* cli/cli-dump.c (bfd_openr_with_cleanup): Use gdb_bfd_openr.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 150
b7209cb4
FF
151/* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
c906108c 158 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 159 report all the functions that are actually present. */
c906108c
SS
160
161int auto_solib_add = 1;
c906108c 162\f
c5aa993b 163
c906108c
SS
164/* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 166 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 167 may be part of a larger string and we are only saving a substring. */
c906108c
SS
168
169char *
63ca651f 170obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 171{
52f0bd74 172 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
c378eb4e 175 inline memcpy? */
c906108c 176 {
aa1ee363
AC
177 const char *p1 = ptr;
178 char *p2 = p;
63ca651f 179 const char *end = ptr + size;
433759f7 180
c906108c
SS
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186}
187
3e43a32a
MS
188/* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
c906108c
SS
192
193char *
48cb83fd 194obconcat (struct obstack *obstackp, ...)
c906108c 195{
48cb83fd
JK
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
c906108c
SS
212}
213
0d14a781 214/* True if we are reading a symbol table. */
c906108c
SS
215
216int currently_reading_symtab = 0;
217
218static void
fba45db2 219decrement_reading_symtab (void *dummy)
c906108c
SS
220{
221 currently_reading_symtab--;
222}
223
ccefe4c4
TT
224/* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226struct cleanup *
227increment_reading_symtab (void)
c906108c 228{
ccefe4c4
TT
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
231}
232
5417f6dc
RM
233/* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
c906108c
SS
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242void
4efb68b1 243find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 244{
c5aa993b 245 asection **lowest = (asection **) obj;
c906108c 246
eb73e134 247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257}
258
a39a16c4
MM
259/* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261struct section_addr_info *
262alloc_section_addr_info (size_t num_sections)
263{
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274}
62557bbc
KB
275
276/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 277 an existing section table. */
62557bbc
KB
278
279extern struct section_addr_info *
0542c86d
PA
280build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
62557bbc
KB
282{
283 struct section_addr_info *sap;
0542c86d 284 const struct target_section *stp;
62557bbc
KB
285 int oidx;
286
a39a16c4 287 sap = alloc_section_addr_info (end - start);
62557bbc
KB
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
5417f6dc 291 if (bfd_get_section_flags (stp->bfd,
fbd35540 292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 293 && oidx < end - start)
62557bbc
KB
294 {
295 sap->other[oidx].addr = stp->addr;
5417f6dc 296 sap->other[oidx].name
fbd35540 297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304}
305
82ccf5a5 306/* Create a section_addr_info from section offsets in ABFD. */
089b4803 307
82ccf5a5
JK
308static struct section_addr_info *
309build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
310{
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
82ccf5a5
JK
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 318 {
82ccf5a5
JK
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
089b4803
TG
324 return sap;
325}
326
82ccf5a5
JK
327/* Create a section_addr_info from section offsets in OBJFILE. */
328
329struct section_addr_info *
330build_section_addr_info_from_objfile (const struct objfile *objfile)
331{
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346}
62557bbc 347
c378eb4e 348/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
349
350extern void
351free_section_addr_info (struct section_addr_info *sap)
352{
353 int idx;
354
a39a16c4 355 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 356 if (sap->other[idx].name)
b8c9b27d
KB
357 xfree (sap->other[idx].name);
358 xfree (sap);
62557bbc
KB
359}
360
361
e8289572
JB
362/* Initialize OBJFILE's sect_index_* members. */
363static void
364init_objfile_sect_indices (struct objfile *objfile)
c906108c 365{
e8289572 366 asection *sect;
c906108c 367 int i;
5417f6dc 368
b8fbeb18 369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 382 if (sect)
b8fbeb18
EZ
383 objfile->sect_index_rodata = sect->index;
384
bbcd32ad
FF
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
31d99776
DJ
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
bbcd32ad
FF
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
b8fbeb18 420}
c906108c 421
c1bd25fd
DJ
422/* The arguments to place_section. */
423
424struct place_section_arg
425{
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428};
429
430/* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
2c0b251b 433static void
c1bd25fd
DJ
434place_section (bfd *abfd, asection *sect, void *obj)
435{
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
3bd72c6f 439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 440
2711e456
DJ
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
450 start_addr = (arg->lowest + align - 1) & -align;
451
c1bd25fd
DJ
452 do {
453 asection *cur_sec;
c1bd25fd 454
c1bd25fd
DJ
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
c1bd25fd
DJ
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
2711e456
DJ
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
3bd72c6f 482 break;
c1bd25fd
DJ
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 492}
e8289572 493
75242ef4
JK
494/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
e8289572
JB
497
498void
75242ef4
JK
499relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
e8289572
JB
502{
503 int i;
504
75242ef4 505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 506
c378eb4e 507 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 509 {
75242ef4 510 struct other_sections *osp;
e8289572 511
75242ef4 512 osp = &addrs->other[i];
5488dafb 513 if (osp->sectindex == -1)
e8289572
JB
514 continue;
515
c378eb4e 516 /* Record all sections in offsets. */
e8289572 517 /* The section_offsets in the objfile are here filled in using
c378eb4e 518 the BFD index. */
75242ef4
JK
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521}
522
1276c759
JK
523/* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529static const char *
530addr_section_name (const char *s)
531{
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538}
539
82ccf5a5
JK
540/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543static int
544addrs_section_compar (const void *ap, const void *bp)
545{
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 548 int retval;
82ccf5a5 549
1276c759 550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
551 if (retval)
552 return retval;
553
5488dafb 554 return a->sectindex - b->sectindex;
82ccf5a5
JK
555}
556
557/* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560static struct other_sections **
561addrs_section_sort (struct section_addr_info *addrs)
562{
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575}
576
75242ef4 577/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
580
581void
582addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583{
584 asection *lower_sect;
75242ef4
JK
585 CORE_ADDR lower_offset;
586 int i;
82ccf5a5
JK
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
591
592 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
e8289572 601 }
75242ef4
JK
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
82ccf5a5
JK
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
c378eb4e
MS
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
1276c759 632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
633
634 while (*abfd_addrs_sorted
1276c759
JK
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
82ccf5a5
JK
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
1276c759
JK
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
82ccf5a5
JK
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
75242ef4
JK
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
82ccf5a5 669 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
670
671 if (sect)
75242ef4 672 {
c378eb4e 673 /* This is the index used by BFD. */
82ccf5a5 674 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
675
676 if (addrs->other[i].addr != 0)
75242ef4 677 {
82ccf5a5 678 addrs->other[i].addr -= sect->addr;
75242ef4 679 lower_offset = addrs->other[i].addr;
75242ef4
JK
680 }
681 else
672d9c23 682 addrs->other[i].addr = lower_offset;
75242ef4
JK
683 }
684 else
672d9c23 685 {
1276c759
JK
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
b0fcb67f
JK
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
4d9743af
JK
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
1276c759
JK
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 704 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
672d9c23 716 addrs->other[i].addr = 0;
5488dafb 717 addrs->other[i].sectindex = -1;
672d9c23 718 }
75242ef4 719 }
82ccf5a5
JK
720
721 do_cleanups (my_cleanup);
75242ef4
JK
722}
723
724/* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730void
731default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733{
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
e8289572 740
c1bd25fd
DJ
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
2711e456
DJ
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
2711e456
DJ
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
30510692 803 offsets[cur_sec->index]);
2711e456
DJ
804 offsets[cur_sec->index] = 0;
805 }
806 }
c1bd25fd
DJ
807 }
808
e8289572 809 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 810 .rodata sections. */
e8289572
JB
811 init_objfile_sect_indices (objfile);
812}
813
814
31d99776
DJ
815/* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821struct symfile_segment_data *
822default_symfile_segments (bfd *abfd)
823{
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877}
878
c906108c
SS
879/* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
96baa820
JM
882 OBJFILE is where the symbols are to be read from.
883
7e8580c1
JB
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
96baa820 904
7eedccfa
PP
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
c906108c
SS
908
909void
7e8580c1
JB
910syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
7eedccfa 914 int add_flags)
c906108c 915{
a39a16c4 916 struct section_addr_info *local_addr = NULL;
c906108c 917 struct cleanup *old_chain;
7eedccfa 918 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 919
7e8580c1 920 gdb_assert (! (addrs && offsets));
2acceee2 921
c906108c 922 init_entry_point_info (objfile);
31d99776 923 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 924
75245b24 925 if (objfile->sf == NULL)
c378eb4e 926 return; /* No symbols. */
75245b24 927
c906108c
SS
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
74b7792f 930 old_chain = make_cleanup_free_objfile (objfile);
c906108c 931
a39a16c4
MM
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
c378eb4e 934 no load address was specified. */
a39a16c4
MM
935 if (! addrs && ! offsets)
936 {
5417f6dc 937 local_addr
a39a16c4
MM
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
c5aa993b 945 if (mainline)
c906108c
SS
946 {
947 /* We will modify the main symbol table, make sure that all its users
c5aa993b 948 will be cleaned up if an error occurs during symbol reading. */
74b7792f 949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
adb7f338 956 gdb_assert (symfile_objfile == NULL);
c906108c
SS
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
c906108c 963
c5aa993b 964 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
53a5351d 969 and assume that <addr> is where that got loaded.
