*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
777ea8f1
DJ
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
c906108c 55
c906108c
SS
56#include <sys/types.h>
57#include <fcntl.h>
58#include "gdb_string.h"
59#include "gdb_stat.h"
60#include <ctype.h>
61#include <time.h>
2b71414d 62#include <sys/time.h>
c906108c 63
c906108c 64
9a4105ab
AC
65int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
c2d11a7d 70 unsigned long total_size);
769d7dc4
AC
71void (*deprecated_pre_add_symbol_hook) (const char *);
72void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 73void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void set_initial_language (void);
c906108c 92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
a14ed312 99static void add_shared_symbol_files_command (char *, int);
c906108c 100
5b5d99cf
JB
101static void reread_separate_symbols (struct objfile *objfile);
102
a14ed312 103static void cashier_psymtab (struct partial_symtab *);
c906108c 104
a14ed312 105bfd *symfile_bfd_open (char *);
c906108c 106
0e931cf0
JB
107int get_section_index (struct objfile *, char *);
108
a14ed312 109static void find_sym_fns (struct objfile *);
c906108c 110
a14ed312 111static void decrement_reading_symtab (void *);
c906108c 112
a14ed312 113static void overlay_invalidate_all (void);
c906108c 114
a14ed312 115static int overlay_is_mapped (struct obj_section *);
c906108c 116
a14ed312 117void list_overlays_command (char *, int);
c906108c 118
a14ed312 119void map_overlay_command (char *, int);
c906108c 120
a14ed312 121void unmap_overlay_command (char *, int);
c906108c 122
a14ed312 123static void overlay_auto_command (char *, int);
c906108c 124
a14ed312 125static void overlay_manual_command (char *, int);
c906108c 126
a14ed312 127static void overlay_off_command (char *, int);
c906108c 128
a14ed312 129static void overlay_load_command (char *, int);
c906108c 130
a14ed312 131static void overlay_command (char *, int);
c906108c 132
a14ed312 133static void simple_free_overlay_table (void);
c906108c 134
a14ed312 135static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 136
a14ed312 137static int simple_read_overlay_table (void);
c906108c 138
a14ed312 139static int simple_overlay_update_1 (struct obj_section *);
c906108c 140
a14ed312 141static void add_filename_language (char *ext, enum language lang);
392a587b 142
a14ed312 143static void info_ext_lang_command (char *args, int from_tty);
392a587b 144
5b5d99cf
JB
145static char *find_separate_debug_file (struct objfile *objfile);
146
a14ed312 147static void init_filename_language_table (void);
392a587b 148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
c906108c 174
b7209cb4
FF
175/* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
c906108c 182 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 183 report all the functions that are actually present. */
c906108c
SS
184
185int auto_solib_add = 1;
b7209cb4
FF
186
187/* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195int auto_solib_limit;
c906108c 196\f
c5aa993b 197
0fe19209
DC
198/* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
c906108c
SS
200
201static int
0cd64fe2 202compare_psymbols (const void *s1p, const void *s2p)
c906108c 203{
0fe19209
DC
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
4725b721
PH
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
209}
210
211void
fba45db2 212sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
213{
214 /* Sort the global list; don't sort the static list */
215
c5aa993b
JM
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
218 compare_psymbols);
219}
220
c906108c
SS
221/* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226char *
63ca651f 227obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 228{
52f0bd74 229 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
aa1ee363
AC
234 const char *p1 = ptr;
235 char *p2 = p;
63ca651f 236 const char *end = ptr + size;
c906108c
SS
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242}
243
244/* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247char *
fba45db2
KB
248obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
c906108c 250{
52f0bd74
AC
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257}
258
259/* True if we are nested inside psymtab_to_symtab. */
260
261int currently_reading_symtab = 0;
262
263static void
fba45db2 264decrement_reading_symtab (void *dummy)
c906108c
SS
265{
266 currently_reading_symtab--;
267}
268
269/* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274struct symtab *
aa1ee363 275psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
276{
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
c5aa993b 283 {
c906108c
SS
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291}
292
5417f6dc
RM
293/* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
c906108c
SS
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302void
4efb68b1 303find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 304{
c5aa993b 305 asection **lowest = (asection **) obj;
c906108c
SS
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317}
318
a39a16c4
MM
319/* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321struct section_addr_info *
322alloc_section_addr_info (size_t num_sections)
323{
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334}
62557bbc 335
7b90c3f9
JB
336
337/* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339struct section_addr_info *
340copy_section_addr_info (struct section_addr_info *addrs)
341{
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358}
359
360
361
62557bbc
KB
362/* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365extern struct section_addr_info *
366build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368{
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
a39a16c4 373 sap = alloc_section_addr_info (end - start);
62557bbc
KB
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
5417f6dc 377 if (bfd_get_section_flags (stp->bfd,
fbd35540 378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 379 && oidx < end - start)
62557bbc
KB
380 {
381 sap->other[oidx].addr = stp->addr;
5417f6dc 382 sap->other[oidx].name
fbd35540 383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390}
391
392
393/* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395extern void
396free_section_addr_info (struct section_addr_info *sap)
397{
398 int idx;
399
a39a16c4 400 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 401 if (sap->other[idx].name)
b8c9b27d
KB
402 xfree (sap->other[idx].name);
403 xfree (sap);
62557bbc
KB
404}
405
406
e8289572
JB
407/* Initialize OBJFILE's sect_index_* members. */
408static void
409init_objfile_sect_indices (struct objfile *objfile)
c906108c 410{
e8289572 411 asection *sect;
c906108c 412 int i;
5417f6dc 413
b8fbeb18 414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 415 if (sect)
b8fbeb18
EZ
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 419 if (sect)
b8fbeb18
EZ
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 423 if (sect)
b8fbeb18
EZ
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 427 if (sect)
b8fbeb18
EZ
428 objfile->sect_index_rodata = sect->index;
429
bbcd32ad
FF
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
b8fbeb18 458}
c906108c 459
c1bd25fd
DJ
460/* The arguments to place_section. */
461
462struct place_section_arg
463{
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466};
467
468/* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471void
472place_section (bfd *abfd, asection *sect, void *obj)
473{
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
3bd72c6f 477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd
DJ
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
488 start_addr = (arg->lowest + align - 1) & -align;
489
c1bd25fd
DJ
490 do {
491 asection *cur_sec;
c1bd25fd 492
c1bd25fd
DJ
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
3bd72c6f 526 break;
c1bd25fd
DJ
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538}
e8289572
JB
539
540/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 541 of how to represent it for fast symbol reading. This is the default
e8289572
JB
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546void
547default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549{
550 int i;
551
a39a16c4 552 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 553 objfile->section_offsets = (struct section_offsets *)
5417f6dc 554 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 556 memset (objfile->section_offsets, 0,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
a39a16c4 561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
c1bd25fd
DJ
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
e8289572
JB
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591}
592
593
c906108c
SS
594/* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
96baa820
JM
597 OBJFILE is where the symbols are to be read from.
598
7e8580c1
JB
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
625
626void
7e8580c1
JB
627syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
c906108c 633{
a39a16c4 634 struct section_addr_info *local_addr = NULL;
c906108c 635 struct cleanup *old_chain;
2acceee2 636
7e8580c1 637 gdb_assert (! (addrs && offsets));
2acceee2 638
c906108c
SS
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
75245b24
MS
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
c906108c
SS
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
74b7792f 647 old_chain = make_cleanup_free_objfile (objfile);
c906108c 648
a39a16c4
MM
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
5417f6dc 654 local_addr
a39a16c4
MM
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
c5aa993b 662 if (mainline)
c906108c
SS
663 {
664 /* We will modify the main symbol table, make sure that all its users
c5aa993b 665 will be cleaned up if an error occurs during symbol reading. */
74b7792f 666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
c906108c 680
c5aa993b 681 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
53a5351d 686 and assume that <addr> is where that got loaded.
c906108c 687
53a5351d
JM
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
1549f619 690 if (!mainline && addrs && addrs->other[0].name)
c906108c 691 {
1549f619
EZ
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
5417f6dc 697 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
c906108c 702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 703 &lower_sect);
2acceee2 704 if (lower_sect == NULL)
8a3fe4f8 705 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 706 objfile->name);
5417f6dc 707 else
b8fbeb18 708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 709 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
5417f6dc 717
13de58df 718 /* Calculate offsets for the loadable sections.
2acceee2
JM
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
5417f6dc 721
13de58df
JB
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
2acceee2
JM
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
1549f619 728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
8a3fe4f8 744 warning (_("section %s not found in %s"),
5417f6dc 745 addrs->other[i].name,
7e8580c1
JB
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
c906108c
SS
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
c5aa993b 759 (*objfile->sf->sym_init) (objfile);
b9caf505 760 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 761
7e8580c1
JB
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
8b92e4d5 772 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
c906108c 777
52d16ba8 778#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
96baa820 792 has a different algorithm for finding section offsets.
c906108c
SS
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
2acceee2 797 if (addrs)
c906108c
SS
798 {
799 struct obj_section *s;
800
5417f6dc
RM
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
2acceee2
JM
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
5417f6dc 805
96baa820 806 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 807 {
2acceee2
JM
808 CORE_ADDR s_addr = 0;
809 int i;
810
5417f6dc 811 for (i = 0;
a39a16c4 812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 813 i++)
5417f6dc
RM
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
fbd35540 816 addrs->other[i].name) == 0)
2acceee2 817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 818
c906108c 819 s->addr -= s->offset;
2acceee2 820 s->addr += s_addr;
c906108c 821 s->endaddr -= s->offset;
2acceee2
JM
822 s->endaddr += s_addr;
823 s->offset += s_addr;
c906108c
SS
824 }
825 }
52d16ba8 826#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 827
96baa820 828 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 829
c906108c
SS
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
c5aa993b 841 objfile->flags |= OBJF_SYMS;
c906108c
SS
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
c906108c
SS
846}
847
848/* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
c5aa993b 851
c906108c 852void
fba45db2 853new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
854{
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
b9caf505 872 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
873}
874
875/* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
5417f6dc
RM
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
c906108c 889
c906108c
SS
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
7904e09f 892static struct objfile *
5417f6dc 893symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
c906108c
SS
898{
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
5b5d99cf 901 char *debugfile;
7b90c3f9 902 struct section_addr_info *orig_addrs = NULL;
a39a16c4 903 struct cleanup *my_cleanups;
5417f6dc 904 const char *name = bfd_get_filename (abfd);
c906108c 905
5417f6dc 906 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 907
5417f6dc
RM
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
c906108c
SS
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 915 error (_("Not confirmed."));
c906108c 916
2df3850c 917 objfile = allocate_objfile (abfd, flags);
5417f6dc 918 discard_cleanups (my_cleanups);
c906108c 919
a39a16c4 920 if (addrs)
63cd24fe 921 {
7b90c3f9
JB
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 924 }
a39a16c4 925
78a4a9b9
AC
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
c906108c 930 {
769d7dc4
AC
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
78a4a9b9 933 else
c906108c 934 {
a3f17187 935 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
c906108c 939 }
78a4a9b9
AC
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
