* disasm.h (gdb_disassembly): Add GDBARCH parameter.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
9216df95 132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int);
c906108c 133
a14ed312 134static int simple_read_overlay_table (void);
c906108c 135
a14ed312 136static int simple_overlay_update_1 (struct obj_section *);
c906108c 137
a14ed312 138static void add_filename_language (char *ext, enum language lang);
392a587b 139
a14ed312 140static void info_ext_lang_command (char *args, int from_tty);
392a587b 141
5b5d99cf
JB
142static char *find_separate_debug_file (struct objfile *objfile);
143
a14ed312 144static void init_filename_language_table (void);
392a587b 145
31d99776
DJ
146static void symfile_find_segment_sections (struct objfile *objfile);
147
a14ed312 148void _initialize_symfile (void);
c906108c
SS
149
150/* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154static struct sym_fns *symtab_fns = NULL;
155
156/* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159#ifdef SYMBOL_RELOADING_DEFAULT
160int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161#else
162int symbol_reloading = 0;
163#endif
920d2a44
AC
164static void
165show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167{
168 fprintf_filtered (file, _("\
169Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171}
172
bf250677
DE
173/* If non-zero, gdb will notify the user when it is loading symbols
174 from a file. This is almost always what users will want to have happen;
175 but for programs with lots of dynamically linked libraries, the output
176 can be more noise than signal. */
177
178int print_symbol_loading = 1;
c906108c 179
b7209cb4
FF
180/* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
c906108c 187 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 188 report all the functions that are actually present. */
c906108c
SS
189
190int auto_solib_add = 1;
b7209cb4
FF
191
192/* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200int auto_solib_limit;
c906108c 201\f
c5aa993b 202
0fe19209
DC
203/* This compares two partial symbols by names, using strcmp_iw_ordered
204 for the comparison. */
c906108c
SS
205
206static int
0cd64fe2 207compare_psymbols (const void *s1p, const void *s2p)
c906108c 208{
0fe19209
DC
209 struct partial_symbol *const *s1 = s1p;
210 struct partial_symbol *const *s2 = s2p;
211
4725b721
PH
212 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
213 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
214}
215
216void
fba45db2 217sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
218{
219 /* Sort the global list; don't sort the static list */
220
c5aa993b
JM
221 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
222 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
223 compare_psymbols);
224}
225
c906108c
SS
226/* Make a null terminated copy of the string at PTR with SIZE characters in
227 the obstack pointed to by OBSTACKP . Returns the address of the copy.
228 Note that the string at PTR does not have to be null terminated, I.E. it
229 may be part of a larger string and we are only saving a substring. */
230
231char *
63ca651f 232obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 233{
52f0bd74 234 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
235 /* Open-coded memcpy--saves function call time. These strings are usually
236 short. FIXME: Is this really still true with a compiler that can
237 inline memcpy? */
238 {
aa1ee363
AC
239 const char *p1 = ptr;
240 char *p2 = p;
63ca651f 241 const char *end = ptr + size;
c906108c
SS
242 while (p1 != end)
243 *p2++ = *p1++;
244 }
245 p[size] = 0;
246 return p;
247}
248
249/* Concatenate strings S1, S2 and S3; return the new string. Space is found
250 in the obstack pointed to by OBSTACKP. */
251
252char *
fba45db2
KB
253obconcat (struct obstack *obstackp, const char *s1, const char *s2,
254 const char *s3)
c906108c 255{
52f0bd74
AC
256 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
257 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
258 strcpy (val, s1);
259 strcat (val, s2);
260 strcat (val, s3);
261 return val;
262}
263
264/* True if we are nested inside psymtab_to_symtab. */
265
266int currently_reading_symtab = 0;
267
268static void
fba45db2 269decrement_reading_symtab (void *dummy)
c906108c
SS
270{
271 currently_reading_symtab--;
272}
273
274/* Get the symbol table that corresponds to a partial_symtab.
275 This is fast after the first time you do it. In fact, there
276 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 case inline. */
278
279struct symtab *
aa1ee363 280psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
281{
282 /* If it's been looked up before, return it. */
283 if (pst->symtab)
284 return pst->symtab;
285
286 /* If it has not yet been read in, read it. */
287 if (!pst->readin)
c5aa993b 288 {
c906108c
SS
289 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
290 currently_reading_symtab++;
291 (*pst->read_symtab) (pst);
292 do_cleanups (back_to);
293 }
294
295 return pst->symtab;
296}
297
5417f6dc
RM
298/* Remember the lowest-addressed loadable section we've seen.
299 This function is called via bfd_map_over_sections.
c906108c
SS
300
301 In case of equal vmas, the section with the largest size becomes the
302 lowest-addressed loadable section.
303
304 If the vmas and sizes are equal, the last section is considered the
305 lowest-addressed loadable section. */
306
307void
4efb68b1 308find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 309{
c5aa993b 310 asection **lowest = (asection **) obj;
c906108c
SS
311
312 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
313 return;
314 if (!*lowest)
315 *lowest = sect; /* First loadable section */
316 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
317 *lowest = sect; /* A lower loadable section */
318 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
319 && (bfd_section_size (abfd, (*lowest))
320 <= bfd_section_size (abfd, sect)))
321 *lowest = sect;
322}
323
a39a16c4
MM
324/* Create a new section_addr_info, with room for NUM_SECTIONS. */
325
326struct section_addr_info *
327alloc_section_addr_info (size_t num_sections)
328{
329 struct section_addr_info *sap;
330 size_t size;
331
332 size = (sizeof (struct section_addr_info)
333 + sizeof (struct other_sections) * (num_sections - 1));
334 sap = (struct section_addr_info *) xmalloc (size);
335 memset (sap, 0, size);
336 sap->num_sections = num_sections;
337
338 return sap;
339}
62557bbc 340
7b90c3f9
JB
341
342/* Return a freshly allocated copy of ADDRS. The section names, if
343 any, are also freshly allocated copies of those in ADDRS. */
344struct section_addr_info *
345copy_section_addr_info (struct section_addr_info *addrs)
346{
347 struct section_addr_info *copy
348 = alloc_section_addr_info (addrs->num_sections);
349 int i;
350
351 copy->num_sections = addrs->num_sections;
352 for (i = 0; i < addrs->num_sections; i++)
353 {
354 copy->other[i].addr = addrs->other[i].addr;
355 if (addrs->other[i].name)
356 copy->other[i].name = xstrdup (addrs->other[i].name);
357 else
358 copy->other[i].name = NULL;
359 copy->other[i].sectindex = addrs->other[i].sectindex;
360 }
361
362 return copy;
363}
364
365
366
62557bbc
KB
367/* Build (allocate and populate) a section_addr_info struct from
368 an existing section table. */
369
370extern struct section_addr_info *
0542c86d
PA
371build_section_addr_info_from_section_table (const struct target_section *start,
372 const struct target_section *end)
62557bbc
KB
373{
374 struct section_addr_info *sap;
0542c86d 375 const struct target_section *stp;
62557bbc
KB
376 int oidx;
377
a39a16c4 378 sap = alloc_section_addr_info (end - start);
62557bbc
KB
379
380 for (stp = start, oidx = 0; stp != end; stp++)
381 {
5417f6dc 382 if (bfd_get_section_flags (stp->bfd,
fbd35540 383 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 384 && oidx < end - start)
62557bbc
KB
385 {
386 sap->other[oidx].addr = stp->addr;
5417f6dc 387 sap->other[oidx].name
fbd35540 388 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
389 sap->other[oidx].sectindex = stp->the_bfd_section->index;
390 oidx++;
391 }
392 }
393
394 return sap;
395}
396
397
398/* Free all memory allocated by build_section_addr_info_from_section_table. */
399
400extern void
401free_section_addr_info (struct section_addr_info *sap)
402{
403 int idx;
404
a39a16c4 405 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 406 if (sap->other[idx].name)
b8c9b27d
KB
407 xfree (sap->other[idx].name);
408 xfree (sap);
62557bbc
KB
409}
410
411
e8289572
JB
412/* Initialize OBJFILE's sect_index_* members. */
413static void
414init_objfile_sect_indices (struct objfile *objfile)
c906108c 415{
e8289572 416 asection *sect;
c906108c 417 int i;
5417f6dc 418
b8fbeb18 419 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 420 if (sect)
b8fbeb18
EZ
421 objfile->sect_index_text = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 424 if (sect)
b8fbeb18
EZ
425 objfile->sect_index_data = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 428 if (sect)
b8fbeb18
EZ
429 objfile->sect_index_bss = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 432 if (sect)
b8fbeb18
EZ
433 objfile->sect_index_rodata = sect->index;
434
bbcd32ad
FF
435 /* This is where things get really weird... We MUST have valid
436 indices for the various sect_index_* members or gdb will abort.
437 So if for example, there is no ".text" section, we have to
31d99776
DJ
438 accomodate that. First, check for a file with the standard
439 one or two segments. */
440
441 symfile_find_segment_sections (objfile);
442
443 /* Except when explicitly adding symbol files at some address,
444 section_offsets contains nothing but zeros, so it doesn't matter
445 which slot in section_offsets the individual sect_index_* members
446 index into. So if they are all zero, it is safe to just point
447 all the currently uninitialized indices to the first slot. But
448 beware: if this is the main executable, it may be relocated
449 later, e.g. by the remote qOffsets packet, and then this will
450 be wrong! That's why we try segments first. */
bbcd32ad
FF
451
452 for (i = 0; i < objfile->num_sections; i++)
453 {
454 if (ANOFFSET (objfile->section_offsets, i) != 0)
455 {
456 break;
457 }
458 }
459 if (i == objfile->num_sections)
460 {
461 if (objfile->sect_index_text == -1)
462 objfile->sect_index_text = 0;
463 if (objfile->sect_index_data == -1)
464 objfile->sect_index_data = 0;
465 if (objfile->sect_index_bss == -1)
466 objfile->sect_index_bss = 0;
467 if (objfile->sect_index_rodata == -1)
468 objfile->sect_index_rodata = 0;
469 }
b8fbeb18 470}
c906108c 471
c1bd25fd
DJ
472/* The arguments to place_section. */
473
474struct place_section_arg
475{
476 struct section_offsets *offsets;
477 CORE_ADDR lowest;
478};
479
480/* Find a unique offset to use for loadable section SECT if
481 the user did not provide an offset. */
482
2c0b251b 483static void
c1bd25fd
DJ
484place_section (bfd *abfd, asection *sect, void *obj)
485{
486 struct place_section_arg *arg = obj;
487 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
488 int done;
3bd72c6f 489 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 490
2711e456
DJ
491 /* We are only interested in allocated sections. */
492 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
493 return;
494
495 /* If the user specified an offset, honor it. */
496 if (offsets[sect->index] != 0)
497 return;
498
499 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
500 start_addr = (arg->lowest + align - 1) & -align;
501
c1bd25fd
DJ
502 do {
503 asection *cur_sec;
c1bd25fd 504
c1bd25fd
DJ
505 done = 1;
506
507 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
508 {
509 int indx = cur_sec->index;
510 CORE_ADDR cur_offset;
511
512 /* We don't need to compare against ourself. */
513 if (cur_sec == sect)
514 continue;
515
2711e456
DJ
516 /* We can only conflict with allocated sections. */
517 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
518 continue;
519
520 /* If the section offset is 0, either the section has not been placed
521 yet, or it was the lowest section placed (in which case LOWEST
522 will be past its end). */
523 if (offsets[indx] == 0)
524 continue;
525
526 /* If this section would overlap us, then we must move up. */
527 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
528 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
529 {
530 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
531 start_addr = (start_addr + align - 1) & -align;
532 done = 0;
3bd72c6f 533 break;
c1bd25fd
DJ
534 }
535
536 /* Otherwise, we appear to be OK. So far. */
537 }
538 }
539 while (!done);
540
541 offsets[sect->index] = start_addr;
542 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 543}
e8289572
JB
544
545/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 546 of how to represent it for fast symbol reading. This is the default
e8289572
JB
547 version of the sym_fns.sym_offsets function for symbol readers that
548 don't need to do anything special. It allocates a section_offsets table
549 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
550
551void
552default_symfile_offsets (struct objfile *objfile,
553 struct section_addr_info *addrs)
554{
555 int i;
556
a39a16c4 557 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 558 objfile->section_offsets = (struct section_offsets *)
5417f6dc 559 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 561 memset (objfile->section_offsets, 0,
a39a16c4 562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
563
564 /* Now calculate offsets for section that were specified by the
565 caller. */
a39a16c4 566 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
567 {
568 struct other_sections *osp ;
569
570 osp = &addrs->other[i] ;
571 if (osp->addr == 0)
572 continue;
573
574 /* Record all sections in offsets */
575 /* The section_offsets in the objfile are here filled in using
576 the BFD index. */
577 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
578 }
579
c1bd25fd
DJ
580 /* For relocatable files, all loadable sections will start at zero.
581 The zero is meaningless, so try to pick arbitrary addresses such
582 that no loadable sections overlap. This algorithm is quadratic,
583 but the number of sections in a single object file is generally
584 small. */
585 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
586 {
587 struct place_section_arg arg;
2711e456
DJ
588 bfd *abfd = objfile->obfd;
589 asection *cur_sec;
590 CORE_ADDR lowest = 0;
591
592 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
593 /* We do not expect this to happen; just skip this step if the
594 relocatable file has a section with an assigned VMA. */
595 if (bfd_section_vma (abfd, cur_sec) != 0)
596 break;
597
598 if (cur_sec == NULL)
599 {
600 CORE_ADDR *offsets = objfile->section_offsets->offsets;
601
602 /* Pick non-overlapping offsets for sections the user did not
603 place explicitly. */
604 arg.offsets = objfile->section_offsets;
605 arg.lowest = 0;
606 bfd_map_over_sections (objfile->obfd, place_section, &arg);
607
608 /* Correctly filling in the section offsets is not quite
609 enough. Relocatable files have two properties that
610 (most) shared objects do not:
611
612 - Their debug information will contain relocations. Some
613 shared libraries do also, but many do not, so this can not
614 be assumed.
615
616 - If there are multiple code sections they will be loaded
617 at different relative addresses in memory than they are
618 in the objfile, since all sections in the file will start
619 at address zero.
620
621 Because GDB has very limited ability to map from an
622 address in debug info to the correct code section,
623 it relies on adding SECT_OFF_TEXT to things which might be
624 code. If we clear all the section offsets, and set the
625 section VMAs instead, then symfile_relocate_debug_section
626 will return meaningful debug information pointing at the
627 correct sections.
628
629 GDB has too many different data structures for section
630 addresses - a bfd, objfile, and so_list all have section
631 tables, as does exec_ops. Some of these could probably
632 be eliminated. */
633
634 for (cur_sec = abfd->sections; cur_sec != NULL;
635 cur_sec = cur_sec->next)
636 {
637 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
638 continue;
639
640 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
641 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
642 offsets[cur_sec->index]);
2711e456
DJ
643 offsets[cur_sec->index] = 0;
644 }
645 }
c1bd25fd
DJ
646 }
647
e8289572
JB
648 /* Remember the bfd indexes for the .text, .data, .bss and
649 .rodata sections. */
650 init_objfile_sect_indices (objfile);
651}
652
653
31d99776
DJ
654/* Divide the file into segments, which are individual relocatable units.
655 This is the default version of the sym_fns.sym_segments function for
656 symbol readers that do not have an explicit representation of segments.
657 It assumes that object files do not have segments, and fully linked
658 files have a single segment. */
659
660struct symfile_segment_data *
661default_symfile_segments (bfd *abfd)
662{
663 int num_sections, i;
664 asection *sect;
665 struct symfile_segment_data *data;
666 CORE_ADDR low, high;
667
668 /* Relocatable files contain enough information to position each
669 loadable section independently; they should not be relocated
670 in segments. */
671 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
672 return NULL;
673
674 /* Make sure there is at least one loadable section in the file. */
675 for (sect = abfd->sections; sect != NULL; sect = sect->next)
676 {
677 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
678 continue;
679
680 break;
681 }
682 if (sect == NULL)
683 return NULL;
684
685 low = bfd_get_section_vma (abfd, sect);
686 high = low + bfd_get_section_size (sect);
687
688 data = XZALLOC (struct symfile_segment_data);
689 data->num_segments = 1;
690 data->segment_bases = XCALLOC (1, CORE_ADDR);
691 data->segment_sizes = XCALLOC (1, CORE_ADDR);
692
693 num_sections = bfd_count_sections (abfd);
694 data->segment_info = XCALLOC (num_sections, int);
695
696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
697 {
698 CORE_ADDR vma;
699
700 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
701 continue;
702
703 vma = bfd_get_section_vma (abfd, sect);
704 if (vma < low)
705 low = vma;
706 if (vma + bfd_get_section_size (sect) > high)
707 high = vma + bfd_get_section_size (sect);
708
709 data->segment_info[i] = 1;
710 }
711
712 data->segment_bases[0] = low;
713 data->segment_sizes[0] = high - low;
714
715 return data;
716}
717
c906108c
SS
718/* Process a symbol file, as either the main file or as a dynamically
719 loaded file.
