Fix dwarf2loc.h::dwarf2_evaluate_property function description.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void add_filename_language (char *ext, enum language lang);
392a587b 118
a14ed312 119static void info_ext_lang_command (char *args, int from_tty);
392a587b 120
a14ed312 121static void init_filename_language_table (void);
392a587b 122
31d99776
DJ
123static void symfile_find_segment_sections (struct objfile *objfile);
124
a14ed312 125void _initialize_symfile (void);
c906108c
SS
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
c378eb4e 129 prepared to read. */
c906108c 130
c256e171
DE
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
00b5771c 139
c256e171
DE
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 143
770e7fc7
DE
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
b7209cb4
FF
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
c906108c 165 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 166 report all the functions that are actually present. */
c906108c
SS
167
168int auto_solib_add = 1;
c906108c 169\f
c5aa993b 170
770e7fc7
DE
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
0d14a781 196/* True if we are reading a symbol table. */
c906108c
SS
197
198int currently_reading_symtab = 0;
199
200static void
fba45db2 201decrement_reading_symtab (void *dummy)
c906108c
SS
202{
203 currently_reading_symtab--;
2cb9c859 204 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
205}
206
ccefe4c4
TT
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
3b7bacac 209
ccefe4c4
TT
210struct cleanup *
211increment_reading_symtab (void)
c906108c 212{
ccefe4c4 213 ++currently_reading_symtab;
2cb9c859 214 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 215 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
216}
217
5417f6dc
RM
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
c906108c
SS
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
4efb68b1 228find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 229{
c5aa993b 230 asection **lowest = (asection **) obj;
c906108c 231
eb73e134 232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
d76488d8
TT
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
a39a16c4
MM
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
a39a16c4
MM
258
259 return sap;
260}
62557bbc
KB
261
262/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 263 an existing section table. */
62557bbc
KB
264
265extern struct section_addr_info *
0542c86d
PA
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
62557bbc
KB
268{
269 struct section_addr_info *sap;
0542c86d 270 const struct target_section *stp;
62557bbc
KB
271 int oidx;
272
a39a16c4 273 sap = alloc_section_addr_info (end - start);
62557bbc
KB
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
2b2848e2
DE
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 281 && oidx < end - start)
62557bbc
KB
282 {
283 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
286 oidx++;
287 }
288 }
289
d76488d8
TT
290 sap->num_sections = oidx;
291
62557bbc
KB
292 return sap;
293}
294
82ccf5a5 295/* Create a section_addr_info from section offsets in ABFD. */
089b4803 296
82ccf5a5
JK
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
82ccf5a5
JK
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 307 {
82ccf5a5
JK
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
311 i++;
312 }
d76488d8
TT
313
314 sap->num_sections = i;
315
089b4803
TG
316 return sap;
317}
318
82ccf5a5
JK
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 331 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
62557bbc 339
c378eb4e 340/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
a39a16c4 347 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 348 xfree (sap->other[idx].name);
b8c9b27d 349 xfree (sap);
62557bbc
KB
350}
351
e8289572 352/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 353
e8289572
JB
354static void
355init_objfile_sect_indices (struct objfile *objfile)
c906108c 356{
e8289572 357 asection *sect;
c906108c 358 int i;
5417f6dc 359
b8fbeb18 360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_rodata = sect->index;
375
bbcd32ad
FF
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
31d99776
DJ
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
bbcd32ad
FF
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
b8fbeb18 411}
c906108c 412
c1bd25fd
DJ
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
2c0b251b 424static void
c1bd25fd
DJ
425place_section (bfd *abfd, asection *sect, void *obj)
426{
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
3bd72c6f 430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 431
2711e456
DJ
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 return;
435
436 /* If the user specified an offset, honor it. */
65cf3563 437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
441 start_addr = (arg->lowest + align - 1) & -align;
442
c1bd25fd
DJ
443 do {
444 asection *cur_sec;
c1bd25fd 445
c1bd25fd
DJ
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
c1bd25fd
DJ
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
2711e456
DJ
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
3bd72c6f 473 break;
c1bd25fd
DJ
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
65cf3563 481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 482 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 483}
e8289572 484
75242ef4
JK
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
e8289572
JB
488
489void
75242ef4
JK
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
3189cb12 492 const struct section_addr_info *addrs)
e8289572
JB
493{
494 int i;
495
75242ef4 496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 497
c378eb4e 498 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 499 for (i = 0; i < addrs->num_sections; i++)
e8289572 500 {
3189cb12 501 const struct other_sections *osp;
e8289572 502
75242ef4 503 osp = &addrs->other[i];
5488dafb 504 if (osp->sectindex == -1)
e8289572
JB
505 continue;
506
c378eb4e 507 /* Record all sections in offsets. */
e8289572 508 /* The section_offsets in the objfile are here filled in using
c378eb4e 509 the BFD index. */
75242ef4
JK
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
1276c759
JK
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
82ccf5a5
JK
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 539 int retval;
82ccf5a5 540
1276c759 541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
542 if (retval)
543 return retval;
544
5488dafb 545 return a->sectindex - b->sectindex;
82ccf5a5
JK
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 559 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
75242ef4 568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
75242ef4
JK
576 CORE_ADDR lower_offset;
577 int i;
82ccf5a5
JK
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
582
583 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
e8289572 592 }
75242ef4
JK
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
82ccf5a5
JK
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
c378eb4e
MS
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
1276c759 623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
624
625 while (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
82ccf5a5
JK
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
1276c759
JK
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
82ccf5a5
JK
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
75242ef4
JK
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
d76488d8 658 for (i = 0; i < addrs->num_sections; i++)
75242ef4 659 {
82ccf5a5 660 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
661
662 if (sect)
75242ef4 663 {
c378eb4e 664 /* This is the index used by BFD. */
82ccf5a5 665 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
666
667 if (addrs->other[i].addr != 0)
75242ef4 668 {
82ccf5a5 669 addrs->other[i].addr -= sect->addr;
75242ef4 670 lower_offset = addrs->other[i].addr;
75242ef4
JK
671 }
672 else
672d9c23 673 addrs->other[i].addr = lower_offset;
75242ef4
JK
674 }
675 else
672d9c23 676 {
1276c759
JK
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
b0fcb67f
JK
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
4d9743af
JK
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
1276c759
JK
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 695 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
672d9c23 707 addrs->other[i].addr = 0;
5488dafb 708 addrs->other[i].sectindex = -1;
672d9c23 709 }
75242ef4 710 }
82ccf5a5
JK
711
712 do_cleanups (my_cleanup);
75242ef4
JK
713}
714
715/* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721void
722default_symfile_offsets (struct objfile *objfile,
3189cb12 723 const struct section_addr_info *addrs)
75242ef4 724{
d445b2f6 725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
e8289572 731
c1bd25fd
DJ
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
2711e456
DJ
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
2711e456
DJ
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
30510692 794 offsets[cur_sec->index]);
2711e456
DJ
795 offsets[cur_sec->index] = 0;
796 }
797 }
c1bd25fd
DJ
798 }
799
e8289572 800 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 801 .rodata sections. */
e8289572
JB
802 init_objfile_sect_indices (objfile);
803}
804
31d99776
DJ
805/* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811struct symfile_segment_data *
812default_symfile_segments (bfd *abfd)
813{
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
41bf6aca 839 data = XCNEW (struct symfile_segment_data);
31d99776 840 data->num_segments = 1;
fc270c35
TT
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
843
844 num_sections = bfd_count_sections (abfd);
fc270c35 845 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867}
868
608e2dbb
TT
869/* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872static void
873read_symbols (struct objfile *objfile, int add_flags)
874{
875 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 876 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
24ba069a
JK
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
608e2dbb
TT
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901}
902
3d6e24f0
JB
903/* Initialize entry point information for this objfile. */
904
905static void
906init_entry_point_info (struct objfile *objfile)
907{
6ef55de7
TT
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
3d6e24f0
JB
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
6ef55de7
TT
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
3d6e24f0
JB
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
6ef55de7
TT
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
3d6e24f0
JB
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 936 ei->entry_point_p = 0;
3d6e24f0
JB
937 }
938
6ef55de7 939 if (ei->entry_point_p)
3d6e24f0 940 {
53eddfa6 941 struct obj_section *osect;
6ef55de7 942 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 943 int found;
3d6e24f0
JB
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
df6d5441 948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
6ef55de7 954 ei->entry_point
df6d5441 955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
6ef55de7 966 ei->the_bfd_section_index
53eddfa6
TT
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
6ef55de7 974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
975 }
976}
977
c906108c
SS
978/* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
36e4d068
JB
981 This function does not set the OBJFILE's entry-point info.
982
96baa820
JM
983 OBJFILE is where the symbols are to be read from.
984
7e8580c1
JB
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
96baa820 994
7eedccfa
PP
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
c906108c 998
36e4d068
JB
999static void
1000syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
36e4d068 1002 int add_flags)
c906108c 1003{
a39a16c4 1004 struct section_addr_info *local_addr = NULL;
c906108c 1005 struct cleanup *old_chain;
7eedccfa 1006 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1007
8fb8eb5c 1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1009
75245b24 1010 if (objfile->sf == NULL)
36e4d068
JB
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
d445b2f6 1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
75245b24 1023
c906108c
SS
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
74b7792f 1026 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1027
6bf667bb
DE
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
c378eb4e 1030 no load address was specified. */
6bf667bb 1031 if (! addrs)
a39a16c4 1032 {
d445b2f6 1033 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
c5aa993b 1038 if (mainline)
c906108c
SS
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1041 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
adb7f338 1049 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
53a5351d 1062 and assume that <addr> is where that got loaded.
c906108c 1063
53a5351d
JM
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
6bf667bb 1066 if (addrs->num_sections > 0)
75242ef4 1067 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
c378eb4e 1071 initial symbol reading for this file. */
c906108c 1072
c5aa993b 1073 (*objfile->sf->sym_init) (objfile);
7eedccfa 1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1075
6bf667bb 1076 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1077
608e2dbb 1078 read_symbols (objfile, add_flags);
b11896a5 1079
c906108c
SS
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
f7545552 1083 xfree (local_addr);
c906108c
SS
1084}
1085
36e4d068
JB
1086/* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
6bf667bb 1089static void
36e4d068
JB
1090syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
36e4d068
JB
1092 int add_flags)
1093{
6bf667bb 1094 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1095 init_entry_point_info (objfile);
1096}
1097
c906108c
SS
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1101
c906108c 1102void
7eedccfa 1103new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1104{
c906108c 1105 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1106 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1107 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1108 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
c1e56572 1113 clear_symtab_users (add_flags);
c906108c 1114 }
7eedccfa 1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1116 {
69de3c6a 1117 breakpoint_re_set ();
c906108c
SS
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
5417f6dc 1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1128 A new reference is acquired by this function.
