add autom4te.cache to .cvsignore
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca
DJ
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
c906108c 56
c906108c
SS
57#include <sys/types.h>
58#include <fcntl.h>
59#include "gdb_string.h"
60#include "gdb_stat.h"
61#include <ctype.h>
62#include <time.h>
2b71414d 63#include <sys/time.h>
c906108c 64
c906108c 65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 74void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 75
74b7792f
AC
76static void clear_symtab_users_cleanup (void *ignore);
77
c906108c 78/* Global variables owned by this file */
c5aa993b 79int readnow_symbol_files; /* Read full symbols immediately */
c906108c 80
c906108c
SS
81/* External variables and functions referenced. */
82
a14ed312 83extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
84
85/* Functions this file defines */
86
87#if 0
a14ed312
KB
88static int simple_read_overlay_region_table (void);
89static void simple_free_overlay_region_table (void);
c906108c
SS
90#endif
91
a14ed312 92static void set_initial_language (void);
c906108c 93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
a14ed312 100static void add_shared_symbol_files_command (char *, int);
c906108c 101
5b5d99cf
JB
102static void reread_separate_symbols (struct objfile *objfile);
103
a14ed312 104static void cashier_psymtab (struct partial_symtab *);
c906108c 105
a14ed312 106bfd *symfile_bfd_open (char *);
c906108c 107
0e931cf0
JB
108int get_section_index (struct objfile *, char *);
109
a14ed312 110static void find_sym_fns (struct objfile *);
c906108c 111
a14ed312 112static void decrement_reading_symtab (void *);
c906108c 113
a14ed312 114static void overlay_invalidate_all (void);
c906108c 115
a14ed312 116static int overlay_is_mapped (struct obj_section *);
c906108c 117
a14ed312 118void list_overlays_command (char *, int);
c906108c 119
a14ed312 120void map_overlay_command (char *, int);
c906108c 121
a14ed312 122void unmap_overlay_command (char *, int);
c906108c 123
a14ed312 124static void overlay_auto_command (char *, int);
c906108c 125
a14ed312 126static void overlay_manual_command (char *, int);
c906108c 127
a14ed312 128static void overlay_off_command (char *, int);
c906108c 129
a14ed312 130static void overlay_load_command (char *, int);
c906108c 131
a14ed312 132static void overlay_command (char *, int);
c906108c 133
a14ed312 134static void simple_free_overlay_table (void);
c906108c 135
a14ed312 136static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 137
a14ed312 138static int simple_read_overlay_table (void);
c906108c 139
a14ed312 140static int simple_overlay_update_1 (struct obj_section *);
c906108c 141
a14ed312 142static void add_filename_language (char *ext, enum language lang);
392a587b 143
a14ed312 144static void info_ext_lang_command (char *args, int from_tty);
392a587b 145
5b5d99cf
JB
146static char *find_separate_debug_file (struct objfile *objfile);
147
a14ed312 148static void init_filename_language_table (void);
392a587b 149
a14ed312 150void _initialize_symfile (void);
c906108c
SS
151
152/* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156static struct sym_fns *symtab_fns = NULL;
157
158/* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161#ifdef SYMBOL_RELOADING_DEFAULT
162int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163#else
164int symbol_reloading = 0;
165#endif
920d2a44
AC
166static void
167show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("\
171Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173}
174
c906108c 175
b7209cb4
FF
176/* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
c906108c 183 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 184 report all the functions that are actually present. */
c906108c
SS
185
186int auto_solib_add = 1;
b7209cb4
FF
187
188/* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196int auto_solib_limit;
c906108c 197\f
c5aa993b 198
0fe19209
DC
199/* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
c906108c
SS
201
202static int
0cd64fe2 203compare_psymbols (const void *s1p, const void *s2p)
c906108c 204{
0fe19209
DC
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
4725b721
PH
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
210}
211
212void
fba45db2 213sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
214{
215 /* Sort the global list; don't sort the static list */
216
c5aa993b
JM
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
219 compare_psymbols);
220}
221
c906108c
SS
222/* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227char *
63ca651f 228obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 229{
52f0bd74 230 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
aa1ee363
AC
235 const char *p1 = ptr;
236 char *p2 = p;
63ca651f 237 const char *end = ptr + size;
c906108c
SS
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243}
244
245/* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248char *
fba45db2
KB
249obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
c906108c 251{
52f0bd74
AC
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258}
259
260/* True if we are nested inside psymtab_to_symtab. */
261
262int currently_reading_symtab = 0;
263
264static void
fba45db2 265decrement_reading_symtab (void *dummy)
c906108c
SS
266{
267 currently_reading_symtab--;
268}
269
270/* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275struct symtab *
aa1ee363 276psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
277{
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
c5aa993b 284 {
c906108c
SS
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292}
293
5417f6dc
RM