c906108c
SS
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
2acceee2 948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
949 {
950 if (from_tty || info_verbose)
951 {
a3f17187 952 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
c5aa993b 957 for (psymtab = objfile->psymtabs;
c906108c 958 psymtab != NULL;
c5aa993b 959 psymtab = psymtab->next)
c906108c
SS
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
5b5d99cf
JB
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
5b5d99cf
JB
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
a39a16c4 971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
5417f6dc 980
5b5d99cf
JB
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 984
5b5d99cf
JB
985 xfree (debugfile);
986 }
5417f6dc 987
cb3c37b2
JB
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
a3f17187 991 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
cb3c37b2
JB
996 wrap_here ("");
997 }
998
c906108c
SS
999 if (from_tty || info_verbose)
1000 {
769d7dc4
AC
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
c906108c 1003 else
c5aa993b 1004 {
a3f17187 1005 printf_unfiltered (_("done.\n"));
c5aa993b 1006 }
c906108c
SS
1007 }
1008
481d0f41
JB
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
a39a16c4
MM
1014 do_cleanups (my_cleanups);
1015
109f874e
MS
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
c906108c
SS
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
9a4105ab
AC
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
c906108c 1023
ce7d4522 1024 bfd_cache_close_all ();
c906108c
SS
1025 return (objfile);
1026}
1027
7904e09f 1028
eb4556d7
JB
1029/* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034struct objfile *
1035symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038{
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042}
1043
1044
7904e09f
JB
1045/* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048struct objfile *
1049symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051{
eb4556d7
JB
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
7904e09f
JB
1054}
1055
1056
d7db6da9
FN
1057/* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
5417f6dc 1064
1adeb98a
FN
1065void
1066symbol_file_add_main (char *args, int from_tty)
1067{
d7db6da9
FN
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069}
1070
1071static void
1072symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073{
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
d7db6da9
FN
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1adeb98a
FN
1081}
1082
1083void
1084symbol_file_clear (int from_tty)
1085{
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
0430b0d6
AS
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
8a3fe4f8 1092 error (_("Not confirmed."));
1adeb98a
FN
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099#if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101#endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
a3f17187 1105 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1106}
1107
5b5d99cf
JB
1108static char *
1109get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110{
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
5417f6dc 1117
5b5d99cf
JB
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1124
5b5d99cf
JB
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1134
5b5d99cf
JB
1135 *crc32_out = crc32;
1136 return contents;
1137}
1138
1139static int
1140separate_debug_file_exists (const char *name, unsigned long crc)
1141{
1142 unsigned long file_crc = 0;
1143 int fd;
777ea8f1 1144 gdb_byte buffer[8*1024];
5b5d99cf
JB
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157}
1158
1159static char *debug_file_directory = NULL;
920d2a44
AC
1160static void
1161show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163{
1164 fprintf_filtered (file, _("\
1165The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167}
5b5d99cf
JB
1168
1169#if ! defined (DEBUG_SUBDIRECTORY)
1170#define DEBUG_SUBDIRECTORY ".debug"
1171#endif
1172
1173static char *
1174find_separate_debug_file (struct objfile *objfile)
1175{
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 bfd_size_type debuglink_size;
1182 unsigned long crc32;
1183 int i;
1184
1185 basename = get_debug_link_info (objfile, &crc32);
1186
1187 if (basename == NULL)
1188 return NULL;
5417f6dc 1189
5b5d99cf
JB
1190 dir = xstrdup (objfile->name);
1191
fe36c4f4
JB
1192 /* Strip off the final filename part, leaving the directory name,
1193 followed by a slash. Objfile names should always be absolute and
1194 tilde-expanded, so there should always be a slash in there
1195 somewhere. */
5b5d99cf
JB
1196 for (i = strlen(dir) - 1; i >= 0; i--)
1197 {
1198 if (IS_DIR_SEPARATOR (dir[i]))
1199 break;
1200 }
fe36c4f4 1201 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1202 dir[i+1] = '\0';
5417f6dc 1203
5b5d99cf
JB
1204 debugfile = alloca (strlen (debug_file_directory) + 1
1205 + strlen (dir)
1206 + strlen (DEBUG_SUBDIRECTORY)
1207 + strlen ("/")
5417f6dc 1208 + strlen (basename)
5b5d99cf
JB
1209 + 1);
1210
1211 /* First try in the same directory as the original file. */
1212 strcpy (debugfile, dir);
1213 strcat (debugfile, basename);
1214
1215 if (separate_debug_file_exists (debugfile, crc32))
1216 {
1217 xfree (basename);
1218 xfree (dir);
1219 return xstrdup (debugfile);
1220 }
5417f6dc 1221
5b5d99cf
JB
1222 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1223 strcpy (debugfile, dir);
1224 strcat (debugfile, DEBUG_SUBDIRECTORY);
1225 strcat (debugfile, "/");
1226 strcat (debugfile, basename);
1227
1228 if (separate_debug_file_exists (debugfile, crc32))
1229 {
1230 xfree (basename);
1231 xfree (dir);
1232 return xstrdup (debugfile);
1233 }
5417f6dc 1234
5b5d99cf
JB
1235 /* Then try in the global debugfile directory. */
1236 strcpy (debugfile, debug_file_directory);
1237 strcat (debugfile, "/");
1238 strcat (debugfile, dir);
5b5d99cf
JB
1239 strcat (debugfile, basename);
1240
1241 if (separate_debug_file_exists (debugfile, crc32))
1242 {
1243 xfree (basename);
1244 xfree (dir);
1245 return xstrdup (debugfile);
1246 }
5417f6dc 1247
5b5d99cf
JB
1248 xfree (basename);
1249 xfree (dir);
1250 return NULL;
1251}
1252
1253
c906108c
SS
1254/* This is the symbol-file command. Read the file, analyze its
1255 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1256 the command is rather bizarre:
1257
1258 1. The function buildargv implements various quoting conventions
1259 which are undocumented and have little or nothing in common with
1260 the way things are quoted (or not quoted) elsewhere in GDB.
1261
1262 2. Options are used, which are not generally used in GDB (perhaps
1263 "set mapped on", "set readnow on" would be better)
1264
1265 3. The order of options matters, which is contrary to GNU
c906108c
SS
1266 conventions (because it is confusing and inconvenient). */
1267
1268void
fba45db2 1269symbol_file_command (char *args, int from_tty)
c906108c 1270{
c906108c
SS
1271 dont_repeat ();
1272
1273 if (args == NULL)
1274 {
1adeb98a 1275 symbol_file_clear (from_tty);
c906108c
SS
1276 }
1277 else
1278 {
cb2f3a29
MK
1279 char **argv = buildargv (args);
1280 int flags = OBJF_USERLOADED;
1281 struct cleanup *cleanups;
1282 char *name = NULL;
1283
1284 if (argv == NULL)
1285 nomem (0);
1286
7a292a7a 1287 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1288 while (*argv != NULL)
1289 {
78a4a9b9
AC
1290 if (strcmp (*argv, "-readnow") == 0)
1291 flags |= OBJF_READNOW;
1292 else if (**argv == '-')
8a3fe4f8 1293 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1294 else
1295 {
cb2f3a29 1296 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1297 name = *argv;
78a4a9b9 1298 }
cb2f3a29 1299
c906108c
SS
1300 argv++;
1301 }
1302
1303 if (name == NULL)
cb2f3a29
MK
1304 error (_("no symbol file name was specified"));
1305
c906108c
SS
1306 do_cleanups (cleanups);
1307 }
1308}
1309
1310/* Set the initial language.
1311
cb2f3a29
MK
1312 FIXME: A better solution would be to record the language in the
1313 psymtab when reading partial symbols, and then use it (if known) to
1314 set the language. This would be a win for formats that encode the
1315 language in an easily discoverable place, such as DWARF. For
1316 stabs, we can jump through hoops looking for specially named
1317 symbols or try to intuit the language from the specific type of
1318 stabs we find, but we can't do that until later when we read in
1319 full symbols. */
c906108c
SS
1320
1321static void
fba45db2 1322set_initial_language (void)
c906108c
SS
1323{
1324 struct partial_symtab *pst;
c5aa993b 1325 enum language lang = language_unknown;
c906108c
SS
1326
1327 pst = find_main_psymtab ();
1328 if (pst != NULL)
1329 {
c5aa993b 1330 if (pst->filename != NULL)
cb2f3a29
MK
1331 lang = deduce_language_from_filename (pst->filename);
1332
c906108c
SS
1333 if (lang == language_unknown)
1334 {
c5aa993b
JM
1335 /* Make C the default language */
1336 lang = language_c;
c906108c 1337 }
cb2f3a29 1338
c906108c 1339 set_language (lang);
cb2f3a29 1340 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1341 }
1342}
1343
cb2f3a29
MK
1344/* Open the file specified by NAME and hand it off to BFD for
1345 preliminary analysis. Return a newly initialized bfd *, which
1346 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1347 absolute). In case of trouble, error() is called. */
c906108c
SS
1348
1349bfd *
fba45db2 1350symfile_bfd_open (char *name)
c906108c
SS
1351{
1352 bfd *sym_bfd;
1353 int desc;
1354 char *absolute_name;
1355
cb2f3a29 1356 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1357
1358 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1359 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1360 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1361#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1362 if (desc < 0)
1363 {
1364 char *exename = alloca (strlen (name) + 5);
1365 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1366 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1367 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1368 }
1369#endif
1370 if (desc < 0)
1371 {
b8c9b27d 1372 make_cleanup (xfree, name);
c906108c
SS
1373 perror_with_name (name);
1374 }
cb2f3a29
MK
1375
1376 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1377 bfd. It'll be freed in free_objfile(). */
1378 xfree (name);
1379 name = absolute_name;
c906108c 1380
9f76c2cd 1381 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1382 if (!sym_bfd)
1383 {
1384 close (desc);
b8c9b27d 1385 make_cleanup (xfree, name);
8a3fe4f8 1386 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1387 bfd_errmsg (bfd_get_error ()));
1388 }
549c1eea 1389 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1390
1391 if (!bfd_check_format (sym_bfd, bfd_object))
1392 {
cb2f3a29
MK
1393 /* FIXME: should be checking for errors from bfd_close (for one
1394 thing, on error it does not free all the storage associated
1395 with the bfd). */
1396 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1397 make_cleanup (xfree, name);
8a3fe4f8 1398 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1399 bfd_errmsg (bfd_get_error ()));
1400 }
cb2f3a29
MK
1401
1402 return sym_bfd;
c906108c
SS
1403}
1404
cb2f3a29
MK
1405/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1406 the section was not found. */
1407
0e931cf0
JB
1408int
1409get_section_index (struct objfile *objfile, char *section_name)
1410{
1411 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1412
0e931cf0
JB
1413 if (sect)
1414 return sect->index;
1415 else
1416 return -1;
1417}
1418
cb2f3a29
MK
1419/* Link SF into the global symtab_fns list. Called on startup by the
1420 _initialize routine in each object file format reader, to register
1421 information about each format the the reader is prepared to
1422 handle. */
c906108c
SS
1423
1424void
fba45db2 1425add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1426{
1427 sf->next = symtab_fns;
1428 symtab_fns = sf;
1429}
1430
cb2f3a29
MK
1431/* Initialize OBJFILE to read symbols from its associated BFD. It
1432 either returns or calls error(). The result is an initialized
1433 struct sym_fns in the objfile structure, that contains cached
1434 information about the symbol file. */
c906108c
SS
1435
1436static void
fba45db2 1437find_sym_fns (struct objfile *objfile)
c906108c
SS
1438{
1439 struct sym_fns *sf;
c5aa993b
JM
1440 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1441 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1442
75245b24
MS
1443 if (our_flavour == bfd_target_srec_flavour
1444 || our_flavour == bfd_target_ihex_flavour
1445 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1446 return; /* No symbols. */
75245b24 1447
c5aa993b 1448 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1449 {
c5aa993b 1450 if (our_flavour == sf->sym_flavour)
c906108c 1451 {
c5aa993b 1452 objfile->sf = sf;
c906108c
SS
1453 return;
1454 }
1455 }
cb2f3a29 1456
8a3fe4f8 1457 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1458 bfd_get_target (objfile->obfd));
c906108c
SS
1459}
1460\f
cb2f3a29 1461
c906108c
SS
1462/* This function runs the load command of our current target. */
1463
1464static void
fba45db2 1465load_command (char *arg, int from_tty)
c906108c
SS
1466{
1467 if (arg == NULL)
1986bccd
AS
1468 {
1469 char *parg;
1470 int count = 0;
1471
1472 parg = arg = get_exec_file (1);
1473
1474 /* Count how many \ " ' tab space there are in the name. */
1475 while ((parg = strpbrk (parg, "\\\"'\t ")))
1476 {
1477 parg++;
1478 count++;
1479 }
1480
1481 if (count)
1482 {
1483 /* We need to quote this string so buildargv can pull it apart. */
1484 char *temp = xmalloc (strlen (arg) + count + 1 );
1485 char *ptemp = temp;
1486 char *prev;
1487
1488 make_cleanup (xfree, temp);
1489
1490 prev = parg = arg;
1491 while ((parg = strpbrk (parg, "\\\"'\t ")))
1492 {
1493 strncpy (ptemp, prev, parg - prev);
1494 ptemp += parg - prev;
1495 prev = parg++;
1496 *ptemp++ = '\\';
1497 }
1498 strcpy (ptemp, prev);
1499
1500 arg = temp;
1501 }
1502 }
1503
6490cafe
DJ
1504 /* The user might be reloading because the binary has changed. Take
1505 this opportunity to check. */
1506 reopen_exec_file ();
1507 reread_symbols ();
1508
c906108c 1509 target_load (arg, from_tty);
2889e661
JB
1510
1511 /* After re-loading the executable, we don't really know which
1512 overlays are mapped any more. */
1513 overlay_cache_invalid = 1;
c906108c
SS
1514}
1515
1516/* This version of "load" should be usable for any target. Currently
1517 it is just used for remote targets, not inftarg.c or core files,
1518 on the theory that only in that case is it useful.