7904e09f 1129
24ba069a
JK
1130 For NAME description see allocate_objfile's definition.
1131
7eedccfa
PP
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1134
6bf667bb 1135 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1137
63524580
JK
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
c906108c 1141 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1142 Upon failure, jumps back to command level (never returns). */
7eedccfa 1143
7904e09f 1144static struct objfile *
24ba069a 1145symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
c906108c
SS
1148{
1149 struct objfile *objfile;
7eedccfa 1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1151 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1155
9291a0cd 1156 if (readnow_symbol_files)
b11896a5
TT
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
9291a0cd 1161
5417f6dc
RM
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
c906108c
SS
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1166 && mainline
c906108c 1167 && from_tty
9e2f0ad4 1168 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1169 error (_("Not confirmed."));
c906108c 1170
24ba069a
JK
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1173
63524580
JK
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
78a4a9b9
AC
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
c378eb4e 1179 performed, or need to read an unmapped symbol table. */
b11896a5 1180 if (should_print)
c906108c 1181 {
769d7dc4
AC
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1184 else
c906108c 1185 {
55333a84
DE
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
c906108c 1189 }
c906108c 1190 }
6bf667bb 1191 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1196 all partial symbol tables for this objfile if so. */
c906108c 1197
9291a0cd 1198 if ((flags & OBJF_READNOW))
c906108c 1199 {
b11896a5 1200 if (should_print)
c906108c 1201 {
a3f17187 1202 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
ccefe4c4
TT
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1209 }
1210
b11896a5 1211 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1212 {
1213 wrap_here ("");
55333a84 1214 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1215 wrap_here ("");
1216 }
1217
b11896a5 1218 if (should_print)
c906108c 1219 {
769d7dc4
AC
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
c906108c 1222 else
55333a84 1223 printf_unfiltered (_("done.\n"));
c906108c
SS
1224 }
1225
481d0f41
JB
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
109f874e 1231 if (objfile->sf == NULL)
8caee43b
PP
1232 {
1233 observer_notify_new_objfile (objfile);
c378eb4e 1234 return objfile; /* No symbols. */
8caee43b 1235 }
109f874e 1236
7eedccfa 1237 new_symfile_objfile (objfile, add_flags);
c906108c 1238
06d3b283 1239 observer_notify_new_objfile (objfile);
c906108c 1240
ce7d4522 1241 bfd_cache_close_all ();
c906108c
SS
1242 return (objfile);
1243}
1244
24ba069a
JK
1245/* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
9cce227f
TG
1247
1248void
24ba069a
JK
1249symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
9cce227f 1251{
15d123c9 1252 struct objfile *new_objfile;
089b4803
TG
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1261
6bf667bb 1262 new_objfile = symbol_file_add_with_addrs
24ba069a 1263 (bfd, name, symfile_flags, sap,
9cce227f 1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1265 | OBJF_USERLOADED),
1266 objfile);
089b4803
TG
1267
1268 do_cleanups (my_cleanup);
9cce227f 1269}
7904e09f 1270
eb4556d7
JB
1271/* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
6bf667bb 1273 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1274
eb4556d7 1275struct objfile *
24ba069a 1276symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1277 struct section_addr_info *addrs,
63524580 1278 int flags, struct objfile *parent)
eb4556d7 1279{
24ba069a
JK
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
eb4556d7
JB
1282}
1283
7904e09f 1284/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1286
7904e09f 1287struct objfile *
69150c3d
JK
1288symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
7904e09f 1290{
8ac244b4
TT
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
24ba069a 1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1296 do_cleanups (cleanup);
1297 return objf;
7904e09f
JB
1298}
1299
d7db6da9
FN
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
5417f6dc 1307
1adeb98a 1308void
69150c3d 1309symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1310{
d7db6da9
FN
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312}
1313
1314static void
69150c3d 1315symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1316{
7dcd53a0
TT
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
7eedccfa 1320 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1321
d7db6da9
FN
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
7dcd53a0
TT
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1adeb98a
FN
1328}
1329
1330void
1331symbol_file_clear (int from_tty)
1332{
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
0430b0d6
AS
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1337 objfile_name (symfile_objfile))
0430b0d6 1338 : !query (_("Discard symbol table? "))))
8a3fe4f8 1339 error (_("Not confirmed."));
1adeb98a 1340
0133421a
JK
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1343 no_shared_libraries (NULL, from_tty);
1344
0133421a
JK
1345 free_all_objfiles ();
1346
adb7f338 1347 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1350}
1351
5b5d99cf 1352static int
287ccc17 1353separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1354 struct objfile *parent_objfile)
5b5d99cf 1355{
904578ed
JK
1356 unsigned long file_crc;
1357 int file_crc_p;
f1838a98 1358 bfd *abfd;
32a0e547 1359 struct stat parent_stat, abfd_stat;
904578ed 1360 int verified_as_different;
32a0e547
JK
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1366 the separate debug infos with the same basename can exist. */
32a0e547 1367
4262abfb 1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1369 return 0;
5b5d99cf 1370
08d2cd74 1371 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1372
1373 if (!abfd)
5b5d99cf
JB
1374 return 0;
1375
0ba1096a 1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Do not indicate a duplicate library in that
1381 case. While there is no guarantee that a system that provides
1382 meaningful inode numbers will never set st_ino to zero, this is
1383 merely an optimization, so we do not need to worry about false
1384 negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1389 {
904578ed
JK
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
cbb099e8 1393 gdb_bfd_unref (abfd);
904578ed
JK
1394 return 0;
1395 }
1396 verified_as_different = 1;
32a0e547 1397 }
904578ed
JK
1398 else
1399 verified_as_different = 0;
32a0e547 1400
dccee2de 1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1402
cbb099e8 1403 gdb_bfd_unref (abfd);
5b5d99cf 1404
904578ed
JK
1405 if (!file_crc_p)
1406 return 0;
1407
287ccc17
JK
1408 if (crc != file_crc)
1409 {
dccee2de
TT
1410 unsigned long parent_crc;
1411
904578ed
JK
1412 /* If one (or both) the files are accessed for example the via "remote:"
1413 gdbserver way it does not support the bfd_stat operation. Verify
1414 whether those two files are not the same manually. */
1415
dccee2de 1416 if (!verified_as_different)
904578ed 1417 {
dccee2de 1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1419 return 0;
1420 }
1421
dccee2de 1422 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1425 name, objfile_name (parent_objfile));
904578ed 1426
287ccc17
JK
1427 return 0;
1428 }
1429
1430 return 1;
5b5d99cf
JB
1431}
1432
aa28a74e 1433char *debug_file_directory = NULL;
920d2a44
AC
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
3e43a32a
MS
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1441 value);
1442}
5b5d99cf
JB
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
1db33378
PP
1448/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1454
1455static char *
1456find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
9cce227f 1460{
1db33378
PP
1461 char *debugdir;
1462 char *debugfile;
9cce227f 1463 int i;
e4ab2fad
JK
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
5b5d99cf 1467
1db33378 1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1469 i = strlen (dir);
1db33378
PP
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1ffa32ee 1472
25522fae
JK
1473 debugfile = xmalloc (strlen (debug_file_directory) + 1
1474 + i
1475 + strlen (DEBUG_SUBDIRECTORY)
1476 + strlen ("/")
1db33378 1477 + strlen (debuglink)
25522fae 1478 + 1);
5b5d99cf
JB
1479
1480 /* First try in the same directory as the original file. */
1481 strcpy (debugfile, dir);
1db33378 1482 strcat (debugfile, debuglink);
5b5d99cf 1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1485 return debugfile;
5417f6dc 1486
5b5d99cf
JB
1487 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1488 strcpy (debugfile, dir);
1489 strcat (debugfile, DEBUG_SUBDIRECTORY);
1490 strcat (debugfile, "/");
1db33378 1491 strcat (debugfile, debuglink);
5b5d99cf 1492
32a0e547 1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1494 return debugfile;
5417f6dc 1495
24ddea62 1496 /* Then try in the global debugfile directories.
f888f159 1497
24ddea62
JK
1498 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1499 cause "/..." lookups. */
5417f6dc 1500
e4ab2fad
JK
1501 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1502 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1503
e4ab2fad
JK
1504 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1505 {
1506 strcpy (debugfile, debugdir);
aa28a74e 1507 strcat (debugfile, "/");
24ddea62 1508 strcat (debugfile, dir);
1db33378 1509 strcat (debugfile, debuglink);
aa28a74e 1510
32a0e547 1511 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1512 {
1513 do_cleanups (back_to);
1514 return debugfile;
1515 }
24ddea62
JK
1516
1517 /* If the file is in the sysroot, try using its base path in the
1518 global debugfile directory. */
1db33378
PP
1519 if (canon_dir != NULL
1520 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1521 strlen (gdb_sysroot)) == 0
1db33378 1522 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1523 {
e4ab2fad 1524 strcpy (debugfile, debugdir);
1db33378 1525 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1526 strcat (debugfile, "/");
1db33378 1527 strcat (debugfile, debuglink);
24ddea62 1528
32a0e547 1529 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1530 {
1531 do_cleanups (back_to);
1532 return debugfile;
1533 }
24ddea62 1534 }
aa28a74e 1535 }
f888f159 1536
e4ab2fad 1537 do_cleanups (back_to);
25522fae 1538 xfree (debugfile);
1db33378
PP
1539 return NULL;
1540}
1541
7edbb660 1542/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1543 If there were no directory separators in PATH, PATH will be empty
1544 string on return. */
1545
1546static void
1547terminate_after_last_dir_separator (char *path)
1548{
1549 int i;
1550
1551 /* Strip off the final filename part, leaving the directory name,
1552 followed by a slash. The directory can be relative or absolute. */
1553 for (i = strlen(path) - 1; i >= 0; i--)
1554 if (IS_DIR_SEPARATOR (path[i]))
1555 break;
1556
1557 /* If I is -1 then no directory is present there and DIR will be "". */
1558 path[i + 1] = '\0';
1559}
1560
1561/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1562 Returns pathname, or NULL. */
1563
1564char *
1565find_separate_debug_file_by_debuglink (struct objfile *objfile)
1566{
1567 char *debuglink;
1568 char *dir, *canon_dir;
1569 char *debugfile;
1570 unsigned long crc32;
1571 struct cleanup *cleanups;
1572
cc0ea93c 1573 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1574
1575 if (debuglink == NULL)
1576 {
1577 /* There's no separate debug info, hence there's no way we could
1578 load it => no warning. */
1579 return NULL;
1580 }
1581
71bdabee 1582 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1583 dir = xstrdup (objfile_name (objfile));
71bdabee 1584 make_cleanup (xfree, dir);
1db33378
PP
1585 terminate_after_last_dir_separator (dir);
1586 canon_dir = lrealpath (dir);
1587
1588 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1589 crc32, objfile);
1590 xfree (canon_dir);
1591
1592 if (debugfile == NULL)
1593 {
1594#ifdef HAVE_LSTAT
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
4262abfb
JK
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1602 {
1603 char *symlink_dir;
1604
4262abfb 1605 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1621#endif /* HAVE_LSTAT */
1622 }
aa28a74e 1623
1db33378 1624 do_cleanups (cleanups);
25522fae 1625 return debugfile;
5b5d99cf
JB
1626}
1627
c906108c
SS
1628/* This is the symbol-file command. Read the file, analyze its
1629 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1630 the command is rather bizarre:
1631
1632 1. The function buildargv implements various quoting conventions
1633 which are undocumented and have little or nothing in common with
1634 the way things are quoted (or not quoted) elsewhere in GDB.
1635
1636 2. Options are used, which are not generally used in GDB (perhaps
1637 "set mapped on", "set readnow on" would be better)
1638
1639 3. The order of options matters, which is contrary to GNU
c906108c
SS
1640 conventions (because it is confusing and inconvenient). */
1641
1642void
fba45db2 1643symbol_file_command (char *args, int from_tty)
c906108c 1644{
c906108c
SS
1645 dont_repeat ();
1646
1647 if (args == NULL)
1648 {
1adeb98a 1649 symbol_file_clear (from_tty);
c906108c
SS
1650 }
1651 else
1652 {
d1a41061 1653 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1654 int flags = OBJF_USERLOADED;
1655 struct cleanup *cleanups;
1656 char *name = NULL;
1657
7a292a7a 1658 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1659 while (*argv != NULL)
1660 {
78a4a9b9
AC
1661 if (strcmp (*argv, "-readnow") == 0)
1662 flags |= OBJF_READNOW;
1663 else if (**argv == '-')
8a3fe4f8 1664 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1665 else
1666 {
cb2f3a29 1667 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1668 name = *argv;
78a4a9b9 1669 }
cb2f3a29 1670
c906108c
SS
1671 argv++;
1672 }
1673
1674 if (name == NULL)
cb2f3a29
MK
1675 error (_("no symbol file name was specified"));
1676
c906108c
SS
1677 do_cleanups (cleanups);
1678 }
1679}
1680
1681/* Set the initial language.
1682
cb2f3a29
MK
1683 FIXME: A better solution would be to record the language in the
1684 psymtab when reading partial symbols, and then use it (if known) to
1685 set the language. This would be a win for formats that encode the
1686 language in an easily discoverable place, such as DWARF. For
1687 stabs, we can jump through hoops looking for specially named
1688 symbols or try to intuit the language from the specific type of
1689 stabs we find, but we can't do that until later when we read in
1690 full symbols. */
c906108c 1691
8b60591b 1692void
fba45db2 1693set_initial_language (void)
c906108c 1694{
9e6c82ad 1695 enum language lang = main_language ();
c906108c 1696
9e6c82ad 1697 if (lang == language_unknown)
01f8c46d 1698 {
bf6d8a91
TT
1699 char *name = main_name ();
1700 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1701
bf6d8a91
TT
1702 if (sym != NULL)
1703 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1704 }
cb2f3a29 1705
ccefe4c4
TT
1706 if (lang == language_unknown)
1707 {
1708 /* Make C the default language */
1709 lang = language_c;
c906108c 1710 }
ccefe4c4
TT
1711
1712 set_language (lang);
1713 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1714}
1715
874f5765 1716/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1717 open it normally. Returns a new reference to the BFD. On error,
1718 returns NULL with the BFD error set. */
874f5765
TG
1719
1720bfd *
08d2cd74 1721gdb_bfd_open_maybe_remote (const char *name)
874f5765 1722{
520b0001
TT
1723 bfd *result;
1724
874f5765 1725 if (remote_filename_p (name))
520b0001 1726 result = remote_bfd_open (name, gnutarget);
874f5765 1727 else
1c00ec6b 1728 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1729
520b0001 1730 return result;
874f5765
TG
1731}
1732
cb2f3a29
MK
1733/* Open the file specified by NAME and hand it off to BFD for
1734 preliminary analysis. Return a newly initialized bfd *, which
1735 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1736 absolute). In case of trouble, error() is called. */
c906108c
SS
1737
1738bfd *
69150c3d 1739symfile_bfd_open (const char *cname)
c906108c
SS
1740{
1741 bfd *sym_bfd;
1742 int desc;
69150c3d 1743 char *name, *absolute_name;
faab9922 1744 struct cleanup *back_to;
c906108c 1745
69150c3d 1746 if (remote_filename_p (cname))
f1838a98 1747 {
69150c3d 1748 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1749 if (!sym_bfd)
69150c3d 1750 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1751 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1752
1753 if (!bfd_check_format (sym_bfd, bfd_object))
1754 {
f9a062ff 1755 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1756 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1757 bfd_errmsg (bfd_get_error ()));
1758 }
1759
1760 return sym_bfd;
1761 }
1762
69150c3d 1763 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1764
1765 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1766 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1767 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1768#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1769 if (desc < 0)
1770 {
1771 char *exename = alloca (strlen (name) + 5);
433759f7 1772
c906108c 1773 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1774 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1775 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1776 }
1777#endif
1778 if (desc < 0)
1779 {
b8c9b27d 1780 make_cleanup (xfree, name);
c906108c
SS
1781 perror_with_name (name);
1782 }
cb2f3a29 1783
cb2f3a29
MK
1784 xfree (name);
1785 name = absolute_name;
faab9922 1786 back_to = make_cleanup (xfree, name);
c906108c 1787
1c00ec6b 1788 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1789 if (!sym_bfd)
faab9922
JK
1790 error (_("`%s': can't open to read symbols: %s."), name,
1791 bfd_errmsg (bfd_get_error ()));
549c1eea 1792 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1793
1794 if (!bfd_check_format (sym_bfd, bfd_object))
1795 {
f9a062ff 1796 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1797 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1798 bfd_errmsg (bfd_get_error ()));
1799 }
cb2f3a29 1800
faab9922
JK
1801 do_cleanups (back_to);
1802
cb2f3a29 1803 return sym_bfd;
c906108c
SS
1804}
1805
cb2f3a29
MK
1806/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1807 the section was not found. */
1808
0e931cf0
JB
1809int
1810get_section_index (struct objfile *objfile, char *section_name)
1811{
1812 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1813
0e931cf0
JB
1814 if (sect)
1815 return sect->index;
1816 else
1817 return -1;
1818}
1819
c256e171
DE
1820/* Link SF into the global symtab_fns list.
