Pass readable_regcache to gdbarch method read_pc
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 84int readnever_symbol_files; /* Never read full symbols. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
ecf45d2c 88static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 89 objfile_flags flags);
d7db6da9 90
00b5771c 91static const struct sym_fns *find_sym_fns (bfd *);
c906108c 92
a14ed312 93static void overlay_invalidate_all (void);
c906108c 94
a14ed312 95static void simple_free_overlay_table (void);
c906108c 96
e17a4113
UW
97static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
c906108c 99
a14ed312 100static int simple_read_overlay_table (void);
c906108c 101
a14ed312 102static int simple_overlay_update_1 (struct obj_section *);
c906108c 103
31d99776
DJ
104static void symfile_find_segment_sections (struct objfile *objfile);
105
c906108c
SS
106/* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
c378eb4e 108 prepared to read. */
c906108c 109
905014d7 110struct registered_sym_fns
c256e171 111{
905014d7
SM
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
c256e171
DE
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
905014d7 121};
c256e171 122
905014d7 123static std::vector<registered_sym_fns> symtab_fns;
c906108c 124
770e7fc7
DE
125/* Values for "set print symbol-loading". */
126
127const char print_symbol_loading_off[] = "off";
128const char print_symbol_loading_brief[] = "brief";
129const char print_symbol_loading_full[] = "full";
130static const char *print_symbol_loading_enums[] =
131{
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136};
137static const char *print_symbol_loading = print_symbol_loading_full;
138
b7209cb4
FF
139/* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
c906108c 146 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 147 report all the functions that are actually present. */
c906108c
SS
148
149int auto_solib_add = 1;
c906108c 150\f
c5aa993b 151
770e7fc7
DE
152/* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160int
161print_symbol_loading_p (int from_tty, int exec, int full)
162{
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175}
176
0d14a781 177/* True if we are reading a symbol table. */
c906108c
SS
178
179int currently_reading_symtab = 0;
180
ccefe4c4
TT
181/* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
3b7bacac 183
c83dd867 184scoped_restore_tmpl<int>
ccefe4c4 185increment_reading_symtab (void)
c906108c 186{
c83dd867
TT
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
c906108c
SS
190}
191
5417f6dc
RM
192/* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
c906108c
SS
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201void
4efb68b1 202find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 203{
c5aa993b 204 asection **lowest = (asection **) obj;
c906108c 205
eb73e134 206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216}
217
d76488d8
TT
218/* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
a39a16c4
MM
221
222struct section_addr_info *
223alloc_section_addr_info (size_t num_sections)
224{
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
a39a16c4
MM
232
233 return sap;
234}
62557bbc
KB
235
236/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 237 an existing section table. */
62557bbc
KB
238
239extern struct section_addr_info *
0542c86d
PA
240build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
62557bbc
KB
242{
243 struct section_addr_info *sap;
0542c86d 244 const struct target_section *stp;
62557bbc
KB
245 int oidx;
246
a39a16c4 247 sap = alloc_section_addr_info (end - start);
62557bbc
KB
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
2b2848e2
DE
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 255 && oidx < end - start)
62557bbc
KB
256 {
257 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
260 oidx++;
261 }
262 }
263
d76488d8
TT
264 sap->num_sections = oidx;
265
62557bbc
KB
266 return sap;
267}
268
82ccf5a5 269/* Create a section_addr_info from section offsets in ABFD. */
089b4803 270
82ccf5a5
JK
271static struct section_addr_info *
272build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
273{
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
82ccf5a5
JK
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 281 {
82ccf5a5
JK
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
285 i++;
286 }
d76488d8
TT
287
288 sap->num_sections = i;
289
089b4803
TG
290 return sap;
291}
292
82ccf5a5
JK
293/* Create a section_addr_info from section offsets in OBJFILE. */
294
295struct section_addr_info *
296build_section_addr_info_from_objfile (const struct objfile *objfile)
297{
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 305 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312}
62557bbc 313
c378eb4e 314/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
315
316extern void
317free_section_addr_info (struct section_addr_info *sap)
318{
319 int idx;
320
a39a16c4 321 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 322 xfree (sap->other[idx].name);
b8c9b27d 323 xfree (sap);
62557bbc
KB
324}
325
e8289572 326/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 327
e8289572
JB
328static void
329init_objfile_sect_indices (struct objfile *objfile)
c906108c 330{
e8289572 331 asection *sect;
c906108c 332 int i;
5417f6dc 333
b8fbeb18 334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 335 if (sect)
b8fbeb18
EZ
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 339 if (sect)
b8fbeb18
EZ
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 343 if (sect)
b8fbeb18
EZ
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 347 if (sect)
b8fbeb18
EZ
348 objfile->sect_index_rodata = sect->index;
349
bbcd32ad
FF
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
31d99776
DJ
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
bbcd32ad
FF
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
b8fbeb18 385}
c906108c 386
c1bd25fd
DJ
387/* The arguments to place_section. */
388
389struct place_section_arg
390{
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393};
394
395/* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
2c0b251b 398static void
c1bd25fd
DJ
399place_section (bfd *abfd, asection *sect, void *obj)
400{
19ba03f4 401 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
3bd72c6f 404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 405
2711e456
DJ
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
408 return;
409
410 /* If the user specified an offset, honor it. */
65cf3563 411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
415 start_addr = (arg->lowest + align - 1) & -align;
416
c1bd25fd
DJ
417 do {
418 asection *cur_sec;
c1bd25fd 419
c1bd25fd
DJ
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
c1bd25fd
DJ
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
2711e456
DJ
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
3bd72c6f 447 break;
c1bd25fd
DJ
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
65cf3563 455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 456 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 457}
e8289572 458
75242ef4
JK
459/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
e8289572
JB
462
463void
75242ef4
JK
464relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
3189cb12 466 const struct section_addr_info *addrs)
e8289572
JB
467{
468 int i;
469
75242ef4 470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 471
c378eb4e 472 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 473 for (i = 0; i < addrs->num_sections; i++)
e8289572 474 {
3189cb12 475 const struct other_sections *osp;
e8289572 476
75242ef4 477 osp = &addrs->other[i];
5488dafb 478 if (osp->sectindex == -1)
e8289572
JB
479 continue;
480
c378eb4e 481 /* Record all sections in offsets. */
e8289572 482 /* The section_offsets in the objfile are here filled in using
c378eb4e 483 the BFD index. */
75242ef4
JK
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486}
487
1276c759
JK
488/* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494static const char *
495addr_section_name (const char *s)
496{
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503}
504
82ccf5a5
JK
505/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508static int
509addrs_section_compar (const void *ap, const void *bp)
510{
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 513 int retval;
82ccf5a5 514
1276c759 515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
516 if (retval)
517 return retval;
518
5488dafb 519 return a->sectindex - b->sectindex;
82ccf5a5
JK
520}
521
522/* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525static struct other_sections **
526addrs_section_sort (struct section_addr_info *addrs)
527{
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
8d749320 532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 533 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540}
541
75242ef4 542/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
545
546void
547addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548{
549 asection *lower_sect;
75242ef4
JK
550 CORE_ADDR lower_offset;
551 int i;
82ccf5a5
JK
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
556
557 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
e8289572 566 }
75242ef4
JK
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
82ccf5a5
JK
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
c378eb4e
MS
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
82ccf5a5 590
8d749320 591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
1276c759 596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
597
598 while (*abfd_addrs_sorted
1276c759
JK
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
82ccf5a5
JK
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
1276c759
JK
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
82ccf5a5
JK
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
75242ef4
JK
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
d76488d8 631 for (i = 0; i < addrs->num_sections; i++)
75242ef4 632 {
82ccf5a5 633 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
634
635 if (sect)
75242ef4 636 {
c378eb4e 637 /* This is the index used by BFD. */
82ccf5a5 638 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
639
640 if (addrs->other[i].addr != 0)
75242ef4 641 {
82ccf5a5 642 addrs->other[i].addr -= sect->addr;
75242ef4 643 lower_offset = addrs->other[i].addr;
75242ef4
JK
644 }
645 else
672d9c23 646 addrs->other[i].addr = lower_offset;
75242ef4
JK
647 }
648 else
672d9c23 649 {
1276c759
JK
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
b0fcb67f
JK
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
4d9743af
JK
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
1276c759
JK
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 668 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
672d9c23 680 addrs->other[i].addr = 0;
5488dafb 681 addrs->other[i].sectindex = -1;
672d9c23 682 }
75242ef4 683 }
82ccf5a5
JK
684
685 do_cleanups (my_cleanup);
75242ef4
JK
686}
687
688/* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694void
695default_symfile_offsets (struct objfile *objfile,
3189cb12 696 const struct section_addr_info *addrs)
75242ef4 697{
d445b2f6 698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
e8289572 704
c1bd25fd
DJ
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
2711e456
DJ
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
2711e456
DJ
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
30510692 767 offsets[cur_sec->index]);
2711e456
DJ
768 offsets[cur_sec->index] = 0;
769 }
770 }
c1bd25fd
DJ
771 }
772
e8289572 773 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 774 .rodata sections. */
e8289572
JB
775 init_objfile_sect_indices (objfile);
776}
777
31d99776
DJ
778/* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784struct symfile_segment_data *
785default_symfile_segments (bfd *abfd)
786{
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
41bf6aca 812 data = XCNEW (struct symfile_segment_data);
31d99776 813 data->num_segments = 1;
fc270c35
TT
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
816
817 num_sections = bfd_count_sections (abfd);
fc270c35 818 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840}
841
608e2dbb
TT
842/* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845static void
b15cc25c 846read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
847{
848 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 849 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 856 {
192b62ce 857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
858
859 if (abfd != NULL)
24ba069a
JK
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
192b62ce
TT
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
24ba069a 867 }
608e2dbb
TT
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871}
872
3d6e24f0
JB
873/* Initialize entry point information for this objfile. */
874
875static void
876init_entry_point_info (struct objfile *objfile)
877{
6ef55de7
TT
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
3d6e24f0
JB
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
6ef55de7
TT
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
3d6e24f0
JB
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
6ef55de7
TT
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
3d6e24f0
JB
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 906 ei->entry_point_p = 0;
3d6e24f0
JB
907 }
908
6ef55de7 909 if (ei->entry_point_p)
3d6e24f0 910 {
53eddfa6 911 struct obj_section *osect;
6ef55de7 912 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 913 int found;
3d6e24f0
JB
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
df6d5441 918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
6ef55de7 924 ei->entry_point
df6d5441 925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
6ef55de7 936 ei->the_bfd_section_index
53eddfa6
TT
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
6ef55de7 944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
945 }
946}
947
c906108c
SS
948/* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
36e4d068
JB
951 This function does not set the OBJFILE's entry-point info.
952
96baa820
JM
953 OBJFILE is where the symbols are to be read from.
954
7e8580c1
JB
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
96baa820 964
7eedccfa
PP
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
c906108c 968
36e4d068
JB
969static void
970syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
b15cc25c 972 symfile_add_flags add_flags)
c906108c 973{
a39a16c4 974 struct section_addr_info *local_addr = NULL;
c906108c 975 struct cleanup *old_chain;
7eedccfa 976 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 977
8fb8eb5c 978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 979
75245b24 980 if (objfile->sf == NULL)
36e4d068
JB
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
d445b2f6 984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
224c3ddb
SM
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
36e4d068
JB
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
75245b24 994
c906108c
SS
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
ed2b3126
TT
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 999
6bf667bb
DE
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
c378eb4e 1002 no load address was specified. */
6bf667bb 1003 if (! addrs)
a39a16c4 1004 {
d445b2f6 1005 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
c5aa993b 1010 if (mainline)
c906108c
SS
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1013 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
9e86da07 1020 delete symfile_objfile;
adb7f338 1021 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
53a5351d 1034 and assume that <addr> is where that got loaded.
c906108c 1035
53a5351d
JM
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
6bf667bb 1038 if (addrs->num_sections > 0)
75242ef4 1039 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
c378eb4e 1043 initial symbol reading for this file. */
c906108c 1044
c5aa993b 1045 (*objfile->sf->sym_init) (objfile);
7eedccfa 1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1047
6bf667bb 1048 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1049
608e2dbb 1050 read_symbols (objfile, add_flags);
b11896a5 1051
c906108c
SS
1052 /* Discard cleanups as symbol reading was successful. */
1053
ed2b3126 1054 objfile_holder.release ();
c906108c 1055 discard_cleanups (old_chain);
f7545552 1056 xfree (local_addr);
c906108c
SS
1057}
1058
36e4d068
JB
1059/* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
6bf667bb 1062static void
36e4d068
JB
1063syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
b15cc25c 1065 symfile_add_flags add_flags)
36e4d068 1066{
6bf667bb 1067 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1068 init_entry_point_info (objfile);
1069}
1070
c906108c
SS
1071/* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1074
e7d52ed3 1075static void
b15cc25c 1076finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1077{
c906108c 1078 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1079 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1080 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1081 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
c1e56572 1086 clear_symtab_users (add_flags);
c906108c 1087 }
7eedccfa 1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1089 {
69de3c6a 1090 breakpoint_re_set ();
c906108c
SS
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1095}
1096
1097/* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
5417f6dc 1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1101 A new reference is acquired by this function.
7904e09f 1102
9e86da07 1103 For NAME description see the objfile constructor.
