Add new_inferior, inferior_deleted, and new_thread events
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void overlay_auto_command (char *, int);
c906108c 97
a14ed312 98static void overlay_manual_command (char *, int);
c906108c 99
a14ed312 100static void overlay_off_command (char *, int);
c906108c 101
a14ed312 102static void overlay_load_command (char *, int);
c906108c 103
a14ed312 104static void overlay_command (char *, int);
c906108c 105
a14ed312 106static void simple_free_overlay_table (void);
c906108c 107
e17a4113
UW
108static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
c906108c 110
a14ed312 111static int simple_read_overlay_table (void);
c906108c 112
a14ed312 113static int simple_overlay_update_1 (struct obj_section *);
c906108c 114
a14ed312 115static void info_ext_lang_command (char *args, int from_tty);
392a587b 116
31d99776
DJ
117static void symfile_find_segment_sections (struct objfile *objfile);
118
c906108c
SS
119/* List of all available sym_fns. On gdb startup, each object file reader
120 calls add_symtab_fns() to register information on each format it is
c378eb4e 121 prepared to read. */
c906108c 122
c256e171
DE
123typedef struct
124{
125 /* BFD flavour that we handle. */
126 enum bfd_flavour sym_flavour;
127
128 /* The "vtable" of symbol functions. */
129 const struct sym_fns *sym_fns;
130} registered_sym_fns;
00b5771c 131
c256e171
DE
132DEF_VEC_O (registered_sym_fns);
133
134static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 135
770e7fc7
DE
136/* Values for "set print symbol-loading". */
137
138const char print_symbol_loading_off[] = "off";
139const char print_symbol_loading_brief[] = "brief";
140const char print_symbol_loading_full[] = "full";
141static const char *print_symbol_loading_enums[] =
142{
143 print_symbol_loading_off,
144 print_symbol_loading_brief,
145 print_symbol_loading_full,
146 NULL
147};
148static const char *print_symbol_loading = print_symbol_loading_full;
149
b7209cb4
FF
150/* If non-zero, shared library symbols will be added automatically
151 when the inferior is created, new libraries are loaded, or when
152 attaching to the inferior. This is almost always what users will
153 want to have happen; but for very large programs, the startup time
154 will be excessive, and so if this is a problem, the user can clear
155 this flag and then add the shared library symbols as needed. Note
156 that there is a potential for confusion, since if the shared
c906108c 157 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 158 report all the functions that are actually present. */
c906108c
SS
159
160int auto_solib_add = 1;
c906108c 161\f
c5aa993b 162
770e7fc7
DE
163/* Return non-zero if symbol-loading messages should be printed.
164 FROM_TTY is the standard from_tty argument to gdb commands.
165 If EXEC is non-zero the messages are for the executable.
166 Otherwise, messages are for shared libraries.
167 If FULL is non-zero then the caller is printing a detailed message.
168 E.g., the message includes the shared library name.
169 Otherwise, the caller is printing a brief "summary" message. */
170
171int
172print_symbol_loading_p (int from_tty, int exec, int full)
173{
174 if (!from_tty && !info_verbose)
175 return 0;
176
177 if (exec)
178 {
179 /* We don't check FULL for executables, there are few such
180 messages, therefore brief == full. */
181 return print_symbol_loading != print_symbol_loading_off;
182 }
183 if (full)
184 return print_symbol_loading == print_symbol_loading_full;
185 return print_symbol_loading == print_symbol_loading_brief;
186}
187
0d14a781 188/* True if we are reading a symbol table. */
c906108c
SS
189
190int currently_reading_symtab = 0;
191
ccefe4c4
TT
192/* Increment currently_reading_symtab and return a cleanup that can be
193 used to decrement it. */
3b7bacac 194
c83dd867 195scoped_restore_tmpl<int>
ccefe4c4 196increment_reading_symtab (void)
c906108c 197{
c83dd867
TT
198 gdb_assert (currently_reading_symtab >= 0);
199 return make_scoped_restore (&currently_reading_symtab,
200 currently_reading_symtab + 1);
c906108c
SS
201}
202
5417f6dc
RM
203/* Remember the lowest-addressed loadable section we've seen.
204 This function is called via bfd_map_over_sections.
c906108c
SS
205
206 In case of equal vmas, the section with the largest size becomes the
207 lowest-addressed loadable section.
208
209 If the vmas and sizes are equal, the last section is considered the
210 lowest-addressed loadable section. */
211
212void
4efb68b1 213find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 214{
c5aa993b 215 asection **lowest = (asection **) obj;
c906108c 216
eb73e134 217 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
218 return;
219 if (!*lowest)
220 *lowest = sect; /* First loadable section */
221 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
222 *lowest = sect; /* A lower loadable section */
223 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
224 && (bfd_section_size (abfd, (*lowest))
225 <= bfd_section_size (abfd, sect)))
226 *lowest = sect;
227}
228
d76488d8
TT
229/* Create a new section_addr_info, with room for NUM_SECTIONS. The
230 new object's 'num_sections' field is set to 0; it must be updated
231 by the caller. */
a39a16c4
MM
232
233struct section_addr_info *
234alloc_section_addr_info (size_t num_sections)
235{
236 struct section_addr_info *sap;
237 size_t size;
238
239 size = (sizeof (struct section_addr_info)
240 + sizeof (struct other_sections) * (num_sections - 1));
241 sap = (struct section_addr_info *) xmalloc (size);
242 memset (sap, 0, size);
a39a16c4
MM
243
244 return sap;
245}
62557bbc
KB
246
247/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 248 an existing section table. */
62557bbc
KB
249
250extern struct section_addr_info *
0542c86d
PA
251build_section_addr_info_from_section_table (const struct target_section *start,
252 const struct target_section *end)
62557bbc
KB
253{
254 struct section_addr_info *sap;
0542c86d 255 const struct target_section *stp;
62557bbc
KB
256 int oidx;
257
a39a16c4 258 sap = alloc_section_addr_info (end - start);
62557bbc
KB
259
260 for (stp = start, oidx = 0; stp != end; stp++)
261 {
2b2848e2
DE
262 struct bfd_section *asect = stp->the_bfd_section;
263 bfd *abfd = asect->owner;
264
265 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 266 && oidx < end - start)
62557bbc
KB
267 {
268 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
269 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
270 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
271 oidx++;
272 }
273 }
274
d76488d8
TT
275 sap->num_sections = oidx;
276
62557bbc
KB
277 return sap;
278}
279
82ccf5a5 280/* Create a section_addr_info from section offsets in ABFD. */
089b4803 281
82ccf5a5
JK
282static struct section_addr_info *
283build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
284{
285 struct section_addr_info *sap;
286 int i;
287 struct bfd_section *sec;
288
82ccf5a5
JK
289 sap = alloc_section_addr_info (bfd_count_sections (abfd));
290 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
291 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 292 {
82ccf5a5
JK
293 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
294 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 295 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
296 i++;
297 }
d76488d8
TT
298
299 sap->num_sections = i;
300
089b4803
TG
301 return sap;
302}
303
82ccf5a5
JK
304/* Create a section_addr_info from section offsets in OBJFILE. */
305
306struct section_addr_info *
307build_section_addr_info_from_objfile (const struct objfile *objfile)
308{
309 struct section_addr_info *sap;
310 int i;
311
312 /* Before reread_symbols gets rewritten it is not safe to call:
313 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
314 */
315 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 316 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
317 {
318 int sectindex = sap->other[i].sectindex;
319
320 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
321 }
322 return sap;
323}
62557bbc 324
c378eb4e 325/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
326
327extern void
328free_section_addr_info (struct section_addr_info *sap)
329{
330 int idx;
331
a39a16c4 332 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 333 xfree (sap->other[idx].name);
b8c9b27d 334 xfree (sap);
62557bbc
KB
335}
336
e8289572 337/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 338
e8289572
JB
339static void
340init_objfile_sect_indices (struct objfile *objfile)
c906108c 341{
e8289572 342 asection *sect;
c906108c 343 int i;
5417f6dc 344
b8fbeb18 345 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 346 if (sect)
b8fbeb18
EZ
347 objfile->sect_index_text = sect->index;
348
349 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 350 if (sect)
b8fbeb18
EZ
351 objfile->sect_index_data = sect->index;
352
353 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 354 if (sect)
b8fbeb18
EZ
355 objfile->sect_index_bss = sect->index;
356
357 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 358 if (sect)
b8fbeb18
EZ
359 objfile->sect_index_rodata = sect->index;
360
bbcd32ad
FF
361 /* This is where things get really weird... We MUST have valid
362 indices for the various sect_index_* members or gdb will abort.
363 So if for example, there is no ".text" section, we have to
31d99776
DJ
364 accomodate that. First, check for a file with the standard
365 one or two segments. */
366
367 symfile_find_segment_sections (objfile);
368
369 /* Except when explicitly adding symbol files at some address,
370 section_offsets contains nothing but zeros, so it doesn't matter
371 which slot in section_offsets the individual sect_index_* members
372 index into. So if they are all zero, it is safe to just point
373 all the currently uninitialized indices to the first slot. But
374 beware: if this is the main executable, it may be relocated
375 later, e.g. by the remote qOffsets packet, and then this will
376 be wrong! That's why we try segments first. */
bbcd32ad
FF
377
378 for (i = 0; i < objfile->num_sections; i++)
379 {
380 if (ANOFFSET (objfile->section_offsets, i) != 0)
381 {
382 break;
383 }
384 }
385 if (i == objfile->num_sections)
386 {
387 if (objfile->sect_index_text == -1)
388 objfile->sect_index_text = 0;
389 if (objfile->sect_index_data == -1)
390 objfile->sect_index_data = 0;
391 if (objfile->sect_index_bss == -1)
392 objfile->sect_index_bss = 0;
393 if (objfile->sect_index_rodata == -1)
394 objfile->sect_index_rodata = 0;
395 }
b8fbeb18 396}
c906108c 397
c1bd25fd
DJ
398/* The arguments to place_section. */
399
400struct place_section_arg
401{
402 struct section_offsets *offsets;
403 CORE_ADDR lowest;
404};
405
406/* Find a unique offset to use for loadable section SECT if
407 the user did not provide an offset. */
408
2c0b251b 409static void
c1bd25fd
DJ
410place_section (bfd *abfd, asection *sect, void *obj)
411{
19ba03f4 412 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
413 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
414 int done;
3bd72c6f 415 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 416
2711e456
DJ
417 /* We are only interested in allocated sections. */
418 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
419 return;
420
421 /* If the user specified an offset, honor it. */
65cf3563 422 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
423 return;
424
425 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
426 start_addr = (arg->lowest + align - 1) & -align;
427
c1bd25fd
DJ
428 do {
429 asection *cur_sec;
c1bd25fd 430
c1bd25fd
DJ
431 done = 1;
432
433 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
434 {
435 int indx = cur_sec->index;
c1bd25fd
DJ
436
437 /* We don't need to compare against ourself. */
438 if (cur_sec == sect)
439 continue;
440
2711e456
DJ
441 /* We can only conflict with allocated sections. */
442 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
443 continue;
444
445 /* If the section offset is 0, either the section has not been placed
446 yet, or it was the lowest section placed (in which case LOWEST
447 will be past its end). */
448 if (offsets[indx] == 0)
449 continue;
450
451 /* If this section would overlap us, then we must move up. */
452 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
453 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
454 {
455 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
456 start_addr = (start_addr + align - 1) & -align;
457 done = 0;
3bd72c6f 458 break;
c1bd25fd
DJ
459 }
460
461 /* Otherwise, we appear to be OK. So far. */
462 }
463 }
464 while (!done);
465
65cf3563 466 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 467 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 468}
e8289572 469
75242ef4
JK
470/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
471 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
472 entries. */
e8289572
JB
473
474void
75242ef4
JK
475relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
476 int num_sections,
3189cb12 477 const struct section_addr_info *addrs)
e8289572
JB
478{
479 int i;
480
75242ef4 481 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 482
c378eb4e 483 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 484 for (i = 0; i < addrs->num_sections; i++)
e8289572 485 {
3189cb12 486 const struct other_sections *osp;
e8289572 487
75242ef4 488 osp = &addrs->other[i];
5488dafb 489 if (osp->sectindex == -1)
e8289572
JB
490 continue;
491
c378eb4e 492 /* Record all sections in offsets. */
e8289572 493 /* The section_offsets in the objfile are here filled in using
c378eb4e 494 the BFD index. */
75242ef4
JK
495 section_offsets->offsets[osp->sectindex] = osp->addr;
496 }
497}
498
1276c759
JK
499/* Transform section name S for a name comparison. prelink can split section
500 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
501 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
502 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
503 (`.sbss') section has invalid (increased) virtual address. */
504
505static const char *
506addr_section_name (const char *s)
507{
508 if (strcmp (s, ".dynbss") == 0)
509 return ".bss";
510 if (strcmp (s, ".sdynbss") == 0)
511 return ".sbss";
512
513 return s;
514}
515
82ccf5a5
JK
516/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
517 their (name, sectindex) pair. sectindex makes the sort by name stable. */
518
519static int
520addrs_section_compar (const void *ap, const void *bp)
521{
522 const struct other_sections *a = *((struct other_sections **) ap);
523 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 524 int retval;
82ccf5a5 525
1276c759 526 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
527 if (retval)
528 return retval;
529
5488dafb 530 return a->sectindex - b->sectindex;
82ccf5a5
JK
531}
532
533/* Provide sorted array of pointers to sections of ADDRS. The array is
534 terminated by NULL. Caller is responsible to call xfree for it. */
535
536static struct other_sections **
537addrs_section_sort (struct section_addr_info *addrs)
538{
539 struct other_sections **array;
540 int i;
541
542 /* `+ 1' for the NULL terminator. */
8d749320 543 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 544 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
545 array[i] = &addrs->other[i];
546 array[i] = NULL;
547
548 qsort (array, i, sizeof (*array), addrs_section_compar);
549
550 return array;
551}
552
75242ef4 553/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
554 also SECTINDEXes specific to ABFD there. This function can be used to
555 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
556
557void
558addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
559{
560 asection *lower_sect;
75242ef4
JK
561 CORE_ADDR lower_offset;
562 int i;
82ccf5a5
JK
563 struct cleanup *my_cleanup;
564 struct section_addr_info *abfd_addrs;
565 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
566 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
567
568 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
569 continguous sections. */
570 lower_sect = NULL;
571 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
572 if (lower_sect == NULL)
573 {
574 warning (_("no loadable sections found in added symbol-file %s"),
575 bfd_get_filename (abfd));
576 lower_offset = 0;
e8289572 577 }
75242ef4
JK
578 else
579 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
580
82ccf5a5
JK
581 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
582 in ABFD. Section names are not unique - there can be multiple sections of
583 the same name. Also the sections of the same name do not have to be
584 adjacent to each other. Some sections may be present only in one of the
585 files. Even sections present in both files do not have to be in the same
586 order.
587
588 Use stable sort by name for the sections in both files. Then linearly
589 scan both lists matching as most of the entries as possible. */
590
591 addrs_sorted = addrs_section_sort (addrs);
592 my_cleanup = make_cleanup (xfree, addrs_sorted);
593
594 abfd_addrs = build_section_addr_info_from_bfd (abfd);
595 make_cleanup_free_section_addr_info (abfd_addrs);
596 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
597 make_cleanup (xfree, abfd_addrs_sorted);
598
c378eb4e
MS
599 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
600 ABFD_ADDRS_SORTED. */
82ccf5a5 601
8d749320 602 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
603 make_cleanup (xfree, addrs_to_abfd_addrs);
604
605 while (*addrs_sorted)
606 {
1276c759 607 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
608
609 while (*abfd_addrs_sorted
1276c759
JK
610 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
611 sect_name) < 0)
82ccf5a5
JK
612 abfd_addrs_sorted++;
613
614 if (*abfd_addrs_sorted
1276c759
JK
615 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
616 sect_name) == 0)
82ccf5a5
JK
617 {
618 int index_in_addrs;
619
620 /* Make the found item directly addressable from ADDRS. */
621 index_in_addrs = *addrs_sorted - addrs->other;
622 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
623 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
624
625 /* Never use the same ABFD entry twice. */
626 abfd_addrs_sorted++;
627 }
628
629 addrs_sorted++;
630 }
631
75242ef4
JK
632 /* Calculate offsets for the loadable sections.