720
96baa820
JM
721 OBJFILE is where the symbols are to be read from.
722
7e8580c1
JB
723 ADDRS is the list of section load addresses. If the user has given
724 an 'add-symbol-file' command, then this is the list of offsets and
725 addresses he or she provided as arguments to the command; or, if
726 we're handling a shared library, these are the actual addresses the
727 sections are loaded at, according to the inferior's dynamic linker
728 (as gleaned by GDB's shared library code). We convert each address
729 into an offset from the section VMA's as it appears in the object
730 file, and then call the file's sym_offsets function to convert this
731 into a format-specific offset table --- a `struct section_offsets'.
732 If ADDRS is non-zero, OFFSETS must be zero.
733
734 OFFSETS is a table of section offsets already in the right
735 format-specific representation. NUM_OFFSETS is the number of
736 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
737 assume this is the proper table the call to sym_offsets described
738 above would produce. Instead of calling sym_offsets, we just dump
739 it right into objfile->section_offsets. (When we're re-reading
740 symbols from an objfile, we don't have the original load address
741 list any more; all we have is the section offset table.) If
742 OFFSETS is non-zero, ADDRS must be zero.
96baa820 743
7eedccfa
PP
744 ADD_FLAGS encodes verbosity level, whether this is main symbol or
745 an extra symbol file such as dynamically loaded code, and wether
746 breakpoint reset should be deferred. */
c906108c
SS
747
748void
7e8580c1
JB
749syms_from_objfile (struct objfile *objfile,
750 struct section_addr_info *addrs,
751 struct section_offsets *offsets,
752 int num_offsets,
7eedccfa 753 int add_flags)
c906108c 754{
a39a16c4 755 struct section_addr_info *local_addr = NULL;
c906108c 756 struct cleanup *old_chain;
7eedccfa 757 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 758
7e8580c1 759 gdb_assert (! (addrs && offsets));
2acceee2 760
c906108c 761 init_entry_point_info (objfile);
31d99776 762 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 763
75245b24
MS
764 if (objfile->sf == NULL)
765 return; /* No symbols. */
766
c906108c
SS
767 /* Make sure that partially constructed symbol tables will be cleaned up
768 if an error occurs during symbol reading. */
74b7792f 769 old_chain = make_cleanup_free_objfile (objfile);
c906108c 770
a39a16c4
MM
771 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
772 list. We now establish the convention that an addr of zero means
773 no load address was specified. */
774 if (! addrs && ! offsets)
775 {
5417f6dc 776 local_addr
a39a16c4
MM
777 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
778 make_cleanup (xfree, local_addr);
779 addrs = local_addr;
780 }
781
782 /* Now either addrs or offsets is non-zero. */
783
c5aa993b 784 if (mainline)
c906108c
SS
785 {
786 /* We will modify the main symbol table, make sure that all its users
c5aa993b 787 will be cleaned up if an error occurs during symbol reading. */
74b7792f 788 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
789
790 /* Since no error yet, throw away the old symbol table. */
791
792 if (symfile_objfile != NULL)
793 {
794 free_objfile (symfile_objfile);
795 symfile_objfile = NULL;
796 }
797
798 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
799 If the user wants to get rid of them, they should do "symbol-file"
800 without arguments first. Not sure this is the best behavior
801 (PR 2207). */
c906108c 802
c5aa993b 803 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
804 }
805
806 /* Convert addr into an offset rather than an absolute address.
807 We find the lowest address of a loaded segment in the objfile,
53a5351d 808 and assume that <addr> is where that got loaded.
c906108c 809
53a5351d
JM
810 We no longer warn if the lowest section is not a text segment (as
811 happens for the PA64 port. */
1549f619 812 if (!mainline && addrs && addrs->other[0].name)
c906108c 813 {
1549f619
EZ
814 asection *lower_sect;
815 asection *sect;
816 CORE_ADDR lower_offset;
817 int i;
818
5417f6dc 819 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
820 continguous sections. FIXME!! won't work without call to find
821 .text first, but this assumes text is lowest section. */
822 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
823 if (lower_sect == NULL)
c906108c 824 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 825 &lower_sect);
2acceee2 826 if (lower_sect == NULL)
ff8e85c3
PA
827 {
828 warning (_("no loadable sections found in added symbol-file %s"),
829 objfile->name);
830 lower_offset = 0;
831 }
2acceee2 832 else
ff8e85c3 833 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 834
13de58df 835 /* Calculate offsets for the loadable sections.
2acceee2
JM
836 FIXME! Sections must be in order of increasing loadable section
837 so that contiguous sections can use the lower-offset!!!
5417f6dc 838
13de58df
JB
839 Adjust offsets if the segments are not contiguous.
840 If the section is contiguous, its offset should be set to
2acceee2
JM
841 the offset of the highest loadable section lower than it
842 (the loadable section directly below it in memory).
843 this_offset = lower_offset = lower_addr - lower_orig_addr */
844
1549f619 845 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
846 {
847 if (addrs->other[i].addr != 0)
848 {
849 sect = bfd_get_section_by_name (objfile->obfd,
850 addrs->other[i].name);
851 if (sect)
852 {
853 addrs->other[i].addr
854 -= bfd_section_vma (objfile->obfd, sect);
855 lower_offset = addrs->other[i].addr;
856 /* This is the index used by BFD. */
857 addrs->other[i].sectindex = sect->index ;
858 }
859 else
860 {
8a3fe4f8 861 warning (_("section %s not found in %s"),
5417f6dc 862 addrs->other[i].name,
7e8580c1
JB
863 objfile->name);
864 addrs->other[i].addr = 0;
865 }
866 }
867 else
868 addrs->other[i].addr = lower_offset;
869 }
c906108c
SS
870 }
871
872 /* Initialize symbol reading routines for this objfile, allow complaints to
873 appear for this new file, and record how verbose to be, then do the
874 initial symbol reading for this file. */
875
c5aa993b 876 (*objfile->sf->sym_init) (objfile);
7eedccfa 877 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 878
7e8580c1
JB
879 if (addrs)
880 (*objfile->sf->sym_offsets) (objfile, addrs);
881 else
882 {
883 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
884
885 /* Just copy in the offset table directly as given to us. */
886 objfile->num_sections = num_offsets;
887 objfile->section_offsets
888 = ((struct section_offsets *)
8b92e4d5 889 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
890 memcpy (objfile->section_offsets, offsets, size);
891
892 init_objfile_sect_indices (objfile);
893 }
c906108c 894
96baa820 895 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 896
c906108c
SS
897 /* Discard cleanups as symbol reading was successful. */
898
899 discard_cleanups (old_chain);
f7545552 900 xfree (local_addr);
c906108c
SS
901}
902
903/* Perform required actions after either reading in the initial
904 symbols for a new objfile, or mapping in the symbols from a reusable
905 objfile. */
c5aa993b 906
c906108c 907void
7eedccfa 908new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
909{
910
911 /* If this is the main symbol file we have to clean up all users of the
912 old main symbol file. Otherwise it is sufficient to fixup all the
913 breakpoints that may have been redefined by this symbol file. */
7eedccfa 914 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
915 {
916 /* OK, make it the "real" symbol file. */
917 symfile_objfile = objfile;
918
919 clear_symtab_users ();
920 }
7eedccfa 921 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 922 {
69de3c6a 923 breakpoint_re_set ();
c906108c
SS
924 }
925
926 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 927 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
928}
929
930/* Process a symbol file, as either the main file or as a dynamically
931 loaded file.
932
5417f6dc
RM
933 ABFD is a BFD already open on the file, as from symfile_bfd_open.
934 This BFD will be closed on error, and is always consumed by this function.
7904e09f 935
7eedccfa
PP
936 ADD_FLAGS encodes verbosity, whether this is main symbol file or
937 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
938
939 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
940 syms_from_objfile, above.
941 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 942
c906108c
SS
943 Upon success, returns a pointer to the objfile that was added.
944 Upon failure, jumps back to command level (never returns). */
7eedccfa 945
7904e09f 946static struct objfile *
7eedccfa
PP
947symbol_file_add_with_addrs_or_offsets (bfd *abfd,
948 int add_flags,
7904e09f
JB
949 struct section_addr_info *addrs,
950 struct section_offsets *offsets,
951 int num_offsets,
7eedccfa 952 int flags)
c906108c
SS
953{
954 struct objfile *objfile;
955 struct partial_symtab *psymtab;
77069918 956 char *debugfile = NULL;
7b90c3f9 957 struct section_addr_info *orig_addrs = NULL;
a39a16c4 958 struct cleanup *my_cleanups;
5417f6dc 959 const char *name = bfd_get_filename (abfd);
7eedccfa 960 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 961
5417f6dc 962 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 963
5417f6dc
RM
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
c906108c
SS
966
967 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 968 && (add_flags & SYMFILE_MAINLINE)
c906108c 969 && from_tty
9e2f0ad4 970 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 971 error (_("Not confirmed."));
c906108c 972
2df3850c 973 objfile = allocate_objfile (abfd, flags);
5417f6dc 974 discard_cleanups (my_cleanups);
c906108c 975
a39a16c4 976 if (addrs)
63cd24fe 977 {
7b90c3f9
JB
978 orig_addrs = copy_section_addr_info (addrs);
979 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 980 }
a39a16c4 981
78a4a9b9
AC
982 /* We either created a new mapped symbol table, mapped an existing
983 symbol table file which has not had initial symbol reading
984 performed, or need to read an unmapped symbol table. */
985 if (from_tty || info_verbose)
c906108c 986 {
769d7dc4
AC
987 if (deprecated_pre_add_symbol_hook)
988 deprecated_pre_add_symbol_hook (name);
78a4a9b9 989 else
c906108c 990 {
bf250677
DE
991 if (print_symbol_loading)
992 {
993 printf_unfiltered (_("Reading symbols from %s..."), name);
994 wrap_here ("");
995 gdb_flush (gdb_stdout);
996 }
c906108c 997 }
c906108c 998 }
78a4a9b9 999 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1000 add_flags);
c906108c
SS
1001
1002 /* We now have at least a partial symbol table. Check to see if the
1003 user requested that all symbols be read on initial access via either
1004 the gdb startup command line or on a per symbol file basis. Expand
1005 all partial symbol tables for this objfile if so. */
1006
2acceee2 1007 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1008 {
bf250677 1009 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1010 {
a3f17187 1011 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1012 wrap_here ("");
1013 gdb_flush (gdb_stdout);
1014 }
1015
c5aa993b 1016 for (psymtab = objfile->psymtabs;
c906108c 1017 psymtab != NULL;
c5aa993b 1018 psymtab = psymtab->next)
c906108c
SS
1019 {
1020 psymtab_to_symtab (psymtab);
1021 }
1022 }
1023
77069918
JK
1024 /* If the file has its own symbol tables it has no separate debug info.
1025 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1026 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1027 if (objfile->psymtabs == NULL)
1028 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1029 if (debugfile)
1030 {
5b5d99cf
JB
1031 if (addrs != NULL)
1032 {
1033 objfile->separate_debug_objfile
7eedccfa 1034 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1035 }
1036 else
1037 {
1038 objfile->separate_debug_objfile
7eedccfa 1039 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1040 }
1041 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1042 = objfile;
5417f6dc 1043
5b5d99cf
JB
1044 /* Put the separate debug object before the normal one, this is so that
1045 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1046 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1047
5b5d99cf
JB
1048 xfree (debugfile);
1049 }
5417f6dc 1050
bf250677
DE
1051 if (!have_partial_symbols () && !have_full_symbols ()
1052 && print_symbol_loading)
cb3c37b2
JB
1053 {
1054 wrap_here ("");
d4c0a7a0 1055 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1056 if (from_tty || info_verbose)
d4c0a7a0 1057 printf_unfiltered ("...");
8f5ba92b 1058 else
d4c0a7a0 1059 printf_unfiltered ("\n");
cb3c37b2
JB
1060 wrap_here ("");
1061 }
1062
c906108c
SS
1063 if (from_tty || info_verbose)
1064 {
769d7dc4
AC
1065 if (deprecated_post_add_symbol_hook)
1066 deprecated_post_add_symbol_hook ();
c906108c 1067 else
c5aa993b 1068 {
bf250677
DE
1069 if (print_symbol_loading)
1070 printf_unfiltered (_("done.\n"));
c5aa993b 1071 }
c906108c
SS
1072 }
1073
481d0f41
JB
1074 /* We print some messages regardless of whether 'from_tty ||
1075 info_verbose' is true, so make sure they go out at the right
1076 time. */
1077 gdb_flush (gdb_stdout);
1078
a39a16c4
MM
1079 do_cleanups (my_cleanups);
1080
109f874e
MS
1081 if (objfile->sf == NULL)
1082 return objfile; /* No symbols. */
1083
7eedccfa 1084 new_symfile_objfile (objfile, add_flags);
c906108c 1085
06d3b283 1086 observer_notify_new_objfile (objfile);
c906108c 1087
ce7d4522 1088 bfd_cache_close_all ();
c906108c
SS
1089 return (objfile);
1090}
1091
7904e09f 1092
eb4556d7
JB
1093/* Process the symbol file ABFD, as either the main file or as a
1094 dynamically loaded file.
1095
1096 See symbol_file_add_with_addrs_or_offsets's comments for
1097 details. */
1098struct objfile *
7eedccfa 1099symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1100 struct section_addr_info *addrs,
7eedccfa 1101 int flags)
eb4556d7 1102{
7eedccfa
PP
1103 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1104 flags);
eb4556d7
JB
1105}
1106
1107
7904e09f
JB
1108/* Process a symbol file, as either the main file or as a dynamically
1109 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1110 for details. */
1111struct objfile *
7eedccfa
PP
1112symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1113 int flags)
7904e09f 1114{
7eedccfa
PP
1115 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1116 flags);
7904e09f
JB
1117}
1118
1119
d7db6da9
FN
1120/* Call symbol_file_add() with default values and update whatever is
1121 affected by the loading of a new main().
1122 Used when the file is supplied in the gdb command line
1123 and by some targets with special loading requirements.