1519
1520 Avoiding xmodem and the like seems like a win (a) because we don't have
1521 to worry about finding it, and (b) On VMS, fork() is very slow and so
1522 we don't want to run a subprocess. On the other hand, I'm not sure how
1523 performance compares. */
917317f4 1524
917317f4
JM
1525static int validate_download = 0;
1526
e4f9b4d5
MS
1527/* Callback service function for generic_load (bfd_map_over_sections). */
1528
1529static void
1530add_section_size_callback (bfd *abfd, asection *asec, void *data)
1531{
1532 bfd_size_type *sum = data;
1533
2c500098 1534 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1535}
1536
1537/* Opaque data for load_section_callback. */
1538struct load_section_data {
1539 unsigned long load_offset;
1540 unsigned long write_count;
1541 unsigned long data_count;
1542 bfd_size_type total_size;
1543};
1544
1545/* Callback service function for generic_load (bfd_map_over_sections). */
1546
1547static void
1548load_section_callback (bfd *abfd, asection *asec, void *data)
1549{
1550 struct load_section_data *args = data;
1551
1552 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1553 {
2c500098 1554 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1555 if (size > 0)
1556 {
777ea8f1 1557 gdb_byte *buffer;
e4f9b4d5
MS
1558 struct cleanup *old_chain;
1559 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1560 bfd_size_type block_size;
1561 int err;
1562 const char *sect_name = bfd_get_section_name (abfd, asec);
1563 bfd_size_type sent;
1564
e4f9b4d5
MS
1565 buffer = xmalloc (size);
1566 old_chain = make_cleanup (xfree, buffer);
1567
1568 /* Is this really necessary? I guess it gives the user something
1569 to look at during a long download. */
e4f9b4d5
MS
1570 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1571 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1572
1573 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1574
1575 sent = 0;
1576 do
1577 {
1578 int len;
1579 bfd_size_type this_transfer = size - sent;
1580
e4f9b4d5
MS
1581 len = target_write_memory_partial (lma, buffer,
1582 this_transfer, &err);
1583 if (err)
1584 break;
1585 if (validate_download)
1586 {
1587 /* Broken memories and broken monitors manifest
1588 themselves here when bring new computers to
1589 life. This doubles already slow downloads. */
1590 /* NOTE: cagney/1999-10-18: A more efficient
1591 implementation might add a verify_memory()
1592 method to the target vector and then use
1593 that. remote.c could implement that method
1594 using the ``qCRC'' packet. */
777ea8f1 1595 gdb_byte *check = xmalloc (len);
5417f6dc 1596 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1597 make_cleanup (xfree, check);
1598
1599 if (target_read_memory (lma, check, len) != 0)
8a3fe4f8 1600 error (_("Download verify read failed at 0x%s"),
e4f9b4d5
MS
1601 paddr (lma));
1602 if (memcmp (buffer, check, len) != 0)
8a3fe4f8 1603 error (_("Download verify compare failed at 0x%s"),
e4f9b4d5
MS
1604 paddr (lma));
1605 do_cleanups (verify_cleanups);
1606 }
1607 args->data_count += len;
1608 lma += len;
1609 buffer += len;
1610 args->write_count += 1;
1611 sent += len;
1612 if (quit_flag
9a4105ab
AC
1613 || (deprecated_ui_load_progress_hook != NULL
1614 && deprecated_ui_load_progress_hook (sect_name, sent)))
8a3fe4f8 1615 error (_("Canceled the download"));
e4f9b4d5 1616
9a4105ab
AC
1617 if (deprecated_show_load_progress != NULL)
1618 deprecated_show_load_progress (sect_name, sent, size,
1619 args->data_count,
1620 args->total_size);
e4f9b4d5
MS
1621 }
1622 while (sent < size);
1623
1624 if (err != 0)
8a3fe4f8 1625 error (_("Memory access error while loading section %s."), sect_name);
e4f9b4d5
MS
1626
1627 do_cleanups (old_chain);
1628 }
1629 }
1630}
1631
c906108c 1632void
917317f4 1633generic_load (char *args, int from_tty)
c906108c 1634{
c906108c
SS
1635 asection *s;
1636 bfd *loadfile_bfd;
2b71414d 1637 struct timeval start_time, end_time;
917317f4 1638 char *filename;
1986bccd 1639 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5
MS
1640 struct load_section_data cbdata;
1641 CORE_ADDR entry;
1986bccd 1642 char **argv;
e4f9b4d5
MS
1643
1644 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1645 cbdata.write_count = 0; /* Number of writes needed. */
1646 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1647 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4 1648
1986bccd
AS
1649 argv = buildargv (args);
1650
1651 if (argv == NULL)
1652 nomem(0);
1653
1654 make_cleanup_freeargv (argv);
1655
1656 filename = tilde_expand (argv[0]);
1657 make_cleanup (xfree, filename);
1658
1659 if (argv[1] != NULL)
917317f4
JM
1660 {
1661 char *endptr;
ba5f2f8a 1662
1986bccd
AS
1663 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1664
1665 /* If the last word was not a valid number then
1666 treat it as a file name with spaces in. */
1667 if (argv[1] == endptr)
1668 error (_("Invalid download offset:%s."), argv[1]);
1669
1670 if (argv[2] != NULL)
1671 error (_("Too many parameters."));
917317f4 1672 }
c906108c 1673
917317f4 1674 /* Open the file for loading. */
c906108c
SS
1675 loadfile_bfd = bfd_openr (filename, gnutarget);
1676 if (loadfile_bfd == NULL)
1677 {
1678 perror_with_name (filename);
1679 return;
1680 }
917317f4 1681
c906108c
SS
1682 /* FIXME: should be checking for errors from bfd_close (for one thing,
1683 on error it does not free all the storage associated with the
1684 bfd). */
5c65bbb6 1685 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1686
c5aa993b 1687 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1688 {
8a3fe4f8 1689 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1690 bfd_errmsg (bfd_get_error ()));
1691 }
c5aa993b 1692
5417f6dc 1693 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1694 (void *) &cbdata.total_size);
c2d11a7d 1695
2b71414d 1696 gettimeofday (&start_time, NULL);
c906108c 1697
e4f9b4d5 1698 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c 1699
2b71414d 1700 gettimeofday (&end_time, NULL);
ba5f2f8a 1701
e4f9b4d5 1702 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1703 ui_out_text (uiout, "Start address ");
1704 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1705 ui_out_text (uiout, ", load size ");
1706 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1707 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1708 /* We were doing this in remote-mips.c, I suspect it is right
1709 for other targets too. */
1710 write_pc (entry);
c906108c 1711
7ca9f392
AC
1712 /* FIXME: are we supposed to call symbol_file_add or not? According
1713 to a comment from remote-mips.c (where a call to symbol_file_add
1714 was commented out), making the call confuses GDB if more than one
1715 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1716 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1717
5417f6dc 1718 print_transfer_performance (gdb_stdout, cbdata.data_count,
2b71414d 1719 cbdata.write_count, &start_time, &end_time);
c906108c
SS
1720
1721 do_cleanups (old_cleanups);
1722}
1723
1724/* Report how fast the transfer went. */
1725
917317f4
JM
1726/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1727 replaced by print_transfer_performance (with a very different
1728 function signature). */
1729
c906108c 1730void
fba45db2
KB
1731report_transfer_performance (unsigned long data_count, time_t start_time,
1732 time_t end_time)
c906108c 1733{
2b71414d
DJ
1734 struct timeval start, end;
1735
1736 start.tv_sec = start_time;
1737 start.tv_usec = 0;
1738 end.tv_sec = end_time;
1739 end.tv_usec = 0;
1740
1741 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1742}
1743
1744void
d9fcf2fb 1745print_transfer_performance (struct ui_file *stream,
917317f4
JM
1746 unsigned long data_count,
1747 unsigned long write_count,
2b71414d
DJ
1748 const struct timeval *start_time,
1749 const struct timeval *end_time)
917317f4 1750{
2b71414d
DJ
1751 unsigned long time_count;
1752
1753 /* Compute the elapsed time in milliseconds, as a tradeoff between
1754 accuracy and overflow. */
1755 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1756 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1757
8b93c638
JM
1758 ui_out_text (uiout, "Transfer rate: ");
1759 if (time_count > 0)
1760 {
5417f6dc 1761 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1762 1000 * (data_count * 8) / time_count);
8b93c638
JM
1763 ui_out_text (uiout, " bits/sec");
1764 }
1765 else
1766 {
ba5f2f8a 1767 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1768 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1769 }
1770 if (write_count > 0)
1771 {
1772 ui_out_text (uiout, ", ");
ba5f2f8a 1773 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1774 ui_out_text (uiout, " bytes/write");
1775 }
1776 ui_out_text (uiout, ".\n");
c906108c
SS
1777}
1778
1779/* This function allows the addition of incrementally linked object files.
1780 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1781/* Note: ezannoni 2000-04-13 This function/command used to have a
1782 special case syntax for the rombug target (Rombug is the boot
1783 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1784 rombug case, the user doesn't need to supply a text address,
1785 instead a call to target_link() (in target.c) would supply the
1786 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1787
c906108c 1788static void
fba45db2 1789add_symbol_file_command (char *args, int from_tty)
c906108c 1790{
db162d44 1791 char *filename = NULL;
2df3850c 1792 int flags = OBJF_USERLOADED;
c906108c 1793 char *arg;
2acceee2 1794 int expecting_option = 0;
db162d44 1795 int section_index = 0;
2acceee2
JM
1796 int argcnt = 0;
1797 int sec_num = 0;
1798 int i;
db162d44
EZ
1799 int expecting_sec_name = 0;
1800 int expecting_sec_addr = 0;
5b96932b 1801 char **argv;
db162d44 1802
a39a16c4 1803 struct sect_opt
2acceee2 1804 {
2acceee2
JM
1805 char *name;
1806 char *value;
a39a16c4 1807 };
db162d44 1808
a39a16c4
MM
1809 struct section_addr_info *section_addrs;
1810 struct sect_opt *sect_opts = NULL;
1811 size_t num_sect_opts = 0;
3017564a 1812 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1813
a39a16c4 1814 num_sect_opts = 16;
5417f6dc 1815 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1816 * sizeof (struct sect_opt));
1817
c906108c
SS
1818 dont_repeat ();
1819
1820 if (args == NULL)
8a3fe4f8 1821 error (_("add-symbol-file takes a file name and an address"));
c906108c 1822
5b96932b
AS
1823 argv = buildargv (args);
1824 make_cleanup_freeargv (argv);
db162d44 1825
5b96932b
AS
1826 if (argv == NULL)
1827 nomem (0);
db162d44 1828
5b96932b
AS
1829 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1830 {
1831 /* Process the argument. */
db162d44 1832 if (argcnt == 0)
c906108c 1833 {
db162d44
EZ
1834 /* The first argument is the file name. */
1835 filename = tilde_expand (arg);
3017564a 1836 make_cleanup (xfree, filename);
c906108c 1837 }
db162d44 1838 else
7a78ae4e
ND
1839 if (argcnt == 1)
1840 {
1841 /* The second argument is always the text address at which
1842 to load the program. */
1843 sect_opts[section_index].name = ".text";
1844 sect_opts[section_index].value = arg;
5417f6dc 1845 if (++section_index > num_sect_opts)
a39a16c4
MM
1846 {
1847 num_sect_opts *= 2;
5417f6dc 1848 sect_opts = ((struct sect_opt *)
a39a16c4 1849 xrealloc (sect_opts,
5417f6dc 1850 num_sect_opts
a39a16c4
MM
1851 * sizeof (struct sect_opt)));
1852 }
7a78ae4e
ND
1853 }
1854 else
1855 {
1856 /* It's an option (starting with '-') or it's an argument
1857 to an option */
1858
1859 if (*arg == '-')
1860 {
78a4a9b9
AC
1861 if (strcmp (arg, "-readnow") == 0)
1862 flags |= OBJF_READNOW;
1863 else if (strcmp (arg, "-s") == 0)
1864 {
1865 expecting_sec_name = 1;
1866 expecting_sec_addr = 1;
1867 }
7a78ae4e
ND
1868 }
1869 else
1870 {
1871 if (expecting_sec_name)
db162d44 1872 {
7a78ae4e
ND
1873 sect_opts[section_index].name = arg;
1874 expecting_sec_name = 0;
db162d44
EZ
1875 }
1876 else
7a78ae4e
ND
1877 if (expecting_sec_addr)
1878 {
1879 sect_opts[section_index].value = arg;
1880 expecting_sec_addr = 0;
5417f6dc 1881 if (++section_index > num_sect_opts)
a39a16c4
MM
1882 {
1883 num_sect_opts *= 2;
5417f6dc 1884 sect_opts = ((struct sect_opt *)
a39a16c4 1885 xrealloc (sect_opts,
5417f6dc 1886 num_sect_opts
a39a16c4
MM
1887 * sizeof (struct sect_opt)));
1888 }
7a78ae4e
ND
1889 }
1890 else
8a3fe4f8 1891 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1892 }
1893 }
c906108c 1894 }
c906108c 1895
927890d0
JB
1896 /* This command takes at least two arguments. The first one is a
1897 filename, and the second is the address where this file has been
1898 loaded. Abort now if this address hasn't been provided by the
1899 user. */
1900 if (section_index < 1)
1901 error (_("The address where %s has been loaded is missing"), filename);
1902
db162d44
EZ
1903 /* Print the prompt for the query below. And save the arguments into
1904 a sect_addr_info structure to be passed around to other
1905 functions. We have to split this up into separate print
bb599908 1906 statements because hex_string returns a local static
db162d44 1907 string. */
5417f6dc 1908
a3f17187 1909 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1910 section_addrs = alloc_section_addr_info (section_index);
1911 make_cleanup (xfree, section_addrs);
db162d44 1912 for (i = 0; i < section_index; i++)
c906108c 1913 {
db162d44
EZ
1914 CORE_ADDR addr;
1915 char *val = sect_opts[i].value;
1916 char *sec = sect_opts[i].name;
5417f6dc 1917
ae822768 1918 addr = parse_and_eval_address (val);
db162d44 1919
db162d44
EZ
1920 /* Here we store the section offsets in the order they were
1921 entered on the command line. */
a39a16c4
MM
1922 section_addrs->other[sec_num].name = sec;
1923 section_addrs->other[sec_num].addr = addr;
46f45a4a 1924 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1925 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1926 sec_num++;
1927
5417f6dc 1928 /* The object's sections are initialized when a
db162d44 1929 call is made to build_objfile_section_table (objfile).