1821 FLAVOUR is the file format that SF handles.
1822 Called on startup by the _initialize routine in each object file format
1823 reader, to register information about each format the reader is prepared
1824 to handle. */
c906108c
SS
1825
1826void
c256e171 1827add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1828{
c256e171
DE
1829 registered_sym_fns fns = { flavour, sf };
1830
1831 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1832}
1833
cb2f3a29
MK
1834/* Initialize OBJFILE to read symbols from its associated BFD. It
1835 either returns or calls error(). The result is an initialized
1836 struct sym_fns in the objfile structure, that contains cached
1837 information about the symbol file. */
c906108c 1838
00b5771c 1839static const struct sym_fns *
31d99776 1840find_sym_fns (bfd *abfd)
c906108c 1841{
c256e171 1842 registered_sym_fns *rsf;
31d99776 1843 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1844 int i;
c906108c 1845
75245b24
MS
1846 if (our_flavour == bfd_target_srec_flavour
1847 || our_flavour == bfd_target_ihex_flavour
1848 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1849 return NULL; /* No symbols. */
75245b24 1850
c256e171
DE
1851 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1852 if (our_flavour == rsf->sym_flavour)
1853 return rsf->sym_fns;
cb2f3a29 1854
8a3fe4f8 1855 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1856 bfd_get_target (abfd));
c906108c
SS
1857}
1858\f
cb2f3a29 1859
c906108c
SS
1860/* This function runs the load command of our current target. */
1861
1862static void
fba45db2 1863load_command (char *arg, int from_tty)
c906108c 1864{
5b3fca71
TT
1865 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1866
e5cc9f32
JB
1867 dont_repeat ();
1868
4487aabf
PA
1869 /* The user might be reloading because the binary has changed. Take
1870 this opportunity to check. */
1871 reopen_exec_file ();
1872 reread_symbols ();
1873
c906108c 1874 if (arg == NULL)
1986bccd
AS
1875 {
1876 char *parg;
1877 int count = 0;
1878
1879 parg = arg = get_exec_file (1);
1880
1881 /* Count how many \ " ' tab space there are in the name. */
1882 while ((parg = strpbrk (parg, "\\\"'\t ")))
1883 {
1884 parg++;
1885 count++;
1886 }
1887
1888 if (count)
1889 {
1890 /* We need to quote this string so buildargv can pull it apart. */
1891 char *temp = xmalloc (strlen (arg) + count + 1 );
1892 char *ptemp = temp;
1893 char *prev;
1894
1895 make_cleanup (xfree, temp);
1896
1897 prev = parg = arg;
1898 while ((parg = strpbrk (parg, "\\\"'\t ")))
1899 {
1900 strncpy (ptemp, prev, parg - prev);
1901 ptemp += parg - prev;
1902 prev = parg++;
1903 *ptemp++ = '\\';
1904 }
1905 strcpy (ptemp, prev);
1906
1907 arg = temp;
1908 }
1909 }
1910
c906108c 1911 target_load (arg, from_tty);
2889e661
JB
1912
1913 /* After re-loading the executable, we don't really know which
1914 overlays are mapped any more. */
1915 overlay_cache_invalid = 1;
5b3fca71
TT
1916
1917 do_cleanups (cleanup);
c906108c
SS
1918}
1919
1920/* This version of "load" should be usable for any target. Currently
1921 it is just used for remote targets, not inftarg.c or core files,
1922 on the theory that only in that case is it useful.
1923
1924 Avoiding xmodem and the like seems like a win (a) because we don't have
1925 to worry about finding it, and (b) On VMS, fork() is very slow and so
1926 we don't want to run a subprocess. On the other hand, I'm not sure how
1927 performance compares. */
917317f4 1928
917317f4
JM
1929static int validate_download = 0;
1930
e4f9b4d5
MS
1931/* Callback service function for generic_load (bfd_map_over_sections). */
1932
1933static void
1934add_section_size_callback (bfd *abfd, asection *asec, void *data)
1935{
1936 bfd_size_type *sum = data;
1937
2c500098 1938 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1939}
1940
1941/* Opaque data for load_section_callback. */
1942struct load_section_data {
f698ca8e 1943 CORE_ADDR load_offset;
a76d924d
DJ
1944 struct load_progress_data *progress_data;
1945 VEC(memory_write_request_s) *requests;
1946};
1947
1948/* Opaque data for load_progress. */
1949struct load_progress_data {
1950 /* Cumulative data. */
e4f9b4d5
MS
1951 unsigned long write_count;
1952 unsigned long data_count;
1953 bfd_size_type total_size;
a76d924d
DJ
1954};
1955
1956/* Opaque data for load_progress for a single section. */
1957struct load_progress_section_data {
1958 struct load_progress_data *cumulative;
cf7a04e8 1959
a76d924d 1960 /* Per-section data. */
cf7a04e8
DJ
1961 const char *section_name;
1962 ULONGEST section_sent;
1963 ULONGEST section_size;
1964 CORE_ADDR lma;
1965 gdb_byte *buffer;
e4f9b4d5
MS
1966};
1967
a76d924d 1968/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1969
1970static void
1971load_progress (ULONGEST bytes, void *untyped_arg)
1972{
a76d924d
DJ
1973 struct load_progress_section_data *args = untyped_arg;
1974 struct load_progress_data *totals;
1975
1976 if (args == NULL)
1977 /* Writing padding data. No easy way to get at the cumulative
1978 stats, so just ignore this. */
1979 return;
1980
1981 totals = args->cumulative;
1982
1983 if (bytes == 0 && args->section_sent == 0)
1984 {
1985 /* The write is just starting. Let the user know we've started
1986 this section. */
79a45e25 1987 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1988 args->section_name, hex_string (args->section_size),
f5656ead 1989 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1990 return;
1991 }
cf7a04e8
DJ
1992
1993 if (validate_download)
1994 {
1995 /* Broken memories and broken monitors manifest themselves here
1996 when bring new computers to life. This doubles already slow
1997 downloads. */
1998 /* NOTE: cagney/1999-10-18: A more efficient implementation
1999 might add a verify_memory() method to the target vector and
2000 then use that. remote.c could implement that method using
2001 the ``qCRC'' packet. */
2002 gdb_byte *check = xmalloc (bytes);
2003 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2004
2005 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 2006 error (_("Download verify read failed at %s"),
f5656ead 2007 paddress (target_gdbarch (), args->lma));
cf7a04e8 2008 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 2009 error (_("Download verify compare failed at %s"),
f5656ead 2010 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
2011 do_cleanups (verify_cleanups);
2012 }
a76d924d 2013 totals->data_count += bytes;
cf7a04e8
DJ
2014 args->lma += bytes;
2015 args->buffer += bytes;
a76d924d 2016 totals->write_count += 1;
cf7a04e8 2017 args->section_sent += bytes;
522002f9 2018 if (check_quit_flag ()
cf7a04e8
DJ
2019 || (deprecated_ui_load_progress_hook != NULL
2020 && deprecated_ui_load_progress_hook (args->section_name,
2021 args->section_sent)))
2022 error (_("Canceled the download"));
2023
2024 if (deprecated_show_load_progress != NULL)
2025 deprecated_show_load_progress (args->section_name,
2026 args->section_sent,
2027 args->section_size,
a76d924d
DJ
2028 totals->data_count,
2029 totals->total_size);
cf7a04e8
DJ
2030}
2031
e4f9b4d5
MS
2032/* Callback service function for generic_load (bfd_map_over_sections). */
2033
2034static void
2035load_section_callback (bfd *abfd, asection *asec, void *data)
2036{
a76d924d 2037 struct memory_write_request *new_request;
e4f9b4d5 2038 struct load_section_data *args = data;
a76d924d 2039 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2040 bfd_size_type size = bfd_get_section_size (asec);
2041 gdb_byte *buffer;
cf7a04e8 2042 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2043
cf7a04e8
DJ
2044 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2045 return;
e4f9b4d5 2046
cf7a04e8
DJ
2047 if (size == 0)
2048 return;
e4f9b4d5 2049
a76d924d
DJ
2050 new_request = VEC_safe_push (memory_write_request_s,
2051 args->requests, NULL);
2052 memset (new_request, 0, sizeof (struct memory_write_request));
2053 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2054 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2055 new_request->end = new_request->begin + size; /* FIXME Should size
2056 be in instead? */
a76d924d
DJ
2057 new_request->data = xmalloc (size);
2058 new_request->baton = section_data;
cf7a04e8 2059
a76d924d 2060 buffer = new_request->data;
cf7a04e8 2061
a76d924d
DJ
2062 section_data->cumulative = args->progress_data;
2063 section_data->section_name = sect_name;
2064 section_data->section_size = size;
2065 section_data->lma = new_request->begin;
2066 section_data->buffer = buffer;
cf7a04e8
DJ
2067
2068 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2069}
2070
2071/* Clean up an entire memory request vector, including load
2072 data and progress records. */
cf7a04e8 2073
a76d924d
DJ
2074static void
2075clear_memory_write_data (void *arg)
2076{
2077 VEC(memory_write_request_s) **vec_p = arg;
2078 VEC(memory_write_request_s) *vec = *vec_p;
2079 int i;
2080 struct memory_write_request *mr;
cf7a04e8 2081
a76d924d
DJ
2082 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2083 {
2084 xfree (mr->data);
2085 xfree (mr->baton);
2086 }
2087 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2088}
2089
c906108c 2090void
9cbe5fff 2091generic_load (const char *args, int from_tty)
c906108c 2092{
c906108c 2093 bfd *loadfile_bfd;
2b71414d 2094 struct timeval start_time, end_time;
917317f4 2095 char *filename;
1986bccd 2096 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2097 struct load_section_data cbdata;
a76d924d 2098 struct load_progress_data total_progress;
79a45e25 2099 struct ui_out *uiout = current_uiout;
a76d924d 2100
e4f9b4d5 2101 CORE_ADDR entry;
1986bccd 2102 char **argv;
e4f9b4d5 2103
a76d924d
DJ
2104 memset (&cbdata, 0, sizeof (cbdata));
2105 memset (&total_progress, 0, sizeof (total_progress));
2106 cbdata.progress_data = &total_progress;
2107
2108 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2109
d1a41061
PP
2110 if (args == NULL)
2111 error_no_arg (_("file to load"));
1986bccd 2112
d1a41061 2113 argv = gdb_buildargv (args);
1986bccd
AS
2114 make_cleanup_freeargv (argv);
2115
2116 filename = tilde_expand (argv[0]);
2117 make_cleanup (xfree, filename);
2118
2119 if (argv[1] != NULL)
917317f4 2120 {
f698ca8e 2121 const char *endptr;
ba5f2f8a 2122
f698ca8e 2123 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2124
2125 /* If the last word was not a valid number then
2126 treat it as a file name with spaces in. */
2127 if (argv[1] == endptr)
2128 error (_("Invalid download offset:%s."), argv[1]);
2129
2130 if (argv[2] != NULL)
2131 error (_("Too many parameters."));
917317f4 2132 }
c906108c 2133
c378eb4e 2134 /* Open the file for loading. */
1c00ec6b 2135 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2136 if (loadfile_bfd == NULL)
2137 {
2138 perror_with_name (filename);
2139 return;
2140 }
917317f4 2141
f9a062ff 2142 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2143
c5aa993b 2144 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2145 {
8a3fe4f8 2146 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2147 bfd_errmsg (bfd_get_error ()));
2148 }
c5aa993b 2149
5417f6dc 2150 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2151 (void *) &total_progress.total_size);
2152
2153 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2154
2b71414d 2155 gettimeofday (&start_time, NULL);
c906108c 2156
a76d924d
DJ
2157 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2158 load_progress) != 0)
2159 error (_("Load failed"));
c906108c 2160
2b71414d 2161 gettimeofday (&end_time, NULL);
ba5f2f8a 2162
e4f9b4d5 2163 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2164 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2165 ui_out_text (uiout, "Start address ");
f5656ead 2166 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2167 ui_out_text (uiout, ", load size ");
a76d924d 2168 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2169 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2170 /* We were doing this in remote-mips.c, I suspect it is right
2171 for other targets too. */
fb14de7b 2172 regcache_write_pc (get_current_regcache (), entry);
c906108c 2173
38963c97
DJ
2174 /* Reset breakpoints, now that we have changed the load image. For
2175 instance, breakpoints may have been set (or reset, by
2176 post_create_inferior) while connected to the target but before we
2177 loaded the program. In that case, the prologue analyzer could
2178 have read instructions from the target to find the right
2179 breakpoint locations. Loading has changed the contents of that
2180 memory. */
2181
2182 breakpoint_re_set ();
2183
7ca9f392
AC
2184 /* FIXME: are we supposed to call symbol_file_add or not? According
2185 to a comment from remote-mips.c (where a call to symbol_file_add
2186 was commented out), making the call confuses GDB if more than one
2187 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2188 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2189
a76d924d
DJ
2190 print_transfer_performance (gdb_stdout, total_progress.data_count,
2191 total_progress.write_count,
2192 &start_time, &end_time);
c906108c
SS
2193
2194 do_cleanups (old_cleanups);
2195}
2196
c378eb4e 2197/* Report how fast the transfer went. */
c906108c 2198
917317f4 2199void
d9fcf2fb 2200print_transfer_performance (struct ui_file *stream,
917317f4
JM
2201 unsigned long data_count,
2202 unsigned long write_count,
2b71414d
DJ
2203 const struct timeval *start_time,
2204 const struct timeval *end_time)
917317f4 2205{
9f43d28c 2206 ULONGEST time_count;
79a45e25 2207 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2208
2209 /* Compute the elapsed time in milliseconds, as a tradeoff between
2210 accuracy and overflow. */
2211 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2212 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2213
8b93c638
JM
2214 ui_out_text (uiout, "Transfer rate: ");
2215 if (time_count > 0)
2216 {
9f43d28c
DJ
2217 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2218
2219 if (ui_out_is_mi_like_p (uiout))
2220 {
2221 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2222 ui_out_text (uiout, " bits/sec");
2223 }
2224 else if (rate < 1024)
2225 {
2226 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2227 ui_out_text (uiout, " bytes/sec");
2228 }
2229 else
2230 {
2231 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2232 ui_out_text (uiout, " KB/sec");
2233 }
8b93c638
JM
2234 }
2235 else
2236 {
ba5f2f8a 2237 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2238 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2239 }
2240 if (write_count > 0)
2241 {
2242 ui_out_text (uiout, ", ");
ba5f2f8a 2243 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2244 ui_out_text (uiout, " bytes/write");
2245 }
2246 ui_out_text (uiout, ".\n");
c906108c
SS
2247}
2248
2249/* This function allows the addition of incrementally linked object files.