c906108c 970
53a5351d
JM
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
0d15807d 973 if (addrs && addrs->other[0].name)
75242ef4 974 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
c378eb4e 978 initial symbol reading for this file. */
c906108c 979
c5aa993b 980 (*objfile->sf->sym_init) (objfile);
7eedccfa 981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 982
7e8580c1
JB
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
8b92e4d5 993 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
c906108c 998
f4352531 999 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1000
b11896a5
TT
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
1010/* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1013
c906108c 1014void
7eedccfa 1015new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1016{
c906108c 1017 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1018 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1019 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1020 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
c1e56572 1025 clear_symtab_users (add_flags);
c906108c 1026 }
7eedccfa 1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1028 {
69de3c6a 1029 breakpoint_re_set ();
c906108c
SS
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1034}
1035
1036/* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
5417f6dc
RM
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1041
7eedccfa
PP
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1048
63524580
JK
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
c906108c 1052 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1053 Upon failure, jumps back to command level (never returns). */
7eedccfa 1054
7904e09f 1055static struct objfile *
7eedccfa
PP
1056symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
7904e09f
JB
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
63524580 1061 int flags, struct objfile *parent)
c906108c
SS
1062{
1063 struct objfile *objfile;
a39a16c4 1064 struct cleanup *my_cleanups;
5417f6dc 1065 const char *name = bfd_get_filename (abfd);
7eedccfa 1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1067 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1068 const int should_print = ((from_tty || info_verbose)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1071
9291a0cd 1072 if (readnow_symbol_files)
b11896a5
TT
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
9291a0cd 1077
f9a062ff 1078 my_cleanups = make_cleanup_bfd_unref (abfd);
c906108c 1079
5417f6dc
RM
1080 /* Give user a chance to burp if we'd be
1081 interactively wiping out any existing symbols. */
c906108c
SS
1082
1083 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1084 && mainline
c906108c 1085 && from_tty
9e2f0ad4 1086 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1087 error (_("Not confirmed."));
c906108c 1088
0838fb57 1089 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1090 discard_cleanups (my_cleanups);
c906108c 1091
63524580
JK
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
78a4a9b9
AC
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
c378eb4e 1097 performed, or need to read an unmapped symbol table. */
b11896a5 1098 if (should_print)
c906108c 1099 {
769d7dc4
AC
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1102 else
c906108c 1103 {
55333a84
DE
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
c906108c 1107 }
c906108c 1108 }
78a4a9b9 1109 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1110 add_flags);
c906108c
SS
1111
1112 /* We now have at least a partial symbol table. Check to see if the
1113 user requested that all symbols be read on initial access via either
1114 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1115 all partial symbol tables for this objfile if so. */
c906108c 1116
9291a0cd 1117 if ((flags & OBJF_READNOW))
c906108c 1118 {
b11896a5 1119 if (should_print)
c906108c 1120 {
a3f17187 1121 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125
ccefe4c4
TT
1126 if (objfile->sf)
1127 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1128 }
1129
b11896a5 1130 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1131 {
1132 wrap_here ("");
55333a84 1133 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1134 wrap_here ("");
1135 }
1136
b11896a5 1137 if (should_print)
c906108c 1138 {
769d7dc4
AC
1139 if (deprecated_post_add_symbol_hook)
1140 deprecated_post_add_symbol_hook ();
c906108c 1141 else
55333a84 1142 printf_unfiltered (_("done.\n"));
c906108c
SS
1143 }
1144
481d0f41
JB
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
109f874e 1150 if (objfile->sf == NULL)
8caee43b
PP
1151 {
1152 observer_notify_new_objfile (objfile);
c378eb4e 1153 return objfile; /* No symbols. */
8caee43b 1154 }
109f874e 1155
7eedccfa 1156 new_symfile_objfile (objfile, add_flags);
c906108c 1157
06d3b283 1158 observer_notify_new_objfile (objfile);
c906108c 1159
ce7d4522 1160 bfd_cache_close_all ();
c906108c
SS
1161 return (objfile);
1162}
1163
9cce227f
TG
1164/* Add BFD as a separate debug file for OBJFILE. */
1165
1166void
1167symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1168{
15d123c9 1169 struct objfile *new_objfile;
089b4803
TG
1170 struct section_addr_info *sap;
1171 struct cleanup *my_cleanup;
1172
1173 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1174 because sections of BFD may not match sections of OBJFILE and because
1175 vma may have been modified by tools such as prelink. */
1176 sap = build_section_addr_info_from_objfile (objfile);
1177 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1178
15d123c9 1179 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1180 (bfd, symfile_flags,
089b4803 1181 sap, NULL, 0,
9cce227f 1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1183 | OBJF_USERLOADED),
1184 objfile);
089b4803
TG
1185
1186 do_cleanups (my_cleanup);
9cce227f 1187}
7904e09f 1188
eb4556d7
JB
1189/* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191
1192 See symbol_file_add_with_addrs_or_offsets's comments for
1193 details. */
1194struct objfile *
7eedccfa 1195symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1196 struct section_addr_info *addrs,
63524580 1197 int flags, struct objfile *parent)
eb4556d7 1198{
7eedccfa 1199 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1200 flags, parent);
eb4556d7
JB
1201}
1202
1203
7904e09f
JB
1204/* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1206 for details. */
1207struct objfile *
7eedccfa
PP
1208symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1209 int flags)
7904e09f 1210{
7eedccfa 1211 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1212 flags, NULL);
7904e09f
JB
1213}
1214
1215
d7db6da9
FN
1216/* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
5417f6dc 1223
1adeb98a
FN
1224void
1225symbol_file_add_main (char *args, int from_tty)
1226{
d7db6da9
FN
1227 symbol_file_add_main_1 (args, from_tty, 0);
1228}
1229
1230static void
1231symbol_file_add_main_1 (char *args, int from_tty, int flags)
1232{
7dcd53a0
TT
1233 const int add_flags = (current_inferior ()->symfile_flags
1234 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1235
7eedccfa 1236 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1237
d7db6da9
FN
1238 /* Getting new symbols may change our opinion about
1239 what is frameless. */
1240 reinit_frame_cache ();
1241
7dcd53a0
TT
1242 if ((flags & SYMFILE_NO_READ) == 0)
1243 set_initial_language ();
1adeb98a
FN
1244}
1245
1246void
1247symbol_file_clear (int from_tty)
1248{
1249 if ((have_full_symbols () || have_partial_symbols ())
1250 && from_tty
0430b0d6
AS
1251 && (symfile_objfile
1252 ? !query (_("Discard symbol table from `%s'? "),
1253 symfile_objfile->name)
1254 : !query (_("Discard symbol table? "))))
8a3fe4f8 1255 error (_("Not confirmed."));
1adeb98a 1256
0133421a
JK
1257 /* solib descriptors may have handles to objfiles. Wipe them before their
1258 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1259 no_shared_libraries (NULL, from_tty);
1260
0133421a
JK
1261 free_all_objfiles ();
1262
adb7f338 1263 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1264 if (from_tty)
1265 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1266}
1267
5b5d99cf
JB
1268static char *
1269get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270{
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
5417f6dc 1276
5b5d99cf
JB
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1283
5b5d99cf
JB
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
c378eb4e 1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1293
5b5d99cf
JB
1294 *crc32_out = crc32;
1295 return contents;
1296}
1297
904578ed
JK
1298/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1299 return 1. Otherwise print a warning and return 0. ABFD seek position is
1300 not preserved. */
1301
1302static int
1303get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1304{
1305 unsigned long file_crc = 0;
1306
1307 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1308 {
1309 warning (_("Problem reading \"%s\" for CRC: %s"),
1310 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1311 return 0;
1312 }
1313
1314 for (;;)
1315 {
1316 gdb_byte buffer[8 * 1024];
1317 bfd_size_type count;
1318
1319 count = bfd_bread (buffer, sizeof (buffer), abfd);
1320 if (count == (bfd_size_type) -1)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326 if (count == 0)
1327 break;
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 }
1330
1331 *file_crc_return = file_crc;
1332 return 1;
1333}
1334
5b5d99cf 1335static int
287ccc17 1336separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
f1838a98 1341 bfd *abfd;
32a0e547 1342 struct stat parent_stat, abfd_stat;
904578ed 1343 int verified_as_different;
32a0e547
JK
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1349 the separate debug infos with the same basename can exist. */
32a0e547 1350
0ba1096a 1351 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1352 return 0;
5b5d99cf 1353
874f5765 1354 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1355
1356 if (!abfd)
5b5d99cf
JB
1357 return 0;
1358
0ba1096a 1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Do not indicate a duplicate library in that
1364 case. While there is no guarantee that a system that provides
1365 meaningful inode numbers will never set st_ino to zero, this is
1366 merely an optimization, so we do not need to worry about false
1367 negatives. */
1368
1369 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1370 && abfd_stat.st_ino != 0
1371 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1372 {
904578ed
JK
1373 if (abfd_stat.st_dev == parent_stat.st_dev
1374 && abfd_stat.st_ino == parent_stat.st_ino)
1375 {
cbb099e8 1376 gdb_bfd_unref (abfd);
904578ed
JK
1377 return 0;
1378 }
1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
904578ed 1384 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1385
cbb099e8 1386 gdb_bfd_unref (abfd);
5b5d99cf 1387
904578ed
JK
1388 if (!file_crc_p)
1389 return 0;
1390
287ccc17
JK
1391 if (crc != file_crc)
1392 {
904578ed
JK
1393 /* If one (or both) the files are accessed for example the via "remote:"
1394 gdbserver way it does not support the bfd_stat operation. Verify
1395 whether those two files are not the same manually. */
1396
1397 if (!verified_as_different && !parent_objfile->crc32_p)
1398 {
1399 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1400 &parent_objfile->crc32);
1401 if (!parent_objfile->crc32_p)
1402 return 0;
1403 }
1404
0e8aefe7 1405 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1406 warning (_("the debug information found in \"%s\""
1407 " does not match \"%s\" (CRC mismatch).\n"),
1408 name, parent_objfile->name);
1409
287ccc17
JK
1410 return 0;
1411 }
1412
1413 return 1;
5b5d99cf
JB
1414}
1415
aa28a74e 1416char *debug_file_directory = NULL;
920d2a44
AC
1417static void
1418show_debug_file_directory (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420{
3e43a32a
MS
1421 fprintf_filtered (file,
1422 _("The directory where separate debug "
1423 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1424 value);
1425}
5b5d99cf
JB
1426
1427#if ! defined (DEBUG_SUBDIRECTORY)
1428#define DEBUG_SUBDIRECTORY ".debug"
1429#endif
1430
1db33378
PP
1431/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1432 where the original file resides (may not be the same as
1433 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1434 looking for. Returns the name of the debuginfo, of NULL. */
1435
1436static char *
1437find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
9cce227f 1441{
1db33378
PP
1442 char *debugdir;
1443 char *debugfile;
9cce227f 1444 int i;
e4ab2fad
JK
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
5b5d99cf 1448
1db33378 1449 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1450 i = strlen (dir);
1db33378
PP
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1ffa32ee 1453
25522fae
JK
1454 debugfile = xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1db33378 1458 + strlen (debuglink)
25522fae 1459 + 1);
5b5d99cf
JB
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1db33378 1463 strcat (debugfile, debuglink);
5b5d99cf 1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1466 return debugfile;
5417f6dc 1467
5b5d99cf
JB
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1db33378 1472 strcat (debugfile, debuglink);
5b5d99cf 1473
32a0e547 1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1475 return debugfile;
5417f6dc 1476
24ddea62 1477 /* Then try in the global debugfile directories.
f888f159 1478
24ddea62
JK
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
5417f6dc 1481
e4ab2fad
JK
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1484
e4ab2fad
JK
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
aa28a74e 1488 strcat (debugfile, "/");
24ddea62 1489 strcat (debugfile, dir);
1db33378 1490 strcat (debugfile, debuglink);
aa28a74e 1491
32a0e547 1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1493 return debugfile;
24ddea62
JK
1494
1495 /* If the file is in the sysroot, try using its base path in the
1496 global debugfile directory. */
1db33378
PP
1497 if (canon_dir != NULL
1498 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1499 strlen (gdb_sysroot)) == 0
1db33378 1500 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1501 {
e4ab2fad 1502 strcpy (debugfile, debugdir);
1db33378 1503 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1504 strcat (debugfile, "/");
1db33378 1505 strcat (debugfile, debuglink);
24ddea62 1506
32a0e547 1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1508 return debugfile;
24ddea62 1509 }
aa28a74e 1510 }
f888f159 1511
e4ab2fad 1512 do_cleanups (back_to);
25522fae 1513 xfree (debugfile);
1db33378
PP
1514 return NULL;
1515}
1516
1517/* Modify PATH to contain only "directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521static void
1522terminate_after_last_dir_separator (char *path)
1523{
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534}
1535
1536/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539char *
1540find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541{
1542 char *debuglink;
1543 char *dir, *canon_dir;
1544 char *debugfile;
1545 unsigned long crc32;
1546 struct cleanup *cleanups;
1547
1548 debuglink = get_debug_link_info (objfile, &crc32);
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return NULL;
1555 }
1556
71bdabee 1557 cleanups = make_cleanup (xfree, debuglink);
1db33378 1558 dir = xstrdup (objfile->name);
71bdabee 1559 make_cleanup (xfree, dir);
1db33378
PP
1560 terminate_after_last_dir_separator (dir);
1561 canon_dir = lrealpath (dir);
1562
1563 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1564 crc32, objfile);
1565 xfree (canon_dir);
1566
1567 if (debugfile == NULL)
1568 {
1569#ifdef HAVE_LSTAT
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1576 {
1577 char *symlink_dir;
1578
1579 symlink_dir = lrealpath (objfile->name);
1580 if (symlink_dir != NULL)
1581 {
1582 make_cleanup (xfree, symlink_dir);
1583 terminate_after_last_dir_separator (symlink_dir);
1584 if (strcmp (dir, symlink_dir) != 0)
1585 {
1586 /* Different directory, so try using it. */
1587 debugfile = find_separate_debug_file (symlink_dir,
1588 symlink_dir,
1589 debuglink,
1590 crc32,
1591 objfile);
1592 }
1593 }
1594 }
1595#endif /* HAVE_LSTAT */
1596 }
aa28a74e 1597
1db33378 1598 do_cleanups (cleanups);
25522fae 1599 return debugfile;
5b5d99cf
JB
1600}
1601
1602
c906108c
SS
1603/* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
c906108c
SS
1615 conventions (because it is confusing and inconvenient). */
1616
1617void
fba45db2 1618symbol_file_command (char *args, int from_tty)
c906108c 1619{
c906108c
SS
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1adeb98a 1624 symbol_file_clear (from_tty);
c906108c
SS
1625 }
1626 else
1627 {
d1a41061 1628 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1629 int flags = OBJF_USERLOADED;
1630 struct cleanup *cleanups;
1631 char *name = NULL;
1632
7a292a7a 1633 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1634 while (*argv != NULL)
1635 {
78a4a9b9
AC
1636 if (strcmp (*argv, "-readnow") == 0)
1637 flags |= OBJF_READNOW;
1638 else if (**argv == '-')
8a3fe4f8 1639 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1640 else
1641 {
cb2f3a29 1642 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1643 name = *argv;
78a4a9b9 1644 }
cb2f3a29 1645
c906108c
SS
1646 argv++;
1647 }
1648
1649 if (name == NULL)
cb2f3a29
MK
1650 error (_("no symbol file name was specified"));
1651
c906108c
SS
1652 do_cleanups (cleanups);
1653 }
1654}
1655
1656/* Set the initial language.
