* config/i386/tm-i386.h (PARM_BOUNDARY, CALL_DUMMY,
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
c5aa993b 39#include "inferior.h" /* for write_pc */
c906108c
SS
40#include "gdb-stabs.h"
41#include "obstack.h"
d75b5104 42#include "completer.h"
c906108c 43
c906108c
SS
44#include <sys/types.h>
45#include <fcntl.h>
46#include "gdb_string.h"
47#include "gdb_stat.h"
48#include <ctype.h>
49#include <time.h>
c906108c
SS
50
51#ifndef O_BINARY
52#define O_BINARY 0
53#endif
54
55#ifdef HPUXHPPA
56
57/* Some HP-UX related globals to clear when a new "main"
58 symbol file is loaded. HP-specific. */
59
60extern int hp_som_som_object_present;
61extern int hp_cxx_exception_support_initialized;
62#define RESET_HP_UX_GLOBALS() do {\
63 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
64 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
65 } while (0)
66#endif
67
917317f4 68int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
69void (*show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
507f3c78
KB
74void (*pre_add_symbol_hook) (char *);
75void (*post_add_symbol_hook) (void);
76void (*target_new_objfile_hook) (struct objfile *);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c5aa993b
JM
83struct complaint oldsyms_complaint =
84{
c906108c
SS
85 "Replacing old symbols for `%s'", 0, 0
86};
87
c5aa993b
JM
88struct complaint empty_symtab_complaint =
89{
c906108c
SS
90 "Empty symbol table found for `%s'", 0, 0
91};
92
2acceee2
JM
93struct complaint unknown_option_complaint =
94{
95 "Unknown option `%s' ignored", 0, 0
96};
97
c906108c
SS
98/* External variables and functions referenced. */
99
a14ed312 100extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
101
102/* Functions this file defines */
103
104#if 0
a14ed312
KB
105static int simple_read_overlay_region_table (void);
106static void simple_free_overlay_region_table (void);
c906108c
SS
107#endif
108
a14ed312 109static void set_initial_language (void);
c906108c 110
a14ed312 111static void load_command (char *, int);
c906108c 112
d7db6da9
FN
113static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
114
a14ed312 115static void add_symbol_file_command (char *, int);
c906108c 116
a14ed312 117static void add_shared_symbol_files_command (char *, int);
c906108c 118
a14ed312 119static void cashier_psymtab (struct partial_symtab *);
c906108c 120
a14ed312 121bfd *symfile_bfd_open (char *);
c906108c 122
0e931cf0
JB
123int get_section_index (struct objfile *, char *);
124
a14ed312 125static void find_sym_fns (struct objfile *);
c906108c 126
a14ed312 127static void decrement_reading_symtab (void *);
c906108c 128
a14ed312 129static void overlay_invalidate_all (void);
c906108c 130
a14ed312 131static int overlay_is_mapped (struct obj_section *);
c906108c 132
a14ed312 133void list_overlays_command (char *, int);
c906108c 134
a14ed312 135void map_overlay_command (char *, int);
c906108c 136
a14ed312 137void unmap_overlay_command (char *, int);
c906108c 138
a14ed312 139static void overlay_auto_command (char *, int);
c906108c 140
a14ed312 141static void overlay_manual_command (char *, int);
c906108c 142
a14ed312 143static void overlay_off_command (char *, int);
c906108c 144
a14ed312 145static void overlay_load_command (char *, int);
c906108c 146
a14ed312 147static void overlay_command (char *, int);
c906108c 148
a14ed312 149static void simple_free_overlay_table (void);
c906108c 150
a14ed312 151static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 152
a14ed312 153static int simple_read_overlay_table (void);
c906108c 154
a14ed312 155static int simple_overlay_update_1 (struct obj_section *);
c906108c 156
a14ed312 157static void add_filename_language (char *ext, enum language lang);
392a587b 158
a14ed312 159static void set_ext_lang_command (char *args, int from_tty);
392a587b 160
a14ed312 161static void info_ext_lang_command (char *args, int from_tty);
392a587b 162
a14ed312 163static void init_filename_language_table (void);
392a587b 164
a14ed312 165void _initialize_symfile (void);
c906108c
SS
166
167/* List of all available sym_fns. On gdb startup, each object file reader
168 calls add_symtab_fns() to register information on each format it is
169 prepared to read. */
170
171static struct sym_fns *symtab_fns = NULL;
172
173/* Flag for whether user will be reloading symbols multiple times.
174 Defaults to ON for VxWorks, otherwise OFF. */
175
176#ifdef SYMBOL_RELOADING_DEFAULT
177int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
178#else
179int symbol_reloading = 0;
180#endif
181
b7209cb4
FF
182/* If non-zero, shared library symbols will be added automatically
183 when the inferior is created, new libraries are loaded, or when
184 attaching to the inferior. This is almost always what users will
185 want to have happen; but for very large programs, the startup time
186 will be excessive, and so if this is a problem, the user can clear
187 this flag and then add the shared library symbols as needed. Note
188 that there is a potential for confusion, since if the shared
c906108c 189 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 190 report all the functions that are actually present. */
c906108c
SS
191
192int auto_solib_add = 1;
b7209cb4
FF
193
194/* For systems that support it, a threshold size in megabytes. If
195 automatically adding a new library's symbol table to those already
196 known to the debugger would cause the total shared library symbol
197 size to exceed this threshhold, then the shlib's symbols are not
198 added. The threshold is ignored if the user explicitly asks for a
199 shlib to be added, such as when using the "sharedlibrary"
200 command. */
201
202int auto_solib_limit;
c906108c 203\f
c5aa993b 204
c906108c
SS
205/* Since this function is called from within qsort, in an ANSI environment
206 it must conform to the prototype for qsort, which specifies that the
207 comparison function takes two "void *" pointers. */
208
209static int
0cd64fe2 210compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
211{
212 register struct symbol **s1, **s2;
213
214 s1 = (struct symbol **) s1p;
215 s2 = (struct symbol **) s2p;
494b7ec9 216 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
217}
218
219/*
220
c5aa993b 221 LOCAL FUNCTION
c906108c 222
c5aa993b 223 compare_psymbols -- compare two partial symbols by name
c906108c 224
c5aa993b 225 DESCRIPTION
c906108c 226
c5aa993b
JM
227 Given pointers to pointers to two partial symbol table entries,
228 compare them by name and return -N, 0, or +N (ala strcmp).
229 Typically used by sorting routines like qsort().
c906108c 230
c5aa993b 231 NOTES
c906108c 232
c5aa993b
JM
233 Does direct compare of first two characters before punting
234 and passing to strcmp for longer compares. Note that the
235 original version had a bug whereby two null strings or two
236 identically named one character strings would return the
237 comparison of memory following the null byte.
c906108c
SS
238
239 */
240
241static int
0cd64fe2 242compare_psymbols (const void *s1p, const void *s2p)
c906108c 243{
fba7f19c
EZ
244 register struct partial_symbol **s1, **s2;
245 register char *st1, *st2;
246
247 s1 = (struct partial_symbol **) s1p;
248 s2 = (struct partial_symbol **) s2p;
249 st1 = SYMBOL_SOURCE_NAME (*s1);
250 st2 = SYMBOL_SOURCE_NAME (*s2);
251
c906108c
SS
252
253 if ((st1[0] - st2[0]) || !st1[0])
254 {
255 return (st1[0] - st2[0]);
256 }
257 else if ((st1[1] - st2[1]) || !st1[1])
258 {
259 return (st1[1] - st2[1]);
260 }
261 else
262 {
c5aa993b 263 return (strcmp (st1, st2));
c906108c
SS
264 }
265}
266
267void
fba45db2 268sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
269{
270 /* Sort the global list; don't sort the static list */
271
c5aa993b
JM
272 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
273 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
274 compare_psymbols);
275}
276
277/* Call sort_block_syms to sort alphabetically the symbols of one block. */
278
279void
fba45db2 280sort_block_syms (register struct block *b)
c906108c
SS
281{
282 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
283 sizeof (struct symbol *), compare_symbols);
284}
285
286/* Call sort_symtab_syms to sort alphabetically
287 the symbols of each block of one symtab. */
288
289void
fba45db2 290sort_symtab_syms (register struct symtab *s)
c906108c
SS
291{
292 register struct blockvector *bv;
293 int nbl;
294 int i;
295 register struct block *b;
296
297 if (s == 0)
298 return;
299 bv = BLOCKVECTOR (s);
300 nbl = BLOCKVECTOR_NBLOCKS (bv);
301 for (i = 0; i < nbl; i++)
302 {
303 b = BLOCKVECTOR_BLOCK (bv, i);
304 if (BLOCK_SHOULD_SORT (b))
305 sort_block_syms (b);
306 }
307}
308
309/* Make a null terminated copy of the string at PTR with SIZE characters in
310 the obstack pointed to by OBSTACKP . Returns the address of the copy.
311 Note that the string at PTR does not have to be null terminated, I.E. it
312 may be part of a larger string and we are only saving a substring. */
313
314char *
fba45db2 315obsavestring (char *ptr, int size, struct obstack *obstackp)
c906108c
SS
316{
317 register char *p = (char *) obstack_alloc (obstackp, size + 1);
318 /* Open-coded memcpy--saves function call time. These strings are usually
319 short. FIXME: Is this really still true with a compiler that can
320 inline memcpy? */
321 {
322 register char *p1 = ptr;
323 register char *p2 = p;
324 char *end = ptr + size;
325 while (p1 != end)
326 *p2++ = *p1++;
327 }
328 p[size] = 0;
329 return p;
330}
331
332/* Concatenate strings S1, S2 and S3; return the new string. Space is found
333 in the obstack pointed to by OBSTACKP. */
334
335char *
fba45db2
KB
336obconcat (struct obstack *obstackp, const char *s1, const char *s2,
337 const char *s3)
c906108c
SS
338{
339 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
340 register char *val = (char *) obstack_alloc (obstackp, len);
341 strcpy (val, s1);
342 strcat (val, s2);
343 strcat (val, s3);
344 return val;
345}
346
347/* True if we are nested inside psymtab_to_symtab. */
348
349int currently_reading_symtab = 0;
350
351static void
fba45db2 352decrement_reading_symtab (void *dummy)
c906108c
SS
353{
354 currently_reading_symtab--;
355}
356
357/* Get the symbol table that corresponds to a partial_symtab.
358 This is fast after the first time you do it. In fact, there
359 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
360 case inline. */
361
362struct symtab *
fba45db2 363psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
364{
365 /* If it's been looked up before, return it. */
366 if (pst->symtab)
367 return pst->symtab;
368
369 /* If it has not yet been read in, read it. */
370 if (!pst->readin)
c5aa993b 371 {
c906108c
SS
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
376 }
377
378 return pst->symtab;
379}
380
381/* Initialize entry point information for this objfile. */
382
383void
fba45db2 384init_entry_point_info (struct objfile *objfile)
c906108c
SS
385{
386 /* Save startup file's range of PC addresses to help blockframe.c
387 decide where the bottom of the stack is. */
388
c5aa993b 389 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
390 {
391 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
392 the startup file because it contains the entry point. */
393 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
394 }
395 else
396 {
397 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 398 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 399 }
c5aa993b
JM
400 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
404 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
405 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
406}
407
408/* Get current entry point address. */
409
410CORE_ADDR
fba45db2 411entry_point_address (void)
c906108c
SS
412{
413 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
414}
415
416/* Remember the lowest-addressed loadable section we've seen.
417 This function is called via bfd_map_over_sections.
418
419 In case of equal vmas, the section with the largest size becomes the
420 lowest-addressed loadable section.
421
422 If the vmas and sizes are equal, the last section is considered the
423 lowest-addressed loadable section. */
424
425void
fba45db2 426find_lowest_section (bfd *abfd, asection *sect, PTR obj)
c906108c 427{
c5aa993b 428 asection **lowest = (asection **) obj;
c906108c
SS
429
430 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
431 return;
432 if (!*lowest)
433 *lowest = sect; /* First loadable section */
434 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
435 *lowest = sect; /* A lower loadable section */
436 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
437 && (bfd_section_size (abfd, (*lowest))
438 <= bfd_section_size (abfd, sect)))
439 *lowest = sect;
440}
441
62557bbc
KB
442
443/* Build (allocate and populate) a section_addr_info struct from
444 an existing section table. */
445
446extern struct section_addr_info *
447build_section_addr_info_from_section_table (const struct section_table *start,
448 const struct section_table *end)
449{
450 struct section_addr_info *sap;
451 const struct section_table *stp;
452 int oidx;
453
454 sap = xmalloc (sizeof (struct section_addr_info));
455 memset (sap, 0, sizeof (struct section_addr_info));
456
457 for (stp = start, oidx = 0; stp != end; stp++)
458 {
fbd35540
MS
459 if (bfd_get_section_flags (stp->bfd,
460 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
62557bbc
KB
461 && oidx < MAX_SECTIONS)
462 {
463 sap->other[oidx].addr = stp->addr;
fbd35540
MS
464 sap->other[oidx].name
465 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
466 sap->other[oidx].sectindex = stp->the_bfd_section->index;
467 oidx++;
468 }
469 }
470
471 return sap;
472}
473
474
475/* Free all memory allocated by build_section_addr_info_from_section_table. */
476
477extern void
478free_section_addr_info (struct section_addr_info *sap)
479{
480 int idx;
481
482 for (idx = 0; idx < MAX_SECTIONS; idx++)
483 if (sap->other[idx].name)
b8c9b27d
KB
484 xfree (sap->other[idx].name);
485 xfree (sap);
62557bbc
KB
486}
487
488
c906108c
SS
489/* Parse the user's idea of an offset for dynamic linking, into our idea
490 of how to represent it for fast symbol reading. This is the default
491 version of the sym_fns.sym_offsets function for symbol readers that
492 don't need to do anything special. It allocates a section_offsets table
493 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
494
d4f3574e 495void
fba45db2
KB
496default_symfile_offsets (struct objfile *objfile,
497 struct section_addr_info *addrs)
c906108c 498{
c906108c 499 int i;
b8fbeb18 500 asection *sect = NULL;
c906108c
SS
501
502 objfile->num_sections = SECT_OFF_MAX;
d4f3574e 503 objfile->section_offsets = (struct section_offsets *)
c5aa993b 504 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
d4f3574e 505 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
c906108c 506
b8fbeb18
EZ
507 /* Now calculate offsets for section that were specified by the
508 caller. */
2acceee2
JM
509 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
b8fbeb18 514 if (osp->addr == 0)
2acceee2 515 continue;
b8fbeb18 516
2acceee2 517 /* Record all sections in offsets */
b8fbeb18
EZ
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
a4c8257b 520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
2acceee2 521 }
c906108c 522
b8fbeb18
EZ
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525
526 sect = bfd_get_section_by_name (objfile->obfd, ".text");
527 if (sect)
528 objfile->sect_index_text = sect->index;
529
530 sect = bfd_get_section_by_name (objfile->obfd, ".data");
531 if (sect)
532 objfile->sect_index_data = sect->index;
533
534 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
535 if (sect)
536 objfile->sect_index_bss = sect->index;
537
538 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
539 if (sect)
540 objfile->sect_index_rodata = sect->index;
541
bbcd32ad
FF
542 /* This is where things get really weird... We MUST have valid
543 indices for the various sect_index_* members or gdb will abort.
