3f17187 3242 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3243 bfd_section_name (objfile->obfd,
3244 sec2->the_bfd_section));
c378eb4e 3245 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3246 }
3247 return;
3248 }
8a3fe4f8 3249 error (_("No overlay section called %s"), args);
c906108c
SS
3250}
3251
3252/* Function: unmap_overlay_command
5417f6dc 3253 Mark the overlay section as unmapped
c906108c
SS
3254 (ie. resident in its LMA address range, rather than the VMA range). */
3255
5d3055ad 3256static void
2cf311eb 3257unmap_overlay_command (const char *args, int from_tty)
c906108c 3258{
c5aa993b 3259 struct objfile *objfile;
7a270e0c 3260 struct obj_section *sec = NULL;
c906108c
SS
3261
3262 if (!overlay_debugging)
3e43a32a
MS
3263 error (_("Overlay debugging not enabled. "
3264 "Use either the 'overlay auto' or\n"
3265 "the 'overlay manual' command."));
c906108c
SS
3266
3267 if (args == 0 || *args == 0)
8a3fe4f8 3268 error (_("Argument required: name of an overlay section"));
c906108c 3269
c378eb4e 3270 /* First, find a section matching the user supplied argument. */
c906108c
SS
3271 ALL_OBJSECTIONS (objfile, sec)
3272 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3273 {
3274 if (!sec->ovly_mapped)
8a3fe4f8 3275 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3276 sec->ovly_mapped = 0;
3277 return;
3278 }
8a3fe4f8 3279 error (_("No overlay section called %s"), args);
c906108c
SS
3280}
3281
3282/* Function: overlay_auto_command
3283 A utility command to turn on overlay debugging.
c378eb4e 3284 Possibly this should be done via a set/show command. */
c906108c
SS
3285
3286static void
2cf311eb 3287overlay_auto_command (const char *args, int from_tty)
c906108c 3288{
d874f1e2 3289 overlay_debugging = ovly_auto;
1900040c 3290 enable_overlay_breakpoints ();
c906108c 3291 if (info_verbose)
a3f17187 3292 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3293}
3294
3295/* Function: overlay_manual_command
3296 A utility command to turn on overlay debugging.
c378eb4e 3297 Possibly this should be done via a set/show command. */
c906108c
SS
3298
3299static void
2cf311eb 3300overlay_manual_command (const char *args, int from_tty)
c906108c 3301{
d874f1e2 3302 overlay_debugging = ovly_on;
1900040c 3303 disable_overlay_breakpoints ();
c906108c 3304 if (info_verbose)
a3f17187 3305 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3306}
3307
3308/* Function: overlay_off_command
3309 A utility command to turn on overlay debugging.
c378eb4e 3310 Possibly this should be done via a set/show command. */
c906108c
SS
3311
3312static void
2cf311eb 3313overlay_off_command (const char *args, int from_tty)
c906108c 3314{
d874f1e2 3315 overlay_debugging = ovly_off;
1900040c 3316 disable_overlay_breakpoints ();
c906108c 3317 if (info_verbose)
a3f17187 3318 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3319}
3320
3321static void
2cf311eb 3322overlay_load_command (const char *args, int from_tty)
c906108c 3323{
e17c207e
UW
3324 struct gdbarch *gdbarch = get_current_arch ();
3325
3326 if (gdbarch_overlay_update_p (gdbarch))
3327 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3328 else
8a3fe4f8 3329 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3330}
3331
3332/* Function: overlay_command
c378eb4e 3333 A place-holder for a mis-typed command. */
c906108c 3334
c378eb4e 3335/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3336static struct cmd_list_element *overlaylist;
c906108c
SS
3337
3338static void
981a3fb3 3339overlay_command (const char *args, int from_tty)
c906108c 3340{
c5aa993b 3341 printf_unfiltered
c906108c 3342 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3343 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3344}
3345
c906108c
SS
3346/* Target Overlays for the "Simplest" overlay manager:
3347
5417f6dc
RM
3348 This is GDB's default target overlay layer. It works with the
3349 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3350 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3351 so targets that use a different runtime overlay manager can
c906108c
SS
3352 substitute their own overlay_update function and take over the
3353 function pointer.
3354
3355 The overlay_update function pokes around in the target's data structures
3356 to see what overlays are mapped, and updates GDB's overlay mapping with
3357 this information.