1657
cb2f3a29
MK
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
c906108c 1666
8b60591b 1667void
fba45db2 1668set_initial_language (void)
c906108c 1669{
c5aa993b 1670 enum language lang = language_unknown;
c906108c 1671
01f8c46d
JK
1672 if (language_of_main != language_unknown)
1673 lang = language_of_main;
1674 else
1675 {
1676 const char *filename;
f888f159 1677
01f8c46d
JK
1678 filename = find_main_filename ();
1679 if (filename != NULL)
1680 lang = deduce_language_from_filename (filename);
1681 }
cb2f3a29 1682
ccefe4c4
TT
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
c906108c 1687 }
ccefe4c4
TT
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1691}
1692
874f5765 1693/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1694 open it normally. Returns a new reference to the BFD. On error,
1695 returns NULL with the BFD error set. */
874f5765
TG
1696
1697bfd *
1698bfd_open_maybe_remote (const char *name)
1699{
520b0001
TT
1700 bfd *result;
1701
874f5765 1702 if (remote_filename_p (name))
520b0001 1703 result = remote_bfd_open (name, gnutarget);
874f5765 1704 else
64c31149 1705 result = gdb_bfd_openr (name, gnutarget);
520b0001 1706
520b0001 1707 return result;
874f5765
TG
1708}
1709
1710
cb2f3a29
MK
1711/* Open the file specified by NAME and hand it off to BFD for
1712 preliminary analysis. Return a newly initialized bfd *, which
1713 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1714 absolute). In case of trouble, error() is called. */
c906108c
SS
1715
1716bfd *
fba45db2 1717symfile_bfd_open (char *name)
c906108c
SS
1718{
1719 bfd *sym_bfd;
1720 int desc;
1721 char *absolute_name;
1722
f1838a98
UW
1723 if (remote_filename_p (name))
1724 {
520b0001 1725 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1726 if (!sym_bfd)
a4453b7e
TT
1727 error (_("`%s': can't open to read symbols: %s."), name,
1728 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1729
1730 if (!bfd_check_format (sym_bfd, bfd_object))
1731 {
f9a062ff 1732 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1733 error (_("`%s': can't read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
1735 }
1736
1737 return sym_bfd;
1738 }
1739
cb2f3a29 1740 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1741
1742 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1743 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1744 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1745#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1746 if (desc < 0)
1747 {
1748 char *exename = alloca (strlen (name) + 5);
433759f7 1749
c906108c 1750 strcat (strcpy (exename, name), ".exe");
014d698b 1751 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1752 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1753 }
1754#endif
1755 if (desc < 0)
1756 {
b8c9b27d 1757 make_cleanup (xfree, name);
c906108c
SS
1758 perror_with_name (name);
1759 }
cb2f3a29 1760
cb2f3a29
MK
1761 xfree (name);
1762 name = absolute_name;
a4453b7e 1763 make_cleanup (xfree, name);
c906108c 1764
64c31149 1765 sym_bfd = gdb_bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1766 if (!sym_bfd)
1767 {
b8c9b27d 1768 make_cleanup (xfree, name);
f1838a98 1769 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1770 bfd_errmsg (bfd_get_error ()));
1771 }
549c1eea 1772 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1773
1774 if (!bfd_check_format (sym_bfd, bfd_object))
1775 {
f9a062ff 1776 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1777 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1778 bfd_errmsg (bfd_get_error ()));
1779 }
cb2f3a29
MK
1780
1781 return sym_bfd;
c906108c
SS
1782}
1783
cb2f3a29
MK
1784/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1785 the section was not found. */
1786
0e931cf0
JB
1787int
1788get_section_index (struct objfile *objfile, char *section_name)
1789{
1790 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1791
0e931cf0
JB
1792 if (sect)
1793 return sect->index;
1794 else
1795 return -1;
1796}
1797
cb2f3a29
MK
1798/* Link SF into the global symtab_fns list. Called on startup by the
1799 _initialize routine in each object file format reader, to register
b021a221 1800 information about each format the reader is prepared to handle. */
c906108c
SS
1801
1802void
00b5771c 1803add_symtab_fns (const struct sym_fns *sf)
c906108c 1804{
00b5771c 1805 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1806}
1807
cb2f3a29
MK
1808/* Initialize OBJFILE to read symbols from its associated BFD. It
1809 either returns or calls error(). The result is an initialized
1810 struct sym_fns in the objfile structure, that contains cached
1811 information about the symbol file. */
c906108c 1812
00b5771c 1813static const struct sym_fns *
31d99776 1814find_sym_fns (bfd *abfd)
c906108c 1815{
00b5771c 1816 const struct sym_fns *sf;
31d99776 1817 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1818 int i;
c906108c 1819
75245b24
MS
1820 if (our_flavour == bfd_target_srec_flavour
1821 || our_flavour == bfd_target_ihex_flavour
1822 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1823 return NULL; /* No symbols. */
75245b24 1824
00b5771c 1825 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1826 if (our_flavour == sf->sym_flavour)
1827 return sf;
cb2f3a29 1828
8a3fe4f8 1829 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1830 bfd_get_target (abfd));
c906108c
SS
1831}
1832\f
cb2f3a29 1833
c906108c
SS
1834/* This function runs the load command of our current target. */
1835
1836static void
fba45db2 1837load_command (char *arg, int from_tty)
c906108c 1838{
e5cc9f32
JB
1839 dont_repeat ();
1840
4487aabf
PA
1841 /* The user might be reloading because the binary has changed. Take
1842 this opportunity to check. */
1843 reopen_exec_file ();
1844 reread_symbols ();
1845
c906108c 1846 if (arg == NULL)
1986bccd
AS
1847 {
1848 char *parg;
1849 int count = 0;
1850
1851 parg = arg = get_exec_file (1);
1852
1853 /* Count how many \ " ' tab space there are in the name. */
1854 while ((parg = strpbrk (parg, "\\\"'\t ")))
1855 {
1856 parg++;
1857 count++;
1858 }
1859
1860 if (count)
1861 {
1862 /* We need to quote this string so buildargv can pull it apart. */
1863 char *temp = xmalloc (strlen (arg) + count + 1 );
1864 char *ptemp = temp;
1865 char *prev;
1866
1867 make_cleanup (xfree, temp);
1868
1869 prev = parg = arg;
1870 while ((parg = strpbrk (parg, "\\\"'\t ")))
1871 {
1872 strncpy (ptemp, prev, parg - prev);
1873 ptemp += parg - prev;
1874 prev = parg++;
1875 *ptemp++ = '\\';
1876 }
1877 strcpy (ptemp, prev);
1878
1879 arg = temp;
1880 }
1881 }
1882
c906108c 1883 target_load (arg, from_tty);
2889e661
JB
1884
1885 /* After re-loading the executable, we don't really know which
1886 overlays are mapped any more. */
1887 overlay_cache_invalid = 1;
c906108c
SS
1888}
1889
1890/* This version of "load" should be usable for any target. Currently
1891 it is just used for remote targets, not inftarg.c or core files,
1892 on the theory that only in that case is it useful.
1893
1894 Avoiding xmodem and the like seems like a win (a) because we don't have
1895 to worry about finding it, and (b) On VMS, fork() is very slow and so
1896 we don't want to run a subprocess. On the other hand, I'm not sure how
1897 performance compares. */
917317f4 1898
917317f4
JM
1899static int validate_download = 0;
1900
e4f9b4d5
MS
1901/* Callback service function for generic_load (bfd_map_over_sections). */
1902
1903static void
1904add_section_size_callback (bfd *abfd, asection *asec, void *data)
1905{
1906 bfd_size_type *sum = data;
1907
2c500098 1908 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1909}
1910
1911/* Opaque data for load_section_callback. */
1912struct load_section_data {
1913 unsigned long load_offset;
a76d924d
DJ
1914 struct load_progress_data *progress_data;
1915 VEC(memory_write_request_s) *requests;
1916};
1917
1918/* Opaque data for load_progress. */
1919struct load_progress_data {
1920 /* Cumulative data. */
e4f9b4d5
MS
1921 unsigned long write_count;
1922 unsigned long data_count;
1923 bfd_size_type total_size;
a76d924d
DJ
1924};
1925
1926/* Opaque data for load_progress for a single section. */
1927struct load_progress_section_data {
1928 struct load_progress_data *cumulative;
cf7a04e8 1929
a76d924d 1930 /* Per-section data. */
cf7a04e8
DJ
1931 const char *section_name;
1932 ULONGEST section_sent;
1933 ULONGEST section_size;
1934 CORE_ADDR lma;
1935 gdb_byte *buffer;
e4f9b4d5
MS
1936};
1937
a76d924d 1938/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1939
1940static void
1941load_progress (ULONGEST bytes, void *untyped_arg)
1942{
a76d924d
DJ
1943 struct load_progress_section_data *args = untyped_arg;
1944 struct load_progress_data *totals;
1945
1946 if (args == NULL)
1947 /* Writing padding data. No easy way to get at the cumulative
1948 stats, so just ignore this. */
1949 return;
1950
1951 totals = args->cumulative;
1952
1953 if (bytes == 0 && args->section_sent == 0)
1954 {
1955 /* The write is just starting. Let the user know we've started
1956 this section. */
79a45e25 1957 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1958 args->section_name, hex_string (args->section_size),
1959 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1960 return;
1961 }
cf7a04e8
DJ
1962
1963 if (validate_download)
1964 {
1965 /* Broken memories and broken monitors manifest themselves here
1966 when bring new computers to life. This doubles already slow
1967 downloads. */
1968 /* NOTE: cagney/1999-10-18: A more efficient implementation
1969 might add a verify_memory() method to the target vector and
1970 then use that. remote.c could implement that method using
1971 the ``qCRC'' packet. */
1972 gdb_byte *check = xmalloc (bytes);
1973 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1974
1975 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1976 error (_("Download verify read failed at %s"),
1977 paddress (target_gdbarch, args->lma));
cf7a04e8 1978 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1979 error (_("Download verify compare failed at %s"),
1980 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1981 do_cleanups (verify_cleanups);
1982 }
a76d924d 1983 totals->data_count += bytes;
cf7a04e8
DJ
1984 args->lma += bytes;
1985 args->buffer += bytes;
a76d924d 1986 totals->write_count += 1;
cf7a04e8
DJ
1987 args->section_sent += bytes;
1988 if (quit_flag
1989 || (deprecated_ui_load_progress_hook != NULL
1990 && deprecated_ui_load_progress_hook (args->section_name,
1991 args->section_sent)))
1992 error (_("Canceled the download"));
1993
1994 if (deprecated_show_load_progress != NULL)
1995 deprecated_show_load_progress (args->section_name,
1996 args->section_sent,
1997 args->section_size,
a76d924d
DJ
1998 totals->data_count,
1999 totals->total_size);
cf7a04e8
DJ
2000}
2001
e4f9b4d5
MS
2002/* Callback service function for generic_load (bfd_map_over_sections). */
2003
2004static void
2005load_section_callback (bfd *abfd, asection *asec, void *data)
2006{
a76d924d 2007 struct memory_write_request *new_request;
e4f9b4d5 2008 struct load_section_data *args = data;
a76d924d 2009 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2010 bfd_size_type size = bfd_get_section_size (asec);
2011 gdb_byte *buffer;
cf7a04e8 2012 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2013
cf7a04e8
DJ
2014 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2015 return;
e4f9b4d5 2016
cf7a04e8
DJ
2017 if (size == 0)
2018 return;
e4f9b4d5 2019
a76d924d
DJ
2020 new_request = VEC_safe_push (memory_write_request_s,
2021 args->requests, NULL);
2022 memset (new_request, 0, sizeof (struct memory_write_request));
2023 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2024 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2025 new_request->end = new_request->begin + size; /* FIXME Should size
2026 be in instead? */
a76d924d
DJ
2027 new_request->data = xmalloc (size);
2028 new_request->baton = section_data;
cf7a04e8 2029
a76d924d 2030 buffer = new_request->data;
cf7a04e8 2031
a76d924d
DJ
2032 section_data->cumulative = args->progress_data;
2033 section_data->section_name = sect_name;
2034 section_data->section_size = size;
2035 section_data->lma = new_request->begin;
2036 section_data->buffer = buffer;
cf7a04e8
DJ
2037
2038 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2039}
2040
2041/* Clean up an entire memory request vector, including load
2042 data and progress records. */
cf7a04e8 2043
a76d924d
DJ
2044static void
2045clear_memory_write_data (void *arg)
2046{
2047 VEC(memory_write_request_s) **vec_p = arg;
2048 VEC(memory_write_request_s) *vec = *vec_p;
2049 int i;
2050 struct memory_write_request *mr;
cf7a04e8 2051
a76d924d
DJ
2052 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2053 {
2054 xfree (mr->data);
2055 xfree (mr->baton);
2056 }