544 So if for example, there is no ".text" section, we have to
545 accomodate that. Except when explicitly adding symbol files at
546 some address, section_offsets contains nothing but zeros, so it
547 doesn't matter which slot in section_offsets the individual
548 sect_index_* members index into. So if they are all zero, it is
549 safe to just point all the currently uninitialized indices to the
550 first slot. */
551
552 for (i = 0; i < objfile->num_sections; i++)
553 {
554 if (ANOFFSET (objfile->section_offsets, i) != 0)
555 {
556 break;
557 }
558 }
559 if (i == objfile->num_sections)
560 {
561 if (objfile->sect_index_text == -1)
562 objfile->sect_index_text = 0;
563 if (objfile->sect_index_data == -1)
564 objfile->sect_index_data = 0;
565 if (objfile->sect_index_bss == -1)
566 objfile->sect_index_bss = 0;
567 if (objfile->sect_index_rodata == -1)
568 objfile->sect_index_rodata = 0;
569 }
b8fbeb18 570}
c906108c
SS
571
572/* Process a symbol file, as either the main file or as a dynamically
573 loaded file.
574
96baa820
JM
575 OBJFILE is where the symbols are to be read from.
576
577 ADDR is the address where the text segment was loaded, unless the
578 objfile is the main symbol file, in which case it is zero.
579
580 MAINLINE is nonzero if this is the main symbol file, or zero if
581 it's an extra symbol file such as dynamically loaded code.
582
583 VERBO is nonzero if the caller has printed a verbose message about
584 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
585
586void
fba45db2
KB
587syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
588 int mainline, int verbo)
c906108c 589{
2acceee2
JM
590 asection *lower_sect;
591 asection *sect;
592 CORE_ADDR lower_offset;
593 struct section_addr_info local_addr;
c906108c 594 struct cleanup *old_chain;
2acceee2
JM
595 int i;
596
597 /* If ADDRS is NULL, initialize the local section_addr_info struct and
598 point ADDRS to it. We now establish the convention that an addr of
599 zero means no load address was specified. */
600
601 if (addrs == NULL)
602 {
603 memset (&local_addr, 0, sizeof (local_addr));
604 addrs = &local_addr;
605 }
c906108c
SS
606
607 init_entry_point_info (objfile);
608 find_sym_fns (objfile);
609
75245b24
MS
610 if (objfile->sf == NULL)
611 return; /* No symbols. */
612
c906108c
SS
613 /* Make sure that partially constructed symbol tables will be cleaned up
614 if an error occurs during symbol reading. */
74b7792f 615 old_chain = make_cleanup_free_objfile (objfile);
c906108c 616
c5aa993b 617 if (mainline)
c906108c
SS
618 {
619 /* We will modify the main symbol table, make sure that all its users
c5aa993b 620 will be cleaned up if an error occurs during symbol reading. */
74b7792f 621 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
622
623 /* Since no error yet, throw away the old symbol table. */
624
625 if (symfile_objfile != NULL)
626 {
627 free_objfile (symfile_objfile);
628 symfile_objfile = NULL;
629 }
630
631 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
632 If the user wants to get rid of them, they should do "symbol-file"
633 without arguments first. Not sure this is the best behavior
634 (PR 2207). */
c906108c 635
c5aa993b 636 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
637 }
638
639 /* Convert addr into an offset rather than an absolute address.
640 We find the lowest address of a loaded segment in the objfile,
53a5351d 641 and assume that <addr> is where that got loaded.
c906108c 642
53a5351d
JM
643 We no longer warn if the lowest section is not a text segment (as
644 happens for the PA64 port. */
e7cf9df1 645 if (!mainline)
c906108c 646 {
2acceee2
JM
647 /* Find lowest loadable section to be used as starting point for
648 continguous sections. FIXME!! won't work without call to find
649 .text first, but this assumes text is lowest section. */
650 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
651 if (lower_sect == NULL)
c906108c 652 bfd_map_over_sections (objfile->obfd, find_lowest_section,
2acceee2
JM
653 (PTR) &lower_sect);
654 if (lower_sect == NULL)
c906108c
SS
655 warning ("no loadable sections found in added symbol-file %s",
656 objfile->name);
b8fbeb18
EZ
657 else
658 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
659 warning ("Lowest section in %s is %s at %s",
660 objfile->name,
661 bfd_section_name (objfile->obfd, lower_sect),
662 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
663 if (lower_sect != NULL)
664 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
665 else
666 lower_offset = 0;
667
668 /* Calculate offsets for the loadable sections.
669 FIXME! Sections must be in order of increasing loadable section
670 so that contiguous sections can use the lower-offset!!!
671
672 Adjust offsets if the segments are not contiguous.
673 If the section is contiguous, its offset should be set to
674 the offset of the highest loadable section lower than it
675 (the loadable section directly below it in memory).
676 this_offset = lower_offset = lower_addr - lower_orig_addr */
677
e7cf9df1 678 /* Calculate offsets for sections. */
2acceee2
JM
679 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
680 {
e7cf9df1 681 if (addrs->other[i].addr != 0)
2acceee2 682 {
e7cf9df1 683 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
2acceee2
JM
684 if (sect)
685 {
686 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
687 lower_offset = addrs->other[i].addr;
e7cf9df1 688 /* This is the index used by BFD. */
2acceee2
JM
689 addrs->other[i].sectindex = sect->index ;
690 }
691 else
692 {
693 warning ("section %s not found in %s", addrs->other[i].name,
694 objfile->name);
695 addrs->other[i].addr = 0;
696 }
697 }
698 else
699 addrs->other[i].addr = lower_offset;
700 }
c906108c
SS
701 }
702
703 /* Initialize symbol reading routines for this objfile, allow complaints to
704 appear for this new file, and record how verbose to be, then do the
705 initial symbol reading for this file. */
706
c5aa993b 707 (*objfile->sf->sym_init) (objfile);
c906108c
SS
708 clear_complaints (1, verbo);
709
2acceee2 710 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c
SS
711
712#ifndef IBM6000_TARGET
713 /* This is a SVR4/SunOS specific hack, I think. In any event, it
714 screws RS/6000. sym_offsets should be doing this sort of thing,
715 because it knows the mapping between bfd sections and
716 section_offsets. */
717 /* This is a hack. As far as I can tell, section offsets are not
718 target dependent. They are all set to addr with a couple of
719 exceptions. The exceptions are sysvr4 shared libraries, whose
720 offsets are kept in solib structures anyway and rs6000 xcoff
721 which handles shared libraries in a completely unique way.
722
723 Section offsets are built similarly, except that they are built
724 by adding addr in all cases because there is no clear mapping
725 from section_offsets into actual sections. Note that solib.c
96baa820 726 has a different algorithm for finding section offsets.
c906108c
SS
727
728 These should probably all be collapsed into some target
729 independent form of shared library support. FIXME. */
730
2acceee2 731 if (addrs)
c906108c
SS
732 {
733 struct obj_section *s;
734
2acceee2
JM
735 /* Map section offsets in "addr" back to the object's
736 sections by comparing the section names with bfd's
737 section names. Then adjust the section address by
738 the offset. */ /* for gdb/13815 */
739
96baa820 740 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 741 {
2acceee2
JM
742 CORE_ADDR s_addr = 0;
743 int i;
744
62557bbc
KB
745 for (i = 0;
746 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
747 i++)
fbd35540
MS
748 if (strcmp (bfd_section_name (s->objfile->obfd,
749 s->the_bfd_section),
750 addrs->other[i].name) == 0)
2acceee2
JM
751 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
752
c906108c 753 s->addr -= s->offset;
2acceee2 754 s->addr += s_addr;
c906108c 755 s->endaddr -= s->offset;
2acceee2
JM
756 s->endaddr += s_addr;
757 s->offset += s_addr;
c906108c
SS
758 }
759 }
760#endif /* not IBM6000_TARGET */
761
96baa820 762 (*objfile->sf->sym_read) (objfile, mainline);
c906108c
SS
763
764 if (!have_partial_symbols () && !have_full_symbols ())
765 {
766 wrap_here ("");
767 printf_filtered ("(no debugging symbols found)...");
768 wrap_here ("");
769 }
770
771 /* Don't allow char * to have a typename (else would get caddr_t).
772 Ditto void *. FIXME: Check whether this is now done by all the
773 symbol readers themselves (many of them now do), and if so remove
774 it from here. */
775
776 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
777 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
778
779 /* Mark the objfile has having had initial symbol read attempted. Note
780 that this does not mean we found any symbols... */
781
c5aa993b 782 objfile->flags |= OBJF_SYMS;
c906108c
SS
783
784 /* Discard cleanups as symbol reading was successful. */
785
786 discard_cleanups (old_chain);
787
96baa820 788 /* Call this after reading in a new symbol table to give target
38c2ef12 789 dependent code a crack at the new symbols. For instance, this
96baa820
JM
790 could be used to update the values of target-specific symbols GDB
791 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
792
793 TARGET_SYMFILE_POSTREAD (objfile);
794}
795
796/* Perform required actions after either reading in the initial
797 symbols for a new objfile, or mapping in the symbols from a reusable
798 objfile. */
c5aa993b 799
c906108c 800void
fba45db2 801new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
802{
803
804 /* If this is the main symbol file we have to clean up all users of the
805 old main symbol file. Otherwise it is sufficient to fixup all the
806 breakpoints that may have been redefined by this symbol file. */
807 if (mainline)
808 {
809 /* OK, make it the "real" symbol file. */
810 symfile_objfile = objfile;
811
812 clear_symtab_users ();
813 }
814 else
815 {
816 breakpoint_re_set ();
817 }
818
819 /* We're done reading the symbol file; finish off complaints. */
820 clear_complaints (0, verbo);
821}
822
823/* Process a symbol file, as either the main file or as a dynamically
824 loaded file.
825
826 NAME is the file name (which will be tilde-expanded and made
827 absolute herein) (but we don't free or modify NAME itself).
828 FROM_TTY says how verbose to be. MAINLINE specifies whether this
829 is the main symbol file, or whether it's an extra symbol file such
830 as dynamically loaded code. If !mainline, ADDR is the address
831 where the text segment was loaded.
832
c906108c
SS
833 Upon success, returns a pointer to the objfile that was added.
834 Upon failure, jumps back to command level (never returns). */
835
836struct objfile *
fba45db2
KB
837symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
838 int mainline, int flags)
c906108c
SS
839{
840 struct objfile *objfile;
841 struct partial_symtab *psymtab;
842 bfd *abfd;
843
844 /* Open a bfd for the file, and give user a chance to burp if we'd be
845 interactively wiping out any existing symbols. */
846
847 abfd = symfile_bfd_open (name);
848
849 if ((have_full_symbols () || have_partial_symbols ())
850 && mainline
851 && from_tty
852 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 853 error ("Not confirmed.");
c906108c 854
2df3850c 855 objfile = allocate_objfile (abfd, flags);
c906108c
SS
856
857 /* If the objfile uses a mapped symbol file, and we have a psymtab for
858 it, then skip reading any symbols at this time. */
859
c5aa993b 860 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
861 {
862 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
863 initial symbol reading performed, so we can skip that part. Notify
864 the user that instead of reading the symbols, they have been mapped.