633 FIXME! Sections must be in order of increasing loadable section
634 so that contiguous sections can use the lower-offset!!!
635
636 Adjust offsets if the segments are not contiguous.
637 If the section is contiguous, its offset should be set to
638 the offset of the highest loadable section lower than it
639 (the loadable section directly below it in memory).
640 this_offset = lower_offset = lower_addr - lower_orig_addr */
641
d76488d8 642 for (i = 0; i < addrs->num_sections; i++)
75242ef4 643 {
82ccf5a5 644 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
645
646 if (sect)
75242ef4 647 {
c378eb4e 648 /* This is the index used by BFD. */
82ccf5a5 649 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
650
651 if (addrs->other[i].addr != 0)
75242ef4 652 {
82ccf5a5 653 addrs->other[i].addr -= sect->addr;
75242ef4 654 lower_offset = addrs->other[i].addr;
75242ef4
JK
655 }
656 else
672d9c23 657 addrs->other[i].addr = lower_offset;
75242ef4
JK
658 }
659 else
672d9c23 660 {
1276c759
JK
661 /* addr_section_name transformation is not used for SECT_NAME. */
662 const char *sect_name = addrs->other[i].name;
663
b0fcb67f
JK
664 /* This section does not exist in ABFD, which is normally
665 unexpected and we want to issue a warning.
666
4d9743af
JK
667 However, the ELF prelinker does create a few sections which are
668 marked in the main executable as loadable (they are loaded in
669 memory from the DYNAMIC segment) and yet are not present in
670 separate debug info files. This is fine, and should not cause
671 a warning. Shared libraries contain just the section
672 ".gnu.liblist" but it is not marked as loadable there. There is
673 no other way to identify them than by their name as the sections
1276c759
JK
674 created by prelink have no special flags.
675
676 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
677
678 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 679 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
680 || (strcmp (sect_name, ".bss") == 0
681 && i > 0
682 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
683 && addrs_to_abfd_addrs[i - 1] != NULL)
684 || (strcmp (sect_name, ".sbss") == 0
685 && i > 0
686 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
687 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
688 warning (_("section %s not found in %s"), sect_name,
689 bfd_get_filename (abfd));
690
672d9c23 691 addrs->other[i].addr = 0;
5488dafb 692 addrs->other[i].sectindex = -1;
672d9c23 693 }
75242ef4 694 }
82ccf5a5
JK
695
696 do_cleanups (my_cleanup);
75242ef4
JK
697}
698
699/* Parse the user's idea of an offset for dynamic linking, into our idea
700 of how to represent it for fast symbol reading. This is the default
701 version of the sym_fns.sym_offsets function for symbol readers that
702 don't need to do anything special. It allocates a section_offsets table
703 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
704
705void
706default_symfile_offsets (struct objfile *objfile,
3189cb12 707 const struct section_addr_info *addrs)
75242ef4 708{
d445b2f6 709 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
710 objfile->section_offsets = (struct section_offsets *)
711 obstack_alloc (&objfile->objfile_obstack,
712 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
713 relative_addr_info_to_section_offsets (objfile->section_offsets,
714 objfile->num_sections, addrs);
e8289572 715
c1bd25fd
DJ
716 /* For relocatable files, all loadable sections will start at zero.
717 The zero is meaningless, so try to pick arbitrary addresses such
718 that no loadable sections overlap. This algorithm is quadratic,
719 but the number of sections in a single object file is generally
720 small. */
721 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
722 {
723 struct place_section_arg arg;
2711e456
DJ
724 bfd *abfd = objfile->obfd;
725 asection *cur_sec;
2711e456
DJ
726
727 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
728 /* We do not expect this to happen; just skip this step if the
729 relocatable file has a section with an assigned VMA. */
730 if (bfd_section_vma (abfd, cur_sec) != 0)
731 break;
732
733 if (cur_sec == NULL)
734 {
735 CORE_ADDR *offsets = objfile->section_offsets->offsets;
736
737 /* Pick non-overlapping offsets for sections the user did not
738 place explicitly. */
739 arg.offsets = objfile->section_offsets;
740 arg.lowest = 0;
741 bfd_map_over_sections (objfile->obfd, place_section, &arg);
742
743 /* Correctly filling in the section offsets is not quite
744 enough. Relocatable files have two properties that
745 (most) shared objects do not:
746
747 - Their debug information will contain relocations. Some
748 shared libraries do also, but many do not, so this can not
749 be assumed.
750
751 - If there are multiple code sections they will be loaded
752 at different relative addresses in memory than they are
753 in the objfile, since all sections in the file will start
754 at address zero.
755
756 Because GDB has very limited ability to map from an
757 address in debug info to the correct code section,
758 it relies on adding SECT_OFF_TEXT to things which might be
759 code. If we clear all the section offsets, and set the
760 section VMAs instead, then symfile_relocate_debug_section
761 will return meaningful debug information pointing at the
762 correct sections.
763
764 GDB has too many different data structures for section
765 addresses - a bfd, objfile, and so_list all have section
766 tables, as does exec_ops. Some of these could probably
767 be eliminated. */
768
769 for (cur_sec = abfd->sections; cur_sec != NULL;
770 cur_sec = cur_sec->next)
771 {
772 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
773 continue;
774
775 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
776 exec_set_section_address (bfd_get_filename (abfd),
777 cur_sec->index,
30510692 778 offsets[cur_sec->index]);
2711e456
DJ
779 offsets[cur_sec->index] = 0;
780 }
781 }
c1bd25fd
DJ
782 }
783
e8289572 784 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 785 .rodata sections. */
e8289572
JB
786 init_objfile_sect_indices (objfile);
787}
788
31d99776
DJ
789/* Divide the file into segments, which are individual relocatable units.
790 This is the default version of the sym_fns.sym_segments function for
791 symbol readers that do not have an explicit representation of segments.
792 It assumes that object files do not have segments, and fully linked
793 files have a single segment. */
794
795struct symfile_segment_data *
796default_symfile_segments (bfd *abfd)
797{
798 int num_sections, i;
799 asection *sect;
800 struct symfile_segment_data *data;
801 CORE_ADDR low, high;
802
803 /* Relocatable files contain enough information to position each
804 loadable section independently; they should not be relocated
805 in segments. */
806 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
807 return NULL;
808
809 /* Make sure there is at least one loadable section in the file. */
810 for (sect = abfd->sections; sect != NULL; sect = sect->next)
811 {
812 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
813 continue;
814
815 break;
816 }
817 if (sect == NULL)
818 return NULL;
819
820 low = bfd_get_section_vma (abfd, sect);
821 high = low + bfd_get_section_size (sect);
822
41bf6aca 823 data = XCNEW (struct symfile_segment_data);
31d99776 824 data->num_segments = 1;
fc270c35
TT
825 data->segment_bases = XCNEW (CORE_ADDR);
826 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
827
828 num_sections = bfd_count_sections (abfd);
fc270c35 829 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
830
831 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
832 {
833 CORE_ADDR vma;
834
835 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
836 continue;
837
838 vma = bfd_get_section_vma (abfd, sect);
839 if (vma < low)
840 low = vma;
841 if (vma + bfd_get_section_size (sect) > high)
842 high = vma + bfd_get_section_size (sect);
843
844 data->segment_info[i] = 1;
845 }
846
847 data->segment_bases[0] = low;
848 data->segment_sizes[0] = high - low;
849
850 return data;
851}
852
608e2dbb
TT
853/* This is a convenience function to call sym_read for OBJFILE and
854 possibly force the partial symbols to be read. */
855
856static void
b15cc25c 857read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
858{
859 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 860 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
861
862 /* find_separate_debug_file_in_section should be called only if there is
863 single binary with no existing separate debug info file. */
864 if (!objfile_has_partial_symbols (objfile)
865 && objfile->separate_debug_objfile == NULL
866 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 867 {
192b62ce 868 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
869
870 if (abfd != NULL)
24ba069a
JK
871 {
872 /* find_separate_debug_file_in_section uses the same filename for the
873 virtual section-as-bfd like the bfd filename containing the
874 section. Therefore use also non-canonical name form for the same
875 file containing the section. */
192b62ce
TT
876 symbol_file_add_separate (abfd.get (), objfile->original_name,
877 add_flags, objfile);
24ba069a 878 }
608e2dbb
TT
879 }
880 if ((add_flags & SYMFILE_NO_READ) == 0)
881 require_partial_symbols (objfile, 0);
882}
883
3d6e24f0
JB
884/* Initialize entry point information for this objfile. */
885
886static void
887init_entry_point_info (struct objfile *objfile)
888{
6ef55de7
TT
889 struct entry_info *ei = &objfile->per_bfd->ei;
890
891 if (ei->initialized)
892 return;
893 ei->initialized = 1;
894
3d6e24f0
JB
895 /* Save startup file's range of PC addresses to help blockframe.c
896 decide where the bottom of the stack is. */
897
898 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
899 {
900 /* Executable file -- record its entry point so we'll recognize
901 the startup file because it contains the entry point. */
6ef55de7
TT
902 ei->entry_point = bfd_get_start_address (objfile->obfd);
903 ei->entry_point_p = 1;
3d6e24f0
JB
904 }
905 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
906 && bfd_get_start_address (objfile->obfd) != 0)
907 {
908 /* Some shared libraries may have entry points set and be
909 runnable. There's no clear way to indicate this, so just check
910 for values other than zero. */
6ef55de7
TT
911 ei->entry_point = bfd_get_start_address (objfile->obfd);
912 ei->entry_point_p = 1;
3d6e24f0
JB
913 }
914 else
915 {
916 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 917 ei->entry_point_p = 0;
3d6e24f0
JB
918 }
919
6ef55de7 920 if (ei->entry_point_p)
3d6e24f0 921 {
53eddfa6 922 struct obj_section *osect;
6ef55de7 923 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 924 int found;
3d6e24f0
JB
925
926 /* Make certain that the address points at real code, and not a
927 function descriptor. */
928 entry_point
df6d5441 929 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
930 entry_point,
931 &current_target);
932
933 /* Remove any ISA markers, so that this matches entries in the
934 symbol table. */
6ef55de7 935 ei->entry_point
df6d5441 936 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
937
938 found = 0;
939 ALL_OBJFILE_OSECTIONS (objfile, osect)
940 {
941 struct bfd_section *sect = osect->the_bfd_section;
942
943 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
944 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
945 + bfd_get_section_size (sect)))
946 {
6ef55de7 947 ei->the_bfd_section_index
53eddfa6
TT
948 = gdb_bfd_section_index (objfile->obfd, sect);
949 found = 1;
950 break;
951 }
952 }
953
954 if (!found)
6ef55de7 955 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
956 }
957}
958
c906108c
SS
959/* Process a symbol file, as either the main file or as a dynamically
960 loaded file.
961
36e4d068
JB
962 This function does not set the OBJFILE's entry-point info.
963
96baa820
JM
964 OBJFILE is where the symbols are to be read from.
965
7e8580c1
JB
966 ADDRS is the list of section load addresses. If the user has given
967 an 'add-symbol-file' command, then this is the list of offsets and
968 addresses he or she provided as arguments to the command; or, if
969 we're handling a shared library, these are the actual addresses the
970 sections are loaded at, according to the inferior's dynamic linker
971 (as gleaned by GDB's shared library code). We convert each address
972 into an offset from the section VMA's as it appears in the object
973 file, and then call the file's sym_offsets function to convert this
974 into a format-specific offset table --- a `struct section_offsets'.
96baa820 975
7eedccfa
PP
976 ADD_FLAGS encodes verbosity level, whether this is main symbol or
977 an extra symbol file such as dynamically loaded code, and wether
978 breakpoint reset should be deferred. */
c906108c 979
36e4d068
JB
980static void
981syms_from_objfile_1 (struct objfile *objfile,
982 struct section_addr_info *addrs,
b15cc25c 983 symfile_add_flags add_flags)
c906108c 984{
a39a16c4 985 struct section_addr_info *local_addr = NULL;
c906108c 986 struct cleanup *old_chain;
7eedccfa 987 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 988
8fb8eb5c 989 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 990
75245b24 991 if (objfile->sf == NULL)
36e4d068
JB
992 {
993 /* No symbols to load, but we still need to make sure
994 that the section_offsets table is allocated. */
d445b2f6 995 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 996 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
997
998 objfile->num_sections = num_sections;
999 objfile->section_offsets
224c3ddb
SM
1000 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1001 size);
36e4d068
JB
1002 memset (objfile->section_offsets, 0, size);
1003 return;
1004 }
75245b24 1005
c906108c
SS
1006 /* Make sure that partially constructed symbol tables will be cleaned up
1007 if an error occurs during symbol reading. */
74b7792f 1008 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1009
6bf667bb
DE
1010 /* If ADDRS is NULL, put together a dummy address list.
1011 We now establish the convention that an addr of zero means
c378eb4e 1012 no load address was specified. */
6bf667bb 1013 if (! addrs)
a39a16c4 1014 {
d445b2f6 1015 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1016 make_cleanup (xfree, local_addr);
1017 addrs = local_addr;
1018 }
1019
c5aa993b 1020 if (mainline)
c906108c
SS
1021 {
1022 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1023 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1024 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1025
1026 /* Since no error yet, throw away the old symbol table. */
1027
1028 if (symfile_objfile != NULL)
1029 {
1030 free_objfile (symfile_objfile);
adb7f338 1031 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1032 }
1033
1034 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1035 If the user wants to get rid of them, they should do "symbol-file"
1036 without arguments first. Not sure this is the best behavior
1037 (PR 2207). */
c906108c 1038
c5aa993b 1039 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1040 }
1041
1042 /* Convert addr into an offset rather than an absolute address.
1043 We find the lowest address of a loaded segment in the objfile,
53a5351d 1044 and assume that <addr> is where that got loaded.
c906108c 1045
53a5351d
JM
1046 We no longer warn if the lowest section is not a text segment (as
1047 happens for the PA64 port. */
6bf667bb 1048 if (addrs->num_sections > 0)
75242ef4 1049 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1050
1051 /* Initialize symbol reading routines for this objfile, allow complaints to
1052 appear for this new file, and record how verbose to be, then do the
c378eb4e 1053 initial symbol reading for this file. */
c906108c 1054
c5aa993b 1055 (*objfile->sf->sym_init) (objfile);
7eedccfa 1056 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1057
6bf667bb 1058 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1059
608e2dbb 1060 read_symbols (objfile, add_flags);
b11896a5 1061
c906108c
SS
1062 /* Discard cleanups as symbol reading was successful. */
1063
1064 discard_cleanups (old_chain);
f7545552 1065 xfree (local_addr);
c906108c
SS
1066}
1067
36e4d068
JB
1068/* Same as syms_from_objfile_1, but also initializes the objfile
1069 entry-point info. */
1070
6bf667bb 1071static void
36e4d068
JB
1072syms_from_objfile (struct objfile *objfile,
1073 struct section_addr_info *addrs,
b15cc25c 1074 symfile_add_flags add_flags)
36e4d068 1075{
6bf667bb 1076 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1077 init_entry_point_info (objfile);
1078}
1079
c906108c
SS
1080/* Perform required actions after either reading in the initial
1081 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1082 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1083
e7d52ed3 1084static void
b15cc25c 1085finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1086{
c906108c 1087 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1088 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1089 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1090 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1091 {
1092 /* OK, make it the "real" symbol file. */
1093 symfile_objfile = objfile;
1094
c1e56572 1095 clear_symtab_users (add_flags);
c906108c 1096 }
7eedccfa 1097 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1098 {
69de3c6a 1099 breakpoint_re_set ();
c906108c
SS
1100 }
1101
1102 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1103 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1104}
1105
1106/* Process a symbol file, as either the main file or as a dynamically
1107 loaded file.
1108
5417f6dc 1109 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1110 A new reference is acquired by this function.