2250 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2251/* Note: ezannoni 2000-04-13 This function/command used to have a
2252 special case syntax for the rombug target (Rombug is the boot
2253 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2254 rombug case, the user doesn't need to supply a text address,
2255 instead a call to target_link() (in target.c) would supply the
c378eb4e 2256 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2257
c906108c 2258static void
fba45db2 2259add_symbol_file_command (char *args, int from_tty)
c906108c 2260{
5af949e3 2261 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2262 char *filename = NULL;
d03de421 2263 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2264 char *arg;
db162d44 2265 int section_index = 0;
2acceee2
JM
2266 int argcnt = 0;
2267 int sec_num = 0;
2268 int i;
db162d44
EZ
2269 int expecting_sec_name = 0;
2270 int expecting_sec_addr = 0;
5b96932b 2271 char **argv;
76ad5e1e 2272 struct objfile *objf;
db162d44 2273
a39a16c4 2274 struct sect_opt
2acceee2 2275 {
2acceee2
JM
2276 char *name;
2277 char *value;
a39a16c4 2278 };
db162d44 2279
a39a16c4
MM
2280 struct section_addr_info *section_addrs;
2281 struct sect_opt *sect_opts = NULL;
2282 size_t num_sect_opts = 0;
3017564a 2283 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2284
a39a16c4 2285 num_sect_opts = 16;
5417f6dc 2286 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2287 * sizeof (struct sect_opt));
2288
c906108c
SS
2289 dont_repeat ();
2290
2291 if (args == NULL)
8a3fe4f8 2292 error (_("add-symbol-file takes a file name and an address"));
c906108c 2293
d1a41061 2294 argv = gdb_buildargv (args);
5b96932b 2295 make_cleanup_freeargv (argv);
db162d44 2296
5b96932b
AS
2297 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2298 {
c378eb4e 2299 /* Process the argument. */
db162d44 2300 if (argcnt == 0)
c906108c 2301 {
c378eb4e 2302 /* The first argument is the file name. */
db162d44 2303 filename = tilde_expand (arg);
3017564a 2304 make_cleanup (xfree, filename);
c906108c 2305 }
41dc8db8
MB
2306 else if (argcnt == 1)
2307 {
2308 /* The second argument is always the text address at which
2309 to load the program. */
2310 sect_opts[section_index].name = ".text";
2311 sect_opts[section_index].value = arg;
2312 if (++section_index >= num_sect_opts)
2313 {
2314 num_sect_opts *= 2;
2315 sect_opts = ((struct sect_opt *)
2316 xrealloc (sect_opts,
2317 num_sect_opts
2318 * sizeof (struct sect_opt)));
2319 }
2320 }
db162d44 2321 else
41dc8db8
MB
2322 {
2323 /* It's an option (starting with '-') or it's an argument
2324 to an option. */
41dc8db8
MB
2325 if (expecting_sec_name)
2326 {
2327 sect_opts[section_index].name = arg;
2328 expecting_sec_name = 0;
2329 }
2330 else if (expecting_sec_addr)
2331 {
2332 sect_opts[section_index].value = arg;
2333 expecting_sec_addr = 0;
2334 if (++section_index >= num_sect_opts)
2335 {
2336 num_sect_opts *= 2;
2337 sect_opts = ((struct sect_opt *)
2338 xrealloc (sect_opts,
2339 num_sect_opts
2340 * sizeof (struct sect_opt)));
2341 }
2342 }
2343 else if (strcmp (arg, "-readnow") == 0)
2344 flags |= OBJF_READNOW;
2345 else if (strcmp (arg, "-s") == 0)
2346 {
2347 expecting_sec_name = 1;
2348 expecting_sec_addr = 1;
2349 }
2350 else
2351 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2352 " [-readnow] [-s <secname> <addr>]*"));
2353 }
c906108c 2354 }
c906108c 2355
927890d0
JB
2356 /* This command takes at least two arguments. The first one is a
2357 filename, and the second is the address where this file has been
2358 loaded. Abort now if this address hasn't been provided by the
2359 user. */
2360 if (section_index < 1)
2361 error (_("The address where %s has been loaded is missing"), filename);
2362
c378eb4e 2363 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2364 a sect_addr_info structure to be passed around to other
2365 functions. We have to split this up into separate print
bb599908 2366 statements because hex_string returns a local static
c378eb4e 2367 string. */
5417f6dc 2368
a3f17187 2369 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2370 section_addrs = alloc_section_addr_info (section_index);
2371 make_cleanup (xfree, section_addrs);
db162d44 2372 for (i = 0; i < section_index; i++)
c906108c 2373 {
db162d44
EZ
2374 CORE_ADDR addr;
2375 char *val = sect_opts[i].value;
2376 char *sec = sect_opts[i].name;
5417f6dc 2377
ae822768 2378 addr = parse_and_eval_address (val);
db162d44 2379
db162d44 2380 /* Here we store the section offsets in the order they were
c378eb4e 2381 entered on the command line. */
a39a16c4
MM
2382 section_addrs->other[sec_num].name = sec;
2383 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2384 printf_unfiltered ("\t%s_addr = %s\n", sec,
2385 paddress (gdbarch, addr));
db162d44
EZ
2386 sec_num++;
2387
5417f6dc 2388 /* The object's sections are initialized when a
db162d44 2389 call is made to build_objfile_section_table (objfile).
5417f6dc 2390 This happens in reread_symbols.
db162d44
EZ
2391 At this point, we don't know what file type this is,
2392 so we can't determine what section names are valid. */
2acceee2 2393 }
d76488d8 2394 section_addrs->num_sections = sec_num;
db162d44 2395
2acceee2 2396 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2397 error (_("Not confirmed."));
c906108c 2398
76ad5e1e
NB
2399 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2400 section_addrs, flags);
2401
2402 add_target_sections_of_objfile (objf);
c906108c
SS
2403
2404 /* Getting new symbols may change our opinion about what is
2405 frameless. */
2406 reinit_frame_cache ();
db162d44 2407 do_cleanups (my_cleanups);
c906108c
SS
2408}
2409\f
70992597 2410
63644780
NB
2411/* This function removes a symbol file that was added via add-symbol-file. */
2412
2413static void
2414remove_symbol_file_command (char *args, int from_tty)
2415{
2416 char **argv;
2417 struct objfile *objf = NULL;
2418 struct cleanup *my_cleanups;
2419 struct program_space *pspace = current_program_space;
2420 struct gdbarch *gdbarch = get_current_arch ();
2421
2422 dont_repeat ();
2423
2424 if (args == NULL)
2425 error (_("remove-symbol-file: no symbol file provided"));
2426
2427 my_cleanups = make_cleanup (null_cleanup, NULL);
2428
2429 argv = gdb_buildargv (args);
2430
2431 if (strcmp (argv[0], "-a") == 0)
2432 {
2433 /* Interpret the next argument as an address. */
2434 CORE_ADDR addr;
2435
2436 if (argv[1] == NULL)
2437 error (_("Missing address argument"));
2438
2439 if (argv[2] != NULL)
2440 error (_("Junk after %s"), argv[1]);
2441
2442 addr = parse_and_eval_address (argv[1]);
2443
2444 ALL_OBJFILES (objf)
2445 {
d03de421
PA
2446 if ((objf->flags & OBJF_USERLOADED) != 0
2447 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2448 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2449 break;
2450 }
2451 }
2452 else if (argv[0] != NULL)
2453 {
2454 /* Interpret the current argument as a file name. */
2455 char *filename;
2456
2457 if (argv[1] != NULL)
2458 error (_("Junk after %s"), argv[0]);
2459
2460 filename = tilde_expand (argv[0]);
2461 make_cleanup (xfree, filename);
2462
2463 ALL_OBJFILES (objf)
2464 {
d03de421
PA
2465 if ((objf->flags & OBJF_USERLOADED) != 0
2466 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2467 && objf->pspace == pspace
2468 && filename_cmp (filename, objfile_name (objf)) == 0)
2469 break;
2470 }
2471 }
2472
2473 if (objf == NULL)
2474 error (_("No symbol file found"));
2475
2476 if (from_tty
2477 && !query (_("Remove symbol table from file \"%s\"? "),
2478 objfile_name (objf)))
2479 error (_("Not confirmed."));
2480
2481 free_objfile (objf);
2482 clear_symtab_users (0);
2483
2484 do_cleanups (my_cleanups);
2485}
2486
4ac39b97
JK
2487typedef struct objfile *objfilep;
2488
2489DEF_VEC_P (objfilep);
2490
c906108c 2491/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2492
c906108c 2493void
fba45db2 2494reread_symbols (void)
c906108c
SS
2495{
2496 struct objfile *objfile;
2497 long new_modtime;
c906108c
SS
2498 struct stat new_statbuf;
2499 int res;
4ac39b97
JK
2500 VEC (objfilep) *new_objfiles = NULL;
2501 struct cleanup *all_cleanups;
2502
2503 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2504
2505 /* With the addition of shared libraries, this should be modified,
2506 the load time should be saved in the partial symbol tables, since
2507 different tables may come from different source files. FIXME.