2057 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2058}
2059
c906108c 2060void
917317f4 2061generic_load (char *args, int from_tty)
c906108c 2062{
c906108c 2063 bfd *loadfile_bfd;
2b71414d 2064 struct timeval start_time, end_time;
917317f4 2065 char *filename;
1986bccd 2066 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2067 struct load_section_data cbdata;
a76d924d 2068 struct load_progress_data total_progress;
79a45e25 2069 struct ui_out *uiout = current_uiout;
a76d924d 2070
e4f9b4d5 2071 CORE_ADDR entry;
1986bccd 2072 char **argv;
e4f9b4d5 2073
a76d924d
DJ
2074 memset (&cbdata, 0, sizeof (cbdata));
2075 memset (&total_progress, 0, sizeof (total_progress));
2076 cbdata.progress_data = &total_progress;
2077
2078 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2079
d1a41061
PP
2080 if (args == NULL)
2081 error_no_arg (_("file to load"));
1986bccd 2082
d1a41061 2083 argv = gdb_buildargv (args);
1986bccd
AS
2084 make_cleanup_freeargv (argv);
2085
2086 filename = tilde_expand (argv[0]);
2087 make_cleanup (xfree, filename);
2088
2089 if (argv[1] != NULL)
917317f4
JM
2090 {
2091 char *endptr;
ba5f2f8a 2092
1986bccd
AS
2093 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2094
2095 /* If the last word was not a valid number then
2096 treat it as a file name with spaces in. */
2097 if (argv[1] == endptr)
2098 error (_("Invalid download offset:%s."), argv[1]);
2099
2100 if (argv[2] != NULL)
2101 error (_("Too many parameters."));
917317f4 2102 }
c906108c 2103
c378eb4e 2104 /* Open the file for loading. */
64c31149 2105 loadfile_bfd = gdb_bfd_openr (filename, gnutarget);
c906108c
SS
2106 if (loadfile_bfd == NULL)
2107 {
2108 perror_with_name (filename);
2109 return;
2110 }
917317f4 2111
f9a062ff 2112 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2113
c5aa993b 2114 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2115 {
8a3fe4f8 2116 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2117 bfd_errmsg (bfd_get_error ()));
2118 }
c5aa993b 2119
5417f6dc 2120 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2121 (void *) &total_progress.total_size);
2122
2123 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2124
2b71414d 2125 gettimeofday (&start_time, NULL);
c906108c 2126
a76d924d
DJ
2127 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2128 load_progress) != 0)
2129 error (_("Load failed"));
c906108c 2130
2b71414d 2131 gettimeofday (&end_time, NULL);
ba5f2f8a 2132
e4f9b4d5 2133 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2134 ui_out_text (uiout, "Start address ");
5af949e3 2135 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2136 ui_out_text (uiout, ", load size ");
a76d924d 2137 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2138 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2139 /* We were doing this in remote-mips.c, I suspect it is right
2140 for other targets too. */
fb14de7b 2141 regcache_write_pc (get_current_regcache (), entry);
c906108c 2142
38963c97
DJ
2143 /* Reset breakpoints, now that we have changed the load image. For
2144 instance, breakpoints may have been set (or reset, by
2145 post_create_inferior) while connected to the target but before we
2146 loaded the program. In that case, the prologue analyzer could
2147 have read instructions from the target to find the right
2148 breakpoint locations. Loading has changed the contents of that
2149 memory. */
2150
2151 breakpoint_re_set ();
2152
7ca9f392
AC
2153 /* FIXME: are we supposed to call symbol_file_add or not? According
2154 to a comment from remote-mips.c (where a call to symbol_file_add
2155 was commented out), making the call confuses GDB if more than one
2156 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2157 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2158
a76d924d
DJ
2159 print_transfer_performance (gdb_stdout, total_progress.data_count,
2160 total_progress.write_count,
2161 &start_time, &end_time);
c906108c
SS
2162
2163 do_cleanups (old_cleanups);
2164}
2165
c378eb4e 2166/* Report how fast the transfer went. */
c906108c 2167
917317f4
JM
2168/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2169 replaced by print_transfer_performance (with a very different
c378eb4e 2170 function signature). */
917317f4 2171
c906108c 2172void
fba45db2
KB
2173report_transfer_performance (unsigned long data_count, time_t start_time,
2174 time_t end_time)
c906108c 2175{
2b71414d
DJ
2176 struct timeval start, end;
2177
2178 start.tv_sec = start_time;
2179 start.tv_usec = 0;
2180 end.tv_sec = end_time;
2181 end.tv_usec = 0;
2182
2183 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2184}
2185
2186void
d9fcf2fb 2187print_transfer_performance (struct ui_file *stream,
917317f4
JM
2188 unsigned long data_count,
2189 unsigned long write_count,
2b71414d
DJ
2190 const struct timeval *start_time,
2191 const struct timeval *end_time)
917317f4 2192{
9f43d28c 2193 ULONGEST time_count;
79a45e25 2194 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2195
2196 /* Compute the elapsed time in milliseconds, as a tradeoff between
2197 accuracy and overflow. */
2198 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2199 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2200
8b93c638
JM
2201 ui_out_text (uiout, "Transfer rate: ");
2202 if (time_count > 0)
2203 {
9f43d28c
DJ
2204 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2205
2206 if (ui_out_is_mi_like_p (uiout))
2207 {
2208 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2209 ui_out_text (uiout, " bits/sec");
2210 }
2211 else if (rate < 1024)
2212 {
2213 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2214 ui_out_text (uiout, " bytes/sec");
2215 }
2216 else
2217 {
2218 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2219 ui_out_text (uiout, " KB/sec");
2220 }
8b93c638
JM
2221 }
2222 else
2223 {
ba5f2f8a 2224 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2225 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2226 }
2227 if (write_count > 0)
2228 {
2229 ui_out_text (uiout, ", ");
ba5f2f8a 2230 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2231 ui_out_text (uiout, " bytes/write");
2232 }
2233 ui_out_text (uiout, ".\n");
c906108c
SS
2234}
2235
2236/* This function allows the addition of incrementally linked object files.
2237 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2238/* Note: ezannoni 2000-04-13 This function/command used to have a
2239 special case syntax for the rombug target (Rombug is the boot
2240 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2241 rombug case, the user doesn't need to supply a text address,
2242 instead a call to target_link() (in target.c) would supply the
c378eb4e 2243 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2244
c906108c 2245static void
fba45db2 2246add_symbol_file_command (char *args, int from_tty)
c906108c 2247{
5af949e3 2248 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2249 char *filename = NULL;
2df3850c 2250 int flags = OBJF_USERLOADED;
c906108c 2251 char *arg;
db162d44 2252 int section_index = 0;
2acceee2
JM
2253 int argcnt = 0;
2254 int sec_num = 0;
2255 int i;
db162d44
EZ
2256 int expecting_sec_name = 0;
2257 int expecting_sec_addr = 0;
5b96932b 2258 char **argv;
db162d44 2259
a39a16c4 2260 struct sect_opt
2acceee2 2261 {
2acceee2
JM
2262 char *name;
2263 char *value;
a39a16c4 2264 };
db162d44 2265
a39a16c4
MM
2266 struct section_addr_info *section_addrs;
2267 struct sect_opt *sect_opts = NULL;
2268 size_t num_sect_opts = 0;
3017564a 2269 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2270
a39a16c4 2271 num_sect_opts = 16;
5417f6dc 2272 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2273 * sizeof (struct sect_opt));
2274
c906108c
SS
2275 dont_repeat ();
2276
2277 if (args == NULL)
8a3fe4f8 2278 error (_("add-symbol-file takes a file name and an address"));
c906108c 2279
d1a41061 2280 argv = gdb_buildargv (args);
5b96932b 2281 make_cleanup_freeargv (argv);
db162d44 2282
5b96932b
AS
2283 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2284 {
c378eb4e 2285 /* Process the argument. */
db162d44 2286 if (argcnt == 0)
c906108c 2287 {
c378eb4e 2288 /* The first argument is the file name. */
db162d44 2289 filename = tilde_expand (arg);
3017564a 2290 make_cleanup (xfree, filename);
c906108c 2291 }
db162d44 2292 else
7a78ae4e
ND
2293 if (argcnt == 1)
2294 {
2295 /* The second argument is always the text address at which
c378eb4e 2296 to load the program. */
7a78ae4e
ND
2297 sect_opts[section_index].name = ".text";
2298 sect_opts[section_index].value = arg;
f414f22f 2299 if (++section_index >= num_sect_opts)
a39a16c4
MM
2300 {
2301 num_sect_opts *= 2;
5417f6dc 2302 sect_opts = ((struct sect_opt *)
a39a16c4 2303 xrealloc (sect_opts,
5417f6dc 2304 num_sect_opts
a39a16c4
MM
2305 * sizeof (struct sect_opt)));
2306 }
7a78ae4e
ND
2307 }
2308 else
2309 {
2310 /* It's an option (starting with '-') or it's an argument
c378eb4e 2311 to an option. */
7a78ae4e
ND
2312
2313 if (*arg == '-')
2314 {
78a4a9b9
AC
2315 if (strcmp (arg, "-readnow") == 0)
2316 flags |= OBJF_READNOW;
2317 else if (strcmp (arg, "-s") == 0)
2318 {
2319 expecting_sec_name = 1;
2320 expecting_sec_addr = 1;
2321 }
7a78ae4e
ND
2322 }
2323 else
2324 {
2325 if (expecting_sec_name)
db162d44 2326 {
7a78ae4e
ND
2327 sect_opts[section_index].name = arg;
2328 expecting_sec_name = 0;
db162d44
EZ
2329 }
2330 else
7a78ae4e
ND
2331 if (expecting_sec_addr)
2332 {
2333 sect_opts[section_index].value = arg;
2334 expecting_sec_addr = 0;
f414f22f 2335 if (++section_index >= num_sect_opts)
a39a16c4
MM
2336 {
2337 num_sect_opts *= 2;
5417f6dc 2338 sect_opts = ((struct sect_opt *)
a39a16c4 2339 xrealloc (sect_opts,
5417f6dc 2340 num_sect_opts
a39a16c4
MM
2341 * sizeof (struct sect_opt)));
2342 }
7a78ae4e
ND
2343 }
2344 else
3e43a32a 2345 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2346 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2347 }
2348 }
c906108c 2349 }
c906108c 2350
927890d0
JB
2351 /* This command takes at least two arguments. The first one is a
2352 filename, and the second is the address where this file has been
2353 loaded. Abort now if this address hasn't been provided by the
2354 user. */
2355 if (section_index < 1)
2356 error (_("The address where %s has been loaded is missing"), filename);
2357
c378eb4e 2358 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2359 a sect_addr_info structure to be passed around to other
2360 functions. We have to split this up into separate print
bb599908 2361 statements because hex_string returns a local static
c378eb4e 2362 string. */
5417f6dc 2363
a3f17187 2364 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2365 section_addrs = alloc_section_addr_info (section_index);
2366 make_cleanup (xfree, section_addrs);
db162d44 2367 for (i = 0; i < section_index; i++)
c906108c 2368 {
db162d44
EZ
2369 CORE_ADDR addr;
2370 char *val = sect_opts[i].value;
2371 char *sec = sect_opts[i].name;
5417f6dc 2372
ae822768 2373 addr = parse_and_eval_address (val);
db162d44 2374
db162d44 2375 /* Here we store the section offsets in the order they were
c378eb4e 2376 entered on the command line. */
a39a16c4
MM
2377 section_addrs->other[sec_num].name = sec;
2378 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2379 printf_unfiltered ("\t%s_addr = %s\n", sec,
2380 paddress (gdbarch, addr));
db162d44
EZ
2381 sec_num++;
2382
5417f6dc 2383 /* The object's sections are initialized when a
db162d44 2384 call is made to build_objfile_section_table (objfile).
5417f6dc 2385 This happens in reread_symbols.
db162d44
EZ
2386 At this point, we don't know what file type this is,
2387 so we can't determine what section names are valid. */
2acceee2 2388 }
db162d44 2389
2acceee2 2390 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2391 error (_("Not confirmed."));
c906108c 2392
7eedccfa
PP
2393 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2394 section_addrs, flags);
c906108c
SS
2395
2396 /* Getting new symbols may change our opinion about what is
2397 frameless. */
2398 reinit_frame_cache ();
db162d44 2399 do_cleanups (my_cleanups);
c906108c
SS
2400}
2401\f
70992597 2402
4ac39b97
JK
2403typedef struct objfile *objfilep;
2404
2405DEF_VEC_P (objfilep);
2406
c906108c
SS
2407/* Re-read symbols if a symbol-file has changed. */
2408void
fba45db2 2409reread_symbols (void)
c906108c
SS
2410{
2411 struct objfile *objfile;
2412 long new_modtime;
c906108c
SS
2413 struct stat new_statbuf;
2414 int res;
4ac39b97
JK
2415 VEC (objfilep) *new_objfiles = NULL;
2416 struct cleanup *all_cleanups;
2417
2418 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2419
2420 /* With the addition of shared libraries, this should be modified,
2421 the load time should be saved in the partial symbol tables, since
2422 different tables may come from different source files. FIXME.