7904e09f 1111
24ba069a
JK
1112 For NAME description see allocate_objfile's definition.
1113
7eedccfa
PP
1114 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1115 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1116
6bf667bb 1117 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1118 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1119
63524580
JK
1120 PARENT is the original objfile if ABFD is a separate debug info file.
1121 Otherwise PARENT is NULL.
1122
c906108c 1123 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1124 Upon failure, jumps back to command level (never returns). */
7eedccfa 1125
7904e09f 1126static struct objfile *
b15cc25c
PA
1127symbol_file_add_with_addrs (bfd *abfd, const char *name,
1128 symfile_add_flags add_flags,
6bf667bb 1129 struct section_addr_info *addrs,
b15cc25c 1130 objfile_flags flags, struct objfile *parent)
c906108c
SS
1131{
1132 struct objfile *objfile;
7eedccfa 1133 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1134 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1135 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1136 && (readnow_symbol_files
1137 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1138
9291a0cd 1139 if (readnow_symbol_files)
b11896a5
TT
1140 {
1141 flags |= OBJF_READNOW;
1142 add_flags &= ~SYMFILE_NO_READ;
1143 }
9291a0cd 1144
5417f6dc
RM
1145 /* Give user a chance to burp if we'd be
1146 interactively wiping out any existing symbols. */
c906108c
SS
1147
1148 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1149 && mainline
c906108c 1150 && from_tty
9e2f0ad4 1151 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1152 error (_("Not confirmed."));
c906108c 1153
b15cc25c
PA
1154 if (mainline)
1155 flags |= OBJF_MAINLINE;
1156 objfile = allocate_objfile (abfd, name, flags);
c906108c 1157
63524580
JK
1158 if (parent)
1159 add_separate_debug_objfile (objfile, parent);
1160
78a4a9b9
AC
1161 /* We either created a new mapped symbol table, mapped an existing
1162 symbol table file which has not had initial symbol reading
c378eb4e 1163 performed, or need to read an unmapped symbol table. */
b11896a5 1164 if (should_print)
c906108c 1165 {
769d7dc4
AC
1166 if (deprecated_pre_add_symbol_hook)
1167 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1168 else
c906108c 1169 {
55333a84
DE
1170 printf_unfiltered (_("Reading symbols from %s..."), name);
1171 wrap_here ("");
1172 gdb_flush (gdb_stdout);
c906108c 1173 }
c906108c 1174 }
6bf667bb 1175 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1176
1177 /* We now have at least a partial symbol table. Check to see if the
1178 user requested that all symbols be read on initial access via either
1179 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1180 all partial symbol tables for this objfile if so. */
c906108c 1181
9291a0cd 1182 if ((flags & OBJF_READNOW))
c906108c 1183 {
b11896a5 1184 if (should_print)
c906108c 1185 {
a3f17187 1186 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190
ccefe4c4
TT
1191 if (objfile->sf)
1192 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1193 }
1194
b11896a5 1195 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1196 {
1197 wrap_here ("");
55333a84 1198 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1199 wrap_here ("");
1200 }
1201
b11896a5 1202 if (should_print)
c906108c 1203 {
769d7dc4
AC
1204 if (deprecated_post_add_symbol_hook)
1205 deprecated_post_add_symbol_hook ();
c906108c 1206 else
55333a84 1207 printf_unfiltered (_("done.\n"));
c906108c
SS
1208 }
1209
481d0f41
JB
1210 /* We print some messages regardless of whether 'from_tty ||
1211 info_verbose' is true, so make sure they go out at the right
1212 time. */
1213 gdb_flush (gdb_stdout);
1214
109f874e 1215 if (objfile->sf == NULL)
8caee43b
PP
1216 {
1217 observer_notify_new_objfile (objfile);
c378eb4e 1218 return objfile; /* No symbols. */
8caee43b 1219 }
109f874e 1220
e7d52ed3 1221 finish_new_objfile (objfile, add_flags);
c906108c 1222
06d3b283 1223 observer_notify_new_objfile (objfile);
c906108c 1224
ce7d4522 1225 bfd_cache_close_all ();
c906108c
SS
1226 return (objfile);
1227}
1228
24ba069a
JK
1229/* Add BFD as a separate debug file for OBJFILE. For NAME description
1230 see allocate_objfile's definition. */
9cce227f
TG
1231
1232void
b15cc25c
PA
1233symbol_file_add_separate (bfd *bfd, const char *name,
1234 symfile_add_flags symfile_flags,
24ba069a 1235 struct objfile *objfile)
9cce227f 1236{
089b4803
TG
1237 struct section_addr_info *sap;
1238 struct cleanup *my_cleanup;
1239
1240 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1241 because sections of BFD may not match sections of OBJFILE and because
1242 vma may have been modified by tools such as prelink. */
1243 sap = build_section_addr_info_from_objfile (objfile);
1244 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1245
870f88f7 1246 symbol_file_add_with_addrs
24ba069a 1247 (bfd, name, symfile_flags, sap,
9cce227f 1248 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1249 | OBJF_USERLOADED),
1250 objfile);
089b4803
TG
1251
1252 do_cleanups (my_cleanup);
9cce227f 1253}
7904e09f 1254
eb4556d7
JB
1255/* Process the symbol file ABFD, as either the main file or as a
1256 dynamically loaded file.
6bf667bb 1257 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1258
eb4556d7 1259struct objfile *
b15cc25c
PA
1260symbol_file_add_from_bfd (bfd *abfd, const char *name,
1261 symfile_add_flags add_flags,
eb4556d7 1262 struct section_addr_info *addrs,
b15cc25c 1263 objfile_flags flags, struct objfile *parent)
eb4556d7 1264{
24ba069a
JK
1265 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1266 parent);
eb4556d7
JB
1267}
1268
7904e09f 1269/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1270 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1271
7904e09f 1272struct objfile *
b15cc25c
PA
1273symbol_file_add (const char *name, symfile_add_flags add_flags,
1274 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1275{
192b62ce 1276 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1277
192b62ce
TT
1278 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1279 flags, NULL);
7904e09f
JB
1280}
1281
d7db6da9
FN
1282/* Call symbol_file_add() with default values and update whatever is
1283 affected by the loading of a new main().
1284 Used when the file is supplied in the gdb command line
1285 and by some targets with special loading requirements.
1286 The auxiliary function, symbol_file_add_main_1(), has the flags
1287 argument for the switches that can only be specified in the symbol_file
1288 command itself. */
5417f6dc 1289
1adeb98a 1290void
ecf45d2c 1291symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1292{
ecf45d2c 1293 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1294}
1295
1296static void
ecf45d2c
SL
1297symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1298 objfile_flags flags)
d7db6da9 1299{
ecf45d2c 1300 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1301
7eedccfa 1302 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1303
d7db6da9
FN
1304 /* Getting new symbols may change our opinion about
1305 what is frameless. */
1306 reinit_frame_cache ();
1307
b15cc25c 1308 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1309 set_initial_language ();
1adeb98a
FN
1310}
1311
1312void
1313symbol_file_clear (int from_tty)
1314{
1315 if ((have_full_symbols () || have_partial_symbols ())
1316 && from_tty
0430b0d6
AS
1317 && (symfile_objfile
1318 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1319 objfile_name (symfile_objfile))
0430b0d6 1320 : !query (_("Discard symbol table? "))))
8a3fe4f8 1321 error (_("Not confirmed."));
1adeb98a 1322
0133421a
JK
1323 /* solib descriptors may have handles to objfiles. Wipe them before their
1324 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1325 no_shared_libraries (NULL, from_tty);
1326
0133421a
JK
1327 free_all_objfiles ();
1328
adb7f338 1329 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1330 if (from_tty)
1331 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1332}
1333
c4dcb155
SM
1334/* See symfile.h. */
1335
1336int separate_debug_file_debug = 0;
1337
5b5d99cf 1338static int
287ccc17 1339separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1340 struct objfile *parent_objfile)
5b5d99cf 1341{
904578ed
JK
1342 unsigned long file_crc;
1343 int file_crc_p;
32a0e547 1344 struct stat parent_stat, abfd_stat;
904578ed 1345 int verified_as_different;
32a0e547
JK
1346
1347 /* Find a separate debug info file as if symbols would be present in
1348 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1349 section can contain just the basename of PARENT_OBJFILE without any
1350 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1351 the separate debug infos with the same basename can exist. */
32a0e547 1352
4262abfb 1353 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1354 return 0;
5b5d99cf 1355
c4dcb155
SM
1356 if (separate_debug_file_debug)
1357 printf_unfiltered (_(" Trying %s\n"), name);
1358
192b62ce 1359 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1360
192b62ce 1361 if (abfd == NULL)
5b5d99cf
JB
1362 return 0;
1363
0ba1096a 1364 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1365
1366 Some operating systems, e.g. Windows, do not provide a meaningful
1367 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1368 meaningful st_dev.) Files accessed from gdbservers that do not
1369 support the vFile:fstat packet will also have st_ino set to zero.
1370 Do not indicate a duplicate library in either case. While there
1371 is no guarantee that a system that provides meaningful inode
1372 numbers will never set st_ino to zero, this is merely an
1373 optimization, so we do not need to worry about false negatives. */
32a0e547 1374
192b62ce 1375 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1376 && abfd_stat.st_ino != 0
1377 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1378 {
904578ed
JK
1379 if (abfd_stat.st_dev == parent_stat.st_dev
1380 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1381 return 0;
904578ed 1382 verified_as_different = 1;
32a0e547 1383 }
904578ed
JK
1384 else
1385 verified_as_different = 0;
32a0e547 1386
192b62ce 1387 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1388
904578ed
JK
1389 if (!file_crc_p)
1390 return 0;
1391
287ccc17
JK
1392 if (crc != file_crc)
1393 {
dccee2de
TT
1394 unsigned long parent_crc;
1395
0a93529c
GB
1396 /* If the files could not be verified as different with
1397 bfd_stat then we need to calculate the parent's CRC
1398 to verify whether the files are different or not. */
904578ed 1399
dccee2de 1400 if (!verified_as_different)
904578ed 1401 {
dccee2de 1402 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1403 return 0;
1404 }
1405
dccee2de 1406 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1407 warning (_("the debug information found in \"%s\""
1408 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1409 name, objfile_name (parent_objfile));
904578ed 1410
287ccc17
JK
1411 return 0;
1412 }
1413
1414 return 1;
5b5d99cf
JB
1415}
1416
aa28a74e 1417char *debug_file_directory = NULL;
920d2a44
AC
1418static void
1419show_debug_file_directory (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421{
3e43a32a
MS
1422 fprintf_filtered (file,
1423 _("The directory where separate debug "
1424 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1425 value);
1426}
5b5d99cf
JB
1427
1428#if ! defined (DEBUG_SUBDIRECTORY)
1429#define DEBUG_SUBDIRECTORY ".debug"
1430#endif
1431
1db33378
PP
1432/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1433 where the original file resides (may not be the same as
1434 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1435 looking for. CANON_DIR is the "realpath" form of DIR.
1436 DIR must contain a trailing '/'.
1437 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1438
1439static char *
1440find_separate_debug_file (const char *dir,
1441 const char *canon_dir,
1442 const char *debuglink,
1443 unsigned long crc32, struct objfile *objfile)
9cce227f 1444{
1db33378
PP
1445 char *debugdir;
1446 char *debugfile;
9cce227f 1447 int i;
e4ab2fad
JK
1448 VEC (char_ptr) *debugdir_vec;
1449 struct cleanup *back_to;
1450 int ix;
5b5d99cf 1451
c4dcb155
SM
1452 if (separate_debug_file_debug)
1453 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1454 "%s\n"), objfile_name (objfile));
1455
325fac50 1456 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1457 i = strlen (dir);
1db33378
PP
1458 if (canon_dir != NULL && strlen (canon_dir) > i)
1459 i = strlen (canon_dir);
1ffa32ee 1460
224c3ddb
SM
1461 debugfile
1462 = (char *) xmalloc (strlen (debug_file_directory) + 1
1463 + i
1464 + strlen (DEBUG_SUBDIRECTORY)
1465 + strlen ("/")
1466 + strlen (debuglink)
1467 + 1);
5b5d99cf
JB
1468
1469 /* First try in the same directory as the original file. */
1470 strcpy (debugfile, dir);
1db33378 1471 strcat (debugfile, debuglink);
5b5d99cf 1472
32a0e547 1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1474 return debugfile;
5417f6dc 1475
5b5d99cf
JB
1476 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1477 strcpy (debugfile, dir);
1478 strcat (debugfile, DEBUG_SUBDIRECTORY);
1479 strcat (debugfile, "/");
1db33378 1480 strcat (debugfile, debuglink);
5b5d99cf 1481
32a0e547 1482 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1483 return debugfile;
5417f6dc 1484
24ddea62 1485 /* Then try in the global debugfile directories.
f888f159 1486
24ddea62
JK
1487 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1488 cause "/..." lookups. */
5417f6dc 1489
e4ab2fad
JK
1490 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1491 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1492
e4ab2fad
JK
1493 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1494 {
1495 strcpy (debugfile, debugdir);
aa28a74e 1496 strcat (debugfile, "/");
24ddea62 1497 strcat (debugfile, dir);
1db33378 1498 strcat (debugfile, debuglink);
aa28a74e 1499
32a0e547 1500 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1501 {
1502 do_cleanups (back_to);
1503 return debugfile;
1504 }
24ddea62
JK
1505
1506 /* If the file is in the sysroot, try using its base path in the
1507 global debugfile directory. */
1db33378
PP
1508 if (canon_dir != NULL
1509 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1510 strlen (gdb_sysroot)) == 0
1db33378 1511 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1512 {
e4ab2fad 1513 strcpy (debugfile, debugdir);
1db33378 1514 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1515 strcat (debugfile, "/");
1db33378 1516 strcat (debugfile, debuglink);
24ddea62 1517
32a0e547 1518 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1519 {
1520 do_cleanups (back_to);
1521 return debugfile;
1522 }
24ddea62 1523 }
aa28a74e 1524 }
f888f159 1525
e4ab2fad 1526 do_cleanups (back_to);
25522fae 1527 xfree (debugfile);
1db33378
PP
1528 return NULL;
1529}
1530
7edbb660 1531/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1532 If there were no directory separators in PATH, PATH will be empty
1533 string on return. */
1534
1535static void
1536terminate_after_last_dir_separator (char *path)
1537{
1538 int i;
1539
1540 /* Strip off the final filename part, leaving the directory name,
1541 followed by a slash. The directory can be relative or absolute. */
1542 for (i = strlen(path) - 1; i >= 0; i--)
1543 if (IS_DIR_SEPARATOR (path[i]))
1544 break;
1545
1546 /* If I is -1 then no directory is present there and DIR will be "". */
1547 path[i + 1] = '\0';
1548}
1549
1550/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1551 Returns pathname, or NULL. */
1552
1553char *
1554find_separate_debug_file_by_debuglink (struct objfile *objfile)
1555{
1556 char *debuglink;
1557 char *dir, *canon_dir;
1558 char *debugfile;
1559 unsigned long crc32;
1560 struct cleanup *cleanups;
1561
cc0ea93c 1562 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1563
1564 if (debuglink == NULL)
1565 {
1566 /* There's no separate debug info, hence there's no way we could
1567 load it => no warning. */
1568 return NULL;
1569 }
1570
71bdabee 1571 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1572 dir = xstrdup (objfile_name (objfile));
71bdabee 1573 make_cleanup (xfree, dir);
1db33378
PP
1574 terminate_after_last_dir_separator (dir);
1575 canon_dir = lrealpath (dir);
1576
1577 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1578 crc32, objfile);
1579 xfree (canon_dir);
1580
1581 if (debugfile == NULL)
1582 {
1db33378
PP
1583 /* For PR gdb/9538, try again with realpath (if different from the
1584 original). */
1585
1586 struct stat st_buf;
1587
4262abfb
JK
1588 if (lstat (objfile_name (objfile), &st_buf) == 0
1589 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1590 {
1591 char *symlink_dir;
1592
4262abfb 1593 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1594 if (symlink_dir != NULL)
1595 {
1596 make_cleanup (xfree, symlink_dir);
1597 terminate_after_last_dir_separator (symlink_dir);
1598 if (strcmp (dir, symlink_dir) != 0)
1599 {
1600 /* Different directory, so try using it. */
1601 debugfile = find_separate_debug_file (symlink_dir,
1602 symlink_dir,
1603 debuglink,
1604 crc32,
1605 objfile);
1606 }
1607 }
1608 }
1db33378 1609 }
aa28a74e 1610
1db33378 1611 do_cleanups (cleanups);
25522fae 1612 return debugfile;
5b5d99cf
JB
1613}
1614
c906108c
SS
1615/* This is the symbol-file command. Read the file, analyze its
1616 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1617 the command is rather bizarre:
1618
1619 1. The function buildargv implements various quoting conventions
1620 which are undocumented and have little or nothing in common with
1621 the way things are quoted (or not quoted) elsewhere in GDB.