2508 This routine should then walk down each partial symbol table
c378eb4e 2509 and see if the symbol table that it originates from has been changed. */
c906108c 2510
c5aa993b
JM
2511 for (objfile = object_files; objfile; objfile = objfile->next)
2512 {
9cce227f
TG
2513 if (objfile->obfd == NULL)
2514 continue;
2515
2516 /* Separate debug objfiles are handled in the main objfile. */
2517 if (objfile->separate_debug_objfile_backlink)
2518 continue;
2519
02aeec7b
JB
2520 /* If this object is from an archive (what you usually create with
2521 `ar', often called a `static library' on most systems, though
2522 a `shared library' on AIX is also an archive), then you should
2523 stat on the archive name, not member name. */
9cce227f
TG
2524 if (objfile->obfd->my_archive)
2525 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2526 else
4262abfb 2527 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2528 if (res != 0)
2529 {
c378eb4e 2530 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2531 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2532 objfile_name (objfile));
9cce227f
TG
2533 continue;
2534 }
2535 new_modtime = new_statbuf.st_mtime;
2536 if (new_modtime != objfile->mtime)
2537 {
2538 struct cleanup *old_cleanups;
2539 struct section_offsets *offsets;
2540 int num_offsets;
24ba069a 2541 char *original_name;
9cce227f
TG
2542
2543 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2544 objfile_name (objfile));
9cce227f
TG
2545
2546 /* There are various functions like symbol_file_add,
2547 symfile_bfd_open, syms_from_objfile, etc., which might
2548 appear to do what we want. But they have various other
2549 effects which we *don't* want. So we just do stuff
2550 ourselves. We don't worry about mapped files (for one thing,
2551 any mapped file will be out of date). */
2552
2553 /* If we get an error, blow away this objfile (not sure if
2554 that is the correct response for things like shared
2555 libraries). */
2556 old_cleanups = make_cleanup_free_objfile (objfile);
2557 /* We need to do this whenever any symbols go away. */
2558 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2559
0ba1096a
KT
2560 if (exec_bfd != NULL
2561 && filename_cmp (bfd_get_filename (objfile->obfd),
2562 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2563 {
2564 /* Reload EXEC_BFD without asking anything. */
2565
2566 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2567 }
2568
f6eeced0
JK
2569 /* Keep the calls order approx. the same as in free_objfile. */
2570
2571 /* Free the separate debug objfiles. It will be
2572 automatically recreated by sym_read. */
2573 free_objfile_separate_debug (objfile);
2574
2575 /* Remove any references to this objfile in the global
2576 value lists. */
2577 preserve_values (objfile);
2578
2579 /* Nuke all the state that we will re-read. Much of the following
2580 code which sets things to NULL really is necessary to tell
2581 other parts of GDB that there is nothing currently there.
2582
2583 Try to keep the freeing order compatible with free_objfile. */
2584
2585 if (objfile->sf != NULL)
2586 {
2587 (*objfile->sf->sym_finish) (objfile);
2588 }
2589
2590 clear_objfile_data (objfile);
2591
e1507e95 2592 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2593 {
2594 struct bfd *obfd = objfile->obfd;
d3846e71 2595 char *obfd_filename;
a4453b7e
TT
2596
2597 obfd_filename = bfd_get_filename (objfile->obfd);
2598 /* Open the new BFD before freeing the old one, so that
2599 the filename remains live. */
08d2cd74 2600 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2601 if (objfile->obfd == NULL)
2602 {
2603 /* We have to make a cleanup and error here, rather
2604 than erroring later, because once we unref OBFD,
2605 OBFD_FILENAME will be freed. */
2606 make_cleanup_bfd_unref (obfd);
2607 error (_("Can't open %s to read symbols."), obfd_filename);
2608 }
a4453b7e
TT
2609 gdb_bfd_unref (obfd);
2610 }
2611
24ba069a
JK
2612 original_name = xstrdup (objfile->original_name);
2613 make_cleanup (xfree, original_name);
2614
9cce227f
TG
2615 /* bfd_openr sets cacheable to true, which is what we want. */
2616 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2617 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2618 bfd_errmsg (bfd_get_error ()));
2619
2620 /* Save the offsets, we will nuke them with the rest of the
2621 objfile_obstack. */
2622 num_offsets = objfile->num_sections;
2623 offsets = ((struct section_offsets *)
2624 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2625 memcpy (offsets, objfile->section_offsets,
2626 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2627
9cce227f
TG
2628 /* FIXME: Do we have to free a whole linked list, or is this
2629 enough? */
2630 if (objfile->global_psymbols.list)
2631 xfree (objfile->global_psymbols.list);
2632 memset (&objfile->global_psymbols, 0,
2633 sizeof (objfile->global_psymbols));
2634 if (objfile->static_psymbols.list)
2635 xfree (objfile->static_psymbols.list);
2636 memset (&objfile->static_psymbols, 0,
2637 sizeof (objfile->static_psymbols));
2638
c378eb4e 2639 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2640 psymbol_bcache_free (objfile->psymbol_cache);
2641 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2642 obstack_free (&objfile->objfile_obstack, 0);
2643 objfile->sections = NULL;
2644 objfile->symtabs = NULL;
2645 objfile->psymtabs = NULL;
2646 objfile->psymtabs_addrmap = NULL;
2647 objfile->free_psymtabs = NULL;
34eaf542 2648 objfile->template_symbols = NULL;
9cce227f 2649
9cce227f
TG
2650 /* obstack_init also initializes the obstack so it is
2651 empty. We could use obstack_specify_allocation but
d82ea6a8 2652 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2653 obstack_init (&objfile->objfile_obstack);
779bd270 2654
846060df
JB
2655 /* set_objfile_per_bfd potentially allocates the per-bfd
2656 data on the objfile's obstack (if sharing data across
2657 multiple users is not possible), so it's important to
2658 do it *after* the obstack has been initialized. */
2659 set_objfile_per_bfd (objfile);
2660
24ba069a
JK
2661 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2662 original_name,
2663 strlen (original_name));
2664
779bd270
DE
2665 /* Reset the sym_fns pointer. The ELF reader can change it
2666 based on whether .gdb_index is present, and we need it to
2667 start over. PR symtab/15885 */
8fb8eb5c 2668 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2669
d82ea6a8 2670 build_objfile_section_table (objfile);
9cce227f
TG
2671 terminate_minimal_symbol_table (objfile);
2672
2673 /* We use the same section offsets as from last time. I'm not
2674 sure whether that is always correct for shared libraries. */
2675 objfile->section_offsets = (struct section_offsets *)
2676 obstack_alloc (&objfile->objfile_obstack,
2677 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2678 memcpy (objfile->section_offsets, offsets,
2679 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2680 objfile->num_sections = num_offsets;
2681
2682 /* What the hell is sym_new_init for, anyway? The concept of
2683 distinguishing between the main file and additional files
2684 in this way seems rather dubious. */
2685 if (objfile == symfile_objfile)
c906108c 2686 {
9cce227f 2687 (*objfile->sf->sym_new_init) (objfile);
c906108c 2688 }
9cce227f
TG
2689
2690 (*objfile->sf->sym_init) (objfile);
2691 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2692
2693 objfile->flags &= ~OBJF_PSYMTABS_READ;
2694 read_symbols (objfile, 0);
b11896a5 2695
9cce227f 2696 if (!objfile_has_symbols (objfile))
c906108c 2697 {
9cce227f
TG
2698 wrap_here ("");
2699 printf_unfiltered (_("(no debugging symbols found)\n"));
2700 wrap_here ("");
c5aa993b 2701 }
9cce227f
TG
2702
2703 /* We're done reading the symbol file; finish off complaints. */
2704 clear_complaints (&symfile_complaints, 0, 1);
2705
2706 /* Getting new symbols may change our opinion about what is
2707 frameless. */
2708
2709 reinit_frame_cache ();
2710
2711 /* Discard cleanups as symbol reading was successful. */
2712 discard_cleanups (old_cleanups);
2713
2714 /* If the mtime has changed between the time we set new_modtime
2715 and now, we *want* this to be out of date, so don't call stat
2716 again now. */
2717 objfile->mtime = new_modtime;
9cce227f 2718 init_entry_point_info (objfile);
4ac39b97
JK
2719
2720 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2721 }
2722 }
c906108c 2723
4ac39b97 2724 if (new_objfiles)
ea53e89f 2725 {
4ac39b97
JK
2726 int ix;
2727
ff3536bc
UW
2728 /* Notify objfiles that we've modified objfile sections. */
2729 objfiles_changed ();
2730
c1e56572 2731 clear_symtab_users (0);
4ac39b97
JK
2732
2733 /* clear_objfile_data for each objfile was called before freeing it and
2734 observer_notify_new_objfile (NULL) has been called by
2735 clear_symtab_users above. Notify the new files now. */
2736 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2737 observer_notify_new_objfile (objfile);
2738
ea53e89f
JB
2739 /* At least one objfile has changed, so we can consider that
2740 the executable we're debugging has changed too. */
781b42b0 2741 observer_notify_executable_changed ();
ea53e89f 2742 }
4ac39b97
JK
2743
2744 do_cleanups (all_cleanups);
c906108c 2745}
c906108c
SS
2746\f
2747
c5aa993b
JM
2748typedef struct
2749{
2750 char *ext;
c906108c 2751 enum language lang;
c5aa993b
JM
2752}
2753filename_language;
c906108c 2754
c5aa993b 2755static filename_language *filename_language_table;
c906108c
SS
2756static int fl_table_size, fl_table_next;
2757
2758static void
fba45db2 2759add_filename_language (char *ext, enum language lang)
c906108c
SS
2760{
2761 if (fl_table_next >= fl_table_size)
2762 {
2763 fl_table_size += 10;
5417f6dc 2764 filename_language_table =
25bf3106
PM
2765 xrealloc (filename_language_table,
2766 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2767 }
2768
4fcf66da 2769 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2770 filename_language_table[fl_table_next].lang = lang;
2771 fl_table_next++;
2772}
2773
2774static char *ext_args;
920d2a44
AC
2775static void
2776show_ext_args (struct ui_file *file, int from_tty,
2777 struct cmd_list_element *c, const char *value)
2778{
3e43a32a
MS
2779 fprintf_filtered (file,
2780 _("Mapping between filename extension "
2781 "and source language is \"%s\".\n"),
920d2a44
AC
2782 value);
2783}
c906108c
SS
2784
2785static void
26c41df3 2786set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2787{
2788 int i;
2789 char *cp = ext_args;
2790 enum language lang;
2791
c378eb4e 2792 /* First arg is filename extension, starting with '.' */
c906108c 2793 if (*cp != '.')
8a3fe4f8 2794 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2795
2796 /* Find end of first arg. */
c5aa993b 2797 while (*cp && !isspace (*cp))
c906108c
SS
2798 cp++;
2799
2800 if (*cp == '\0')
3e43a32a
MS
2801 error (_("'%s': two arguments required -- "
2802 "filename extension and language"),
c906108c
SS
2803 ext_args);
2804
c378eb4e 2805 /* Null-terminate first arg. */
c5aa993b 2806 *cp++ = '\0';
c906108c
SS
2807
2808 /* Find beginning of second arg, which should be a source language. */
529480d0 2809 cp = skip_spaces (cp);
c906108c
SS
2810
2811 if (*cp == '\0')
3e43a32a
MS
2812 error (_("'%s': two arguments required -- "
2813 "filename extension and language"),
c906108c
SS
2814 ext_args);
2815
2816 /* Lookup the language from among those we know. */
2817 lang = language_enum (cp);
2818
2819 /* Now lookup the filename extension: do we already know it? */
2820 for (i = 0; i < fl_table_next; i++)
2821 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2822 break;
2823
2824 if (i >= fl_table_next)
2825 {
c378eb4e 2826 /* New file extension. */
c906108c
SS
2827 add_filename_language (ext_args, lang);
2828 }
2829 else
2830 {
c378eb4e 2831 /* Redefining a previously known filename extension. */
c906108c
SS
2832
2833 /* if (from_tty) */
2834 /* query ("Really make files of type %s '%s'?", */
2835 /* ext_args, language_str (lang)); */
2836
b8c9b27d 2837 xfree (filename_language_table[i].ext);
4fcf66da 2838 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2839 filename_language_table[i].lang = lang;
2840 }
2841}
2842
2843static void
fba45db2 2844info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2845{
2846 int i;
2847
a3f17187 2848 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2849 printf_filtered ("\n\n");
2850 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2851 printf_filtered ("\t%s\t- %s\n",
2852 filename_language_table[i].ext,
c906108c
SS
2853 language_str (filename_language_table[i].lang));
2854}
2855
2856static void
fba45db2 2857init_filename_language_table (void)
c906108c 2858{
c378eb4e 2859 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2860 {
2861 fl_table_size = 20;
2862 fl_table_next = 0;
c5aa993b 2863 filename_language_table =
c906108c 2864 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2865 add_filename_language (".c", language_c);
6aecb9c2 2866 add_filename_language (".d", language_d);
c5aa993b
JM
2867 add_filename_language (".C", language_cplus);
2868 add_filename_language (".cc", language_cplus);
2869 add_filename_language (".cp", language_cplus);
2870 add_filename_language (".cpp", language_cplus);
2871 add_filename_language (".cxx", language_cplus);
2872 add_filename_language (".c++", language_cplus);
2873 add_filename_language (".java", language_java);
c906108c 2874 add_filename_language (".class", language_java);
da2cf7e0 2875 add_filename_language (".m", language_objc);
c5aa993b
JM
2876 add_filename_language (".f", language_fortran);
2877 add_filename_language (".F", language_fortran);
fd5700c7
JK
2878 add_filename_language (".for", language_fortran);
2879 add_filename_language (".FOR", language_fortran);
2880 add_filename_language (".ftn", language_fortran);
2881 add_filename_language (".FTN", language_fortran);
2882 add_filename_language (".fpp", language_fortran);
2883 add_filename_language (".FPP", language_fortran);
2884 add_filename_language (".f90", language_fortran);
2885 add_filename_language (".F90", language_fortran);
2886 add_filename_language (".f95", language_fortran);
2887 add_filename_language (".F95", language_fortran);
2888 add_filename_language (".f03", language_fortran);
2889 add_filename_language (".F03", language_fortran);
2890 add_filename_language (".f08", language_fortran);
2891 add_filename_language (".F08", language_fortran);
c5aa993b 2892 add_filename_language (".s", language_asm);
aa707ed0 2893 add_filename_language (".sx", language_asm);
c5aa993b 2894 add_filename_language (".S", language_asm);
c6fd39cd
PM
2895 add_filename_language (".pas", language_pascal);
2896 add_filename_language (".p", language_pascal);
2897 add_filename_language (".pp", language_pascal);
963a6417
PH
2898 add_filename_language (".adb", language_ada);
2899 add_filename_language (".ads", language_ada);
2900 add_filename_language (".a", language_ada);
2901 add_filename_language (".ada", language_ada);
dde59185 2902 add_filename_language (".dg", language_ada);
c906108c
SS
2903 }
2904}
2905
2906enum language
dd786858 2907deduce_language_from_filename (const char *filename)
c906108c
SS
2908{
2909 int i;
2910 char *cp;
2911
2912 if (filename != NULL)
2913 if ((cp = strrchr (filename, '.')) != NULL)
2914 for (i = 0; i < fl_table_next; i++)
2915 if (strcmp (cp, filename_language_table[i].ext) == 0)
2916 return filename_language_table[i].lang;
2917
2918 return language_unknown;
2919}
2920\f
2921/* allocate_symtab:
2922
2923 Allocate and partly initialize a new symbol table. Return a pointer
2924 to it. error() if no space.