1124 The auxiliary function, symbol_file_add_main_1(), has the flags
1125 argument for the switches that can only be specified in the symbol_file
1126 command itself. */
5417f6dc 1127
1adeb98a
FN
1128void
1129symbol_file_add_main (char *args, int from_tty)
1130{
d7db6da9
FN
1131 symbol_file_add_main_1 (args, from_tty, 0);
1132}
1133
1134static void
1135symbol_file_add_main_1 (char *args, int from_tty, int flags)
1136{
7eedccfa
PP
1137 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1138 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1139
d7db6da9
FN
1140 /* Getting new symbols may change our opinion about
1141 what is frameless. */
1142 reinit_frame_cache ();
1143
1144 set_initial_language ();
1adeb98a
FN
1145}
1146
1147void
1148symbol_file_clear (int from_tty)
1149{
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && from_tty
0430b0d6
AS
1152 && (symfile_objfile
1153 ? !query (_("Discard symbol table from `%s'? "),
1154 symfile_objfile->name)
1155 : !query (_("Discard symbol table? "))))
8a3fe4f8 1156 error (_("Not confirmed."));
1adeb98a 1157
d10c338d 1158 free_all_objfiles ();
1adeb98a 1159
d10c338d
DE
1160 /* solib descriptors may have handles to objfiles. Since their
1161 storage has just been released, we'd better wipe the solib
1162 descriptors as well. */
1163 no_shared_libraries (NULL, from_tty);
1164
1165 symfile_objfile = NULL;
1166 if (from_tty)
1167 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1168}
1169
77069918
JK
1170struct build_id
1171 {
1172 size_t size;
1173 gdb_byte data[1];
1174 };
1175
1176/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1177
1178static struct build_id *
1179build_id_bfd_get (bfd *abfd)
1180{
1181 struct build_id *retval;
1182
1183 if (!bfd_check_format (abfd, bfd_object)
1184 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1185 || elf_tdata (abfd)->build_id == NULL)
1186 return NULL;
1187
1188 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1189 retval->size = elf_tdata (abfd)->build_id_size;
1190 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1191
1192 return retval;
1193}
1194
1195/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1196
1197static int
1198build_id_verify (const char *filename, struct build_id *check)
1199{
1200 bfd *abfd;
1201 struct build_id *found = NULL;
1202 int retval = 0;
1203
1204 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1205 if (remote_filename_p (filename))
1206 abfd = remote_bfd_open (filename, gnutarget);
1207 else
1208 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1209 if (abfd == NULL)
1210 return 0;
1211
1212 found = build_id_bfd_get (abfd);
1213
1214 if (found == NULL)
1215 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1216 else if (found->size != check->size
1217 || memcmp (found->data, check->data, found->size) != 0)
1218 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1219 else
1220 retval = 1;
1221
1222 if (!bfd_close (abfd))
1223 warning (_("cannot close \"%s\": %s"), filename,
1224 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1225
1226 xfree (found);
1227
77069918
JK
1228 return retval;
1229}
1230
1231static char *
1232build_id_to_debug_filename (struct build_id *build_id)
1233{
1234 char *link, *s, *retval = NULL;
1235 gdb_byte *data = build_id->data;
1236 size_t size = build_id->size;
1237
1238 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1239 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1240 + 2 * size + (sizeof ".debug" - 1) + 1);
1241 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1242 if (size > 0)
1243 {
1244 size--;
1245 s += sprintf (s, "%02x", (unsigned) *data++);
1246 }
1247 if (size > 0)
1248 *s++ = '/';
1249 while (size-- > 0)
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 strcpy (s, ".debug");
1252
1253 /* lrealpath() is expensive even for the usually non-existent files. */
1254 if (access (link, F_OK) == 0)
1255 retval = lrealpath (link);
1256 xfree (link);
1257
1258 if (retval != NULL && !build_id_verify (retval, build_id))
1259 {
1260 xfree (retval);
1261 retval = NULL;
1262 }
1263
1264 return retval;
1265}
1266
5b5d99cf
JB
1267static char *
1268get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269{
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275 unsigned char *p;
5417f6dc 1276
5b5d99cf
JB
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1283
5b5d99cf
JB
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1293
5b5d99cf
JB
1294 *crc32_out = crc32;
1295 return contents;
1296}
1297
1298static int
1299separate_debug_file_exists (const char *name, unsigned long crc)
1300{
1301 unsigned long file_crc = 0;
f1838a98 1302 bfd *abfd;
777ea8f1 1303 gdb_byte buffer[8*1024];
5b5d99cf
JB
1304 int count;
1305
f1838a98
UW
1306 if (remote_filename_p (name))
1307 abfd = remote_bfd_open (name, gnutarget);
1308 else
1309 abfd = bfd_openr (name, gnutarget);
1310
1311 if (!abfd)
5b5d99cf
JB
1312 return 0;
1313
f1838a98 1314 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1315 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1316
f1838a98 1317 bfd_close (abfd);
5b5d99cf
JB
1318
1319 return crc == file_crc;
1320}
1321
aa28a74e 1322char *debug_file_directory = NULL;
920d2a44
AC
1323static void
1324show_debug_file_directory (struct ui_file *file, int from_tty,
1325 struct cmd_list_element *c, const char *value)
1326{
1327 fprintf_filtered (file, _("\
1328The directory where separate debug symbols are searched for is \"%s\".\n"),
1329 value);
1330}
5b5d99cf
JB
1331
1332#if ! defined (DEBUG_SUBDIRECTORY)
1333#define DEBUG_SUBDIRECTORY ".debug"
1334#endif
1335
1336static char *
1337find_separate_debug_file (struct objfile *objfile)
1338{
1339 asection *sect;
1340 char *basename;
1341 char *dir;
1342 char *debugfile;
1343 char *name_copy;
aa28a74e 1344 char *canon_name;
5b5d99cf
JB
1345 bfd_size_type debuglink_size;
1346 unsigned long crc32;
1347 int i;
77069918
JK
1348 struct build_id *build_id;
1349
1350 build_id = build_id_bfd_get (objfile->obfd);
1351 if (build_id != NULL)
1352 {
1353 char *build_id_name;
1354
1355 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1356 xfree (build_id);
77069918
JK
1357 /* Prevent looping on a stripped .debug file. */
1358 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1359 {
1360 warning (_("\"%s\": separate debug info file has no debug info"),
1361 build_id_name);
1362 xfree (build_id_name);
1363 }
1364 else if (build_id_name != NULL)
1365 return build_id_name;
1366 }
5b5d99cf
JB
1367
1368 basename = get_debug_link_info (objfile, &crc32);
1369
1370 if (basename == NULL)
1371 return NULL;
5417f6dc 1372
5b5d99cf
JB
1373 dir = xstrdup (objfile->name);
1374
fe36c4f4
JB
1375 /* Strip off the final filename part, leaving the directory name,
1376 followed by a slash. Objfile names should always be absolute and
1377 tilde-expanded, so there should always be a slash in there
1378 somewhere. */
5b5d99cf
JB
1379 for (i = strlen(dir) - 1; i >= 0; i--)
1380 {
1381 if (IS_DIR_SEPARATOR (dir[i]))
1382 break;
1383 }
fe36c4f4 1384 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1385 dir[i+1] = '\0';
5417f6dc 1386
5b5d99cf
JB
1387 debugfile = alloca (strlen (debug_file_directory) + 1
1388 + strlen (dir)
1389 + strlen (DEBUG_SUBDIRECTORY)
1390 + strlen ("/")
5417f6dc 1391 + strlen (basename)
5b5d99cf
JB
1392 + 1);
1393
1394 /* First try in the same directory as the original file. */
1395 strcpy (debugfile, dir);
1396 strcat (debugfile, basename);
1397
1398 if (separate_debug_file_exists (debugfile, crc32))
1399 {
1400 xfree (basename);
1401 xfree (dir);
1402 return xstrdup (debugfile);
1403 }
5417f6dc 1404
5b5d99cf
JB
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32))
1412 {
1413 xfree (basename);
1414 xfree (dir);
1415 return xstrdup (debugfile);
1416 }
5417f6dc 1417
5b5d99cf
JB
1418 /* Then try in the global debugfile directory. */
1419 strcpy (debugfile, debug_file_directory);
1420 strcat (debugfile, "/");
1421 strcat (debugfile, dir);
5b5d99cf
JB
1422 strcat (debugfile, basename);
1423
1424 if (separate_debug_file_exists (debugfile, crc32))
1425 {
1426 xfree (basename);
1427 xfree (dir);
1428 return xstrdup (debugfile);
1429 }
5417f6dc 1430
aa28a74e
DJ
1431 /* If the file is in the sysroot, try using its base path in the
1432 global debugfile directory. */
1433 canon_name = lrealpath (dir);
1434 if (canon_name
1435 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1436 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1437 {
1438 strcpy (debugfile, debug_file_directory);
1439 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32))
1444 {
1445 xfree (canon_name);
1446 xfree (basename);
1447 xfree (dir);
1448 return xstrdup (debugfile);
1449 }
1450 }
1451
1452 if (canon_name)
1453 xfree (canon_name);
1454
5b5d99cf
JB
1455 xfree (basename);
1456 xfree (dir);
1457 return NULL;
1458}
1459
1460
c906108c
SS
1461/* This is the symbol-file command. Read the file, analyze its
1462 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1463 the command is rather bizarre:
1464
1465 1. The function buildargv implements various quoting conventions
1466 which are undocumented and have little or nothing in common with
1467 the way things are quoted (or not quoted) elsewhere in GDB.
1468
1469 2. Options are used, which are not generally used in GDB (perhaps
1470 "set mapped on", "set readnow on" would be better)
1471
1472 3. The order of options matters, which is contrary to GNU
c906108c
SS
1473 conventions (because it is confusing and inconvenient). */
1474
1475void
fba45db2 1476symbol_file_command (char *args, int from_tty)
c906108c 1477{
c906108c
SS
1478 dont_repeat ();
1479
1480 if (args == NULL)
1481 {
1adeb98a 1482 symbol_file_clear (from_tty);
c906108c
SS
1483 }
1484 else
1485 {
d1a41061 1486 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1487 int flags = OBJF_USERLOADED;
1488 struct cleanup *cleanups;
1489 char *name = NULL;
1490
7a292a7a 1491 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1492 while (*argv != NULL)
1493 {
78a4a9b9
AC
1494 if (strcmp (*argv, "-readnow") == 0)
1495 flags |= OBJF_READNOW;
1496 else if (**argv == '-')
8a3fe4f8 1497 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1498 else
1499 {
cb2f3a29 1500 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1501 name = *argv;
78a4a9b9 1502 }
cb2f3a29 1503
c906108c
SS
1504 argv++;
1505 }
1506
1507 if (name == NULL)
cb2f3a29
MK
1508 error (_("no symbol file name was specified"));
1509
c906108c
SS
1510 do_cleanups (cleanups);
1511 }
1512}
1513
1514/* Set the initial language.
1515
cb2f3a29
MK
1516 FIXME: A better solution would be to record the language in the
1517 psymtab when reading partial symbols, and then use it (if known) to
1518 set the language. This would be a win for formats that encode the
1519 language in an easily discoverable place, such as DWARF. For
1520 stabs, we can jump through hoops looking for specially named
1521 symbols or try to intuit the language from the specific type of
1522 stabs we find, but we can't do that until later when we read in
1523 full symbols. */
c906108c 1524
8b60591b 1525void
fba45db2 1526set_initial_language (void)
c906108c
SS
1527{
1528 struct partial_symtab *pst;
c5aa993b 1529 enum language lang = language_unknown;
c906108c
SS
1530
1531 pst = find_main_psymtab ();
1532 if (pst != NULL)
1533 {
c5aa993b 1534 if (pst->filename != NULL)
cb2f3a29
MK
1535 lang = deduce_language_from_filename (pst->filename);
1536
c906108c
SS
1537 if (lang == language_unknown)
1538 {
c5aa993b
JM
1539 /* Make C the default language */
1540 lang = language_c;
c906108c 1541 }
cb2f3a29 1542
c906108c 1543 set_language (lang);
cb2f3a29 1544 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1545 }
1546}
1547
cb2f3a29
MK
1548/* Open the file specified by NAME and hand it off to BFD for
1549 preliminary analysis. Return a newly initialized bfd *, which
1550 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1551 absolute). In case of trouble, error() is called. */
c906108c
SS
1552
1553bfd *
fba45db2 1554symfile_bfd_open (char *name)
c906108c
SS
1555{
1556 bfd *sym_bfd;
1557 int desc;
1558 char *absolute_name;
1559
f1838a98
UW
1560 if (remote_filename_p (name))
1561 {
1562 name = xstrdup (name);
1563 sym_bfd = remote_bfd_open (name, gnutarget);
1564 if (!sym_bfd)
1565 {
1566 make_cleanup (xfree, name);
1567 error (_("`%s': can't open to read symbols: %s."), name,
1568 bfd_errmsg (bfd_get_error ()));
1569 }
1570
1571 if (!bfd_check_format (sym_bfd, bfd_object))
1572 {
1573 bfd_close (sym_bfd);
1574 make_cleanup (xfree, name);
1575 error (_("`%s': can't read symbols: %s."), name,
1576 bfd_errmsg (bfd_get_error ()));
1577 }
1578
1579 return sym_bfd;
1580 }
1581
cb2f3a29 1582 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1583
1584 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1585 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1586 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1587#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1588 if (desc < 0)
1589 {
1590 char *exename = alloca (strlen (name) + 5);
1591 strcat (strcpy (exename, name), ".exe");
014d698b 1592 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1593 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1594 }
1595#endif
1596 if (desc < 0)
1597 {
b8c9b27d 1598 make_cleanup (xfree, name);
c906108c
SS
1599 perror_with_name (name);
1600 }
cb2f3a29
MK
1601
1602 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1603 bfd. It'll be freed in free_objfile(). */
1604 xfree (name);
1605 name = absolute_name;
c906108c 1606
9f76c2cd 1607 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1608 if (!sym_bfd)
1609 {
1610 close (desc);
b8c9b27d 1611 make_cleanup (xfree, name);
f1838a98 1612 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1613 bfd_errmsg (bfd_get_error ()));
1614 }
549c1eea 1615 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1616
1617 if (!bfd_check_format (sym_bfd, bfd_object))
1618 {
cb2f3a29
MK
1619 /* FIXME: should be checking for errors from bfd_close (for one
1620 thing, on error it does not free all the storage associated
1621 with the bfd). */
1622 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1623 make_cleanup (xfree, name);
f1838a98 1624 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1625 bfd_errmsg (bfd_get_error ()));
1626 }
cb2f3a29
MK
1627
1628 return sym_bfd;
c906108c
SS
1629}
1630
cb2f3a29
MK
1631/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1632 the section was not found. */
1633
0e931cf0
JB
1634int
1635get_section_index (struct objfile *objfile, char *section_name)
1636{
1637 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1638
0e931cf0
JB
1639 if (sect)
1640 return sect->index;
1641 else
1642 return -1;
1643}
1644
cb2f3a29
MK
1645/* Link SF into the global symtab_fns list. Called on startup by the
1646 _initialize routine in each object file format reader, to register
1647 information about each format the the reader is prepared to
1648 handle. */
c906108c
SS
1649
1650void
fba45db2 1651add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1652{
1653 sf->next = symtab_fns;
1654 symtab_fns = sf;
1655}
1656
cb2f3a29
MK
1657/* Initialize OBJFILE to read symbols from its associated BFD. It
1658 either returns or calls error(). The result is an initialized
1659 struct sym_fns in the objfile structure, that contains cached
1660 information about the symbol file. */
c906108c 1661
31d99776
DJ
1662static struct sym_fns *
1663find_sym_fns (bfd *abfd)
c906108c
SS
1664{
1665 struct sym_fns *sf;
31d99776 1666 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1667
75245b24
MS
1668 if (our_flavour == bfd_target_srec_flavour
1669 || our_flavour == bfd_target_ihex_flavour
1670 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1671 return NULL; /* No symbols. */
75245b24 1672
c5aa993b 1673 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1674 if (our_flavour == sf->sym_flavour)
1675 return sf;
cb2f3a29 1676
8a3fe4f8 1677 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1678 bfd_get_target (abfd));
c906108c
SS
1679}
1680\f
cb2f3a29 1681
c906108c
SS
1682/* This function runs the load command of our current target. */
1683
1684static void
fba45db2 1685load_command (char *arg, int from_tty)
c906108c 1686{
4487aabf
PA
1687 /* The user might be reloading because the binary has changed. Take
1688 this opportunity to check. */
1689 reopen_exec_file ();
1690 reread_symbols ();
1691
c906108c 1692 if (arg == NULL)
1986bccd
AS
1693 {
1694 char *parg;
1695 int count = 0;
1696
1697 parg = arg = get_exec_file (1);
1698
1699 /* Count how many \ " ' tab space there are in the name. */
1700 while ((parg = strpbrk (parg, "\\\"'\t ")))
1701 {
1702 parg++;
1703 count++;
1704 }
1705
1706 if (count)
1707 {
1708 /* We need to quote this string so buildargv can pull it apart. */
1709 char *temp = xmalloc (strlen (arg) + count + 1 );
1710 char *ptemp = temp;
1711 char *prev;
1712
1713 make_cleanup (xfree, temp);
1714
1715 prev = parg = arg;
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 strncpy (ptemp, prev, parg - prev);
1719 ptemp += parg - prev;
1720 prev = parg++;
1721 *ptemp++ = '\\';
1722 }
1723 strcpy (ptemp, prev);
1724
1725 arg = temp;
1726 }
1727 }
1728
c906108c 1729 target_load (arg, from_tty);
2889e661
JB
1730
1731 /* After re-loading the executable, we don't really know which
1732 overlays are mapped any more. */
1733 overlay_cache_invalid = 1;
c906108c
SS
1734}
1735
1736/* This version of "load" should be usable for any target. Currently
1737 it is just used for remote targets, not inftarg.c or core files,
1738 on the theory that only in that case is it useful.