1622
1623 2. Options are used, which are not generally used in GDB (perhaps
1624 "set mapped on", "set readnow on" would be better)
1625
1626 3. The order of options matters, which is contrary to GNU
c906108c
SS
1627 conventions (because it is confusing and inconvenient). */
1628
1629void
fba45db2 1630symbol_file_command (char *args, int from_tty)
c906108c 1631{
c906108c
SS
1632 dont_repeat ();
1633
1634 if (args == NULL)
1635 {
1adeb98a 1636 symbol_file_clear (from_tty);
c906108c
SS
1637 }
1638 else
1639 {
b15cc25c 1640 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1641 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1642 struct cleanup *cleanups;
1643 char *name = NULL;
1644
ecf45d2c
SL
1645 if (from_tty)
1646 add_flags |= SYMFILE_VERBOSE;
1647
773a1edc
TT
1648 gdb_argv built_argv (args);
1649 for (char *arg : built_argv)
c906108c 1650 {
773a1edc 1651 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1652 flags |= OBJF_READNOW;
773a1edc
TT
1653 else if (*arg == '-')
1654 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1655 else
1656 {
773a1edc
TT
1657 symbol_file_add_main_1 (arg, add_flags, flags);
1658 name = arg;
78a4a9b9 1659 }
c906108c
SS
1660 }
1661
1662 if (name == NULL)
cb2f3a29 1663 error (_("no symbol file name was specified"));
c906108c
SS
1664 }
1665}
1666
1667/* Set the initial language.
1668
cb2f3a29
MK
1669 FIXME: A better solution would be to record the language in the
1670 psymtab when reading partial symbols, and then use it (if known) to
1671 set the language. This would be a win for formats that encode the
1672 language in an easily discoverable place, such as DWARF. For
1673 stabs, we can jump through hoops looking for specially named
1674 symbols or try to intuit the language from the specific type of
1675 stabs we find, but we can't do that until later when we read in
1676 full symbols. */
c906108c 1677
8b60591b 1678void
fba45db2 1679set_initial_language (void)
c906108c 1680{
9e6c82ad 1681 enum language lang = main_language ();
c906108c 1682
9e6c82ad 1683 if (lang == language_unknown)
01f8c46d 1684 {
bf6d8a91 1685 char *name = main_name ();
d12307c1 1686 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1687
bf6d8a91
TT
1688 if (sym != NULL)
1689 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1690 }
cb2f3a29 1691
ccefe4c4
TT
1692 if (lang == language_unknown)
1693 {
1694 /* Make C the default language */
1695 lang = language_c;
c906108c 1696 }
ccefe4c4
TT
1697
1698 set_language (lang);
1699 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1700}
1701
cb2f3a29
MK
1702/* Open the file specified by NAME and hand it off to BFD for
1703 preliminary analysis. Return a newly initialized bfd *, which
1704 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1705 absolute). In case of trouble, error() is called. */
c906108c 1706
192b62ce 1707gdb_bfd_ref_ptr
97a41605 1708symfile_bfd_open (const char *name)
c906108c 1709{
97a41605
GB
1710 int desc = -1;
1711 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1712
97a41605 1713 if (!is_target_filename (name))
f1838a98 1714 {
ee0c3293 1715 char *absolute_name;
f1838a98 1716
ee0c3293 1717 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1718
97a41605
GB
1719 /* Look down path for it, allocate 2nd new malloc'd copy. */
1720 desc = openp (getenv ("PATH"),
1721 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1722 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1723#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1724 if (desc < 0)
1725 {
ee0c3293 1726 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1727
ee0c3293 1728 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1729 desc = openp (getenv ("PATH"),
1730 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1731 exename, O_RDONLY | O_BINARY, &absolute_name);
1732 }
c906108c 1733#endif
97a41605 1734 if (desc < 0)
ee0c3293 1735 perror_with_name (expanded_name.get ());
cb2f3a29 1736
97a41605
GB
1737 make_cleanup (xfree, absolute_name);
1738 name = absolute_name;
1739 }
c906108c 1740
192b62ce
TT
1741 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1742 if (sym_bfd == NULL)
faab9922
JK
1743 error (_("`%s': can't open to read symbols: %s."), name,
1744 bfd_errmsg (bfd_get_error ()));
97a41605 1745
192b62ce
TT
1746 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1747 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1748
192b62ce
TT
1749 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1750 error (_("`%s': can't read symbols: %s."), name,
1751 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1752
faab9922
JK
1753 do_cleanups (back_to);
1754
cb2f3a29 1755 return sym_bfd;
c906108c
SS
1756}
1757
cb2f3a29
MK
1758/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1759 the section was not found. */
1760
0e931cf0 1761int
a121b7c1 1762get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1763{
1764 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1765
0e931cf0
JB
1766 if (sect)
1767 return sect->index;
1768 else
1769 return -1;
1770}
1771
c256e171
DE
1772/* Link SF into the global symtab_fns list.
1773 FLAVOUR is the file format that SF handles.
1774 Called on startup by the _initialize routine in each object file format
1775 reader, to register information about each format the reader is prepared
1776 to handle. */
c906108c
SS
1777
1778void
c256e171 1779add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1780{
c256e171
DE
1781 registered_sym_fns fns = { flavour, sf };
1782
1783 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1784}
1785
cb2f3a29
MK
1786/* Initialize OBJFILE to read symbols from its associated BFD. It
1787 either returns or calls error(). The result is an initialized
1788 struct sym_fns in the objfile structure, that contains cached
1789 information about the symbol file. */
c906108c 1790
00b5771c 1791static const struct sym_fns *
31d99776 1792find_sym_fns (bfd *abfd)
c906108c 1793{
c256e171 1794 registered_sym_fns *rsf;
31d99776 1795 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1796 int i;
c906108c 1797
75245b24
MS
1798 if (our_flavour == bfd_target_srec_flavour
1799 || our_flavour == bfd_target_ihex_flavour
1800 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1801 return NULL; /* No symbols. */
75245b24 1802
c256e171
DE
1803 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1804 if (our_flavour == rsf->sym_flavour)
1805 return rsf->sym_fns;
cb2f3a29 1806
8a3fe4f8 1807 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1808 bfd_get_target (abfd));
c906108c
SS
1809}
1810\f
cb2f3a29 1811
c906108c
SS
1812/* This function runs the load command of our current target. */
1813
1814static void
fba45db2 1815load_command (char *arg, int from_tty)
c906108c 1816{
5b3fca71
TT
1817 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1818
e5cc9f32
JB
1819 dont_repeat ();
1820
4487aabf
PA
1821 /* The user might be reloading because the binary has changed. Take
1822 this opportunity to check. */
1823 reopen_exec_file ();
1824 reread_symbols ();
1825
c906108c 1826 if (arg == NULL)
1986bccd
AS
1827 {
1828 char *parg;
1829 int count = 0;
1830
1831 parg = arg = get_exec_file (1);
1832
1833 /* Count how many \ " ' tab space there are in the name. */
1834 while ((parg = strpbrk (parg, "\\\"'\t ")))
1835 {
1836 parg++;
1837 count++;
1838 }
1839
1840 if (count)
1841 {
1842 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1843 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1844 char *ptemp = temp;
1845 char *prev;
1846
1847 make_cleanup (xfree, temp);
1848
1849 prev = parg = arg;
1850 while ((parg = strpbrk (parg, "\\\"'\t ")))
1851 {
1852 strncpy (ptemp, prev, parg - prev);
1853 ptemp += parg - prev;
1854 prev = parg++;
1855 *ptemp++ = '\\';
1856 }
1857 strcpy (ptemp, prev);
1858
1859 arg = temp;
1860 }
1861 }
1862
c906108c 1863 target_load (arg, from_tty);
2889e661
JB
1864
1865 /* After re-loading the executable, we don't really know which
1866 overlays are mapped any more. */
1867 overlay_cache_invalid = 1;
5b3fca71
TT
1868
1869 do_cleanups (cleanup);
c906108c
SS
1870}
1871
1872/* This version of "load" should be usable for any target. Currently
1873 it is just used for remote targets, not inftarg.c or core files,
1874 on the theory that only in that case is it useful.
1875
1876 Avoiding xmodem and the like seems like a win (a) because we don't have
1877 to worry about finding it, and (b) On VMS, fork() is very slow and so
1878 we don't want to run a subprocess. On the other hand, I'm not sure how
1879 performance compares. */
917317f4 1880
917317f4
JM
1881static int validate_download = 0;
1882
e4f9b4d5
MS
1883/* Callback service function for generic_load (bfd_map_over_sections). */
1884
1885static void
1886add_section_size_callback (bfd *abfd, asection *asec, void *data)
1887{
19ba03f4 1888 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1889
2c500098 1890 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1891}
1892
1893/* Opaque data for load_section_callback. */
1894struct load_section_data {
f698ca8e 1895 CORE_ADDR load_offset;
a76d924d
DJ
1896 struct load_progress_data *progress_data;
1897 VEC(memory_write_request_s) *requests;
1898};
1899
1900/* Opaque data for load_progress. */
1901struct load_progress_data {
1902 /* Cumulative data. */
e4f9b4d5
MS
1903 unsigned long write_count;
1904 unsigned long data_count;
1905 bfd_size_type total_size;
a76d924d
DJ
1906};
1907
1908/* Opaque data for load_progress for a single section. */
1909struct load_progress_section_data {
1910 struct load_progress_data *cumulative;
cf7a04e8 1911
a76d924d 1912 /* Per-section data. */
cf7a04e8
DJ
1913 const char *section_name;
1914 ULONGEST section_sent;
1915 ULONGEST section_size;
1916 CORE_ADDR lma;
1917 gdb_byte *buffer;
e4f9b4d5
MS
1918};
1919
a76d924d 1920/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1921
1922static void
1923load_progress (ULONGEST bytes, void *untyped_arg)
1924{
19ba03f4
SM
1925 struct load_progress_section_data *args
1926 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1927 struct load_progress_data *totals;
1928
1929 if (args == NULL)
1930 /* Writing padding data. No easy way to get at the cumulative
1931 stats, so just ignore this. */
1932 return;
1933
1934 totals = args->cumulative;
1935
1936 if (bytes == 0 && args->section_sent == 0)
1937 {
1938 /* The write is just starting. Let the user know we've started
1939 this section. */
112e8700
SM
1940 current_uiout->message ("Loading section %s, size %s lma %s\n",
1941 args->section_name,
1942 hex_string (args->section_size),
1943 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1944 return;
1945 }
cf7a04e8
DJ
1946
1947 if (validate_download)
1948 {
1949 /* Broken memories and broken monitors manifest themselves here
1950 when bring new computers to life. This doubles already slow
1951 downloads. */
1952 /* NOTE: cagney/1999-10-18: A more efficient implementation
1953 might add a verify_memory() method to the target vector and
1954 then use that. remote.c could implement that method using
1955 the ``qCRC'' packet. */
224c3ddb 1956 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1957 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1958
1959 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1960 error (_("Download verify read failed at %s"),
f5656ead 1961 paddress (target_gdbarch (), args->lma));
cf7a04e8 1962 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1963 error (_("Download verify compare failed at %s"),
f5656ead 1964 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1965 do_cleanups (verify_cleanups);
1966 }
a76d924d 1967 totals->data_count += bytes;
cf7a04e8
DJ
1968 args->lma += bytes;
1969 args->buffer += bytes;
a76d924d 1970 totals->write_count += 1;
cf7a04e8 1971 args->section_sent += bytes;
522002f9 1972 if (check_quit_flag ()
cf7a04e8
DJ
1973 || (deprecated_ui_load_progress_hook != NULL
1974 && deprecated_ui_load_progress_hook (args->section_name,
1975 args->section_sent)))
1976 error (_("Canceled the download"));
1977
1978 if (deprecated_show_load_progress != NULL)
1979 deprecated_show_load_progress (args->section_name,
1980 args->section_sent,
1981 args->section_size,
a76d924d
DJ
1982 totals->data_count,
1983 totals->total_size);
cf7a04e8
DJ
1984}
1985
e4f9b4d5
MS
1986/* Callback service function for generic_load (bfd_map_over_sections). */
1987
1988static void
1989load_section_callback (bfd *abfd, asection *asec, void *data)
1990{
a76d924d 1991 struct memory_write_request *new_request;
19ba03f4 1992 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1993 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1994 bfd_size_type size = bfd_get_section_size (asec);
1995 gdb_byte *buffer;
cf7a04e8 1996 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1997
cf7a04e8
DJ
1998 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1999 return;
e4f9b4d5 2000
cf7a04e8
DJ
2001 if (size == 0)
2002 return;
e4f9b4d5 2003
a76d924d
DJ
2004 new_request = VEC_safe_push (memory_write_request_s,
2005 args->requests, NULL);
2006 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2007 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2008 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2009 new_request->end = new_request->begin + size; /* FIXME Should size
2010 be in instead? */
224c3ddb 2011 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2012 new_request->baton = section_data;
cf7a04e8 2013
a76d924d 2014 buffer = new_request->data;
cf7a04e8 2015
a76d924d
DJ
2016 section_data->cumulative = args->progress_data;
2017 section_data->section_name = sect_name;
2018 section_data->section_size = size;
2019 section_data->lma = new_request->begin;
2020 section_data->buffer = buffer;
cf7a04e8
DJ
2021
2022 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2023}
2024
2025/* Clean up an entire memory request vector, including load
2026 data and progress records. */
cf7a04e8 2027
a76d924d
DJ
2028static void
2029clear_memory_write_data (void *arg)
2030{
19ba03f4 2031 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2032 VEC(memory_write_request_s) *vec = *vec_p;
2033 int i;
2034 struct memory_write_request *mr;
cf7a04e8 2035
a76d924d
DJ
2036 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2037 {
2038 xfree (mr->data);
2039 xfree (mr->baton);
2040 }
2041 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2042}
2043
dcb07cfa
PA
2044static void print_transfer_performance (struct ui_file *stream,
2045 unsigned long data_count,
2046 unsigned long write_count,
2047 std::chrono::steady_clock::duration d);
2048
c906108c 2049void
9cbe5fff 2050generic_load (const char *args, int from_tty)
c906108c 2051{
773a1edc 2052 struct cleanup *old_cleanups;
e4f9b4d5 2053 struct load_section_data cbdata;
a76d924d 2054 struct load_progress_data total_progress;
79a45e25 2055 struct ui_out *uiout = current_uiout;
a76d924d 2056
e4f9b4d5
MS
2057 CORE_ADDR entry;
2058
a76d924d
DJ
2059 memset (&cbdata, 0, sizeof (cbdata));
2060 memset (&total_progress, 0, sizeof (total_progress));
2061 cbdata.progress_data = &total_progress;
2062
773a1edc 2063 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2064
d1a41061
PP
2065 if (args == NULL)
2066 error_no_arg (_("file to load"));
1986bccd 2067
773a1edc 2068 gdb_argv argv (args);
1986bccd 2069
ee0c3293 2070 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2071
2072 if (argv[1] != NULL)
917317f4 2073 {
f698ca8e 2074 const char *endptr;
ba5f2f8a 2075
f698ca8e 2076 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2077
2078 /* If the last word was not a valid number then
2079 treat it as a file name with spaces in. */
2080 if (argv[1] == endptr)
2081 error (_("Invalid download offset:%s."), argv[1]);
2082
2083 if (argv[2] != NULL)
2084 error (_("Too many parameters."));
917317f4 2085 }
c906108c 2086
c378eb4e 2087 /* Open the file for loading. */
ee0c3293 2088 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2089 if (loadfile_bfd == NULL)
ee0c3293 2090 perror_with_name (filename.get ());
917317f4 2091
192b62ce 2092 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2093 {
ee0c3293 2094 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2095 bfd_errmsg (bfd_get_error ()));
2096 }
c5aa993b 2097
192b62ce 2098 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2099 (void *) &total_progress.total_size);
2100
192b62ce 2101 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2102
dcb07cfa
PA
2103 using namespace std::chrono;
2104
2105 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2106
a76d924d
DJ
2107 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2108 load_progress) != 0)
2109 error (_("Load failed"));
c906108c 2110
dcb07cfa 2111 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2112
192b62ce 2113 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2114 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2115 uiout->text ("Start address ");
2116 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2117 uiout->text (", load size ");
2118 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2119 uiout->text ("\n");
fb14de7b 2120 regcache_write_pc (get_current_regcache (), entry);
c906108c 2121
38963c97
DJ
2122 /* Reset breakpoints, now that we have changed the load image. For
2123 instance, breakpoints may have been set (or reset, by
2124 post_create_inferior) while connected to the target but before we
2125 loaded the program. In that case, the prologue analyzer could
2126 have read instructions from the target to find the right
2127 breakpoint locations. Loading has changed the contents of that
2128 memory. */
2129
2130 breakpoint_re_set ();
2131
a76d924d
DJ
2132 print_transfer_performance (gdb_stdout, total_progress.data_count,
2133 total_progress.write_count,
dcb07cfa 2134 end_time - start_time);
c906108c
SS
2135
2136 do_cleanups (old_cleanups);
2137}
2138
dcb07cfa
PA
2139/* Report on STREAM the performance of a memory transfer operation,
2140 such as 'load'. DATA_COUNT is the number of bytes transferred.