24ba069a 1104
7eedccfa
PP
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1107
6bf667bb 1108 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1110
63524580
JK
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
c906108c 1114 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1115 Upon failure, jumps back to command level (never returns). */
7eedccfa 1116
7904e09f 1117static struct objfile *
b15cc25c
PA
1118symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
6bf667bb 1120 struct section_addr_info *addrs,
b15cc25c 1121 objfile_flags flags, struct objfile *parent)
c906108c
SS
1122{
1123 struct objfile *objfile;
7eedccfa 1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1125 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1129
9291a0cd 1130 if (readnow_symbol_files)
b11896a5
TT
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
97cbe998
SDJ
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
9291a0cd 1141
5417f6dc
RM
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
c906108c
SS
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1146 && mainline
c906108c 1147 && from_tty
9e2f0ad4 1148 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1149 error (_("Not confirmed."));
c906108c 1150
b15cc25c
PA
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
9e86da07 1153 objfile = new struct objfile (abfd, name, flags);
c906108c 1154
63524580
JK
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
78a4a9b9
AC
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
c378eb4e 1160 performed, or need to read an unmapped symbol table. */
b11896a5 1161 if (should_print)
c906108c 1162 {
769d7dc4
AC
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1165 else
c906108c 1166 {
55333a84
DE
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
c906108c 1170 }
c906108c 1171 }
6bf667bb 1172 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1177 all partial symbol tables for this objfile if so. */
c906108c 1178
9291a0cd 1179 if ((flags & OBJF_READNOW))
c906108c 1180 {
b11896a5 1181 if (should_print)
c906108c 1182 {
a3f17187 1183 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
ccefe4c4
TT
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1190 }
1191
b11896a5 1192 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1193 {
1194 wrap_here ("");
55333a84 1195 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1196 wrap_here ("");
1197 }
1198
b11896a5 1199 if (should_print)
c906108c 1200 {
769d7dc4
AC
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
c906108c 1203 else
55333a84 1204 printf_unfiltered (_("done.\n"));
c906108c
SS
1205 }
1206
481d0f41
JB
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
109f874e 1212 if (objfile->sf == NULL)
8caee43b
PP
1213 {
1214 observer_notify_new_objfile (objfile);
c378eb4e 1215 return objfile; /* No symbols. */
8caee43b 1216 }
109f874e 1217
e7d52ed3 1218 finish_new_objfile (objfile, add_flags);
c906108c 1219
06d3b283 1220 observer_notify_new_objfile (objfile);
c906108c 1221
ce7d4522 1222 bfd_cache_close_all ();
c906108c
SS
1223 return (objfile);
1224}
1225
24ba069a 1226/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1227 see the objfile constructor. */
9cce227f
TG
1228
1229void
b15cc25c
PA
1230symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
24ba069a 1232 struct objfile *objfile)
9cce227f 1233{
089b4803
TG
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1242
870f88f7 1243 symbol_file_add_with_addrs
24ba069a 1244 (bfd, name, symfile_flags, sap,
9cce227f 1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1246 | OBJF_USERLOADED),
1247 objfile);
089b4803
TG
1248
1249 do_cleanups (my_cleanup);
9cce227f 1250}
7904e09f 1251
eb4556d7
JB
1252/* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
6bf667bb 1254 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1255
eb4556d7 1256struct objfile *
b15cc25c
PA
1257symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
eb4556d7 1259 struct section_addr_info *addrs,
b15cc25c 1260 objfile_flags flags, struct objfile *parent)
eb4556d7 1261{
24ba069a
JK
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
eb4556d7
JB
1264}
1265
7904e09f 1266/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1268
7904e09f 1269struct objfile *
b15cc25c
PA
1270symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1272{
192b62ce 1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1274
192b62ce
TT
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
7904e09f
JB
1277}
1278
d7db6da9
FN
1279/* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
5417f6dc 1286
1adeb98a 1287void
ecf45d2c 1288symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1289{
ecf45d2c 1290 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1291}
1292
1293static void
ecf45d2c
SL
1294symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
d7db6da9 1296{
ecf45d2c 1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1298
7eedccfa 1299 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1300
d7db6da9
FN
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
b15cc25c 1305 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1306 set_initial_language ();
1adeb98a
FN
1307}
1308
1309void
1310symbol_file_clear (int from_tty)
1311{
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
0430b0d6
AS
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1316 objfile_name (symfile_objfile))
0430b0d6 1317 : !query (_("Discard symbol table? "))))
8a3fe4f8 1318 error (_("Not confirmed."));
1adeb98a 1319
0133421a
JK
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1322 no_shared_libraries (NULL, from_tty);
1323
0133421a
JK
1324 free_all_objfiles ();
1325
adb7f338 1326 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1329}
1330
c4dcb155
SM
1331/* See symfile.h. */
1332
1333int separate_debug_file_debug = 0;
1334
5b5d99cf 1335static int
287ccc17 1336separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
32a0e547 1341 struct stat parent_stat, abfd_stat;
904578ed 1342 int verified_as_different;
32a0e547
JK
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1348 the separate debug infos with the same basename can exist. */
32a0e547 1349
4262abfb 1350 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1351 return 0;
5b5d99cf 1352
c4dcb155
SM
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name);
1355
192b62ce 1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1357
192b62ce 1358 if (abfd == NULL)
5b5d99cf
JB
1359 return 0;
1360
0ba1096a 1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
32a0e547 1371
192b62ce 1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1375 {
904578ed
JK
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1378 return 0;
904578ed 1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
192b62ce 1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1385
904578ed
JK
1386 if (!file_crc_p)
1387 return 0;
1388
287ccc17
JK
1389 if (crc != file_crc)
1390 {
dccee2de
TT
1391 unsigned long parent_crc;
1392
0a93529c
GB
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
904578ed 1396
dccee2de 1397 if (!verified_as_different)
904578ed 1398 {
dccee2de 1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1400 return 0;
1401 }
1402
dccee2de 1403 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1406 name, objfile_name (parent_objfile));
904578ed 1407
287ccc17
JK
1408 return 0;
1409 }
1410
1411 return 1;
5b5d99cf
JB
1412}
1413
aa28a74e 1414char *debug_file_directory = NULL;
920d2a44
AC
1415static void
1416show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418{
3e43a32a
MS
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1422 value);
1423}
5b5d99cf
JB
1424
1425#if ! defined (DEBUG_SUBDIRECTORY)
1426#define DEBUG_SUBDIRECTORY ".debug"
1427#endif
1428
1db33378
PP
1429/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1435
1436static char *
1437find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
9cce227f 1441{
1db33378
PP
1442 char *debugdir;
1443 char *debugfile;
9cce227f 1444 int i;
e4ab2fad
JK
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
5b5d99cf 1448
c4dcb155
SM
1449 if (separate_debug_file_debug)
1450 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1451 "%s\n"), objfile_name (objfile));
1452
325fac50 1453 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1454 i = strlen (dir);
1db33378
PP
1455 if (canon_dir != NULL && strlen (canon_dir) > i)
1456 i = strlen (canon_dir);
1ffa32ee 1457
224c3ddb
SM
1458 debugfile
1459 = (char *) xmalloc (strlen (debug_file_directory) + 1
1460 + i
1461 + strlen (DEBUG_SUBDIRECTORY)
1462 + strlen ("/")
1463 + strlen (debuglink)
1464 + 1);
5b5d99cf
JB
1465
1466 /* First try in the same directory as the original file. */
1467 strcpy (debugfile, dir);
1db33378 1468 strcat (debugfile, debuglink);
5b5d99cf 1469
32a0e547 1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1471 return debugfile;
5417f6dc 1472
5b5d99cf
JB
1473 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1474 strcpy (debugfile, dir);
1475 strcat (debugfile, DEBUG_SUBDIRECTORY);
1476 strcat (debugfile, "/");
1db33378 1477 strcat (debugfile, debuglink);
5b5d99cf 1478
32a0e547 1479 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1480 return debugfile;
5417f6dc 1481
24ddea62 1482 /* Then try in the global debugfile directories.
f888f159 1483
24ddea62
JK
1484 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1485 cause "/..." lookups. */
5417f6dc 1486
e4ab2fad
JK
1487 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1488 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1489
e4ab2fad
JK
1490 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1491 {
1492 strcpy (debugfile, debugdir);
aa28a74e 1493 strcat (debugfile, "/");
24ddea62 1494 strcat (debugfile, dir);
1db33378 1495 strcat (debugfile, debuglink);
aa28a74e 1496
32a0e547 1497 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1498 {
1499 do_cleanups (back_to);
1500 return debugfile;
1501 }
24ddea62
JK
1502
1503 /* If the file is in the sysroot, try using its base path in the
1504 global debugfile directory. */
1db33378
PP
1505 if (canon_dir != NULL
1506 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1507 strlen (gdb_sysroot)) == 0
1db33378 1508 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1509 {
e4ab2fad 1510 strcpy (debugfile, debugdir);
1db33378 1511 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1512 strcat (debugfile, "/");
1db33378 1513 strcat (debugfile, debuglink);
24ddea62 1514
32a0e547 1515 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1516 {
1517 do_cleanups (back_to);
1518 return debugfile;
1519 }
24ddea62 1520 }
aa28a74e 1521 }
f888f159 1522
e4ab2fad 1523 do_cleanups (back_to);
25522fae 1524 xfree (debugfile);
1db33378
PP
1525 return NULL;
1526}
1527
7edbb660 1528/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1529 If there were no directory separators in PATH, PATH will be empty
1530 string on return. */
1531
1532static void
1533terminate_after_last_dir_separator (char *path)
1534{
1535 int i;
1536
1537 /* Strip off the final filename part, leaving the directory name,
1538 followed by a slash. The directory can be relative or absolute. */
1539 for (i = strlen(path) - 1; i >= 0; i--)
1540 if (IS_DIR_SEPARATOR (path[i]))
1541 break;
1542
1543 /* If I is -1 then no directory is present there and DIR will be "". */
1544 path[i + 1] = '\0';
1545}
1546
1547/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1548 Returns pathname, or NULL. */
1549
1550char *
1551find_separate_debug_file_by_debuglink (struct objfile *objfile)
1552{
1db33378
PP
1553 char *debugfile;
1554 unsigned long crc32;
1db33378 1555
5eae7aea
TT
1556 gdb::unique_xmalloc_ptr<char> debuglink
1557 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1558
1559 if (debuglink == NULL)
1560 {
1561 /* There's no separate debug info, hence there's no way we could
1562 load it => no warning. */
1563 return NULL;
1564 }
1565
5eae7aea
TT
1566 std::string dir = objfile_name (objfile);
1567 terminate_after_last_dir_separator (&dir[0]);
1568 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1569
5eae7aea
TT
1570 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1571 debuglink.get (), crc32, objfile);
1db33378
PP
1572
1573 if (debugfile == NULL)
1574 {
1db33378
PP
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
4262abfb
JK
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1db33378 1582 {
5eae7aea
TT
1583 gdb::unique_xmalloc_ptr<char> symlink_dir
1584 (lrealpath (objfile_name (objfile)));
1db33378
PP
1585 if (symlink_dir != NULL)
1586 {
5eae7aea
TT
1587 terminate_after_last_dir_separator (symlink_dir.get ());
1588 if (dir != symlink_dir.get ())
1db33378
PP
1589 {
1590 /* Different directory, so try using it. */
5eae7aea
TT
1591 debugfile = find_separate_debug_file (symlink_dir.get (),
1592 symlink_dir.get (),
1593 debuglink.get (),
1db33378
PP
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1db33378 1599 }
aa28a74e 1600
25522fae 1601 return debugfile;
5b5d99cf
JB
1602}
1603
97cbe998
SDJ
1604/* Make sure that OBJF_{READNOW,READNEVER} are not set
1605 simultaneously. */
1606
1607static void
1608validate_readnow_readnever (objfile_flags flags)
1609{
1610 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1611 error (_("-readnow and -readnever cannot be used simultaneously"));
1612}
1613
c906108c
SS
1614/* This is the symbol-file command. Read the file, analyze its
1615 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1616 the command is rather bizarre:
1617
1618 1. The function buildargv implements various quoting conventions
1619 which are undocumented and have little or nothing in common with
1620 the way things are quoted (or not quoted) elsewhere in GDB.
1621
1622 2. Options are used, which are not generally used in GDB (perhaps
1623 "set mapped on", "set readnow on" would be better)
1624
1625 3. The order of options matters, which is contrary to GNU
c906108c
SS
1626 conventions (because it is confusing and inconvenient). */
1627
1628void
1d8b34a7 1629symbol_file_command (const char *args, int from_tty)
c906108c 1630{
c906108c
SS
1631 dont_repeat ();
1632
1633 if (args == NULL)
1634 {
1adeb98a 1635 symbol_file_clear (from_tty);
c906108c
SS
1636 }
1637 else
1638 {
b15cc25c 1639 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1640 symfile_add_flags add_flags = 0;
cb2f3a29 1641 char *name = NULL;
40fc416f
SDJ
1642 bool stop_processing_options = false;
1643 int idx;
1644 char *arg;
cb2f3a29 1645
ecf45d2c
SL
1646 if (from_tty)
1647 add_flags |= SYMFILE_VERBOSE;
1648
773a1edc 1649 gdb_argv built_argv (args);
40fc416f 1650 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1651 {
40fc416f 1652 if (stop_processing_options || *arg != '-')
7f0f8ac8 1653 {
40fc416f
SDJ
1654 if (name == NULL)
1655 name = arg;
1656 else
1657 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1658 }
40fc416f
SDJ
1659 else if (strcmp (arg, "-readnow") == 0)
1660 flags |= OBJF_READNOW;
97cbe998
SDJ
1661 else if (strcmp (arg, "-readnever") == 0)
1662 flags |= OBJF_READNEVER;
40fc416f
SDJ
1663 else if (strcmp (arg, "--") == 0)
1664 stop_processing_options = true;
1665 else
1666 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1667 }
1668
1669 if (name == NULL)
cb2f3a29 1670 error (_("no symbol file name was specified"));
40fc416f 1671
97cbe998
SDJ
1672 validate_readnow_readnever (flags);
1673
40fc416f 1674 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1675 }
1676}
1677
1678/* Set the initial language.