865 */
c906108c
SS
866 if (from_tty || info_verbose)
867 {
868 printf_filtered ("Mapped symbols for %s...", name);
869 wrap_here ("");
870 gdb_flush (gdb_stdout);
871 }
872 init_entry_point_info (objfile);
873 find_sym_fns (objfile);
874 }
875 else
876 {
877 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
878 symbol table file which has not had initial symbol reading
879 performed, or need to read an unmapped symbol table. */
c906108c
SS
880 if (from_tty || info_verbose)
881 {
882 if (pre_add_symbol_hook)
883 pre_add_symbol_hook (name);
884 else
885 {
886 printf_filtered ("Reading symbols from %s...", name);
887 wrap_here ("");
888 gdb_flush (gdb_stdout);
889 }
890 }
2acceee2 891 syms_from_objfile (objfile, addrs, mainline, from_tty);
c906108c
SS
892 }
893
894 /* We now have at least a partial symbol table. Check to see if the
895 user requested that all symbols be read on initial access via either
896 the gdb startup command line or on a per symbol file basis. Expand
897 all partial symbol tables for this objfile if so. */
898
2acceee2 899 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
900 {
901 if (from_tty || info_verbose)
902 {
903 printf_filtered ("expanding to full symbols...");
904 wrap_here ("");
905 gdb_flush (gdb_stdout);
906 }
907
c5aa993b 908 for (psymtab = objfile->psymtabs;
c906108c 909 psymtab != NULL;
c5aa993b 910 psymtab = psymtab->next)
c906108c
SS
911 {
912 psymtab_to_symtab (psymtab);
913 }
914 }
915
916 if (from_tty || info_verbose)
917 {
918 if (post_add_symbol_hook)
c5aa993b 919 post_add_symbol_hook ();
c906108c 920 else
c5aa993b
JM
921 {
922 printf_filtered ("done.\n");
923 gdb_flush (gdb_stdout);
924 }
c906108c
SS
925 }
926
109f874e
MS
927 if (objfile->sf == NULL)
928 return objfile; /* No symbols. */
929
c906108c
SS
930 new_symfile_objfile (objfile, mainline, from_tty);
931
11cf8741
JM
932 if (target_new_objfile_hook)
933 target_new_objfile_hook (objfile);
c906108c
SS
934
935 return (objfile);
936}
937
d7db6da9
FN
938/* Call symbol_file_add() with default values and update whatever is
939 affected by the loading of a new main().
940 Used when the file is supplied in the gdb command line
941 and by some targets with special loading requirements.
942 The auxiliary function, symbol_file_add_main_1(), has the flags
943 argument for the switches that can only be specified in the symbol_file
944 command itself. */
1adeb98a
FN
945
946void
947symbol_file_add_main (char *args, int from_tty)
948{
d7db6da9
FN
949 symbol_file_add_main_1 (args, from_tty, 0);
950}
951
952static void
953symbol_file_add_main_1 (char *args, int from_tty, int flags)
954{
955 symbol_file_add (args, from_tty, NULL, 1, flags);
956
957#ifdef HPUXHPPA
958 RESET_HP_UX_GLOBALS ();
959#endif
960
961 /* Getting new symbols may change our opinion about
962 what is frameless. */
963 reinit_frame_cache ();
964
965 set_initial_language ();
1adeb98a
FN
966}
967
968void
969symbol_file_clear (int from_tty)
970{
971 if ((have_full_symbols () || have_partial_symbols ())
972 && from_tty
973 && !query ("Discard symbol table from `%s'? ",
974 symfile_objfile->name))
975 error ("Not confirmed.");
976 free_all_objfiles ();
977
978 /* solib descriptors may have handles to objfiles. Since their
979 storage has just been released, we'd better wipe the solib
980 descriptors as well.
981 */
982#if defined(SOLIB_RESTART)
983 SOLIB_RESTART ();
984#endif
985
986 symfile_objfile = NULL;
987 if (from_tty)
988 printf_unfiltered ("No symbol file now.\n");
989#ifdef HPUXHPPA
990 RESET_HP_UX_GLOBALS ();
991#endif
992}
993
c906108c
SS
994/* This is the symbol-file command. Read the file, analyze its
995 symbols, and add a struct symtab to a symtab list. The syntax of
996 the command is rather bizarre--(1) buildargv implements various
997 quoting conventions which are undocumented and have little or
998 nothing in common with the way things are quoted (or not quoted)
999 elsewhere in GDB, (2) options are used, which are not generally
1000 used in GDB (perhaps "set mapped on", "set readnow on" would be
1001 better), (3) the order of options matters, which is contrary to GNU
1002 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1003/* Note: ezannoni 2000-04-17. This function used to have support for
1004 rombug (see remote-os9k.c). It consisted of a call to target_link()
1005 (target.c) to get the address of the text segment from the target,
1006 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1007
1008void
fba45db2 1009symbol_file_command (char *args, int from_tty)
c906108c
SS
1010{
1011 char **argv;
1012 char *name = NULL;
c906108c 1013 struct cleanup *cleanups;
2df3850c 1014 int flags = OBJF_USERLOADED;
c906108c
SS
1015
1016 dont_repeat ();
1017
1018 if (args == NULL)
1019 {
1adeb98a 1020 symbol_file_clear (from_tty);
c906108c
SS
1021 }
1022 else
1023 {
1024 if ((argv = buildargv (args)) == NULL)
1025 {
1026 nomem (0);
1027 }
7a292a7a 1028 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1029 while (*argv != NULL)
1030 {
1031 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
1032 flags |= OBJF_MAPPED;
1033 else
1034 if (STREQ (*argv, "-readnow"))
2acceee2 1035 flags |= OBJF_READNOW;
4da95fc4
EZ
1036 else
1037 if (**argv == '-')
1038 error ("unknown option `%s'", *argv);
c5aa993b 1039 else
c5aa993b 1040 {
4da95fc4 1041 name = *argv;
c906108c 1042
d7db6da9 1043 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1044 }
c906108c
SS
1045 argv++;
1046 }
1047
1048 if (name == NULL)
1049 {
1050 error ("no symbol file name was specified");
1051 }
c906108c
SS
1052 do_cleanups (cleanups);
1053 }
1054}
1055
1056/* Set the initial language.
1057
1058 A better solution would be to record the language in the psymtab when reading
1059 partial symbols, and then use it (if known) to set the language. This would
1060 be a win for formats that encode the language in an easily discoverable place,
1061 such as DWARF. For stabs, we can jump through hoops looking for specially
1062 named symbols or try to intuit the language from the specific type of stabs
1063 we find, but we can't do that until later when we read in full symbols.
1064 FIXME. */
1065
1066static void
fba45db2 1067set_initial_language (void)
c906108c
SS
1068{
1069 struct partial_symtab *pst;
c5aa993b 1070 enum language lang = language_unknown;
c906108c
SS
1071
1072 pst = find_main_psymtab ();
1073 if (pst != NULL)
1074 {
c5aa993b 1075 if (pst->filename != NULL)
c906108c 1076 {
c5aa993b
JM
1077 lang = deduce_language_from_filename (pst->filename);
1078 }
c906108c
SS
1079 if (lang == language_unknown)
1080 {
c5aa993b
JM
1081 /* Make C the default language */
1082 lang = language_c;
c906108c
SS
1083 }
1084 set_language (lang);
1085 expected_language = current_language; /* Don't warn the user */
1086 }
1087}
1088
1089/* Open file specified by NAME and hand it off to BFD for preliminary
1090 analysis. Result is a newly initialized bfd *, which includes a newly
1091 malloc'd` copy of NAME (tilde-expanded and made absolute).
1092 In case of trouble, error() is called. */
1093
1094bfd *
fba45db2 1095symfile_bfd_open (char *name)
c906108c
SS
1096{
1097 bfd *sym_bfd;
1098 int desc;
1099 char *absolute_name;
1100
1101
1102
1103 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1104
1105 /* Look down path for it, allocate 2nd new malloc'd copy. */
1106 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1107#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1108 if (desc < 0)
1109 {
1110 char *exename = alloca (strlen (name) + 5);
1111 strcat (strcpy (exename, name), ".exe");
1112 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1113 0, &absolute_name);
c906108c
SS
1114 }
1115#endif
1116 if (desc < 0)
1117 {
b8c9b27d 1118 make_cleanup (xfree, name);
c906108c
SS
1119 perror_with_name (name);
1120 }
b8c9b27d 1121 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1122 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1123 /* It'll be freed in free_objfile(). */
c906108c
SS
1124
1125 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1126 if (!sym_bfd)
1127 {
1128 close (desc);
b8c9b27d 1129 make_cleanup (xfree, name);
c906108c
SS
1130 error ("\"%s\": can't open to read symbols: %s.", name,
1131 bfd_errmsg (bfd_get_error ()));
1132 }
81a9a963 1133 sym_bfd->cacheable = 1;
c906108c
SS
1134
1135 if (!bfd_check_format (sym_bfd, bfd_object))
1136 {
1137 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1138 on error it does not free all the storage associated with the
1139 bfd). */
c906108c 1140 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1141 make_cleanup (xfree, name);
c906108c
SS
1142 error ("\"%s\": can't read symbols: %s.", name,
1143 bfd_errmsg (bfd_get_error ()));
1144 }
1145 return (sym_bfd);
1146}
1147
0e931cf0
JB
1148/* Return the section index for the given section name. Return -1 if
1149 the section was not found. */
1150int
1151get_section_index (struct objfile *objfile, char *section_name)
1152{
1153 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1154 if (sect)
1155 return sect->index;
1156 else
1157 return -1;
1158}
1159
c906108c
SS
1160/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1161 startup by the _initialize routine in each object file format reader,
1162 to register information about each format the the reader is prepared
1163 to handle. */
1164
1165void
fba45db2 1166add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1167{
1168 sf->next = symtab_fns;
1169 symtab_fns = sf;
1170}
1171
1172
1173/* Initialize to read symbols from the symbol file sym_bfd. It either
1174 returns or calls error(). The result is an initialized struct sym_fns
1175 in the objfile structure, that contains cached information about the
1176 symbol file. */
1177
1178static void
fba45db2 1179find_sym_fns (struct objfile *objfile)
c906108c
SS
1180{
1181 struct sym_fns *sf;
c5aa993b
JM
1182 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1183 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1184
75245b24
MS
1185 if (our_flavour == bfd_target_srec_flavour
1186 || our_flavour == bfd_target_ihex_flavour
1187 || our_flavour == bfd_target_tekhex_flavour)
1188 return; /* No symbols. */
1189
c906108c
SS
1190 /* Special kludge for apollo. See dstread.c. */
1191 if (STREQN (our_target, "apollo", 6))
c5aa993b 1192 our_flavour = (enum bfd_flavour) -2;
c906108c 1193
c5aa993b 1194 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1195 {
c5aa993b 1196 if (our_flavour == sf->sym_flavour)
c906108c 1197 {
c5aa993b 1198 objfile->sf = sf;
c906108c
SS
1199 return;
1200 }
1201 }
1202 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1203 bfd_get_target (objfile->obfd));
c906108c
SS
1204}
1205\f
1206/* This function runs the load command of our current target. */
1207
1208static void
fba45db2 1209load_command (char *arg, int from_tty)
c906108c
SS
1210{
1211 if (arg == NULL)
1212 arg = get_exec_file (1);
1213 target_load (arg, from_tty);
2889e661
JB
1214
1215 /* After re-loading the executable, we don't really know which
1216 overlays are mapped any more. */
1217 overlay_cache_invalid = 1;
c906108c
SS
1218}
1219
1220/* This version of "load" should be usable for any target. Currently
1221 it is just used for remote targets, not inftarg.c or core files,
1222 on the theory that only in that case is it useful.