2141 WRITE_COUNT is the number of separate write operations, or 0, if
2142 that information is not available. TIME is how long the operation
2143 lasted. */
c906108c 2144
dcb07cfa 2145static void
d9fcf2fb 2146print_transfer_performance (struct ui_file *stream,
917317f4
JM
2147 unsigned long data_count,
2148 unsigned long write_count,
dcb07cfa 2149 std::chrono::steady_clock::duration time)
917317f4 2150{
dcb07cfa 2151 using namespace std::chrono;
79a45e25 2152 struct ui_out *uiout = current_uiout;
2b71414d 2153
dcb07cfa 2154 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2155
112e8700 2156 uiout->text ("Transfer rate: ");
dcb07cfa 2157 if (ms.count () > 0)
8b93c638 2158 {
dcb07cfa 2159 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2160
112e8700 2161 if (uiout->is_mi_like_p ())
9f43d28c 2162 {
112e8700
SM
2163 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2164 uiout->text (" bits/sec");
9f43d28c
DJ
2165 }
2166 else if (rate < 1024)
2167 {
112e8700
SM
2168 uiout->field_fmt ("transfer-rate", "%lu", rate);
2169 uiout->text (" bytes/sec");
9f43d28c
DJ
2170 }
2171 else
2172 {
112e8700
SM
2173 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2174 uiout->text (" KB/sec");
9f43d28c 2175 }
8b93c638
JM
2176 }
2177 else
2178 {
112e8700
SM
2179 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2180 uiout->text (" bits in <1 sec");
8b93c638
JM
2181 }
2182 if (write_count > 0)
2183 {
112e8700
SM
2184 uiout->text (", ");
2185 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2186 uiout->text (" bytes/write");
8b93c638 2187 }
112e8700 2188 uiout->text (".\n");
c906108c
SS
2189}
2190
2191/* This function allows the addition of incrementally linked object files.
2192 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2193/* Note: ezannoni 2000-04-13 This function/command used to have a
2194 special case syntax for the rombug target (Rombug is the boot
2195 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2196 rombug case, the user doesn't need to supply a text address,
2197 instead a call to target_link() (in target.c) would supply the
c378eb4e 2198 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2199
c906108c 2200static void
fba45db2 2201add_symbol_file_command (char *args, int from_tty)
c906108c 2202{
5af949e3 2203 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2204 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2205 char *arg;
2acceee2
JM
2206 int argcnt = 0;
2207 int sec_num = 0;
db162d44
EZ
2208 int expecting_sec_name = 0;
2209 int expecting_sec_addr = 0;
76ad5e1e 2210 struct objfile *objf;
b15cc25c
PA
2211 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2212 symfile_add_flags add_flags = 0;
2213
2214 if (from_tty)
2215 add_flags |= SYMFILE_VERBOSE;
db162d44 2216
a39a16c4 2217 struct sect_opt
2acceee2 2218 {
a121b7c1
PA
2219 const char *name;
2220 const char *value;
a39a16c4 2221 };
db162d44 2222
a39a16c4 2223 struct section_addr_info *section_addrs;
f978cb06 2224 std::vector<sect_opt> sect_opts;
3017564a 2225 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2226
c906108c
SS
2227 dont_repeat ();
2228
2229 if (args == NULL)
8a3fe4f8 2230 error (_("add-symbol-file takes a file name and an address"));
c906108c 2231
773a1edc 2232 gdb_argv argv (args);
db162d44 2233
5b96932b
AS
2234 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2235 {
c378eb4e 2236 /* Process the argument. */
db162d44 2237 if (argcnt == 0)
c906108c 2238 {
c378eb4e 2239 /* The first argument is the file name. */
ee0c3293 2240 filename.reset (tilde_expand (arg));
c906108c 2241 }
41dc8db8
MB
2242 else if (argcnt == 1)
2243 {
2244 /* The second argument is always the text address at which
2245 to load the program. */
f978cb06
TT
2246 sect_opt sect = { ".text", arg };
2247 sect_opts.push_back (sect);
41dc8db8 2248 }
db162d44 2249 else
41dc8db8
MB
2250 {
2251 /* It's an option (starting with '-') or it's an argument
2252 to an option. */
41dc8db8
MB
2253 if (expecting_sec_name)
2254 {
f978cb06
TT
2255 sect_opt sect = { arg, NULL };
2256 sect_opts.push_back (sect);
41dc8db8
MB
2257 expecting_sec_name = 0;
2258 }
2259 else if (expecting_sec_addr)
2260 {
f978cb06 2261 sect_opts.back ().value = arg;
41dc8db8 2262 expecting_sec_addr = 0;
41dc8db8
MB
2263 }
2264 else if (strcmp (arg, "-readnow") == 0)
2265 flags |= OBJF_READNOW;
2266 else if (strcmp (arg, "-s") == 0)
2267 {
2268 expecting_sec_name = 1;
2269 expecting_sec_addr = 1;
2270 }
2271 else
2272 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2273 " [-readnow] [-s <secname> <addr>]*"));
2274 }
c906108c 2275 }
c906108c 2276
927890d0
JB
2277 /* This command takes at least two arguments. The first one is a
2278 filename, and the second is the address where this file has been
2279 loaded. Abort now if this address hasn't been provided by the
2280 user. */
f978cb06 2281 if (sect_opts.empty ())
ee0c3293
TT
2282 error (_("The address where %s has been loaded is missing"),
2283 filename.get ());
927890d0 2284
c378eb4e 2285 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2286 a sect_addr_info structure to be passed around to other
2287 functions. We have to split this up into separate print
bb599908 2288 statements because hex_string returns a local static
c378eb4e 2289 string. */
5417f6dc 2290
ee0c3293
TT
2291 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2292 filename.get ());
f978cb06 2293 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2294 make_cleanup (xfree, section_addrs);
f978cb06 2295 for (sect_opt &sect : sect_opts)
c906108c 2296 {
db162d44 2297 CORE_ADDR addr;
f978cb06
TT
2298 const char *val = sect.value;
2299 const char *sec = sect.name;
5417f6dc 2300
ae822768 2301 addr = parse_and_eval_address (val);
db162d44 2302
db162d44 2303 /* Here we store the section offsets in the order they were
c378eb4e 2304 entered on the command line. */
a121b7c1 2305 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2306 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2307 printf_unfiltered ("\t%s_addr = %s\n", sec,
2308 paddress (gdbarch, addr));
db162d44
EZ
2309 sec_num++;
2310
5417f6dc 2311 /* The object's sections are initialized when a
db162d44 2312 call is made to build_objfile_section_table (objfile).
5417f6dc 2313 This happens in reread_symbols.
db162d44
EZ
2314 At this point, we don't know what file type this is,
2315 so we can't determine what section names are valid. */
2acceee2 2316 }
d76488d8 2317 section_addrs->num_sections = sec_num;
db162d44 2318
2acceee2 2319 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2320 error (_("Not confirmed."));
c906108c 2321
ee0c3293 2322 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2323
2324 add_target_sections_of_objfile (objf);
c906108c
SS
2325
2326 /* Getting new symbols may change our opinion about what is
2327 frameless. */
2328 reinit_frame_cache ();
db162d44 2329 do_cleanups (my_cleanups);
c906108c
SS
2330}
2331\f
70992597 2332
63644780
NB
2333/* This function removes a symbol file that was added via add-symbol-file. */
2334
2335static void
2336remove_symbol_file_command (char *args, int from_tty)
2337{
63644780 2338 struct objfile *objf = NULL;
63644780 2339 struct program_space *pspace = current_program_space;
63644780
NB
2340
2341 dont_repeat ();
2342
2343 if (args == NULL)
2344 error (_("remove-symbol-file: no symbol file provided"));
2345
773a1edc 2346 gdb_argv argv (args);
63644780
NB
2347
2348 if (strcmp (argv[0], "-a") == 0)
2349 {
2350 /* Interpret the next argument as an address. */
2351 CORE_ADDR addr;
2352
2353 if (argv[1] == NULL)
2354 error (_("Missing address argument"));
2355
2356 if (argv[2] != NULL)
2357 error (_("Junk after %s"), argv[1]);
2358
2359 addr = parse_and_eval_address (argv[1]);
2360
2361 ALL_OBJFILES (objf)
2362 {
d03de421
PA
2363 if ((objf->flags & OBJF_USERLOADED) != 0
2364 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2365 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2366 break;
2367 }
2368 }
2369 else if (argv[0] != NULL)
2370 {
2371 /* Interpret the current argument as a file name. */
63644780
NB
2372
2373 if (argv[1] != NULL)
2374 error (_("Junk after %s"), argv[0]);
2375
ee0c3293 2376 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2377
2378 ALL_OBJFILES (objf)
2379 {
d03de421
PA
2380 if ((objf->flags & OBJF_USERLOADED) != 0
2381 && (objf->flags & OBJF_SHARED) != 0
63644780 2382 && objf->pspace == pspace
ee0c3293 2383 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2384 break;
2385 }
2386 }
2387
2388 if (objf == NULL)
2389 error (_("No symbol file found"));
2390
2391 if (from_tty
2392 && !query (_("Remove symbol table from file \"%s\"? "),
2393 objfile_name (objf)))
2394 error (_("Not confirmed."));
2395
2396 free_objfile (objf);
2397 clear_symtab_users (0);
63644780
NB
2398}
2399
c906108c 2400/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2401
c906108c 2402void
fba45db2 2403reread_symbols (void)
c906108c
SS
2404{
2405 struct objfile *objfile;
2406 long new_modtime;
c906108c
SS
2407 struct stat new_statbuf;
2408 int res;
4c404b8b 2409 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2410
2411 /* With the addition of shared libraries, this should be modified,
2412 the load time should be saved in the partial symbol tables, since
2413 different tables may come from different source files. FIXME.
2414 This routine should then walk down each partial symbol table
c378eb4e 2415 and see if the symbol table that it originates from has been changed. */
c906108c 2416
c5aa993b
JM
2417 for (objfile = object_files; objfile; objfile = objfile->next)
2418 {
9cce227f
TG
2419 if (objfile->obfd == NULL)
2420 continue;
2421
2422 /* Separate debug objfiles are handled in the main objfile. */
2423 if (objfile->separate_debug_objfile_backlink)
2424 continue;
2425
02aeec7b
JB
2426 /* If this object is from an archive (what you usually create with
2427 `ar', often called a `static library' on most systems, though
2428 a `shared library' on AIX is also an archive), then you should
2429 stat on the archive name, not member name. */
9cce227f
TG
2430 if (objfile->obfd->my_archive)
2431 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2432 else
4262abfb 2433 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2434 if (res != 0)
2435 {
c378eb4e 2436 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2437 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2438 objfile_name (objfile));
9cce227f
TG
2439 continue;
2440 }
2441 new_modtime = new_statbuf.st_mtime;
2442 if (new_modtime != objfile->mtime)
2443 {
2444 struct cleanup *old_cleanups;
2445 struct section_offsets *offsets;
2446 int num_offsets;
24ba069a 2447 char *original_name;
9cce227f
TG
2448
2449 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2450 objfile_name (objfile));
9cce227f
TG
2451
2452 /* There are various functions like symbol_file_add,
2453 symfile_bfd_open, syms_from_objfile, etc., which might
2454 appear to do what we want. But they have various other
2455 effects which we *don't* want. So we just do stuff
2456 ourselves. We don't worry about mapped files (for one thing,
2457 any mapped file will be out of date). */
2458
2459 /* If we get an error, blow away this objfile (not sure if
2460 that is the correct response for things like shared
2461 libraries). */
2462 old_cleanups = make_cleanup_free_objfile (objfile);
2463 /* We need to do this whenever any symbols go away. */
2464 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2465
0ba1096a
KT
2466 if (exec_bfd != NULL
2467 && filename_cmp (bfd_get_filename (objfile->obfd),
2468 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2469 {
2470 /* Reload EXEC_BFD without asking anything. */
2471
2472 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2473 }
2474
f6eeced0
JK
2475 /* Keep the calls order approx. the same as in free_objfile. */
2476
2477 /* Free the separate debug objfiles. It will be
2478 automatically recreated by sym_read. */
2479 free_objfile_separate_debug (objfile);
2480
2481 /* Remove any references to this objfile in the global
2482 value lists. */
2483 preserve_values (objfile);
2484
2485 /* Nuke all the state that we will re-read. Much of the following
2486 code which sets things to NULL really is necessary to tell
2487 other parts of GDB that there is nothing currently there.