3358
3359 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3360 unsigned _novlys; /# number of overlay sections #/
3361 unsigned _ovly_table[_novlys][4] = {
438e1e42 3362 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3363 {..., ..., ..., ...},
3364 }
3365 unsigned _novly_regions; /# number of overlay regions #/
3366 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3367 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3368 {..., ..., ...},
3369 }
c906108c
SS
3370 These functions will attempt to update GDB's mappedness state in the
3371 symbol section table, based on the target's mappedness state.
3372
3373 To do this, we keep a cached copy of the target's _ovly_table, and
3374 attempt to detect when the cached copy is invalidated. The main
3375 entry point is "simple_overlay_update(SECT), which looks up SECT in
3376 the cached table and re-reads only the entry for that section from
c378eb4e 3377 the target (whenever possible). */
c906108c
SS
3378
3379/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3380static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3381static unsigned cache_novlys = 0;
c906108c 3382static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3383enum ovly_index
3384 {
438e1e42 3385 VMA, OSIZE, LMA, MAPPED
c5aa993b 3386 };
c906108c 3387
c378eb4e 3388/* Throw away the cached copy of _ovly_table. */
3b7bacac 3389
c906108c 3390static void
fba45db2 3391simple_free_overlay_table (void)
c906108c
SS
3392{
3393 if (cache_ovly_table)
b8c9b27d 3394 xfree (cache_ovly_table);
c5aa993b 3395 cache_novlys = 0;
c906108c
SS
3396 cache_ovly_table = NULL;
3397 cache_ovly_table_base = 0;
3398}
3399
9216df95 3400/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3401 Convert to host order. int LEN is number of ints. */
3b7bacac 3402
c906108c 3403static void
9216df95 3404read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3405 int len, int size, enum bfd_endian byte_order)
c906108c 3406{
c378eb4e 3407 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3408 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3409 int i;
c906108c 3410
9216df95 3411 read_memory (memaddr, buf, len * size);
c906108c 3412 for (i = 0; i < len; i++)
e17a4113 3413 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3414}
3415
3416/* Find and grab a copy of the target _ovly_table
c378eb4e 3417 (and _novlys, which is needed for the table's size). */
3b7bacac 3418
c5aa993b 3419static int
fba45db2 3420simple_read_overlay_table (void)
c906108c 3421{
3b7344d5 3422 struct bound_minimal_symbol novlys_msym;
7c7b6655 3423 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3424 struct gdbarch *gdbarch;
3425 int word_size;
e17a4113 3426 enum bfd_endian byte_order;
c906108c
SS
3427
3428 simple_free_overlay_table ();
9b27852e 3429 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3430 if (! novlys_msym.minsym)
c906108c 3431 {
8a3fe4f8 3432 error (_("Error reading inferior's overlay table: "
0d43edd1 3433 "couldn't find `_novlys' variable\n"
8a3fe4f8 3434 "in inferior. Use `overlay manual' mode."));
0d43edd1 3435 return 0;
c906108c 3436 }
0d43edd1 3437
7c7b6655
TT
3438 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3439 if (! ovly_table_msym.minsym)
0d43edd1 3440 {
8a3fe4f8 3441 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3442 "`_ovly_table' array\n"
8a3fe4f8 3443 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3444 return 0;
3445 }
3446
7c7b6655 3447 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3448 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3449 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3450
77e371c0
TT
3451 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3452 4, byte_order);
0d43edd1 3453 cache_ovly_table
224c3ddb 3454 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3455 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3456 read_target_long_array (cache_ovly_table_base,
777ea8f1 3457 (unsigned int *) cache_ovly_table,
e17a4113 3458 cache_novlys * 4, word_size, byte_order);
0d43edd1 3459
c5aa993b 3460 return 1; /* SUCCESS */
c906108c
SS
3461}
3462
5417f6dc 3463/* Function: simple_overlay_update_1
c906108c
SS
3464 A helper function for simple_overlay_update. Assuming a cached copy
3465 of _ovly_table exists, look through it to find an entry whose vma,
3466 lma and size match those of OSECT. Re-read the entry and make sure
3467 it still matches OSECT (else the table may no longer be valid).