1223
1224 Avoiding xmodem and the like seems like a win (a) because we don't have
1225 to worry about finding it, and (b) On VMS, fork() is very slow and so
1226 we don't want to run a subprocess. On the other hand, I'm not sure how
1227 performance compares. */
917317f4
JM
1228
1229static int download_write_size = 512;
1230static int validate_download = 0;
1231
e4f9b4d5
MS
1232/* Callback service function for generic_load (bfd_map_over_sections). */
1233
1234static void
1235add_section_size_callback (bfd *abfd, asection *asec, void *data)
1236{
1237 bfd_size_type *sum = data;
1238
1239 *sum += bfd_get_section_size_before_reloc (asec);
1240}
1241
1242/* Opaque data for load_section_callback. */
1243struct load_section_data {
1244 unsigned long load_offset;
1245 unsigned long write_count;
1246 unsigned long data_count;
1247 bfd_size_type total_size;
1248};
1249
1250/* Callback service function for generic_load (bfd_map_over_sections). */
1251
1252static void
1253load_section_callback (bfd *abfd, asection *asec, void *data)
1254{
1255 struct load_section_data *args = data;
1256
1257 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1258 {
1259 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1260 if (size > 0)
1261 {
1262 char *buffer;
1263 struct cleanup *old_chain;
1264 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1265 bfd_size_type block_size;
1266 int err;
1267 const char *sect_name = bfd_get_section_name (abfd, asec);
1268 bfd_size_type sent;
1269
1270 if (download_write_size > 0 && size > download_write_size)
1271 block_size = download_write_size;
1272 else
1273 block_size = size;
1274
1275 buffer = xmalloc (size);
1276 old_chain = make_cleanup (xfree, buffer);
1277
1278 /* Is this really necessary? I guess it gives the user something
1279 to look at during a long download. */
e4f9b4d5
MS
1280 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1281 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1282
1283 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1284
1285 sent = 0;
1286 do
1287 {
1288 int len;
1289 bfd_size_type this_transfer = size - sent;
1290
1291 if (this_transfer >= block_size)
1292 this_transfer = block_size;
1293 len = target_write_memory_partial (lma, buffer,
1294 this_transfer, &err);
1295 if (err)
1296 break;
1297 if (validate_download)
1298 {
1299 /* Broken memories and broken monitors manifest
1300 themselves here when bring new computers to
1301 life. This doubles already slow downloads. */
1302 /* NOTE: cagney/1999-10-18: A more efficient
1303 implementation might add a verify_memory()
1304 method to the target vector and then use
1305 that. remote.c could implement that method
1306 using the ``qCRC'' packet. */
1307 char *check = xmalloc (len);
1308 struct cleanup *verify_cleanups =
1309 make_cleanup (xfree, check);
1310
1311 if (target_read_memory (lma, check, len) != 0)
1312 error ("Download verify read failed at 0x%s",
1313 paddr (lma));
1314 if (memcmp (buffer, check, len) != 0)
1315 error ("Download verify compare failed at 0x%s",
1316 paddr (lma));
1317 do_cleanups (verify_cleanups);
1318 }
1319 args->data_count += len;
1320 lma += len;
1321 buffer += len;
1322 args->write_count += 1;
1323 sent += len;
1324 if (quit_flag
1325 || (ui_load_progress_hook != NULL
1326 && ui_load_progress_hook (sect_name, sent)))
1327 error ("Canceled the download");
1328
1329 if (show_load_progress != NULL)
1330 show_load_progress (sect_name, sent, size,
1331 args->data_count, args->total_size);
1332 }
1333 while (sent < size);
1334
1335 if (err != 0)
1336 error ("Memory access error while loading section %s.", sect_name);
1337
1338 do_cleanups (old_chain);
1339 }
1340 }
1341}
1342
c906108c 1343void
917317f4 1344generic_load (char *args, int from_tty)
c906108c 1345{
c906108c
SS
1346 asection *s;
1347 bfd *loadfile_bfd;
1348 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1349 char *filename;
1350 struct cleanup *old_cleanups;
1351 char *offptr;
e4f9b4d5
MS
1352 struct load_section_data cbdata;
1353 CORE_ADDR entry;
1354
1355 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1356 cbdata.write_count = 0; /* Number of writes needed. */
1357 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1358 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1359
1360 /* Parse the input argument - the user can specify a load offset as
1361 a second argument. */
1362 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1363 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1364 strcpy (filename, args);
1365 offptr = strchr (filename, ' ');
1366 if (offptr != NULL)
1367 {
1368 char *endptr;
ba5f2f8a 1369
e4f9b4d5 1370 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1371 if (offptr == endptr)
1372 error ("Invalid download offset:%s\n", offptr);
1373 *offptr = '\0';
1374 }
c906108c 1375 else
e4f9b4d5 1376 cbdata.load_offset = 0;
c906108c 1377
917317f4 1378 /* Open the file for loading. */
c906108c
SS
1379 loadfile_bfd = bfd_openr (filename, gnutarget);
1380 if (loadfile_bfd == NULL)
1381 {
1382 perror_with_name (filename);
1383 return;
1384 }
917317f4 1385
c906108c
SS
1386 /* FIXME: should be checking for errors from bfd_close (for one thing,
1387 on error it does not free all the storage associated with the
1388 bfd). */
5c65bbb6 1389 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1390
c5aa993b 1391 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1392 {
1393 error ("\"%s\" is not an object file: %s", filename,
1394 bfd_errmsg (bfd_get_error ()));
1395 }
c5aa993b 1396
e4f9b4d5
MS
1397 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1398 (void *) &cbdata.total_size);
c2d11a7d 1399
c906108c
SS
1400 start_time = time (NULL);
1401
e4f9b4d5 1402 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1403
1404 end_time = time (NULL);
ba5f2f8a 1405
e4f9b4d5 1406 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1407 ui_out_text (uiout, "Start address ");
1408 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1409 ui_out_text (uiout, ", load size ");
1410 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1411 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1412 /* We were doing this in remote-mips.c, I suspect it is right
1413 for other targets too. */
1414 write_pc (entry);
c906108c
SS
1415
1416 /* FIXME: are we supposed to call symbol_file_add or not? According to
1417 a comment from remote-mips.c (where a call to symbol_file_add was
1418 commented out), making the call confuses GDB if more than one file is
1419 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1420 does. */
1421
e4f9b4d5
MS
1422 print_transfer_performance (gdb_stdout, cbdata.data_count,
1423 cbdata.write_count, end_time - start_time);
c906108c
SS
1424
1425 do_cleanups (old_cleanups);
1426}
1427
1428/* Report how fast the transfer went. */
1429
917317f4
JM
1430/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1431 replaced by print_transfer_performance (with a very different
1432 function signature). */
1433
c906108c 1434void
fba45db2
KB
1435report_transfer_performance (unsigned long data_count, time_t start_time,
1436 time_t end_time)
c906108c 1437{
ba5f2f8a
MS
1438 print_transfer_performance (gdb_stdout, data_count,
1439 end_time - start_time, 0);
917317f4
JM
1440}
1441
1442void
d9fcf2fb 1443print_transfer_performance (struct ui_file *stream,
917317f4
JM
1444 unsigned long data_count,
1445 unsigned long write_count,
1446 unsigned long time_count)
1447{
8b93c638
JM
1448 ui_out_text (uiout, "Transfer rate: ");
1449 if (time_count > 0)
1450 {
ba5f2f8a 1451 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1452 (data_count * 8) / time_count);
1453 ui_out_text (uiout, " bits/sec");
1454 }
1455 else
1456 {
ba5f2f8a 1457 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
8b93c638
JM
1458 ui_out_text (uiout, " bits in <1 sec");
1459 }
1460 if (write_count > 0)
1461 {
1462 ui_out_text (uiout, ", ");
ba5f2f8a 1463 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1464 ui_out_text (uiout, " bytes/write");
1465 }
1466 ui_out_text (uiout, ".\n");
c906108c
SS
1467}
1468
1469/* This function allows the addition of incrementally linked object files.
1470 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1471/* Note: ezannoni 2000-04-13 This function/command used to have a
1472 special case syntax for the rombug target (Rombug is the boot
1473 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1474 rombug case, the user doesn't need to supply a text address,
1475 instead a call to target_link() (in target.c) would supply the
1476 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1477
1478/* ARGSUSED */
1479static void
fba45db2 1480add_symbol_file_command (char *args, int from_tty)
c906108c 1481{
db162d44 1482 char *filename = NULL;
2df3850c 1483 int flags = OBJF_USERLOADED;
c906108c 1484 char *arg;
2acceee2 1485 int expecting_option = 0;
db162d44 1486 int section_index = 0;
2acceee2
JM
1487 int argcnt = 0;
1488 int sec_num = 0;
1489 int i;
db162d44
EZ
1490 int expecting_sec_name = 0;
1491 int expecting_sec_addr = 0;
1492
2acceee2
JM
1493 struct
1494 {
2acceee2
JM
1495 char *name;
1496 char *value;
db162d44
EZ
1497 } sect_opts[SECT_OFF_MAX];
1498
2acceee2 1499 struct section_addr_info section_addrs;
3017564a 1500 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1501
c906108c
SS
1502 dont_repeat ();
1503
1504 if (args == NULL)
db162d44 1505 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1506
1507 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1508 args = xstrdup (args);
c906108c 1509
2acceee2
JM
1510 /* Ensure section_addrs is initialized */
1511 memset (&section_addrs, 0, sizeof (section_addrs));
1512
2acceee2 1513 while (*args != '\000')
c906108c 1514 {
db162d44 1515 /* Any leading spaces? */
c5aa993b 1516 while (isspace (*args))
db162d44
EZ
1517 args++;
1518
1519 /* Point arg to the beginning of the argument. */
c906108c 1520 arg = args;
db162d44
EZ
1521
1522 /* Move args pointer over the argument. */
c5aa993b 1523 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1524 args++;
1525
1526 /* If there are more arguments, terminate arg and
1527 proceed past it. */
c906108c 1528 if (*args != '\000')
db162d44
EZ
1529 *args++ = '\000';
1530
1531 /* Now process the argument. */
1532 if (argcnt == 0)
c906108c 1533 {
db162d44
EZ
1534 /* The first argument is the file name. */
1535 filename = tilde_expand (arg);
3017564a 1536 make_cleanup (xfree, filename);
c906108c 1537 }
db162d44 1538 else
7a78ae4e
ND
1539 if (argcnt == 1)
1540 {
1541 /* The second argument is always the text address at which
1542 to load the program. */
1543 sect_opts[section_index].name = ".text";
1544 sect_opts[section_index].value = arg;
1545 section_index++;
1546 }
1547 else
1548 {
1549 /* It's an option (starting with '-') or it's an argument
1550 to an option */
1551
1552 if (*arg == '-')
1553 {
1554 if (strcmp (arg, "-mapped") == 0)
1555 flags |= OBJF_MAPPED;
1556 else
1557 if (strcmp (arg, "-readnow") == 0)
1558 flags |= OBJF_READNOW;
1559 else
1560 if (strcmp (arg, "-s") == 0)
1561 {
1562 if (section_index >= SECT_OFF_MAX)
1563 error ("Too many sections specified.");
1564 expecting_sec_name = 1;
1565 expecting_sec_addr = 1;
1566 }
1567 }
1568 else
1569 {
1570 if (expecting_sec_name)
db162d44 1571 {
7a78ae4e
ND
1572 sect_opts[section_index].name = arg;
1573 expecting_sec_name = 0;
db162d44
EZ
1574 }
1575 else
7a78ae4e
ND
1576 if (expecting_sec_addr)
1577 {
1578 sect_opts[section_index].value = arg;
1579 expecting_sec_addr = 0;
1580 section_index++;
1581 }
1582 else
1583 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1584 }
1585 }
db162d44 1586 argcnt++;
c906108c 1587 }
c906108c 1588
db162d44
EZ
1589 /* Print the prompt for the query below. And save the arguments into
1590 a sect_addr_info structure to be passed around to other
1591 functions. We have to split this up into separate print
1592 statements because local_hex_string returns a local static
1593 string. */
2acceee2 1594
db162d44
EZ
1595 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1596 for (i = 0; i < section_index; i++)
c906108c 1597 {
db162d44
EZ
1598 CORE_ADDR addr;
1599 char *val = sect_opts[i].value;
1600 char *sec = sect_opts[i].name;
1601
1602 val = sect_opts[i].value;
1603 if (val[0] == '0' && val[1] == 'x')
1604 addr = strtoul (val+2, NULL, 16);
1605 else
1606 addr = strtoul (val, NULL, 10);
1607
db162d44
EZ
1608 /* Here we store the section offsets in the order they were
1609 entered on the command line. */
1610 section_addrs.other[sec_num].name = sec;
1611 section_addrs.other[sec_num].addr = addr;
1612 printf_filtered ("\t%s_addr = %s\n",
1613 sec,
1614 local_hex_string ((unsigned long)addr));
1615 sec_num++;
1616
1617 /* The object's sections are initialized when a
1618 call is made to build_objfile_section_table (objfile).
1619 This happens in reread_symbols.
1620 At this point, we don't know what file type this is,
1621 so we can't determine what section names are valid. */
2acceee2 1622 }
db162d44 1623
2acceee2 1624 if (from_tty && (!query ("%s", "")))
c906108c
SS
1625 error ("Not confirmed.");
1626
db162d44 1627 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1628
1629 /* Getting new symbols may change our opinion about what is
1630 frameless. */
1631 reinit_frame_cache ();
db162d44 1632 do_cleanups (my_cleanups);
c906108c
SS
1633}
1634\f
1635static void
fba45db2 1636add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1637{
1638#ifdef ADD_SHARED_SYMBOL_FILES
1639 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1640#else
1641 error ("This command is not available in this configuration of GDB.");
c5aa993b 1642#endif
c906108c
SS
1643}
1644\f
1645/* Re-read symbols if a symbol-file has changed. */
1646void
fba45db2 1647reread_symbols (void)
c906108c
SS
1648{
1649 struct objfile *objfile;
1650 long new_modtime;
1651 int reread_one = 0;
1652 struct stat new_statbuf;
1653 int res;
1654
1655 /* With the addition of shared libraries, this should be modified,
1656 the load time should be saved in the partial symbol tables, since
1657 different tables may come from different source files. FIXME.