1739
1740 Avoiding xmodem and the like seems like a win (a) because we don't have
1741 to worry about finding it, and (b) On VMS, fork() is very slow and so
1742 we don't want to run a subprocess. On the other hand, I'm not sure how
1743 performance compares. */
917317f4 1744
917317f4
JM
1745static int validate_download = 0;
1746
e4f9b4d5
MS
1747/* Callback service function for generic_load (bfd_map_over_sections). */
1748
1749static void
1750add_section_size_callback (bfd *abfd, asection *asec, void *data)
1751{
1752 bfd_size_type *sum = data;
1753
2c500098 1754 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1755}
1756
1757/* Opaque data for load_section_callback. */
1758struct load_section_data {
1759 unsigned long load_offset;
a76d924d
DJ
1760 struct load_progress_data *progress_data;
1761 VEC(memory_write_request_s) *requests;
1762};
1763
1764/* Opaque data for load_progress. */
1765struct load_progress_data {
1766 /* Cumulative data. */
e4f9b4d5
MS
1767 unsigned long write_count;
1768 unsigned long data_count;
1769 bfd_size_type total_size;
a76d924d
DJ
1770};
1771
1772/* Opaque data for load_progress for a single section. */
1773struct load_progress_section_data {
1774 struct load_progress_data *cumulative;
cf7a04e8 1775
a76d924d 1776 /* Per-section data. */
cf7a04e8
DJ
1777 const char *section_name;
1778 ULONGEST section_sent;
1779 ULONGEST section_size;
1780 CORE_ADDR lma;
1781 gdb_byte *buffer;
e4f9b4d5
MS
1782};
1783
a76d924d 1784/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1785
1786static void
1787load_progress (ULONGEST bytes, void *untyped_arg)
1788{
a76d924d
DJ
1789 struct load_progress_section_data *args = untyped_arg;
1790 struct load_progress_data *totals;
1791
1792 if (args == NULL)
1793 /* Writing padding data. No easy way to get at the cumulative
1794 stats, so just ignore this. */
1795 return;
1796
1797 totals = args->cumulative;
1798
1799 if (bytes == 0 && args->section_sent == 0)
1800 {
1801 /* The write is just starting. Let the user know we've started
1802 this section. */
1803 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1804 args->section_name, paddr_nz (args->section_size),
1805 paddr_nz (args->lma));
1806 return;
1807 }
cf7a04e8
DJ
1808
1809 if (validate_download)
1810 {
1811 /* Broken memories and broken monitors manifest themselves here
1812 when bring new computers to life. This doubles already slow
1813 downloads. */
1814 /* NOTE: cagney/1999-10-18: A more efficient implementation
1815 might add a verify_memory() method to the target vector and
1816 then use that. remote.c could implement that method using
1817 the ``qCRC'' packet. */
1818 gdb_byte *check = xmalloc (bytes);
1819 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1820
1821 if (target_read_memory (args->lma, check, bytes) != 0)
1822 error (_("Download verify read failed at 0x%s"),
1823 paddr (args->lma));
1824 if (memcmp (args->buffer, check, bytes) != 0)
1825 error (_("Download verify compare failed at 0x%s"),
1826 paddr (args->lma));
1827 do_cleanups (verify_cleanups);
1828 }
a76d924d 1829 totals->data_count += bytes;
cf7a04e8
DJ
1830 args->lma += bytes;
1831 args->buffer += bytes;
a76d924d 1832 totals->write_count += 1;
cf7a04e8
DJ
1833 args->section_sent += bytes;
1834 if (quit_flag
1835 || (deprecated_ui_load_progress_hook != NULL
1836 && deprecated_ui_load_progress_hook (args->section_name,
1837 args->section_sent)))
1838 error (_("Canceled the download"));
1839
1840 if (deprecated_show_load_progress != NULL)
1841 deprecated_show_load_progress (args->section_name,
1842 args->section_sent,
1843 args->section_size,
a76d924d
DJ
1844 totals->data_count,
1845 totals->total_size);
cf7a04e8
DJ
1846}
1847
e4f9b4d5
MS
1848/* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850static void
1851load_section_callback (bfd *abfd, asection *asec, void *data)
1852{
a76d924d 1853 struct memory_write_request *new_request;
e4f9b4d5 1854 struct load_section_data *args = data;
a76d924d 1855 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1856 bfd_size_type size = bfd_get_section_size (asec);
1857 gdb_byte *buffer;
cf7a04e8 1858 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1859
cf7a04e8
DJ
1860 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1861 return;
e4f9b4d5 1862
cf7a04e8
DJ
1863 if (size == 0)
1864 return;
e4f9b4d5 1865
a76d924d
DJ
1866 new_request = VEC_safe_push (memory_write_request_s,
1867 args->requests, NULL);
1868 memset (new_request, 0, sizeof (struct memory_write_request));
1869 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1870 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1871 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1872 new_request->data = xmalloc (size);
1873 new_request->baton = section_data;
cf7a04e8 1874
a76d924d 1875 buffer = new_request->data;
cf7a04e8 1876
a76d924d
DJ
1877 section_data->cumulative = args->progress_data;
1878 section_data->section_name = sect_name;
1879 section_data->section_size = size;
1880 section_data->lma = new_request->begin;
1881 section_data->buffer = buffer;
cf7a04e8
DJ
1882
1883 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1884}
1885
1886/* Clean up an entire memory request vector, including load
1887 data and progress records. */
cf7a04e8 1888
a76d924d
DJ
1889static void
1890clear_memory_write_data (void *arg)
1891{
1892 VEC(memory_write_request_s) **vec_p = arg;
1893 VEC(memory_write_request_s) *vec = *vec_p;
1894 int i;
1895 struct memory_write_request *mr;
cf7a04e8 1896
a76d924d
DJ
1897 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1898 {
1899 xfree (mr->data);
1900 xfree (mr->baton);
1901 }
1902 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1903}
1904
c906108c 1905void
917317f4 1906generic_load (char *args, int from_tty)
c906108c 1907{
c906108c 1908 bfd *loadfile_bfd;
2b71414d 1909 struct timeval start_time, end_time;
917317f4 1910 char *filename;
1986bccd 1911 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1912 struct load_section_data cbdata;
a76d924d
DJ
1913 struct load_progress_data total_progress;
1914
e4f9b4d5 1915 CORE_ADDR entry;
1986bccd 1916 char **argv;
e4f9b4d5 1917
a76d924d
DJ
1918 memset (&cbdata, 0, sizeof (cbdata));
1919 memset (&total_progress, 0, sizeof (total_progress));
1920 cbdata.progress_data = &total_progress;
1921
1922 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1923
d1a41061
PP
1924 if (args == NULL)
1925 error_no_arg (_("file to load"));
1986bccd 1926
d1a41061 1927 argv = gdb_buildargv (args);
1986bccd
AS
1928 make_cleanup_freeargv (argv);
1929
1930 filename = tilde_expand (argv[0]);
1931 make_cleanup (xfree, filename);
1932
1933 if (argv[1] != NULL)
917317f4
JM
1934 {
1935 char *endptr;
ba5f2f8a 1936
1986bccd
AS
1937 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1938
1939 /* If the last word was not a valid number then
1940 treat it as a file name with spaces in. */
1941 if (argv[1] == endptr)
1942 error (_("Invalid download offset:%s."), argv[1]);
1943
1944 if (argv[2] != NULL)
1945 error (_("Too many parameters."));
917317f4 1946 }
c906108c 1947
917317f4 1948 /* Open the file for loading. */
c906108c
SS
1949 loadfile_bfd = bfd_openr (filename, gnutarget);
1950 if (loadfile_bfd == NULL)
1951 {
1952 perror_with_name (filename);
1953 return;
1954 }
917317f4 1955
c906108c
SS
1956 /* FIXME: should be checking for errors from bfd_close (for one thing,
1957 on error it does not free all the storage associated with the
1958 bfd). */
5c65bbb6 1959 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1960
c5aa993b 1961 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1962 {
8a3fe4f8 1963 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1964 bfd_errmsg (bfd_get_error ()));
1965 }
c5aa993b 1966
5417f6dc 1967 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1968 (void *) &total_progress.total_size);
1969
1970 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1971
2b71414d 1972 gettimeofday (&start_time, NULL);
c906108c 1973
a76d924d
DJ
1974 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1975 load_progress) != 0)
1976 error (_("Load failed"));
c906108c 1977
2b71414d 1978 gettimeofday (&end_time, NULL);
ba5f2f8a 1979
e4f9b4d5 1980 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1981 ui_out_text (uiout, "Start address ");
1982 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1983 ui_out_text (uiout, ", load size ");
a76d924d 1984 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1985 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1986 /* We were doing this in remote-mips.c, I suspect it is right
1987 for other targets too. */
fb14de7b 1988 regcache_write_pc (get_current_regcache (), entry);
c906108c 1989
7ca9f392
AC
1990 /* FIXME: are we supposed to call symbol_file_add or not? According
1991 to a comment from remote-mips.c (where a call to symbol_file_add
1992 was commented out), making the call confuses GDB if more than one
1993 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1994 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1995
a76d924d
DJ
1996 print_transfer_performance (gdb_stdout, total_progress.data_count,
1997 total_progress.write_count,
1998 &start_time, &end_time);
c906108c
SS
1999
2000 do_cleanups (old_cleanups);
2001}
2002
2003/* Report how fast the transfer went. */
2004
917317f4
JM
2005/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2006 replaced by print_transfer_performance (with a very different
2007 function signature). */
2008
c906108c 2009void
fba45db2
KB
2010report_transfer_performance (unsigned long data_count, time_t start_time,
2011 time_t end_time)
c906108c 2012{
2b71414d
DJ
2013 struct timeval start, end;
2014
2015 start.tv_sec = start_time;
2016 start.tv_usec = 0;
2017 end.tv_sec = end_time;
2018 end.tv_usec = 0;
2019
2020 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2021}
2022
2023void
d9fcf2fb 2024print_transfer_performance (struct ui_file *stream,
917317f4
JM
2025 unsigned long data_count,
2026 unsigned long write_count,
2b71414d
DJ
2027 const struct timeval *start_time,
2028 const struct timeval *end_time)
917317f4 2029{
9f43d28c 2030 ULONGEST time_count;
2b71414d
DJ
2031
2032 /* Compute the elapsed time in milliseconds, as a tradeoff between
2033 accuracy and overflow. */
2034 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2035 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2036
8b93c638
JM
2037 ui_out_text (uiout, "Transfer rate: ");
2038 if (time_count > 0)
2039 {
9f43d28c
DJ
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2041
2042 if (ui_out_is_mi_like_p (uiout))
2043 {
2044 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2045 ui_out_text (uiout, " bits/sec");
2046 }
2047 else if (rate < 1024)
2048 {
2049 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2050 ui_out_text (uiout, " bytes/sec");
2051 }
2052 else
2053 {
2054 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2055 ui_out_text (uiout, " KB/sec");
2056 }
8b93c638
JM
2057 }
2058 else
2059 {
ba5f2f8a 2060 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2061 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2062 }
2063 if (write_count > 0)
2064 {
2065 ui_out_text (uiout, ", ");
ba5f2f8a 2066 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2067 ui_out_text (uiout, " bytes/write");
2068 }
2069 ui_out_text (uiout, ".\n");
c906108c
SS
2070}
2071
2072/* This function allows the addition of incrementally linked object files.
2073 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2074/* Note: ezannoni 2000-04-13 This function/command used to have a
2075 special case syntax for the rombug target (Rombug is the boot
2076 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2077 rombug case, the user doesn't need to supply a text address,
2078 instead a call to target_link() (in target.c) would supply the
2079 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2080
c906108c 2081static void
fba45db2 2082add_symbol_file_command (char *args, int from_tty)
c906108c 2083{
db162d44 2084 char *filename = NULL;
2df3850c 2085 int flags = OBJF_USERLOADED;
c906108c 2086 char *arg;
2acceee2 2087 int expecting_option = 0;
db162d44 2088 int section_index = 0;
2acceee2
JM
2089 int argcnt = 0;
2090 int sec_num = 0;
2091 int i;
db162d44
EZ
2092 int expecting_sec_name = 0;
2093 int expecting_sec_addr = 0;
5b96932b 2094 char **argv;
db162d44 2095
a39a16c4 2096 struct sect_opt
2acceee2 2097 {
2acceee2
JM
2098 char *name;
2099 char *value;
a39a16c4 2100 };
db162d44 2101
a39a16c4
MM
2102 struct section_addr_info *section_addrs;
2103 struct sect_opt *sect_opts = NULL;
2104 size_t num_sect_opts = 0;
3017564a 2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2106
a39a16c4 2107 num_sect_opts = 16;
5417f6dc 2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2109 * sizeof (struct sect_opt));
2110
c906108c
SS
2111 dont_repeat ();
2112
2113 if (args == NULL)
8a3fe4f8 2114 error (_("add-symbol-file takes a file name and an address"));
c906108c 2115
d1a41061 2116 argv = gdb_buildargv (args);
5b96932b 2117 make_cleanup_freeargv (argv);
db162d44 2118
5b96932b
AS
2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2120 {
2121 /* Process the argument. */
db162d44 2122 if (argcnt == 0)
c906108c 2123 {
db162d44
EZ
2124 /* The first argument is the file name. */
2125 filename = tilde_expand (arg);
3017564a 2126 make_cleanup (xfree, filename);
c906108c 2127 }
db162d44 2128 else
7a78ae4e
ND
2129 if (argcnt == 1)
2130 {
2131 /* The second argument is always the text address at which
2132 to load the program. */
2133 sect_opts[section_index].name = ".text";
2134 sect_opts[section_index].value = arg;
f414f22f 2135 if (++section_index >= num_sect_opts)
a39a16c4
MM
2136 {
2137 num_sect_opts *= 2;
5417f6dc 2138 sect_opts = ((struct sect_opt *)
a39a16c4 2139 xrealloc (sect_opts,
5417f6dc 2140 num_sect_opts
a39a16c4
MM
2141 * sizeof (struct sect_opt)));
2142 }
7a78ae4e
ND
2143 }
2144 else
2145 {
2146 /* It's an option (starting with '-') or it's an argument
2147 to an option */
2148
2149 if (*arg == '-')
2150 {
78a4a9b9
AC
2151 if (strcmp (arg, "-readnow") == 0)
2152 flags |= OBJF_READNOW;
2153 else if (strcmp (arg, "-s") == 0)
2154 {
2155 expecting_sec_name = 1;
2156 expecting_sec_addr = 1;
2157 }
7a78ae4e
ND
2158 }
2159 else
2160 {
2161 if (expecting_sec_name)
db162d44 2162 {
7a78ae4e
ND
2163 sect_opts[section_index].name = arg;
2164 expecting_sec_name = 0;
db162d44
EZ
2165 }
2166 else
7a78ae4e
ND
2167 if (expecting_sec_addr)
2168 {
2169 sect_opts[section_index].value = arg;
2170 expecting_sec_addr = 0;
f414f22f 2171 if (++section_index >= num_sect_opts)
a39a16c4
MM
2172 {
2173 num_sect_opts *= 2;
5417f6dc 2174 sect_opts = ((struct sect_opt *)
a39a16c4 2175 xrealloc (sect_opts,
5417f6dc 2176 num_sect_opts
a39a16c4
MM
2177 * sizeof (struct sect_opt)));
2178 }
7a78ae4e
ND
2179 }
2180 else
8a3fe4f8 2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2182 }
2183 }
c906108c 2184 }
c906108c 2185
927890d0
JB
2186 /* This command takes at least two arguments. The first one is a
2187 filename, and the second is the address where this file has been
2188 loaded. Abort now if this address hasn't been provided by the
2189 user. */
2190 if (section_index < 1)
2191 error (_("The address where %s has been loaded is missing"), filename);
2192
db162d44
EZ
2193 /* Print the prompt for the query below. And save the arguments into
2194 a sect_addr_info structure to be passed around to other
2195 functions. We have to split this up into separate print
bb599908 2196 statements because hex_string returns a local static
db162d44 2197 string. */
5417f6dc 2198
a3f17187 2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2200 section_addrs = alloc_section_addr_info (section_index);
2201 make_cleanup (xfree, section_addrs);
db162d44 2202 for (i = 0; i < section_index; i++)
c906108c 2203 {
db162d44
EZ
2204 CORE_ADDR addr;
2205 char *val = sect_opts[i].value;
2206 char *sec = sect_opts[i].name;
5417f6dc 2207
ae822768 2208 addr = parse_and_eval_address (val);
db162d44 2209
db162d44
EZ
2210 /* Here we store the section offsets in the order they were
2211 entered on the command line. */
a39a16c4
MM
2212 section_addrs->other[sec_num].name = sec;
2213 section_addrs->other[sec_num].addr = addr;
35076fa0 2214 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
db162d44
EZ
2215 sec_num++;
2216
5417f6dc 2217 /* The object's sections are initialized when a
db162d44 2218 call is made to build_objfile_section_table (objfile).