3468 Set OSECT's mapped state to match the entry. Return: 1 for
3469 success, 0 for failure. */
3470
3471static int
fba45db2 3472simple_overlay_update_1 (struct obj_section *osect)
c906108c 3473{
764c99c1 3474 int i;
fbd35540 3475 asection *bsect = osect->the_bfd_section;
9216df95
UW
3476 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3477 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3479
c906108c 3480 for (i = 0; i < cache_novlys; i++)
fbd35540 3481 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3482 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3483 {
9216df95
UW
3484 read_target_long_array (cache_ovly_table_base + i * word_size,
3485 (unsigned int *) cache_ovly_table[i],
e17a4113 3486 4, word_size, byte_order);
fbd35540 3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3488 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3489 {
3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3491 return 1;
3492 }
c378eb4e 3493 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3494 return 0;
3495 }
3496 return 0;
3497}
3498
3499/* Function: simple_overlay_update
5417f6dc
RM
3500 If OSECT is NULL, then update all sections' mapped state
3501 (after re-reading the entire target _ovly_table).
3502 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3503 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3504 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3505 re-read the entire cache, and go ahead and update all sections. */
3506
1c772458 3507void
fba45db2 3508simple_overlay_update (struct obj_section *osect)
c906108c 3509{
c5aa993b 3510 struct objfile *objfile;
c906108c 3511
c378eb4e 3512 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3513 if (osect)
c378eb4e 3514 /* Have we got a cached copy of the target's overlay table? */
c906108c 3515 if (cache_ovly_table != NULL)
9cc89665
MS
3516 {
3517 /* Does its cached location match what's currently in the
3518 symtab? */
3b7344d5 3519 struct bound_minimal_symbol minsym
9cc89665
MS
3520 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3521
3b7344d5 3522 if (minsym.minsym == NULL)
9cc89665
MS
3523 error (_("Error reading inferior's overlay table: couldn't "
3524 "find `_ovly_table' array\n"
3525 "in inferior. Use `overlay manual' mode."));
3526
77e371c0 3527 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3528 /* Then go ahead and try to look up this single section in
3529 the cache. */
3530 if (simple_overlay_update_1 (osect))
3531 /* Found it! We're done. */
3532 return;
3533 }
c906108c
SS
3534
3535 /* Cached table no good: need to read the entire table anew.
3536 Or else we want all the sections, in which case it's actually
3537 more efficient to read the whole table in one block anyway. */
3538
0d43edd1
JB
3539 if (! simple_read_overlay_table ())
3540 return;
3541
c378eb4e 3542 /* Now may as well update all sections, even if only one was requested. */
c906108c 3543 ALL_OBJSECTIONS (objfile, osect)
714835d5 3544 if (section_is_overlay (osect))
c5aa993b 3545 {
764c99c1 3546 int i;
fbd35540 3547 asection *bsect = osect->the_bfd_section;
c5aa993b 3548
c5aa993b 3549 for (i = 0; i < cache_novlys; i++)
fbd35540 3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3552 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3553 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3554 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3555 }
3556 }
c906108c
SS
3557}
3558
086df311
DJ
3559/* Set the output sections and output offsets for section SECTP in
3560 ABFD. The relocation code in BFD will read these offsets, so we
3561 need to be sure they're initialized. We map each section to itself,
3562 with no offset; this means that SECTP->vma will be honored. */
3563
3564static void
3565symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3566{
3567 sectp->output_section = sectp;
3568 sectp->output_offset = 0;
3569}
3570
ac8035ab
TG
3571/* Default implementation for sym_relocate. */
3572
ac8035ab
TG
3573bfd_byte *
3574default_symfile_relocate (struct objfile *objfile, asection *sectp,
3575 bfd_byte *buf)
3576{
3019eac3
DE
3577 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3578 DWO file. */
3579 bfd *abfd = sectp->owner;
ac8035ab
TG
3580
3581 /* We're only interested in sections with relocation
3582 information. */
3583 if ((sectp->flags & SEC_RELOC) == 0)
3584 return NULL;
3585
3586 /* We will handle section offsets properly elsewhere, so relocate as if
3587 all sections begin at 0. */
3588 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3589
3590 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3591}
3592
086df311
DJ
3593/* Relocate the contents of a debug section SECTP in ABFD. The
3594 contents are stored in BUF if it is non-NULL, or returned in a
3595 malloc'd buffer otherwise.
3596
3597 For some platforms and debug info formats, shared libraries contain
3598 relocations against the debug sections (particularly for DWARF-2;
3599 one affected platform is PowerPC GNU/Linux, although it depends on
3600 the version of the linker in use). Also, ELF object files naturally
3601 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3602 the relocations in order to get the locations of symbols correct.