1658 This routine should then walk down each partial symbol table
1659 and see if the symbol table that it originates from has been changed */
1660
c5aa993b
JM
1661 for (objfile = object_files; objfile; objfile = objfile->next)
1662 {
1663 if (objfile->obfd)
1664 {
c906108c 1665#ifdef IBM6000_TARGET
c5aa993b
JM
1666 /* If this object is from a shared library, then you should
1667 stat on the library name, not member name. */
c906108c 1668
c5aa993b
JM
1669 if (objfile->obfd->my_archive)
1670 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1671 else
c906108c 1672#endif
c5aa993b
JM
1673 res = stat (objfile->name, &new_statbuf);
1674 if (res != 0)
c906108c 1675 {
c5aa993b
JM
1676 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1677 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1678 objfile->name);
1679 continue;
c906108c 1680 }
c5aa993b
JM
1681 new_modtime = new_statbuf.st_mtime;
1682 if (new_modtime != objfile->mtime)
c906108c 1683 {
c5aa993b
JM
1684 struct cleanup *old_cleanups;
1685 struct section_offsets *offsets;
1686 int num_offsets;
c5aa993b
JM
1687 char *obfd_filename;
1688
1689 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1690 objfile->name);
1691
1692 /* There are various functions like symbol_file_add,
1693 symfile_bfd_open, syms_from_objfile, etc., which might
1694 appear to do what we want. But they have various other
1695 effects which we *don't* want. So we just do stuff
1696 ourselves. We don't worry about mapped files (for one thing,
1697 any mapped file will be out of date). */
1698
1699 /* If we get an error, blow away this objfile (not sure if
1700 that is the correct response for things like shared
1701 libraries). */
74b7792f 1702 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1703 /* We need to do this whenever any symbols go away. */
74b7792f 1704 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1705
1706 /* Clean up any state BFD has sitting around. We don't need
1707 to close the descriptor but BFD lacks a way of closing the
1708 BFD without closing the descriptor. */
1709 obfd_filename = bfd_get_filename (objfile->obfd);
1710 if (!bfd_close (objfile->obfd))
1711 error ("Can't close BFD for %s: %s", objfile->name,
1712 bfd_errmsg (bfd_get_error ()));
1713 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1714 if (objfile->obfd == NULL)
1715 error ("Can't open %s to read symbols.", objfile->name);
1716 /* bfd_openr sets cacheable to true, which is what we want. */
1717 if (!bfd_check_format (objfile->obfd, bfd_object))
1718 error ("Can't read symbols from %s: %s.", objfile->name,
1719 bfd_errmsg (bfd_get_error ()));
1720
1721 /* Save the offsets, we will nuke them with the rest of the
1722 psymbol_obstack. */
1723 num_offsets = objfile->num_sections;
d4f3574e
SS
1724 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1725 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1726
1727 /* Nuke all the state that we will re-read. Much of the following
1728 code which sets things to NULL really is necessary to tell
1729 other parts of GDB that there is nothing currently there. */
1730
1731 /* FIXME: Do we have to free a whole linked list, or is this
1732 enough? */
1733 if (objfile->global_psymbols.list)
aac7f4ea 1734 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1735 memset (&objfile->global_psymbols, 0,
1736 sizeof (objfile->global_psymbols));
1737 if (objfile->static_psymbols.list)
aac7f4ea 1738 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1739 memset (&objfile->static_psymbols, 0,
1740 sizeof (objfile->static_psymbols));
1741
1742 /* Free the obstacks for non-reusable objfiles */
c2d11a7d 1743 free_bcache (&objfile->psymbol_cache);
99d9066e 1744 free_bcache (&objfile->macro_cache);
c5aa993b
JM
1745 obstack_free (&objfile->psymbol_obstack, 0);
1746 obstack_free (&objfile->symbol_obstack, 0);
1747 obstack_free (&objfile->type_obstack, 0);
1748 objfile->sections = NULL;
1749 objfile->symtabs = NULL;
1750 objfile->psymtabs = NULL;
1751 objfile->free_psymtabs = NULL;
1752 objfile->msymbols = NULL;
1753 objfile->minimal_symbol_count = 0;
0a83117a
MS
1754 memset (&objfile->msymbol_hash, 0,
1755 sizeof (objfile->msymbol_hash));
1756 memset (&objfile->msymbol_demangled_hash, 0,
1757 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1758 objfile->fundamental_types = NULL;
1759 if (objfile->sf != NULL)
1760 {
1761 (*objfile->sf->sym_finish) (objfile);
1762 }
1763
1764 /* We never make this a mapped file. */
1765 objfile->md = NULL;
1766 /* obstack_specify_allocation also initializes the obstack so
1767 it is empty. */
1768 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
b8c9b27d 1769 xmalloc, xfree);
99d9066e
JB
1770 obstack_specify_allocation (&objfile->macro_cache.cache, 0, 0,
1771 xmalloc, xfree);
c5aa993b 1772 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1773 xmalloc, xfree);
c5aa993b 1774 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1775 xmalloc, xfree);
c5aa993b 1776 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1777 xmalloc, xfree);
c5aa993b
JM
1778 if (build_objfile_section_table (objfile))
1779 {
1780 error ("Can't find the file sections in `%s': %s",
1781 objfile->name, bfd_errmsg (bfd_get_error ()));
1782 }
1783
1784 /* We use the same section offsets as from last time. I'm not
1785 sure whether that is always correct for shared libraries. */
1786 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
1787 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1788 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1789 objfile->num_sections = num_offsets;
1790
1791 /* What the hell is sym_new_init for, anyway? The concept of
1792 distinguishing between the main file and additional files
1793 in this way seems rather dubious. */
1794 if (objfile == symfile_objfile)
1795 {
1796 (*objfile->sf->sym_new_init) (objfile);
c906108c 1797#ifdef HPUXHPPA
c5aa993b 1798 RESET_HP_UX_GLOBALS ();
c906108c 1799#endif
c5aa993b
JM
1800 }
1801
1802 (*objfile->sf->sym_init) (objfile);
1803 clear_complaints (1, 1);
1804 /* The "mainline" parameter is a hideous hack; I think leaving it
1805 zero is OK since dbxread.c also does what it needs to do if
1806 objfile->global_psymbols.size is 0. */
96baa820 1807 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1808 if (!have_partial_symbols () && !have_full_symbols ())
1809 {
1810 wrap_here ("");
1811 printf_filtered ("(no debugging symbols found)\n");
1812 wrap_here ("");
1813 }
1814 objfile->flags |= OBJF_SYMS;
1815
1816 /* We're done reading the symbol file; finish off complaints. */
1817 clear_complaints (0, 1);
c906108c 1818
c5aa993b
JM
1819 /* Getting new symbols may change our opinion about what is
1820 frameless. */
c906108c 1821
c5aa993b 1822 reinit_frame_cache ();
c906108c 1823
c5aa993b
JM
1824 /* Discard cleanups as symbol reading was successful. */
1825 discard_cleanups (old_cleanups);
c906108c 1826
c5aa993b
JM
1827 /* If the mtime has changed between the time we set new_modtime
1828 and now, we *want* this to be out of date, so don't call stat
1829 again now. */
1830 objfile->mtime = new_modtime;
1831 reread_one = 1;
c906108c 1832
c5aa993b 1833 /* Call this after reading in a new symbol table to give target
38c2ef12 1834 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
1835 could be used to update the values of target-specific symbols GDB
1836 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 1837
c5aa993b
JM
1838 TARGET_SYMFILE_POSTREAD (objfile);
1839 }
c906108c
SS
1840 }
1841 }
c906108c
SS
1842
1843 if (reread_one)
1844 clear_symtab_users ();
1845}
c906108c
SS
1846\f
1847
c5aa993b
JM
1848
1849typedef struct
1850{
1851 char *ext;
c906108c 1852 enum language lang;
c5aa993b
JM
1853}
1854filename_language;
c906108c 1855
c5aa993b 1856static filename_language *filename_language_table;
c906108c
SS
1857static int fl_table_size, fl_table_next;
1858
1859static void
fba45db2 1860add_filename_language (char *ext, enum language lang)
c906108c
SS
1861{
1862 if (fl_table_next >= fl_table_size)
1863 {
1864 fl_table_size += 10;
25bf3106
PM
1865 filename_language_table =
1866 xrealloc (filename_language_table,
1867 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
1868 }
1869
4fcf66da 1870 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
1871 filename_language_table[fl_table_next].lang = lang;
1872 fl_table_next++;
1873}
1874
1875static char *ext_args;
1876
1877static void
fba45db2 1878set_ext_lang_command (char *args, int from_tty)
c906108c
SS
1879{
1880 int i;
1881 char *cp = ext_args;
1882 enum language lang;
1883
1884 /* First arg is filename extension, starting with '.' */
1885 if (*cp != '.')
1886 error ("'%s': Filename extension must begin with '.'", ext_args);
1887
1888 /* Find end of first arg. */
c5aa993b 1889 while (*cp && !isspace (*cp))
c906108c
SS
1890 cp++;
1891
1892 if (*cp == '\0')
1893 error ("'%s': two arguments required -- filename extension and language",
1894 ext_args);
1895
1896 /* Null-terminate first arg */
c5aa993b 1897 *cp++ = '\0';
c906108c
SS
1898
1899 /* Find beginning of second arg, which should be a source language. */
1900 while (*cp && isspace (*cp))
1901 cp++;
1902
1903 if (*cp == '\0')
1904 error ("'%s': two arguments required -- filename extension and language",
1905 ext_args);
1906
1907 /* Lookup the language from among those we know. */
1908 lang = language_enum (cp);
1909
1910 /* Now lookup the filename extension: do we already know it? */
1911 for (i = 0; i < fl_table_next; i++)
1912 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1913 break;
1914
1915 if (i >= fl_table_next)
1916 {
1917 /* new file extension */
1918 add_filename_language (ext_args, lang);
1919 }
1920 else
1921 {
1922 /* redefining a previously known filename extension */
1923
1924 /* if (from_tty) */
1925 /* query ("Really make files of type %s '%s'?", */
1926 /* ext_args, language_str (lang)); */
1927
b8c9b27d 1928 xfree (filename_language_table[i].ext);
4fcf66da 1929 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
1930 filename_language_table[i].lang = lang;
1931 }
1932}
1933
1934static void
fba45db2 1935info_ext_lang_command (char *args, int from_tty)
c906108c
SS
1936{
1937 int i;
1938
1939 printf_filtered ("Filename extensions and the languages they represent:");
1940 printf_filtered ("\n\n");
1941 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
1942 printf_filtered ("\t%s\t- %s\n",
1943 filename_language_table[i].ext,
c906108c
SS
1944 language_str (filename_language_table[i].lang));
1945}
1946
1947static void
fba45db2 1948init_filename_language_table (void)
c906108c
SS
1949{
1950 if (fl_table_size == 0) /* protect against repetition */
1951 {
1952 fl_table_size = 20;
1953 fl_table_next = 0;
c5aa993b 1954 filename_language_table =
c906108c 1955 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
1956 add_filename_language (".c", language_c);
1957 add_filename_language (".C", language_cplus);
1958 add_filename_language (".cc", language_cplus);
1959 add_filename_language (".cp", language_cplus);
1960 add_filename_language (".cpp", language_cplus);
1961 add_filename_language (".cxx", language_cplus);
1962 add_filename_language (".c++", language_cplus);
1963 add_filename_language (".java", language_java);
c906108c 1964 add_filename_language (".class", language_java);
c5aa993b
JM
1965 add_filename_language (".ch", language_chill);
1966 add_filename_language (".c186", language_chill);
1967 add_filename_language (".c286", language_chill);
1968 add_filename_language (".f", language_fortran);
1969 add_filename_language (".F", language_fortran);
1970 add_filename_language (".s", language_asm);
1971 add_filename_language (".S", language_asm);
c6fd39cd
PM
1972 add_filename_language (".pas", language_pascal);
1973 add_filename_language (".p", language_pascal);
1974 add_filename_language (".pp", language_pascal);
c906108c
SS
1975 }
1976}
1977
1978enum language
fba45db2 1979deduce_language_from_filename (char *filename)
c906108c
SS
1980{
1981 int i;
1982 char *cp;
1983
1984 if (filename != NULL)
1985 if ((cp = strrchr (filename, '.')) != NULL)
1986 for (i = 0; i < fl_table_next; i++)
1987 if (strcmp (cp, filename_language_table[i].ext) == 0)
1988 return filename_language_table[i].lang;
1989
1990 return language_unknown;
1991}
1992\f
1993/* allocate_symtab:
1994
1995 Allocate and partly initialize a new symbol table. Return a pointer
1996 to it. error() if no space.
1997
1998 Caller must set these fields:
c5aa993b
JM
1999 LINETABLE(symtab)
2000 symtab->blockvector
2001 symtab->dirname
2002 symtab->free_code
2003 symtab->free_ptr
2004 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2005 */
2006
2007struct symtab *
fba45db2 2008allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
2009{
2010 register struct symtab *symtab;
2011
2012 symtab = (struct symtab *)
c5aa993b 2013 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 2014 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
2015 symtab->filename = obsavestring (filename, strlen (filename),
2016 &objfile->symbol_obstack);
2017 symtab->fullname = NULL;
2018 symtab->language = deduce_language_from_filename (filename);
2019 symtab->debugformat = obsavestring ("unknown", 7,
2020 &objfile->symbol_obstack);
c906108c
SS
2021
2022 /* Hook it to the objfile it comes from */
2023
c5aa993b
JM
2024 symtab->objfile = objfile;
2025 symtab->next = objfile->symtabs;
2026 objfile->symtabs = symtab;
c906108c
SS
2027
2028 /* FIXME: This should go away. It is only defined for the Z8000,
2029 and the Z8000 definition of this macro doesn't have anything to
2030 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2031 here for convenience. */
2032#ifdef INIT_EXTRA_SYMTAB_INFO
2033 INIT_EXTRA_SYMTAB_INFO (symtab);
2034#endif
2035
2036 return (symtab);
2037}
2038
2039struct partial_symtab *
fba45db2 2040allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2041{
2042 struct partial_symtab *psymtab;
2043
c5aa993b 2044 if (objfile->free_psymtabs)
c906108c 2045 {
c5aa993b
JM
2046 psymtab = objfile->free_psymtabs;
2047 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2048 }
2049 else
2050 psymtab = (struct partial_symtab *)
c5aa993b 2051 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
2052 sizeof (struct partial_symtab));
2053
2054 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
2055 psymtab->filename = obsavestring (filename, strlen (filename),
2056 &objfile->psymbol_obstack);
2057 psymtab->symtab = NULL;
c906108c
SS
2058
2059 /* Prepend it to the psymtab list for the objfile it belongs to.
2060 Psymtabs are searched in most recent inserted -> least recent
2061 inserted order. */
2062
c5aa993b
JM
2063 psymtab->objfile = objfile;
2064 psymtab->next = objfile->psymtabs;
2065 objfile->psymtabs = psymtab;
c906108c
SS
2066#if 0
2067 {
2068 struct partial_symtab **prev_pst;
c5aa993b
JM
2069 psymtab->objfile = objfile;
2070 psymtab->next = NULL;
2071 prev_pst = &(objfile->psymtabs);
c906108c 2072 while ((*prev_pst) != NULL)
c5aa993b 2073 prev_pst = &((*prev_pst)->next);
c906108c 2074 (*prev_pst) = psymtab;
c5aa993b 2075 }
c906108c 2076#endif
c5aa993b 2077
c906108c
SS
2078 return (psymtab);
2079}
2080
2081void
fba45db2 2082discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2083{
2084 struct partial_symtab **prev_pst;
2085
2086 /* From dbxread.c:
2087 Empty psymtabs happen as a result of header files which don't
2088 have any symbols in them. There can be a lot of them. But this
2089 check is wrong, in that a psymtab with N_SLINE entries but
2090 nothing else is not empty, but we don't realize that. Fixing
2091 that without slowing things down might be tricky. */
2092
2093 /* First, snip it out of the psymtab chain */
2094
2095 prev_pst = &(pst->objfile->psymtabs);
2096 while ((*prev_pst) != pst)
2097 prev_pst = &((*prev_pst)->next);
2098 (*prev_pst) = pst->next;
2099
2100 /* Next, put it on a free list for recycling */
2101
2102 pst->next = pst->objfile->free_psymtabs;
2103 pst->objfile->free_psymtabs = pst;
2104}
c906108c 2105\f
c5aa993b 2106
c906108c
SS
2107/* Reset all data structures in gdb which may contain references to symbol
2108 table data. */
2109
2110void
fba45db2 2111clear_symtab_users (void)
c906108c
SS
2112{
2113 /* Someday, we should do better than this, by only blowing away
2114 the things that really need to be blown. */
2115 clear_value_history ();
2116 clear_displays ();
2117 clear_internalvars ();
2118 breakpoint_re_set ();
2119 set_default_breakpoint (0, 0, 0, 0);
2120 current_source_symtab = 0;
2121 current_source_line = 0;
2122 clear_pc_function_cache ();
11cf8741
JM
2123 if (target_new_objfile_hook)
2124 target_new_objfile_hook (NULL);
c906108c
SS
2125}
2126
74b7792f
AC
2127static void
2128clear_symtab_users_cleanup (void *ignore)
2129{
2130 clear_symtab_users ();
2131}
2132
c906108c
SS
2133/* clear_symtab_users_once:
2134
2135 This function is run after symbol reading, or from a cleanup.
2136 If an old symbol table was obsoleted, the old symbol table
2137 has been blown away, but the other GDB data structures that may
2138 reference it have not yet been cleared or re-directed. (The old
2139 symtab was zapped, and the cleanup queued, in free_named_symtab()
2140 below.)