2925
2926 Caller must set these fields:
c5aa993b
JM
2927 LINETABLE(symtab)
2928 symtab->blockvector
2929 symtab->dirname
2930 symtab->free_code
2931 symtab->free_ptr
c906108c
SS
2932 */
2933
2934struct symtab *
72b9f47f 2935allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2936{
52f0bd74 2937 struct symtab *symtab;
c906108c
SS
2938
2939 symtab = (struct symtab *)
4a146b47 2940 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2941 memset (symtab, 0, sizeof (*symtab));
21ea9eec
TT
2942 symtab->filename = bcache (filename, strlen (filename) + 1,
2943 objfile->per_bfd->filename_cache);
c5aa993b
JM
2944 symtab->fullname = NULL;
2945 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2946 symtab->debugformat = "unknown";
c906108c 2947
c378eb4e 2948 /* Hook it to the objfile it comes from. */
c906108c 2949
c5aa993b
JM
2950 symtab->objfile = objfile;
2951 symtab->next = objfile->symtabs;
2952 objfile->symtabs = symtab;
c906108c 2953
db0fec5c
DE
2954 /* This can be very verbose with lots of headers.
2955 Only print at higher debug levels. */
2956 if (symtab_create_debug >= 2)
45cfd468
DE
2957 {
2958 /* Be a bit clever with debugging messages, and don't print objfile
2959 every time, only when it changes. */
2960 static char *last_objfile_name = NULL;
2961
2962 if (last_objfile_name == NULL
4262abfb 2963 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2964 {
2965 xfree (last_objfile_name);
4262abfb 2966 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2967 fprintf_unfiltered (gdb_stdlog,
2968 "Creating one or more symtabs for objfile %s ...\n",
2969 last_objfile_name);
2970 }
2971 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2972 "Created symtab %s for module %s.\n",
2973 host_address_to_string (symtab), filename);
45cfd468
DE
2974 }
2975
c906108c
SS
2976 return (symtab);
2977}
c906108c 2978\f
c5aa993b 2979
c906108c 2980/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2981 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2982
2983void
c1e56572 2984clear_symtab_users (int add_flags)
c906108c
SS
2985{
2986 /* Someday, we should do better than this, by only blowing away
2987 the things that really need to be blown. */
c0501be5
DJ
2988
2989 /* Clear the "current" symtab first, because it is no longer valid.
2990 breakpoint_re_set may try to access the current symtab. */
2991 clear_current_source_symtab_and_line ();
2992
c906108c 2993 clear_displays ();
c1e56572
JK
2994 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2995 breakpoint_re_set ();
1bfeeb0f 2996 clear_last_displayed_sal ();
c906108c 2997 clear_pc_function_cache ();
06d3b283 2998 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2999
3000 /* Clear globals which might have pointed into a removed objfile.
3001 FIXME: It's not clear which of these are supposed to persist
3002 between expressions and which ought to be reset each time. */
3003 expression_context_block = NULL;
3004 innermost_block = NULL;
8756216b
DP
3005
3006 /* Varobj may refer to old symbols, perform a cleanup. */
3007 varobj_invalidate ();
3008
c906108c
SS
3009}
3010
74b7792f
AC
3011static void
3012clear_symtab_users_cleanup (void *ignore)
3013{
c1e56572 3014 clear_symtab_users (0);
74b7792f 3015}
c906108c 3016\f
c906108c
SS
3017/* OVERLAYS:
3018 The following code implements an abstraction for debugging overlay sections.
3019
3020 The target model is as follows:
3021 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3022 same VMA, each with its own unique LMA (or load address).
c906108c 3023 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3024 sections, one by one, from the load address into the VMA address.
5417f6dc 3025 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3026 sections should be considered to be mapped from the VMA to the LMA.
3027 This information is used for symbol lookup, and memory read/write.
5417f6dc 3028 For instance, if a section has been mapped then its contents
c5aa993b 3029 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3030
3031 Two levels of debugger support for overlays are available. One is
3032 "manual", in which the debugger relies on the user to tell it which
3033 overlays are currently mapped. This level of support is
3034 implemented entirely in the core debugger, and the information about
3035 whether a section is mapped is kept in the objfile->obj_section table.
3036
3037 The second level of support is "automatic", and is only available if
3038 the target-specific code provides functionality to read the target's
3039 overlay mapping table, and translate its contents for the debugger
3040 (by updating the mapped state information in the obj_section tables).
3041
3042 The interface is as follows:
c5aa993b
JM
3043 User commands:
3044 overlay map <name> -- tell gdb to consider this section mapped
3045 overlay unmap <name> -- tell gdb to consider this section unmapped
3046 overlay list -- list the sections that GDB thinks are mapped
3047 overlay read-target -- get the target's state of what's mapped
3048 overlay off/manual/auto -- set overlay debugging state
3049 Functional interface:
3050 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3051 section, return that section.
5417f6dc 3052 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3053 the pc, either in its VMA or its LMA
714835d5 3054 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3055 section_is_overlay(sect): true if section's VMA != LMA
3056 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3057 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3058 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3059 overlay_mapped_address(...): map an address from section's LMA to VMA
3060 overlay_unmapped_address(...): map an address from section's VMA to LMA
3061 symbol_overlayed_address(...): Return a "current" address for symbol:
3062 either in VMA or LMA depending on whether
c378eb4e 3063 the symbol's section is currently mapped. */
c906108c
SS
3064
3065/* Overlay debugging state: */
3066
d874f1e2 3067enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3068int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3069
c906108c 3070/* Function: section_is_overlay (SECTION)
5417f6dc 3071 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3072 SECTION is loaded at an address different from where it will "run". */
3073
3074int
714835d5 3075section_is_overlay (struct obj_section *section)
c906108c 3076{
714835d5
UW
3077 if (overlay_debugging && section)
3078 {
3079 bfd *abfd = section->objfile->obfd;
3080 asection *bfd_section = section->the_bfd_section;
f888f159 3081
714835d5
UW
3082 if (bfd_section_lma (abfd, bfd_section) != 0
3083 && bfd_section_lma (abfd, bfd_section)
3084 != bfd_section_vma (abfd, bfd_section))
3085 return 1;
3086 }
c906108c
SS
3087
3088 return 0;
3089}
3090
3091/* Function: overlay_invalidate_all (void)
3092 Invalidate the mapped state of all overlay sections (mark it as stale). */
3093
3094static void
fba45db2 3095overlay_invalidate_all (void)
c906108c 3096{
c5aa993b 3097 struct objfile *objfile;
c906108c
SS
3098 struct obj_section *sect;
3099
3100 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3101 if (section_is_overlay (sect))
3102 sect->ovly_mapped = -1;
c906108c
SS
3103}
3104
714835d5 3105/* Function: section_is_mapped (SECTION)
5417f6dc 3106 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3107
3108 Access to the ovly_mapped flag is restricted to this function, so
3109 that we can do automatic update. If the global flag
3110 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3111 overlay_invalidate_all. If the mapped state of the particular
3112 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3113
714835d5
UW
3114int
3115section_is_mapped (struct obj_section *osect)
c906108c 3116{
9216df95
UW
3117 struct gdbarch *gdbarch;
3118
714835d5 3119 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3120 return 0;
3121
c5aa993b 3122 switch (overlay_debugging)
c906108c
SS
3123 {
3124 default:
d874f1e2 3125 case ovly_off:
c5aa993b 3126 return 0; /* overlay debugging off */
d874f1e2 3127 case ovly_auto: /* overlay debugging automatic */
1c772458 3128 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3129 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3130 gdbarch = get_objfile_arch (osect->objfile);
3131 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3132 {
3133 if (overlay_cache_invalid)
3134 {
3135 overlay_invalidate_all ();
3136 overlay_cache_invalid = 0;
3137 }
3138 if (osect->ovly_mapped == -1)
9216df95 3139 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3140 }
3141 /* fall thru to manual case */
d874f1e2 3142 case ovly_on: /* overlay debugging manual */
c906108c
SS
3143 return osect->ovly_mapped == 1;
3144 }
3145}
3146
c906108c
SS
3147/* Function: pc_in_unmapped_range
3148 If PC falls into the lma range of SECTION, return true, else false. */
3149
3150CORE_ADDR
714835d5 3151pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3152{
714835d5
UW
3153 if (section_is_overlay (section))
3154 {
3155 bfd *abfd = section->objfile->obfd;
3156 asection *bfd_section = section->the_bfd_section;
fbd35540 3157
714835d5
UW
3158 /* We assume the LMA is relocated by the same offset as the VMA. */
3159 bfd_vma size = bfd_get_section_size (bfd_section);
3160 CORE_ADDR offset = obj_section_offset (section);
3161
3162 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3163 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3164 return 1;
3165 }
c906108c 3166
c906108c
SS
3167 return 0;
3168}
3169
3170/* Function: pc_in_mapped_range
3171 If PC falls into the vma range of SECTION, return true, else false. */
3172
3173CORE_ADDR
714835d5 3174pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3175{
714835d5
UW
3176 if (section_is_overlay (section))
3177 {
3178 if (obj_section_addr (section) <= pc
3179 && pc < obj_section_endaddr (section))
3180 return 1;
3181 }
c906108c 3182
c906108c
SS
3183 return 0;
3184}
3185
9ec8e6a0
JB
3186/* Return true if the mapped ranges of sections A and B overlap, false
3187 otherwise. */
3b7bacac 3188
b9362cc7 3189static int
714835d5 3190sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3191{
714835d5
UW
3192 CORE_ADDR a_start = obj_section_addr (a);
3193 CORE_ADDR a_end = obj_section_endaddr (a);
3194 CORE_ADDR b_start = obj_section_addr (b);
3195 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3196
3197 return (a_start < b_end && b_start < a_end);
3198}
3199
c906108c
SS
3200/* Function: overlay_unmapped_address (PC, SECTION)
3201 Returns the address corresponding to PC in the unmapped (load) range.
3202 May be the same as PC. */
3203
3204CORE_ADDR
714835d5 3205overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3206{
714835d5
UW
3207 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3208 {
3209 bfd *abfd = section->objfile->obfd;
3210 asection *bfd_section = section->the_bfd_section;
fbd35540 3211
714835d5
UW
3212 return pc + bfd_section_lma (abfd, bfd_section)
3213 - bfd_section_vma (abfd, bfd_section);
3214 }
c906108c
SS
3215
3216 return pc;
3217}
3218
3219/* Function: overlay_mapped_address (PC, SECTION)
3220 Returns the address corresponding to PC in the mapped (runtime) range.
3221 May be the same as PC. */
3222
3223CORE_ADDR
714835d5 3224overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3225{
714835d5
UW
3226 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3227 {
3228 bfd *abfd = section->objfile->obfd;
3229 asection *bfd_section = section->the_bfd_section;
fbd35540 3230
714835d5
UW
3231 return pc + bfd_section_vma (abfd, bfd_section)
3232 - bfd_section_lma (abfd, bfd_section);
3233 }
c906108c
SS
3234
3235 return pc;
3236}
3237
5417f6dc 3238/* Function: symbol_overlayed_address
c906108c
SS
3239 Return one of two addresses (relative to the VMA or to the LMA),
3240 depending on whether the section is mapped or not. */
3241
c5aa993b 3242CORE_ADDR
714835d5 3243symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3244{
3245 if (overlay_debugging)
3246 {
c378eb4e 3247 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3248 if (section == 0)
3249 return address;
c378eb4e
MS
3250 /* If the symbol's section is not an overlay, just return its
3251 address. */
c906108c
SS
3252 if (!section_is_overlay (section))
3253 return address;
c378eb4e 3254 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3255 if (section_is_mapped (section))
3256 return address;
3257 /*
3258 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3259 * then return its LOADED address rather than its vma address!!