1679
cb2f3a29
MK
1680 FIXME: A better solution would be to record the language in the
1681 psymtab when reading partial symbols, and then use it (if known) to
1682 set the language. This would be a win for formats that encode the
1683 language in an easily discoverable place, such as DWARF. For
1684 stabs, we can jump through hoops looking for specially named
1685 symbols or try to intuit the language from the specific type of
1686 stabs we find, but we can't do that until later when we read in
1687 full symbols. */
c906108c 1688
8b60591b 1689void
fba45db2 1690set_initial_language (void)
c906108c 1691{
9e6c82ad 1692 enum language lang = main_language ();
c906108c 1693
9e6c82ad 1694 if (lang == language_unknown)
01f8c46d 1695 {
bf6d8a91 1696 char *name = main_name ();
d12307c1 1697 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1698
bf6d8a91
TT
1699 if (sym != NULL)
1700 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1701 }
cb2f3a29 1702
ccefe4c4
TT
1703 if (lang == language_unknown)
1704 {
1705 /* Make C the default language */
1706 lang = language_c;
c906108c 1707 }
ccefe4c4
TT
1708
1709 set_language (lang);
1710 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1711}
1712
cb2f3a29
MK
1713/* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
c906108c 1717
192b62ce 1718gdb_bfd_ref_ptr
97a41605 1719symfile_bfd_open (const char *name)
c906108c 1720{
97a41605 1721 int desc = -1;
c906108c 1722
e0cc99a6 1723 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1724 if (!is_target_filename (name))
f1838a98 1725 {
ee0c3293 1726 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1727
97a41605
GB
1728 /* Look down path for it, allocate 2nd new malloc'd copy. */
1729 desc = openp (getenv ("PATH"),
1730 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1731 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1732#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1733 if (desc < 0)
1734 {
ee0c3293 1735 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1736
ee0c3293 1737 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1738 desc = openp (getenv ("PATH"),
1739 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1740 exename, O_RDONLY | O_BINARY, &absolute_name);
1741 }
c906108c 1742#endif
97a41605 1743 if (desc < 0)
ee0c3293 1744 perror_with_name (expanded_name.get ());
cb2f3a29 1745
e0cc99a6 1746 name = absolute_name.get ();
97a41605 1747 }
c906108c 1748
192b62ce
TT
1749 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1750 if (sym_bfd == NULL)
faab9922
JK
1751 error (_("`%s': can't open to read symbols: %s."), name,
1752 bfd_errmsg (bfd_get_error ()));
97a41605 1753
192b62ce
TT
1754 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1755 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1756
192b62ce
TT
1757 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1758 error (_("`%s': can't read symbols: %s."), name,
1759 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1760
1761 return sym_bfd;
c906108c
SS
1762}
1763
cb2f3a29
MK
1764/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1765 the section was not found. */
1766
0e931cf0 1767int
a121b7c1 1768get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1769{
1770 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1771
0e931cf0
JB
1772 if (sect)
1773 return sect->index;
1774 else
1775 return -1;
1776}
1777
c256e171
DE
1778/* Link SF into the global symtab_fns list.
1779 FLAVOUR is the file format that SF handles.
1780 Called on startup by the _initialize routine in each object file format
1781 reader, to register information about each format the reader is prepared
1782 to handle. */
c906108c
SS
1783
1784void
c256e171 1785add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1786{
905014d7 1787 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1788}
1789
cb2f3a29
MK
1790/* Initialize OBJFILE to read symbols from its associated BFD. It
1791 either returns or calls error(). The result is an initialized
1792 struct sym_fns in the objfile structure, that contains cached
1793 information about the symbol file. */
c906108c 1794
00b5771c 1795static const struct sym_fns *
31d99776 1796find_sym_fns (bfd *abfd)
c906108c 1797{
31d99776 1798 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1799
75245b24
MS
1800 if (our_flavour == bfd_target_srec_flavour
1801 || our_flavour == bfd_target_ihex_flavour
1802 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1803 return NULL; /* No symbols. */
75245b24 1804
905014d7
SM
1805 for (const registered_sym_fns &rsf : symtab_fns)
1806 if (our_flavour == rsf.sym_flavour)
1807 return rsf.sym_fns;
cb2f3a29 1808
8a3fe4f8 1809 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1810 bfd_get_target (abfd));
c906108c
SS
1811}
1812\f
cb2f3a29 1813
c906108c
SS
1814/* This function runs the load command of our current target. */
1815
1816static void
5fed81ff 1817load_command (const char *arg, int from_tty)
c906108c 1818{
5b3fca71
TT
1819 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1820
e5cc9f32
JB
1821 dont_repeat ();
1822
4487aabf
PA
1823 /* The user might be reloading because the binary has changed. Take
1824 this opportunity to check. */
1825 reopen_exec_file ();
1826 reread_symbols ();
1827
c906108c 1828 if (arg == NULL)
1986bccd 1829 {
5fed81ff 1830 const char *parg;
1986bccd
AS
1831 int count = 0;
1832
1833 parg = arg = get_exec_file (1);
1834
1835 /* Count how many \ " ' tab space there are in the name. */
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 parg++;
1839 count++;
1840 }
1841
1842 if (count)
1843 {
1844 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1845 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd 1846 char *ptemp = temp;
5fed81ff 1847 const char *prev;
1986bccd
AS
1848
1849 make_cleanup (xfree, temp);
1850
1851 prev = parg = arg;
1852 while ((parg = strpbrk (parg, "\\\"'\t ")))
1853 {
1854 strncpy (ptemp, prev, parg - prev);
1855 ptemp += parg - prev;
1856 prev = parg++;
1857 *ptemp++ = '\\';
1858 }
1859 strcpy (ptemp, prev);
1860
1861 arg = temp;
1862 }
1863 }
1864
c906108c 1865 target_load (arg, from_tty);
2889e661
JB
1866
1867 /* After re-loading the executable, we don't really know which
1868 overlays are mapped any more. */
1869 overlay_cache_invalid = 1;
5b3fca71
TT
1870
1871 do_cleanups (cleanup);
c906108c
SS
1872}
1873
1874/* This version of "load" should be usable for any target. Currently
1875 it is just used for remote targets, not inftarg.c or core files,
1876 on the theory that only in that case is it useful.
1877
1878 Avoiding xmodem and the like seems like a win (a) because we don't have
1879 to worry about finding it, and (b) On VMS, fork() is very slow and so
1880 we don't want to run a subprocess. On the other hand, I'm not sure how
1881 performance compares. */
917317f4 1882
917317f4
JM
1883static int validate_download = 0;
1884
e4f9b4d5
MS
1885/* Callback service function for generic_load (bfd_map_over_sections). */
1886
1887static void
1888add_section_size_callback (bfd *abfd, asection *asec, void *data)
1889{
19ba03f4 1890 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1891
2c500098 1892 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1893}
1894
1895/* Opaque data for load_section_callback. */
1896struct load_section_data {
f698ca8e 1897 CORE_ADDR load_offset;
a76d924d
DJ
1898 struct load_progress_data *progress_data;
1899 VEC(memory_write_request_s) *requests;
1900};
1901
1902/* Opaque data for load_progress. */
1903struct load_progress_data {
1904 /* Cumulative data. */
e4f9b4d5
MS
1905 unsigned long write_count;
1906 unsigned long data_count;
1907 bfd_size_type total_size;
a76d924d
DJ
1908};
1909
1910/* Opaque data for load_progress for a single section. */
1911struct load_progress_section_data {
1912 struct load_progress_data *cumulative;
cf7a04e8 1913
a76d924d 1914 /* Per-section data. */
cf7a04e8
DJ
1915 const char *section_name;
1916 ULONGEST section_sent;
1917 ULONGEST section_size;
1918 CORE_ADDR lma;
1919 gdb_byte *buffer;
e4f9b4d5
MS
1920};
1921
a76d924d 1922/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1923
1924static void
1925load_progress (ULONGEST bytes, void *untyped_arg)
1926{
19ba03f4
SM
1927 struct load_progress_section_data *args
1928 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1929 struct load_progress_data *totals;
1930
1931 if (args == NULL)
1932 /* Writing padding data. No easy way to get at the cumulative
1933 stats, so just ignore this. */
1934 return;
1935
1936 totals = args->cumulative;
1937
1938 if (bytes == 0 && args->section_sent == 0)
1939 {
1940 /* The write is just starting. Let the user know we've started
1941 this section. */
112e8700
SM
1942 current_uiout->message ("Loading section %s, size %s lma %s\n",
1943 args->section_name,
1944 hex_string (args->section_size),
1945 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1946 return;
1947 }
cf7a04e8
DJ
1948
1949 if (validate_download)
1950 {
1951 /* Broken memories and broken monitors manifest themselves here
1952 when bring new computers to life. This doubles already slow
1953 downloads. */
1954 /* NOTE: cagney/1999-10-18: A more efficient implementation
1955 might add a verify_memory() method to the target vector and
1956 then use that. remote.c could implement that method using
1957 the ``qCRC'' packet. */
0efef640 1958 gdb::byte_vector check (bytes);
cf7a04e8 1959
0efef640 1960 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1961 error (_("Download verify read failed at %s"),
f5656ead 1962 paddress (target_gdbarch (), args->lma));
0efef640 1963 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1964 error (_("Download verify compare failed at %s"),
f5656ead 1965 paddress (target_gdbarch (), args->lma));
cf7a04e8 1966 }
a76d924d 1967 totals->data_count += bytes;
cf7a04e8
DJ
1968 args->lma += bytes;
1969 args->buffer += bytes;
a76d924d 1970 totals->write_count += 1;
cf7a04e8 1971 args->section_sent += bytes;
522002f9 1972 if (check_quit_flag ()
cf7a04e8
DJ
1973 || (deprecated_ui_load_progress_hook != NULL
1974 && deprecated_ui_load_progress_hook (args->section_name,
1975 args->section_sent)))
1976 error (_("Canceled the download"));
1977
1978 if (deprecated_show_load_progress != NULL)
1979 deprecated_show_load_progress (args->section_name,
1980 args->section_sent,
1981 args->section_size,
a76d924d
DJ
1982 totals->data_count,
1983 totals->total_size);
cf7a04e8
DJ
1984}
1985
e4f9b4d5
MS
1986/* Callback service function for generic_load (bfd_map_over_sections). */
1987
1988static void
1989load_section_callback (bfd *abfd, asection *asec, void *data)
1990{
a76d924d 1991 struct memory_write_request *new_request;
19ba03f4 1992 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1993 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1994 bfd_size_type size = bfd_get_section_size (asec);
1995 gdb_byte *buffer;
cf7a04e8 1996 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1997
cf7a04e8
DJ
1998 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1999 return;
e4f9b4d5 2000
cf7a04e8
DJ
2001 if (size == 0)
2002 return;
e4f9b4d5 2003
a76d924d
DJ
2004 new_request = VEC_safe_push (memory_write_request_s,
2005 args->requests, NULL);
2006 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2007 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2008 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2009 new_request->end = new_request->begin + size; /* FIXME Should size
2010 be in instead? */
224c3ddb 2011 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2012 new_request->baton = section_data;
cf7a04e8 2013
a76d924d 2014 buffer = new_request->data;
cf7a04e8 2015
a76d924d
DJ
2016 section_data->cumulative = args->progress_data;
2017 section_data->section_name = sect_name;
2018 section_data->section_size = size;
2019 section_data->lma = new_request->begin;
2020 section_data->buffer = buffer;
cf7a04e8
DJ
2021
2022 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2023}
2024
2025/* Clean up an entire memory request vector, including load
2026 data and progress records. */
cf7a04e8 2027
a76d924d
DJ
2028static void
2029clear_memory_write_data (void *arg)
2030{
19ba03f4 2031 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2032 VEC(memory_write_request_s) *vec = *vec_p;
2033 int i;
2034 struct memory_write_request *mr;
cf7a04e8 2035
a76d924d
DJ
2036 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2037 {
2038 xfree (mr->data);
2039 xfree (mr->baton);
2040 }
2041 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2042}
2043
dcb07cfa
PA
2044static void print_transfer_performance (struct ui_file *stream,
2045 unsigned long data_count,
2046 unsigned long write_count,
2047 std::chrono::steady_clock::duration d);
2048
c906108c 2049void
9cbe5fff 2050generic_load (const char *args, int from_tty)
c906108c 2051{
773a1edc 2052 struct cleanup *old_cleanups;
e4f9b4d5 2053 struct load_section_data cbdata;
a76d924d 2054 struct load_progress_data total_progress;
79a45e25 2055 struct ui_out *uiout = current_uiout;
a76d924d 2056
e4f9b4d5
MS
2057 CORE_ADDR entry;
2058
a76d924d
DJ
2059 memset (&cbdata, 0, sizeof (cbdata));
2060 memset (&total_progress, 0, sizeof (total_progress));
2061 cbdata.progress_data = &total_progress;
2062
773a1edc 2063 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2064
d1a41061
PP
2065 if (args == NULL)
2066 error_no_arg (_("file to load"));
1986bccd 2067
773a1edc 2068 gdb_argv argv (args);
1986bccd 2069
ee0c3293 2070 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2071
2072 if (argv[1] != NULL)
917317f4 2073 {
f698ca8e 2074 const char *endptr;
ba5f2f8a 2075
f698ca8e 2076 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2077
2078 /* If the last word was not a valid number then
2079 treat it as a file name with spaces in. */
2080 if (argv[1] == endptr)
2081 error (_("Invalid download offset:%s."), argv[1]);
2082
2083 if (argv[2] != NULL)
2084 error (_("Too many parameters."));
917317f4 2085 }
c906108c 2086
c378eb4e 2087 /* Open the file for loading. */
ee0c3293 2088 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2089 if (loadfile_bfd == NULL)
ee0c3293 2090 perror_with_name (filename.get ());
917317f4 2091
192b62ce 2092 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2093 {
ee0c3293 2094 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2095 bfd_errmsg (bfd_get_error ()));
2096 }
c5aa993b 2097
192b62ce 2098 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2099 (void *) &total_progress.total_size);
2100
192b62ce 2101 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2102
dcb07cfa
PA
2103 using namespace std::chrono;
2104
2105 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2106
a76d924d
DJ
2107 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2108 load_progress) != 0)
2109 error (_("Load failed"));
c906108c 2110
dcb07cfa 2111 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2112
192b62ce 2113 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2114 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2115 uiout->text ("Start address ");
2116 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2117 uiout->text (", load size ");
2118 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2119 uiout->text ("\n");
fb14de7b 2120 regcache_write_pc (get_current_regcache (), entry);
c906108c 2121
38963c97
DJ
2122 /* Reset breakpoints, now that we have changed the load image. For
2123 instance, breakpoints may have been set (or reset, by
2124 post_create_inferior) while connected to the target but before we
2125 loaded the program. In that case, the prologue analyzer could
2126 have read instructions from the target to find the right
2127 breakpoint locations. Loading has changed the contents of that
2128 memory. */
2129
2130 breakpoint_re_set ();
2131
a76d924d
DJ
2132 print_transfer_performance (gdb_stdout, total_progress.data_count,
2133 total_progress.write_count,
dcb07cfa 2134 end_time - start_time);
c906108c
SS
2135
2136 do_cleanups (old_cleanups);
2137}
2138
dcb07cfa
PA
2139/* Report on STREAM the performance of a memory transfer operation,
2140 such as 'load'. DATA_COUNT is the number of bytes transferred.