2488
2489 Try to keep the freeing order compatible with free_objfile. */
2490
2491 if (objfile->sf != NULL)
2492 {
2493 (*objfile->sf->sym_finish) (objfile);
2494 }
2495
2496 clear_objfile_data (objfile);
2497
e1507e95 2498 /* Clean up any state BFD has sitting around. */
a4453b7e 2499 {
192b62ce 2500 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2501 char *obfd_filename;
a4453b7e
TT
2502
2503 obfd_filename = bfd_get_filename (objfile->obfd);
2504 /* Open the new BFD before freeing the old one, so that
2505 the filename remains live. */
192b62ce
TT
2506 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2507 objfile->obfd = temp.release ();
e1507e95 2508 if (objfile->obfd == NULL)
192b62ce 2509 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2510 }
2511
24ba069a
JK
2512 original_name = xstrdup (objfile->original_name);
2513 make_cleanup (xfree, original_name);
2514
9cce227f
TG
2515 /* bfd_openr sets cacheable to true, which is what we want. */
2516 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2517 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2518 bfd_errmsg (bfd_get_error ()));
2519
2520 /* Save the offsets, we will nuke them with the rest of the
2521 objfile_obstack. */
2522 num_offsets = objfile->num_sections;
2523 offsets = ((struct section_offsets *)
2524 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2525 memcpy (offsets, objfile->section_offsets,
2526 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2527
9cce227f
TG
2528 /* FIXME: Do we have to free a whole linked list, or is this
2529 enough? */
2530 if (objfile->global_psymbols.list)
2531 xfree (objfile->global_psymbols.list);
2532 memset (&objfile->global_psymbols, 0,
2533 sizeof (objfile->global_psymbols));
2534 if (objfile->static_psymbols.list)
2535 xfree (objfile->static_psymbols.list);
2536 memset (&objfile->static_psymbols, 0,
2537 sizeof (objfile->static_psymbols));
2538
c378eb4e 2539 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2540 psymbol_bcache_free (objfile->psymbol_cache);
2541 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2542
2543 /* NB: after this call to obstack_free, objfiles_changed
2544 will need to be called (see discussion below). */
9cce227f
TG
2545 obstack_free (&objfile->objfile_obstack, 0);
2546 objfile->sections = NULL;
43f3e411 2547 objfile->compunit_symtabs = NULL;
9cce227f
TG
2548 objfile->psymtabs = NULL;
2549 objfile->psymtabs_addrmap = NULL;
2550 objfile->free_psymtabs = NULL;
34eaf542 2551 objfile->template_symbols = NULL;
9cce227f 2552
9cce227f
TG
2553 /* obstack_init also initializes the obstack so it is
2554 empty. We could use obstack_specify_allocation but
d82ea6a8 2555 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2556 obstack_init (&objfile->objfile_obstack);
779bd270 2557
846060df
JB
2558 /* set_objfile_per_bfd potentially allocates the per-bfd
2559 data on the objfile's obstack (if sharing data across
2560 multiple users is not possible), so it's important to
2561 do it *after* the obstack has been initialized. */
2562 set_objfile_per_bfd (objfile);
2563
224c3ddb
SM
2564 objfile->original_name
2565 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2566 strlen (original_name));
24ba069a 2567
779bd270
DE
2568 /* Reset the sym_fns pointer. The ELF reader can change it
2569 based on whether .gdb_index is present, and we need it to
2570 start over. PR symtab/15885 */
8fb8eb5c 2571 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2572
d82ea6a8 2573 build_objfile_section_table (objfile);
9cce227f
TG
2574 terminate_minimal_symbol_table (objfile);
2575
2576 /* We use the same section offsets as from last time. I'm not
2577 sure whether that is always correct for shared libraries. */
2578 objfile->section_offsets = (struct section_offsets *)
2579 obstack_alloc (&objfile->objfile_obstack,
2580 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2581 memcpy (objfile->section_offsets, offsets,
2582 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2583 objfile->num_sections = num_offsets;
2584
2585 /* What the hell is sym_new_init for, anyway? The concept of
2586 distinguishing between the main file and additional files
2587 in this way seems rather dubious. */
2588 if (objfile == symfile_objfile)
c906108c 2589 {
9cce227f 2590 (*objfile->sf->sym_new_init) (objfile);
c906108c 2591 }
9cce227f
TG
2592
2593 (*objfile->sf->sym_init) (objfile);
2594 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2595
2596 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2597
2598 /* We are about to read new symbols and potentially also
2599 DWARF information. Some targets may want to pass addresses
2600 read from DWARF DIE's through an adjustment function before
2601 saving them, like MIPS, which may call into
2602 "find_pc_section". When called, that function will make
2603 use of per-objfile program space data.
2604
2605 Since we discarded our section information above, we have
2606 dangling pointers in the per-objfile program space data
2607 structure. Force GDB to update the section mapping
2608 information by letting it know the objfile has changed,
2609 making the dangling pointers point to correct data
2610 again. */
2611
2612 objfiles_changed ();
2613
608e2dbb 2614 read_symbols (objfile, 0);
b11896a5 2615
9cce227f 2616 if (!objfile_has_symbols (objfile))
c906108c 2617 {
9cce227f
TG
2618 wrap_here ("");
2619 printf_unfiltered (_("(no debugging symbols found)\n"));
2620 wrap_here ("");
c5aa993b 2621 }
9cce227f
TG
2622
2623 /* We're done reading the symbol file; finish off complaints. */
2624 clear_complaints (&symfile_complaints, 0, 1);
2625
2626 /* Getting new symbols may change our opinion about what is
2627 frameless. */
2628
2629 reinit_frame_cache ();
2630
2631 /* Discard cleanups as symbol reading was successful. */
2632 discard_cleanups (old_cleanups);
2633
2634 /* If the mtime has changed between the time we set new_modtime
2635 and now, we *want* this to be out of date, so don't call stat
2636 again now. */
2637 objfile->mtime = new_modtime;
9cce227f 2638 init_entry_point_info (objfile);
4ac39b97 2639
4c404b8b 2640 new_objfiles.push_back (objfile);
c906108c
SS
2641 }
2642 }
c906108c 2643
4c404b8b 2644 if (!new_objfiles.empty ())
ea53e89f 2645 {
c1e56572 2646 clear_symtab_users (0);
4ac39b97
JK
2647
2648 /* clear_objfile_data for each objfile was called before freeing it and
2649 observer_notify_new_objfile (NULL) has been called by
2650 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2651 for (auto iter : new_objfiles)
2652 observer_notify_new_objfile (iter);
4ac39b97 2653
ea53e89f
JB
2654 /* At least one objfile has changed, so we can consider that
2655 the executable we're debugging has changed too. */
781b42b0 2656 observer_notify_executable_changed ();
ea53e89f 2657 }
c906108c 2658}
c906108c
SS
2659\f
2660
c5aa993b
JM
2661typedef struct
2662{
2663 char *ext;
c906108c 2664 enum language lang;
3fcf0b0d
TT
2665} filename_language;
2666
2667DEF_VEC_O (filename_language);
c906108c 2668
3fcf0b0d 2669static VEC (filename_language) *filename_language_table;
c906108c 2670
56618e20
TT
2671/* See symfile.h. */
2672
2673void
2674add_filename_language (const char *ext, enum language lang)
c906108c 2675{
3fcf0b0d
TT
2676 filename_language entry;
2677
2678 entry.ext = xstrdup (ext);
2679 entry.lang = lang;
c906108c 2680
3fcf0b0d 2681 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2682}
2683
2684static char *ext_args;
920d2a44
AC
2685static void
2686show_ext_args (struct ui_file *file, int from_tty,
2687 struct cmd_list_element *c, const char *value)
2688{
3e43a32a
MS
2689 fprintf_filtered (file,
2690 _("Mapping between filename extension "
2691 "and source language is \"%s\".\n"),
920d2a44
AC
2692 value);
2693}
c906108c
SS
2694
2695static void
26c41df3 2696set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2697{
2698 int i;
2699 char *cp = ext_args;
2700 enum language lang;
3fcf0b0d 2701 filename_language *entry;
c906108c 2702
c378eb4e 2703 /* First arg is filename extension, starting with '.' */
c906108c 2704 if (*cp != '.')
8a3fe4f8 2705 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2706
2707 /* Find end of first arg. */
c5aa993b 2708 while (*cp && !isspace (*cp))
c906108c
SS
2709 cp++;
2710
2711 if (*cp == '\0')
3e43a32a
MS
2712 error (_("'%s': two arguments required -- "
2713 "filename extension and language"),
c906108c
SS
2714 ext_args);
2715
c378eb4e 2716 /* Null-terminate first arg. */
c5aa993b 2717 *cp++ = '\0';
c906108c
SS
2718
2719 /* Find beginning of second arg, which should be a source language. */
529480d0 2720 cp = skip_spaces (cp);
c906108c
SS
2721
2722 if (*cp == '\0')
3e43a32a
MS
2723 error (_("'%s': two arguments required -- "
2724 "filename extension and language"),
c906108c
SS
2725 ext_args);
2726
2727 /* Lookup the language from among those we know. */
2728 lang = language_enum (cp);
2729
2730 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2731 for (i = 0;
2732 VEC_iterate (filename_language, filename_language_table, i, entry);
2733 ++i)
2734 {
2735 if (0 == strcmp (ext_args, entry->ext))
2736 break;
2737 }
c906108c 2738
3fcf0b0d 2739 if (entry == NULL)
c906108c 2740 {
c378eb4e 2741 /* New file extension. */
c906108c
SS
2742 add_filename_language (ext_args, lang);
2743 }
2744 else
2745 {
c378eb4e 2746 /* Redefining a previously known filename extension. */
c906108c
SS
2747
2748 /* if (from_tty) */
2749 /* query ("Really make files of type %s '%s'?", */
2750 /* ext_args, language_str (lang)); */
2751
3fcf0b0d
TT
2752 xfree (entry->ext);
2753 entry->ext = xstrdup (ext_args);
2754 entry->lang = lang;
c906108c
SS
2755 }
2756}
2757
2758static void
fba45db2 2759info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2760{
2761 int i;
3fcf0b0d 2762 filename_language *entry;
c906108c 2763
a3f17187 2764 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2765 printf_filtered ("\n\n");
3fcf0b0d
TT
2766 for (i = 0;
2767 VEC_iterate (filename_language, filename_language_table, i, entry);
2768 ++i)
2769 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2770}
2771
c906108c 2772enum language
dd786858 2773deduce_language_from_filename (const char *filename)
c906108c
SS
2774{
2775 int i;
e6a959d6 2776 const char *cp;
c906108c
SS
2777
2778 if (filename != NULL)
2779 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2780 {
2781 filename_language *entry;
2782
2783 for (i = 0;
2784 VEC_iterate (filename_language, filename_language_table, i, entry);
2785 ++i)
2786 if (strcmp (cp, entry->ext) == 0)
2787 return entry->lang;
2788 }
c906108c
SS
2789
2790 return language_unknown;
2791}
2792\f
43f3e411
DE
2793/* Allocate and initialize a new symbol table.
2794 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2795
2796struct symtab *
43f3e411 2797allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2798{
43f3e411
DE
2799 struct objfile *objfile = cust->objfile;
2800 struct symtab *symtab
2801 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2802
19ba03f4
SM
2803 symtab->filename
2804 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2805 objfile->per_bfd->filename_cache);
c5aa993b
JM
2806 symtab->fullname = NULL;
2807 symtab->language = deduce_language_from_filename (filename);
c906108c 2808
db0fec5c
DE
2809 /* This can be very verbose with lots of headers.
2810 Only print at higher debug levels. */
2811 if (symtab_create_debug >= 2)
45cfd468
DE
2812 {
2813 /* Be a bit clever with debugging messages, and don't print objfile
2814 every time, only when it changes. */
2815 static char *last_objfile_name = NULL;
2816
2817 if (last_objfile_name == NULL
4262abfb 2818 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2819 {
2820 xfree (last_objfile_name);
4262abfb 2821 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2822 fprintf_unfiltered (gdb_stdlog,
2823 "Creating one or more symtabs for objfile %s ...\n",
2824 last_objfile_name);
2825 }
2826 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2827 "Created symtab %s for module %s.\n",
2828 host_address_to_string (symtab), filename);
45cfd468
DE
2829 }
2830
43f3e411
DE
2831 /* Add it to CUST's list of symtabs. */
2832 if (cust->filetabs == NULL)
2833 {
2834 cust->filetabs = symtab;
2835 cust->last_filetab = symtab;
2836 }
2837 else
2838 {
2839 cust->last_filetab->next = symtab;
2840 cust->last_filetab = symtab;
2841 }
2842
2843 /* Backlink to the containing compunit symtab. */
2844 symtab->compunit_symtab = cust;
2845
2846 return symtab;
2847}
2848
2849/* Allocate and initialize a new compunit.
2850 NAME is the name of the main source file, if there is one, or some
2851 descriptive text if there are no source files. */
2852
2853struct compunit_symtab *
2854allocate_compunit_symtab (struct objfile *objfile, const char *name)
2855{
2856 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2857 struct compunit_symtab);
2858 const char *saved_name;
2859
2860 cu->objfile = objfile;
2861
2862 /* The name we record here is only for display/debugging purposes.
2863 Just save the basename to avoid path issues (too long for display,
2864 relative vs absolute, etc.). */
2865 saved_name = lbasename (name);
224c3ddb
SM
2866 cu->name
2867 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2868 strlen (saved_name));
43f3e411
DE
2869
2870 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2871
2872 if (symtab_create_debug)
2873 {
2874 fprintf_unfiltered (gdb_stdlog,
2875 "Created compunit symtab %s for %s.\n",
2876 host_address_to_string (cu),
2877 cu->name);
2878 }
2879
2880 return cu;
2881}
2882
2883/* Hook CU to the objfile it comes from. */
2884
2885void
2886add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2887{
2888 cu->next = cu->objfile->compunit_symtabs;
2889 cu->objfile->compunit_symtabs = cu;
c906108c 2890}
c906108c 2891\f
c5aa993b 2892
b15cc25c
PA
2893/* Reset all data structures in gdb which may contain references to
2894 symbol table data. */
c906108c
SS
2895
2896void
b15cc25c 2897clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2898{
2899 /* Someday, we should do better than this, by only blowing away
2900 the things that really need to be blown. */
c0501be5
DJ
2901
2902 /* Clear the "current" symtab first, because it is no longer valid.
2903 breakpoint_re_set may try to access the current symtab. */
2904 clear_current_source_symtab_and_line ();
2905
c906108c 2906 clear_displays ();
1bfeeb0f 2907 clear_last_displayed_sal ();
c906108c 2908 clear_pc_function_cache ();
06d3b283 2909 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2910
2911 /* Clear globals which might have pointed into a removed objfile.
2912 FIXME: It's not clear which of these are supposed to persist
2913 between expressions and which ought to be reset each time. */
2914 expression_context_block = NULL;
2915 innermost_block = NULL;
8756216b
DP
2916
2917 /* Varobj may refer to old symbols, perform a cleanup. */
2918 varobj_invalidate ();
2919
e700d1b2
JB
2920 /* Now that the various caches have been cleared, we can re_set
2921 our breakpoints without risking it using stale data. */
2922 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2923 breakpoint_re_set ();
c906108c
SS
2924}
2925
74b7792f
AC
2926static void
2927clear_symtab_users_cleanup (void *ignore)
2928{
c1e56572 2929 clear_symtab_users (0);
74b7792f 2930}
c906108c 2931\f
c906108c
SS
2932/* OVERLAYS:
2933 The following code implements an abstraction for debugging overlay sections.
2934
2935 The target model is as follows:
2936 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2937 same VMA, each with its own unique LMA (or load address).
c906108c 2938 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2939 sections, one by one, from the load address into the VMA address.
5417f6dc 2940 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2941 sections should be considered to be mapped from the VMA to the LMA.
2942 This information is used for symbol lookup, and memory read/write.
5417f6dc 2943 For instance, if a section has been mapped then its contents
c5aa993b 2944 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2945
2946 Two levels of debugger support for overlays are available. One is
2947 "manual", in which the debugger relies on the user to tell it which
2948 overlays are currently mapped. This level of support is
2949 implemented entirely in the core debugger, and the information about
2950 whether a section is mapped is kept in the objfile->obj_section table.
2951
2952 The second level of support is "automatic", and is only available if
2953 the target-specific code provides functionality to read the target's
2954 overlay mapping table, and translate its contents for the debugger
2955 (by updating the mapped state information in the obj_section tables).
2956
2957 The interface is as follows:
c5aa993b
JM
2958 User commands:
2959 overlay map <name> -- tell gdb to consider this section mapped
2960 overlay unmap <name> -- tell gdb to consider this section unmapped
2961 overlay list -- list the sections that GDB thinks are mapped
2962 overlay read-target -- get the target's state of what's mapped
2963 overlay off/manual/auto -- set overlay debugging state
2964 Functional interface:
2965 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2966 section, return that section.