5417f6dc 1930 This happens in reread_symbols.
db162d44
EZ
1931 At this point, we don't know what file type this is,
1932 so we can't determine what section names are valid. */
2acceee2 1933 }
db162d44 1934
2acceee2 1935 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1936 error (_("Not confirmed."));
c906108c 1937
a39a16c4 1938 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1939
1940 /* Getting new symbols may change our opinion about what is
1941 frameless. */
1942 reinit_frame_cache ();
db162d44 1943 do_cleanups (my_cleanups);
c906108c
SS
1944}
1945\f
1946static void
fba45db2 1947add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1948{
1949#ifdef ADD_SHARED_SYMBOL_FILES
1950 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1951#else
8a3fe4f8 1952 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1953#endif
c906108c
SS
1954}
1955\f
1956/* Re-read symbols if a symbol-file has changed. */
1957void
fba45db2 1958reread_symbols (void)
c906108c
SS
1959{
1960 struct objfile *objfile;
1961 long new_modtime;
1962 int reread_one = 0;
1963 struct stat new_statbuf;
1964 int res;
1965
1966 /* With the addition of shared libraries, this should be modified,
1967 the load time should be saved in the partial symbol tables, since
1968 different tables may come from different source files. FIXME.
1969 This routine should then walk down each partial symbol table
1970 and see if the symbol table that it originates from has been changed */
1971
c5aa993b
JM
1972 for (objfile = object_files; objfile; objfile = objfile->next)
1973 {
1974 if (objfile->obfd)
1975 {
52d16ba8 1976#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1977 /* If this object is from a shared library, then you should
1978 stat on the library name, not member name. */
c906108c 1979
c5aa993b
JM
1980 if (objfile->obfd->my_archive)
1981 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1982 else
c906108c 1983#endif
c5aa993b
JM
1984 res = stat (objfile->name, &new_statbuf);
1985 if (res != 0)
c906108c 1986 {
c5aa993b 1987 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 1988 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
1989 objfile->name);
1990 continue;
c906108c 1991 }
c5aa993b
JM
1992 new_modtime = new_statbuf.st_mtime;
1993 if (new_modtime != objfile->mtime)
c906108c 1994 {
c5aa993b
JM
1995 struct cleanup *old_cleanups;
1996 struct section_offsets *offsets;
1997 int num_offsets;
c5aa993b
JM
1998 char *obfd_filename;
1999
a3f17187 2000 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2001 objfile->name);
2002
2003 /* There are various functions like symbol_file_add,
2004 symfile_bfd_open, syms_from_objfile, etc., which might
2005 appear to do what we want. But they have various other
2006 effects which we *don't* want. So we just do stuff
2007 ourselves. We don't worry about mapped files (for one thing,
2008 any mapped file will be out of date). */
2009
2010 /* If we get an error, blow away this objfile (not sure if
2011 that is the correct response for things like shared
2012 libraries). */
74b7792f 2013 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2014 /* We need to do this whenever any symbols go away. */
74b7792f 2015 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2016
2017 /* Clean up any state BFD has sitting around. We don't need
2018 to close the descriptor but BFD lacks a way of closing the
2019 BFD without closing the descriptor. */
2020 obfd_filename = bfd_get_filename (objfile->obfd);
2021 if (!bfd_close (objfile->obfd))
8a3fe4f8 2022 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2023 bfd_errmsg (bfd_get_error ()));
2024 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2025 if (objfile->obfd == NULL)
8a3fe4f8 2026 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2027 /* bfd_openr sets cacheable to true, which is what we want. */
2028 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2029 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2030 bfd_errmsg (bfd_get_error ()));
2031
2032 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2033 objfile_obstack. */
c5aa993b 2034 num_offsets = objfile->num_sections;
5417f6dc 2035 offsets = ((struct section_offsets *)
a39a16c4 2036 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2037 memcpy (offsets, objfile->section_offsets,
a39a16c4 2038 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2039
ae5a43e0
DJ
2040 /* Remove any references to this objfile in the global
2041 value lists. */
2042 preserve_values (objfile);
2043
c5aa993b
JM
2044 /* Nuke all the state that we will re-read. Much of the following
2045 code which sets things to NULL really is necessary to tell
2046 other parts of GDB that there is nothing currently there. */
2047
2048 /* FIXME: Do we have to free a whole linked list, or is this
2049 enough? */
2050 if (objfile->global_psymbols.list)
2dc74dc1 2051 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2052 memset (&objfile->global_psymbols, 0,
2053 sizeof (objfile->global_psymbols));
2054 if (objfile->static_psymbols.list)
2dc74dc1 2055 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2056 memset (&objfile->static_psymbols, 0,
2057 sizeof (objfile->static_psymbols));
2058
2059 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2060 bcache_xfree (objfile->psymbol_cache);
2061 objfile->psymbol_cache = bcache_xmalloc ();
2062 bcache_xfree (objfile->macro_cache);
2063 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2064 if (objfile->demangled_names_hash != NULL)
2065 {
2066 htab_delete (objfile->demangled_names_hash);
2067 objfile->demangled_names_hash = NULL;
2068 }
b99607ea 2069 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2070 objfile->sections = NULL;
2071 objfile->symtabs = NULL;
2072 objfile->psymtabs = NULL;
2073 objfile->free_psymtabs = NULL;
a1b8c067 2074 objfile->cp_namespace_symtab = NULL;
c5aa993b 2075 objfile->msymbols = NULL;
0a6ddd08 2076 objfile->deprecated_sym_private = NULL;
c5aa993b 2077 objfile->minimal_symbol_count = 0;
0a83117a
MS
2078 memset (&objfile->msymbol_hash, 0,
2079 sizeof (objfile->msymbol_hash));
2080 memset (&objfile->msymbol_demangled_hash, 0,
2081 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2082 objfile->fundamental_types = NULL;
7b097ae3 2083 clear_objfile_data (objfile);
c5aa993b
JM
2084 if (objfile->sf != NULL)
2085 {
2086 (*objfile->sf->sym_finish) (objfile);
2087 }
2088
2089 /* We never make this a mapped file. */
2090 objfile->md = NULL;
af5f3db6
AC
2091 objfile->psymbol_cache = bcache_xmalloc ();
2092 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2093 /* obstack_init also initializes the obstack so it is
2094 empty. We could use obstack_specify_allocation but
2095 gdb_obstack.h specifies the alloc/dealloc
2096 functions. */
2097 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2098 if (build_objfile_section_table (objfile))
2099 {
8a3fe4f8 2100 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2101 objfile->name, bfd_errmsg (bfd_get_error ()));
2102 }
15831452 2103 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2104
2105 /* We use the same section offsets as from last time. I'm not
2106 sure whether that is always correct for shared libraries. */
2107 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2108 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2109 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2110 memcpy (objfile->section_offsets, offsets,
a39a16c4 2111 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2112 objfile->num_sections = num_offsets;
2113
2114 /* What the hell is sym_new_init for, anyway? The concept of
2115 distinguishing between the main file and additional files
2116 in this way seems rather dubious. */
2117 if (objfile == symfile_objfile)
2118 {
2119 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2120 }
2121
2122 (*objfile->sf->sym_init) (objfile);
b9caf505 2123 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2124 /* The "mainline" parameter is a hideous hack; I think leaving it
2125 zero is OK since dbxread.c also does what it needs to do if
2126 objfile->global_psymbols.size is 0. */
96baa820 2127 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2128 if (!have_partial_symbols () && !have_full_symbols ())
2129 {
2130 wrap_here ("");
a3f17187 2131 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2132 wrap_here ("");
2133 }
2134 objfile->flags |= OBJF_SYMS;
2135
2136 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2137 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2138
c5aa993b
JM
2139 /* Getting new symbols may change our opinion about what is
2140 frameless. */
c906108c 2141
c5aa993b 2142 reinit_frame_cache ();
c906108c 2143
c5aa993b
JM
2144 /* Discard cleanups as symbol reading was successful. */
2145 discard_cleanups (old_cleanups);
c906108c 2146
c5aa993b
JM
2147 /* If the mtime has changed between the time we set new_modtime
2148 and now, we *want* this to be out of date, so don't call stat
2149 again now. */
2150 objfile->mtime = new_modtime;
2151 reread_one = 1;
5b5d99cf 2152 reread_separate_symbols (objfile);
c5aa993b 2153 }
c906108c
SS
2154 }
2155 }
c906108c
SS
2156
2157 if (reread_one)
ea53e89f
JB
2158 {
2159 clear_symtab_users ();
2160 /* At least one objfile has changed, so we can consider that
2161 the executable we're debugging has changed too. */
2162 observer_notify_executable_changed (NULL);
2163 }
2164
c906108c 2165}
5b5d99cf
JB
2166
2167
2168/* Handle separate debug info for OBJFILE, which has just been
2169 re-read:
2170 - If we had separate debug info before, but now we don't, get rid
2171 of the separated objfile.
2172 - If we didn't have separated debug info before, but now we do,
2173 read in the new separated debug info file.
2174 - If the debug link points to a different file, toss the old one
2175 and read the new one.
2176 This function does *not* handle the case where objfile is still
2177 using the same separate debug info file, but that file's timestamp
2178 has changed. That case should be handled by the loop in
2179 reread_symbols already. */
2180static void
2181reread_separate_symbols (struct objfile *objfile)
2182{
2183 char *debug_file;
2184 unsigned long crc32;
2185
2186 /* Does the updated objfile's debug info live in a
2187 separate file? */
2188 debug_file = find_separate_debug_file (objfile);
2189
2190 if (objfile->separate_debug_objfile)
2191 {
2192 /* There are two cases where we need to get rid of
2193 the old separated debug info objfile:
2194 - if the new primary objfile doesn't have
2195 separated debug info, or
2196 - if the new primary objfile has separate debug
2197 info, but it's under a different filename.
5417f6dc 2198
5b5d99cf
JB
2199 If the old and new objfiles both have separate
2200 debug info, under the same filename, then we're
2201 okay --- if the separated file's contents have
2202 changed, we will have caught that when we
2203 visited it in this function's outermost
2204 loop. */
2205 if (! debug_file
2206 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2207 free_objfile (objfile->separate_debug_objfile);
2208 }
2209
2210 /* If the new objfile has separate debug info, and we
2211 haven't loaded it already, do so now. */
2212 if (debug_file
2213 && ! objfile->separate_debug_objfile)
2214 {
2215 /* Use the same section offset table as objfile itself.
2216 Preserve the flags from objfile that make sense. */
2217 objfile->separate_debug_objfile
2218 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2219 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2220 info_verbose, /* from_tty: Don't override the default. */
2221 0, /* No addr table. */
2222 objfile->section_offsets, objfile->num_sections,
2223 0, /* Not mainline. See comments about this above. */
78a4a9b9 2224 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2225 | OBJF_USERLOADED)));
2226 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2227 = objfile;
2228 }
2229}
2230
2231
c906108c
SS
2232\f
2233
c5aa993b
JM
2234
2235typedef struct
2236{
2237 char *ext;
c906108c 2238 enum language lang;
c5aa993b
JM
2239}
2240filename_language;
c906108c 2241
c5aa993b 2242static filename_language *filename_language_table;
c906108c
SS
2243static int fl_table_size, fl_table_next;
2244
2245static void
fba45db2 2246add_filename_language (char *ext, enum language lang)
c906108c
SS
2247{
2248 if (fl_table_next >= fl_table_size)
2249 {
2250 fl_table_size += 10;
5417f6dc 2251 filename_language_table =
25bf3106
PM
2252 xrealloc (filename_language_table,
2253 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2254 }
2255
4fcf66da 2256 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2257 filename_language_table[fl_table_next].lang = lang;
2258 fl_table_next++;
2259}
2260
2261static char *ext_args;
920d2a44
AC
2262static void
2263show_ext_args (struct ui_file *file, int from_tty,
2264 struct cmd_list_element *c, const char *value)
2265{
2266 fprintf_filtered (file, _("\
2267Mapping between filename extension and source language is \"%s\".\n"),
2268 value);
2269}
c906108c
SS
2270
2271static void
26c41df3 2272set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2273{
2274 int i;
2275 char *cp = ext_args;
2276 enum language lang;
2277
2278 /* First arg is filename extension, starting with '.' */
2279 if (*cp != '.')