2141 WRITE_COUNT is the number of separate write operations, or 0, if
2142 that information is not available. TIME is how long the operation
2143 lasted. */
c906108c 2144
dcb07cfa 2145static void
d9fcf2fb 2146print_transfer_performance (struct ui_file *stream,
917317f4
JM
2147 unsigned long data_count,
2148 unsigned long write_count,
dcb07cfa 2149 std::chrono::steady_clock::duration time)
917317f4 2150{
dcb07cfa 2151 using namespace std::chrono;
79a45e25 2152 struct ui_out *uiout = current_uiout;
2b71414d 2153
dcb07cfa 2154 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2155
112e8700 2156 uiout->text ("Transfer rate: ");
dcb07cfa 2157 if (ms.count () > 0)
8b93c638 2158 {
dcb07cfa 2159 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2160
112e8700 2161 if (uiout->is_mi_like_p ())
9f43d28c 2162 {
112e8700
SM
2163 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2164 uiout->text (" bits/sec");
9f43d28c
DJ
2165 }
2166 else if (rate < 1024)
2167 {
112e8700
SM
2168 uiout->field_fmt ("transfer-rate", "%lu", rate);
2169 uiout->text (" bytes/sec");
9f43d28c
DJ
2170 }
2171 else
2172 {
112e8700
SM
2173 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2174 uiout->text (" KB/sec");
9f43d28c 2175 }
8b93c638
JM
2176 }
2177 else
2178 {
112e8700
SM
2179 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2180 uiout->text (" bits in <1 sec");
8b93c638
JM
2181 }
2182 if (write_count > 0)
2183 {
112e8700
SM
2184 uiout->text (", ");
2185 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2186 uiout->text (" bytes/write");
8b93c638 2187 }
112e8700 2188 uiout->text (".\n");
c906108c
SS
2189}
2190
2191/* This function allows the addition of incrementally linked object files.
2192 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2193/* Note: ezannoni 2000-04-13 This function/command used to have a
2194 special case syntax for the rombug target (Rombug is the boot
2195 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2196 rombug case, the user doesn't need to supply a text address,
2197 instead a call to target_link() (in target.c) would supply the
c378eb4e 2198 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2199
c906108c 2200static void
2cf311eb 2201add_symbol_file_command (const char *args, int from_tty)
c906108c 2202{
5af949e3 2203 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2204 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2205 char *arg;
2acceee2
JM
2206 int argcnt = 0;
2207 int sec_num = 0;
76ad5e1e 2208 struct objfile *objf;
b15cc25c
PA
2209 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2210 symfile_add_flags add_flags = 0;
2211
2212 if (from_tty)
2213 add_flags |= SYMFILE_VERBOSE;
db162d44 2214
a39a16c4 2215 struct sect_opt
2acceee2 2216 {
a121b7c1
PA
2217 const char *name;
2218 const char *value;
a39a16c4 2219 };
db162d44 2220
a39a16c4 2221 struct section_addr_info *section_addrs;
40fc416f
SDJ
2222 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2223 bool stop_processing_options = false;
3017564a 2224 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2225
c906108c
SS
2226 dont_repeat ();
2227
2228 if (args == NULL)
8a3fe4f8 2229 error (_("add-symbol-file takes a file name and an address"));
c906108c 2230
40fc416f 2231 bool seen_addr = false;
773a1edc 2232 gdb_argv argv (args);
db162d44 2233
5b96932b
AS
2234 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2235 {
40fc416f 2236 if (stop_processing_options || *arg != '-')
41dc8db8 2237 {
40fc416f 2238 if (filename == NULL)
41dc8db8 2239 {
40fc416f
SDJ
2240 /* First non-option argument is always the filename. */
2241 filename.reset (tilde_expand (arg));
41dc8db8 2242 }
40fc416f 2243 else if (!seen_addr)
41dc8db8 2244 {
40fc416f
SDJ
2245 /* The second non-option argument is always the text
2246 address at which to load the program. */
2247 sect_opts[0].value = arg;
2248 seen_addr = true;
41dc8db8
MB
2249 }
2250 else
02ca603a 2251 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2252 }
40fc416f
SDJ
2253 else if (strcmp (arg, "-readnow") == 0)
2254 flags |= OBJF_READNOW;
97cbe998
SDJ
2255 else if (strcmp (arg, "-readnever") == 0)
2256 flags |= OBJF_READNEVER;
40fc416f
SDJ
2257 else if (strcmp (arg, "-s") == 0)
2258 {
2259 if (argv[argcnt + 1] == NULL)
2260 error (_("Missing section name after \"-s\""));
2261 else if (argv[argcnt + 2] == NULL)
2262 error (_("Missing section address after \"-s\""));
2263
2264 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2265
2266 sect_opts.push_back (sect);
2267 argcnt += 2;
2268 }
2269 else if (strcmp (arg, "--") == 0)
2270 stop_processing_options = true;
2271 else
2272 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2273 }
c906108c 2274
40fc416f
SDJ
2275 if (filename == NULL)
2276 error (_("You must provide a filename to be loaded."));
2277
97cbe998
SDJ
2278 validate_readnow_readnever (flags);
2279
927890d0
JB
2280 /* This command takes at least two arguments. The first one is a
2281 filename, and the second is the address where this file has been
2282 loaded. Abort now if this address hasn't been provided by the
2283 user. */
40fc416f 2284 if (!seen_addr)
ee0c3293
TT
2285 error (_("The address where %s has been loaded is missing"),
2286 filename.get ());
927890d0 2287
c378eb4e 2288 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2289 a sect_addr_info structure to be passed around to other
2290 functions. We have to split this up into separate print
bb599908 2291 statements because hex_string returns a local static
c378eb4e 2292 string. */
5417f6dc 2293
ee0c3293
TT
2294 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2295 filename.get ());
f978cb06 2296 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2297 make_cleanup (xfree, section_addrs);
f978cb06 2298 for (sect_opt &sect : sect_opts)
c906108c 2299 {
db162d44 2300 CORE_ADDR addr;
f978cb06
TT
2301 const char *val = sect.value;
2302 const char *sec = sect.name;
5417f6dc 2303
ae822768 2304 addr = parse_and_eval_address (val);
db162d44 2305
db162d44 2306 /* Here we store the section offsets in the order they were
c378eb4e 2307 entered on the command line. */
a121b7c1 2308 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2309 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2310 printf_unfiltered ("\t%s_addr = %s\n", sec,
2311 paddress (gdbarch, addr));
db162d44
EZ
2312 sec_num++;
2313
5417f6dc 2314 /* The object's sections are initialized when a
db162d44 2315 call is made to build_objfile_section_table (objfile).
5417f6dc 2316 This happens in reread_symbols.
db162d44
EZ
2317 At this point, we don't know what file type this is,
2318 so we can't determine what section names are valid. */
2acceee2 2319 }
d76488d8 2320 section_addrs->num_sections = sec_num;
db162d44 2321
2acceee2 2322 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2323 error (_("Not confirmed."));
c906108c 2324
ee0c3293 2325 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2326
2327 add_target_sections_of_objfile (objf);
c906108c
SS
2328
2329 /* Getting new symbols may change our opinion about what is
2330 frameless. */
2331 reinit_frame_cache ();
db162d44 2332 do_cleanups (my_cleanups);
c906108c
SS
2333}
2334\f
70992597 2335
63644780
NB
2336/* This function removes a symbol file that was added via add-symbol-file. */
2337
2338static void
2cf311eb 2339remove_symbol_file_command (const char *args, int from_tty)
63644780 2340{
63644780 2341 struct objfile *objf = NULL;
63644780 2342 struct program_space *pspace = current_program_space;
63644780
NB
2343
2344 dont_repeat ();
2345
2346 if (args == NULL)
2347 error (_("remove-symbol-file: no symbol file provided"));
2348
773a1edc 2349 gdb_argv argv (args);
63644780
NB
2350
2351 if (strcmp (argv[0], "-a") == 0)
2352 {
2353 /* Interpret the next argument as an address. */
2354 CORE_ADDR addr;
2355
2356 if (argv[1] == NULL)
2357 error (_("Missing address argument"));
2358
2359 if (argv[2] != NULL)
2360 error (_("Junk after %s"), argv[1]);
2361
2362 addr = parse_and_eval_address (argv[1]);
2363
2364 ALL_OBJFILES (objf)
2365 {
d03de421
PA
2366 if ((objf->flags & OBJF_USERLOADED) != 0
2367 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2368 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2369 break;
2370 }
2371 }
2372 else if (argv[0] != NULL)
2373 {
2374 /* Interpret the current argument as a file name. */
63644780
NB
2375
2376 if (argv[1] != NULL)
2377 error (_("Junk after %s"), argv[0]);
2378
ee0c3293 2379 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2380
2381 ALL_OBJFILES (objf)
2382 {
d03de421
PA
2383 if ((objf->flags & OBJF_USERLOADED) != 0
2384 && (objf->flags & OBJF_SHARED) != 0
63644780 2385 && objf->pspace == pspace
ee0c3293 2386 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2387 break;
2388 }
2389 }
2390
2391 if (objf == NULL)
2392 error (_("No symbol file found"));
2393
2394 if (from_tty
2395 && !query (_("Remove symbol table from file \"%s\"? "),
2396 objfile_name (objf)))
2397 error (_("Not confirmed."));
2398
9e86da07 2399 delete objf;
63644780 2400 clear_symtab_users (0);
63644780
NB
2401}
2402
c906108c 2403/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2404
c906108c 2405void
fba45db2 2406reread_symbols (void)
c906108c
SS
2407{
2408 struct objfile *objfile;
2409 long new_modtime;
c906108c
SS
2410 struct stat new_statbuf;
2411 int res;
4c404b8b 2412 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2413
2414 /* With the addition of shared libraries, this should be modified,
2415 the load time should be saved in the partial symbol tables, since
2416 different tables may come from different source files. FIXME.
2417 This routine should then walk down each partial symbol table
c378eb4e 2418 and see if the symbol table that it originates from has been changed. */
c906108c 2419
c5aa993b
JM
2420 for (objfile = object_files; objfile; objfile = objfile->next)
2421 {
9cce227f
TG
2422 if (objfile->obfd == NULL)
2423 continue;
2424
2425 /* Separate debug objfiles are handled in the main objfile. */
2426 if (objfile->separate_debug_objfile_backlink)
2427 continue;
2428
02aeec7b
JB
2429 /* If this object is from an archive (what you usually create with
2430 `ar', often called a `static library' on most systems, though
2431 a `shared library' on AIX is also an archive), then you should
2432 stat on the archive name, not member name. */
9cce227f
TG
2433 if (objfile->obfd->my_archive)
2434 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2435 else
4262abfb 2436 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2437 if (res != 0)
2438 {
c378eb4e 2439 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2440 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2441 objfile_name (objfile));
9cce227f
TG
2442 continue;
2443 }
2444 new_modtime = new_statbuf.st_mtime;
2445 if (new_modtime != objfile->mtime)
2446 {
2447 struct cleanup *old_cleanups;
2448 struct section_offsets *offsets;
2449 int num_offsets;
24ba069a 2450 char *original_name;
9cce227f
TG
2451
2452 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2453 objfile_name (objfile));
9cce227f
TG
2454
2455 /* There are various functions like symbol_file_add,
2456 symfile_bfd_open, syms_from_objfile, etc., which might
2457 appear to do what we want. But they have various other
2458 effects which we *don't* want. So we just do stuff
2459 ourselves. We don't worry about mapped files (for one thing,
2460 any mapped file will be out of date). */
2461
2462 /* If we get an error, blow away this objfile (not sure if
2463 that is the correct response for things like shared
2464 libraries). */
ed2b3126
TT
2465 std::unique_ptr<struct objfile> objfile_holder (objfile);
2466
9cce227f 2467 /* We need to do this whenever any symbols go away. */
ed2b3126 2468 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2469
0ba1096a
KT
2470 if (exec_bfd != NULL
2471 && filename_cmp (bfd_get_filename (objfile->obfd),
2472 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2473 {
2474 /* Reload EXEC_BFD without asking anything. */
2475
2476 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2477 }
2478
f6eeced0
JK
2479 /* Keep the calls order approx. the same as in free_objfile. */
2480
2481 /* Free the separate debug objfiles. It will be
2482 automatically recreated by sym_read. */
2483 free_objfile_separate_debug (objfile);
2484
2485 /* Remove any references to this objfile in the global
2486 value lists. */
2487 preserve_values (objfile);
2488
2489 /* Nuke all the state that we will re-read. Much of the following
2490 code which sets things to NULL really is necessary to tell
2491 other parts of GDB that there is nothing currently there.