2141
2142 This function can be queued N times as a cleanup, or called
2143 directly; it will do all the work the first time, and then will be a
2144 no-op until the next time it is queued. This works by bumping a
2145 counter at queueing time. Much later when the cleanup is run, or at
2146 the end of symbol processing (in case the cleanup is discarded), if
2147 the queued count is greater than the "done-count", we do the work
2148 and set the done-count to the queued count. If the queued count is
2149 less than or equal to the done-count, we just ignore the call. This
2150 is needed because reading a single .o file will often replace many
2151 symtabs (one per .h file, for example), and we don't want to reset
2152 the breakpoints N times in the user's face.
2153
2154 The reason we both queue a cleanup, and call it directly after symbol
2155 reading, is because the cleanup protects us in case of errors, but is
2156 discarded if symbol reading is successful. */
2157
2158#if 0
2159/* FIXME: As free_named_symtabs is currently a big noop this function
2160 is no longer needed. */
a14ed312 2161static void clear_symtab_users_once (void);
c906108c
SS
2162
2163static int clear_symtab_users_queued;
2164static int clear_symtab_users_done;
2165
2166static void
fba45db2 2167clear_symtab_users_once (void)
c906108c
SS
2168{
2169 /* Enforce once-per-`do_cleanups'-semantics */
2170 if (clear_symtab_users_queued <= clear_symtab_users_done)
2171 return;
2172 clear_symtab_users_done = clear_symtab_users_queued;
2173
2174 clear_symtab_users ();
2175}
2176#endif
2177
2178/* Delete the specified psymtab, and any others that reference it. */
2179
2180static void
fba45db2 2181cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2182{
2183 struct partial_symtab *ps, *pprev = NULL;
2184 int i;
2185
2186 /* Find its previous psymtab in the chain */
c5aa993b
JM
2187 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2188 {
2189 if (ps == pst)
2190 break;
2191 pprev = ps;
2192 }
c906108c 2193
c5aa993b
JM
2194 if (ps)
2195 {
2196 /* Unhook it from the chain. */
2197 if (ps == pst->objfile->psymtabs)
2198 pst->objfile->psymtabs = ps->next;
2199 else
2200 pprev->next = ps->next;
2201
2202 /* FIXME, we can't conveniently deallocate the entries in the
2203 partial_symbol lists (global_psymbols/static_psymbols) that
2204 this psymtab points to. These just take up space until all
2205 the psymtabs are reclaimed. Ditto the dependencies list and
2206 filename, which are all in the psymbol_obstack. */
2207
2208 /* We need to cashier any psymtab that has this one as a dependency... */
2209 again:
2210 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2211 {
2212 for (i = 0; i < ps->number_of_dependencies; i++)
2213 {
2214 if (ps->dependencies[i] == pst)
2215 {
2216 cashier_psymtab (ps);
2217 goto again; /* Must restart, chain has been munged. */
2218 }
2219 }
c906108c 2220 }
c906108c 2221 }
c906108c
SS
2222}
2223
2224/* If a symtab or psymtab for filename NAME is found, free it along
2225 with any dependent breakpoints, displays, etc.
2226 Used when loading new versions of object modules with the "add-file"
2227 command. This is only called on the top-level symtab or psymtab's name;
2228 it is not called for subsidiary files such as .h files.
2229
2230 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2231 FIXME. The return value appears to never be used.
c906108c
SS
2232
2233 FIXME. I think this is not the best way to do this. We should
2234 work on being gentler to the environment while still cleaning up
2235 all stray pointers into the freed symtab. */
2236
2237int
fba45db2 2238free_named_symtabs (char *name)
c906108c
SS
2239{
2240#if 0
2241 /* FIXME: With the new method of each objfile having it's own
2242 psymtab list, this function needs serious rethinking. In particular,
2243 why was it ever necessary to toss psymtabs with specific compilation
2244 unit filenames, as opposed to all psymtabs from a particular symbol
2245 file? -- fnf
2246 Well, the answer is that some systems permit reloading of particular
2247 compilation units. We want to blow away any old info about these
2248 compilation units, regardless of which objfiles they arrived in. --gnu. */
2249
2250 register struct symtab *s;
2251 register struct symtab *prev;
2252 register struct partial_symtab *ps;
2253 struct blockvector *bv;
2254 int blewit = 0;
2255
2256 /* We only wack things if the symbol-reload switch is set. */
2257 if (!symbol_reloading)
2258 return 0;
2259
2260 /* Some symbol formats have trouble providing file names... */
2261 if (name == 0 || *name == '\0')
2262 return 0;
2263
2264 /* Look for a psymtab with the specified name. */
2265
2266again2:
c5aa993b
JM
2267 for (ps = partial_symtab_list; ps; ps = ps->next)
2268 {
2269 if (STREQ (name, ps->filename))
2270 {
2271 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2272 goto again2; /* Must restart, chain has been munged */
2273 }
c906108c 2274 }
c906108c
SS
2275
2276 /* Look for a symtab with the specified name. */
2277
2278 for (s = symtab_list; s; s = s->next)
2279 {
2280 if (STREQ (name, s->filename))
2281 break;
2282 prev = s;
2283 }
2284
2285 if (s)
2286 {
2287 if (s == symtab_list)
2288 symtab_list = s->next;
2289 else
2290 prev->next = s->next;
2291
2292 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2293 or not they depend on the symtab being freed. This should be
2294 changed so that only those data structures affected are deleted. */
c906108c
SS
2295
2296 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2297 This test is necessary due to a bug in "dbxread.c" that
2298 causes empty symtabs to be created for N_SO symbols that
2299 contain the pathname of the object file. (This problem
2300 has been fixed in GDB 3.9x). */
c906108c
SS
2301
2302 bv = BLOCKVECTOR (s);
2303 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2304 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2305 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2306 {
2307 complain (&oldsyms_complaint, name);
2308
2309 clear_symtab_users_queued++;
2310 make_cleanup (clear_symtab_users_once, 0);
2311 blewit = 1;
c5aa993b
JM
2312 }
2313 else
2314 {
c906108c
SS
2315 complain (&empty_symtab_complaint, name);
2316 }
2317
2318 free_symtab (s);
2319 }
2320 else
2321 {
2322 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2323 even though no symtab was found, since the file might have
2324 been compiled without debugging, and hence not be associated
2325 with a symtab. In order to handle this correctly, we would need
2326 to keep a list of text address ranges for undebuggable files.
2327 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2328 ;
2329 }
2330
2331 /* FIXME, what about the minimal symbol table? */
2332 return blewit;
2333#else
2334 return (0);
2335#endif
2336}
2337\f
2338/* Allocate and partially fill a partial symtab. It will be
2339 completely filled at the end of the symbol list.
2340
d4f3574e 2341 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2342
2343struct partial_symtab *
fba45db2
KB
2344start_psymtab_common (struct objfile *objfile,
2345 struct section_offsets *section_offsets, char *filename,
2346 CORE_ADDR textlow, struct partial_symbol **global_syms,
2347 struct partial_symbol **static_syms)
c906108c
SS
2348{
2349 struct partial_symtab *psymtab;
2350
2351 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2352 psymtab->section_offsets = section_offsets;
2353 psymtab->textlow = textlow;
2354 psymtab->texthigh = psymtab->textlow; /* default */
2355 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2356 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2357 return (psymtab);
2358}
2359\f
2360/* Add a symbol with a long value to a psymtab.
2361 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2362
2363void
fba45db2
KB
2364add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2365 enum address_class class,
2366 struct psymbol_allocation_list *list, long val, /* Value as a long */
2367 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2368 enum language language, struct objfile *objfile)
c906108c
SS
2369{
2370 register struct partial_symbol *psym;
2371 char *buf = alloca (namelength + 1);
2372 /* psymbol is static so that there will be no uninitialized gaps in the
2373 structure which might contain random data, causing cache misses in
2374 bcache. */
2375 static struct partial_symbol psymbol;
2376
2377 /* Create local copy of the partial symbol */
2378 memcpy (buf, name, namelength);
2379 buf[namelength] = '\0';
2380 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2381 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2382 if (val != 0)
2383 {
2384 SYMBOL_VALUE (&psymbol) = val;
2385 }
2386 else
2387 {
2388 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2389 }
2390 SYMBOL_SECTION (&psymbol) = 0;
2391 SYMBOL_LANGUAGE (&psymbol) = language;
2392 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2393 PSYMBOL_CLASS (&psymbol) = class;
2394 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2395
2396 /* Stash the partial symbol away in the cache */
2397 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2398
2399 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2400 if (list->next >= list->list + list->size)
2401 {
2402 extend_psymbol_list (list, objfile);
2403 }
2404 *list->next++ = psym;
2405 OBJSTAT (objfile, n_psyms++);
2406}
2407
2408/* Add a symbol with a long value to a psymtab. This differs from
2409 * add_psymbol_to_list above in taking both a mangled and a demangled
2410 * name. */
2411
2412void
fba45db2
KB
2413add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2414 int dem_namelength, namespace_enum namespace,
2415 enum address_class class,
2416 struct psymbol_allocation_list *list, long val, /* Value as a long */
2417 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2418 enum language language,
2419 struct objfile *objfile)
c906108c
SS
2420{
2421 register struct partial_symbol *psym;
2422 char *buf = alloca (namelength + 1);
2423 /* psymbol is static so that there will be no uninitialized gaps in the
2424 structure which might contain random data, causing cache misses in
2425 bcache. */
2426 static struct partial_symbol psymbol;
2427
2428 /* Create local copy of the partial symbol */
2429
2430 memcpy (buf, name, namelength);
2431 buf[namelength] = '\0';
2432 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2433
2434 buf = alloca (dem_namelength + 1);
2435 memcpy (buf, dem_name, dem_namelength);
2436 buf[dem_namelength] = '\0';
c5aa993b 2437
c906108c
SS
2438 switch (language)
2439 {
c5aa993b
JM
2440 case language_c:
2441 case language_cplus:
2442 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2443 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2444 break;
2445 case language_chill:
2446 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2447 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2448
c906108c
SS
2449 /* FIXME What should be done for the default case? Ignoring for now. */
2450 }
2451
2452 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2453 if (val != 0)
2454 {
2455 SYMBOL_VALUE (&psymbol) = val;
2456 }
2457 else
2458 {
2459 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2460 }
2461 SYMBOL_SECTION (&psymbol) = 0;
2462 SYMBOL_LANGUAGE (&psymbol) = language;
2463 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2464 PSYMBOL_CLASS (&psymbol) = class;
2465 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2466
2467 /* Stash the partial symbol away in the cache */
2468 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2469
2470 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2471 if (list->next >= list->list + list->size)
2472 {
2473 extend_psymbol_list (list, objfile);
2474 }
2475 *list->next++ = psym;
2476 OBJSTAT (objfile, n_psyms++);
2477}
2478
2479/* Initialize storage for partial symbols. */
2480
2481void
fba45db2 2482init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2483{
2484 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2485
2486 if (objfile->global_psymbols.list)
c906108c 2487 {
aac7f4ea 2488 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
c906108c 2489 }
c5aa993b 2490 if (objfile->static_psymbols.list)
c906108c 2491 {
aac7f4ea 2492 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
c906108c 2493 }
c5aa993b 2494
c906108c
SS
2495 /* Current best guess is that approximately a twentieth
2496 of the total symbols (in a debugging file) are global or static
2497 oriented symbols */
c906108c 2498
c5aa993b
JM
2499 objfile->global_psymbols.size = total_symbols / 10;
2500 objfile->static_psymbols.size = total_symbols / 10;
2501
2502 if (objfile->global_psymbols.size > 0)
c906108c 2503 {
c5aa993b
JM
2504 objfile->global_psymbols.next =
2505 objfile->global_psymbols.list = (struct partial_symbol **)
2506 xmmalloc (objfile->md, (objfile->global_psymbols.size
2507 * sizeof (struct partial_symbol *)));
c906108c 2508 }
c5aa993b 2509 if (objfile->static_psymbols.size > 0)
c906108c 2510 {
c5aa993b
JM
2511 objfile->static_psymbols.next =
2512 objfile->static_psymbols.list = (struct partial_symbol **)
2513 xmmalloc (objfile->md, (objfile->static_psymbols.size
2514 * sizeof (struct partial_symbol *)));
c906108c
SS
2515 }
2516}
2517
2518/* OVERLAYS:
2519 The following code implements an abstraction for debugging overlay sections.
2520
2521 The target model is as follows:
2522 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2523 same VMA, each with its own unique LMA (or load address).
c906108c 2524 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2525 sections, one by one, from the load address into the VMA address.
c906108c 2526 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2527 sections should be considered to be mapped from the VMA to the LMA.