8a3fe4f8 2280 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2281
2282 /* Find end of first arg. */
c5aa993b 2283 while (*cp && !isspace (*cp))
c906108c
SS
2284 cp++;
2285
2286 if (*cp == '\0')
8a3fe4f8 2287 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2288 ext_args);
2289
2290 /* Null-terminate first arg */
c5aa993b 2291 *cp++ = '\0';
c906108c
SS
2292
2293 /* Find beginning of second arg, which should be a source language. */
2294 while (*cp && isspace (*cp))
2295 cp++;
2296
2297 if (*cp == '\0')
8a3fe4f8 2298 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2299 ext_args);
2300
2301 /* Lookup the language from among those we know. */
2302 lang = language_enum (cp);
2303
2304 /* Now lookup the filename extension: do we already know it? */
2305 for (i = 0; i < fl_table_next; i++)
2306 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2307 break;
2308
2309 if (i >= fl_table_next)
2310 {
2311 /* new file extension */
2312 add_filename_language (ext_args, lang);
2313 }
2314 else
2315 {
2316 /* redefining a previously known filename extension */
2317
2318 /* if (from_tty) */
2319 /* query ("Really make files of type %s '%s'?", */
2320 /* ext_args, language_str (lang)); */
2321
b8c9b27d 2322 xfree (filename_language_table[i].ext);
4fcf66da 2323 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2324 filename_language_table[i].lang = lang;
2325 }
2326}
2327
2328static void
fba45db2 2329info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2330{
2331 int i;
2332
a3f17187 2333 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2334 printf_filtered ("\n\n");
2335 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2336 printf_filtered ("\t%s\t- %s\n",
2337 filename_language_table[i].ext,
c906108c
SS
2338 language_str (filename_language_table[i].lang));
2339}
2340
2341static void
fba45db2 2342init_filename_language_table (void)
c906108c
SS
2343{
2344 if (fl_table_size == 0) /* protect against repetition */
2345 {
2346 fl_table_size = 20;
2347 fl_table_next = 0;
c5aa993b 2348 filename_language_table =
c906108c 2349 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2350 add_filename_language (".c", language_c);
2351 add_filename_language (".C", language_cplus);
2352 add_filename_language (".cc", language_cplus);
2353 add_filename_language (".cp", language_cplus);
2354 add_filename_language (".cpp", language_cplus);
2355 add_filename_language (".cxx", language_cplus);
2356 add_filename_language (".c++", language_cplus);
2357 add_filename_language (".java", language_java);
c906108c 2358 add_filename_language (".class", language_java);
da2cf7e0 2359 add_filename_language (".m", language_objc);
c5aa993b
JM
2360 add_filename_language (".f", language_fortran);
2361 add_filename_language (".F", language_fortran);
2362 add_filename_language (".s", language_asm);
2363 add_filename_language (".S", language_asm);
c6fd39cd
PM
2364 add_filename_language (".pas", language_pascal);
2365 add_filename_language (".p", language_pascal);
2366 add_filename_language (".pp", language_pascal);
963a6417
PH
2367 add_filename_language (".adb", language_ada);
2368 add_filename_language (".ads", language_ada);
2369 add_filename_language (".a", language_ada);
2370 add_filename_language (".ada", language_ada);
c906108c
SS
2371 }
2372}
2373
2374enum language
fba45db2 2375deduce_language_from_filename (char *filename)
c906108c
SS
2376{
2377 int i;
2378 char *cp;
2379
2380 if (filename != NULL)
2381 if ((cp = strrchr (filename, '.')) != NULL)
2382 for (i = 0; i < fl_table_next; i++)
2383 if (strcmp (cp, filename_language_table[i].ext) == 0)
2384 return filename_language_table[i].lang;
2385
2386 return language_unknown;
2387}
2388\f
2389/* allocate_symtab:
2390
2391 Allocate and partly initialize a new symbol table. Return a pointer
2392 to it. error() if no space.
2393
2394 Caller must set these fields:
c5aa993b
JM
2395 LINETABLE(symtab)
2396 symtab->blockvector
2397 symtab->dirname
2398 symtab->free_code
2399 symtab->free_ptr
2400 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2401 */
2402
2403struct symtab *
fba45db2 2404allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2405{
52f0bd74 2406 struct symtab *symtab;
c906108c
SS
2407
2408 symtab = (struct symtab *)
4a146b47 2409 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2410 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2411 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2412 &objfile->objfile_obstack);
c5aa993b
JM
2413 symtab->fullname = NULL;
2414 symtab->language = deduce_language_from_filename (filename);
2415 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2416 &objfile->objfile_obstack);
c906108c
SS
2417
2418 /* Hook it to the objfile it comes from */
2419
c5aa993b
JM
2420 symtab->objfile = objfile;
2421 symtab->next = objfile->symtabs;
2422 objfile->symtabs = symtab;
c906108c
SS
2423
2424 /* FIXME: This should go away. It is only defined for the Z8000,
2425 and the Z8000 definition of this macro doesn't have anything to
2426 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2427 here for convenience. */
2428#ifdef INIT_EXTRA_SYMTAB_INFO
2429 INIT_EXTRA_SYMTAB_INFO (symtab);
2430#endif
2431
2432 return (symtab);
2433}
2434
2435struct partial_symtab *
fba45db2 2436allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2437{
2438 struct partial_symtab *psymtab;
2439
c5aa993b 2440 if (objfile->free_psymtabs)
c906108c 2441 {
c5aa993b
JM
2442 psymtab = objfile->free_psymtabs;
2443 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2444 }
2445 else
2446 psymtab = (struct partial_symtab *)
8b92e4d5 2447 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2448 sizeof (struct partial_symtab));
2449
2450 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2451 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2452 &objfile->objfile_obstack);
c5aa993b 2453 psymtab->symtab = NULL;
c906108c
SS
2454
2455 /* Prepend it to the psymtab list for the objfile it belongs to.
2456 Psymtabs are searched in most recent inserted -> least recent
2457 inserted order. */
2458
c5aa993b
JM
2459 psymtab->objfile = objfile;
2460 psymtab->next = objfile->psymtabs;
2461 objfile->psymtabs = psymtab;
c906108c
SS
2462#if 0
2463 {
2464 struct partial_symtab **prev_pst;
c5aa993b
JM
2465 psymtab->objfile = objfile;
2466 psymtab->next = NULL;
2467 prev_pst = &(objfile->psymtabs);
c906108c 2468 while ((*prev_pst) != NULL)
c5aa993b 2469 prev_pst = &((*prev_pst)->next);
c906108c 2470 (*prev_pst) = psymtab;
c5aa993b 2471 }
c906108c 2472#endif
c5aa993b 2473
c906108c
SS
2474 return (psymtab);
2475}
2476
2477void
fba45db2 2478discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2479{
2480 struct partial_symtab **prev_pst;
2481
2482 /* From dbxread.c:
2483 Empty psymtabs happen as a result of header files which don't
2484 have any symbols in them. There can be a lot of them. But this
2485 check is wrong, in that a psymtab with N_SLINE entries but
2486 nothing else is not empty, but we don't realize that. Fixing
2487 that without slowing things down might be tricky. */
2488
2489 /* First, snip it out of the psymtab chain */
2490
2491 prev_pst = &(pst->objfile->psymtabs);
2492 while ((*prev_pst) != pst)
2493 prev_pst = &((*prev_pst)->next);
2494 (*prev_pst) = pst->next;
2495
2496 /* Next, put it on a free list for recycling */
2497
2498 pst->next = pst->objfile->free_psymtabs;
2499 pst->objfile->free_psymtabs = pst;
2500}
c906108c 2501\f
c5aa993b 2502
c906108c
SS
2503/* Reset all data structures in gdb which may contain references to symbol
2504 table data. */
2505
2506void
fba45db2 2507clear_symtab_users (void)
c906108c
SS
2508{
2509 /* Someday, we should do better than this, by only blowing away
2510 the things that really need to be blown. */
c0501be5
DJ
2511
2512 /* Clear the "current" symtab first, because it is no longer valid.
2513 breakpoint_re_set may try to access the current symtab. */
2514 clear_current_source_symtab_and_line ();
2515
c906108c 2516 clear_displays ();
c906108c
SS
2517 breakpoint_re_set ();
2518 set_default_breakpoint (0, 0, 0, 0);
c906108c 2519 clear_pc_function_cache ();
9a4105ab
AC
2520 if (deprecated_target_new_objfile_hook)
2521 deprecated_target_new_objfile_hook (NULL);
9bdcbae7
DJ
2522
2523 /* Clear globals which might have pointed into a removed objfile.
2524 FIXME: It's not clear which of these are supposed to persist
2525 between expressions and which ought to be reset each time. */
2526 expression_context_block = NULL;
2527 innermost_block = NULL;
c906108c
SS
2528}
2529
74b7792f
AC
2530static void
2531clear_symtab_users_cleanup (void *ignore)
2532{
2533 clear_symtab_users ();
2534}
2535
c906108c
SS
2536/* clear_symtab_users_once:
2537
2538 This function is run after symbol reading, or from a cleanup.
2539 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2540 has been blown away, but the other GDB data structures that may
c906108c
SS
2541 reference it have not yet been cleared or re-directed. (The old
2542 symtab was zapped, and the cleanup queued, in free_named_symtab()
2543 below.)
2544
2545 This function can be queued N times as a cleanup, or called
2546 directly; it will do all the work the first time, and then will be a
2547 no-op until the next time it is queued. This works by bumping a
2548 counter at queueing time. Much later when the cleanup is run, or at
2549 the end of symbol processing (in case the cleanup is discarded), if
2550 the queued count is greater than the "done-count", we do the work
2551 and set the done-count to the queued count. If the queued count is
2552 less than or equal to the done-count, we just ignore the call. This
2553 is needed because reading a single .o file will often replace many
2554 symtabs (one per .h file, for example), and we don't want to reset
2555 the breakpoints N times in the user's face.
2556
2557 The reason we both queue a cleanup, and call it directly after symbol
2558 reading, is because the cleanup protects us in case of errors, but is
2559 discarded if symbol reading is successful. */
2560
2561#if 0
2562/* FIXME: As free_named_symtabs is currently a big noop this function
2563 is no longer needed. */
a14ed312 2564static void clear_symtab_users_once (void);
c906108c
SS
2565
2566static int clear_symtab_users_queued;
2567static int clear_symtab_users_done;
2568
2569static void
fba45db2 2570clear_symtab_users_once (void)
c906108c
SS
2571{
2572 /* Enforce once-per-`do_cleanups'-semantics */
2573 if (clear_symtab_users_queued <= clear_symtab_users_done)
2574 return;
2575 clear_symtab_users_done = clear_symtab_users_queued;
2576
2577 clear_symtab_users ();
2578}
2579#endif
2580
2581/* Delete the specified psymtab, and any others that reference it. */
2582
2583static void
fba45db2 2584cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2585{
2586 struct partial_symtab *ps, *pprev = NULL;
2587 int i;
2588
2589 /* Find its previous psymtab in the chain */
c5aa993b
JM
2590 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2591 {
2592 if (ps == pst)
2593 break;
2594 pprev = ps;
2595 }
c906108c 2596
c5aa993b
JM
2597 if (ps)
2598 {
2599 /* Unhook it from the chain. */
2600 if (ps == pst->objfile->psymtabs)
2601 pst->objfile->psymtabs = ps->next;
2602 else
2603 pprev->next = ps->next;
2604
2605 /* FIXME, we can't conveniently deallocate the entries in the
2606 partial_symbol lists (global_psymbols/static_psymbols) that
2607 this psymtab points to. These just take up space until all
2608 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2609 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2610
2611 /* We need to cashier any psymtab that has this one as a dependency... */
2612 again:
2613 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2614 {
2615 for (i = 0; i < ps->number_of_dependencies; i++)
2616 {
2617 if (ps->dependencies[i] == pst)
2618 {
2619 cashier_psymtab (ps);
2620 goto again; /* Must restart, chain has been munged. */
2621 }
2622 }
c906108c 2623 }
c906108c 2624 }
c906108c
SS
2625}
2626
2627/* If a symtab or psymtab for filename NAME is found, free it along
2628 with any dependent breakpoints, displays, etc.
2629 Used when loading new versions of object modules with the "add-file"
2630 command. This is only called on the top-level symtab or psymtab's name;
2631 it is not called for subsidiary files such as .h files.