2492
2493 Try to keep the freeing order compatible with free_objfile. */
2494
2495 if (objfile->sf != NULL)
2496 {
2497 (*objfile->sf->sym_finish) (objfile);
2498 }
2499
2500 clear_objfile_data (objfile);
2501
e1507e95 2502 /* Clean up any state BFD has sitting around. */
a4453b7e 2503 {
192b62ce 2504 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2505 char *obfd_filename;
a4453b7e
TT
2506
2507 obfd_filename = bfd_get_filename (objfile->obfd);
2508 /* Open the new BFD before freeing the old one, so that
2509 the filename remains live. */
192b62ce
TT
2510 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2511 objfile->obfd = temp.release ();
e1507e95 2512 if (objfile->obfd == NULL)
192b62ce 2513 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2514 }
2515
24ba069a
JK
2516 original_name = xstrdup (objfile->original_name);
2517 make_cleanup (xfree, original_name);
2518
9cce227f
TG
2519 /* bfd_openr sets cacheable to true, which is what we want. */
2520 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2521 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2522 bfd_errmsg (bfd_get_error ()));
2523
2524 /* Save the offsets, we will nuke them with the rest of the
2525 objfile_obstack. */
2526 num_offsets = objfile->num_sections;
2527 offsets = ((struct section_offsets *)
2528 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2529 memcpy (offsets, objfile->section_offsets,
2530 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2531
9cce227f
TG
2532 /* FIXME: Do we have to free a whole linked list, or is this
2533 enough? */
af5bf4ad
SM
2534 objfile->global_psymbols.clear ();
2535 objfile->static_psymbols.clear ();
9cce227f 2536
c378eb4e 2537 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2538 psymbol_bcache_free (objfile->psymbol_cache);
2539 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2540
2541 /* NB: after this call to obstack_free, objfiles_changed
2542 will need to be called (see discussion below). */
9cce227f
TG
2543 obstack_free (&objfile->objfile_obstack, 0);
2544 objfile->sections = NULL;
43f3e411 2545 objfile->compunit_symtabs = NULL;
9cce227f
TG
2546 objfile->psymtabs = NULL;
2547 objfile->psymtabs_addrmap = NULL;
2548 objfile->free_psymtabs = NULL;
34eaf542 2549 objfile->template_symbols = NULL;
9cce227f 2550
9cce227f
TG
2551 /* obstack_init also initializes the obstack so it is
2552 empty. We could use obstack_specify_allocation but
d82ea6a8 2553 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2554 obstack_init (&objfile->objfile_obstack);
779bd270 2555
846060df
JB
2556 /* set_objfile_per_bfd potentially allocates the per-bfd
2557 data on the objfile's obstack (if sharing data across
2558 multiple users is not possible), so it's important to
2559 do it *after* the obstack has been initialized. */
2560 set_objfile_per_bfd (objfile);
2561
224c3ddb
SM
2562 objfile->original_name
2563 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2564 strlen (original_name));
24ba069a 2565
779bd270
DE
2566 /* Reset the sym_fns pointer. The ELF reader can change it
2567 based on whether .gdb_index is present, and we need it to
2568 start over. PR symtab/15885 */
8fb8eb5c 2569 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2570
d82ea6a8 2571 build_objfile_section_table (objfile);
9cce227f
TG
2572 terminate_minimal_symbol_table (objfile);
2573
2574 /* We use the same section offsets as from last time. I'm not
2575 sure whether that is always correct for shared libraries. */
2576 objfile->section_offsets = (struct section_offsets *)
2577 obstack_alloc (&objfile->objfile_obstack,
2578 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2579 memcpy (objfile->section_offsets, offsets,
2580 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2581 objfile->num_sections = num_offsets;
2582
2583 /* What the hell is sym_new_init for, anyway? The concept of
2584 distinguishing between the main file and additional files
2585 in this way seems rather dubious. */
2586 if (objfile == symfile_objfile)
c906108c 2587 {
9cce227f 2588 (*objfile->sf->sym_new_init) (objfile);
c906108c 2589 }
9cce227f
TG
2590
2591 (*objfile->sf->sym_init) (objfile);
2592 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2593
2594 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2595
2596 /* We are about to read new symbols and potentially also
2597 DWARF information. Some targets may want to pass addresses
2598 read from DWARF DIE's through an adjustment function before
2599 saving them, like MIPS, which may call into
2600 "find_pc_section". When called, that function will make
2601 use of per-objfile program space data.
2602
2603 Since we discarded our section information above, we have
2604 dangling pointers in the per-objfile program space data
2605 structure. Force GDB to update the section mapping
2606 information by letting it know the objfile has changed,
2607 making the dangling pointers point to correct data
2608 again. */
2609
2610 objfiles_changed ();
2611
608e2dbb 2612 read_symbols (objfile, 0);
b11896a5 2613
9cce227f 2614 if (!objfile_has_symbols (objfile))
c906108c 2615 {
9cce227f
TG
2616 wrap_here ("");
2617 printf_unfiltered (_("(no debugging symbols found)\n"));
2618 wrap_here ("");
c5aa993b 2619 }
9cce227f
TG
2620
2621 /* We're done reading the symbol file; finish off complaints. */
2622 clear_complaints (&symfile_complaints, 0, 1);
2623
2624 /* Getting new symbols may change our opinion about what is
2625 frameless. */
2626
2627 reinit_frame_cache ();
2628
2629 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2630 objfile_holder.release ();
9cce227f
TG
2631 discard_cleanups (old_cleanups);
2632
2633 /* If the mtime has changed between the time we set new_modtime
2634 and now, we *want* this to be out of date, so don't call stat
2635 again now. */
2636 objfile->mtime = new_modtime;
9cce227f 2637 init_entry_point_info (objfile);
4ac39b97 2638
4c404b8b 2639 new_objfiles.push_back (objfile);
c906108c
SS
2640 }
2641 }
c906108c 2642
4c404b8b 2643 if (!new_objfiles.empty ())
ea53e89f 2644 {
c1e56572 2645 clear_symtab_users (0);
4ac39b97
JK
2646
2647 /* clear_objfile_data for each objfile was called before freeing it and
2648 observer_notify_new_objfile (NULL) has been called by
2649 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2650 for (auto iter : new_objfiles)
2651 observer_notify_new_objfile (iter);
4ac39b97 2652
ea53e89f
JB
2653 /* At least one objfile has changed, so we can consider that
2654 the executable we're debugging has changed too. */
781b42b0 2655 observer_notify_executable_changed ();
ea53e89f 2656 }
c906108c 2657}
c906108c
SS
2658\f
2659
593e3209 2660struct filename_language
c5aa993b 2661{
593e3209
SM
2662 filename_language (const std::string &ext_, enum language lang_)
2663 : ext (ext_), lang (lang_)
2664 {}
3fcf0b0d 2665
593e3209
SM
2666 std::string ext;
2667 enum language lang;
2668};
c906108c 2669
593e3209 2670static std::vector<filename_language> filename_language_table;
c906108c 2671
56618e20
TT
2672/* See symfile.h. */
2673
2674void
2675add_filename_language (const char *ext, enum language lang)
c906108c 2676{
593e3209 2677 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2678}
2679
2680static char *ext_args;
920d2a44
AC
2681static void
2682show_ext_args (struct ui_file *file, int from_tty,
2683 struct cmd_list_element *c, const char *value)
2684{
3e43a32a
MS
2685 fprintf_filtered (file,
2686 _("Mapping between filename extension "
2687 "and source language is \"%s\".\n"),
920d2a44
AC
2688 value);
2689}
c906108c
SS
2690
2691static void
eb4c3f4a
TT
2692set_ext_lang_command (const char *args,
2693 int from_tty, struct cmd_list_element *e)
c906108c 2694{
c906108c
SS
2695 char *cp = ext_args;
2696 enum language lang;
2697
c378eb4e 2698 /* First arg is filename extension, starting with '.' */
c906108c 2699 if (*cp != '.')
8a3fe4f8 2700 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2701
2702 /* Find end of first arg. */
c5aa993b 2703 while (*cp && !isspace (*cp))
c906108c
SS
2704 cp++;
2705
2706 if (*cp == '\0')
3e43a32a
MS
2707 error (_("'%s': two arguments required -- "
2708 "filename extension and language"),
c906108c
SS
2709 ext_args);
2710
c378eb4e 2711 /* Null-terminate first arg. */
c5aa993b 2712 *cp++ = '\0';
c906108c
SS
2713
2714 /* Find beginning of second arg, which should be a source language. */
529480d0 2715 cp = skip_spaces (cp);
c906108c
SS
2716
2717 if (*cp == '\0')
3e43a32a
MS
2718 error (_("'%s': two arguments required -- "
2719 "filename extension and language"),
c906108c
SS
2720 ext_args);
2721
2722 /* Lookup the language from among those we know. */
2723 lang = language_enum (cp);
2724
593e3209 2725 auto it = filename_language_table.begin ();
c906108c 2726 /* Now lookup the filename extension: do we already know it? */
593e3209 2727 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2728 {
593e3209 2729 if (it->ext == ext_args)
3fcf0b0d
TT
2730 break;
2731 }
c906108c 2732
593e3209 2733 if (it == filename_language_table.end ())
c906108c 2734 {
c378eb4e 2735 /* New file extension. */
c906108c
SS
2736 add_filename_language (ext_args, lang);
2737 }
2738 else
2739 {
c378eb4e 2740 /* Redefining a previously known filename extension. */
c906108c
SS
2741
2742 /* if (from_tty) */
2743 /* query ("Really make files of type %s '%s'?", */
2744 /* ext_args, language_str (lang)); */
2745
593e3209 2746 it->lang = lang;
c906108c
SS
2747 }
2748}
2749
2750static void
1d12d88f 2751info_ext_lang_command (const char *args, int from_tty)
c906108c 2752{
a3f17187 2753 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2754 printf_filtered ("\n\n");
593e3209
SM
2755 for (const filename_language &entry : filename_language_table)
2756 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2757 language_str (entry.lang));
c906108c
SS
2758}
2759
c906108c 2760enum language
dd786858 2761deduce_language_from_filename (const char *filename)
c906108c 2762{
e6a959d6 2763 const char *cp;
c906108c
SS
2764
2765 if (filename != NULL)
2766 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2767 {
593e3209
SM
2768 for (const filename_language &entry : filename_language_table)
2769 if (entry.ext == cp)
2770 return entry.lang;
3fcf0b0d 2771 }
c906108c
SS
2772
2773 return language_unknown;
2774}
2775\f
43f3e411
DE
2776/* Allocate and initialize a new symbol table.
2777 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2778
2779struct symtab *
43f3e411 2780allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2781{
43f3e411
DE
2782 struct objfile *objfile = cust->objfile;
2783 struct symtab *symtab
2784 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2785
19ba03f4
SM
2786 symtab->filename
2787 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2788 objfile->per_bfd->filename_cache);
c5aa993b
JM
2789 symtab->fullname = NULL;
2790 symtab->language = deduce_language_from_filename (filename);
c906108c 2791
db0fec5c
DE
2792 /* This can be very verbose with lots of headers.
2793 Only print at higher debug levels. */
2794 if (symtab_create_debug >= 2)
45cfd468
DE
2795 {
2796 /* Be a bit clever with debugging messages, and don't print objfile
2797 every time, only when it changes. */
2798 static char *last_objfile_name = NULL;
2799
2800 if (last_objfile_name == NULL
4262abfb 2801 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2802 {
2803 xfree (last_objfile_name);
4262abfb 2804 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2805 fprintf_unfiltered (gdb_stdlog,
2806 "Creating one or more symtabs for objfile %s ...\n",
2807 last_objfile_name);
2808 }
2809 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2810 "Created symtab %s for module %s.\n",
2811 host_address_to_string (symtab), filename);
45cfd468
DE
2812 }
2813
43f3e411
DE
2814 /* Add it to CUST's list of symtabs. */
2815 if (cust->filetabs == NULL)
2816 {
2817 cust->filetabs = symtab;
2818 cust->last_filetab = symtab;
2819 }
2820 else
2821 {
2822 cust->last_filetab->next = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825
2826 /* Backlink to the containing compunit symtab. */
2827 symtab->compunit_symtab = cust;
2828
2829 return symtab;
2830}
2831
2832/* Allocate and initialize a new compunit.
2833 NAME is the name of the main source file, if there is one, or some
2834 descriptive text if there are no source files. */
2835
2836struct compunit_symtab *
2837allocate_compunit_symtab (struct objfile *objfile, const char *name)
2838{
2839 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2840 struct compunit_symtab);
2841 const char *saved_name;
2842
2843 cu->objfile = objfile;
2844
2845 /* The name we record here is only for display/debugging purposes.