2528 This information is used for symbol lookup, and memory read/write.
2529 For instance, if a section has been mapped then its contents
2530 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2531
2532 Two levels of debugger support for overlays are available. One is
2533 "manual", in which the debugger relies on the user to tell it which
2534 overlays are currently mapped. This level of support is
2535 implemented entirely in the core debugger, and the information about
2536 whether a section is mapped is kept in the objfile->obj_section table.
2537
2538 The second level of support is "automatic", and is only available if
2539 the target-specific code provides functionality to read the target's
2540 overlay mapping table, and translate its contents for the debugger
2541 (by updating the mapped state information in the obj_section tables).
2542
2543 The interface is as follows:
c5aa993b
JM
2544 User commands:
2545 overlay map <name> -- tell gdb to consider this section mapped
2546 overlay unmap <name> -- tell gdb to consider this section unmapped
2547 overlay list -- list the sections that GDB thinks are mapped
2548 overlay read-target -- get the target's state of what's mapped
2549 overlay off/manual/auto -- set overlay debugging state
2550 Functional interface:
2551 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2552 section, return that section.
2553 find_pc_overlay(pc): find any overlay section that contains
2554 the pc, either in its VMA or its LMA
2555 overlay_is_mapped(sect): true if overlay is marked as mapped
2556 section_is_overlay(sect): true if section's VMA != LMA
2557 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2558 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2559 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2560 overlay_mapped_address(...): map an address from section's LMA to VMA
2561 overlay_unmapped_address(...): map an address from section's VMA to LMA
2562 symbol_overlayed_address(...): Return a "current" address for symbol:
2563 either in VMA or LMA depending on whether
2564 the symbol's section is currently mapped
c906108c
SS
2565 */
2566
2567/* Overlay debugging state: */
2568
d874f1e2 2569enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2570int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2571
2572/* Target vector for refreshing overlay mapped state */
a14ed312 2573static void simple_overlay_update (struct obj_section *);
507f3c78 2574void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2575
2576/* Function: section_is_overlay (SECTION)
2577 Returns true if SECTION has VMA not equal to LMA, ie.
2578 SECTION is loaded at an address different from where it will "run". */
2579
2580int
fba45db2 2581section_is_overlay (asection *section)
c906108c 2582{
fbd35540
MS
2583 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2584
c906108c
SS
2585 if (overlay_debugging)
2586 if (section && section->lma != 0 &&
2587 section->vma != section->lma)
2588 return 1;
2589
2590 return 0;
2591}
2592
2593/* Function: overlay_invalidate_all (void)
2594 Invalidate the mapped state of all overlay sections (mark it as stale). */
2595
2596static void
fba45db2 2597overlay_invalidate_all (void)
c906108c 2598{
c5aa993b 2599 struct objfile *objfile;
c906108c
SS
2600 struct obj_section *sect;
2601
2602 ALL_OBJSECTIONS (objfile, sect)
2603 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2604 sect->ovly_mapped = -1;
c906108c
SS
2605}
2606
2607/* Function: overlay_is_mapped (SECTION)
2608 Returns true if section is an overlay, and is currently mapped.
2609 Private: public access is thru function section_is_mapped.
2610
2611 Access to the ovly_mapped flag is restricted to this function, so
2612 that we can do automatic update. If the global flag
2613 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2614 overlay_invalidate_all. If the mapped state of the particular
2615 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2616
c5aa993b 2617static int
fba45db2 2618overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2619{
2620 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2621 return 0;
2622
c5aa993b 2623 switch (overlay_debugging)
c906108c
SS
2624 {
2625 default:
d874f1e2 2626 case ovly_off:
c5aa993b 2627 return 0; /* overlay debugging off */
d874f1e2 2628 case ovly_auto: /* overlay debugging automatic */
c906108c 2629 /* Unles there is a target_overlay_update function,
c5aa993b 2630 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2631 if (target_overlay_update)
2632 {
2633 if (overlay_cache_invalid)
2634 {
2635 overlay_invalidate_all ();
2636 overlay_cache_invalid = 0;
2637 }
2638 if (osect->ovly_mapped == -1)
2639 (*target_overlay_update) (osect);
2640 }
2641 /* fall thru to manual case */
d874f1e2 2642 case ovly_on: /* overlay debugging manual */
c906108c
SS
2643 return osect->ovly_mapped == 1;
2644 }
2645}
2646
2647/* Function: section_is_mapped
2648 Returns true if section is an overlay, and is currently mapped. */
2649
2650int
fba45db2 2651section_is_mapped (asection *section)
c906108c 2652{
c5aa993b 2653 struct objfile *objfile;
c906108c
SS
2654 struct obj_section *osect;
2655
2656 if (overlay_debugging)
2657 if (section && section_is_overlay (section))
2658 ALL_OBJSECTIONS (objfile, osect)
2659 if (osect->the_bfd_section == section)
c5aa993b 2660 return overlay_is_mapped (osect);
c906108c
SS
2661
2662 return 0;
2663}
2664
2665/* Function: pc_in_unmapped_range
2666 If PC falls into the lma range of SECTION, return true, else false. */
2667
2668CORE_ADDR
fba45db2 2669pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2670{
fbd35540
MS
2671 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2672
c906108c
SS
2673 int size;
2674
2675 if (overlay_debugging)
2676 if (section && section_is_overlay (section))
2677 {
2678 size = bfd_get_section_size_before_reloc (section);
2679 if (section->lma <= pc && pc < section->lma + size)
2680 return 1;
2681 }
2682 return 0;
2683}
2684
2685/* Function: pc_in_mapped_range
2686 If PC falls into the vma range of SECTION, return true, else false. */
2687
2688CORE_ADDR
fba45db2 2689pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2690{
fbd35540
MS
2691 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2692
c906108c
SS
2693 int size;
2694
2695 if (overlay_debugging)
2696 if (section && section_is_overlay (section))
2697 {
2698 size = bfd_get_section_size_before_reloc (section);
2699 if (section->vma <= pc && pc < section->vma + size)
2700 return 1;
2701 }
2702 return 0;
2703}
2704
9ec8e6a0
JB
2705
2706/* Return true if the mapped ranges of sections A and B overlap, false
2707 otherwise. */
2708int
2709sections_overlap (asection *a, asection *b)
2710{
fbd35540
MS
2711 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2712
9ec8e6a0
JB
2713 CORE_ADDR a_start = a->vma;
2714 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2715 CORE_ADDR b_start = b->vma;
2716 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2717
2718 return (a_start < b_end && b_start < a_end);
2719}
2720
c906108c
SS
2721/* Function: overlay_unmapped_address (PC, SECTION)
2722 Returns the address corresponding to PC in the unmapped (load) range.
2723 May be the same as PC. */
2724
2725CORE_ADDR
fba45db2 2726overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 2727{
fbd35540
MS
2728 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2729
c906108c
SS
2730 if (overlay_debugging)
2731 if (section && section_is_overlay (section) &&
2732 pc_in_mapped_range (pc, section))
2733 return pc + section->lma - section->vma;
2734
2735 return pc;
2736}
2737
2738/* Function: overlay_mapped_address (PC, SECTION)
2739 Returns the address corresponding to PC in the mapped (runtime) range.
2740 May be the same as PC. */
2741
2742CORE_ADDR
fba45db2 2743overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 2744{
fbd35540
MS
2745 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2746
c906108c
SS
2747 if (overlay_debugging)
2748 if (section && section_is_overlay (section) &&
2749 pc_in_unmapped_range (pc, section))
2750 return pc + section->vma - section->lma;
2751
2752 return pc;
2753}
2754
2755
2756/* Function: symbol_overlayed_address
2757 Return one of two addresses (relative to the VMA or to the LMA),
2758 depending on whether the section is mapped or not. */
2759
c5aa993b 2760CORE_ADDR
fba45db2 2761symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2762{
2763 if (overlay_debugging)
2764 {
2765 /* If the symbol has no section, just return its regular address. */
2766 if (section == 0)
2767 return address;
2768 /* If the symbol's section is not an overlay, just return its address */
2769 if (!section_is_overlay (section))
2770 return address;
2771 /* If the symbol's section is mapped, just return its address */
2772 if (section_is_mapped (section))
2773 return address;
2774 /*
2775 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2776 * then return its LOADED address rather than its vma address!!
2777 */
2778 return overlay_unmapped_address (address, section);
2779 }
2780 return address;
2781}
2782
2783/* Function: find_pc_overlay (PC)
2784 Return the best-match overlay section for PC:
2785 If PC matches a mapped overlay section's VMA, return that section.
2786 Else if PC matches an unmapped section's VMA, return that section.
2787 Else if PC matches an unmapped section's LMA, return that section. */
2788
2789asection *
fba45db2 2790find_pc_overlay (CORE_ADDR pc)
c906108c 2791{
c5aa993b 2792 struct objfile *objfile;
c906108c
SS
2793 struct obj_section *osect, *best_match = NULL;
2794
2795 if (overlay_debugging)
2796 ALL_OBJSECTIONS (objfile, osect)
2797 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
2798 {
2799 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2800 {
2801 if (overlay_is_mapped (osect))
2802 return osect->the_bfd_section;
2803 else
2804 best_match = osect;
2805 }
2806 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2807 best_match = osect;
2808 }
c906108c
SS
2809 return best_match ? best_match->the_bfd_section : NULL;
2810}
2811
2812/* Function: find_pc_mapped_section (PC)
2813 If PC falls into the VMA address range of an overlay section that is
2814 currently marked as MAPPED, return that section. Else return NULL. */
2815
2816asection *
fba45db2 2817find_pc_mapped_section (CORE_ADDR pc)
c906108c 2818{
c5aa993b 2819 struct objfile *objfile;
c906108c
SS
2820 struct obj_section *osect;
2821
2822 if (overlay_debugging)
2823 ALL_OBJSECTIONS (objfile, osect)
2824 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2825 overlay_is_mapped (osect))
c5aa993b 2826 return osect->the_bfd_section;
c906108c
SS
2827
2828 return NULL;
2829}
2830
2831/* Function: list_overlays_command
2832 Print a list of mapped sections and their PC ranges */
2833
2834void
fba45db2 2835list_overlays_command (char *args, int from_tty)
c906108c 2836{
c5aa993b
JM
2837 int nmapped = 0;
2838 struct objfile *objfile;
c906108c
SS
2839 struct obj_section *osect;
2840
2841 if (overlay_debugging)
2842 ALL_OBJSECTIONS (objfile, osect)
2843 if (overlay_is_mapped (osect))
c5aa993b
JM
2844 {
2845 const char *name;
2846 bfd_vma lma, vma;
2847 int size;
2848
2849 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2850 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2851 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2852 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2853
2854 printf_filtered ("Section %s, loaded at ", name);
2855 print_address_numeric (lma, 1, gdb_stdout);
2856 puts_filtered (" - ");
2857 print_address_numeric (lma + size, 1, gdb_stdout);
2858 printf_filtered (", mapped at ");
2859 print_address_numeric (vma, 1, gdb_stdout);
2860 puts_filtered (" - ");
2861 print_address_numeric (vma + size, 1, gdb_stdout);
2862 puts_filtered ("\n");
2863
2864 nmapped++;
2865 }
c906108c
SS
2866 if (nmapped == 0)
2867 printf_filtered ("No sections are mapped.\n");
2868}
2869
2870/* Function: map_overlay_command
2871 Mark the named section as mapped (ie. residing at its VMA address). */
2872
2873void
fba45db2 2874map_overlay_command (char *args, int from_tty)
c906108c 2875{
c5aa993b
JM
2876 struct objfile *objfile, *objfile2;
2877 struct obj_section *sec, *sec2;
2878 asection *bfdsec;
c906108c
SS
2879
2880 if (!overlay_debugging)
515ad16c
EZ
2881 error ("\
2882Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2883the 'overlay manual' command.");
c906108c
SS
2884
2885 if (args == 0 || *args == 0)
2886 error ("Argument required: name of an overlay section");
2887
2888 /* First, find a section matching the user supplied argument */
2889 ALL_OBJSECTIONS (objfile, sec)
2890 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2891 {
2892 /* Now, check to see if the section is an overlay. */
2893 bfdsec = sec->the_bfd_section;
2894 if (!section_is_overlay (bfdsec))
2895 continue; /* not an overlay section */
2896
2897 /* Mark the overlay as "mapped" */
2898 sec->ovly_mapped = 1;
2899
2900 /* Next, make a pass and unmap any sections that are
2901 overlapped by this new section: */
2902 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
2903 if (sec2->ovly_mapped
2904 && sec != sec2
2905 && sec->the_bfd_section != sec2->the_bfd_section
2906 && sections_overlap (sec->the_bfd_section,
2907 sec2->the_bfd_section))
c5aa993b
JM
2908 {
2909 if (info_verbose)
2910 printf_filtered ("Note: section %s unmapped by overlap\n",
2911 bfd_section_name (objfile->obfd,
2912 sec2->the_bfd_section));
2913 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2914 }
2915 return;
2916 }
c906108c
SS
2917 error ("No overlay section called %s", args);
2918}
2919
2920/* Function: unmap_overlay_command
2921 Mark the overlay section as unmapped
2922 (ie. resident in its LMA address range, rather than the VMA range). */
2923
2924void
fba45db2 2925unmap_overlay_command (char *args, int from_tty)
c906108c 2926{
c5aa993b 2927 struct objfile *objfile;
c906108c
SS
2928 struct obj_section *sec;
2929
2930 if (!overlay_debugging)
515ad16c
EZ
2931 error ("\
2932Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2933the 'overlay manual' command.");
c906108c
SS
2934
2935 if (args == 0 || *args == 0)
2936 error ("Argument required: name of an overlay section");
2937
2938 /* First, find a section matching the user supplied argument */
2939 ALL_OBJSECTIONS (objfile, sec)
2940 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2941 {
2942 if (!sec->ovly_mapped)
2943 error ("Section %s is not mapped", args);
2944 sec->ovly_mapped = 0;
2945 return;
2946 }
c906108c
SS
2947 error ("No overlay section called %s", args);