3603 Another example that may require relocation processing, is the
3604 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3605 debug section. */
086df311
DJ
3606
3607bfd_byte *
ac8035ab
TG
3608symfile_relocate_debug_section (struct objfile *objfile,
3609 asection *sectp, bfd_byte *buf)
086df311 3610{
ac8035ab 3611 gdb_assert (objfile->sf->sym_relocate);
086df311 3612
ac8035ab 3613 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3614}
c906108c 3615
31d99776
DJ
3616struct symfile_segment_data *
3617get_symfile_segment_data (bfd *abfd)
3618{
00b5771c 3619 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3620
3621 if (sf == NULL)
3622 return NULL;
3623
3624 return sf->sym_segments (abfd);
3625}
3626
3627void
3628free_symfile_segment_data (struct symfile_segment_data *data)
3629{
3630 xfree (data->segment_bases);
3631 xfree (data->segment_sizes);
3632 xfree (data->segment_info);
3633 xfree (data);
3634}
3635
28c32713
JB
3636/* Given:
3637 - DATA, containing segment addresses from the object file ABFD, and
3638 the mapping from ABFD's sections onto the segments that own them,
3639 and
3640 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3641 segment addresses reported by the target,
3642 store the appropriate offsets for each section in OFFSETS.
3643
3644 If there are fewer entries in SEGMENT_BASES than there are segments
3645 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3646
8d385431
DJ
3647 If there are more entries, then ignore the extra. The target may
3648 not be able to distinguish between an empty data segment and a
3649 missing data segment; a missing text segment is less plausible. */
3b7bacac 3650
31d99776 3651int
3189cb12
DE
3652symfile_map_offsets_to_segments (bfd *abfd,
3653 const struct symfile_segment_data *data,
31d99776
DJ
3654 struct section_offsets *offsets,
3655 int num_segment_bases,
3656 const CORE_ADDR *segment_bases)
3657{
3658 int i;
3659 asection *sect;
3660
28c32713
JB
3661 /* It doesn't make sense to call this function unless you have some
3662 segment base addresses. */
202b96c1 3663 gdb_assert (num_segment_bases > 0);
28c32713 3664
31d99776
DJ
3665 /* If we do not have segment mappings for the object file, we
3666 can not relocate it by segments. */
3667 gdb_assert (data != NULL);
3668 gdb_assert (data->num_segments > 0);
3669
31d99776
DJ
3670 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3671 {
31d99776
DJ
3672 int which = data->segment_info[i];
3673
28c32713
JB
3674 gdb_assert (0 <= which && which <= data->num_segments);
3675
3676 /* Don't bother computing offsets for sections that aren't
3677 loaded as part of any segment. */
3678 if (! which)
3679 continue;
3680
3681 /* Use the last SEGMENT_BASES entry as the address of any extra
3682 segments mentioned in DATA->segment_info. */
31d99776 3683 if (which > num_segment_bases)
28c32713 3684 which = num_segment_bases;
31d99776 3685
28c32713
JB
3686 offsets->offsets[i] = (segment_bases[which - 1]
3687 - data->segment_bases[which - 1]);
31d99776
DJ
3688 }
3689
3690 return 1;
3691}
3692
3693static void
3694symfile_find_segment_sections (struct objfile *objfile)
3695{
3696 bfd *abfd = objfile->obfd;
3697 int i;
3698 asection *sect;
3699 struct symfile_segment_data *data;
3700
3701 data = get_symfile_segment_data (objfile->obfd);
3702 if (data == NULL)
3703 return;
3704
3705 if (data->num_segments != 1 && data->num_segments != 2)
3706 {
3707 free_symfile_segment_data (data);
3708 return;
3709 }
3710
3711 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3712 {
31d99776
DJ
3713 int which = data->segment_info[i];
3714
3715 if (which == 1)
3716 {
3717 if (objfile->sect_index_text == -1)
3718 objfile->sect_index_text = sect->index;
3719
3720 if (objfile->sect_index_rodata == -1)
3721 objfile->sect_index_rodata = sect->index;
3722 }
3723 else if (which == 2)
3724 {
3725 if (objfile->sect_index_data == -1)
3726 objfile->sect_index_data = sect->index;
3727
3728 if (objfile->sect_index_bss == -1)
3729 objfile->sect_index_bss = sect->index;
3730 }
3731 }
3732
3733 free_symfile_segment_data (data);
3734}
3735
76ad5e1e
NB
3736/* Listen for free_objfile events. */
3737
3738static void
3739symfile_free_objfile (struct objfile *objfile)
3740{
c33b2f12
MM
3741 /* Remove the target sections owned by this objfile. */
3742 if (objfile != NULL)
76ad5e1e
NB
3743 remove_target_sections ((void *) objfile);
3744}
3745
540c2971
DE
3746/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3747 Expand all symtabs that match the specified criteria.