2632
2633 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2634 FIXME. The return value appears to never be used.
c906108c
SS
2635
2636 FIXME. I think this is not the best way to do this. We should
2637 work on being gentler to the environment while still cleaning up
2638 all stray pointers into the freed symtab. */
2639
2640int
fba45db2 2641free_named_symtabs (char *name)
c906108c
SS
2642{
2643#if 0
2644 /* FIXME: With the new method of each objfile having it's own
2645 psymtab list, this function needs serious rethinking. In particular,
2646 why was it ever necessary to toss psymtabs with specific compilation
2647 unit filenames, as opposed to all psymtabs from a particular symbol
2648 file? -- fnf
2649 Well, the answer is that some systems permit reloading of particular
2650 compilation units. We want to blow away any old info about these
2651 compilation units, regardless of which objfiles they arrived in. --gnu. */
2652
52f0bd74
AC
2653 struct symtab *s;
2654 struct symtab *prev;
2655 struct partial_symtab *ps;
c906108c
SS
2656 struct blockvector *bv;
2657 int blewit = 0;
2658
2659 /* We only wack things if the symbol-reload switch is set. */
2660 if (!symbol_reloading)
2661 return 0;
2662
2663 /* Some symbol formats have trouble providing file names... */
2664 if (name == 0 || *name == '\0')
2665 return 0;
2666
2667 /* Look for a psymtab with the specified name. */
2668
2669again2:
c5aa993b
JM
2670 for (ps = partial_symtab_list; ps; ps = ps->next)
2671 {
6314a349 2672 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2673 {
2674 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2675 goto again2; /* Must restart, chain has been munged */
2676 }
c906108c 2677 }
c906108c
SS
2678
2679 /* Look for a symtab with the specified name. */
2680
2681 for (s = symtab_list; s; s = s->next)
2682 {
6314a349 2683 if (strcmp (name, s->filename) == 0)
c906108c
SS
2684 break;
2685 prev = s;
2686 }
2687
2688 if (s)
2689 {
2690 if (s == symtab_list)
2691 symtab_list = s->next;
2692 else
2693 prev->next = s->next;
2694
2695 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2696 or not they depend on the symtab being freed. This should be
2697 changed so that only those data structures affected are deleted. */
c906108c
SS
2698
2699 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2700 This test is necessary due to a bug in "dbxread.c" that
2701 causes empty symtabs to be created for N_SO symbols that
2702 contain the pathname of the object file. (This problem
2703 has been fixed in GDB 3.9x). */
c906108c
SS
2704
2705 bv = BLOCKVECTOR (s);
2706 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2707 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2708 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2709 {
e2e0b3e5 2710 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2711 name);
c906108c
SS
2712 clear_symtab_users_queued++;
2713 make_cleanup (clear_symtab_users_once, 0);
2714 blewit = 1;
c5aa993b
JM
2715 }
2716 else
e2e0b3e5
AC
2717 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2718 name);
c906108c
SS
2719
2720 free_symtab (s);
2721 }
2722 else
2723 {
2724 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2725 even though no symtab was found, since the file might have
2726 been compiled without debugging, and hence not be associated
2727 with a symtab. In order to handle this correctly, we would need
2728 to keep a list of text address ranges for undebuggable files.
2729 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2730 ;
2731 }
2732
2733 /* FIXME, what about the minimal symbol table? */
2734 return blewit;
2735#else
2736 return (0);
2737#endif
2738}
2739\f
2740/* Allocate and partially fill a partial symtab. It will be
2741 completely filled at the end of the symbol list.
2742
d4f3574e 2743 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2744
2745struct partial_symtab *
fba45db2
KB
2746start_psymtab_common (struct objfile *objfile,
2747 struct section_offsets *section_offsets, char *filename,
2748 CORE_ADDR textlow, struct partial_symbol **global_syms,
2749 struct partial_symbol **static_syms)
c906108c
SS
2750{
2751 struct partial_symtab *psymtab;
2752
2753 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2754 psymtab->section_offsets = section_offsets;
2755 psymtab->textlow = textlow;
2756 psymtab->texthigh = psymtab->textlow; /* default */
2757 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2758 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2759 return (psymtab);
2760}
2761\f
2762/* Add a symbol with a long value to a psymtab.
5417f6dc 2763 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2764 Return the partial symbol that has been added. */
2765
2766/* NOTE: carlton/2003-09-11: The reason why we return the partial
2767 symbol is so that callers can get access to the symbol's demangled
2768 name, which they don't have any cheap way to determine otherwise.
2769 (Currenly, dwarf2read.c is the only file who uses that information,
2770 though it's possible that other readers might in the future.)
2771 Elena wasn't thrilled about that, and I don't blame her, but we
2772 couldn't come up with a better way to get that information. If
2773 it's needed in other situations, we could consider breaking up
2774 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2775 cache. */
2776
2777const struct partial_symbol *
176620f1 2778add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2779 enum address_class class,
2780 struct psymbol_allocation_list *list, long val, /* Value as a long */
2781 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2782 enum language language, struct objfile *objfile)
c906108c 2783{
52f0bd74 2784 struct partial_symbol *psym;
c906108c
SS
2785 char *buf = alloca (namelength + 1);
2786 /* psymbol is static so that there will be no uninitialized gaps in the
2787 structure which might contain random data, causing cache misses in
2788 bcache. */
2789 static struct partial_symbol psymbol;
2790
2791 /* Create local copy of the partial symbol */
2792 memcpy (buf, name, namelength);
2793 buf[namelength] = '\0';
c906108c
SS
2794 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2795 if (val != 0)
2796 {
2797 SYMBOL_VALUE (&psymbol) = val;
2798 }
2799 else
2800 {
2801 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2802 }
2803 SYMBOL_SECTION (&psymbol) = 0;
2804 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2805 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2806 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2807
2808 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2809
2810 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2811 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2812 objfile->psymbol_cache);
c906108c
SS
2813
2814 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2815 if (list->next >= list->list + list->size)
2816 {
2817 extend_psymbol_list (list, objfile);
2818 }
2819 *list->next++ = psym;
2820 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2821
2822 return psym;
c906108c
SS
2823}
2824
2825/* Add a symbol with a long value to a psymtab. This differs from
2826 * add_psymbol_to_list above in taking both a mangled and a demangled
2827 * name. */
2828
2829void
fba45db2 2830add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2831 int dem_namelength, domain_enum domain,
fba45db2
KB
2832 enum address_class class,
2833 struct psymbol_allocation_list *list, long val, /* Value as a long */
2834 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2835 enum language language,
2836 struct objfile *objfile)
c906108c 2837{
52f0bd74 2838 struct partial_symbol *psym;
c906108c
SS
2839 char *buf = alloca (namelength + 1);
2840 /* psymbol is static so that there will be no uninitialized gaps in the
2841 structure which might contain random data, causing cache misses in
2842 bcache. */
2843 static struct partial_symbol psymbol;
2844
2845 /* Create local copy of the partial symbol */
2846
2847 memcpy (buf, name, namelength);
2848 buf[namelength] = '\0';
3a16a68c
AC
2849 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2850 objfile->psymbol_cache);
c906108c
SS
2851
2852 buf = alloca (dem_namelength + 1);
2853 memcpy (buf, dem_name, dem_namelength);
2854 buf[dem_namelength] = '\0';
c5aa993b 2855
c906108c
SS
2856 switch (language)
2857 {
c5aa993b
JM
2858 case language_c:
2859 case language_cplus:
2860 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2861 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2862 break;
c906108c
SS
2863 /* FIXME What should be done for the default case? Ignoring for now. */
2864 }
2865
2866 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2867 if (val != 0)
2868 {
2869 SYMBOL_VALUE (&psymbol) = val;
2870 }
2871 else
2872 {
2873 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2874 }
2875 SYMBOL_SECTION (&psymbol) = 0;
2876 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2877 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2878 PSYMBOL_CLASS (&psymbol) = class;
2879 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2880
2881 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2882 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2883 objfile->psymbol_cache);
c906108c
SS
2884
2885 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2886 if (list->next >= list->list + list->size)
2887 {
2888 extend_psymbol_list (list, objfile);
2889 }
2890 *list->next++ = psym;
2891 OBJSTAT (objfile, n_psyms++);
2892}
2893
2894/* Initialize storage for partial symbols. */
2895
2896void
fba45db2 2897init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2898{
2899 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2900
2901 if (objfile->global_psymbols.list)
c906108c 2902 {
2dc74dc1 2903 xfree (objfile->global_psymbols.list);
c906108c 2904 }
c5aa993b 2905 if (objfile->static_psymbols.list)
c906108c 2906 {
2dc74dc1 2907 xfree (objfile->static_psymbols.list);
c906108c 2908 }
c5aa993b 2909
c906108c
SS
2910 /* Current best guess is that approximately a twentieth
2911 of the total symbols (in a debugging file) are global or static
2912 oriented symbols */
c906108c 2913
c5aa993b
JM
2914 objfile->global_psymbols.size = total_symbols / 10;
2915 objfile->static_psymbols.size = total_symbols / 10;
2916
2917 if (objfile->global_psymbols.size > 0)
c906108c 2918 {
c5aa993b
JM
2919 objfile->global_psymbols.next =
2920 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2921 xmalloc ((objfile->global_psymbols.size
2922 * sizeof (struct partial_symbol *)));
c906108c 2923 }
c5aa993b 2924 if (objfile->static_psymbols.size > 0)
c906108c 2925 {
c5aa993b
JM
2926 objfile->static_psymbols.next =
2927 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2928 xmalloc ((objfile->static_psymbols.size
2929 * sizeof (struct partial_symbol *)));
c906108c
SS
2930 }
2931}
2932
2933/* OVERLAYS:
2934 The following code implements an abstraction for debugging overlay sections.
2935
2936 The target model is as follows:
2937 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2938 same VMA, each with its own unique LMA (or load address).
c906108c 2939 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2940 sections, one by one, from the load address into the VMA address.
5417f6dc 2941 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2942 sections should be considered to be mapped from the VMA to the LMA.
2943 This information is used for symbol lookup, and memory read/write.
5417f6dc 2944 For instance, if a section has been mapped then its contents
c5aa993b 2945 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2946
2947 Two levels of debugger support for overlays are available. One is
2948 "manual", in which the debugger relies on the user to tell it which
2949 overlays are currently mapped. This level of support is
2950 implemented entirely in the core debugger, and the information about
2951 whether a section is mapped is kept in the objfile->obj_section table.
2952
2953 The second level of support is "automatic", and is only available if
2954 the target-specific code provides functionality to read the target's
2955 overlay mapping table, and translate its contents for the debugger
2956 (by updating the mapped state information in the obj_section tables).
2957
2958 The interface is as follows:
c5aa993b
JM
2959 User commands:
2960 overlay map <name> -- tell gdb to consider this section mapped
2961 overlay unmap <name> -- tell gdb to consider this section unmapped
2962 overlay list -- list the sections that GDB thinks are mapped
2963 overlay read-target -- get the target's state of what's mapped
2964 overlay off/manual/auto -- set overlay debugging state
2965 Functional interface:
2966 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2967 section, return that section.
5417f6dc 2968 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2969 the pc, either in its VMA or its LMA
2970 overlay_is_mapped(sect): true if overlay is marked as mapped
2971 section_is_overlay(sect): true if section's VMA != LMA
2972 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2973 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2974 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2975 overlay_mapped_address(...): map an address from section's LMA to VMA
2976 overlay_unmapped_address(...): map an address from section's VMA to LMA
2977 symbol_overlayed_address(...): Return a "current" address for symbol:
2978 either in VMA or LMA depending on whether
2979 the symbol's section is currently mapped
c906108c
SS
2980 */
2981
2982/* Overlay debugging state: */
2983
d874f1e2 2984enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2985int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2986
2987/* Target vector for refreshing overlay mapped state */
a14ed312 2988static void simple_overlay_update (struct obj_section *);
507f3c78 2989void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2990
2991/* Function: section_is_overlay (SECTION)
5417f6dc 2992 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2993 SECTION is loaded at an address different from where it will "run". */
2994
2995int
fba45db2 2996section_is_overlay (asection *section)
c906108c 2997{
fbd35540
MS
2998 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2999
c906108c
SS
3000 if (overlay_debugging)
3001 if (section && section->lma != 0 &&
3002 section->vma != section->lma)
3003 return 1;
3004
3005 return 0;
3006}
3007
3008/* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3010
3011static void
fba45db2 3012overlay_invalidate_all (void)
c906108c 3013{
c5aa993b 3014 struct objfile *objfile;
c906108c
SS
3015 struct obj_section *sect;
3016
3017 ALL_OBJSECTIONS (objfile, sect)
3018 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3019 sect->ovly_mapped = -1;
c906108c
SS
3020}
3021
3022/* Function: overlay_is_mapped (SECTION)
5417f6dc 3023 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3024 Private: public access is thru function section_is_mapped.