2846 Just save the basename to avoid path issues (too long for display,
2847 relative vs absolute, etc.). */
2848 saved_name = lbasename (name);
224c3ddb
SM
2849 cu->name
2850 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2851 strlen (saved_name));
43f3e411
DE
2852
2853 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2854
2855 if (symtab_create_debug)
2856 {
2857 fprintf_unfiltered (gdb_stdlog,
2858 "Created compunit symtab %s for %s.\n",
2859 host_address_to_string (cu),
2860 cu->name);
2861 }
2862
2863 return cu;
2864}
2865
2866/* Hook CU to the objfile it comes from. */
2867
2868void
2869add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2870{
2871 cu->next = cu->objfile->compunit_symtabs;
2872 cu->objfile->compunit_symtabs = cu;
c906108c 2873}
c906108c 2874\f
c5aa993b 2875
b15cc25c
PA
2876/* Reset all data structures in gdb which may contain references to
2877 symbol table data. */
c906108c
SS
2878
2879void
b15cc25c 2880clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2881{
2882 /* Someday, we should do better than this, by only blowing away
2883 the things that really need to be blown. */
c0501be5
DJ
2884
2885 /* Clear the "current" symtab first, because it is no longer valid.
2886 breakpoint_re_set may try to access the current symtab. */
2887 clear_current_source_symtab_and_line ();
2888
c906108c 2889 clear_displays ();
1bfeeb0f 2890 clear_last_displayed_sal ();
c906108c 2891 clear_pc_function_cache ();
06d3b283 2892 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2893
2894 /* Clear globals which might have pointed into a removed objfile.
2895 FIXME: It's not clear which of these are supposed to persist
2896 between expressions and which ought to be reset each time. */
2897 expression_context_block = NULL;
aee1fcdf 2898 innermost_block.reset ();
8756216b
DP
2899
2900 /* Varobj may refer to old symbols, perform a cleanup. */
2901 varobj_invalidate ();
2902
e700d1b2
JB
2903 /* Now that the various caches have been cleared, we can re_set
2904 our breakpoints without risking it using stale data. */
2905 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2906 breakpoint_re_set ();
c906108c
SS
2907}
2908
74b7792f
AC
2909static void
2910clear_symtab_users_cleanup (void *ignore)
2911{
c1e56572 2912 clear_symtab_users (0);
74b7792f 2913}
c906108c 2914\f
c906108c
SS
2915/* OVERLAYS:
2916 The following code implements an abstraction for debugging overlay sections.
2917
2918 The target model is as follows:
2919 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2920 same VMA, each with its own unique LMA (or load address).
c906108c 2921 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2922 sections, one by one, from the load address into the VMA address.
5417f6dc 2923 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2924 sections should be considered to be mapped from the VMA to the LMA.
2925 This information is used for symbol lookup, and memory read/write.
5417f6dc 2926 For instance, if a section has been mapped then its contents
c5aa993b 2927 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2928
2929 Two levels of debugger support for overlays are available. One is
2930 "manual", in which the debugger relies on the user to tell it which
2931 overlays are currently mapped. This level of support is
2932 implemented entirely in the core debugger, and the information about
2933 whether a section is mapped is kept in the objfile->obj_section table.
2934
2935 The second level of support is "automatic", and is only available if
2936 the target-specific code provides functionality to read the target's
2937 overlay mapping table, and translate its contents for the debugger
2938 (by updating the mapped state information in the obj_section tables).
2939
2940 The interface is as follows:
c5aa993b
JM
2941 User commands:
2942 overlay map <name> -- tell gdb to consider this section mapped
2943 overlay unmap <name> -- tell gdb to consider this section unmapped
2944 overlay list -- list the sections that GDB thinks are mapped
2945 overlay read-target -- get the target's state of what's mapped
2946 overlay off/manual/auto -- set overlay debugging state
2947 Functional interface:
2948 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2949 section, return that section.
5417f6dc 2950 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2951 the pc, either in its VMA or its LMA
714835d5 2952 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2953 section_is_overlay(sect): true if section's VMA != LMA
2954 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2955 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2956 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2957 overlay_mapped_address(...): map an address from section's LMA to VMA
2958 overlay_unmapped_address(...): map an address from section's VMA to LMA
2959 symbol_overlayed_address(...): Return a "current" address for symbol:
2960 either in VMA or LMA depending on whether
c378eb4e 2961 the symbol's section is currently mapped. */
c906108c
SS
2962
2963/* Overlay debugging state: */
2964
d874f1e2 2965enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2966int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2967
c906108c 2968/* Function: section_is_overlay (SECTION)
5417f6dc 2969 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2970 SECTION is loaded at an address different from where it will "run". */
2971
2972int
714835d5 2973section_is_overlay (struct obj_section *section)
c906108c 2974{
714835d5
UW
2975 if (overlay_debugging && section)
2976 {
714835d5 2977 asection *bfd_section = section->the_bfd_section;
f888f159 2978
714835d5
UW
2979 if (bfd_section_lma (abfd, bfd_section) != 0
2980 && bfd_section_lma (abfd, bfd_section)
2981 != bfd_section_vma (abfd, bfd_section))
2982 return 1;
2983 }
c906108c
SS
2984
2985 return 0;
2986}
2987
2988/* Function: overlay_invalidate_all (void)
2989 Invalidate the mapped state of all overlay sections (mark it as stale). */
2990
2991static void
fba45db2 2992overlay_invalidate_all (void)
c906108c 2993{
c5aa993b 2994 struct objfile *objfile;
c906108c
SS
2995 struct obj_section *sect;
2996
2997 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2998 if (section_is_overlay (sect))
2999 sect->ovly_mapped = -1;
c906108c
SS
3000}
3001
714835d5 3002/* Function: section_is_mapped (SECTION)
5417f6dc 3003 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3004
3005 Access to the ovly_mapped flag is restricted to this function, so
3006 that we can do automatic update. If the global flag
3007 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3008 overlay_invalidate_all. If the mapped state of the particular
3009 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3010
714835d5
UW
3011int
3012section_is_mapped (struct obj_section *osect)
c906108c 3013{
9216df95
UW
3014 struct gdbarch *gdbarch;
3015
714835d5 3016 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3017 return 0;
3018
c5aa993b 3019 switch (overlay_debugging)
c906108c
SS
3020 {
3021 default:
d874f1e2 3022 case ovly_off:
c5aa993b 3023 return 0; /* overlay debugging off */
d874f1e2 3024 case ovly_auto: /* overlay debugging automatic */
1c772458 3025 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3026 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3027 gdbarch = get_objfile_arch (osect->objfile);
3028 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3029 {
3030 if (overlay_cache_invalid)
3031 {
3032 overlay_invalidate_all ();
3033 overlay_cache_invalid = 0;
3034 }
3035 if (osect->ovly_mapped == -1)
9216df95 3036 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3037 }
3038 /* fall thru to manual case */
d874f1e2 3039 case ovly_on: /* overlay debugging manual */
c906108c
SS
3040 return osect->ovly_mapped == 1;
3041 }
3042}
3043
c906108c
SS
3044/* Function: pc_in_unmapped_range
3045 If PC falls into the lma range of SECTION, return true, else false. */
3046
3047CORE_ADDR
714835d5 3048pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3049{
714835d5
UW
3050 if (section_is_overlay (section))
3051 {
3052 bfd *abfd = section->objfile->obfd;
3053 asection *bfd_section = section->the_bfd_section;
fbd35540 3054
714835d5
UW
3055 /* We assume the LMA is relocated by the same offset as the VMA. */
3056 bfd_vma size = bfd_get_section_size (bfd_section);
3057 CORE_ADDR offset = obj_section_offset (section);
3058
3059 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3060 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3061 return 1;
3062 }
c906108c 3063
c906108c
SS
3064 return 0;
3065}
3066
3067/* Function: pc_in_mapped_range
3068 If PC falls into the vma range of SECTION, return true, else false. */
3069
3070CORE_ADDR
714835d5 3071pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3072{
714835d5
UW
3073 if (section_is_overlay (section))
3074 {
3075 if (obj_section_addr (section) <= pc
3076 && pc < obj_section_endaddr (section))
3077 return 1;
3078 }
c906108c 3079
c906108c
SS
3080 return 0;
3081}
3082
9ec8e6a0
JB
3083/* Return true if the mapped ranges of sections A and B overlap, false
3084 otherwise. */
3b7bacac 3085
b9362cc7 3086static int
714835d5 3087sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3088{
714835d5
UW
3089 CORE_ADDR a_start = obj_section_addr (a);
3090 CORE_ADDR a_end = obj_section_endaddr (a);
3091 CORE_ADDR b_start = obj_section_addr (b);
3092 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3093
3094 return (a_start < b_end && b_start < a_end);
3095}
3096
c906108c
SS
3097/* Function: overlay_unmapped_address (PC, SECTION)
3098 Returns the address corresponding to PC in the unmapped (load) range.
3099 May be the same as PC. */
3100
3101CORE_ADDR
714835d5 3102overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3103{
714835d5
UW
3104 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3105 {
714835d5 3106 asection *bfd_section = section->the_bfd_section;
fbd35540 3107
714835d5
UW
3108 return pc + bfd_section_lma (abfd, bfd_section)
3109 - bfd_section_vma (abfd, bfd_section);
3110 }
c906108c
SS
3111
3112 return pc;
3113}
3114
3115/* Function: overlay_mapped_address (PC, SECTION)
3116 Returns the address corresponding to PC in the mapped (runtime) range.
3117 May be the same as PC. */
3118
3119CORE_ADDR
714835d5 3120overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3121{
714835d5
UW
3122 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3123 {
714835d5 3124 asection *bfd_section = section->the_bfd_section;
fbd35540 3125
714835d5
UW
3126 return pc + bfd_section_vma (abfd, bfd_section)
3127 - bfd_section_lma (abfd, bfd_section);
3128 }
c906108c
SS
3129
3130 return pc;
3131}
3132
5417f6dc 3133/* Function: symbol_overlayed_address
c906108c
SS
3134 Return one of two addresses (relative to the VMA or to the LMA),
3135 depending on whether the section is mapped or not. */
3136
c5aa993b 3137CORE_ADDR
714835d5 3138symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3139{
3140 if (overlay_debugging)
3141 {
c378eb4e 3142 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3143 if (section == 0)
3144 return address;
c378eb4e
MS
3145 /* If the symbol's section is not an overlay, just return its
3146 address. */
c906108c
SS
3147 if (!section_is_overlay (section))
3148 return address;
c378eb4e 3149 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3150 if (section_is_mapped (section))
3151 return address;
3152 /*
3153 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3154 * then return its LOADED address rather than its vma address!!
3155 */
3156 return overlay_unmapped_address (address, section);
3157 }
3158 return address;
3159}
3160
5417f6dc 3161/* Function: find_pc_overlay (PC)