5417f6dc 2219 This happens in reread_symbols.
db162d44
EZ
2220 At this point, we don't know what file type this is,
2221 so we can't determine what section names are valid. */
2acceee2 2222 }
db162d44 2223
2acceee2 2224 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2225 error (_("Not confirmed."));
c906108c 2226
7eedccfa
PP
2227 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2228 section_addrs, flags);
c906108c
SS
2229
2230 /* Getting new symbols may change our opinion about what is
2231 frameless. */
2232 reinit_frame_cache ();
db162d44 2233 do_cleanups (my_cleanups);
c906108c
SS
2234}
2235\f
70992597 2236
c906108c
SS
2237/* Re-read symbols if a symbol-file has changed. */
2238void
fba45db2 2239reread_symbols (void)
c906108c
SS
2240{
2241 struct objfile *objfile;
2242 long new_modtime;
2243 int reread_one = 0;
2244 struct stat new_statbuf;
2245 int res;
2246
2247 /* With the addition of shared libraries, this should be modified,
2248 the load time should be saved in the partial symbol tables, since
2249 different tables may come from different source files. FIXME.
2250 This routine should then walk down each partial symbol table
2251 and see if the symbol table that it originates from has been changed */
2252
c5aa993b
JM
2253 for (objfile = object_files; objfile; objfile = objfile->next)
2254 {
2255 if (objfile->obfd)
2256 {
52d16ba8 2257#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2258 /* If this object is from a shared library, then you should
2259 stat on the library name, not member name. */
c906108c 2260
c5aa993b
JM
2261 if (objfile->obfd->my_archive)
2262 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2263 else
c906108c 2264#endif
c5aa993b
JM
2265 res = stat (objfile->name, &new_statbuf);
2266 if (res != 0)
c906108c 2267 {
c5aa993b 2268 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2269 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2270 objfile->name);
2271 continue;
c906108c 2272 }
c5aa993b
JM
2273 new_modtime = new_statbuf.st_mtime;
2274 if (new_modtime != objfile->mtime)
c906108c 2275 {
c5aa993b
JM
2276 struct cleanup *old_cleanups;
2277 struct section_offsets *offsets;
2278 int num_offsets;
c5aa993b
JM
2279 char *obfd_filename;
2280
a3f17187 2281 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2282 objfile->name);
2283
2284 /* There are various functions like symbol_file_add,
2285 symfile_bfd_open, syms_from_objfile, etc., which might
2286 appear to do what we want. But they have various other
2287 effects which we *don't* want. So we just do stuff
2288 ourselves. We don't worry about mapped files (for one thing,
2289 any mapped file will be out of date). */
2290
2291 /* If we get an error, blow away this objfile (not sure if
2292 that is the correct response for things like shared
2293 libraries). */
74b7792f 2294 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2295 /* We need to do this whenever any symbols go away. */
74b7792f 2296 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2297
b2de52bb
JK
2298 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2299 bfd_get_filename (exec_bfd)) == 0)
2300 {
2301 /* Reload EXEC_BFD without asking anything. */
2302
2303 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2304 }
2305
c5aa993b
JM
2306 /* Clean up any state BFD has sitting around. We don't need
2307 to close the descriptor but BFD lacks a way of closing the
2308 BFD without closing the descriptor. */
2309 obfd_filename = bfd_get_filename (objfile->obfd);
2310 if (!bfd_close (objfile->obfd))
8a3fe4f8 2311 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2312 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2313 if (remote_filename_p (obfd_filename))
2314 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2315 else
2316 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2317 if (objfile->obfd == NULL)
8a3fe4f8 2318 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2319 /* bfd_openr sets cacheable to true, which is what we want. */
2320 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2321 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2322 bfd_errmsg (bfd_get_error ()));
2323
2324 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2325 objfile_obstack. */
c5aa993b 2326 num_offsets = objfile->num_sections;
5417f6dc 2327 offsets = ((struct section_offsets *)
a39a16c4 2328 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2329 memcpy (offsets, objfile->section_offsets,
a39a16c4 2330 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2331
ae5a43e0
DJ
2332 /* Remove any references to this objfile in the global
2333 value lists. */
2334 preserve_values (objfile);
2335
c5aa993b
JM
2336 /* Nuke all the state that we will re-read. Much of the following
2337 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2338 other parts of GDB that there is nothing currently there.
2339
2340 Try to keep the freeing order compatible with free_objfile. */
2341
2342 if (objfile->sf != NULL)
2343 {
2344 (*objfile->sf->sym_finish) (objfile);
2345 }
2346
2347 clear_objfile_data (objfile);
c5aa993b
JM
2348
2349 /* FIXME: Do we have to free a whole linked list, or is this
2350 enough? */
2351 if (objfile->global_psymbols.list)
2dc74dc1 2352 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2353 memset (&objfile->global_psymbols, 0,
2354 sizeof (objfile->global_psymbols));
2355 if (objfile->static_psymbols.list)
2dc74dc1 2356 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2357 memset (&objfile->static_psymbols, 0,
2358 sizeof (objfile->static_psymbols));
2359
2360 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2361 bcache_xfree (objfile->psymbol_cache);
2362 objfile->psymbol_cache = bcache_xmalloc ();
2363 bcache_xfree (objfile->macro_cache);
2364 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2365 if (objfile->demangled_names_hash != NULL)
2366 {
2367 htab_delete (objfile->demangled_names_hash);
2368 objfile->demangled_names_hash = NULL;
2369 }
b99607ea 2370 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2371 objfile->sections = NULL;
2372 objfile->symtabs = NULL;
2373 objfile->psymtabs = NULL;
930123b7 2374 objfile->psymtabs_addrmap = NULL;
c5aa993b 2375 objfile->free_psymtabs = NULL;
a1b8c067 2376 objfile->cp_namespace_symtab = NULL;
c5aa993b 2377 objfile->msymbols = NULL;
0a6ddd08 2378 objfile->deprecated_sym_private = NULL;
c5aa993b 2379 objfile->minimal_symbol_count = 0;
0a83117a
MS
2380 memset (&objfile->msymbol_hash, 0,
2381 sizeof (objfile->msymbol_hash));
2382 memset (&objfile->msymbol_demangled_hash, 0,
2383 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2384
af5f3db6
AC
2385 objfile->psymbol_cache = bcache_xmalloc ();
2386 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2387 /* obstack_init also initializes the obstack so it is
2388 empty. We could use obstack_specify_allocation but
2389 gdb_obstack.h specifies the alloc/dealloc
2390 functions. */
2391 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2392 if (build_objfile_section_table (objfile))
2393 {
8a3fe4f8 2394 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2395 objfile->name, bfd_errmsg (bfd_get_error ()));
2396 }
15831452 2397 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2398
2399 /* We use the same section offsets as from last time. I'm not
2400 sure whether that is always correct for shared libraries. */
2401 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2402 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2403 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2404 memcpy (objfile->section_offsets, offsets,
a39a16c4 2405 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2406 objfile->num_sections = num_offsets;
2407
2408 /* What the hell is sym_new_init for, anyway? The concept of
2409 distinguishing between the main file and additional files
2410 in this way seems rather dubious. */
2411 if (objfile == symfile_objfile)
2412 {
2413 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2414 }
2415
2416 (*objfile->sf->sym_init) (objfile);
b9caf505 2417 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2418 /* The "mainline" parameter is a hideous hack; I think leaving it
2419 zero is OK since dbxread.c also does what it needs to do if
2420 objfile->global_psymbols.size is 0. */
96baa820 2421 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2422 if (!have_partial_symbols () && !have_full_symbols ())
2423 {
2424 wrap_here ("");
a3f17187 2425 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2426 wrap_here ("");
2427 }
c5aa993b
JM
2428
2429 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2430 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2431
c5aa993b
JM
2432 /* Getting new symbols may change our opinion about what is
2433 frameless. */
c906108c 2434
c5aa993b 2435 reinit_frame_cache ();
c906108c 2436
c5aa993b
JM
2437 /* Discard cleanups as symbol reading was successful. */
2438 discard_cleanups (old_cleanups);
c906108c 2439
c5aa993b
JM
2440 /* If the mtime has changed between the time we set new_modtime
2441 and now, we *want* this to be out of date, so don't call stat
2442 again now. */
2443 objfile->mtime = new_modtime;
2444 reread_one = 1;
5b5d99cf 2445 reread_separate_symbols (objfile);
6528a9ea 2446 init_entry_point_info (objfile);
c5aa993b 2447 }
c906108c
SS
2448 }
2449 }
c906108c
SS
2450
2451 if (reread_one)
ea53e89f
JB
2452 {
2453 clear_symtab_users ();
2454 /* At least one objfile has changed, so we can consider that
2455 the executable we're debugging has changed too. */
781b42b0 2456 observer_notify_executable_changed ();
ea53e89f
JB
2457 }
2458
c906108c 2459}
5b5d99cf
JB
2460
2461
2462/* Handle separate debug info for OBJFILE, which has just been
2463 re-read:
2464 - If we had separate debug info before, but now we don't, get rid
2465 of the separated objfile.
2466 - If we didn't have separated debug info before, but now we do,
2467 read in the new separated debug info file.
2468 - If the debug link points to a different file, toss the old one
2469 and read the new one.
2470 This function does *not* handle the case where objfile is still
2471 using the same separate debug info file, but that file's timestamp
2472 has changed. That case should be handled by the loop in
2473 reread_symbols already. */
2474static void
2475reread_separate_symbols (struct objfile *objfile)
2476{
2477 char *debug_file;
2478 unsigned long crc32;
2479
2480 /* Does the updated objfile's debug info live in a
2481 separate file? */
2482 debug_file = find_separate_debug_file (objfile);
2483
2484 if (objfile->separate_debug_objfile)
2485 {
2486 /* There are two cases where we need to get rid of
2487 the old separated debug info objfile:
2488 - if the new primary objfile doesn't have
2489 separated debug info, or
2490 - if the new primary objfile has separate debug
2491 info, but it's under a different filename.
5417f6dc 2492
5b5d99cf
JB
2493 If the old and new objfiles both have separate
2494 debug info, under the same filename, then we're
2495 okay --- if the separated file's contents have
2496 changed, we will have caught that when we
2497 visited it in this function's outermost
2498 loop. */
2499 if (! debug_file
2500 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2501 free_objfile (objfile->separate_debug_objfile);
2502 }
2503
2504 /* If the new objfile has separate debug info, and we
2505 haven't loaded it already, do so now. */
2506 if (debug_file
2507 && ! objfile->separate_debug_objfile)
2508 {
2509 /* Use the same section offset table as objfile itself.
2510 Preserve the flags from objfile that make sense. */
2511 objfile->separate_debug_objfile
2512 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2513 (symfile_bfd_open (debug_file),
7eedccfa 2514 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2515 0, /* No addr table. */
2516 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2517 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2518 | OBJF_USERLOADED)));
2519 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2520 = objfile;
2521 }
73780b3c
MS
2522 if (debug_file)
2523 xfree (debug_file);
5b5d99cf
JB
2524}
2525
2526
c906108c
SS
2527\f
2528
c5aa993b
JM
2529
2530typedef struct
2531{
2532 char *ext;
c906108c 2533 enum language lang;
c5aa993b
JM
2534}
2535filename_language;
c906108c 2536
c5aa993b 2537static filename_language *filename_language_table;
c906108c
SS
2538static int fl_table_size, fl_table_next;
2539
2540static void
fba45db2 2541add_filename_language (char *ext, enum language lang)
c906108c
SS
2542{
2543 if (fl_table_next >= fl_table_size)
2544 {
2545 fl_table_size += 10;
5417f6dc 2546 filename_language_table =
25bf3106
PM
2547 xrealloc (filename_language_table,
2548 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2549 }
2550
4fcf66da 2551 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2552 filename_language_table[fl_table_next].lang = lang;
2553 fl_table_next++;
2554}
2555
2556static char *ext_args;
920d2a44
AC
2557static void
2558show_ext_args (struct ui_file *file, int from_tty,
2559 struct cmd_list_element *c, const char *value)
2560{
2561 fprintf_filtered (file, _("\
2562Mapping between filename extension and source language is \"%s\".\n"),
2563 value);
2564}
c906108c
SS
2565
2566static void
26c41df3 2567set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2568{
2569 int i;
2570 char *cp = ext_args;
2571 enum language lang;
2572
2573 /* First arg is filename extension, starting with '.' */
2574 if (*cp != '.')
8a3fe4f8 2575 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2576
2577 /* Find end of first arg. */
c5aa993b 2578 while (*cp && !isspace (*cp))
c906108c
SS
2579 cp++;
2580
2581 if (*cp == '\0')
8a3fe4f8 2582 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2583 ext_args);
2584
2585 /* Null-terminate first arg */
c5aa993b 2586 *cp++ = '\0';
c906108c
SS
2587
2588 /* Find beginning of second arg, which should be a source language. */
2589 while (*cp && isspace (*cp))
2590 cp++;
2591
2592 if (*cp == '\0')
8a3fe4f8 2593 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2594 ext_args);
2595
2596 /* Lookup the language from among those we know. */
2597 lang = language_enum (cp);
2598
2599 /* Now lookup the filename extension: do we already know it? */
2600 for (i = 0; i < fl_table_next; i++)
2601 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2602 break;
2603
2604 if (i >= fl_table_next)
2605 {
2606 /* new file extension */
2607 add_filename_language (ext_args, lang);
2608 }
2609 else
2610 {
2611 /* redefining a previously known filename extension */
2612
2613 /* if (from_tty) */
2614 /* query ("Really make files of type %s '%s'?", */
2615 /* ext_args, language_str (lang)); */
2616
b8c9b27d 2617 xfree (filename_language_table[i].ext);
4fcf66da 2618 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2619 filename_language_table[i].lang = lang;
2620 }
2621}
2622
2623static void
fba45db2 2624info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2625{
2626 int i;
2627
a3f17187 2628 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2629 printf_filtered ("\n\n");
2630 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2631 printf_filtered ("\t%s\t- %s\n",
2632 filename_language_table[i].ext,
c906108c
SS
2633 language_str (filename_language_table[i].lang));
2634}
2635
2636static void
fba45db2 2637init_filename_language_table (void)
c906108c
SS
2638{
2639 if (fl_table_size == 0) /* protect against repetition */
2640 {
2641 fl_table_size = 20;
2642 fl_table_next = 0;
c5aa993b 2643 filename_language_table =
c906108c 2644 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2645 add_filename_language (".c", language_c);
2646 add_filename_language (".C", language_cplus);
2647 add_filename_language (".cc", language_cplus);
2648 add_filename_language (".cp", language_cplus);
2649 add_filename_language (".cpp", language_cplus);
2650 add_filename_language (".cxx", language_cplus);
2651 add_filename_language (".c++", language_cplus);
2652 add_filename_language (".java", language_java);
c906108c 2653 add_filename_language (".class", language_java);
da2cf7e0 2654 add_filename_language (".m", language_objc);
c5aa993b
JM
2655 add_filename_language (".f", language_fortran);
2656 add_filename_language (".F", language_fortran);
2657 add_filename_language (".s", language_asm);
aa707ed0 2658 add_filename_language (".sx", language_asm);
c5aa993b 2659 add_filename_language (".S", language_asm);
c6fd39cd
PM
2660 add_filename_language (".pas", language_pascal);
2661 add_filename_language (".p", language_pascal);
2662 add_filename_language (".pp", language_pascal);
963a6417
PH
2663 add_filename_language (".adb", language_ada);
2664 add_filename_language (".ads", language_ada);
2665 add_filename_language (".a", language_ada);
2666 add_filename_language (".ada", language_ada);
c906108c
SS
2667 }
2668}
2669
2670enum language
fba45db2 2671deduce_language_from_filename (char *filename)
c906108c
SS
2672{
2673 int i;
2674 char *cp;
2675
2676 if (filename != NULL)
2677 if ((cp = strrchr (filename, '.')) != NULL)
2678 for (i = 0; i < fl_table_next; i++)
2679 if (strcmp (cp, filename_language_table[i].ext) == 0)
2680 return filename_language_table[i].lang;
2681
2682 return language_unknown;
2683}
2684\f
2685/* allocate_symtab:
2686
2687 Allocate and partly initialize a new symbol table. Return a pointer
2688 to it. error() if no space.