3025
3026 Access to the ovly_mapped flag is restricted to this function, so
3027 that we can do automatic update. If the global flag
3028 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3029 overlay_invalidate_all. If the mapped state of the particular
3030 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3031
c5aa993b 3032static int
fba45db2 3033overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3034{
3035 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3036 return 0;
3037
c5aa993b 3038 switch (overlay_debugging)
c906108c
SS
3039 {
3040 default:
d874f1e2 3041 case ovly_off:
c5aa993b 3042 return 0; /* overlay debugging off */
d874f1e2 3043 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3044 /* Unles there is a target_overlay_update function,
c5aa993b 3045 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3046 if (target_overlay_update)
3047 {
3048 if (overlay_cache_invalid)
3049 {
3050 overlay_invalidate_all ();
3051 overlay_cache_invalid = 0;
3052 }
3053 if (osect->ovly_mapped == -1)
3054 (*target_overlay_update) (osect);
3055 }
3056 /* fall thru to manual case */
d874f1e2 3057 case ovly_on: /* overlay debugging manual */
c906108c
SS
3058 return osect->ovly_mapped == 1;
3059 }
3060}
3061
3062/* Function: section_is_mapped
3063 Returns true if section is an overlay, and is currently mapped. */
3064
3065int
fba45db2 3066section_is_mapped (asection *section)
c906108c 3067{
c5aa993b 3068 struct objfile *objfile;
c906108c
SS
3069 struct obj_section *osect;
3070
3071 if (overlay_debugging)
3072 if (section && section_is_overlay (section))
3073 ALL_OBJSECTIONS (objfile, osect)
3074 if (osect->the_bfd_section == section)
c5aa993b 3075 return overlay_is_mapped (osect);
c906108c
SS
3076
3077 return 0;
3078}
3079
3080/* Function: pc_in_unmapped_range
3081 If PC falls into the lma range of SECTION, return true, else false. */
3082
3083CORE_ADDR
fba45db2 3084pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3085{
fbd35540
MS
3086 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3087
c906108c
SS
3088 int size;
3089
3090 if (overlay_debugging)
3091 if (section && section_is_overlay (section))
3092 {
2c500098 3093 size = bfd_get_section_size (section);
c906108c
SS
3094 if (section->lma <= pc && pc < section->lma + size)
3095 return 1;
3096 }
3097 return 0;
3098}
3099
3100/* Function: pc_in_mapped_range
3101 If PC falls into the vma range of SECTION, return true, else false. */
3102
3103CORE_ADDR
fba45db2 3104pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3105{
fbd35540
MS
3106 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3107
c906108c
SS
3108 int size;
3109
3110 if (overlay_debugging)
3111 if (section && section_is_overlay (section))
3112 {
2c500098 3113 size = bfd_get_section_size (section);
c906108c
SS
3114 if (section->vma <= pc && pc < section->vma + size)
3115 return 1;
3116 }
3117 return 0;
3118}
3119
9ec8e6a0
JB
3120
3121/* Return true if the mapped ranges of sections A and B overlap, false
3122 otherwise. */
b9362cc7 3123static int
9ec8e6a0
JB
3124sections_overlap (asection *a, asection *b)
3125{
fbd35540
MS
3126 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3127
9ec8e6a0 3128 CORE_ADDR a_start = a->vma;
2c500098 3129 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3130 CORE_ADDR b_start = b->vma;
2c500098 3131 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3132
3133 return (a_start < b_end && b_start < a_end);
3134}
3135
c906108c
SS
3136/* Function: overlay_unmapped_address (PC, SECTION)
3137 Returns the address corresponding to PC in the unmapped (load) range.
3138 May be the same as PC. */
3139
3140CORE_ADDR
fba45db2 3141overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3142{
fbd35540
MS
3143 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3144
c906108c
SS
3145 if (overlay_debugging)
3146 if (section && section_is_overlay (section) &&
3147 pc_in_mapped_range (pc, section))
3148 return pc + section->lma - section->vma;
3149
3150 return pc;
3151}
3152
3153/* Function: overlay_mapped_address (PC, SECTION)
3154 Returns the address corresponding to PC in the mapped (runtime) range.
3155 May be the same as PC. */
3156
3157CORE_ADDR
fba45db2 3158overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3159{
fbd35540
MS
3160 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3161
c906108c
SS
3162 if (overlay_debugging)
3163 if (section && section_is_overlay (section) &&
3164 pc_in_unmapped_range (pc, section))
3165 return pc + section->vma - section->lma;
3166
3167 return pc;
3168}
3169
3170
5417f6dc 3171/* Function: symbol_overlayed_address
c906108c
SS
3172 Return one of two addresses (relative to the VMA or to the LMA),
3173 depending on whether the section is mapped or not. */
3174
c5aa993b 3175CORE_ADDR
fba45db2 3176symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3177{
3178 if (overlay_debugging)
3179 {
3180 /* If the symbol has no section, just return its regular address. */
3181 if (section == 0)
3182 return address;
3183 /* If the symbol's section is not an overlay, just return its address */
3184 if (!section_is_overlay (section))
3185 return address;
3186 /* If the symbol's section is mapped, just return its address */
3187 if (section_is_mapped (section))
3188 return address;
3189 /*
3190 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3191 * then return its LOADED address rather than its vma address!!
3192 */
3193 return overlay_unmapped_address (address, section);
3194 }
3195 return address;
3196}
3197
5417f6dc 3198/* Function: find_pc_overlay (PC)
c906108c
SS
3199 Return the best-match overlay section for PC:
3200 If PC matches a mapped overlay section's VMA, return that section.
3201 Else if PC matches an unmapped section's VMA, return that section.
3202 Else if PC matches an unmapped section's LMA, return that section. */
3203
3204asection *
fba45db2 3205find_pc_overlay (CORE_ADDR pc)
c906108c 3206{
c5aa993b 3207 struct objfile *objfile;
c906108c
SS
3208 struct obj_section *osect, *best_match = NULL;
3209
3210 if (overlay_debugging)
3211 ALL_OBJSECTIONS (objfile, osect)
3212 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3213 {
3214 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3215 {
3216 if (overlay_is_mapped (osect))
3217 return osect->the_bfd_section;
3218 else
3219 best_match = osect;
3220 }
3221 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3222 best_match = osect;
3223 }
c906108c
SS
3224 return best_match ? best_match->the_bfd_section : NULL;
3225}
3226
3227/* Function: find_pc_mapped_section (PC)
5417f6dc 3228 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3229 currently marked as MAPPED, return that section. Else return NULL. */
3230
3231asection *
fba45db2 3232find_pc_mapped_section (CORE_ADDR pc)
c906108c 3233{
c5aa993b 3234 struct objfile *objfile;
c906108c
SS
3235 struct obj_section *osect;
3236
3237 if (overlay_debugging)
3238 ALL_OBJSECTIONS (objfile, osect)
3239 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3240 overlay_is_mapped (osect))
c5aa993b 3241 return osect->the_bfd_section;
c906108c
SS
3242
3243 return NULL;
3244}
3245
3246/* Function: list_overlays_command
3247 Print a list of mapped sections and their PC ranges */
3248
3249void
fba45db2 3250list_overlays_command (char *args, int from_tty)
c906108c 3251{
c5aa993b
JM
3252 int nmapped = 0;
3253 struct objfile *objfile;
c906108c
SS
3254 struct obj_section *osect;
3255
3256 if (overlay_debugging)
3257 ALL_OBJSECTIONS (objfile, osect)
3258 if (overlay_is_mapped (osect))
c5aa993b
JM
3259 {
3260 const char *name;
3261 bfd_vma lma, vma;
3262 int size;
3263
3264 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3265 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3266 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3267 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3268
3269 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3270 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3271 puts_filtered (" - ");
66bf4b3a 3272 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3273 printf_filtered (", mapped at ");
66bf4b3a 3274 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3275 puts_filtered (" - ");
66bf4b3a 3276 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3277 puts_filtered ("\n");
3278
3279 nmapped++;
3280 }
c906108c 3281 if (nmapped == 0)
a3f17187 3282 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3283}
3284
3285/* Function: map_overlay_command
3286 Mark the named section as mapped (ie. residing at its VMA address). */
3287
3288void
fba45db2 3289map_overlay_command (char *args, int from_tty)
c906108c 3290{
c5aa993b
JM
3291 struct objfile *objfile, *objfile2;
3292 struct obj_section *sec, *sec2;
3293 asection *bfdsec;
c906108c
SS
3294
3295 if (!overlay_debugging)
8a3fe4f8 3296 error (_("\
515ad16c 3297Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3298the 'overlay manual' command."));
c906108c
SS
3299
3300 if (args == 0 || *args == 0)
8a3fe4f8 3301 error (_("Argument required: name of an overlay section"));
c906108c
SS
3302
3303 /* First, find a section matching the user supplied argument */
3304 ALL_OBJSECTIONS (objfile, sec)
3305 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3306 {
3307 /* Now, check to see if the section is an overlay. */
3308 bfdsec = sec->the_bfd_section;
3309 if (!section_is_overlay (bfdsec))
3310 continue; /* not an overlay section */
3311
3312 /* Mark the overlay as "mapped" */
3313 sec->ovly_mapped = 1;
3314
3315 /* Next, make a pass and unmap any sections that are
3316 overlapped by this new section: */
3317 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3318 if (sec2->ovly_mapped
3319 && sec != sec2
3320 && sec->the_bfd_section != sec2->the_bfd_section
3321 && sections_overlap (sec->the_bfd_section,
3322 sec2->the_bfd_section))
c5aa993b
JM
3323 {
3324 if (info_verbose)
a3f17187 3325 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3326 bfd_section_name (objfile->obfd,
3327 sec2->the_bfd_section));
3328 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3329 }
3330 return;
3331 }
8a3fe4f8 3332 error (_("No overlay section called %s"), args);
c906108c
SS
3333}
3334
3335/* Function: unmap_overlay_command
5417f6dc 3336 Mark the overlay section as unmapped
c906108c
SS
3337 (ie. resident in its LMA address range, rather than the VMA range). */
3338
3339void
fba45db2 3340unmap_overlay_command (char *args, int from_tty)
c906108c 3341{
c5aa993b 3342 struct objfile *objfile;
c906108c
SS
3343 struct obj_section *sec;
3344
3345 if (!overlay_debugging)
8a3fe4f8 3346 error (_("\
515ad16c 3347Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3348the 'overlay manual' command."));
c906108c
SS
3349
3350 if (args == 0 || *args == 0)
8a3fe4f8 3351 error (_("Argument required: name of an overlay section"));
c906108c
SS
3352
3353 /* First, find a section matching the user supplied argument */
3354 ALL_OBJSECTIONS (objfile, sec)
3355 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3356 {
3357 if (!sec->ovly_mapped)
8a3fe4f8 3358 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3359 sec->ovly_mapped = 0;
3360 return;
3361 }
8a3fe4f8 3362 error (_("No overlay section called %s"), args);
c906108c
SS
3363}
3364
3365/* Function: overlay_auto_command
3366 A utility command to turn on overlay debugging.
3367 Possibly this should be done via a set/show command. */
3368
3369static void
fba45db2 3370overlay_auto_command (char *args, int from_tty)
c906108c 3371{
d874f1e2 3372 overlay_debugging = ovly_auto;
1900040c 3373 enable_overlay_breakpoints ();
c906108c 3374 if (info_verbose)
a3f17187 3375 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3376}
3377
3378/* Function: overlay_manual_command
3379 A utility command to turn on overlay debugging.
3380 Possibly this should be done via a set/show command. */
3381
3382static void
fba45db2 3383overlay_manual_command (char *args, int from_tty)
c906108c 3384{
d874f1e2 3385 overlay_debugging = ovly_on;
1900040c 3386 disable_overlay_breakpoints ();
c906108c 3387 if (info_verbose)
a3f17187 3388 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3389}
3390
3391/* Function: overlay_off_command
3392 A utility command to turn on overlay debugging.
3393 Possibly this should be done via a set/show command. */
3394
3395static void
fba45db2 3396overlay_off_command (char *args, int from_tty)
c906108c 3397{
d874f1e2 3398 overlay_debugging = ovly_off;
1900040c 3399 disable_overlay_breakpoints ();
c906108c 3400 if (info_verbose)
a3f17187 3401 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3402}
3403
3404static void
fba45db2 3405overlay_load_command (char *args, int from_tty)
c906108c
SS
3406{
3407 if (target_overlay_update)
3408 (*target_overlay_update) (NULL);
3409 else
8a3fe4f8 3410 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3411}
3412
3413/* Function: overlay_command
3414 A place-holder for a mis-typed command */
3415
3416/* Command list chain containing all defined "overlay" subcommands. */
3417struct cmd_list_element *overlaylist;
3418
3419static void
fba45db2 3420overlay_command (char *args, int from_tty)
c906108c 3421{
c5aa993b 3422 printf_unfiltered
c906108c
SS
3423 ("\"overlay\" must be followed by the name of an overlay command.\n");
3424 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3425}
3426
3427
3428/* Target Overlays for the "Simplest" overlay manager:
3429
5417f6dc
RM
3430 This is GDB's default target overlay layer. It works with the
3431 minimal overlay manager supplied as an example by Cygnus. The
3432 entry point is via a function pointer "target_overlay_update",
3433 so targets that use a different runtime overlay manager can
c906108c
SS
3434 substitute their own overlay_update function and take over the
3435 function pointer.