c906108c
SS
3162 Return the best-match overlay section for PC:
3163 If PC matches a mapped overlay section's VMA, return that section.
3164 Else if PC matches an unmapped section's VMA, return that section.
3165 Else if PC matches an unmapped section's LMA, return that section. */
3166
714835d5 3167struct obj_section *
fba45db2 3168find_pc_overlay (CORE_ADDR pc)
c906108c 3169{
c5aa993b 3170 struct objfile *objfile;
c906108c
SS
3171 struct obj_section *osect, *best_match = NULL;
3172
3173 if (overlay_debugging)
b631e59b
KT
3174 {
3175 ALL_OBJSECTIONS (objfile, osect)
3176 if (section_is_overlay (osect))
c5aa993b 3177 {
b631e59b
KT
3178 if (pc_in_mapped_range (pc, osect))
3179 {
3180 if (section_is_mapped (osect))
3181 return osect;
3182 else
3183 best_match = osect;
3184 }
3185 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3186 best_match = osect;
3187 }
b631e59b 3188 }
714835d5 3189 return best_match;
c906108c
SS
3190}
3191
3192/* Function: find_pc_mapped_section (PC)
5417f6dc 3193 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3194 currently marked as MAPPED, return that section. Else return NULL. */
3195
714835d5 3196struct obj_section *
fba45db2 3197find_pc_mapped_section (CORE_ADDR pc)
c906108c 3198{
c5aa993b 3199 struct objfile *objfile;
c906108c
SS
3200 struct obj_section *osect;
3201
3202 if (overlay_debugging)
b631e59b
KT
3203 {
3204 ALL_OBJSECTIONS (objfile, osect)
3205 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3206 return osect;
3207 }
c906108c
SS
3208
3209 return NULL;
3210}
3211
3212/* Function: list_overlays_command
c378eb4e 3213 Print a list of mapped sections and their PC ranges. */
c906108c 3214
5d3055ad 3215static void
2cf311eb 3216list_overlays_command (const char *args, int from_tty)
c906108c 3217{
c5aa993b
JM
3218 int nmapped = 0;
3219 struct objfile *objfile;
c906108c
SS
3220 struct obj_section *osect;
3221
3222 if (overlay_debugging)
b631e59b
KT
3223 {
3224 ALL_OBJSECTIONS (objfile, osect)
714835d5 3225 if (section_is_mapped (osect))
b631e59b
KT
3226 {
3227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3228 const char *name;
3229 bfd_vma lma, vma;
3230 int size;
3231
3232 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3233 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3234 size = bfd_get_section_size (osect->the_bfd_section);
3235 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3236
3237 printf_filtered ("Section %s, loaded at ", name);
3238 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3239 puts_filtered (" - ");
3240 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3241 printf_filtered (", mapped at ");
3242 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3243 puts_filtered (" - ");
3244 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3245 puts_filtered ("\n");
3246
3247 nmapped++;
3248 }
3249 }
c906108c 3250 if (nmapped == 0)
a3f17187 3251 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3252}
3253
3254/* Function: map_overlay_command
3255 Mark the named section as mapped (ie. residing at its VMA address). */
3256
5d3055ad 3257static void
2cf311eb 3258map_overlay_command (const char *args, int from_tty)
c906108c 3259{
c5aa993b
JM
3260 struct objfile *objfile, *objfile2;
3261 struct obj_section *sec, *sec2;
c906108c
SS
3262
3263 if (!overlay_debugging)
3e43a32a
MS
3264 error (_("Overlay debugging not enabled. Use "
3265 "either the 'overlay auto' or\n"
3266 "the 'overlay manual' command."));
c906108c
SS
3267
3268 if (args == 0 || *args == 0)
8a3fe4f8 3269 error (_("Argument required: name of an overlay section"));
c906108c 3270
c378eb4e 3271 /* First, find a section matching the user supplied argument. */
c906108c
SS
3272 ALL_OBJSECTIONS (objfile, sec)
3273 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3274 {
c378eb4e 3275 /* Now, check to see if the section is an overlay. */
714835d5 3276 if (!section_is_overlay (sec))
c5aa993b
JM
3277 continue; /* not an overlay section */
3278
c378eb4e 3279 /* Mark the overlay as "mapped". */
c5aa993b
JM
3280 sec->ovly_mapped = 1;
3281
3282 /* Next, make a pass and unmap any sections that are
3283 overlapped by this new section: */
3284 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3285 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3286 {
3287 if (info_verbose)
a3f17187 3288 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3289 bfd_section_name (objfile->obfd,
3290 sec2->the_bfd_section));
c378eb4e 3291 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3292 }
3293 return;
3294 }
8a3fe4f8 3295 error (_("No overlay section called %s"), args);
c906108c
SS
3296}
3297
3298/* Function: unmap_overlay_command
5417f6dc 3299 Mark the overlay section as unmapped
c906108c
SS
3300 (ie. resident in its LMA address range, rather than the VMA range). */
3301
5d3055ad 3302static void
2cf311eb 3303unmap_overlay_command (const char *args, int from_tty)
c906108c 3304{
c5aa993b 3305 struct objfile *objfile;
7a270e0c 3306 struct obj_section *sec = NULL;
c906108c
SS
3307
3308 if (!overlay_debugging)
3e43a32a
MS
3309 error (_("Overlay debugging not enabled. "
3310 "Use either the 'overlay auto' or\n"
3311 "the 'overlay manual' command."));
c906108c
SS
3312
3313 if (args == 0 || *args == 0)
8a3fe4f8 3314 error (_("Argument required: name of an overlay section"));
c906108c 3315
c378eb4e 3316 /* First, find a section matching the user supplied argument. */
c906108c
SS
3317 ALL_OBJSECTIONS (objfile, sec)
3318 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3319 {
3320 if (!sec->ovly_mapped)
8a3fe4f8 3321 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3322 sec->ovly_mapped = 0;
3323 return;
3324 }
8a3fe4f8 3325 error (_("No overlay section called %s"), args);
c906108c
SS
3326}
3327
3328/* Function: overlay_auto_command
3329 A utility command to turn on overlay debugging.
c378eb4e 3330 Possibly this should be done via a set/show command. */
c906108c
SS
3331
3332static void
2cf311eb 3333overlay_auto_command (const char *args, int from_tty)
c906108c 3334{
d874f1e2 3335 overlay_debugging = ovly_auto;
1900040c 3336 enable_overlay_breakpoints ();
c906108c 3337 if (info_verbose)
a3f17187 3338 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3339}
3340
3341/* Function: overlay_manual_command
3342 A utility command to turn on overlay debugging.
c378eb4e 3343 Possibly this should be done via a set/show command. */
c906108c
SS
3344
3345static void
2cf311eb 3346overlay_manual_command (const char *args, int from_tty)
c906108c 3347{
d874f1e2 3348 overlay_debugging = ovly_on;
1900040c 3349 disable_overlay_breakpoints ();
c906108c 3350 if (info_verbose)
a3f17187 3351 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3352}
3353
3354/* Function: overlay_off_command
3355 A utility command to turn on overlay debugging.
c378eb4e 3356 Possibly this should be done via a set/show command. */
c906108c
SS
3357
3358static void
2cf311eb 3359overlay_off_command (const char *args, int from_tty)
c906108c 3360{
d874f1e2 3361 overlay_debugging = ovly_off;
1900040c 3362 disable_overlay_breakpoints ();
c906108c 3363 if (info_verbose)
a3f17187 3364 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3365}
3366
3367static void
2cf311eb 3368overlay_load_command (const char *args, int from_tty)
c906108c 3369{
e17c207e
UW
3370 struct gdbarch *gdbarch = get_current_arch ();
3371
3372 if (gdbarch_overlay_update_p (gdbarch))
3373 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3374 else
8a3fe4f8 3375 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3376}
3377
3378/* Function: overlay_command
c378eb4e 3379 A place-holder for a mis-typed command. */
c906108c 3380
c378eb4e 3381/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3382static struct cmd_list_element *overlaylist;
c906108c
SS
3383
3384static void
981a3fb3 3385overlay_command (const char *args, int from_tty)
c906108c 3386{
c5aa993b 3387 printf_unfiltered
c906108c 3388 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3389 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3390}
3391
c906108c
SS
3392/* Target Overlays for the "Simplest" overlay manager:
3393
5417f6dc
RM
3394 This is GDB's default target overlay layer. It works with the
3395 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3396 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3397 so targets that use a different runtime overlay manager can
c906108c
SS
3398 substitute their own overlay_update function and take over the
3399 function pointer.
3400
3401 The overlay_update function pokes around in the target's data structures
3402 to see what overlays are mapped, and updates GDB's overlay mapping with
3403 this information.
3404
3405 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3406 unsigned _novlys; /# number of overlay sections #/
3407 unsigned _ovly_table[_novlys][4] = {
438e1e42 3408 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3409 {..., ..., ..., ...},
3410 }
3411 unsigned _novly_regions; /# number of overlay regions #/
3412 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3413 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3414 {..., ..., ...},
3415 }
c906108c
SS
3416 These functions will attempt to update GDB's mappedness state in the
3417 symbol section table, based on the target's mappedness state.
3418
3419 To do this, we keep a cached copy of the target's _ovly_table, and
3420 attempt to detect when the cached copy is invalidated. The main
3421 entry point is "simple_overlay_update(SECT), which looks up SECT in
3422 the cached table and re-reads only the entry for that section from
c378eb4e 3423 the target (whenever possible). */
c906108c
SS
3424
3425/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3426static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3427static unsigned cache_novlys = 0;
c906108c 3428static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3429enum ovly_index
3430 {
438e1e42 3431 VMA, OSIZE, LMA, MAPPED
c5aa993b 3432 };
c906108c 3433
c378eb4e 3434/* Throw away the cached copy of _ovly_table. */
3b7bacac 3435
c906108c 3436static void
fba45db2 3437simple_free_overlay_table (void)
c906108c
SS
3438{
3439 if (cache_ovly_table)
b8c9b27d 3440 xfree (cache_ovly_table);
c5aa993b 3441 cache_novlys = 0;
c906108c
SS
3442 cache_ovly_table = NULL;
3443 cache_ovly_table_base = 0;
3444}
3445
9216df95 3446/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3447 Convert to host order. int LEN is number of ints. */
3b7bacac 3448
c906108c 3449static void
9216df95 3450read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3451 int len, int size, enum bfd_endian byte_order)
c906108c 3452{
c378eb4e 3453 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3454 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3455 int i;
c906108c 3456
9216df95 3457 read_memory (memaddr, buf, len * size);
c906108c 3458 for (i = 0; i < len; i++)
e17a4113 3459 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3460}
3461
3462/* Find and grab a copy of the target _ovly_table
c378eb4e 3463 (and _novlys, which is needed for the table's size). */
3b7bacac 3464
c5aa993b 3465static int
fba45db2 3466simple_read_overlay_table (void)
c906108c 3467{
3b7344d5 3468 struct bound_minimal_symbol novlys_msym;
7c7b6655 3469 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3470 struct gdbarch *gdbarch;
3471 int word_size;
e17a4113 3472 enum bfd_endian byte_order;
c906108c
SS
3473
3474 simple_free_overlay_table ();
9b27852e 3475 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3476 if (! novlys_msym.minsym)
c906108c 3477 {
8a3fe4f8 3478 error (_("Error reading inferior's overlay table: "
0d43edd1 3479 "couldn't find `_novlys' variable\n"
8a3fe4f8 3480 "in inferior. Use `overlay manual' mode."));
0d43edd1 3481 return 0;
c906108c 3482 }
0d43edd1 3483
7c7b6655
TT
3484 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3485 if (! ovly_table_msym.minsym)
0d43edd1 3486 {
8a3fe4f8 3487 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3488 "`_ovly_table' array\n"
8a3fe4f8 3489 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3490 return 0;
3491 }
3492
7c7b6655 3493 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3494 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3495 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3496
77e371c0
TT
3497 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3498 4, byte_order);
0d43edd1 3499 cache_ovly_table
224c3ddb 3500 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3501 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3502 read_target_long_array (cache_ovly_table_base,
777ea8f1 3503 (unsigned int *) cache_ovly_table,
e17a4113 3504 cache_novlys * 4, word_size, byte_order);
0d43edd1 3505
c5aa993b 3506 return 1; /* SUCCESS */
c906108c
SS
3507}
3508
5417f6dc 3509/* Function: simple_overlay_update_1
c906108c
SS
3510 A helper function for simple_overlay_update. Assuming a cached copy
3511 of _ovly_table exists, look through it to find an entry whose vma,
3512 lma and size match those of OSECT. Re-read the entry and make sure
3513 it still matches OSECT (else the table may no longer be valid).
3514 Set OSECT's mapped state to match the entry. Return: 1 for
3515 success, 0 for failure. */
3516
3517static int
fba45db2 3518simple_overlay_update_1 (struct obj_section *osect)
c906108c 3519{
764c99c1 3520 int i;
fbd35540 3521 asection *bsect = osect->the_bfd_section;
9216df95
UW
3522 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3523 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3524 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3525
c906108c 3526 for (i = 0; i < cache_novlys; i++)
fbd35540 3527 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3528 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3529 {
9216df95
UW
3530 read_target_long_array (cache_ovly_table_base + i * word_size,
3531 (unsigned int *) cache_ovly_table[i],
e17a4113 3532 4, word_size, byte_order);
fbd35540 3533 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3534 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3535 {
3536 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3537 return 1;
3538 }
c378eb4e 3539 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3540 return 0;
3541 }
3542 return 0;
3543}
3544
3545/* Function: simple_overlay_update
5417f6dc
RM
3546 If OSECT is NULL, then update all sections' mapped state
3547 (after re-reading the entire target _ovly_table).
3548 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3549 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3550 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3551 re-read the entire cache, and go ahead and update all sections. */
3552
1c772458 3553void
fba45db2 3554simple_overlay_update (struct obj_section *osect)
c906108c 3555{
c5aa993b 3556 struct objfile *objfile;
c906108c 3557
c378eb4e 3558 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3559 if (osect)
c378eb4e 3560 /* Have we got a cached copy of the target's overlay table? */
c906108c 3561 if (cache_ovly_table != NULL)
9cc89665
MS
3562 {
3563 /* Does its cached location match what's currently in the
3564 symtab? */
3b7344d5 3565 struct bound_minimal_symbol minsym
9cc89665
MS
3566 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3567
3b7344d5 3568 if (minsym.minsym == NULL)
9cc89665
MS
3569 error (_("Error reading inferior's overlay table: couldn't "
3570 "find `_ovly_table' array\n"
3571 "in inferior. Use `overlay manual' mode."));
3572
77e371c0 3573 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3574 /* Then go ahead and try to look up this single section in
3575 the cache. */
3576 if (simple_overlay_update_1 (osect))
3577 /* Found it! We're done. */
3578 return;
3579 }
c906108c
SS
3580
3581 /* Cached table no good: need to read the entire table anew.
3582 Or else we want all the sections, in which case it's actually
3583 more efficient to read the whole table in one block anyway. */
3584
0d43edd1
JB
3585 if (! simple_read_overlay_table ())
3586 return;
3587
c378eb4e 3588 /* Now may as well update all sections, even if only one was requested. */
c906108c 3589 ALL_OBJSECTIONS (objfile, osect)
714835d5 3590 if (section_is_overlay (osect))
c5aa993b 3591 {
764c99c1 3592 int i;
fbd35540 3593 asection *bsect = osect->the_bfd_section;
c5aa993b 3594
c5aa993b 3595 for (i = 0; i < cache_novlys; i++)
fbd35540 3596 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3597 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3598 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3599 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3600 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3601 }
3602 }
c906108c
SS
3603}
3604
086df311
DJ
3605/* Set the output sections and output offsets for section SECTP in
3606 ABFD. The relocation code in BFD will read these offsets, so we
3607 need to be sure they're initialized. We map each section to itself,
3608 with no offset; this means that SECTP->vma will be honored. */
3609
3610static void
3611symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3612{
3613 sectp->output_section = sectp;
3614 sectp->output_offset = 0;
3615}
3616
ac8035ab
TG
3617/* Default implementation for sym_relocate. */
3618
ac8035ab
TG
3619bfd_byte *
3620default_symfile_relocate (struct objfile *objfile, asection *sectp,
3621 bfd_byte *buf)
3622{
3019eac3
DE
3623 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3624 DWO file. */
3625 bfd *abfd = sectp->owner;
ac8035ab
TG
3626
3627 /* We're only interested in sections with relocation
3628 information. */
3629 if ((sectp->flags & SEC_RELOC) == 0)
3630 return NULL;
3631
3632 /* We will handle section offsets properly elsewhere, so relocate as if
3633 all sections begin at 0. */
3634 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3635
3636 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3637}
3638
086df311
DJ
3639/* Relocate the contents of a debug section SECTP in ABFD. The
3640 contents are stored in BUF if it is non-NULL, or returned in a
3641 malloc'd buffer otherwise.