3260 */
3261 return overlay_unmapped_address (address, section);
3262 }
3263 return address;
3264}
3265
5417f6dc 3266/* Function: find_pc_overlay (PC)
c906108c
SS
3267 Return the best-match overlay section for PC:
3268 If PC matches a mapped overlay section's VMA, return that section.
3269 Else if PC matches an unmapped section's VMA, return that section.
3270 Else if PC matches an unmapped section's LMA, return that section. */
3271
714835d5 3272struct obj_section *
fba45db2 3273find_pc_overlay (CORE_ADDR pc)
c906108c 3274{
c5aa993b 3275 struct objfile *objfile;
c906108c
SS
3276 struct obj_section *osect, *best_match = NULL;
3277
3278 if (overlay_debugging)
3279 ALL_OBJSECTIONS (objfile, osect)
714835d5 3280 if (section_is_overlay (osect))
c5aa993b 3281 {
714835d5 3282 if (pc_in_mapped_range (pc, osect))
c5aa993b 3283 {
714835d5
UW
3284 if (section_is_mapped (osect))
3285 return osect;
c5aa993b
JM
3286 else
3287 best_match = osect;
3288 }
714835d5 3289 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3290 best_match = osect;
3291 }
714835d5 3292 return best_match;
c906108c
SS
3293}
3294
3295/* Function: find_pc_mapped_section (PC)
5417f6dc 3296 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3297 currently marked as MAPPED, return that section. Else return NULL. */
3298
714835d5 3299struct obj_section *
fba45db2 3300find_pc_mapped_section (CORE_ADDR pc)
c906108c 3301{
c5aa993b 3302 struct objfile *objfile;
c906108c
SS
3303 struct obj_section *osect;
3304
3305 if (overlay_debugging)
3306 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3307 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3308 return osect;
c906108c
SS
3309
3310 return NULL;
3311}
3312
3313/* Function: list_overlays_command
c378eb4e 3314 Print a list of mapped sections and their PC ranges. */
c906108c 3315
5d3055ad 3316static void
fba45db2 3317list_overlays_command (char *args, int from_tty)
c906108c 3318{
c5aa993b
JM
3319 int nmapped = 0;
3320 struct objfile *objfile;
c906108c
SS
3321 struct obj_section *osect;
3322
3323 if (overlay_debugging)
3324 ALL_OBJSECTIONS (objfile, osect)
714835d5 3325 if (section_is_mapped (osect))
c5aa993b 3326 {
5af949e3 3327 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3328 const char *name;
3329 bfd_vma lma, vma;
3330 int size;
3331
3332 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3333 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3334 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3335 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3336
3337 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3338 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3339 puts_filtered (" - ");
5af949e3 3340 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3341 printf_filtered (", mapped at ");
5af949e3 3342 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3343 puts_filtered (" - ");
5af949e3 3344 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3345 puts_filtered ("\n");
3346
3347 nmapped++;
3348 }
c906108c 3349 if (nmapped == 0)
a3f17187 3350 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3351}
3352
3353/* Function: map_overlay_command
3354 Mark the named section as mapped (ie. residing at its VMA address). */
3355
5d3055ad 3356static void
fba45db2 3357map_overlay_command (char *args, int from_tty)
c906108c 3358{
c5aa993b
JM
3359 struct objfile *objfile, *objfile2;
3360 struct obj_section *sec, *sec2;
c906108c
SS
3361
3362 if (!overlay_debugging)
3e43a32a
MS
3363 error (_("Overlay debugging not enabled. Use "
3364 "either the 'overlay auto' or\n"
3365 "the 'overlay manual' command."));
c906108c
SS
3366
3367 if (args == 0 || *args == 0)
8a3fe4f8 3368 error (_("Argument required: name of an overlay section"));
c906108c 3369
c378eb4e 3370 /* First, find a section matching the user supplied argument. */
c906108c
SS
3371 ALL_OBJSECTIONS (objfile, sec)
3372 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3373 {
c378eb4e 3374 /* Now, check to see if the section is an overlay. */
714835d5 3375 if (!section_is_overlay (sec))
c5aa993b
JM
3376 continue; /* not an overlay section */
3377
c378eb4e 3378 /* Mark the overlay as "mapped". */
c5aa993b
JM
3379 sec->ovly_mapped = 1;
3380
3381 /* Next, make a pass and unmap any sections that are
3382 overlapped by this new section: */
3383 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3384 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3385 {
3386 if (info_verbose)
a3f17187 3387 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3388 bfd_section_name (objfile->obfd,
3389 sec2->the_bfd_section));
c378eb4e 3390 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3391 }
3392 return;
3393 }
8a3fe4f8 3394 error (_("No overlay section called %s"), args);
c906108c
SS
3395}
3396
3397/* Function: unmap_overlay_command
5417f6dc 3398 Mark the overlay section as unmapped
c906108c
SS
3399 (ie. resident in its LMA address range, rather than the VMA range). */
3400
5d3055ad 3401static void
fba45db2 3402unmap_overlay_command (char *args, int from_tty)
c906108c 3403{
c5aa993b 3404 struct objfile *objfile;
c906108c
SS
3405 struct obj_section *sec;
3406
3407 if (!overlay_debugging)
3e43a32a
MS
3408 error (_("Overlay debugging not enabled. "
3409 "Use either the 'overlay auto' or\n"
3410 "the 'overlay manual' command."));
c906108c
SS
3411
3412 if (args == 0 || *args == 0)
8a3fe4f8 3413 error (_("Argument required: name of an overlay section"));
c906108c 3414
c378eb4e 3415 /* First, find a section matching the user supplied argument. */
c906108c
SS
3416 ALL_OBJSECTIONS (objfile, sec)
3417 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3418 {
3419 if (!sec->ovly_mapped)
8a3fe4f8 3420 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3421 sec->ovly_mapped = 0;
3422 return;
3423 }
8a3fe4f8 3424 error (_("No overlay section called %s"), args);
c906108c
SS
3425}
3426
3427/* Function: overlay_auto_command
3428 A utility command to turn on overlay debugging.
c378eb4e 3429 Possibly this should be done via a set/show command. */
c906108c
SS
3430
3431static void
fba45db2 3432overlay_auto_command (char *args, int from_tty)
c906108c 3433{
d874f1e2 3434 overlay_debugging = ovly_auto;
1900040c 3435 enable_overlay_breakpoints ();
c906108c 3436 if (info_verbose)
a3f17187 3437 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3438}
3439
3440/* Function: overlay_manual_command
3441 A utility command to turn on overlay debugging.
c378eb4e 3442 Possibly this should be done via a set/show command. */
c906108c
SS
3443
3444static void
fba45db2 3445overlay_manual_command (char *args, int from_tty)
c906108c 3446{
d874f1e2 3447 overlay_debugging = ovly_on;
1900040c 3448 disable_overlay_breakpoints ();
c906108c 3449 if (info_verbose)
a3f17187 3450 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3451}
3452
3453/* Function: overlay_off_command
3454 A utility command to turn on overlay debugging.
c378eb4e 3455 Possibly this should be done via a set/show command. */
c906108c
SS
3456
3457static void
fba45db2 3458overlay_off_command (char *args, int from_tty)
c906108c 3459{
d874f1e2 3460 overlay_debugging = ovly_off;
1900040c 3461 disable_overlay_breakpoints ();
c906108c 3462 if (info_verbose)
a3f17187 3463 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3464}
3465
3466static void
fba45db2 3467overlay_load_command (char *args, int from_tty)
c906108c 3468{
e17c207e
UW
3469 struct gdbarch *gdbarch = get_current_arch ();
3470
3471 if (gdbarch_overlay_update_p (gdbarch))
3472 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3473 else
8a3fe4f8 3474 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3475}
3476
3477/* Function: overlay_command
c378eb4e 3478 A place-holder for a mis-typed command. */
c906108c 3479
c378eb4e 3480/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3481static struct cmd_list_element *overlaylist;
c906108c
SS
3482
3483static void
fba45db2 3484overlay_command (char *args, int from_tty)
c906108c 3485{
c5aa993b 3486 printf_unfiltered
c906108c 3487 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3488 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3489}
3490
c906108c
SS
3491/* Target Overlays for the "Simplest" overlay manager:
3492
5417f6dc
RM
3493 This is GDB's default target overlay layer. It works with the
3494 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3495 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3496 so targets that use a different runtime overlay manager can
c906108c
SS
3497 substitute their own overlay_update function and take over the
3498 function pointer.
3499
3500 The overlay_update function pokes around in the target's data structures
3501 to see what overlays are mapped, and updates GDB's overlay mapping with
3502 this information.
3503
3504 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3505 unsigned _novlys; /# number of overlay sections #/
3506 unsigned _ovly_table[_novlys][4] = {
3507 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3508 {..., ..., ..., ...},
3509 }
3510 unsigned _novly_regions; /# number of overlay regions #/
3511 unsigned _ovly_region_table[_novly_regions][3] = {
3512 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3513 {..., ..., ...},
3514 }
c906108c
SS
3515 These functions will attempt to update GDB's mappedness state in the
3516 symbol section table, based on the target's mappedness state.
3517
3518 To do this, we keep a cached copy of the target's _ovly_table, and
3519 attempt to detect when the cached copy is invalidated. The main
3520 entry point is "simple_overlay_update(SECT), which looks up SECT in
3521 the cached table and re-reads only the entry for that section from
c378eb4e 3522 the target (whenever possible). */
c906108c
SS
3523
3524/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3525static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3526static unsigned cache_novlys = 0;
c906108c 3527static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3528enum ovly_index
3529 {
3530 VMA, SIZE, LMA, MAPPED
3531 };
c906108c 3532
c378eb4e 3533/* Throw away the cached copy of _ovly_table. */
3b7bacac 3534
c906108c 3535static void
fba45db2 3536simple_free_overlay_table (void)
c906108c
SS
3537{
3538 if (cache_ovly_table)
b8c9b27d 3539 xfree (cache_ovly_table);
c5aa993b 3540 cache_novlys = 0;
c906108c
SS
3541 cache_ovly_table = NULL;
3542 cache_ovly_table_base = 0;
3543}
3544
9216df95 3545/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3546 Convert to host order. int LEN is number of ints. */
3b7bacac 3547
c906108c 3548static void
9216df95 3549read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3550 int len, int size, enum bfd_endian byte_order)
c906108c 3551{
c378eb4e 3552 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3553 gdb_byte *buf = alloca (len * size);
c5aa993b 3554 int i;
c906108c 3555
9216df95 3556 read_memory (memaddr, buf, len * size);
c906108c 3557 for (i = 0; i < len; i++)
e17a4113 3558 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3559}
3560
3561/* Find and grab a copy of the target _ovly_table
c378eb4e 3562 (and _novlys, which is needed for the table's size). */
3b7bacac 3563
c5aa993b 3564static int
fba45db2 3565simple_read_overlay_table (void)
c906108c 3566{
3b7344d5 3567 struct bound_minimal_symbol novlys_msym;
7c7b6655 3568 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3569 struct gdbarch *gdbarch;
3570 int word_size;
e17a4113 3571 enum bfd_endian byte_order;
c906108c
SS
3572
3573 simple_free_overlay_table ();
9b27852e 3574 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3575 if (! novlys_msym.minsym)
c906108c 3576 {
8a3fe4f8 3577 error (_("Error reading inferior's overlay table: "
0d43edd1 3578 "couldn't find `_novlys' variable\n"
8a3fe4f8 3579 "in inferior. Use `overlay manual' mode."));
0d43edd1 3580 return 0;
c906108c 3581 }
0d43edd1 3582
7c7b6655
TT
3583 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3584 if (! ovly_table_msym.minsym)
0d43edd1 3585 {
8a3fe4f8 3586 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3587 "`_ovly_table' array\n"
8a3fe4f8 3588 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3589 return 0;
3590 }
3591
7c7b6655 3592 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3593 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3594 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3595
77e371c0
TT
3596 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3597 4, byte_order);
0d43edd1
JB
3598 cache_ovly_table
3599 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3600 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3601 read_target_long_array (cache_ovly_table_base,
777ea8f1 3602 (unsigned int *) cache_ovly_table,
e17a4113 3603 cache_novlys * 4, word_size, byte_order);
0d43edd1 3604
c5aa993b 3605 return 1; /* SUCCESS */
c906108c
SS
3606}
3607
5417f6dc 3608/* Function: simple_overlay_update_1
c906108c
SS
3609 A helper function for simple_overlay_update. Assuming a cached copy
3610 of _ovly_table exists, look through it to find an entry whose vma,
3611 lma and size match those of OSECT. Re-read the entry and make sure
3612 it still matches OSECT (else the table may no longer be valid).
3613 Set OSECT's mapped state to match the entry. Return: 1 for
3614 success, 0 for failure. */
3615
3616static int
fba45db2 3617simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3618{
3619 int i, size;
fbd35540
MS
3620 bfd *obfd = osect->objfile->obfd;
3621 asection *bsect = osect->the_bfd_section;
9216df95
UW
3622 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3623 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3625
2c500098 3626 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3627 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3628 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3629 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3630 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3631 {
9216df95
UW
3632 read_target_long_array (cache_ovly_table_base + i * word_size,
3633 (unsigned int *) cache_ovly_table[i],
e17a4113 3634 4, word_size, byte_order);
fbd35540
MS
3635 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3636 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3637 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3638 {
3639 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3640 return 1;
3641 }
c378eb4e 3642 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3643 return 0;
3644 }
3645 return 0;
3646}
3647
3648/* Function: simple_overlay_update
5417f6dc
RM
3649 If OSECT is NULL, then update all sections' mapped state
3650 (after re-reading the entire target _ovly_table).