3436
3437 The overlay_update function pokes around in the target's data structures
3438 to see what overlays are mapped, and updates GDB's overlay mapping with
3439 this information.
3440
3441 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3442 unsigned _novlys; /# number of overlay sections #/
3443 unsigned _ovly_table[_novlys][4] = {
3444 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3445 {..., ..., ..., ...},
3446 }
3447 unsigned _novly_regions; /# number of overlay regions #/
3448 unsigned _ovly_region_table[_novly_regions][3] = {
3449 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3450 {..., ..., ...},
3451 }
c906108c
SS
3452 These functions will attempt to update GDB's mappedness state in the
3453 symbol section table, based on the target's mappedness state.
3454
3455 To do this, we keep a cached copy of the target's _ovly_table, and
3456 attempt to detect when the cached copy is invalidated. The main
3457 entry point is "simple_overlay_update(SECT), which looks up SECT in
3458 the cached table and re-reads only the entry for that section from
3459 the target (whenever possible).
3460 */
3461
3462/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3463static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3464#if 0
c5aa993b 3465static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3466#endif
c5aa993b 3467static unsigned cache_novlys = 0;
c906108c 3468#if 0
c5aa993b 3469static unsigned cache_novly_regions = 0;
c906108c
SS
3470#endif
3471static CORE_ADDR cache_ovly_table_base = 0;
3472#if 0
3473static CORE_ADDR cache_ovly_region_table_base = 0;
3474#endif
c5aa993b
JM
3475enum ovly_index
3476 {
3477 VMA, SIZE, LMA, MAPPED
3478 };
c906108c
SS
3479#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3480
3481/* Throw away the cached copy of _ovly_table */
3482static void
fba45db2 3483simple_free_overlay_table (void)
c906108c
SS
3484{
3485 if (cache_ovly_table)
b8c9b27d 3486 xfree (cache_ovly_table);
c5aa993b 3487 cache_novlys = 0;
c906108c
SS
3488 cache_ovly_table = NULL;
3489 cache_ovly_table_base = 0;
3490}
3491
3492#if 0
3493/* Throw away the cached copy of _ovly_region_table */
3494static void
fba45db2 3495simple_free_overlay_region_table (void)
c906108c
SS
3496{
3497 if (cache_ovly_region_table)
b8c9b27d 3498 xfree (cache_ovly_region_table);
c5aa993b 3499 cache_novly_regions = 0;
c906108c
SS
3500 cache_ovly_region_table = NULL;
3501 cache_ovly_region_table_base = 0;
3502}
3503#endif
3504
3505/* Read an array of ints from the target into a local buffer.
3506 Convert to host order. int LEN is number of ints */
3507static void
fba45db2 3508read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3509{
34c0bd93 3510 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3511 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3512 int i;
c906108c
SS
3513
3514 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3515 for (i = 0; i < len; i++)
c5aa993b 3516 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3517 TARGET_LONG_BYTES);
3518}
3519
3520/* Find and grab a copy of the target _ovly_table
3521 (and _novlys, which is needed for the table's size) */
c5aa993b 3522static int
fba45db2 3523simple_read_overlay_table (void)
c906108c 3524{
0d43edd1 3525 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3526
3527 simple_free_overlay_table ();
9b27852e 3528 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3529 if (! novlys_msym)
c906108c 3530 {
8a3fe4f8 3531 error (_("Error reading inferior's overlay table: "
0d43edd1 3532 "couldn't find `_novlys' variable\n"
8a3fe4f8 3533 "in inferior. Use `overlay manual' mode."));
0d43edd1 3534 return 0;
c906108c 3535 }
0d43edd1 3536
9b27852e 3537 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3538 if (! ovly_table_msym)
3539 {
8a3fe4f8 3540 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3541 "`_ovly_table' array\n"
8a3fe4f8 3542 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3543 return 0;
3544 }
3545
3546 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3547 cache_ovly_table
3548 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3549 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3550 read_target_long_array (cache_ovly_table_base,
777ea8f1 3551 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3552 cache_novlys * 4);
3553
c5aa993b 3554 return 1; /* SUCCESS */
c906108c
SS
3555}
3556
3557#if 0
3558/* Find and grab a copy of the target _ovly_region_table
3559 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3560static int
fba45db2 3561simple_read_overlay_region_table (void)
c906108c
SS
3562{
3563 struct minimal_symbol *msym;
3564
3565 simple_free_overlay_region_table ();
9b27852e 3566 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3567 if (msym != NULL)
3568 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3569 else
3570 return 0; /* failure */
c906108c
SS
3571 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3572 if (cache_ovly_region_table != NULL)
3573 {
9b27852e 3574 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3575 if (msym != NULL)
3576 {
3577 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3578 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3579 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3580 cache_novly_regions * 3);
3581 }
c5aa993b
JM
3582 else
3583 return 0; /* failure */
c906108c 3584 }
c5aa993b
JM
3585 else
3586 return 0; /* failure */
3587 return 1; /* SUCCESS */
c906108c
SS
3588}
3589#endif
3590
5417f6dc 3591/* Function: simple_overlay_update_1
c906108c
SS
3592 A helper function for simple_overlay_update. Assuming a cached copy
3593 of _ovly_table exists, look through it to find an entry whose vma,
3594 lma and size match those of OSECT. Re-read the entry and make sure
3595 it still matches OSECT (else the table may no longer be valid).
3596 Set OSECT's mapped state to match the entry. Return: 1 for
3597 success, 0 for failure. */
3598
3599static int
fba45db2 3600simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3601{
3602 int i, size;
fbd35540
MS
3603 bfd *obfd = osect->objfile->obfd;
3604 asection *bsect = osect->the_bfd_section;
c906108c 3605
2c500098 3606 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3607 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3610 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3611 {
3612 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3613 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3614 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3615 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3616 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3617 {
3618 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3619 return 1;
3620 }
fbd35540 3621 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3622 return 0;
3623 }
3624 return 0;
3625}
3626
3627/* Function: simple_overlay_update
5417f6dc
RM
3628 If OSECT is NULL, then update all sections' mapped state
3629 (after re-reading the entire target _ovly_table).
3630 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3631 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3632 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3633 re-read the entire cache, and go ahead and update all sections. */
3634
3635static void
fba45db2 3636simple_overlay_update (struct obj_section *osect)
c906108c 3637{
c5aa993b 3638 struct objfile *objfile;
c906108c
SS
3639
3640 /* Were we given an osect to look up? NULL means do all of them. */
3641 if (osect)
3642 /* Have we got a cached copy of the target's overlay table? */
3643 if (cache_ovly_table != NULL)
3644 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3645 if (cache_ovly_table_base ==
9b27852e 3646 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3647 /* Then go ahead and try to look up this single section in the cache */
3648 if (simple_overlay_update_1 (osect))
3649 /* Found it! We're done. */
3650 return;
3651
3652 /* Cached table no good: need to read the entire table anew.
3653 Or else we want all the sections, in which case it's actually
3654 more efficient to read the whole table in one block anyway. */
3655
0d43edd1
JB
3656 if (! simple_read_overlay_table ())
3657 return;
3658
c906108c
SS
3659 /* Now may as well update all sections, even if only one was requested. */
3660 ALL_OBJSECTIONS (objfile, osect)
3661 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3662 {
3663 int i, size;
fbd35540
MS
3664 bfd *obfd = osect->objfile->obfd;
3665 asection *bsect = osect->the_bfd_section;
c5aa993b 3666
2c500098 3667 size = bfd_get_section_size (bsect);
c5aa993b 3668 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3669 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3670 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3671 /* && cache_ovly_table[i][SIZE] == size */ )
3672 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3673 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3674 break; /* finished with inner for loop: break out */
3675 }
3676 }
c906108c
SS
3677}
3678
086df311
DJ
3679/* Set the output sections and output offsets for section SECTP in
3680 ABFD. The relocation code in BFD will read these offsets, so we
3681 need to be sure they're initialized. We map each section to itself,
3682 with no offset; this means that SECTP->vma will be honored. */
3683
3684static void
3685symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3686{
3687 sectp->output_section = sectp;
3688 sectp->output_offset = 0;
3689}
3690
3691/* Relocate the contents of a debug section SECTP in ABFD. The
3692 contents are stored in BUF if it is non-NULL, or returned in a
3693 malloc'd buffer otherwise.
3694
3695 For some platforms and debug info formats, shared libraries contain
3696 relocations against the debug sections (particularly for DWARF-2;
3697 one affected platform is PowerPC GNU/Linux, although it depends on
3698 the version of the linker in use). Also, ELF object files naturally
3699 have unresolved relocations for their debug sections. We need to apply
3700 the relocations in order to get the locations of symbols correct. */
3701
3702bfd_byte *
3703symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3704{
3705 /* We're only interested in debugging sections with relocation
3706 information. */
3707 if ((sectp->flags & SEC_RELOC) == 0)
3708 return NULL;
3709 if ((sectp->flags & SEC_DEBUGGING) == 0)
3710 return NULL;
3711
3712 /* We will handle section offsets properly elsewhere, so relocate as if
3713 all sections begin at 0. */
3714 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3715
97606a13 3716 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3717}
c906108c
SS
3718
3719void
fba45db2 3720_initialize_symfile (void)
c906108c
SS
3721{
3722 struct cmd_list_element *c;
c5aa993b 3723
1a966eab
AC
3724 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3725Load symbol table from executable file FILE.\n\
c906108c 3726The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3727to execute."), &cmdlist);
5ba2abeb 3728 set_cmd_completer (c, filename_completer);
c906108c 3729
1a966eab 3730 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3731Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3732Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3733ADDR is the starting address of the file's text.\n\
db162d44
EZ
3734The optional arguments are section-name section-address pairs and\n\
3735should be specified if the data and bss segments are not contiguous\n\
1a966eab 3736with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3737 &cmdlist);
5ba2abeb 3738 set_cmd_completer (c, filename_completer);
c906108c
SS
3739
3740 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3741 add_shared_symbol_files_command, _("\
3742Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3743 &cmdlist);
c906108c
SS
3744 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3745 &cmdlist);
3746
1a966eab
AC
3747 c = add_cmd ("load", class_files, load_command, _("\
3748Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3749for access from GDB.\n\
3750A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3751 set_cmd_completer (c, filename_completer);
c906108c 3752
5bf193a2
AC
3753 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3754 &symbol_reloading, _("\
3755Set dynamic symbol table reloading multiple times in one run."), _("\
3756Show dynamic symbol table reloading multiple times in one run."), NULL,
3757 NULL,
920d2a44 3758 show_symbol_reloading,
5bf193a2 3759 &setlist, &showlist);
c906108c 3760
c5aa993b 3761 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3762 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3763 "overlay ", 0, &cmdlist);
3764
3765 add_com_alias ("ovly", "overlay", class_alias, 1);
3766 add_com_alias ("ov", "overlay", class_alias, 1);
3767
c5aa993b 3768 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3769 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3770
c5aa993b 3771 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3772 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3773
c5aa993b 3774 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3775 _("List mappings of overlay sections."), &overlaylist);
c906108c 3776
c5aa993b 3777 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3778 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3779 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3780 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3781 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3782 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3783 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3784 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3785
3786 /* Filename extension to source language lookup table: */
3787 init_filename_language_table ();
26c41df3
AC
3788 add_setshow_string_noescape_cmd ("extension-language", class_files,
3789 &ext_args, _("\
3790Set mapping between filename extension and source language."), _("\
3791Show mapping between filename extension and source language."), _("\
3792Usage: set extension-language .foo bar"),
3793 set_ext_lang_command,
920d2a44 3794 show_ext_args,
26c41df3 3795 &setlist, &showlist);
c906108c 3796
c5aa993b 3797 add_info ("extensions", info_ext_lang_command,
1bedd215 3798 _("All filename extensions associated with a source language."));
917317f4 3799
5b5d99cf 3800 debug_file_directory = xstrdup (DEBUGDIR);
525226b5
AC
3801 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3802 &debug_file_directory, _("\
3803Set the directory where separate debug symbols are searched for."), _("\
3804Show the directory where separate debug symbols are searched for."), _("\
3805Separate debug symbols are first searched for in the same\n\
3806directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3807and lastly at the path of the directory of the binary with\n\
3808the global debug-file directory prepended."),
3809 NULL,
920d2a44 3810 show_debug_file_directory,
525226b5 3811 &setlist, &showlist);
c906108c 3812}
This page took 0.852233 seconds and 4 git commands to generate.