3642
3643 For some platforms and debug info formats, shared libraries contain
3644 relocations against the debug sections (particularly for DWARF-2;
3645 one affected platform is PowerPC GNU/Linux, although it depends on
3646 the version of the linker in use). Also, ELF object files naturally
3647 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3648 the relocations in order to get the locations of symbols correct.
3649 Another example that may require relocation processing, is the
3650 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3651 debug section. */
086df311
DJ
3652
3653bfd_byte *
ac8035ab
TG
3654symfile_relocate_debug_section (struct objfile *objfile,
3655 asection *sectp, bfd_byte *buf)
086df311 3656{
ac8035ab 3657 gdb_assert (objfile->sf->sym_relocate);
086df311 3658
ac8035ab 3659 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3660}
c906108c 3661
31d99776
DJ
3662struct symfile_segment_data *
3663get_symfile_segment_data (bfd *abfd)
3664{
00b5771c 3665 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3666
3667 if (sf == NULL)
3668 return NULL;
3669
3670 return sf->sym_segments (abfd);
3671}
3672
3673void
3674free_symfile_segment_data (struct symfile_segment_data *data)
3675{
3676 xfree (data->segment_bases);
3677 xfree (data->segment_sizes);
3678 xfree (data->segment_info);
3679 xfree (data);
3680}
3681
28c32713
JB
3682/* Given:
3683 - DATA, containing segment addresses from the object file ABFD, and
3684 the mapping from ABFD's sections onto the segments that own them,
3685 and
3686 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3687 segment addresses reported by the target,
3688 store the appropriate offsets for each section in OFFSETS.
3689
3690 If there are fewer entries in SEGMENT_BASES than there are segments
3691 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3692
8d385431
DJ
3693 If there are more entries, then ignore the extra. The target may
3694 not be able to distinguish between an empty data segment and a
3695 missing data segment; a missing text segment is less plausible. */
3b7bacac 3696
31d99776 3697int
3189cb12
DE
3698symfile_map_offsets_to_segments (bfd *abfd,
3699 const struct symfile_segment_data *data,
31d99776
DJ
3700 struct section_offsets *offsets,
3701 int num_segment_bases,
3702 const CORE_ADDR *segment_bases)
3703{
3704 int i;
3705 asection *sect;
3706
28c32713
JB
3707 /* It doesn't make sense to call this function unless you have some
3708 segment base addresses. */
202b96c1 3709 gdb_assert (num_segment_bases > 0);
28c32713 3710
31d99776
DJ
3711 /* If we do not have segment mappings for the object file, we
3712 can not relocate it by segments. */
3713 gdb_assert (data != NULL);
3714 gdb_assert (data->num_segments > 0);
3715
31d99776
DJ
3716 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3717 {
31d99776
DJ
3718 int which = data->segment_info[i];
3719
28c32713
JB
3720 gdb_assert (0 <= which && which <= data->num_segments);
3721
3722 /* Don't bother computing offsets for sections that aren't
3723 loaded as part of any segment. */
3724 if (! which)
3725 continue;
3726
3727 /* Use the last SEGMENT_BASES entry as the address of any extra
3728 segments mentioned in DATA->segment_info. */
31d99776 3729 if (which > num_segment_bases)
28c32713 3730 which = num_segment_bases;
31d99776 3731
28c32713
JB
3732 offsets->offsets[i] = (segment_bases[which - 1]
3733 - data->segment_bases[which - 1]);
31d99776
DJ
3734 }
3735
3736 return 1;
3737}
3738
3739static void
3740symfile_find_segment_sections (struct objfile *objfile)
3741{
3742 bfd *abfd = objfile->obfd;
3743 int i;
3744 asection *sect;
3745 struct symfile_segment_data *data;
3746
3747 data = get_symfile_segment_data (objfile->obfd);
3748 if (data == NULL)
3749 return;
3750
3751 if (data->num_segments != 1 && data->num_segments != 2)
3752 {
3753 free_symfile_segment_data (data);
3754 return;
3755 }
3756
3757 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3758 {
31d99776
DJ
3759 int which = data->segment_info[i];
3760
3761 if (which == 1)
3762 {
3763 if (objfile->sect_index_text == -1)
3764 objfile->sect_index_text = sect->index;
3765
3766 if (objfile->sect_index_rodata == -1)
3767 objfile->sect_index_rodata = sect->index;
3768 }
3769 else if (which == 2)
3770 {
3771 if (objfile->sect_index_data == -1)
3772 objfile->sect_index_data = sect->index;
3773
3774 if (objfile->sect_index_bss == -1)
3775 objfile->sect_index_bss = sect->index;
3776 }
3777 }
3778
3779 free_symfile_segment_data (data);
3780}
3781
76ad5e1e
NB
3782/* Listen for free_objfile events. */
3783
3784static void
3785symfile_free_objfile (struct objfile *objfile)
3786{
c33b2f12
MM
3787 /* Remove the target sections owned by this objfile. */
3788 if (objfile != NULL)
76ad5e1e
NB
3789 remove_target_sections ((void *) objfile);
3790}
3791
540c2971
DE
3792/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3793 Expand all symtabs that match the specified criteria.
3794 See quick_symbol_functions.expand_symtabs_matching for details. */
3795
3796void
14bc53a8
PA
3797expand_symtabs_matching
3798 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3799 const lookup_name_info &lookup_name,
14bc53a8
PA
3800 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3801 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3802 enum search_domain kind)
540c2971
DE
3803{
3804 struct objfile *objfile;
3805
3806 ALL_OBJFILES (objfile)
3807 {
3808 if (objfile->sf)
bb4142cf 3809 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3810 lookup_name,
276d885b 3811 symbol_matcher,
14bc53a8 3812 expansion_notify, kind);
540c2971
DE
3813 }
3814}
3815
3816/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3817 Map function FUN over every file.
3818 See quick_symbol_functions.map_symbol_filenames for details. */
3819
3820void
bb4142cf
DE
3821map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3822 int need_fullname)
540c2971
DE
3823{
3824 struct objfile *objfile;
3825
3826 ALL_OBJFILES (objfile)
3827 {
3828 if (objfile->sf)
3829 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3830 need_fullname);
3831 }
3832}
3833
32fa66eb
SM
3834#if GDB_SELF_TEST
3835
3836namespace selftests {
3837namespace filename_language {
3838
32fa66eb
SM
3839static void test_filename_language ()
3840{
3841 /* This test messes up the filename_language_table global. */
593e3209 3842 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3843
3844 /* Test deducing an unknown extension. */
3845 language lang = deduce_language_from_filename ("myfile.blah");
3846 SELF_CHECK (lang == language_unknown);
3847
3848 /* Test deducing a known extension. */
3849 lang = deduce_language_from_filename ("myfile.c");
3850 SELF_CHECK (lang == language_c);
3851
3852 /* Test adding a new extension using the internal API. */
3853 add_filename_language (".blah", language_pascal);
3854 lang = deduce_language_from_filename ("myfile.blah");
3855 SELF_CHECK (lang == language_pascal);
3856}
3857
3858static void
3859test_set_ext_lang_command ()
3860{
3861 /* This test messes up the filename_language_table global. */
593e3209 3862 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3863
3864 /* Confirm that the .hello extension is not known. */
3865 language lang = deduce_language_from_filename ("cake.hello");
3866 SELF_CHECK (lang == language_unknown);
3867
3868 /* Test adding a new extension using the CLI command. */
3869 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3870 ext_args = args_holder.get ();
3871 set_ext_lang_command (NULL, 1, NULL);
3872
3873 lang = deduce_language_from_filename ("cake.hello");
3874 SELF_CHECK (lang == language_rust);
3875
3876 /* Test overriding an existing extension using the CLI command. */
593e3209 3877 int size_before = filename_language_table.size ();
32fa66eb
SM
3878 args_holder.reset (xstrdup (".hello pascal"));
3879 ext_args = args_holder.get ();
3880 set_ext_lang_command (NULL, 1, NULL);
593e3209 3881 int size_after = filename_language_table.size ();
32fa66eb
SM
3882
3883 lang = deduce_language_from_filename ("cake.hello");
3884 SELF_CHECK (lang == language_pascal);
3885 SELF_CHECK (size_before == size_after);
3886}
3887
3888} /* namespace filename_language */
3889} /* namespace selftests */
3890
3891#endif /* GDB_SELF_TEST */
3892
c906108c 3893void
fba45db2 3894_initialize_symfile (void)
c906108c
SS
3895{
3896 struct cmd_list_element *c;
c5aa993b 3897
76ad5e1e
NB
3898 observer_attach_free_objfile (symfile_free_objfile);
3899
97cbe998 3900#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3901 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3902immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3903faster.\n\
3904The '-readnever' option will prevent GDB from reading the symbol file's\n\
3905symbolic debug information."
8ca2f0b9 3906
1a966eab
AC
3907 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3908Load symbol table from executable file FILE.\n\
97cbe998 3909Usage: symbol-file [-readnow | -readnever] FILE\n\
c906108c 3910The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3911to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3912 set_cmd_completer (c, filename_completer);
c906108c 3913
1a966eab 3914 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3915Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
97cbe998
SDJ
3916Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3917-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3918ADDR is the starting address of the file's text.\n\
3919Each '-s' argument provides a section name and address, and\n\
db162d44 3920should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3921with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
97cbe998 3922READNOW_READNEVER_HELP),
c906108c 3923 &cmdlist);
5ba2abeb 3924 set_cmd_completer (c, filename_completer);
c906108c 3925
63644780
NB
3926 c = add_cmd ("remove-symbol-file", class_files,
3927 remove_symbol_file_command, _("\
3928Remove a symbol file added via the add-symbol-file command.\n\
3929Usage: remove-symbol-file FILENAME\n\
3930 remove-symbol-file -a ADDRESS\n\
3931The file to remove can be identified by its filename or by an address\n\
3932that lies within the boundaries of this symbol file in memory."),
3933 &cmdlist);
3934
1a966eab
AC
3935 c = add_cmd ("load", class_files, load_command, _("\
3936Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3937for access from GDB.\n\
8ca2f0b9 3938Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3939An optional load OFFSET may also be given as a literal address.\n\
3940When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3941on its own."), &cmdlist);
5ba2abeb 3942 set_cmd_completer (c, filename_completer);
c906108c 3943
c5aa993b 3944 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3945 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3946 "overlay ", 0, &cmdlist);
3947
3948 add_com_alias ("ovly", "overlay", class_alias, 1);
3949 add_com_alias ("ov", "overlay", class_alias, 1);
3950
c5aa993b 3951 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3952 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3953
c5aa993b 3954 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3955 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3956
c5aa993b 3957 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3958 _("List mappings of overlay sections."), &overlaylist);
c906108c 3959
c5aa993b 3960 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3961 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3962 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3963 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3964 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3965 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3966 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3967 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3968
3969 /* Filename extension to source language lookup table: */
26c41df3
AC
3970 add_setshow_string_noescape_cmd ("extension-language", class_files,
3971 &ext_args, _("\
3972Set mapping between filename extension and source language."), _("\
3973Show mapping between filename extension and source language."), _("\
3974Usage: set extension-language .foo bar"),
3975 set_ext_lang_command,
920d2a44 3976 show_ext_args,
26c41df3 3977 &setlist, &showlist);
c906108c 3978
c5aa993b 3979 add_info ("extensions", info_ext_lang_command,
1bedd215 3980 _("All filename extensions associated with a source language."));
917317f4 3981
525226b5
AC
3982 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3983 &debug_file_directory, _("\
24ddea62
JK
3984Set the directories where separate debug symbols are searched for."), _("\
3985Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3986Separate debug symbols are first searched for in the same\n\
3987directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3988and lastly at the path of the directory of the binary with\n\
24ddea62 3989each global debug-file-directory component prepended."),
525226b5 3990 NULL,
920d2a44 3991 show_debug_file_directory,
525226b5 3992 &setlist, &showlist);
770e7fc7
DE
3993
3994 add_setshow_enum_cmd ("symbol-loading", no_class,
3995 print_symbol_loading_enums, &print_symbol_loading,
3996 _("\
3997Set printing of symbol loading messages."), _("\
3998Show printing of symbol loading messages."), _("\
3999off == turn all messages off\n\
4000brief == print messages for the executable,\n\
4001 and brief messages for shared libraries\n\
4002full == print messages for the executable,\n\
4003 and messages for each shared library."),
4004 NULL,
4005 NULL,
4006 &setprintlist, &showprintlist);
c4dcb155
SM
4007
4008 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4009 &separate_debug_file_debug, _("\
4010Set printing of separate debug info file search debug."), _("\
4011Show printing of separate debug info file search debug."), _("\
4012When on, GDB prints the searched locations while looking for separate debug \
4013info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
4014
4015#if GDB_SELF_TEST
4016 selftests::register_test
4017 ("filename_language", selftests::filename_language::test_filename_language);
4018 selftests::register_test
4019 ("set_ext_lang_command",
4020 selftests::filename_language::test_set_ext_lang_command);
4021#endif
c906108c 4022}
This page took 2.655511 seconds and 4 git commands to generate.