2423 This routine should then walk down each partial symbol table
c378eb4e 2424 and see if the symbol table that it originates from has been changed. */
c906108c 2425
c5aa993b
JM
2426 for (objfile = object_files; objfile; objfile = objfile->next)
2427 {
9cce227f
TG
2428 /* solib-sunos.c creates one objfile with obfd. */
2429 if (objfile->obfd == NULL)
2430 continue;
2431
2432 /* Separate debug objfiles are handled in the main objfile. */
2433 if (objfile->separate_debug_objfile_backlink)
2434 continue;
2435
02aeec7b
JB
2436 /* If this object is from an archive (what you usually create with
2437 `ar', often called a `static library' on most systems, though
2438 a `shared library' on AIX is also an archive), then you should
2439 stat on the archive name, not member name. */
9cce227f
TG
2440 if (objfile->obfd->my_archive)
2441 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2442 else
9cce227f
TG
2443 res = stat (objfile->name, &new_statbuf);
2444 if (res != 0)
2445 {
c378eb4e 2446 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2447 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2448 objfile->name);
2449 continue;
2450 }
2451 new_modtime = new_statbuf.st_mtime;
2452 if (new_modtime != objfile->mtime)
2453 {
2454 struct cleanup *old_cleanups;
2455 struct section_offsets *offsets;
2456 int num_offsets;
2457 char *obfd_filename;
2458
2459 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2460 objfile->name);
2461
2462 /* There are various functions like symbol_file_add,
2463 symfile_bfd_open, syms_from_objfile, etc., which might
2464 appear to do what we want. But they have various other
2465 effects which we *don't* want. So we just do stuff
2466 ourselves. We don't worry about mapped files (for one thing,
2467 any mapped file will be out of date). */
2468
2469 /* If we get an error, blow away this objfile (not sure if
2470 that is the correct response for things like shared
2471 libraries). */
2472 old_cleanups = make_cleanup_free_objfile (objfile);
2473 /* We need to do this whenever any symbols go away. */
2474 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2475
0ba1096a
KT
2476 if (exec_bfd != NULL
2477 && filename_cmp (bfd_get_filename (objfile->obfd),
2478 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2479 {
2480 /* Reload EXEC_BFD without asking anything. */
2481
2482 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2483 }
2484
f6eeced0
JK
2485 /* Keep the calls order approx. the same as in free_objfile. */
2486
2487 /* Free the separate debug objfiles. It will be
2488 automatically recreated by sym_read. */
2489 free_objfile_separate_debug (objfile);
2490
2491 /* Remove any references to this objfile in the global
2492 value lists. */
2493 preserve_values (objfile);
2494
2495 /* Nuke all the state that we will re-read. Much of the following
2496 code which sets things to NULL really is necessary to tell
2497 other parts of GDB that there is nothing currently there.
2498
2499 Try to keep the freeing order compatible with free_objfile. */
2500
2501 if (objfile->sf != NULL)
2502 {
2503 (*objfile->sf->sym_finish) (objfile);
2504 }
2505
2506 clear_objfile_data (objfile);
2507
9cce227f
TG
2508 /* Clean up any state BFD has sitting around. We don't need
2509 to close the descriptor but BFD lacks a way of closing the
2510 BFD without closing the descriptor. */
a4453b7e
TT
2511 {
2512 struct bfd *obfd = objfile->obfd;
2513
2514 obfd_filename = bfd_get_filename (objfile->obfd);
2515 /* Open the new BFD before freeing the old one, so that
2516 the filename remains live. */
2517 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2518 gdb_bfd_unref (obfd);
2519 }
2520
9cce227f
TG
2521 if (objfile->obfd == NULL)
2522 error (_("Can't open %s to read symbols."), objfile->name);
9cce227f
TG
2523 /* bfd_openr sets cacheable to true, which is what we want. */
2524 if (!bfd_check_format (objfile->obfd, bfd_object))
2525 error (_("Can't read symbols from %s: %s."), objfile->name,
2526 bfd_errmsg (bfd_get_error ()));
2527
2528 /* Save the offsets, we will nuke them with the rest of the
2529 objfile_obstack. */
2530 num_offsets = objfile->num_sections;
2531 offsets = ((struct section_offsets *)
2532 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2533 memcpy (offsets, objfile->section_offsets,
2534 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2535
9cce227f
TG
2536 /* FIXME: Do we have to free a whole linked list, or is this
2537 enough? */
2538 if (objfile->global_psymbols.list)
2539 xfree (objfile->global_psymbols.list);
2540 memset (&objfile->global_psymbols, 0,
2541 sizeof (objfile->global_psymbols));
2542 if (objfile->static_psymbols.list)
2543 xfree (objfile->static_psymbols.list);
2544 memset (&objfile->static_psymbols, 0,
2545 sizeof (objfile->static_psymbols));
2546
c378eb4e 2547 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2548 psymbol_bcache_free (objfile->psymbol_cache);
2549 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2550 bcache_xfree (objfile->macro_cache);
cbd70537 2551 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2552 bcache_xfree (objfile->filename_cache);
cbd70537 2553 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2554 if (objfile->demangled_names_hash != NULL)
2555 {
2556 htab_delete (objfile->demangled_names_hash);
2557 objfile->demangled_names_hash = NULL;
2558 }
2559 obstack_free (&objfile->objfile_obstack, 0);
2560 objfile->sections = NULL;
2561 objfile->symtabs = NULL;
2562 objfile->psymtabs = NULL;
2563 objfile->psymtabs_addrmap = NULL;
2564 objfile->free_psymtabs = NULL;
34eaf542 2565 objfile->template_symbols = NULL;
9cce227f
TG
2566 objfile->msymbols = NULL;
2567 objfile->deprecated_sym_private = NULL;
2568 objfile->minimal_symbol_count = 0;
2569 memset (&objfile->msymbol_hash, 0,
2570 sizeof (objfile->msymbol_hash));
2571 memset (&objfile->msymbol_demangled_hash, 0,
2572 sizeof (objfile->msymbol_demangled_hash));
2573
9cce227f
TG
2574 /* obstack_init also initializes the obstack so it is
2575 empty. We could use obstack_specify_allocation but
d82ea6a8 2576 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2577 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2578 build_objfile_section_table (objfile);
9cce227f
TG
2579 terminate_minimal_symbol_table (objfile);
2580
2581 /* We use the same section offsets as from last time. I'm not
2582 sure whether that is always correct for shared libraries. */
2583 objfile->section_offsets = (struct section_offsets *)
2584 obstack_alloc (&objfile->objfile_obstack,
2585 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2586 memcpy (objfile->section_offsets, offsets,
2587 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2588 objfile->num_sections = num_offsets;
2589
2590 /* What the hell is sym_new_init for, anyway? The concept of
2591 distinguishing between the main file and additional files
2592 in this way seems rather dubious. */
2593 if (objfile == symfile_objfile)
c906108c 2594 {
9cce227f 2595 (*objfile->sf->sym_new_init) (objfile);
c906108c 2596 }
9cce227f
TG
2597
2598 (*objfile->sf->sym_init) (objfile);
2599 clear_complaints (&symfile_complaints, 1, 1);
2600 /* Do not set flags as this is safe and we don't want to be
2601 verbose. */
2602 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2603 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2604 {
2605 objfile->flags &= ~OBJF_PSYMTABS_READ;
2606 require_partial_symbols (objfile, 0);
2607 }
2608
9cce227f 2609 if (!objfile_has_symbols (objfile))
c906108c 2610 {
9cce227f
TG
2611 wrap_here ("");
2612 printf_unfiltered (_("(no debugging symbols found)\n"));
2613 wrap_here ("");
c5aa993b 2614 }
9cce227f
TG
2615
2616 /* We're done reading the symbol file; finish off complaints. */
2617 clear_complaints (&symfile_complaints, 0, 1);
2618
2619 /* Getting new symbols may change our opinion about what is
2620 frameless. */
2621
2622 reinit_frame_cache ();
2623
2624 /* Discard cleanups as symbol reading was successful. */
2625 discard_cleanups (old_cleanups);
2626
2627 /* If the mtime has changed between the time we set new_modtime
2628 and now, we *want* this to be out of date, so don't call stat
2629 again now. */
2630 objfile->mtime = new_modtime;
9cce227f 2631 init_entry_point_info (objfile);
4ac39b97
JK
2632
2633 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2634 }
2635 }
c906108c 2636
4ac39b97 2637 if (new_objfiles)
ea53e89f 2638 {
4ac39b97
JK
2639 int ix;
2640
ff3536bc
UW
2641 /* Notify objfiles that we've modified objfile sections. */
2642 objfiles_changed ();
2643
c1e56572 2644 clear_symtab_users (0);
4ac39b97
JK
2645
2646 /* clear_objfile_data for each objfile was called before freeing it and
2647 observer_notify_new_objfile (NULL) has been called by
2648 clear_symtab_users above. Notify the new files now. */
2649 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2650 observer_notify_new_objfile (objfile);
2651
ea53e89f
JB
2652 /* At least one objfile has changed, so we can consider that
2653 the executable we're debugging has changed too. */
781b42b0 2654 observer_notify_executable_changed ();
ea53e89f 2655 }
4ac39b97
JK
2656
2657 do_cleanups (all_cleanups);
c906108c 2658}
c906108c
SS
2659\f
2660
c5aa993b
JM
2661
2662typedef struct
2663{
2664 char *ext;
c906108c 2665 enum language lang;
c5aa993b
JM
2666}
2667filename_language;
c906108c 2668
c5aa993b 2669static filename_language *filename_language_table;
c906108c
SS
2670static int fl_table_size, fl_table_next;
2671
2672static void
fba45db2 2673add_filename_language (char *ext, enum language lang)
c906108c
SS
2674{
2675 if (fl_table_next >= fl_table_size)
2676 {
2677 fl_table_size += 10;
5417f6dc 2678 filename_language_table =
25bf3106
PM
2679 xrealloc (filename_language_table,
2680 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2681 }
2682
4fcf66da 2683 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2684 filename_language_table[fl_table_next].lang = lang;
2685 fl_table_next++;
2686}
2687
2688static char *ext_args;
920d2a44
AC
2689static void
2690show_ext_args (struct ui_file *file, int from_tty,
2691 struct cmd_list_element *c, const char *value)
2692{
3e43a32a
MS
2693 fprintf_filtered (file,
2694 _("Mapping between filename extension "
2695 "and source language is \"%s\".\n"),
920d2a44
AC
2696 value);
2697}
c906108c
SS
2698
2699static void
26c41df3 2700set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2701{
2702 int i;
2703 char *cp = ext_args;
2704 enum language lang;
2705
c378eb4e 2706 /* First arg is filename extension, starting with '.' */
c906108c 2707 if (*cp != '.')