3748 See quick_symbol_functions.expand_symtabs_matching for details. */
3749
3750void
14bc53a8
PA
3751expand_symtabs_matching
3752 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3753 const lookup_name_info &lookup_name,
14bc53a8
PA
3754 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3755 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3756 enum search_domain kind)
540c2971
DE
3757{
3758 struct objfile *objfile;
3759
3760 ALL_OBJFILES (objfile)
3761 {
3762 if (objfile->sf)
bb4142cf 3763 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3764 lookup_name,
276d885b 3765 symbol_matcher,
14bc53a8 3766 expansion_notify, kind);
540c2971
DE
3767 }
3768}
3769
3770/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3771 Map function FUN over every file.
3772 See quick_symbol_functions.map_symbol_filenames for details. */
3773
3774void
bb4142cf
DE
3775map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3776 int need_fullname)
540c2971
DE
3777{
3778 struct objfile *objfile;
3779
3780 ALL_OBJFILES (objfile)
3781 {
3782 if (objfile->sf)
3783 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3784 need_fullname);
3785 }
3786}
3787
32fa66eb
SM
3788#if GDB_SELF_TEST
3789
3790namespace selftests {
3791namespace filename_language {
3792
32fa66eb
SM
3793static void test_filename_language ()
3794{
3795 /* This test messes up the filename_language_table global. */
593e3209 3796 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3797
3798 /* Test deducing an unknown extension. */
3799 language lang = deduce_language_from_filename ("myfile.blah");
3800 SELF_CHECK (lang == language_unknown);
3801
3802 /* Test deducing a known extension. */
3803 lang = deduce_language_from_filename ("myfile.c");
3804 SELF_CHECK (lang == language_c);
3805
3806 /* Test adding a new extension using the internal API. */
3807 add_filename_language (".blah", language_pascal);
3808 lang = deduce_language_from_filename ("myfile.blah");
3809 SELF_CHECK (lang == language_pascal);
3810}
3811
3812static void
3813test_set_ext_lang_command ()
3814{
3815 /* This test messes up the filename_language_table global. */
593e3209 3816 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3817
3818 /* Confirm that the .hello extension is not known. */
3819 language lang = deduce_language_from_filename ("cake.hello");
3820 SELF_CHECK (lang == language_unknown);
3821
3822 /* Test adding a new extension using the CLI command. */
3823 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3824 ext_args = args_holder.get ();
3825 set_ext_lang_command (NULL, 1, NULL);
3826
3827 lang = deduce_language_from_filename ("cake.hello");
3828 SELF_CHECK (lang == language_rust);
3829
3830 /* Test overriding an existing extension using the CLI command. */
593e3209 3831 int size_before = filename_language_table.size ();
32fa66eb
SM
3832 args_holder.reset (xstrdup (".hello pascal"));
3833 ext_args = args_holder.get ();
3834 set_ext_lang_command (NULL, 1, NULL);
593e3209 3835 int size_after = filename_language_table.size ();
32fa66eb
SM
3836
3837 lang = deduce_language_from_filename ("cake.hello");
3838 SELF_CHECK (lang == language_pascal);
3839 SELF_CHECK (size_before == size_after);
3840}
3841
3842} /* namespace filename_language */
3843} /* namespace selftests */
3844
3845#endif /* GDB_SELF_TEST */
3846
c906108c 3847void
fba45db2 3848_initialize_symfile (void)
c906108c
SS
3849{
3850 struct cmd_list_element *c;
c5aa993b 3851
76ad5e1e
NB
3852 observer_attach_free_objfile (symfile_free_objfile);
3853
97cbe998 3854#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3855 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3856immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3857faster.\n\
3858The '-readnever' option will prevent GDB from reading the symbol file's\n\
3859symbolic debug information."