5417f6dc 2967 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2968 the pc, either in its VMA or its LMA
714835d5 2969 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2970 section_is_overlay(sect): true if section's VMA != LMA
2971 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2972 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2973 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2974 overlay_mapped_address(...): map an address from section's LMA to VMA
2975 overlay_unmapped_address(...): map an address from section's VMA to LMA
2976 symbol_overlayed_address(...): Return a "current" address for symbol:
2977 either in VMA or LMA depending on whether
c378eb4e 2978 the symbol's section is currently mapped. */
c906108c
SS
2979
2980/* Overlay debugging state: */
2981
d874f1e2 2982enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2983int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2984
c906108c 2985/* Function: section_is_overlay (SECTION)
5417f6dc 2986 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2987 SECTION is loaded at an address different from where it will "run". */
2988
2989int
714835d5 2990section_is_overlay (struct obj_section *section)
c906108c 2991{
714835d5
UW
2992 if (overlay_debugging && section)
2993 {
2994 bfd *abfd = section->objfile->obfd;
2995 asection *bfd_section = section->the_bfd_section;
f888f159 2996
714835d5
UW
2997 if (bfd_section_lma (abfd, bfd_section) != 0
2998 && bfd_section_lma (abfd, bfd_section)
2999 != bfd_section_vma (abfd, bfd_section))
3000 return 1;
3001 }
c906108c
SS
3002
3003 return 0;
3004}
3005
3006/* Function: overlay_invalidate_all (void)
3007 Invalidate the mapped state of all overlay sections (mark it as stale). */
3008
3009static void
fba45db2 3010overlay_invalidate_all (void)
c906108c 3011{
c5aa993b 3012 struct objfile *objfile;
c906108c
SS
3013 struct obj_section *sect;
3014
3015 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3016 if (section_is_overlay (sect))
3017 sect->ovly_mapped = -1;
c906108c
SS
3018}
3019
714835d5 3020/* Function: section_is_mapped (SECTION)
5417f6dc 3021 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3022
3023 Access to the ovly_mapped flag is restricted to this function, so
3024 that we can do automatic update. If the global flag
3025 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3026 overlay_invalidate_all. If the mapped state of the particular
3027 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3028
714835d5
UW
3029int
3030section_is_mapped (struct obj_section *osect)
c906108c 3031{
9216df95
UW
3032 struct gdbarch *gdbarch;
3033
714835d5 3034 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3035 return 0;
3036
c5aa993b 3037 switch (overlay_debugging)
c906108c
SS
3038 {
3039 default:
d874f1e2 3040 case ovly_off:
c5aa993b 3041 return 0; /* overlay debugging off */
d874f1e2 3042 case ovly_auto: /* overlay debugging automatic */
1c772458 3043 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3044 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3045 gdbarch = get_objfile_arch (osect->objfile);
3046 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3047 {
3048 if (overlay_cache_invalid)
3049 {
3050 overlay_invalidate_all ();
3051 overlay_cache_invalid = 0;
3052 }
3053 if (osect->ovly_mapped == -1)
9216df95 3054 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3055 }
3056 /* fall thru to manual case */
d874f1e2 3057 case ovly_on: /* overlay debugging manual */
c906108c
SS
3058 return osect->ovly_mapped == 1;
3059 }
3060}
3061
c906108c
SS
3062/* Function: pc_in_unmapped_range
3063 If PC falls into the lma range of SECTION, return true, else false. */
3064
3065CORE_ADDR
714835d5 3066pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3067{
714835d5
UW
3068 if (section_is_overlay (section))
3069 {
3070 bfd *abfd = section->objfile->obfd;
3071 asection *bfd_section = section->the_bfd_section;
fbd35540 3072
714835d5
UW
3073 /* We assume the LMA is relocated by the same offset as the VMA. */
3074 bfd_vma size = bfd_get_section_size (bfd_section);
3075 CORE_ADDR offset = obj_section_offset (section);
3076
3077 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3078 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3079 return 1;
3080 }
c906108c 3081
c906108c
SS
3082 return 0;
3083}
3084
3085/* Function: pc_in_mapped_range
3086 If PC falls into the vma range of SECTION, return true, else false. */
3087
3088CORE_ADDR
714835d5 3089pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3090{
714835d5
UW
3091 if (section_is_overlay (section))
3092 {
3093 if (obj_section_addr (section) <= pc
3094 && pc < obj_section_endaddr (section))
3095 return 1;
3096 }
c906108c 3097
c906108c
SS
3098 return 0;
3099}
3100
9ec8e6a0
JB
3101/* Return true if the mapped ranges of sections A and B overlap, false
3102 otherwise. */
3b7bacac 3103
b9362cc7 3104static int
714835d5 3105sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3106{
714835d5
UW
3107 CORE_ADDR a_start = obj_section_addr (a);
3108 CORE_ADDR a_end = obj_section_endaddr (a);
3109 CORE_ADDR b_start = obj_section_addr (b);
3110 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3111
3112 return (a_start < b_end && b_start < a_end);
3113}
3114
c906108c
SS
3115/* Function: overlay_unmapped_address (PC, SECTION)
3116 Returns the address corresponding to PC in the unmapped (load) range.
3117 May be the same as PC. */
3118
3119CORE_ADDR
714835d5 3120overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3121{
714835d5
UW
3122 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3123 {
3124 bfd *abfd = section->objfile->obfd;
3125 asection *bfd_section = section->the_bfd_section;
fbd35540 3126
714835d5
UW
3127 return pc + bfd_section_lma (abfd, bfd_section)
3128 - bfd_section_vma (abfd, bfd_section);
3129 }
c906108c
SS
3130
3131 return pc;
3132}
3133
3134/* Function: overlay_mapped_address (PC, SECTION)
3135 Returns the address corresponding to PC in the mapped (runtime) range.
3136 May be the same as PC. */
3137
3138CORE_ADDR
714835d5 3139overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3140{
714835d5
UW
3141 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3142 {
3143 bfd *abfd = section->objfile->obfd;
3144 asection *bfd_section = section->the_bfd_section;
fbd35540 3145
714835d5
UW
3146 return pc + bfd_section_vma (abfd, bfd_section)
3147 - bfd_section_lma (abfd, bfd_section);
3148 }
c906108c
SS
3149
3150 return pc;
3151}
3152
5417f6dc 3153/* Function: symbol_overlayed_address
c906108c
SS
3154 Return one of two addresses (relative to the VMA or to the LMA),
3155 depending on whether the section is mapped or not. */
3156
c5aa993b 3157CORE_ADDR
714835d5 3158symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3159{
3160 if (overlay_debugging)
3161 {
c378eb4e 3162 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3163 if (section == 0)
3164 return address;
c378eb4e
MS
3165 /* If the symbol's section is not an overlay, just return its
3166 address. */
c906108c
SS
3167 if (!section_is_overlay (section))
3168 return address;
c378eb4e 3169 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3170 if (section_is_mapped (section))
3171 return address;
3172 /*
3173 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3174 * then return its LOADED address rather than its vma address!!
3175 */
3176 return overlay_unmapped_address (address, section);
3177 }
3178 return address;
3179}
3180
5417f6dc 3181/* Function: find_pc_overlay (PC)
c906108c
SS
3182 Return the best-match overlay section for PC:
3183 If PC matches a mapped overlay section's VMA, return that section.
3184 Else if PC matches an unmapped section's VMA, return that section.
3185 Else if PC matches an unmapped section's LMA, return that section. */
3186
714835d5 3187struct obj_section *
fba45db2 3188find_pc_overlay (CORE_ADDR pc)
c906108c 3189{
c5aa993b 3190 struct objfile *objfile;
c906108c
SS
3191 struct obj_section *osect, *best_match = NULL;
3192
3193 if (overlay_debugging)
b631e59b
KT
3194 {
3195 ALL_OBJSECTIONS (objfile, osect)
3196 if (section_is_overlay (osect))
c5aa993b 3197 {
b631e59b
KT
3198 if (pc_in_mapped_range (pc, osect))
3199 {
3200 if (section_is_mapped (osect))
3201 return osect;
3202 else
3203 best_match = osect;
3204 }
3205 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3206 best_match = osect;
3207 }
b631e59b 3208 }
714835d5 3209 return best_match;
c906108c
SS
3210}
3211
3212/* Function: find_pc_mapped_section (PC)
5417f6dc 3213 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3214 currently marked as MAPPED, return that section. Else return NULL. */
3215
714835d5 3216struct obj_section *
fba45db2 3217find_pc_mapped_section (CORE_ADDR pc)
c906108c 3218{
c5aa993b 3219 struct objfile *objfile;
c906108c
SS
3220 struct obj_section *osect;
3221
3222 if (overlay_debugging)
b631e59b
KT
3223 {
3224 ALL_OBJSECTIONS (objfile, osect)
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3226 return osect;
3227 }
c906108c
SS
3228
3229 return NULL;
3230}
3231
3232/* Function: list_overlays_command
c378eb4e 3233 Print a list of mapped sections and their PC ranges. */
c906108c 3234
5d3055ad 3235static void
fba45db2 3236list_overlays_command (char *args, int from_tty)
c906108c 3237{
c5aa993b
JM
3238 int nmapped = 0;
3239 struct objfile *objfile;
c906108c
SS
3240 struct obj_section *osect;
3241
3242 if (overlay_debugging)
b631e59b
KT
3243 {
3244 ALL_OBJSECTIONS (objfile, osect)
714835d5 3245 if (section_is_mapped (osect))
b631e59b
KT
3246 {
3247 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3248 const char *name;
3249 bfd_vma lma, vma;
3250 int size;
3251
3252 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3253 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3254 size = bfd_get_section_size (osect->the_bfd_section);
3255 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3256
3257 printf_filtered ("Section %s, loaded at ", name);
3258 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3259 puts_filtered (" - ");
3260 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3261 printf_filtered (", mapped at ");
3262 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3263 puts_filtered (" - ");
3264 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3265 puts_filtered ("\n");
3266
3267 nmapped++;
3268 }
3269 }
c906108c 3270 if (nmapped == 0)
a3f17187 3271 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3272}
3273
3274/* Function: map_overlay_command
3275 Mark the named section as mapped (ie. residing at its VMA address). */
3276
5d3055ad 3277static void
fba45db2 3278map_overlay_command (char *args, int from_tty)
c906108c 3279{
c5aa993b
JM
3280 struct objfile *objfile, *objfile2;
3281 struct obj_section *sec, *sec2;
c906108c
SS
3282
3283 if (!overlay_debugging)
3e43a32a
MS
3284 error (_("Overlay debugging not enabled. Use "
3285 "either the 'overlay auto' or\n"
3286 "the 'overlay manual' command."));
c906108c
SS
3287
3288 if (args == 0 || *args == 0)
8a3fe4f8 3289 error (_("Argument required: name of an overlay section"));
c906108c 3290
c378eb4e 3291 /* First, find a section matching the user supplied argument. */
c906108c
SS
3292 ALL_OBJSECTIONS (objfile, sec)
3293 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3294 {
c378eb4e 3295 /* Now, check to see if the section is an overlay. */
714835d5 3296 if (!section_is_overlay (sec))
c5aa993b
JM
3297 continue; /* not an overlay section */
3298
c378eb4e 3299 /* Mark the overlay as "mapped". */
c5aa993b
JM
3300 sec->ovly_mapped = 1;
3301
3302 /* Next, make a pass and unmap any sections that are
3303 overlapped by this new section: */
3304 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3305 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3306 {
3307 if (info_verbose)
a3f17187 3308 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3309 bfd_section_name (objfile->obfd,
3310 sec2->the_bfd_section));
c378eb4e 3311 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3312 }
3313 return;
3314 }
8a3fe4f8 3315 error (_("No overlay section called %s"), args);
c906108c
SS
3316}
3317
3318/* Function: unmap_overlay_command
5417f6dc 3319 Mark the overlay section as unmapped
c906108c
SS
3320 (ie. resident in its LMA address range, rather than the VMA range). */
3321
5d3055ad 3322static void
fba45db2 3323unmap_overlay_command (char *args, int from_tty)
c906108c 3324{
c5aa993b 3325 struct objfile *objfile;
7a270e0c 3326 struct obj_section *sec = NULL;
c906108c
SS
3327
3328 if (!overlay_debugging)
3e43a32a
MS
3329 error (_("Overlay debugging not enabled. "
3330 "Use either the 'overlay auto' or\n"
3331 "the 'overlay manual' command."));
c906108c
SS
3332
3333 if (args == 0 || *args == 0)
8a3fe4f8 3334 error (_("Argument required: name of an overlay section"));
c906108c 3335
c378eb4e 3336 /* First, find a section matching the user supplied argument. */
c906108c
SS
3337 ALL_OBJSECTIONS (objfile, sec)
3338 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3339 {
3340 if (!sec->ovly_mapped)
8a3fe4f8 3341 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3342 sec->ovly_mapped = 0;
3343 return;
3344 }
8a3fe4f8 3345 error (_("No overlay section called %s"), args);
c906108c
SS
3346}
3347
3348/* Function: overlay_auto_command
3349 A utility command to turn on overlay debugging.
c378eb4e 3350 Possibly this should be done via a set/show command. */
c906108c
SS
3351
3352static void
fba45db2 3353overlay_auto_command (char *args, int from_tty)
c906108c 3354{
d874f1e2 3355 overlay_debugging = ovly_auto;
1900040c 3356 enable_overlay_breakpoints ();
c906108c 3357 if (info_verbose)
a3f17187 3358 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3359}
3360
3361/* Function: overlay_manual_command
3362 A utility command to turn on overlay debugging.
c378eb4e 3363 Possibly this should be done via a set/show command. */
c906108c
SS
3364
3365static void
fba45db2 3366overlay_manual_command (char *args, int from_tty)
c906108c 3367{
d874f1e2 3368 overlay_debugging = ovly_on;
1900040c 3369 disable_overlay_breakpoints ();
c906108c 3370 if (info_verbose)
a3f17187 3371 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3372}
3373
3374/* Function: overlay_off_command
3375 A utility command to turn on overlay debugging.
c378eb4e 3376 Possibly this should be done via a set/show command. */
c906108c
SS
3377
3378static void
fba45db2 3379overlay_off_command (char *args, int from_tty)
c906108c 3380{
d874f1e2 3381 overlay_debugging = ovly_off;
1900040c 3382 disable_overlay_breakpoints ();
c906108c 3383 if (info_verbose)
a3f17187 3384 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3385}
3386
3387static void
fba45db2 3388overlay_load_command (char *args, int from_tty)
c906108c 3389{
e17c207e
UW
3390 struct gdbarch *gdbarch = get_current_arch ();
3391
3392 if (gdbarch_overlay_update_p (gdbarch))
3393 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3394 else
8a3fe4f8 3395 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3396}
3397
3398/* Function: overlay_command
c378eb4e 3399 A place-holder for a mis-typed command. */
c906108c 3400
c378eb4e 3401/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3402static struct cmd_list_element *overlaylist;
c906108c
SS
3403
3404static void
fba45db2 3405overlay_command (char *args, int from_tty)
c906108c 3406{
c5aa993b 3407 printf_unfiltered
c906108c 3408 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3409 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3410}
3411
c906108c
SS
3412/* Target Overlays for the "Simplest" overlay manager:
3413
5417f6dc
RM
3414 This is GDB's default target overlay layer. It works with the
3415 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3416 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3417 so targets that use a different runtime overlay manager can
c906108c
SS
3418 substitute their own overlay_update function and take over the
3419 function pointer.
3420
3421 The overlay_update function pokes around in the target's data structures
3422 to see what overlays are mapped, and updates GDB's overlay mapping with
3423 this information.
3424
3425 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3426 unsigned _novlys; /# number of overlay sections #/
3427 unsigned _ovly_table[_novlys][4] = {
438e1e42 3428 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3429 {..., ..., ..., ...},
3430 }
3431 unsigned _novly_regions; /# number of overlay regions #/
3432 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3433 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3434 {..., ..., ...},
3435 }
c906108c
SS
3436 These functions will attempt to update GDB's mappedness state in the
3437 symbol section table, based on the target's mappedness state.