2689
2690 Caller must set these fields:
c5aa993b
JM
2691 LINETABLE(symtab)
2692 symtab->blockvector
2693 symtab->dirname
2694 symtab->free_code
2695 symtab->free_ptr
2696 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2697 */
2698
2699struct symtab *
fba45db2 2700allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2701{
52f0bd74 2702 struct symtab *symtab;
c906108c
SS
2703
2704 symtab = (struct symtab *)
4a146b47 2705 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2706 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2707 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2708 &objfile->objfile_obstack);
c5aa993b
JM
2709 symtab->fullname = NULL;
2710 symtab->language = deduce_language_from_filename (filename);
2711 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2712 &objfile->objfile_obstack);
c906108c
SS
2713
2714 /* Hook it to the objfile it comes from */
2715
c5aa993b
JM
2716 symtab->objfile = objfile;
2717 symtab->next = objfile->symtabs;
2718 objfile->symtabs = symtab;
c906108c 2719
c906108c
SS
2720 return (symtab);
2721}
2722
2723struct partial_symtab *
fba45db2 2724allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2725{
2726 struct partial_symtab *psymtab;
2727
c5aa993b 2728 if (objfile->free_psymtabs)
c906108c 2729 {
c5aa993b
JM
2730 psymtab = objfile->free_psymtabs;
2731 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2732 }
2733 else
2734 psymtab = (struct partial_symtab *)
8b92e4d5 2735 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2736 sizeof (struct partial_symtab));
2737
2738 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2739 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2740 &objfile->objfile_obstack);
c5aa993b 2741 psymtab->symtab = NULL;
c906108c
SS
2742
2743 /* Prepend it to the psymtab list for the objfile it belongs to.
2744 Psymtabs are searched in most recent inserted -> least recent
2745 inserted order. */
2746
c5aa993b
JM
2747 psymtab->objfile = objfile;
2748 psymtab->next = objfile->psymtabs;
2749 objfile->psymtabs = psymtab;
c906108c
SS
2750#if 0
2751 {
2752 struct partial_symtab **prev_pst;
c5aa993b
JM
2753 psymtab->objfile = objfile;
2754 psymtab->next = NULL;
2755 prev_pst = &(objfile->psymtabs);
c906108c 2756 while ((*prev_pst) != NULL)
c5aa993b 2757 prev_pst = &((*prev_pst)->next);
c906108c 2758 (*prev_pst) = psymtab;
c5aa993b 2759 }
c906108c 2760#endif
c5aa993b 2761
c906108c
SS
2762 return (psymtab);
2763}
2764
2765void
fba45db2 2766discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2767{
2768 struct partial_symtab **prev_pst;
2769
2770 /* From dbxread.c:
2771 Empty psymtabs happen as a result of header files which don't
2772 have any symbols in them. There can be a lot of them. But this
2773 check is wrong, in that a psymtab with N_SLINE entries but
2774 nothing else is not empty, but we don't realize that. Fixing
2775 that without slowing things down might be tricky. */
2776
2777 /* First, snip it out of the psymtab chain */
2778
2779 prev_pst = &(pst->objfile->psymtabs);
2780 while ((*prev_pst) != pst)
2781 prev_pst = &((*prev_pst)->next);
2782 (*prev_pst) = pst->next;
2783
2784 /* Next, put it on a free list for recycling */
2785
2786 pst->next = pst->objfile->free_psymtabs;
2787 pst->objfile->free_psymtabs = pst;
2788}
c906108c 2789\f
c5aa993b 2790
c906108c
SS
2791/* Reset all data structures in gdb which may contain references to symbol
2792 table data. */
2793
2794void
fba45db2 2795clear_symtab_users (void)
c906108c
SS
2796{
2797 /* Someday, we should do better than this, by only blowing away
2798 the things that really need to be blown. */
c0501be5
DJ
2799
2800 /* Clear the "current" symtab first, because it is no longer valid.
2801 breakpoint_re_set may try to access the current symtab. */
2802 clear_current_source_symtab_and_line ();
2803
c906108c 2804 clear_displays ();
c906108c
SS
2805 breakpoint_re_set ();
2806 set_default_breakpoint (0, 0, 0, 0);
c906108c 2807 clear_pc_function_cache ();
06d3b283 2808 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2809
2810 /* Clear globals which might have pointed into a removed objfile.
2811 FIXME: It's not clear which of these are supposed to persist
2812 between expressions and which ought to be reset each time. */
2813 expression_context_block = NULL;
2814 innermost_block = NULL;
8756216b
DP
2815
2816 /* Varobj may refer to old symbols, perform a cleanup. */
2817 varobj_invalidate ();
2818
c906108c
SS
2819}
2820
74b7792f
AC
2821static void
2822clear_symtab_users_cleanup (void *ignore)
2823{
2824 clear_symtab_users ();
2825}
2826
c906108c
SS
2827/* clear_symtab_users_once:
2828
2829 This function is run after symbol reading, or from a cleanup.
2830 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2831 has been blown away, but the other GDB data structures that may
c906108c
SS
2832 reference it have not yet been cleared or re-directed. (The old
2833 symtab was zapped, and the cleanup queued, in free_named_symtab()
2834 below.)
2835
2836 This function can be queued N times as a cleanup, or called
2837 directly; it will do all the work the first time, and then will be a
2838 no-op until the next time it is queued. This works by bumping a
2839 counter at queueing time. Much later when the cleanup is run, or at
2840 the end of symbol processing (in case the cleanup is discarded), if
2841 the queued count is greater than the "done-count", we do the work
2842 and set the done-count to the queued count. If the queued count is
2843 less than or equal to the done-count, we just ignore the call. This
2844 is needed because reading a single .o file will often replace many
2845 symtabs (one per .h file, for example), and we don't want to reset
2846 the breakpoints N times in the user's face.
2847
2848 The reason we both queue a cleanup, and call it directly after symbol
2849 reading, is because the cleanup protects us in case of errors, but is
2850 discarded if symbol reading is successful. */
2851
2852#if 0
2853/* FIXME: As free_named_symtabs is currently a big noop this function
2854 is no longer needed. */
a14ed312 2855static void clear_symtab_users_once (void);
c906108c
SS
2856
2857static int clear_symtab_users_queued;
2858static int clear_symtab_users_done;
2859
2860static void
fba45db2 2861clear_symtab_users_once (void)
c906108c
SS
2862{
2863 /* Enforce once-per-`do_cleanups'-semantics */
2864 if (clear_symtab_users_queued <= clear_symtab_users_done)
2865 return;
2866 clear_symtab_users_done = clear_symtab_users_queued;
2867
2868 clear_symtab_users ();
2869}
2870#endif
2871
2872/* Delete the specified psymtab, and any others that reference it. */
2873
2874static void
fba45db2 2875cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2876{
2877 struct partial_symtab *ps, *pprev = NULL;
2878 int i;
2879
2880 /* Find its previous psymtab in the chain */
c5aa993b
JM
2881 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2882 {
2883 if (ps == pst)
2884 break;
2885 pprev = ps;
2886 }
c906108c 2887
c5aa993b
JM
2888 if (ps)
2889 {
2890 /* Unhook it from the chain. */
2891 if (ps == pst->objfile->psymtabs)
2892 pst->objfile->psymtabs = ps->next;
2893 else
2894 pprev->next = ps->next;
2895
2896 /* FIXME, we can't conveniently deallocate the entries in the
2897 partial_symbol lists (global_psymbols/static_psymbols) that
2898 this psymtab points to. These just take up space until all
2899 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2900 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2901
2902 /* We need to cashier any psymtab that has this one as a dependency... */
2903 again:
2904 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2905 {
2906 for (i = 0; i < ps->number_of_dependencies; i++)
2907 {
2908 if (ps->dependencies[i] == pst)
2909 {
2910 cashier_psymtab (ps);
2911 goto again; /* Must restart, chain has been munged. */
2912 }
2913 }
c906108c 2914 }
c906108c 2915 }
c906108c
SS
2916}
2917
2918/* If a symtab or psymtab for filename NAME is found, free it along
2919 with any dependent breakpoints, displays, etc.
2920 Used when loading new versions of object modules with the "add-file"
2921 command. This is only called on the top-level symtab or psymtab's name;
2922 it is not called for subsidiary files such as .h files.
2923
2924 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2925 FIXME. The return value appears to never be used.
c906108c
SS
2926
2927 FIXME. I think this is not the best way to do this. We should
2928 work on being gentler to the environment while still cleaning up
2929 all stray pointers into the freed symtab. */
2930
2931int
fba45db2 2932free_named_symtabs (char *name)
c906108c
SS
2933{
2934#if 0
2935 /* FIXME: With the new method of each objfile having it's own
2936 psymtab list, this function needs serious rethinking. In particular,
2937 why was it ever necessary to toss psymtabs with specific compilation
2938 unit filenames, as opposed to all psymtabs from a particular symbol
2939 file? -- fnf
2940 Well, the answer is that some systems permit reloading of particular
2941 compilation units. We want to blow away any old info about these
2942 compilation units, regardless of which objfiles they arrived in. --gnu. */
2943
52f0bd74
AC
2944 struct symtab *s;
2945 struct symtab *prev;
2946 struct partial_symtab *ps;
c906108c
SS
2947 struct blockvector *bv;
2948 int blewit = 0;
2949
2950 /* We only wack things if the symbol-reload switch is set. */
2951 if (!symbol_reloading)
2952 return 0;
2953
2954 /* Some symbol formats have trouble providing file names... */
2955 if (name == 0 || *name == '\0')
2956 return 0;
2957
2958 /* Look for a psymtab with the specified name. */
2959
2960again2:
c5aa993b
JM
2961 for (ps = partial_symtab_list; ps; ps = ps->next)
2962 {
6314a349 2963 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2964 {
2965 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2966 goto again2; /* Must restart, chain has been munged */
2967 }
c906108c 2968 }
c906108c
SS
2969
2970 /* Look for a symtab with the specified name. */
2971
2972 for (s = symtab_list; s; s = s->next)
2973 {
6314a349 2974 if (strcmp (name, s->filename) == 0)
c906108c
SS
2975 break;
2976 prev = s;
2977 }
2978
2979 if (s)
2980 {
2981 if (s == symtab_list)
2982 symtab_list = s->next;
2983 else
2984 prev->next = s->next;
2985
2986 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2987 or not they depend on the symtab being freed. This should be
2988 changed so that only those data structures affected are deleted. */
c906108c
SS
2989
2990 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2991 This test is necessary due to a bug in "dbxread.c" that
2992 causes empty symtabs to be created for N_SO symbols that
2993 contain the pathname of the object file. (This problem
2994 has been fixed in GDB 3.9x). */
c906108c
SS
2995
2996 bv = BLOCKVECTOR (s);
2997 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2998 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2999 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3000 {
e2e0b3e5 3001 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3002 name);
c906108c
SS
3003 clear_symtab_users_queued++;
3004 make_cleanup (clear_symtab_users_once, 0);
3005 blewit = 1;
c5aa993b
JM
3006 }
3007 else
e2e0b3e5
AC
3008 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3009 name);
c906108c
SS
3010
3011 free_symtab (s);
3012 }
3013 else
3014 {
3015 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3016 even though no symtab was found, since the file might have
3017 been compiled without debugging, and hence not be associated
3018 with a symtab. In order to handle this correctly, we would need
3019 to keep a list of text address ranges for undebuggable files.
3020 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3021 ;
3022 }
3023
3024 /* FIXME, what about the minimal symbol table? */
3025 return blewit;
3026#else
3027 return (0);
3028#endif
3029}
3030\f
3031/* Allocate and partially fill a partial symtab. It will be
3032 completely filled at the end of the symbol list.
3033
d4f3574e 3034 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3035
3036struct partial_symtab *
fba45db2
KB
3037start_psymtab_common (struct objfile *objfile,
3038 struct section_offsets *section_offsets, char *filename,
3039 CORE_ADDR textlow, struct partial_symbol **global_syms,
3040 struct partial_symbol **static_syms)
c906108c
SS
3041{
3042 struct partial_symtab *psymtab;
3043
3044 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3045 psymtab->section_offsets = section_offsets;
3046 psymtab->textlow = textlow;
3047 psymtab->texthigh = psymtab->textlow; /* default */
3048 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3049 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3050 return (psymtab);
3051}
3052\f
2e618c13
AR
3053/* Helper function, initialises partial symbol structure and stashes
3054 it into objfile's bcache. Note that our caching mechanism will
3055 use all fields of struct partial_symbol to determine hash value of the
3056 structure. In other words, having two symbols with the same name but
3057 different domain (or address) is possible and correct. */
3058
11d31d94 3059static const struct partial_symbol *
2e618c13
AR
3060add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3061 enum address_class class,
3062 long val, /* Value as a long */
3063 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3064 enum language language, struct objfile *objfile,
3065 int *added)
3066{
3067 char *buf = name;
3068 /* psymbol is static so that there will be no uninitialized gaps in the
3069 structure which might contain random data, causing cache misses in
3070 bcache. */
3071 static struct partial_symbol psymbol;
3072
3073 if (name[namelength] != '\0')
3074 {
3075 buf = alloca (namelength + 1);
3076 /* Create local copy of the partial symbol */
3077 memcpy (buf, name, namelength);
3078 buf[namelength] = '\0';
3079 }
3080 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3081 if (val != 0)
3082 {
3083 SYMBOL_VALUE (&psymbol) = val;
3084 }
3085 else
3086 {
3087 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3088 }
3089 SYMBOL_SECTION (&psymbol) = 0;
3090 SYMBOL_LANGUAGE (&psymbol) = language;
3091 PSYMBOL_DOMAIN (&psymbol) = domain;
3092 PSYMBOL_CLASS (&psymbol) = class;
3093
3094 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3095
3096 /* Stash the partial symbol away in the cache */
11d31d94
TT
3097 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3098 objfile->psymbol_cache, added);
2e618c13
AR
3099}
3100
3101/* Helper function, adds partial symbol to the given partial symbol
3102 list. */
3103
3104static void
3105append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3106 const struct partial_symbol *psym,
2e618c13
AR
3107 struct objfile *objfile)
3108{
3109 if (list->next >= list->list + list->size)
3110 extend_psymbol_list (list, objfile);
11d31d94 3111 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3112 OBJSTAT (objfile, n_psyms++);
3113}
3114
c906108c 3115/* Add a symbol with a long value to a psymtab.
5417f6dc 3116 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3117 Return the partial symbol that has been added. */
3118
3119/* NOTE: carlton/2003-09-11: The reason why we return the partial
3120 symbol is so that callers can get access to the symbol's demangled
3121 name, which they don't have any cheap way to determine otherwise.
3122 (Currenly, dwarf2read.c is the only file who uses that information,
3123 though it's possible that other readers might in the future.)
3124 Elena wasn't thrilled about that, and I don't blame her, but we
3125 couldn't come up with a better way to get that information. If
3126 it's needed in other situations, we could consider breaking up
3127 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3128 cache. */
3129
3130const struct partial_symbol *
176620f1 3131add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3132 enum address_class class,
2e618c13
AR
3133 struct psymbol_allocation_list *list,
3134 long val, /* Value as a long */
fba45db2
KB
3135 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3136 enum language language, struct objfile *objfile)
c906108c 3137{
11d31d94 3138 const struct partial_symbol *psym;
2de7ced7 3139
2e618c13 3140 int added;
c906108c
SS
3141
3142 /* Stash the partial symbol away in the cache */
2e618c13
AR
3143 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3144 val, coreaddr, language, objfile, &added);
c906108c 3145
2e618c13
AR
3146 /* Do not duplicate global partial symbols. */
3147 if (list == &objfile->global_psymbols
3148 && !added)
3149 return psym;
5c4e30ca 3150
2e618c13
AR
3151 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3152 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3153 return psym;
c906108c
SS
3154}
3155
c906108c
SS
3156/* Initialize storage for partial symbols. */
3157
3158void
fba45db2 3159init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3160{
3161 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3162
3163 if (objfile->global_psymbols.list)
c906108c 3164 {
2dc74dc1 3165 xfree (objfile->global_psymbols.list);
c906108c 3166 }
c5aa993b 3167 if (objfile->static_psymbols.list)
c906108c 3168 {
2dc74dc1 3169 xfree (objfile->static_psymbols.list);
c906108c 3170 }
c5aa993b 3171
c906108c
SS
3172 /* Current best guess is that approximately a twentieth
3173 of the total symbols (in a debugging file) are global or static
3174 oriented symbols */
c906108c 3175
c5aa993b
JM
3176 objfile->global_psymbols.size = total_symbols / 10;
3177 objfile->static_psymbols.size = total_symbols / 10;
3178
3179 if (objfile->global_psymbols.size > 0)
c906108c 3180 {
c5aa993b
JM
3181 objfile->global_psymbols.next =
3182 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3183 xmalloc ((objfile->global_psymbols.size
3184 * sizeof (struct partial_symbol *)));
c906108c 3185 }
c5aa993b 3186 if (objfile->static_psymbols.size > 0)
c906108c 3187 {
c5aa993b
JM
3188 objfile->static_psymbols.next =
3189 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3190 xmalloc ((objfile->static_psymbols.size
3191 * sizeof (struct partial_symbol *)));
c906108c
SS
3192 }
3193}
3194
3195/* OVERLAYS:
3196 The following code implements an abstraction for debugging overlay sections.
3197
3198 The target model is as follows:
3199 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3200 same VMA, each with its own unique LMA (or load address).
c906108c 3201 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3202 sections, one by one, from the load address into the VMA address.