8a3fe4f8 2708 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2709
2710 /* Find end of first arg. */
c5aa993b 2711 while (*cp && !isspace (*cp))
c906108c
SS
2712 cp++;
2713
2714 if (*cp == '\0')
3e43a32a
MS
2715 error (_("'%s': two arguments required -- "
2716 "filename extension and language"),
c906108c
SS
2717 ext_args);
2718
c378eb4e 2719 /* Null-terminate first arg. */
c5aa993b 2720 *cp++ = '\0';
c906108c
SS
2721
2722 /* Find beginning of second arg, which should be a source language. */
2723 while (*cp && isspace (*cp))
2724 cp++;
2725
2726 if (*cp == '\0')
3e43a32a
MS
2727 error (_("'%s': two arguments required -- "
2728 "filename extension and language"),
c906108c
SS
2729 ext_args);
2730
2731 /* Lookup the language from among those we know. */
2732 lang = language_enum (cp);
2733
2734 /* Now lookup the filename extension: do we already know it? */
2735 for (i = 0; i < fl_table_next; i++)
2736 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2737 break;
2738
2739 if (i >= fl_table_next)
2740 {
c378eb4e 2741 /* New file extension. */
c906108c
SS
2742 add_filename_language (ext_args, lang);
2743 }
2744 else
2745 {
c378eb4e 2746 /* Redefining a previously known filename extension. */
c906108c
SS
2747
2748 /* if (from_tty) */
2749 /* query ("Really make files of type %s '%s'?", */
2750 /* ext_args, language_str (lang)); */
2751
b8c9b27d 2752 xfree (filename_language_table[i].ext);
4fcf66da 2753 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2754 filename_language_table[i].lang = lang;
2755 }
2756}
2757
2758static void
fba45db2 2759info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2760{
2761 int i;
2762
a3f17187 2763 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2764 printf_filtered ("\n\n");
2765 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2766 printf_filtered ("\t%s\t- %s\n",
2767 filename_language_table[i].ext,
c906108c
SS
2768 language_str (filename_language_table[i].lang));
2769}
2770
2771static void
fba45db2 2772init_filename_language_table (void)
c906108c 2773{
c378eb4e 2774 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2775 {
2776 fl_table_size = 20;
2777 fl_table_next = 0;
c5aa993b 2778 filename_language_table =
c906108c 2779 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2780 add_filename_language (".c", language_c);
6aecb9c2 2781 add_filename_language (".d", language_d);
c5aa993b
JM
2782 add_filename_language (".C", language_cplus);
2783 add_filename_language (".cc", language_cplus);
2784 add_filename_language (".cp", language_cplus);
2785 add_filename_language (".cpp", language_cplus);
2786 add_filename_language (".cxx", language_cplus);
2787 add_filename_language (".c++", language_cplus);
2788 add_filename_language (".java", language_java);
c906108c 2789 add_filename_language (".class", language_java);
da2cf7e0 2790 add_filename_language (".m", language_objc);
c5aa993b
JM
2791 add_filename_language (".f", language_fortran);
2792 add_filename_language (".F", language_fortran);
fd5700c7
JK
2793 add_filename_language (".for", language_fortran);
2794 add_filename_language (".FOR", language_fortran);
2795 add_filename_language (".ftn", language_fortran);
2796 add_filename_language (".FTN", language_fortran);
2797 add_filename_language (".fpp", language_fortran);
2798 add_filename_language (".FPP", language_fortran);
2799 add_filename_language (".f90", language_fortran);
2800 add_filename_language (".F90", language_fortran);
2801 add_filename_language (".f95", language_fortran);
2802 add_filename_language (".F95", language_fortran);
2803 add_filename_language (".f03", language_fortran);
2804 add_filename_language (".F03", language_fortran);
2805 add_filename_language (".f08", language_fortran);
2806 add_filename_language (".F08", language_fortran);
c5aa993b 2807 add_filename_language (".s", language_asm);
aa707ed0 2808 add_filename_language (".sx", language_asm);
c5aa993b 2809 add_filename_language (".S", language_asm);
c6fd39cd
PM
2810 add_filename_language (".pas", language_pascal);
2811 add_filename_language (".p", language_pascal);
2812 add_filename_language (".pp", language_pascal);
963a6417
PH
2813 add_filename_language (".adb", language_ada);
2814 add_filename_language (".ads", language_ada);
2815 add_filename_language (".a", language_ada);
2816 add_filename_language (".ada", language_ada);
dde59185 2817 add_filename_language (".dg", language_ada);
c906108c
SS
2818 }
2819}
2820
2821enum language
dd786858 2822deduce_language_from_filename (const char *filename)
c906108c
SS
2823{
2824 int i;
2825 char *cp;
2826
2827 if (filename != NULL)
2828 if ((cp = strrchr (filename, '.')) != NULL)
2829 for (i = 0; i < fl_table_next; i++)
2830 if (strcmp (cp, filename_language_table[i].ext) == 0)
2831 return filename_language_table[i].lang;
2832
2833 return language_unknown;
2834}
2835\f
2836/* allocate_symtab:
2837
2838 Allocate and partly initialize a new symbol table. Return a pointer
2839 to it. error() if no space.
2840
2841 Caller must set these fields:
c5aa993b
JM
2842 LINETABLE(symtab)
2843 symtab->blockvector
2844 symtab->dirname
2845 symtab->free_code
2846 symtab->free_ptr
c906108c
SS
2847 */
2848
2849struct symtab *
72b9f47f 2850allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2851{
52f0bd74 2852 struct symtab *symtab;
c906108c
SS
2853
2854 symtab = (struct symtab *)
4a146b47 2855 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2856 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2857 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2858 objfile->filename_cache);
c5aa993b
JM
2859 symtab->fullname = NULL;
2860 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2861 symtab->debugformat = "unknown";
c906108c 2862
c378eb4e 2863 /* Hook it to the objfile it comes from. */
c906108c 2864
c5aa993b
JM
2865 symtab->objfile = objfile;
2866 symtab->next = objfile->symtabs;
2867 objfile->symtabs = symtab;
c906108c 2868
45cfd468
DE
2869 if (symtab_create_debug)
2870 {
2871 /* Be a bit clever with debugging messages, and don't print objfile
2872 every time, only when it changes. */
2873 static char *last_objfile_name = NULL;
2874
2875 if (last_objfile_name == NULL
2876 || strcmp (last_objfile_name, objfile->name) != 0)
2877 {
2878 xfree (last_objfile_name);
2879 last_objfile_name = xstrdup (objfile->name);
2880 fprintf_unfiltered (gdb_stdlog,
2881 "Creating one or more symtabs for objfile %s ...\n",
2882 last_objfile_name);
2883 }
2884 fprintf_unfiltered (gdb_stdlog,
2885 "Created symtab 0x%lx for module %s.\n",
2886 (long) symtab, filename);
2887 }
2888
c906108c
SS
2889 return (symtab);
2890}
c906108c 2891\f
c5aa993b 2892
c906108c 2893/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2894 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2895
2896void
c1e56572 2897clear_symtab_users (int add_flags)
c906108c
SS
2898{
2899 /* Someday, we should do better than this, by only blowing away
2900 the things that really need to be blown. */
c0501be5
DJ
2901
2902 /* Clear the "current" symtab first, because it is no longer valid.
2903 breakpoint_re_set may try to access the current symtab. */
2904 clear_current_source_symtab_and_line ();
2905
c906108c 2906 clear_displays ();
c1e56572
JK
2907 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2908 breakpoint_re_set ();
1bfeeb0f 2909 clear_last_displayed_sal ();
c906108c 2910 clear_pc_function_cache ();
06d3b283 2911 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2912
2913 /* Clear globals which might have pointed into a removed objfile.
2914 FIXME: It's not clear which of these are supposed to persist
2915 between expressions and which ought to be reset each time. */
2916 expression_context_block = NULL;
2917 innermost_block = NULL;
8756216b
DP
2918
2919 /* Varobj may refer to old symbols, perform a cleanup. */
2920 varobj_invalidate ();
2921
c906108c
SS
2922}
2923
74b7792f
AC
2924static void
2925clear_symtab_users_cleanup (void *ignore)
2926{
c1e56572 2927 clear_symtab_users (0);
74b7792f 2928}
c906108c 2929\f
c906108c
SS
2930/* OVERLAYS:
2931 The following code implements an abstraction for debugging overlay sections.
2932
2933 The target model is as follows:
2934 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2935 same VMA, each with its own unique LMA (or load address).
c906108c 2936 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2937 sections, one by one, from the load address into the VMA address.
5417f6dc 2938 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2939 sections should be considered to be mapped from the VMA to the LMA.
2940 This information is used for symbol lookup, and memory read/write.
5417f6dc 2941 For instance, if a section has been mapped then its contents
c5aa993b 2942 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2943
2944 Two levels of debugger support for overlays are available. One is
2945 "manual", in which the debugger relies on the user to tell it which
2946 overlays are currently mapped. This level of support is
2947 implemented entirely in the core debugger, and the information about
2948 whether a section is mapped is kept in the objfile->obj_section table.
2949
2950 The second level of support is "automatic", and is only available if
2951 the target-specific code provides functionality to read the target's
2952 overlay mapping table, and translate its contents for the debugger
2953 (by updating the mapped state information in the obj_section tables).
2954
2955 The interface is as follows:
c5aa993b
JM
2956 User commands:
2957 overlay map <name> -- tell gdb to consider this section mapped
2958 overlay unmap <name> -- tell gdb to consider this section unmapped
2959 overlay list -- list the sections that GDB thinks are mapped
2960 overlay read-target -- get the target's state of what's mapped
2961 overlay off/manual/auto -- set overlay debugging state
2962 Functional interface:
2963 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2964 section, return that section.
5417f6dc 2965 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2966 the pc, either in its VMA or its LMA
714835d5 2967 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2968 section_is_overlay(sect): true if section's VMA != LMA
2969 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2970 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2971 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2972 overlay_mapped_address(...): map an address from section's LMA to VMA
2973 overlay_unmapped_address(...): map an address from section's VMA to LMA
2974 symbol_overlayed_address(...): Return a "current" address for symbol:
2975 either in VMA or LMA depending on whether
c378eb4e 2976 the symbol's section is currently mapped. */
c906108c
SS
2977
2978/* Overlay debugging state: */
2979
d874f1e2 2980enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2981int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2982
c906108c 2983/* Function: section_is_overlay (SECTION)
5417f6dc 2984 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2985 SECTION is loaded at an address different from where it will "run". */
2986
2987int
714835d5 2988section_is_overlay (struct obj_section *section)
c906108c 2989{
714835d5
UW
2990 if (overlay_debugging && section)
2991 {
2992 bfd *abfd = section->objfile->obfd;
2993 asection *bfd_section = section->the_bfd_section;
f888f159 2994
714835d5
UW
2995 if (bfd_section_lma (abfd, bfd_section) != 0
2996 && bfd_section_lma (abfd, bfd_section)
2997 != bfd_section_vma (abfd, bfd_section))
2998 return 1;
2999 }
c906108c
SS
3000
3001 return 0;
3002}
3003
3004/* Function: overlay_invalidate_all (void)
3005 Invalidate the mapped state of all overlay sections (mark it as stale). */
3006
3007static void
fba45db2 3008overlay_invalidate_all (void)
c906108c 3009{
c5aa993b 3010 struct objfile *objfile;
c906108c
SS
3011 struct obj_section *sect;
3012
3013 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3014 if (section_is_overlay (sect))
3015 sect->ovly_mapped = -1;
c906108c
SS
3016}
3017
714835d5 3018/* Function: section_is_mapped (SECTION)
5417f6dc 3019 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3020
3021 Access to the ovly_mapped flag is restricted to this function, so
3022 that we can do automatic update. If the global flag
3023 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3024 overlay_invalidate_all. If the mapped state of the particular
3025 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3026
714835d5
UW
3027int
3028section_is_mapped (struct obj_section *osect)
c906108c 3029{
9216df95
UW
3030 struct gdbarch *gdbarch;
3031
714835d5 3032 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3033 return 0;
3034
c5aa993b 3035 switch (overlay_debugging)
c906108c
SS
3036 {
3037 default:
d874f1e2 3038 case ovly_off:
c5aa993b 3039 return 0; /* overlay debugging off */
d874f1e2 3040 case ovly_auto: /* overlay debugging automatic */
1c772458 3041 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3042 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3043 gdbarch = get_objfile_arch (osect->objfile);
3044 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3045 {
3046 if (overlay_cache_invalid)
3047 {
3048 overlay_invalidate_all ();
3049 overlay_cache_invalid = 0;
3050 }
3051 if (osect->ovly_mapped == -1)
9216df95 3052 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3053 }
3054 /* fall thru to manual case */
d874f1e2 3055 case ovly_on: /* overlay debugging manual */
c906108c
SS
3056 return osect->ovly_mapped == 1;
3057 }
3058}
3059
c906108c
SS
3060/* Function: pc_in_unmapped_range
3061 If PC falls into the lma range of SECTION, return true, else false. */
3062
3063CORE_ADDR
714835d5 3064pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3065{
714835d5
UW
3066 if (section_is_overlay (section))
3067 {
3068 bfd *abfd = section->objfile->obfd;
3069 asection *bfd_section = section->the_bfd_section;
fbd35540 3070
714835d5
UW
3071 /* We assume the LMA is relocated by the same offset as the VMA. */
3072 bfd_vma size = bfd_get_section_size (bfd_section);
3073 CORE_ADDR offset = obj_section_offset (section);
3074
3075 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3076 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3077 return 1;
3078 }
c906108c 3079
c906108c
SS
3080 return 0;
3081}
3082
3083/* Function: pc_in_mapped_range
3084 If PC falls into the vma range of SECTION, return true, else false. */
3085
3086CORE_ADDR
714835d5 3087pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3088{
714835d5
UW
3089 if (section_is_overlay (section))
3090 {
3091 if (obj_section_addr (section) <= pc
3092 && pc < obj_section_endaddr (section))
3093 return 1;
3094 }
c906108c 3095
c906108c
SS
3096 return 0;
3097}
3098
9ec8e6a0
JB
3099
3100/* Return true if the mapped ranges of sections A and B overlap, false
3101 otherwise. */
b9362cc7 3102static int
714835d5 3103sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3104{
714835d5
UW
3105 CORE_ADDR a_start = obj_section_addr (a);
3106 CORE_ADDR a_end = obj_section_endaddr (a);
3107 CORE_ADDR b_start = obj_section_addr (b);
3108 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3109
3110 return (a_start < b_end && b_start < a_end);
3111}
3112
c906108c
SS
3113/* Function: overlay_unmapped_address (PC, SECTION)
3114 Returns the address corresponding to PC in the unmapped (load) range.
3115 May be the same as PC. */
3116
3117CORE_ADDR
714835d5 3118overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3119{
714835d5
UW
3120 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3121 {
3122 bfd *abfd = section->objfile->obfd;
3123 asection *bfd_section = section->the_bfd_section;
fbd35540 3124
714835d5
UW
3125 return pc + bfd_section_lma (abfd, bfd_section)
3126 - bfd_section_vma (abfd, bfd_section);
3127 }
c906108c
SS
3128
3129 return pc;
3130}
3131
3132/* Function: overlay_mapped_address (PC, SECTION)
3133 Returns the address corresponding to PC in the mapped (runtime) range.
3134 May be the same as PC. */
3135
3136CORE_ADDR
714835d5 3137overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3138{
714835d5
UW
3139 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3140 {
3141 bfd *abfd = section->objfile->obfd;
3142 asection *bfd_section = section->the_bfd_section;
fbd35540 3143
714835d5
UW
3144 return pc + bfd_section_vma (abfd, bfd_section)
3145 - bfd_section_lma (abfd, bfd_section);
3146 }
c906108c
SS
3147
3148 return pc;
3149}
3150
3151
5417f6dc 3152/* Function: symbol_overlayed_address
c906108c
SS
3153 Return one of two addresses (relative to the VMA or to the LMA),
3154 depending on whether the section is mapped or not. */
3155
c5aa993b 3156CORE_ADDR
714835d5 3157symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3158{
3159 if (overlay_debugging)
3160 {
c378eb4e 3161 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3162 if (section == 0)
3163 return address;
c378eb4e
MS
3164 /* If the symbol's section is not an overlay, just return its
3165 address. */
c906108c
SS
3166 if (!section_is_overlay (section))
3167 return address;
c378eb4e 3168 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3169 if (section_is_mapped (section))
3170 return address;
3171 /*
3172 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3173 * then return its LOADED address rather than its vma address!!