294/* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
c906108c
SS
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303void
4efb68b1 304find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 305{
c5aa993b 306 asection **lowest = (asection **) obj;
c906108c
SS
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318}
319
a39a16c4
MM
320/* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322struct section_addr_info *
323alloc_section_addr_info (size_t num_sections)
324{
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335}
62557bbc 336
7b90c3f9
JB
337
338/* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340struct section_addr_info *
341copy_section_addr_info (struct section_addr_info *addrs)
342{
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359}
360
361
362
62557bbc
KB
363/* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366extern struct section_addr_info *
367build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369{
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
a39a16c4 374 sap = alloc_section_addr_info (end - start);
62557bbc
KB
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
5417f6dc 378 if (bfd_get_section_flags (stp->bfd,
fbd35540 379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 380 && oidx < end - start)
62557bbc
KB
381 {
382 sap->other[oidx].addr = stp->addr;
5417f6dc 383 sap->other[oidx].name
fbd35540 384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391}
392
393
394/* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396extern void
397free_section_addr_info (struct section_addr_info *sap)
398{
399 int idx;
400
a39a16c4 401 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 402 if (sap->other[idx].name)
b8c9b27d
KB
403 xfree (sap->other[idx].name);
404 xfree (sap);
62557bbc
KB
405}
406
407
e8289572
JB
408/* Initialize OBJFILE's sect_index_* members. */
409static void
410init_objfile_sect_indices (struct objfile *objfile)
c906108c 411{
e8289572 412 asection *sect;
c906108c 413 int i;
5417f6dc 414
b8fbeb18 415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 416 if (sect)
b8fbeb18
EZ
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 420 if (sect)
b8fbeb18
EZ
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 424 if (sect)
b8fbeb18
EZ
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 428 if (sect)
b8fbeb18
EZ
429 objfile->sect_index_rodata = sect->index;
430
bbcd32ad
FF
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
439 first slot. */
440
441 for (i = 0; i < objfile->num_sections; i++)
442 {
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
444 {
445 break;
446 }
447 }
448 if (i == objfile->num_sections)
449 {
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
458 }
b8fbeb18 459}
c906108c 460
c1bd25fd
DJ
461/* The arguments to place_section. */
462
463struct place_section_arg
464{
465 struct section_offsets *offsets;
466 CORE_ADDR lowest;
467};
468
469/* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
471
472void
473place_section (bfd *abfd, asection *sect, void *obj)
474{
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
477 int done;
3bd72c6f 478 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd
DJ
479
480 /* We are only interested in loadable sections. */
481 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
482 return;
483
484 /* If the user specified an offset, honor it. */
485 if (offsets[sect->index] != 0)
486 return;
487
488 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
489 start_addr = (arg->lowest + align - 1) & -align;
490
c1bd25fd
DJ
491 do {
492 asection *cur_sec;
c1bd25fd 493
c1bd25fd
DJ
494 done = 1;
495
496 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
497 {
498 int indx = cur_sec->index;
499 CORE_ADDR cur_offset;
500
501 /* We don't need to compare against ourself. */
502 if (cur_sec == sect)
503 continue;
504
505 /* We can only conflict with loadable sections. */
506 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
507 continue;
508
509 /* We do not expect this to happen; just ignore sections in a
510 relocatable file with an assigned VMA. */
511 if (bfd_section_vma (abfd, cur_sec) != 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
3bd72c6f 527 break;
c1bd25fd
DJ
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537
538 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
539}
e8289572
JB
540
541/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 542 of how to represent it for fast symbol reading. This is the default
e8289572
JB
543 version of the sym_fns.sym_offsets function for symbol readers that
544 don't need to do anything special. It allocates a section_offsets table
545 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
546
547void
548default_symfile_offsets (struct objfile *objfile,
549 struct section_addr_info *addrs)
550{
551 int i;
552
a39a16c4 553 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 554 objfile->section_offsets = (struct section_offsets *)
5417f6dc 555 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 557 memset (objfile->section_offsets, 0,
a39a16c4 558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
559
560 /* Now calculate offsets for section that were specified by the
561 caller. */
a39a16c4 562 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
563 {
564 struct other_sections *osp ;
565
566 osp = &addrs->other[i] ;
567 if (osp->addr == 0)
568 continue;
569
570 /* Record all sections in offsets */
571 /* The section_offsets in the objfile are here filled in using
572 the BFD index. */
573 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
574 }
575
c1bd25fd
DJ
576 /* For relocatable files, all loadable sections will start at zero.