5417f6dc 3203 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3204 sections should be considered to be mapped from the VMA to the LMA.
3205 This information is used for symbol lookup, and memory read/write.
5417f6dc 3206 For instance, if a section has been mapped then its contents
c5aa993b 3207 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3208
3209 Two levels of debugger support for overlays are available. One is
3210 "manual", in which the debugger relies on the user to tell it which
3211 overlays are currently mapped. This level of support is
3212 implemented entirely in the core debugger, and the information about
3213 whether a section is mapped is kept in the objfile->obj_section table.
3214
3215 The second level of support is "automatic", and is only available if
3216 the target-specific code provides functionality to read the target's
3217 overlay mapping table, and translate its contents for the debugger
3218 (by updating the mapped state information in the obj_section tables).
3219
3220 The interface is as follows:
c5aa993b
JM
3221 User commands:
3222 overlay map <name> -- tell gdb to consider this section mapped
3223 overlay unmap <name> -- tell gdb to consider this section unmapped
3224 overlay list -- list the sections that GDB thinks are mapped
3225 overlay read-target -- get the target's state of what's mapped
3226 overlay off/manual/auto -- set overlay debugging state
3227 Functional interface:
3228 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3229 section, return that section.
5417f6dc 3230 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3231 the pc, either in its VMA or its LMA
714835d5 3232 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3233 section_is_overlay(sect): true if section's VMA != LMA
3234 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3235 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3236 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3237 overlay_mapped_address(...): map an address from section's LMA to VMA
3238 overlay_unmapped_address(...): map an address from section's VMA to LMA
3239 symbol_overlayed_address(...): Return a "current" address for symbol:
3240 either in VMA or LMA depending on whether
3241 the symbol's section is currently mapped
c906108c
SS
3242 */
3243
3244/* Overlay debugging state: */
3245
d874f1e2 3246enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3247int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3248
c906108c 3249/* Function: section_is_overlay (SECTION)
5417f6dc 3250 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3251 SECTION is loaded at an address different from where it will "run". */
3252
3253int
714835d5 3254section_is_overlay (struct obj_section *section)
c906108c 3255{
714835d5
UW
3256 if (overlay_debugging && section)
3257 {
3258 bfd *abfd = section->objfile->obfd;
3259 asection *bfd_section = section->the_bfd_section;
3260
3261 if (bfd_section_lma (abfd, bfd_section) != 0
3262 && bfd_section_lma (abfd, bfd_section)
3263 != bfd_section_vma (abfd, bfd_section))
3264 return 1;
3265 }
c906108c
SS
3266
3267 return 0;
3268}
3269
3270/* Function: overlay_invalidate_all (void)
3271 Invalidate the mapped state of all overlay sections (mark it as stale). */
3272
3273static void
fba45db2 3274overlay_invalidate_all (void)
c906108c 3275{
c5aa993b 3276 struct objfile *objfile;
c906108c
SS
3277 struct obj_section *sect;
3278
3279 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3280 if (section_is_overlay (sect))
3281 sect->ovly_mapped = -1;
c906108c
SS
3282}
3283
714835d5 3284/* Function: section_is_mapped (SECTION)
5417f6dc 3285 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3286
3287 Access to the ovly_mapped flag is restricted to this function, so
3288 that we can do automatic update. If the global flag
3289 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3290 overlay_invalidate_all. If the mapped state of the particular
3291 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3292
714835d5
UW
3293int
3294section_is_mapped (struct obj_section *osect)
c906108c 3295{
9216df95
UW
3296 struct gdbarch *gdbarch;
3297
714835d5 3298 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3299 return 0;
3300
c5aa993b 3301 switch (overlay_debugging)
c906108c
SS
3302 {
3303 default:
d874f1e2 3304 case ovly_off:
c5aa993b 3305 return 0; /* overlay debugging off */
d874f1e2 3306 case ovly_auto: /* overlay debugging automatic */
1c772458 3307 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3308 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3309 gdbarch = get_objfile_arch (osect->objfile);
3310 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3311 {
3312 if (overlay_cache_invalid)
3313 {
3314 overlay_invalidate_all ();
3315 overlay_cache_invalid = 0;
3316 }
3317 if (osect->ovly_mapped == -1)
9216df95 3318 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3319 }
3320 /* fall thru to manual case */
d874f1e2 3321 case ovly_on: /* overlay debugging manual */
c906108c
SS
3322 return osect->ovly_mapped == 1;
3323 }
3324}
3325
c906108c
SS
3326/* Function: pc_in_unmapped_range
3327 If PC falls into the lma range of SECTION, return true, else false. */
3328
3329CORE_ADDR
714835d5 3330pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3331{
714835d5
UW
3332 if (section_is_overlay (section))
3333 {
3334 bfd *abfd = section->objfile->obfd;
3335 asection *bfd_section = section->the_bfd_section;
fbd35540 3336
714835d5
UW
3337 /* We assume the LMA is relocated by the same offset as the VMA. */
3338 bfd_vma size = bfd_get_section_size (bfd_section);
3339 CORE_ADDR offset = obj_section_offset (section);
3340
3341 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3342 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3343 return 1;
3344 }
c906108c 3345
c906108c
SS
3346 return 0;
3347}
3348
3349/* Function: pc_in_mapped_range
3350 If PC falls into the vma range of SECTION, return true, else false. */
3351
3352CORE_ADDR
714835d5 3353pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3354{
714835d5
UW
3355 if (section_is_overlay (section))
3356 {
3357 if (obj_section_addr (section) <= pc
3358 && pc < obj_section_endaddr (section))
3359 return 1;
3360 }
c906108c 3361
c906108c
SS
3362 return 0;
3363}
3364
9ec8e6a0
JB
3365
3366/* Return true if the mapped ranges of sections A and B overlap, false
3367 otherwise. */
b9362cc7 3368static int
714835d5 3369sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3370{
714835d5
UW
3371 CORE_ADDR a_start = obj_section_addr (a);
3372 CORE_ADDR a_end = obj_section_endaddr (a);
3373 CORE_ADDR b_start = obj_section_addr (b);
3374 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3375
3376 return (a_start < b_end && b_start < a_end);
3377}
3378
c906108c
SS
3379/* Function: overlay_unmapped_address (PC, SECTION)
3380 Returns the address corresponding to PC in the unmapped (load) range.
3381 May be the same as PC. */
3382
3383CORE_ADDR
714835d5 3384overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3385{
714835d5
UW
3386 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3387 {
3388 bfd *abfd = section->objfile->obfd;
3389 asection *bfd_section = section->the_bfd_section;
fbd35540 3390
714835d5
UW
3391 return pc + bfd_section_lma (abfd, bfd_section)
3392 - bfd_section_vma (abfd, bfd_section);
3393 }
c906108c
SS
3394
3395 return pc;
3396}
3397
3398/* Function: overlay_mapped_address (PC, SECTION)
3399 Returns the address corresponding to PC in the mapped (runtime) range.
3400 May be the same as PC. */
3401
3402CORE_ADDR
714835d5 3403overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3404{
714835d5
UW
3405 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3406 {
3407 bfd *abfd = section->objfile->obfd;
3408 asection *bfd_section = section->the_bfd_section;
fbd35540 3409
714835d5
UW
3410 return pc + bfd_section_vma (abfd, bfd_section)
3411 - bfd_section_lma (abfd, bfd_section);
3412 }
c906108c
SS
3413
3414 return pc;
3415}
3416
3417
5417f6dc 3418/* Function: symbol_overlayed_address
c906108c
SS
3419 Return one of two addresses (relative to the VMA or to the LMA),
3420 depending on whether the section is mapped or not. */
3421
c5aa993b 3422CORE_ADDR
714835d5 3423symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3424{
3425 if (overlay_debugging)
3426 {
3427 /* If the symbol has no section, just return its regular address. */
3428 if (section == 0)
3429 return address;
3430 /* If the symbol's section is not an overlay, just return its address */
3431 if (!section_is_overlay (section))
3432 return address;
3433 /* If the symbol's section is mapped, just return its address */
3434 if (section_is_mapped (section))
3435 return address;
3436 /*
3437 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3438 * then return its LOADED address rather than its vma address!!
3439 */
3440 return overlay_unmapped_address (address, section);
3441 }
3442 return address;
3443}
3444
5417f6dc 3445/* Function: find_pc_overlay (PC)
c906108c
SS
3446 Return the best-match overlay section for PC:
3447 If PC matches a mapped overlay section's VMA, return that section.
3448 Else if PC matches an unmapped section's VMA, return that section.
3449 Else if PC matches an unmapped section's LMA, return that section. */
3450
714835d5 3451struct obj_section *
fba45db2 3452find_pc_overlay (CORE_ADDR pc)
c906108c 3453{
c5aa993b 3454 struct objfile *objfile;
c906108c
SS
3455 struct obj_section *osect, *best_match = NULL;
3456
3457 if (overlay_debugging)
3458 ALL_OBJSECTIONS (objfile, osect)
714835d5 3459 if (section_is_overlay (osect))
c5aa993b 3460 {
714835d5 3461 if (pc_in_mapped_range (pc, osect))
c5aa993b 3462 {
714835d5
UW
3463 if (section_is_mapped (osect))
3464 return osect;
c5aa993b
JM
3465 else
3466 best_match = osect;
3467 }
714835d5 3468 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3469 best_match = osect;
3470 }
714835d5 3471 return best_match;
c906108c
SS
3472}
3473
3474/* Function: find_pc_mapped_section (PC)
5417f6dc 3475 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3476 currently marked as MAPPED, return that section. Else return NULL. */
3477
714835d5 3478struct obj_section *
fba45db2 3479find_pc_mapped_section (CORE_ADDR pc)
c906108c 3480{
c5aa993b 3481 struct objfile *objfile;
c906108c
SS
3482 struct obj_section *osect;
3483
3484 if (overlay_debugging)
3485 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3486 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3487 return osect;
c906108c
SS
3488
3489 return NULL;
3490}
3491
3492/* Function: list_overlays_command
3493 Print a list of mapped sections and their PC ranges */
3494
3495void
fba45db2 3496list_overlays_command (char *args, int from_tty)
c906108c 3497{
c5aa993b
JM
3498 int nmapped = 0;
3499 struct objfile *objfile;
c906108c
SS
3500 struct obj_section *osect;
3501
3502 if (overlay_debugging)
3503 ALL_OBJSECTIONS (objfile, osect)
714835d5 3504 if (section_is_mapped (osect))
c5aa993b
JM
3505 {
3506 const char *name;
3507 bfd_vma lma, vma;
3508 int size;
3509
3510 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3511 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3512 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3513 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3514
3515 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3516 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3517 puts_filtered (" - ");
ed49a04f 3518 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3519 printf_filtered (", mapped at ");
ed49a04f 3520 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3521 puts_filtered (" - ");
ed49a04f 3522 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3523 puts_filtered ("\n");
3524
3525 nmapped++;
3526 }
c906108c 3527 if (nmapped == 0)
a3f17187 3528 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3529}
3530
3531/* Function: map_overlay_command
3532 Mark the named section as mapped (ie. residing at its VMA address). */
3533
3534void
fba45db2 3535map_overlay_command (char *args, int from_tty)
c906108c 3536{
c5aa993b
JM
3537 struct objfile *objfile, *objfile2;
3538 struct obj_section *sec, *sec2;
c906108c
SS
3539
3540 if (!overlay_debugging)
8a3fe4f8 3541 error (_("\
515ad16c 3542Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3543the 'overlay manual' command."));
c906108c
SS
3544
3545 if (args == 0 || *args == 0)
8a3fe4f8 3546 error (_("Argument required: name of an overlay section"));
c906108c
SS
3547
3548 /* First, find a section matching the user supplied argument */
3549 ALL_OBJSECTIONS (objfile, sec)
3550 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3551 {
3552 /* Now, check to see if the section is an overlay. */
714835d5 3553 if (!section_is_overlay (sec))
c5aa993b
JM
3554 continue; /* not an overlay section */
3555
3556 /* Mark the overlay as "mapped" */
3557 sec->ovly_mapped = 1;
3558
3559 /* Next, make a pass and unmap any sections that are
3560 overlapped by this new section: */
3561 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3562 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3563 {
3564 if (info_verbose)
a3f17187 3565 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3566 bfd_section_name (objfile->obfd,
3567 sec2->the_bfd_section));
3568 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3569 }
3570 return;
3571 }
8a3fe4f8 3572 error (_("No overlay section called %s"), args);
c906108c
SS
3573}
3574
3575/* Function: unmap_overlay_command
5417f6dc 3576 Mark the overlay section as unmapped
c906108c
SS
3577 (ie. resident in its LMA address range, rather than the VMA range). */
3578
3579void
fba45db2 3580unmap_overlay_command (char *args, int from_tty)
c906108c 3581{
c5aa993b 3582 struct objfile *objfile;
c906108c
SS
3583 struct obj_section *sec;
3584
3585 if (!overlay_debugging)
8a3fe4f8 3586 error (_("\
515ad16c 3587Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3588the 'overlay manual' command."));
c906108c
SS
3589
3590 if (args == 0 || *args == 0)
8a3fe4f8 3591 error (_("Argument required: name of an overlay section"));
c906108c
SS
3592
3593 /* First, find a section matching the user supplied argument */
3594 ALL_OBJSECTIONS (objfile, sec)
3595 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3596 {
3597 if (!sec->ovly_mapped)
8a3fe4f8 3598 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3599 sec->ovly_mapped = 0;
3600 return;
3601 }
8a3fe4f8 3602 error (_("No overlay section called %s"), args);
c906108c
SS
3603}
3604
3605/* Function: overlay_auto_command
3606 A utility command to turn on overlay debugging.
3607 Possibly this should be done via a set/show command. */
3608
3609static void
fba45db2 3610overlay_auto_command (char *args, int from_tty)
c906108c 3611{
d874f1e2 3612 overlay_debugging = ovly_auto;
1900040c 3613 enable_overlay_breakpoints ();
c906108c 3614 if (info_verbose)
a3f17187 3615 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3616}
3617
3618/* Function: overlay_manual_command
3619 A utility command to turn on overlay debugging.
3620 Possibly this should be done via a set/show command. */
3621
3622static void
fba45db2 3623overlay_manual_command (char *args, int from_tty)
c906108c 3624{
d874f1e2 3625 overlay_debugging = ovly_on;
1900040c 3626 disable_overlay_breakpoints ();
c906108c 3627 if (info_verbose)
a3f17187 3628 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3629}
3630
3631/* Function: overlay_off_command
3632 A utility command to turn on overlay debugging.
3633 Possibly this should be done via a set/show command. */
3634
3635static void
fba45db2 3636overlay_off_command (char *args, int from_tty)
c906108c 3637{
d874f1e2 3638 overlay_debugging = ovly_off;
1900040c 3639 disable_overlay_breakpoints ();
c906108c 3640 if (info_verbose)
a3f17187 3641 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3642}
3643
3644static void
fba45db2 3645overlay_load_command (char *args, int from_tty)
c906108c 3646{
e17c207e
UW
3647 struct gdbarch *gdbarch = get_current_arch ();
3648
3649 if (gdbarch_overlay_update_p (gdbarch))
3650 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3651 else
8a3fe4f8 3652 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3653}
3654
3655/* Function: overlay_command
3656 A place-holder for a mis-typed command */
3657
3658/* Command list chain containing all defined "overlay" subcommands. */
3659struct cmd_list_element *overlaylist;
3660
3661static void
fba45db2 3662overlay_command (char *args, int from_tty)
c906108c 3663{
c5aa993b 3664 printf_unfiltered
c906108c
SS
3665 ("\"overlay\" must be followed by the name of an overlay command.\n");
3666 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3667}
3668
3669
3670/* Target Overlays for the "Simplest" overlay manager:
3671
5417f6dc
RM
3672 This is GDB's default target overlay layer. It works with the
3673 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3674 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3675 so targets that use a different runtime overlay manager can
c906108c
SS
3676 substitute their own overlay_update function and take over the
3677 function pointer.
3678
3679 The overlay_update function pokes around in the target's data structures
3680 to see what overlays are mapped, and updates GDB's overlay mapping with
3681 this information.