3438
3439 To do this, we keep a cached copy of the target's _ovly_table, and
3440 attempt to detect when the cached copy is invalidated. The main
3441 entry point is "simple_overlay_update(SECT), which looks up SECT in
3442 the cached table and re-reads only the entry for that section from
c378eb4e 3443 the target (whenever possible). */
c906108c
SS
3444
3445/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3446static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3447static unsigned cache_novlys = 0;
c906108c 3448static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3449enum ovly_index
3450 {
438e1e42 3451 VMA, OSIZE, LMA, MAPPED
c5aa993b 3452 };
c906108c 3453
c378eb4e 3454/* Throw away the cached copy of _ovly_table. */
3b7bacac 3455
c906108c 3456static void
fba45db2 3457simple_free_overlay_table (void)
c906108c
SS
3458{
3459 if (cache_ovly_table)
b8c9b27d 3460 xfree (cache_ovly_table);
c5aa993b 3461 cache_novlys = 0;
c906108c
SS
3462 cache_ovly_table = NULL;
3463 cache_ovly_table_base = 0;
3464}
3465
9216df95 3466/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3467 Convert to host order. int LEN is number of ints. */
3b7bacac 3468
c906108c 3469static void
9216df95 3470read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3471 int len, int size, enum bfd_endian byte_order)
c906108c 3472{
c378eb4e 3473 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3474 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3475 int i;
c906108c 3476
9216df95 3477 read_memory (memaddr, buf, len * size);
c906108c 3478 for (i = 0; i < len; i++)
e17a4113 3479 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3480}
3481
3482/* Find and grab a copy of the target _ovly_table
c378eb4e 3483 (and _novlys, which is needed for the table's size). */
3b7bacac 3484
c5aa993b 3485static int
fba45db2 3486simple_read_overlay_table (void)
c906108c 3487{
3b7344d5 3488 struct bound_minimal_symbol novlys_msym;
7c7b6655 3489 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3490 struct gdbarch *gdbarch;
3491 int word_size;
e17a4113 3492 enum bfd_endian byte_order;
c906108c
SS
3493
3494 simple_free_overlay_table ();
9b27852e 3495 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3496 if (! novlys_msym.minsym)
c906108c 3497 {
8a3fe4f8 3498 error (_("Error reading inferior's overlay table: "
0d43edd1 3499 "couldn't find `_novlys' variable\n"
8a3fe4f8 3500 "in inferior. Use `overlay manual' mode."));
0d43edd1 3501 return 0;
c906108c 3502 }
0d43edd1 3503
7c7b6655
TT
3504 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3505 if (! ovly_table_msym.minsym)
0d43edd1 3506 {
8a3fe4f8 3507 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3508 "`_ovly_table' array\n"
8a3fe4f8 3509 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3510 return 0;
3511 }
3512
7c7b6655 3513 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3514 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3515 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3516
77e371c0
TT
3517 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3518 4, byte_order);
0d43edd1 3519 cache_ovly_table
224c3ddb 3520 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3521 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3522 read_target_long_array (cache_ovly_table_base,
777ea8f1 3523 (unsigned int *) cache_ovly_table,
e17a4113 3524 cache_novlys * 4, word_size, byte_order);
0d43edd1 3525
c5aa993b 3526 return 1; /* SUCCESS */
c906108c
SS
3527}
3528
5417f6dc 3529/* Function: simple_overlay_update_1
c906108c
SS
3530 A helper function for simple_overlay_update. Assuming a cached copy
3531 of _ovly_table exists, look through it to find an entry whose vma,
3532 lma and size match those of OSECT. Re-read the entry and make sure
3533 it still matches OSECT (else the table may no longer be valid).
3534 Set OSECT's mapped state to match the entry. Return: 1 for
3535 success, 0 for failure. */
3536
3537static int
fba45db2 3538simple_overlay_update_1 (struct obj_section *osect)
c906108c 3539{
764c99c1 3540 int i;
fbd35540
MS
3541 bfd *obfd = osect->objfile->obfd;
3542 asection *bsect = osect->the_bfd_section;
9216df95
UW
3543 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3544 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3546
c906108c 3547 for (i = 0; i < cache_novlys; i++)
fbd35540 3548 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3549 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3550 {
9216df95
UW
3551 read_target_long_array (cache_ovly_table_base + i * word_size,
3552 (unsigned int *) cache_ovly_table[i],
e17a4113 3553 4, word_size, byte_order);
fbd35540 3554 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3555 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3556 {
3557 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3558 return 1;
3559 }
c378eb4e 3560 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3561 return 0;
3562 }
3563 return 0;
3564}
3565
3566/* Function: simple_overlay_update
5417f6dc
RM
3567 If OSECT is NULL, then update all sections' mapped state
3568 (after re-reading the entire target _ovly_table).
3569 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3570 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3571 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3572 re-read the entire cache, and go ahead and update all sections. */
3573
1c772458 3574void
fba45db2 3575simple_overlay_update (struct obj_section *osect)
c906108c 3576{
c5aa993b 3577 struct objfile *objfile;
c906108c 3578
c378eb4e 3579 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3580 if (osect)
c378eb4e 3581 /* Have we got a cached copy of the target's overlay table? */
c906108c 3582 if (cache_ovly_table != NULL)
9cc89665
MS
3583 {
3584 /* Does its cached location match what's currently in the
3585 symtab? */
3b7344d5 3586 struct bound_minimal_symbol minsym
9cc89665
MS
3587 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3588
3b7344d5 3589 if (minsym.minsym == NULL)
9cc89665
MS
3590 error (_("Error reading inferior's overlay table: couldn't "
3591 "find `_ovly_table' array\n"
3592 "in inferior. Use `overlay manual' mode."));
3593
77e371c0 3594 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3595 /* Then go ahead and try to look up this single section in
3596 the cache. */
3597 if (simple_overlay_update_1 (osect))
3598 /* Found it! We're done. */
3599 return;
3600 }
c906108c
SS
3601
3602 /* Cached table no good: need to read the entire table anew.
3603 Or else we want all the sections, in which case it's actually
3604 more efficient to read the whole table in one block anyway. */
3605
0d43edd1
JB
3606 if (! simple_read_overlay_table ())
3607 return;
3608
c378eb4e 3609 /* Now may as well update all sections, even if only one was requested. */
c906108c 3610 ALL_OBJSECTIONS (objfile, osect)
714835d5 3611 if (section_is_overlay (osect))
c5aa993b 3612 {
764c99c1 3613 int i;
fbd35540
MS
3614 bfd *obfd = osect->objfile->obfd;
3615 asection *bsect = osect->the_bfd_section;
c5aa993b 3616
c5aa993b 3617 for (i = 0; i < cache_novlys; i++)
fbd35540 3618 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3619 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3620 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3621 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3622 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3623 }
3624 }
c906108c
SS
3625}
3626
086df311
DJ
3627/* Set the output sections and output offsets for section SECTP in
3628 ABFD. The relocation code in BFD will read these offsets, so we
3629 need to be sure they're initialized. We map each section to itself,
3630 with no offset; this means that SECTP->vma will be honored. */
3631
3632static void
3633symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3634{
3635 sectp->output_section = sectp;
3636 sectp->output_offset = 0;
3637}
3638
ac8035ab
TG
3639/* Default implementation for sym_relocate. */
3640
ac8035ab
TG
3641bfd_byte *
3642default_symfile_relocate (struct objfile *objfile, asection *sectp,
3643 bfd_byte *buf)
3644{
3019eac3
DE
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3646 DWO file. */
3647 bfd *abfd = sectp->owner;
ac8035ab
TG
3648
3649 /* We're only interested in sections with relocation
3650 information. */
3651 if ((sectp->flags & SEC_RELOC) == 0)
3652 return NULL;
3653
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3657
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3659}
3660
086df311
DJ
3661/* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3673 debug section. */
086df311
DJ
3674
3675bfd_byte *
ac8035ab
TG
3676symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
086df311 3678{
ac8035ab 3679 gdb_assert (objfile->sf->sym_relocate);
086df311 3680
ac8035ab 3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3682}
c906108c 3683
31d99776
DJ
3684struct symfile_segment_data *
3685get_symfile_segment_data (bfd *abfd)
3686{
00b5771c 3687 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3688
3689 if (sf == NULL)
3690 return NULL;
3691
3692 return sf->sym_segments (abfd);
3693}
3694
3695void
3696free_symfile_segment_data (struct symfile_segment_data *data)
3697{
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3701 xfree (data);
3702}
3703
28c32713
JB
3704/* Given:
3705 - DATA, containing segment addresses from the object file ABFD, and
3706 the mapping from ABFD's sections onto the segments that own them,
3707 and
3708 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3709 segment addresses reported by the target,
3710 store the appropriate offsets for each section in OFFSETS.
3711
3712 If there are fewer entries in SEGMENT_BASES than there are segments
3713 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3714
8d385431
DJ
3715 If there are more entries, then ignore the extra. The target may
3716 not be able to distinguish between an empty data segment and a
3717 missing data segment; a missing text segment is less plausible. */
3b7bacac 3718
31d99776 3719int
3189cb12
DE
3720symfile_map_offsets_to_segments (bfd *abfd,
3721 const struct symfile_segment_data *data,
31d99776
DJ
3722 struct section_offsets *offsets,
3723 int num_segment_bases,
3724 const CORE_ADDR *segment_bases)
3725{
3726 int i;
3727 asection *sect;
3728
28c32713
JB
3729 /* It doesn't make sense to call this function unless you have some
3730 segment base addresses. */
202b96c1 3731 gdb_assert (num_segment_bases > 0);
28c32713 3732
31d99776
DJ
3733 /* If we do not have segment mappings for the object file, we
3734 can not relocate it by segments. */
3735 gdb_assert (data != NULL);
3736 gdb_assert (data->num_segments > 0);
3737
31d99776
DJ
3738 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3739 {
31d99776
DJ
3740 int which = data->segment_info[i];
3741
28c32713
JB
3742 gdb_assert (0 <= which && which <= data->num_segments);
3743
3744 /* Don't bother computing offsets for sections that aren't
3745 loaded as part of any segment. */
3746 if (! which)
3747 continue;
3748
3749 /* Use the last SEGMENT_BASES entry as the address of any extra
3750 segments mentioned in DATA->segment_info. */
31d99776 3751 if (which > num_segment_bases)
28c32713 3752 which = num_segment_bases;
31d99776 3753
28c32713
JB
3754 offsets->offsets[i] = (segment_bases[which - 1]
3755 - data->segment_bases[which - 1]);
31d99776
DJ
3756 }
3757
3758 return 1;
3759}
3760
3761static void
3762symfile_find_segment_sections (struct objfile *objfile)
3763{
3764 bfd *abfd = objfile->obfd;
3765 int i;
3766 asection *sect;
3767 struct symfile_segment_data *data;
3768
3769 data = get_symfile_segment_data (objfile->obfd);
3770 if (data == NULL)
3771 return;
3772
3773 if (data->num_segments != 1 && data->num_segments != 2)
3774 {
3775 free_symfile_segment_data (data);
3776 return;
3777 }
3778
3779 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3780 {
31d99776
DJ
3781 int which = data->segment_info[i];
3782
3783 if (which == 1)
3784 {
3785 if (objfile->sect_index_text == -1)
3786 objfile->sect_index_text = sect->index;
3787
3788 if (objfile->sect_index_rodata == -1)
3789 objfile->sect_index_rodata = sect->index;
3790 }
3791 else if (which == 2)
3792 {
3793 if (objfile->sect_index_data == -1)
3794 objfile->sect_index_data = sect->index;
3795
3796 if (objfile->sect_index_bss == -1)
3797 objfile->sect_index_bss = sect->index;
3798 }
3799 }
3800
3801 free_symfile_segment_data (data);
3802}
3803
76ad5e1e
NB
3804/* Listen for free_objfile events. */
3805
3806static void
3807symfile_free_objfile (struct objfile *objfile)
3808{
c33b2f12
MM
3809 /* Remove the target sections owned by this objfile. */
3810 if (objfile != NULL)
76ad5e1e
NB
3811 remove_target_sections ((void *) objfile);
3812}
3813
540c2971
DE
3814/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3815 Expand all symtabs that match the specified criteria.
3816 See quick_symbol_functions.expand_symtabs_matching for details. */
3817
3818void
14bc53a8
PA
3819expand_symtabs_matching
3820 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3821 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3822 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3823 enum search_domain kind)
540c2971
DE
3824{
3825 struct objfile *objfile;
3826
3827 ALL_OBJFILES (objfile)
3828 {
3829 if (objfile->sf)
bb4142cf 3830 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3831 symbol_matcher,
14bc53a8 3832 expansion_notify, kind);
540c2971
DE
3833 }
3834}
3835
3836/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3837 Map function FUN over every file.
3838 See quick_symbol_functions.map_symbol_filenames for details. */
3839
3840void
bb4142cf
DE
3841map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3842 int need_fullname)
540c2971
DE
3843{
3844 struct objfile *objfile;
3845
3846 ALL_OBJFILES (objfile)
3847 {
3848 if (objfile->sf)
3849 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3850 need_fullname);
3851 }
3852}
3853
c906108c 3854void
fba45db2 3855_initialize_symfile (void)
c906108c
SS
3856{
3857 struct cmd_list_element *c;
c5aa993b 3858
76ad5e1e
NB
3859 observer_attach_free_objfile (symfile_free_objfile);
3860
1a966eab
AC
3861 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3862Load symbol table from executable file FILE.\n\
c906108c 3863The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3864to execute."), &cmdlist);
5ba2abeb 3865 set_cmd_completer (c, filename_completer);
c906108c 3866
1a966eab 3867 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3868Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3869Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3870 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3871The optional arguments are section-name section-address pairs and\n\
3872should be specified if the data and bss segments are not contiguous\n\
1a966eab 3873with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3874 &cmdlist);
5ba2abeb 3875 set_cmd_completer (c, filename_completer);
c906108c 3876
63644780
NB
3877 c = add_cmd ("remove-symbol-file", class_files,
3878 remove_symbol_file_command, _("\
3879Remove a symbol file added via the add-symbol-file command.\n\
3880Usage: remove-symbol-file FILENAME\n\
3881 remove-symbol-file -a ADDRESS\n\
3882The file to remove can be identified by its filename or by an address\n\
3883that lies within the boundaries of this symbol file in memory."),
3884 &cmdlist);
3885
1a966eab
AC
3886 c = add_cmd ("load", class_files, load_command, _("\
3887Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3888for access from GDB.\n\
5cf30ebf
LM
3889An optional load OFFSET may also be given as a literal address.\n\
3890When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3891on its own.\n\
3892Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3893 set_cmd_completer (c, filename_completer);
c906108c 3894
c5aa993b 3895 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3896 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3897 "overlay ", 0, &cmdlist);
3898
3899 add_com_alias ("ovly", "overlay", class_alias, 1);
3900 add_com_alias ("ov", "overlay", class_alias, 1);
3901
c5aa993b 3902 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3903 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3904
c5aa993b 3905 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3906 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3907
c5aa993b 3908 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3909 _("List mappings of overlay sections."), &overlaylist);
c906108c 3910
c5aa993b 3911 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3912 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3913 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3914 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3915 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3916 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3917 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3918 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3919
3920 /* Filename extension to source language lookup table: */
26c41df3
AC
3921 add_setshow_string_noescape_cmd ("extension-language", class_files,
3922 &ext_args, _("\
3923Set mapping between filename extension and source language."), _("\
3924Show mapping between filename extension and source language."), _("\
3925Usage: set extension-language .foo bar"),
3926 set_ext_lang_command,
920d2a44 3927 show_ext_args,
26c41df3 3928 &setlist, &showlist);
c906108c 3929
c5aa993b 3930 add_info ("extensions", info_ext_lang_command,
1bedd215 3931 _("All filename extensions associated with a source language."));
917317f4 3932
525226b5
AC
3933 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3934 &debug_file_directory, _("\
24ddea62
JK
3935Set the directories where separate debug symbols are searched for."), _("\
3936Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3937Separate debug symbols are first searched for in the same\n\
3938directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3939and lastly at the path of the directory of the binary with\n\
24ddea62 3940each global debug-file-directory component prepended."),
525226b5 3941 NULL,
920d2a44 3942 show_debug_file_directory,
525226b5 3943 &setlist, &showlist);
770e7fc7
DE
3944
3945 add_setshow_enum_cmd ("symbol-loading", no_class,
3946 print_symbol_loading_enums, &print_symbol_loading,
3947 _("\
3948Set printing of symbol loading messages."), _("\
3949Show printing of symbol loading messages."), _("\
3950off == turn all messages off\n\
3951brief == print messages for the executable,\n\
3952 and brief messages for shared libraries\n\
3953full == print messages for the executable,\n\
3954 and messages for each shared library."),
3955 NULL,
3956 NULL,
3957 &setprintlist, &showprintlist);
c4dcb155
SM
3958
3959 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3960 &separate_debug_file_debug, _("\
3961Set printing of separate debug info file search debug."), _("\
3962Show printing of separate debug info file search debug."), _("\
3963When on, GDB prints the searched locations while looking for separate debug \
3964info files."), NULL, NULL, &setdebuglist, &showdebuglist);
c906108c 3965}
This page took 2.258671 seconds and 4 git commands to generate.