3651 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3652 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3653 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3654 re-read the entire cache, and go ahead and update all sections. */
3655
1c772458 3656void
fba45db2 3657simple_overlay_update (struct obj_section *osect)
c906108c 3658{
c5aa993b 3659 struct objfile *objfile;
c906108c 3660
c378eb4e 3661 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3662 if (osect)
c378eb4e 3663 /* Have we got a cached copy of the target's overlay table? */
c906108c 3664 if (cache_ovly_table != NULL)
9cc89665
MS
3665 {
3666 /* Does its cached location match what's currently in the
3667 symtab? */
3b7344d5 3668 struct bound_minimal_symbol minsym
9cc89665
MS
3669 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3670
3b7344d5 3671 if (minsym.minsym == NULL)
9cc89665
MS
3672 error (_("Error reading inferior's overlay table: couldn't "
3673 "find `_ovly_table' array\n"
3674 "in inferior. Use `overlay manual' mode."));
3675
77e371c0 3676 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3677 /* Then go ahead and try to look up this single section in
3678 the cache. */
3679 if (simple_overlay_update_1 (osect))
3680 /* Found it! We're done. */
3681 return;
3682 }
c906108c
SS
3683
3684 /* Cached table no good: need to read the entire table anew.
3685 Or else we want all the sections, in which case it's actually
3686 more efficient to read the whole table in one block anyway. */
3687
0d43edd1
JB
3688 if (! simple_read_overlay_table ())
3689 return;
3690
c378eb4e 3691 /* Now may as well update all sections, even if only one was requested. */
c906108c 3692 ALL_OBJSECTIONS (objfile, osect)
714835d5 3693 if (section_is_overlay (osect))
c5aa993b
JM
3694 {
3695 int i, size;
fbd35540
MS
3696 bfd *obfd = osect->objfile->obfd;
3697 asection *bsect = osect->the_bfd_section;
c5aa993b 3698
2c500098 3699 size = bfd_get_section_size (bsect);
c5aa993b 3700 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3701 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3702 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3703 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3704 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3705 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3706 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3707 }
3708 }
c906108c
SS
3709}
3710
086df311
DJ
3711/* Set the output sections and output offsets for section SECTP in
3712 ABFD. The relocation code in BFD will read these offsets, so we
3713 need to be sure they're initialized. We map each section to itself,
3714 with no offset; this means that SECTP->vma will be honored. */
3715
3716static void
3717symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3718{
3719 sectp->output_section = sectp;
3720 sectp->output_offset = 0;
3721}
3722
ac8035ab
TG
3723/* Default implementation for sym_relocate. */
3724
ac8035ab
TG
3725bfd_byte *
3726default_symfile_relocate (struct objfile *objfile, asection *sectp,
3727 bfd_byte *buf)
3728{
3019eac3
DE
3729 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3730 DWO file. */
3731 bfd *abfd = sectp->owner;
ac8035ab
TG
3732
3733 /* We're only interested in sections with relocation
3734 information. */
3735 if ((sectp->flags & SEC_RELOC) == 0)
3736 return NULL;
3737
3738 /* We will handle section offsets properly elsewhere, so relocate as if
3739 all sections begin at 0. */
3740 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3741
3742 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3743}
3744
086df311
DJ
3745/* Relocate the contents of a debug section SECTP in ABFD. The
3746 contents are stored in BUF if it is non-NULL, or returned in a
3747 malloc'd buffer otherwise.
3748
3749 For some platforms and debug info formats, shared libraries contain
3750 relocations against the debug sections (particularly for DWARF-2;
3751 one affected platform is PowerPC GNU/Linux, although it depends on
3752 the version of the linker in use). Also, ELF object files naturally
3753 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3754 the relocations in order to get the locations of symbols correct.
3755 Another example that may require relocation processing, is the
3756 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3757 debug section. */
086df311
DJ
3758
3759bfd_byte *
ac8035ab
TG
3760symfile_relocate_debug_section (struct objfile *objfile,
3761 asection *sectp, bfd_byte *buf)
086df311 3762{
ac8035ab 3763 gdb_assert (objfile->sf->sym_relocate);
086df311 3764
ac8035ab 3765 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3766}
c906108c 3767
31d99776
DJ
3768struct symfile_segment_data *
3769get_symfile_segment_data (bfd *abfd)
3770{
00b5771c 3771 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3772
3773 if (sf == NULL)
3774 return NULL;
3775
3776 return sf->sym_segments (abfd);
3777}
3778
3779void
3780free_symfile_segment_data (struct symfile_segment_data *data)
3781{
3782 xfree (data->segment_bases);
3783 xfree (data->segment_sizes);
3784 xfree (data->segment_info);
3785 xfree (data);
3786}
3787
28c32713
JB
3788/* Given:
3789 - DATA, containing segment addresses from the object file ABFD, and
3790 the mapping from ABFD's sections onto the segments that own them,
3791 and
3792 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3793 segment addresses reported by the target,
3794 store the appropriate offsets for each section in OFFSETS.
3795
3796 If there are fewer entries in SEGMENT_BASES than there are segments
3797 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3798
8d385431
DJ
3799 If there are more entries, then ignore the extra. The target may
3800 not be able to distinguish between an empty data segment and a
3801 missing data segment; a missing text segment is less plausible. */
3b7bacac 3802
31d99776 3803int
3189cb12
DE
3804symfile_map_offsets_to_segments (bfd *abfd,
3805 const struct symfile_segment_data *data,
31d99776
DJ
3806 struct section_offsets *offsets,
3807 int num_segment_bases,
3808 const CORE_ADDR *segment_bases)
3809{
3810 int i;
3811 asection *sect;
3812
28c32713
JB
3813 /* It doesn't make sense to call this function unless you have some
3814 segment base addresses. */
202b96c1 3815 gdb_assert (num_segment_bases > 0);
28c32713 3816
31d99776
DJ
3817 /* If we do not have segment mappings for the object file, we
3818 can not relocate it by segments. */
3819 gdb_assert (data != NULL);
3820 gdb_assert (data->num_segments > 0);
3821
31d99776
DJ
3822 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3823 {
31d99776
DJ
3824 int which = data->segment_info[i];
3825
28c32713
JB
3826 gdb_assert (0 <= which && which <= data->num_segments);
3827
3828 /* Don't bother computing offsets for sections that aren't
3829 loaded as part of any segment. */
3830 if (! which)
3831 continue;
3832
3833 /* Use the last SEGMENT_BASES entry as the address of any extra
3834 segments mentioned in DATA->segment_info. */
31d99776 3835 if (which > num_segment_bases)
28c32713 3836 which = num_segment_bases;
31d99776 3837
28c32713
JB
3838 offsets->offsets[i] = (segment_bases[which - 1]
3839 - data->segment_bases[which - 1]);
31d99776
DJ
3840 }
3841
3842 return 1;
3843}
3844
3845static void
3846symfile_find_segment_sections (struct objfile *objfile)
3847{
3848 bfd *abfd = objfile->obfd;
3849 int i;
3850 asection *sect;
3851 struct symfile_segment_data *data;
3852
3853 data = get_symfile_segment_data (objfile->obfd);
3854 if (data == NULL)
3855 return;
3856
3857 if (data->num_segments != 1 && data->num_segments != 2)
3858 {
3859 free_symfile_segment_data (data);
3860 return;
3861 }
3862
3863 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3864 {
31d99776
DJ
3865 int which = data->segment_info[i];
3866
3867 if (which == 1)
3868 {
3869 if (objfile->sect_index_text == -1)
3870 objfile->sect_index_text = sect->index;
3871
3872 if (objfile->sect_index_rodata == -1)
3873 objfile->sect_index_rodata = sect->index;
3874 }
3875 else if (which == 2)
3876 {
3877 if (objfile->sect_index_data == -1)
3878 objfile->sect_index_data = sect->index;
3879
3880 if (objfile->sect_index_bss == -1)
3881 objfile->sect_index_bss = sect->index;
3882 }
3883 }
3884
3885 free_symfile_segment_data (data);
3886}
3887
76ad5e1e
NB
3888/* Listen for free_objfile events. */
3889
3890static void
3891symfile_free_objfile (struct objfile *objfile)
3892{
c33b2f12
MM
3893 /* Remove the target sections owned by this objfile. */
3894 if (objfile != NULL)
76ad5e1e
NB
3895 remove_target_sections ((void *) objfile);
3896}
3897
540c2971
DE
3898/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3899 Expand all symtabs that match the specified criteria.
3900 See quick_symbol_functions.expand_symtabs_matching for details. */
3901
3902void
bb4142cf
DE
3903expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3904 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3905 enum search_domain kind,
3906 void *data)
540c2971
DE
3907{
3908 struct objfile *objfile;
3909
3910 ALL_OBJFILES (objfile)
3911 {
3912 if (objfile->sf)
bb4142cf
DE
3913 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3914 symbol_matcher, kind,
3915 data);
540c2971
DE
3916 }
3917}
3918
3919/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3920 Map function FUN over every file.
3921 See quick_symbol_functions.map_symbol_filenames for details. */
3922
3923void
bb4142cf
DE
3924map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3925 int need_fullname)
540c2971
DE
3926{
3927 struct objfile *objfile;
3928
3929 ALL_OBJFILES (objfile)
3930 {
3931 if (objfile->sf)
3932 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3933 need_fullname);
3934 }
3935}
3936
c906108c 3937void
fba45db2 3938_initialize_symfile (void)
c906108c
SS
3939{
3940 struct cmd_list_element *c;
c5aa993b 3941
76ad5e1e
NB
3942 observer_attach_free_objfile (symfile_free_objfile);
3943
1a966eab
AC
3944 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3945Load symbol table from executable file FILE.\n\
c906108c 3946The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3947to execute."), &cmdlist);
5ba2abeb 3948 set_cmd_completer (c, filename_completer);
c906108c 3949
1a966eab 3950 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3951Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3952Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3953 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3954The optional arguments are section-name section-address pairs and\n\
3955should be specified if the data and bss segments are not contiguous\n\
1a966eab 3956with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3957 &cmdlist);
5ba2abeb 3958 set_cmd_completer (c, filename_completer);
c906108c 3959
63644780
NB
3960 c = add_cmd ("remove-symbol-file", class_files,
3961 remove_symbol_file_command, _("\
3962Remove a symbol file added via the add-symbol-file command.\n\
3963Usage: remove-symbol-file FILENAME\n\
3964 remove-symbol-file -a ADDRESS\n\
3965The file to remove can be identified by its filename or by an address\n\
3966that lies within the boundaries of this symbol file in memory."),
3967 &cmdlist);
3968
1a966eab
AC
3969 c = add_cmd ("load", class_files, load_command, _("\
3970Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3971for access from GDB.\n\
3972A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3973 set_cmd_completer (c, filename_completer);
c906108c 3974
c5aa993b 3975 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3976 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3977 "overlay ", 0, &cmdlist);
3978
3979 add_com_alias ("ovly", "overlay", class_alias, 1);
3980 add_com_alias ("ov", "overlay", class_alias, 1);
3981
c5aa993b 3982 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3983 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3984
c5aa993b 3985 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3986 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3987
c5aa993b 3988 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3989 _("List mappings of overlay sections."), &overlaylist);
c906108c 3990
c5aa993b 3991 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3992 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3993 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3994 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3995 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3996 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3997 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3998 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3999
4000 /* Filename extension to source language lookup table: */
4001 init_filename_language_table ();
26c41df3
AC
4002 add_setshow_string_noescape_cmd ("extension-language", class_files,
4003 &ext_args, _("\
4004Set mapping between filename extension and source language."), _("\
4005Show mapping between filename extension and source language."), _("\
4006Usage: set extension-language .foo bar"),
4007 set_ext_lang_command,
920d2a44 4008 show_ext_args,
26c41df3 4009 &setlist, &showlist);
c906108c 4010
c5aa993b 4011 add_info ("extensions", info_ext_lang_command,
1bedd215 4012 _("All filename extensions associated with a source language."));
917317f4 4013
525226b5
AC
4014 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4015 &debug_file_directory, _("\
24ddea62
JK
4016Set the directories where separate debug symbols are searched for."), _("\
4017Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4018Separate debug symbols are first searched for in the same\n\
4019directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4020and lastly at the path of the directory of the binary with\n\
24ddea62 4021each global debug-file-directory component prepended."),
525226b5 4022 NULL,
920d2a44 4023 show_debug_file_directory,
525226b5 4024 &setlist, &showlist);
770e7fc7
DE
4025
4026 add_setshow_enum_cmd ("symbol-loading", no_class,
4027 print_symbol_loading_enums, &print_symbol_loading,
4028 _("\
4029Set printing of symbol loading messages."), _("\
4030Show printing of symbol loading messages."), _("\
4031off == turn all messages off\n\
4032brief == print messages for the executable,\n\
4033 and brief messages for shared libraries\n\
4034full == print messages for the executable,\n\
4035 and messages for each shared library."),
4036 NULL,
4037 NULL,
4038 &setprintlist, &showprintlist);
c906108c 4039}
This page took 2.064095 seconds and 4 git commands to generate.