3682
3683 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3684 unsigned _novlys; /# number of overlay sections #/
3685 unsigned _ovly_table[_novlys][4] = {
3686 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3687 {..., ..., ..., ...},
3688 }
3689 unsigned _novly_regions; /# number of overlay regions #/
3690 unsigned _ovly_region_table[_novly_regions][3] = {
3691 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3692 {..., ..., ...},
3693 }
c906108c
SS
3694 These functions will attempt to update GDB's mappedness state in the
3695 symbol section table, based on the target's mappedness state.
3696
3697 To do this, we keep a cached copy of the target's _ovly_table, and
3698 attempt to detect when the cached copy is invalidated. The main
3699 entry point is "simple_overlay_update(SECT), which looks up SECT in
3700 the cached table and re-reads only the entry for that section from
3701 the target (whenever possible).
3702 */
3703
3704/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3705static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3706#if 0
c5aa993b 3707static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3708#endif
c5aa993b 3709static unsigned cache_novlys = 0;
c906108c 3710#if 0
c5aa993b 3711static unsigned cache_novly_regions = 0;
c906108c
SS
3712#endif
3713static CORE_ADDR cache_ovly_table_base = 0;
3714#if 0
3715static CORE_ADDR cache_ovly_region_table_base = 0;
3716#endif
c5aa993b
JM
3717enum ovly_index
3718 {
3719 VMA, SIZE, LMA, MAPPED
3720 };
c906108c
SS
3721
3722/* Throw away the cached copy of _ovly_table */
3723static void
fba45db2 3724simple_free_overlay_table (void)
c906108c
SS
3725{
3726 if (cache_ovly_table)
b8c9b27d 3727 xfree (cache_ovly_table);
c5aa993b 3728 cache_novlys = 0;
c906108c
SS
3729 cache_ovly_table = NULL;
3730 cache_ovly_table_base = 0;
3731}
3732
3733#if 0
3734/* Throw away the cached copy of _ovly_region_table */
3735static void
fba45db2 3736simple_free_overlay_region_table (void)
c906108c
SS
3737{
3738 if (cache_ovly_region_table)
b8c9b27d 3739 xfree (cache_ovly_region_table);
c5aa993b 3740 cache_novly_regions = 0;
c906108c
SS
3741 cache_ovly_region_table = NULL;
3742 cache_ovly_region_table_base = 0;
3743}
3744#endif
3745
9216df95 3746/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3747 Convert to host order. int LEN is number of ints */
3748static void
9216df95
UW
3749read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3750 int len, int size)
c906108c 3751{
34c0bd93 3752 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3753 gdb_byte *buf = alloca (len * size);
c5aa993b 3754 int i;
c906108c 3755
9216df95 3756 read_memory (memaddr, buf, len * size);
c906108c 3757 for (i = 0; i < len; i++)
9216df95 3758 myaddr[i] = extract_unsigned_integer (size * i + buf, size);
c906108c
SS
3759}
3760
3761/* Find and grab a copy of the target _ovly_table
3762 (and _novlys, which is needed for the table's size) */
c5aa993b 3763static int
fba45db2 3764simple_read_overlay_table (void)
c906108c 3765{
0d43edd1 3766 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3767 struct gdbarch *gdbarch;
3768 int word_size;
c906108c
SS
3769
3770 simple_free_overlay_table ();
9b27852e 3771 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3772 if (! novlys_msym)
c906108c 3773 {
8a3fe4f8 3774 error (_("Error reading inferior's overlay table: "
0d43edd1 3775 "couldn't find `_novlys' variable\n"
8a3fe4f8 3776 "in inferior. Use `overlay manual' mode."));
0d43edd1 3777 return 0;
c906108c 3778 }
0d43edd1 3779
9b27852e 3780 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3781 if (! ovly_table_msym)
3782 {
8a3fe4f8 3783 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3784 "`_ovly_table' array\n"
8a3fe4f8 3785 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3786 return 0;
3787 }
3788
9216df95
UW
3789 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3790 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3791
0d43edd1
JB
3792 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3793 cache_ovly_table
3794 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3795 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3796 read_target_long_array (cache_ovly_table_base,
777ea8f1 3797 (unsigned int *) cache_ovly_table,
9216df95 3798 cache_novlys * 4, word_size);
0d43edd1 3799
c5aa993b 3800 return 1; /* SUCCESS */
c906108c
SS
3801}
3802
3803#if 0
3804/* Find and grab a copy of the target _ovly_region_table
3805 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3806static int
fba45db2 3807simple_read_overlay_region_table (void)
c906108c
SS
3808{
3809 struct minimal_symbol *msym;
3810
3811 simple_free_overlay_region_table ();
9b27852e 3812 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3813 if (msym != NULL)
3814 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3815 else
3816 return 0; /* failure */
c906108c
SS
3817 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3818 if (cache_ovly_region_table != NULL)
3819 {
9b27852e 3820 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3821 if (msym != NULL)
3822 {
9216df95
UW
3823 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msym));
3824 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
c906108c 3825 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3826 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3827 (unsigned int *) cache_ovly_region_table,
9216df95 3828 cache_novly_regions * 3, word_size);
c906108c 3829 }
c5aa993b
JM
3830 else
3831 return 0; /* failure */
c906108c 3832 }
c5aa993b
JM
3833 else
3834 return 0; /* failure */
3835 return 1; /* SUCCESS */
c906108c
SS
3836}
3837#endif
3838
5417f6dc 3839/* Function: simple_overlay_update_1
c906108c
SS
3840 A helper function for simple_overlay_update. Assuming a cached copy
3841 of _ovly_table exists, look through it to find an entry whose vma,
3842 lma and size match those of OSECT. Re-read the entry and make sure
3843 it still matches OSECT (else the table may no longer be valid).
3844 Set OSECT's mapped state to match the entry. Return: 1 for
3845 success, 0 for failure. */
3846
3847static int
fba45db2 3848simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3849{
3850 int i, size;
fbd35540
MS
3851 bfd *obfd = osect->objfile->obfd;
3852 asection *bsect = osect->the_bfd_section;
9216df95
UW
3853 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3854 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
c906108c 3855
2c500098 3856 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3857 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3861 {
9216df95
UW
3862 read_target_long_array (cache_ovly_table_base + i * word_size,
3863 (unsigned int *) cache_ovly_table[i],
3864 4, word_size);
fbd35540
MS
3865 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3866 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3867 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3868 {
3869 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3870 return 1;
3871 }
fbd35540 3872 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3873 return 0;
3874 }
3875 return 0;
3876}
3877
3878/* Function: simple_overlay_update
5417f6dc
RM
3879 If OSECT is NULL, then update all sections' mapped state
3880 (after re-reading the entire target _ovly_table).
3881 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3882 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3883 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3884 re-read the entire cache, and go ahead and update all sections. */
3885
1c772458 3886void
fba45db2 3887simple_overlay_update (struct obj_section *osect)
c906108c 3888{
c5aa993b 3889 struct objfile *objfile;
c906108c
SS
3890
3891 /* Were we given an osect to look up? NULL means do all of them. */
3892 if (osect)
3893 /* Have we got a cached copy of the target's overlay table? */
3894 if (cache_ovly_table != NULL)
3895 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3896 if (cache_ovly_table_base ==
9b27852e 3897 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3898 /* Then go ahead and try to look up this single section in the cache */
3899 if (simple_overlay_update_1 (osect))
3900 /* Found it! We're done. */
3901 return;
3902
3903 /* Cached table no good: need to read the entire table anew.
3904 Or else we want all the sections, in which case it's actually
3905 more efficient to read the whole table in one block anyway. */
3906
0d43edd1
JB
3907 if (! simple_read_overlay_table ())
3908 return;
3909
c906108c
SS
3910 /* Now may as well update all sections, even if only one was requested. */
3911 ALL_OBJSECTIONS (objfile, osect)
714835d5 3912 if (section_is_overlay (osect))
c5aa993b
JM
3913 {
3914 int i, size;
fbd35540
MS
3915 bfd *obfd = osect->objfile->obfd;
3916 asection *bsect = osect->the_bfd_section;
c5aa993b 3917
2c500098 3918 size = bfd_get_section_size (bsect);
c5aa993b 3919 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3920 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3921 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3922 /* && cache_ovly_table[i][SIZE] == size */ )
3923 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3924 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3925 break; /* finished with inner for loop: break out */
3926 }
3927 }
c906108c
SS
3928}
3929
086df311
DJ
3930/* Set the output sections and output offsets for section SECTP in
3931 ABFD. The relocation code in BFD will read these offsets, so we
3932 need to be sure they're initialized. We map each section to itself,
3933 with no offset; this means that SECTP->vma will be honored. */
3934
3935static void
3936symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3937{
3938 sectp->output_section = sectp;
3939 sectp->output_offset = 0;
3940}
3941
3942/* Relocate the contents of a debug section SECTP in ABFD. The
3943 contents are stored in BUF if it is non-NULL, or returned in a
3944 malloc'd buffer otherwise.
3945
3946 For some platforms and debug info formats, shared libraries contain
3947 relocations against the debug sections (particularly for DWARF-2;
3948 one affected platform is PowerPC GNU/Linux, although it depends on
3949 the version of the linker in use). Also, ELF object files naturally
3950 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3951 the relocations in order to get the locations of symbols correct.
3952 Another example that may require relocation processing, is the
3953 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3954 debug section. */
086df311
DJ
3955
3956bfd_byte *
3957symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3958{
065a2c74 3959 /* We're only interested in sections with relocation
086df311
DJ
3960 information. */
3961 if ((sectp->flags & SEC_RELOC) == 0)
3962 return NULL;
086df311
DJ
3963
3964 /* We will handle section offsets properly elsewhere, so relocate as if
3965 all sections begin at 0. */
3966 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3967
97606a13 3968 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3969}
c906108c 3970
31d99776
DJ
3971struct symfile_segment_data *
3972get_symfile_segment_data (bfd *abfd)
3973{
3974 struct sym_fns *sf = find_sym_fns (abfd);
3975
3976 if (sf == NULL)
3977 return NULL;
3978
3979 return sf->sym_segments (abfd);
3980}
3981
3982void
3983free_symfile_segment_data (struct symfile_segment_data *data)
3984{
3985 xfree (data->segment_bases);
3986 xfree (data->segment_sizes);
3987 xfree (data->segment_info);
3988 xfree (data);
3989}
3990
28c32713
JB
3991
3992/* Given:
3993 - DATA, containing segment addresses from the object file ABFD, and
3994 the mapping from ABFD's sections onto the segments that own them,
3995 and
3996 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3997 segment addresses reported by the target,
3998 store the appropriate offsets for each section in OFFSETS.
3999
4000 If there are fewer entries in SEGMENT_BASES than there are segments
4001 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4002
8d385431
DJ
4003 If there are more entries, then ignore the extra. The target may
4004 not be able to distinguish between an empty data segment and a
4005 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4006int
4007symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4008 struct section_offsets *offsets,
4009 int num_segment_bases,
4010 const CORE_ADDR *segment_bases)
4011{
4012 int i;
4013 asection *sect;
4014
28c32713
JB
4015 /* It doesn't make sense to call this function unless you have some
4016 segment base addresses. */
4017 gdb_assert (segment_bases > 0);
4018
31d99776
DJ
4019 /* If we do not have segment mappings for the object file, we
4020 can not relocate it by segments. */
4021 gdb_assert (data != NULL);
4022 gdb_assert (data->num_segments > 0);
4023
31d99776
DJ
4024 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4025 {
31d99776
DJ
4026 int which = data->segment_info[i];
4027
28c32713
JB
4028 gdb_assert (0 <= which && which <= data->num_segments);
4029
4030 /* Don't bother computing offsets for sections that aren't
4031 loaded as part of any segment. */
4032 if (! which)
4033 continue;
4034
4035 /* Use the last SEGMENT_BASES entry as the address of any extra
4036 segments mentioned in DATA->segment_info. */
31d99776 4037 if (which > num_segment_bases)
28c32713 4038 which = num_segment_bases;
31d99776 4039
28c32713
JB
4040 offsets->offsets[i] = (segment_bases[which - 1]
4041 - data->segment_bases[which - 1]);
31d99776
DJ
4042 }
4043
4044 return 1;
4045}
4046
4047static void
4048symfile_find_segment_sections (struct objfile *objfile)
4049{
4050 bfd *abfd = objfile->obfd;
4051 int i;
4052 asection *sect;
4053 struct symfile_segment_data *data;
4054
4055 data = get_symfile_segment_data (objfile->obfd);
4056 if (data == NULL)
4057 return;
4058
4059 if (data->num_segments != 1 && data->num_segments != 2)
4060 {
4061 free_symfile_segment_data (data);
4062 return;
4063 }
4064
4065 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4066 {
4067 CORE_ADDR vma;
4068 int which = data->segment_info[i];
4069
4070 if (which == 1)
4071 {
4072 if (objfile->sect_index_text == -1)
4073 objfile->sect_index_text = sect->index;
4074
4075 if (objfile->sect_index_rodata == -1)
4076 objfile->sect_index_rodata = sect->index;
4077 }
4078 else if (which == 2)
4079 {
4080 if (objfile->sect_index_data == -1)
4081 objfile->sect_index_data = sect->index;
4082
4083 if (objfile->sect_index_bss == -1)
4084 objfile->sect_index_bss = sect->index;
4085 }
4086 }
4087
4088 free_symfile_segment_data (data);
4089}
4090
c906108c 4091void
fba45db2 4092_initialize_symfile (void)
c906108c
SS
4093{
4094 struct cmd_list_element *c;
c5aa993b 4095
1a966eab
AC
4096 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4097Load symbol table from executable file FILE.\n\
c906108c 4098The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4099to execute."), &cmdlist);
5ba2abeb 4100 set_cmd_completer (c, filename_completer);
c906108c 4101
1a966eab 4102 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4103Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4104Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4105ADDR is the starting address of the file's text.\n\
db162d44
EZ
4106The optional arguments are section-name section-address pairs and\n\
4107should be specified if the data and bss segments are not contiguous\n\
1a966eab 4108with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4109 &cmdlist);
5ba2abeb 4110 set_cmd_completer (c, filename_completer);
c906108c 4111
1a966eab
AC
4112 c = add_cmd ("load", class_files, load_command, _("\
4113Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4114for access from GDB.\n\
4115A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4116 set_cmd_completer (c, filename_completer);
c906108c 4117
5bf193a2
AC
4118 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4119 &symbol_reloading, _("\
4120Set dynamic symbol table reloading multiple times in one run."), _("\
4121Show dynamic symbol table reloading multiple times in one run."), NULL,
4122 NULL,
920d2a44 4123 show_symbol_reloading,
5bf193a2 4124 &setlist, &showlist);
c906108c 4125
c5aa993b 4126 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4127 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4128 "overlay ", 0, &cmdlist);
4129
4130 add_com_alias ("ovly", "overlay", class_alias, 1);
4131 add_com_alias ("ov", "overlay", class_alias, 1);
4132
c5aa993b 4133 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4134 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4135
c5aa993b 4136 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4137 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4138
c5aa993b 4139 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4140 _("List mappings of overlay sections."), &overlaylist);
c906108c 4141
c5aa993b 4142 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4143 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4144 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4145 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4146 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4147 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4148 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4149 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4150
4151 /* Filename extension to source language lookup table: */
4152 init_filename_language_table ();
26c41df3
AC
4153 add_setshow_string_noescape_cmd ("extension-language", class_files,
4154 &ext_args, _("\
4155Set mapping between filename extension and source language."), _("\
4156Show mapping between filename extension and source language."), _("\
4157Usage: set extension-language .foo bar"),
4158 set_ext_lang_command,
920d2a44 4159 show_ext_args,
26c41df3 4160 &setlist, &showlist);
c906108c 4161
c5aa993b 4162 add_info ("extensions", info_ext_lang_command,
1bedd215 4163 _("All filename extensions associated with a source language."));
917317f4 4164
525226b5
AC
4165 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4166 &debug_file_directory, _("\
4167Set the directory where separate debug symbols are searched for."), _("\
4168Show the directory where separate debug symbols are searched for."), _("\
4169Separate debug symbols are first searched for in the same\n\
4170directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4171and lastly at the path of the directory of the binary with\n\
4172the global debug-file directory prepended."),
4173 NULL,
920d2a44 4174 show_debug_file_directory,
525226b5 4175 &setlist, &showlist);
bf250677
DE
4176
4177 add_setshow_boolean_cmd ("symbol-loading", no_class,
4178 &print_symbol_loading, _("\
4179Set printing of symbol loading messages."), _("\
4180Show printing of symbol loading messages."), NULL,
4181 NULL,
4182 NULL,
4183 &setprintlist, &showprintlist);
c906108c 4184}
This page took 1.177361 seconds and 4 git commands to generate.