8ca2f0b9 3860
1a966eab
AC
3861 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3862Load symbol table from executable file FILE.\n\
97cbe998 3863Usage: symbol-file [-readnow | -readnever] FILE\n\
c906108c 3864The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3865to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3866 set_cmd_completer (c, filename_completer);
c906108c 3867
1a966eab 3868 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3869Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
97cbe998
SDJ
3870Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3871-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3872ADDR is the starting address of the file's text.\n\
3873Each '-s' argument provides a section name and address, and\n\
db162d44 3874should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3875with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
97cbe998 3876READNOW_READNEVER_HELP),
c906108c 3877 &cmdlist);
5ba2abeb 3878 set_cmd_completer (c, filename_completer);
c906108c 3879
63644780
NB
3880 c = add_cmd ("remove-symbol-file", class_files,
3881 remove_symbol_file_command, _("\
3882Remove a symbol file added via the add-symbol-file command.\n\
3883Usage: remove-symbol-file FILENAME\n\
3884 remove-symbol-file -a ADDRESS\n\
3885The file to remove can be identified by its filename or by an address\n\
3886that lies within the boundaries of this symbol file in memory."),
3887 &cmdlist);
3888
1a966eab
AC
3889 c = add_cmd ("load", class_files, load_command, _("\
3890Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3891for access from GDB.\n\
8ca2f0b9 3892Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3893An optional load OFFSET may also be given as a literal address.\n\
3894When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3895on its own."), &cmdlist);
5ba2abeb 3896 set_cmd_completer (c, filename_completer);
c906108c 3897
c5aa993b 3898 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3899 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3900 "overlay ", 0, &cmdlist);
3901
3902 add_com_alias ("ovly", "overlay", class_alias, 1);
3903 add_com_alias ("ov", "overlay", class_alias, 1);
3904
c5aa993b 3905 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3906 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3907
c5aa993b 3908 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3909 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3910
c5aa993b 3911 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3912 _("List mappings of overlay sections."), &overlaylist);
c906108c 3913
c5aa993b 3914 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3915 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3916 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3917 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3918 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3919 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3920 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3921 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3922
3923 /* Filename extension to source language lookup table: */
26c41df3
AC
3924 add_setshow_string_noescape_cmd ("extension-language", class_files,
3925 &ext_args, _("\
3926Set mapping between filename extension and source language."), _("\
3927Show mapping between filename extension and source language."), _("\
3928Usage: set extension-language .foo bar"),
3929 set_ext_lang_command,
920d2a44 3930 show_ext_args,
26c41df3 3931 &setlist, &showlist);
c906108c 3932
c5aa993b 3933 add_info ("extensions", info_ext_lang_command,
1bedd215 3934 _("All filename extensions associated with a source language."));
917317f4 3935
525226b5
AC
3936 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3937 &debug_file_directory, _("\
24ddea62
JK
3938Set the directories where separate debug symbols are searched for."), _("\
3939Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3940Separate debug symbols are first searched for in the same\n\
3941directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3942and lastly at the path of the directory of the binary with\n\
24ddea62 3943each global debug-file-directory component prepended."),
525226b5 3944 NULL,
920d2a44 3945 show_debug_file_directory,
525226b5 3946 &setlist, &showlist);
770e7fc7
DE
3947
3948 add_setshow_enum_cmd ("symbol-loading", no_class,
3949 print_symbol_loading_enums, &print_symbol_loading,
3950 _("\
3951Set printing of symbol loading messages."), _("\
3952Show printing of symbol loading messages."), _("\
3953off == turn all messages off\n\
3954brief == print messages for the executable,\n\
3955 and brief messages for shared libraries\n\
3956full == print messages for the executable,\n\
3957 and messages for each shared library."),
3958 NULL,
3959 NULL,
3960 &setprintlist, &showprintlist);
c4dcb155
SM
3961
3962 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3963 &separate_debug_file_debug, _("\
3964Set printing of separate debug info file search debug."), _("\
3965Show printing of separate debug info file search debug."), _("\
3966When on, GDB prints the searched locations while looking for separate debug \
3967info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3968
3969#if GDB_SELF_TEST
3970 selftests::register_test
3971 ("filename_language", selftests::filename_language::test_filename_language);
3972 selftests::register_test
3973 ("set_ext_lang_command",
3974 selftests::filename_language::test_set_ext_lang_command);
3975#endif
c906108c 3976}
This page took 2.293381 seconds and 4 git commands to generate.