3174 */
3175 return overlay_unmapped_address (address, section);
3176 }
3177 return address;
3178}
3179
5417f6dc 3180/* Function: find_pc_overlay (PC)
c906108c
SS
3181 Return the best-match overlay section for PC:
3182 If PC matches a mapped overlay section's VMA, return that section.
3183 Else if PC matches an unmapped section's VMA, return that section.
3184 Else if PC matches an unmapped section's LMA, return that section. */
3185
714835d5 3186struct obj_section *
fba45db2 3187find_pc_overlay (CORE_ADDR pc)
c906108c 3188{
c5aa993b 3189 struct objfile *objfile;
c906108c
SS
3190 struct obj_section *osect, *best_match = NULL;
3191
3192 if (overlay_debugging)
3193 ALL_OBJSECTIONS (objfile, osect)
714835d5 3194 if (section_is_overlay (osect))
c5aa993b 3195 {
714835d5 3196 if (pc_in_mapped_range (pc, osect))
c5aa993b 3197 {
714835d5
UW
3198 if (section_is_mapped (osect))
3199 return osect;
c5aa993b
JM
3200 else
3201 best_match = osect;
3202 }
714835d5 3203 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3204 best_match = osect;
3205 }
714835d5 3206 return best_match;
c906108c
SS
3207}
3208
3209/* Function: find_pc_mapped_section (PC)
5417f6dc 3210 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3211 currently marked as MAPPED, return that section. Else return NULL. */
3212
714835d5 3213struct obj_section *
fba45db2 3214find_pc_mapped_section (CORE_ADDR pc)
c906108c 3215{
c5aa993b 3216 struct objfile *objfile;
c906108c
SS
3217 struct obj_section *osect;
3218
3219 if (overlay_debugging)
3220 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3221 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3222 return osect;
c906108c
SS
3223
3224 return NULL;
3225}
3226
3227/* Function: list_overlays_command
c378eb4e 3228 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3229
3230void
fba45db2 3231list_overlays_command (char *args, int from_tty)
c906108c 3232{
c5aa993b
JM
3233 int nmapped = 0;
3234 struct objfile *objfile;
c906108c
SS
3235 struct obj_section *osect;
3236
3237 if (overlay_debugging)
3238 ALL_OBJSECTIONS (objfile, osect)
714835d5 3239 if (section_is_mapped (osect))
c5aa993b 3240 {
5af949e3 3241 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3242 const char *name;
3243 bfd_vma lma, vma;
3244 int size;
3245
3246 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3247 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3248 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3249 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3250
3251 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3252 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3253 puts_filtered (" - ");
5af949e3 3254 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3255 printf_filtered (", mapped at ");
5af949e3 3256 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3257 puts_filtered (" - ");
5af949e3 3258 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3259 puts_filtered ("\n");
3260
3261 nmapped++;
3262 }
c906108c 3263 if (nmapped == 0)
a3f17187 3264 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3265}
3266
3267/* Function: map_overlay_command
3268 Mark the named section as mapped (ie. residing at its VMA address). */
3269
3270void
fba45db2 3271map_overlay_command (char *args, int from_tty)
c906108c 3272{
c5aa993b
JM
3273 struct objfile *objfile, *objfile2;
3274 struct obj_section *sec, *sec2;
c906108c
SS
3275
3276 if (!overlay_debugging)
3e43a32a
MS
3277 error (_("Overlay debugging not enabled. Use "
3278 "either the 'overlay auto' or\n"
3279 "the 'overlay manual' command."));
c906108c
SS
3280
3281 if (args == 0 || *args == 0)
8a3fe4f8 3282 error (_("Argument required: name of an overlay section"));
c906108c 3283
c378eb4e 3284 /* First, find a section matching the user supplied argument. */
c906108c
SS
3285 ALL_OBJSECTIONS (objfile, sec)
3286 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3287 {
c378eb4e 3288 /* Now, check to see if the section is an overlay. */
714835d5 3289 if (!section_is_overlay (sec))
c5aa993b
JM
3290 continue; /* not an overlay section */
3291
c378eb4e 3292 /* Mark the overlay as "mapped". */
c5aa993b
JM
3293 sec->ovly_mapped = 1;
3294
3295 /* Next, make a pass and unmap any sections that are
3296 overlapped by this new section: */
3297 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3298 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3299 {
3300 if (info_verbose)
a3f17187 3301 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3302 bfd_section_name (objfile->obfd,
3303 sec2->the_bfd_section));
c378eb4e 3304 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3305 }
3306 return;
3307 }
8a3fe4f8 3308 error (_("No overlay section called %s"), args);
c906108c
SS
3309}
3310
3311/* Function: unmap_overlay_command
5417f6dc 3312 Mark the overlay section as unmapped
c906108c
SS
3313 (ie. resident in its LMA address range, rather than the VMA range). */
3314
3315void
fba45db2 3316unmap_overlay_command (char *args, int from_tty)
c906108c 3317{
c5aa993b 3318 struct objfile *objfile;
c906108c
SS
3319 struct obj_section *sec;
3320
3321 if (!overlay_debugging)
3e43a32a
MS
3322 error (_("Overlay debugging not enabled. "
3323 "Use either the 'overlay auto' or\n"
3324 "the 'overlay manual' command."));
c906108c
SS
3325
3326 if (args == 0 || *args == 0)
8a3fe4f8 3327 error (_("Argument required: name of an overlay section"));
c906108c 3328
c378eb4e 3329 /* First, find a section matching the user supplied argument. */
c906108c
SS
3330 ALL_OBJSECTIONS (objfile, sec)
3331 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3332 {
3333 if (!sec->ovly_mapped)
8a3fe4f8 3334 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3335 sec->ovly_mapped = 0;
3336 return;
3337 }
8a3fe4f8 3338 error (_("No overlay section called %s"), args);
c906108c
SS
3339}
3340
3341/* Function: overlay_auto_command
3342 A utility command to turn on overlay debugging.
c378eb4e 3343 Possibly this should be done via a set/show command. */
c906108c
SS
3344
3345static void
fba45db2 3346overlay_auto_command (char *args, int from_tty)
c906108c 3347{
d874f1e2 3348 overlay_debugging = ovly_auto;
1900040c 3349 enable_overlay_breakpoints ();
c906108c 3350 if (info_verbose)
a3f17187 3351 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3352}
3353
3354/* Function: overlay_manual_command
3355 A utility command to turn on overlay debugging.
c378eb4e 3356 Possibly this should be done via a set/show command. */
c906108c
SS
3357
3358static void
fba45db2 3359overlay_manual_command (char *args, int from_tty)
c906108c 3360{
d874f1e2 3361 overlay_debugging = ovly_on;
1900040c 3362 disable_overlay_breakpoints ();
c906108c 3363 if (info_verbose)
a3f17187 3364 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3365}
3366
3367/* Function: overlay_off_command
3368 A utility command to turn on overlay debugging.
c378eb4e 3369 Possibly this should be done via a set/show command. */
c906108c
SS
3370
3371static void
fba45db2 3372overlay_off_command (char *args, int from_tty)
c906108c 3373{
d874f1e2 3374 overlay_debugging = ovly_off;
1900040c 3375 disable_overlay_breakpoints ();
c906108c 3376 if (info_verbose)
a3f17187 3377 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3378}
3379
3380static void
fba45db2 3381overlay_load_command (char *args, int from_tty)
c906108c 3382{
e17c207e
UW
3383 struct gdbarch *gdbarch = get_current_arch ();
3384
3385 if (gdbarch_overlay_update_p (gdbarch))
3386 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3387 else
8a3fe4f8 3388 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3389}
3390
3391/* Function: overlay_command
c378eb4e 3392 A place-holder for a mis-typed command. */
c906108c 3393
c378eb4e 3394/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3395struct cmd_list_element *overlaylist;
3396
3397static void
fba45db2 3398overlay_command (char *args, int from_tty)
c906108c 3399{
c5aa993b 3400 printf_unfiltered
c906108c
SS
3401 ("\"overlay\" must be followed by the name of an overlay command.\n");
3402 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3403}
3404
3405
3406/* Target Overlays for the "Simplest" overlay manager:
3407
5417f6dc
RM
3408 This is GDB's default target overlay layer. It works with the
3409 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3410 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3411 so targets that use a different runtime overlay manager can
c906108c
SS
3412 substitute their own overlay_update function and take over the
3413 function pointer.
3414
3415 The overlay_update function pokes around in the target's data structures
3416 to see what overlays are mapped, and updates GDB's overlay mapping with
3417 this information.
3418
3419 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3420 unsigned _novlys; /# number of overlay sections #/
3421 unsigned _ovly_table[_novlys][4] = {
3422 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3423 {..., ..., ..., ...},
3424 }
3425 unsigned _novly_regions; /# number of overlay regions #/
3426 unsigned _ovly_region_table[_novly_regions][3] = {
3427 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3428 {..., ..., ...},
3429 }
c906108c
SS
3430 These functions will attempt to update GDB's mappedness state in the
3431 symbol section table, based on the target's mappedness state.
3432
3433 To do this, we keep a cached copy of the target's _ovly_table, and
3434 attempt to detect when the cached copy is invalidated. The main
3435 entry point is "simple_overlay_update(SECT), which looks up SECT in
3436 the cached table and re-reads only the entry for that section from
c378eb4e 3437 the target (whenever possible). */
c906108c
SS
3438
3439/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3440static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3441static unsigned cache_novlys = 0;
c906108c 3442static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3443enum ovly_index
3444 {
3445 VMA, SIZE, LMA, MAPPED
3446 };
c906108c 3447
c378eb4e 3448/* Throw away the cached copy of _ovly_table. */
c906108c 3449static void
fba45db2 3450simple_free_overlay_table (void)
c906108c
SS
3451{
3452 if (cache_ovly_table)
b8c9b27d 3453 xfree (cache_ovly_table);
c5aa993b 3454 cache_novlys = 0;
c906108c
SS
3455 cache_ovly_table = NULL;
3456 cache_ovly_table_base = 0;
3457}
3458
9216df95 3459/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3460 Convert to host order. int LEN is number of ints. */
c906108c 3461static void
9216df95 3462read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3463 int len, int size, enum bfd_endian byte_order)
c906108c 3464{
c378eb4e 3465 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3466 gdb_byte *buf = alloca (len * size);
c5aa993b 3467 int i;
c906108c 3468
9216df95 3469 read_memory (memaddr, buf, len * size);
c906108c 3470 for (i = 0; i < len; i++)
e17a4113 3471 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3472}
3473
3474/* Find and grab a copy of the target _ovly_table
c378eb4e 3475 (and _novlys, which is needed for the table's size). */
c5aa993b 3476static int
fba45db2 3477simple_read_overlay_table (void)
c906108c 3478{
0d43edd1 3479 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3480 struct gdbarch *gdbarch;
3481 int word_size;
e17a4113 3482 enum bfd_endian byte_order;
c906108c
SS
3483
3484 simple_free_overlay_table ();
9b27852e 3485 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3486 if (! novlys_msym)
c906108c 3487 {
8a3fe4f8 3488 error (_("Error reading inferior's overlay table: "
0d43edd1 3489 "couldn't find `_novlys' variable\n"
8a3fe4f8 3490 "in inferior. Use `overlay manual' mode."));
0d43edd1 3491 return 0;
c906108c 3492 }
0d43edd1 3493
9b27852e 3494 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3495 if (! ovly_table_msym)
3496 {
8a3fe4f8 3497 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3498 "`_ovly_table' array\n"
8a3fe4f8 3499 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3500 return 0;
3501 }
3502
9216df95
UW
3503 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3504 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3505 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3506
e17a4113
UW
3507 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3508 4, byte_order);
0d43edd1
JB
3509 cache_ovly_table
3510 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3511 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3512 read_target_long_array (cache_ovly_table_base,
777ea8f1 3513 (unsigned int *) cache_ovly_table,
e17a4113 3514 cache_novlys * 4, word_size, byte_order);
0d43edd1 3515
c5aa993b 3516 return 1; /* SUCCESS */
c906108c
SS
3517}
3518
5417f6dc 3519/* Function: simple_overlay_update_1
c906108c
SS
3520 A helper function for simple_overlay_update. Assuming a cached copy
3521 of _ovly_table exists, look through it to find an entry whose vma,
3522 lma and size match those of OSECT. Re-read the entry and make sure
3523 it still matches OSECT (else the table may no longer be valid).