2948}
2949
2950/* Function: overlay_auto_command
2951 A utility command to turn on overlay debugging.
2952 Possibly this should be done via a set/show command. */
2953
2954static void
fba45db2 2955overlay_auto_command (char *args, int from_tty)
c906108c 2956{
d874f1e2 2957 overlay_debugging = ovly_auto;
1900040c 2958 enable_overlay_breakpoints ();
c906108c
SS
2959 if (info_verbose)
2960 printf_filtered ("Automatic overlay debugging enabled.");
2961}
2962
2963/* Function: overlay_manual_command
2964 A utility command to turn on overlay debugging.
2965 Possibly this should be done via a set/show command. */
2966
2967static void
fba45db2 2968overlay_manual_command (char *args, int from_tty)
c906108c 2969{
d874f1e2 2970 overlay_debugging = ovly_on;
1900040c 2971 disable_overlay_breakpoints ();
c906108c
SS
2972 if (info_verbose)
2973 printf_filtered ("Overlay debugging enabled.");
2974}
2975
2976/* Function: overlay_off_command
2977 A utility command to turn on overlay debugging.
2978 Possibly this should be done via a set/show command. */
2979
2980static void
fba45db2 2981overlay_off_command (char *args, int from_tty)
c906108c 2982{
d874f1e2 2983 overlay_debugging = ovly_off;
1900040c 2984 disable_overlay_breakpoints ();
c906108c
SS
2985 if (info_verbose)
2986 printf_filtered ("Overlay debugging disabled.");
2987}
2988
2989static void
fba45db2 2990overlay_load_command (char *args, int from_tty)
c906108c
SS
2991{
2992 if (target_overlay_update)
2993 (*target_overlay_update) (NULL);
2994 else
2995 error ("This target does not know how to read its overlay state.");
2996}
2997
2998/* Function: overlay_command
2999 A place-holder for a mis-typed command */
3000
3001/* Command list chain containing all defined "overlay" subcommands. */
3002struct cmd_list_element *overlaylist;
3003
3004static void
fba45db2 3005overlay_command (char *args, int from_tty)
c906108c 3006{
c5aa993b 3007 printf_unfiltered
c906108c
SS
3008 ("\"overlay\" must be followed by the name of an overlay command.\n");
3009 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3010}
3011
3012
3013/* Target Overlays for the "Simplest" overlay manager:
3014
3015 This is GDB's default target overlay layer. It works with the
3016 minimal overlay manager supplied as an example by Cygnus. The
3017 entry point is via a function pointer "target_overlay_update",
3018 so targets that use a different runtime overlay manager can
3019 substitute their own overlay_update function and take over the
3020 function pointer.
3021
3022 The overlay_update function pokes around in the target's data structures
3023 to see what overlays are mapped, and updates GDB's overlay mapping with
3024 this information.
3025
3026 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3027 unsigned _novlys; /# number of overlay sections #/
3028 unsigned _ovly_table[_novlys][4] = {
3029 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3030 {..., ..., ..., ...},
3031 }
3032 unsigned _novly_regions; /# number of overlay regions #/
3033 unsigned _ovly_region_table[_novly_regions][3] = {
3034 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3035 {..., ..., ...},
3036 }
c906108c
SS
3037 These functions will attempt to update GDB's mappedness state in the
3038 symbol section table, based on the target's mappedness state.
3039
3040 To do this, we keep a cached copy of the target's _ovly_table, and
3041 attempt to detect when the cached copy is invalidated. The main
3042 entry point is "simple_overlay_update(SECT), which looks up SECT in
3043 the cached table and re-reads only the entry for that section from
3044 the target (whenever possible).
3045 */
3046
3047/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3048static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3049#if 0
c5aa993b 3050static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3051#endif
c5aa993b 3052static unsigned cache_novlys = 0;
c906108c 3053#if 0
c5aa993b 3054static unsigned cache_novly_regions = 0;
c906108c
SS
3055#endif
3056static CORE_ADDR cache_ovly_table_base = 0;
3057#if 0
3058static CORE_ADDR cache_ovly_region_table_base = 0;
3059#endif
c5aa993b
JM
3060enum ovly_index
3061 {
3062 VMA, SIZE, LMA, MAPPED
3063 };
c906108c
SS
3064#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3065
3066/* Throw away the cached copy of _ovly_table */
3067static void
fba45db2 3068simple_free_overlay_table (void)
c906108c
SS
3069{
3070 if (cache_ovly_table)
b8c9b27d 3071 xfree (cache_ovly_table);
c5aa993b 3072 cache_novlys = 0;
c906108c
SS
3073 cache_ovly_table = NULL;
3074 cache_ovly_table_base = 0;
3075}
3076
3077#if 0
3078/* Throw away the cached copy of _ovly_region_table */
3079static void
fba45db2 3080simple_free_overlay_region_table (void)
c906108c
SS
3081{
3082 if (cache_ovly_region_table)
b8c9b27d 3083 xfree (cache_ovly_region_table);
c5aa993b 3084 cache_novly_regions = 0;
c906108c
SS
3085 cache_ovly_region_table = NULL;
3086 cache_ovly_region_table_base = 0;
3087}
3088#endif
3089
3090/* Read an array of ints from the target into a local buffer.
3091 Convert to host order. int LEN is number of ints */
3092static void
fba45db2 3093read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3094{
34c0bd93 3095 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3096 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3097 int i;
c906108c
SS
3098
3099 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3100 for (i = 0; i < len; i++)
c5aa993b 3101 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3102 TARGET_LONG_BYTES);
3103}
3104
3105/* Find and grab a copy of the target _ovly_table
3106 (and _novlys, which is needed for the table's size) */
c5aa993b 3107static int
fba45db2 3108simple_read_overlay_table (void)
c906108c 3109{
0d43edd1 3110 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3111
3112 simple_free_overlay_table ();
9b27852e 3113 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3114 if (! novlys_msym)
c906108c 3115 {
0d43edd1
JB
3116 error ("Error reading inferior's overlay table: "
3117 "couldn't find `_novlys' variable\n"
3118 "in inferior. Use `overlay manual' mode.");
3119 return 0;
c906108c 3120 }
0d43edd1 3121
9b27852e 3122 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3123 if (! ovly_table_msym)
3124 {
3125 error ("Error reading inferior's overlay table: couldn't find "
3126 "`_ovly_table' array\n"
3127 "in inferior. Use `overlay manual' mode.");
3128 return 0;
3129 }
3130
3131 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3132 cache_ovly_table
3133 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3134 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3135 read_target_long_array (cache_ovly_table_base,
3136 (int *) cache_ovly_table,
3137 cache_novlys * 4);
3138
c5aa993b 3139 return 1; /* SUCCESS */
c906108c
SS
3140}
3141
3142#if 0
3143/* Find and grab a copy of the target _ovly_region_table
3144 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3145static int
fba45db2 3146simple_read_overlay_region_table (void)
c906108c
SS
3147{
3148 struct minimal_symbol *msym;
3149
3150 simple_free_overlay_region_table ();
9b27852e 3151 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3152 if (msym != NULL)
3153 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3154 else
3155 return 0; /* failure */
c906108c
SS
3156 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3157 if (cache_ovly_region_table != NULL)
3158 {
9b27852e 3159 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3160 if (msym != NULL)
3161 {
3162 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3163 read_target_long_array (cache_ovly_region_table_base,
3164 (int *) cache_ovly_region_table,
c906108c
SS
3165 cache_novly_regions * 3);
3166 }
c5aa993b
JM
3167 else
3168 return 0; /* failure */
c906108c 3169 }
c5aa993b
JM
3170 else
3171 return 0; /* failure */
3172 return 1; /* SUCCESS */
c906108c
SS
3173}
3174#endif
3175
3176/* Function: simple_overlay_update_1
3177 A helper function for simple_overlay_update. Assuming a cached copy
3178 of _ovly_table exists, look through it to find an entry whose vma,
3179 lma and size match those of OSECT. Re-read the entry and make sure
3180 it still matches OSECT (else the table may no longer be valid).
3181 Set OSECT's mapped state to match the entry. Return: 1 for
3182 success, 0 for failure. */
3183
3184static int
fba45db2 3185simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3186{
3187 int i, size;
fbd35540
MS
3188 bfd *obfd = osect->objfile->obfd;
3189 asection *bsect = osect->the_bfd_section;
c906108c
SS
3190
3191 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3192 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3193 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3194 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3195 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3196 {
3197 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3198 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3199 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3200 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3201 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3202 {
3203 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3204 return 1;
3205 }
fbd35540 3206 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3207 return 0;
3208 }
3209 return 0;
3210}
3211
3212/* Function: simple_overlay_update
3213 If OSECT is NULL, then update all sections' mapped state
3214 (after re-reading the entire target _ovly_table).
3215 If OSECT is non-NULL, then try to find a matching entry in the
3216 cached ovly_table and update only OSECT's mapped state.
3217 If a cached entry can't be found or the cache isn't valid, then
3218 re-read the entire cache, and go ahead and update all sections. */
3219
3220static void
fba45db2 3221simple_overlay_update (struct obj_section *osect)
c906108c 3222{
c5aa993b 3223 struct objfile *objfile;
c906108c
SS
3224
3225 /* Were we given an osect to look up? NULL means do all of them. */
3226 if (osect)
3227 /* Have we got a cached copy of the target's overlay table? */
3228 if (cache_ovly_table != NULL)
3229 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3230 if (cache_ovly_table_base ==
9b27852e 3231 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3232 /* Then go ahead and try to look up this single section in the cache */
3233 if (simple_overlay_update_1 (osect))
3234 /* Found it! We're done. */
3235 return;
3236
3237 /* Cached table no good: need to read the entire table anew.
3238 Or else we want all the sections, in which case it's actually
3239 more efficient to read the whole table in one block anyway. */
3240
0d43edd1
JB
3241 if (! simple_read_overlay_table ())
3242 return;
3243
c906108c
SS
3244 /* Now may as well update all sections, even if only one was requested. */
3245 ALL_OBJSECTIONS (objfile, osect)
3246 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3247 {
3248 int i, size;
fbd35540
MS
3249 bfd *obfd = osect->objfile->obfd;
3250 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3251
3252 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3253 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3254 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3255 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3256 /* && cache_ovly_table[i][SIZE] == size */ )
3257 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3258 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3259 break; /* finished with inner for loop: break out */
3260 }
3261 }
c906108c
SS
3262}
3263
3264
3265void
fba45db2 3266_initialize_symfile (void)
c906108c
SS
3267{
3268 struct cmd_list_element *c;
c5aa993b 3269
c906108c 3270 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3271 "Load symbol table from executable file FILE.\n\
c906108c
SS
3272The `file' command can also load symbol tables, as well as setting the file\n\
3273to execute.", &cmdlist);
5ba2abeb 3274 set_cmd_completer (c, filename_completer);
c906108c
SS
3275
3276 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3277 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3278Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3279ADDR is the starting address of the file's text.\n\
db162d44
EZ
3280The optional arguments are section-name section-address pairs and\n\
3281should be specified if the data and bss segments are not contiguous\n\
d4654627 3282with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3283 &cmdlist);
5ba2abeb 3284 set_cmd_completer (c, filename_completer);
c906108c
SS
3285
3286 c = add_cmd ("add-shared-symbol-files", class_files,
3287 add_shared_symbol_files_command,
3288 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3289 &cmdlist);
c906108c
SS
3290 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3291 &cmdlist);
3292
3293 c = add_cmd ("load", class_files, load_command,
c5aa993b 3294 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3295for access from GDB.", &cmdlist);
5ba2abeb 3296 set_cmd_completer (c, filename_completer);
c906108c
SS
3297
3298 add_show_from_set
3299 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3300 (char *) &symbol_reloading,
3301 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3302 &setlist),
3303 &showlist);
3304
c5aa993b
JM
3305 add_prefix_cmd ("overlay", class_support, overlay_command,
3306 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3307 "overlay ", 0, &cmdlist);
3308
3309 add_com_alias ("ovly", "overlay", class_alias, 1);
3310 add_com_alias ("ov", "overlay", class_alias, 1);
3311
c5aa993b 3312 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3313 "Assert that an overlay section is mapped.", &overlaylist);
3314
c5aa993b 3315 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3316 "Assert that an overlay section is unmapped.", &overlaylist);
3317
c5aa993b 3318 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3319 "List mappings of overlay sections.", &overlaylist);
3320
c5aa993b 3321 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3322 "Enable overlay debugging.", &overlaylist);
c5aa993b 3323 add_cmd ("off", class_support, overlay_off_command,
c906108c 3324 "Disable overlay debugging.", &overlaylist);
c5aa993b 3325 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3326 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3327 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3328 "Read the overlay mapping state from the target.", &overlaylist);
3329
3330 /* Filename extension to source language lookup table: */
3331 init_filename_language_table ();
3332 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3333 (char *) &ext_args,
c906108c
SS
3334 "Set mapping between filename extension and source language.\n\
3335Usage: set extension-language .foo bar",
c5aa993b 3336 &setlist);
9f60d481 3337 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3338
c5aa993b 3339 add_info ("extensions", info_ext_lang_command,
c906108c 3340 "All filename extensions associated with a source language.");
917317f4
JM
3341
3342 add_show_from_set
3343 (add_set_cmd ("download-write-size", class_obscure,
3344 var_integer, (char *) &download_write_size,
3345 "Set the write size used when downloading a program.\n"
3346 "Only used when downloading a program onto a remote\n"
3347 "target. Specify zero, or a negative value, to disable\n"
3348 "blocked writes. The actual size of each transfer is also\n"
3349 "limited by the size of the target packet and the memory\n"
3350 "cache.\n",
3351 &setlist),
3352 &showlist);
c906108c 3353}
This page took 0.671595 seconds and 4 git commands to generate.