3524 Set OSECT's mapped state to match the entry. Return: 1 for
3525 success, 0 for failure. */
3526
3527static int
fba45db2 3528simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3529{
3530 int i, size;
fbd35540
MS
3531 bfd *obfd = osect->objfile->obfd;
3532 asection *bsect = osect->the_bfd_section;
9216df95
UW
3533 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3534 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3536
2c500098 3537 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3538 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3539 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3540 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3541 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3542 {
9216df95
UW
3543 read_target_long_array (cache_ovly_table_base + i * word_size,
3544 (unsigned int *) cache_ovly_table[i],
e17a4113 3545 4, word_size, byte_order);
fbd35540
MS
3546 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3547 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3548 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3549 {
3550 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3551 return 1;
3552 }
c378eb4e 3553 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3554 return 0;
3555 }
3556 return 0;
3557}
3558
3559/* Function: simple_overlay_update
5417f6dc
RM
3560 If OSECT is NULL, then update all sections' mapped state
3561 (after re-reading the entire target _ovly_table).
3562 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3563 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3564 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3565 re-read the entire cache, and go ahead and update all sections. */
3566
1c772458 3567void
fba45db2 3568simple_overlay_update (struct obj_section *osect)
c906108c 3569{
c5aa993b 3570 struct objfile *objfile;
c906108c 3571
c378eb4e 3572 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3573 if (osect)
c378eb4e 3574 /* Have we got a cached copy of the target's overlay table? */
c906108c 3575 if (cache_ovly_table != NULL)
9cc89665
MS
3576 {
3577 /* Does its cached location match what's currently in the
3578 symtab? */
3579 struct minimal_symbol *minsym
3580 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3581
3582 if (minsym == NULL)
3583 error (_("Error reading inferior's overlay table: couldn't "
3584 "find `_ovly_table' array\n"
3585 "in inferior. Use `overlay manual' mode."));
3586
3587 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3588 /* Then go ahead and try to look up this single section in
3589 the cache. */
3590 if (simple_overlay_update_1 (osect))
3591 /* Found it! We're done. */
3592 return;
3593 }
c906108c
SS
3594
3595 /* Cached table no good: need to read the entire table anew.
3596 Or else we want all the sections, in which case it's actually
3597 more efficient to read the whole table in one block anyway. */
3598
0d43edd1
JB
3599 if (! simple_read_overlay_table ())
3600 return;
3601
c378eb4e 3602 /* Now may as well update all sections, even if only one was requested. */
c906108c 3603 ALL_OBJSECTIONS (objfile, osect)
714835d5 3604 if (section_is_overlay (osect))
c5aa993b
JM
3605 {
3606 int i, size;
fbd35540
MS
3607 bfd *obfd = osect->objfile->obfd;
3608 asection *bsect = osect->the_bfd_section;
c5aa993b 3609
2c500098 3610 size = bfd_get_section_size (bsect);
c5aa993b 3611 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3612 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3613 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3614 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3615 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3616 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3617 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3618 }
3619 }
c906108c
SS
3620}
3621
086df311
DJ
3622/* Set the output sections and output offsets for section SECTP in
3623 ABFD. The relocation code in BFD will read these offsets, so we
3624 need to be sure they're initialized. We map each section to itself,
3625 with no offset; this means that SECTP->vma will be honored. */
3626
3627static void
3628symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3629{
3630 sectp->output_section = sectp;
3631 sectp->output_offset = 0;
3632}
3633
ac8035ab
TG
3634/* Default implementation for sym_relocate. */
3635
3636
3637bfd_byte *
3638default_symfile_relocate (struct objfile *objfile, asection *sectp,
3639 bfd_byte *buf)
3640{
3019eac3
DE
3641 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3642 DWO file. */
3643 bfd *abfd = sectp->owner;
ac8035ab
TG
3644
3645 /* We're only interested in sections with relocation
3646 information. */
3647 if ((sectp->flags & SEC_RELOC) == 0)
3648 return NULL;
3649
3650 /* We will handle section offsets properly elsewhere, so relocate as if
3651 all sections begin at 0. */
3652 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3653
3654 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3655}
3656
086df311
DJ
3657/* Relocate the contents of a debug section SECTP in ABFD. The
3658 contents are stored in BUF if it is non-NULL, or returned in a
3659 malloc'd buffer otherwise.
3660
3661 For some platforms and debug info formats, shared libraries contain
3662 relocations against the debug sections (particularly for DWARF-2;
3663 one affected platform is PowerPC GNU/Linux, although it depends on
3664 the version of the linker in use). Also, ELF object files naturally
3665 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3666 the relocations in order to get the locations of symbols correct.
3667 Another example that may require relocation processing, is the
3668 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3669 debug section. */
086df311
DJ
3670
3671bfd_byte *
ac8035ab
TG
3672symfile_relocate_debug_section (struct objfile *objfile,
3673 asection *sectp, bfd_byte *buf)
086df311 3674{
ac8035ab 3675 gdb_assert (objfile->sf->sym_relocate);
086df311 3676
ac8035ab 3677 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3678}
c906108c 3679
31d99776
DJ
3680struct symfile_segment_data *
3681get_symfile_segment_data (bfd *abfd)
3682{
00b5771c 3683 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3684
3685 if (sf == NULL)
3686 return NULL;
3687
3688 return sf->sym_segments (abfd);
3689}
3690
3691void
3692free_symfile_segment_data (struct symfile_segment_data *data)
3693{
3694 xfree (data->segment_bases);
3695 xfree (data->segment_sizes);
3696 xfree (data->segment_info);
3697 xfree (data);
3698}
3699
28c32713
JB
3700
3701/* Given:
3702 - DATA, containing segment addresses from the object file ABFD, and
3703 the mapping from ABFD's sections onto the segments that own them,
3704 and
3705 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3706 segment addresses reported by the target,
3707 store the appropriate offsets for each section in OFFSETS.
3708
3709 If there are fewer entries in SEGMENT_BASES than there are segments
3710 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3711
8d385431
DJ
3712 If there are more entries, then ignore the extra. The target may
3713 not be able to distinguish between an empty data segment and a
3714 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3715int
3716symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3717 struct section_offsets *offsets,
3718 int num_segment_bases,
3719 const CORE_ADDR *segment_bases)
3720{
3721 int i;
3722 asection *sect;
3723
28c32713
JB
3724 /* It doesn't make sense to call this function unless you have some
3725 segment base addresses. */
202b96c1 3726 gdb_assert (num_segment_bases > 0);
28c32713 3727
31d99776
DJ
3728 /* If we do not have segment mappings for the object file, we
3729 can not relocate it by segments. */
3730 gdb_assert (data != NULL);
3731 gdb_assert (data->num_segments > 0);
3732
31d99776
DJ
3733 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3734 {
31d99776
DJ
3735 int which = data->segment_info[i];
3736
28c32713
JB
3737 gdb_assert (0 <= which && which <= data->num_segments);
3738
3739 /* Don't bother computing offsets for sections that aren't
3740 loaded as part of any segment. */
3741 if (! which)
3742 continue;
3743
3744 /* Use the last SEGMENT_BASES entry as the address of any extra
3745 segments mentioned in DATA->segment_info. */
31d99776 3746 if (which > num_segment_bases)
28c32713 3747 which = num_segment_bases;
31d99776 3748
28c32713
JB
3749 offsets->offsets[i] = (segment_bases[which - 1]
3750 - data->segment_bases[which - 1]);
31d99776
DJ
3751 }
3752
3753 return 1;
3754}
3755
3756static void
3757symfile_find_segment_sections (struct objfile *objfile)
3758{
3759 bfd *abfd = objfile->obfd;
3760 int i;
3761 asection *sect;
3762 struct symfile_segment_data *data;
3763
3764 data = get_symfile_segment_data (objfile->obfd);
3765 if (data == NULL)
3766 return;
3767
3768 if (data->num_segments != 1 && data->num_segments != 2)
3769 {
3770 free_symfile_segment_data (data);
3771 return;
3772 }
3773
3774 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3775 {
31d99776
DJ
3776 int which = data->segment_info[i];
3777
3778 if (which == 1)
3779 {
3780 if (objfile->sect_index_text == -1)
3781 objfile->sect_index_text = sect->index;
3782
3783 if (objfile->sect_index_rodata == -1)
3784 objfile->sect_index_rodata = sect->index;
3785 }
3786 else if (which == 2)
3787 {
3788 if (objfile->sect_index_data == -1)
3789 objfile->sect_index_data = sect->index;
3790
3791 if (objfile->sect_index_bss == -1)
3792 objfile->sect_index_bss = sect->index;
3793 }
3794 }
3795
3796 free_symfile_segment_data (data);
3797}
3798
c906108c 3799void
fba45db2 3800_initialize_symfile (void)
c906108c
SS
3801{
3802 struct cmd_list_element *c;
c5aa993b 3803
1a966eab
AC
3804 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3805Load symbol table from executable file FILE.\n\
c906108c 3806The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3807to execute."), &cmdlist);
5ba2abeb 3808 set_cmd_completer (c, filename_completer);
c906108c 3809
1a966eab 3810 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3811Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3812Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3813 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3814The optional arguments are section-name section-address pairs and\n\
3815should be specified if the data and bss segments are not contiguous\n\
1a966eab 3816with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3817 &cmdlist);
5ba2abeb 3818 set_cmd_completer (c, filename_completer);
c906108c 3819
1a966eab
AC
3820 c = add_cmd ("load", class_files, load_command, _("\
3821Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3822for access from GDB.\n\
3823A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3824 set_cmd_completer (c, filename_completer);
c906108c 3825
c5aa993b 3826 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3827 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3828 "overlay ", 0, &cmdlist);
3829
3830 add_com_alias ("ovly", "overlay", class_alias, 1);
3831 add_com_alias ("ov", "overlay", class_alias, 1);
3832
c5aa993b 3833 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3834 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3835
c5aa993b 3836 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3837 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3838
c5aa993b 3839 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3840 _("List mappings of overlay sections."), &overlaylist);
c906108c 3841
c5aa993b 3842 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3843 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3844 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3845 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3846 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3847 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3848 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3849 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3850
3851 /* Filename extension to source language lookup table: */
3852 init_filename_language_table ();
26c41df3
AC
3853 add_setshow_string_noescape_cmd ("extension-language", class_files,
3854 &ext_args, _("\
3855Set mapping between filename extension and source language."), _("\
3856Show mapping between filename extension and source language."), _("\
3857Usage: set extension-language .foo bar"),
3858 set_ext_lang_command,
920d2a44 3859 show_ext_args,
26c41df3 3860 &setlist, &showlist);
c906108c 3861
c5aa993b 3862 add_info ("extensions", info_ext_lang_command,
1bedd215 3863 _("All filename extensions associated with a source language."));
917317f4 3864
525226b5
AC
3865 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3866 &debug_file_directory, _("\
24ddea62
JK
3867Set the directories where separate debug symbols are searched for."), _("\
3868Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3869Separate debug symbols are first searched for in the same\n\
3870directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3871and lastly at the path of the directory of the binary with\n\
24ddea62 3872each global debug-file-directory component prepended."),
525226b5 3873 NULL,
920d2a44 3874 show_debug_file_directory,
525226b5 3875 &setlist, &showlist);
c906108c 3876}
This page took 2.058867 seconds and 4 git commands to generate.