577 The zero is meaningless, so try to pick arbitrary addresses such
578 that no loadable sections overlap. This algorithm is quadratic,
579 but the number of sections in a single object file is generally
580 small. */
581 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
582 {
583 struct place_section_arg arg;
584 arg.offsets = objfile->section_offsets;
585 arg.lowest = 0;
586 bfd_map_over_sections (objfile->obfd, place_section, &arg);
587 }
588
e8289572
JB
589 /* Remember the bfd indexes for the .text, .data, .bss and
590 .rodata sections. */
591 init_objfile_sect_indices (objfile);
592}
593
594
c906108c
SS
595/* Process a symbol file, as either the main file or as a dynamically
596 loaded file.
597
96baa820
JM
598 OBJFILE is where the symbols are to be read from.
599
7e8580c1
JB
600 ADDRS is the list of section load addresses. If the user has given
601 an 'add-symbol-file' command, then this is the list of offsets and
602 addresses he or she provided as arguments to the command; or, if
603 we're handling a shared library, these are the actual addresses the
604 sections are loaded at, according to the inferior's dynamic linker
605 (as gleaned by GDB's shared library code). We convert each address
606 into an offset from the section VMA's as it appears in the object
607 file, and then call the file's sym_offsets function to convert this
608 into a format-specific offset table --- a `struct section_offsets'.
609 If ADDRS is non-zero, OFFSETS must be zero.
610
611 OFFSETS is a table of section offsets already in the right
612 format-specific representation. NUM_OFFSETS is the number of
613 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
614 assume this is the proper table the call to sym_offsets described
615 above would produce. Instead of calling sym_offsets, we just dump
616 it right into objfile->section_offsets. (When we're re-reading
617 symbols from an objfile, we don't have the original load address
618 list any more; all we have is the section offset table.) If
619 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
620
621 MAINLINE is nonzero if this is the main symbol file, or zero if
622 it's an extra symbol file such as dynamically loaded code.
623
624 VERBO is nonzero if the caller has printed a verbose message about
625 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
626
627void
7e8580c1
JB
628syms_from_objfile (struct objfile *objfile,
629 struct section_addr_info *addrs,
630 struct section_offsets *offsets,
631 int num_offsets,
632 int mainline,
633 int verbo)
c906108c 634{
a39a16c4 635 struct section_addr_info *local_addr = NULL;
c906108c 636 struct cleanup *old_chain;
2acceee2 637
7e8580c1 638 gdb_assert (! (addrs && offsets));
2acceee2 639
c906108c
SS
640 init_entry_point_info (objfile);
641 find_sym_fns (objfile);
642
75245b24
MS
643 if (objfile->sf == NULL)
644 return; /* No symbols. */
645
c906108c
SS
646 /* Make sure that partially constructed symbol tables will be cleaned up
647 if an error occurs during symbol reading. */
74b7792f 648 old_chain = make_cleanup_free_objfile (objfile);
c906108c 649
a39a16c4
MM
650 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
651 list. We now establish the convention that an addr of zero means
652 no load address was specified. */
653 if (! addrs && ! offsets)
654 {
5417f6dc 655 local_addr
a39a16c4
MM
656 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
657 make_cleanup (xfree, local_addr);
658 addrs = local_addr;
659 }
660
661 /* Now either addrs or offsets is non-zero. */
662
c5aa993b 663 if (mainline)
c906108c
SS
664 {
665 /* We will modify the main symbol table, make sure that all its users
c5aa993b 666 will be cleaned up if an error occurs during symbol reading. */
74b7792f 667 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
668
669 /* Since no error yet, throw away the old symbol table. */
670
671 if (symfile_objfile != NULL)
672 {
673 free_objfile (symfile_objfile);
674 symfile_objfile = NULL;
675 }
676
677 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
678 If the user wants to get rid of them, they should do "symbol-file"
679 without arguments first. Not sure this is the best behavior
680 (PR 2207). */
c906108c 681
c5aa993b 682 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
683 }
684
685 /* Convert addr into an offset rather than an absolute address.
686 We find the lowest address of a loaded segment in the objfile,
53a5351d 687 and assume that <addr> is where that got loaded.
c906108c 688
53a5351d
JM
689 We no longer warn if the lowest section is not a text segment (as
690 happens for the PA64 port. */
1549f619 691 if (!mainline && addrs && addrs->other[0].name)
c906108c 692 {
1549f619
EZ
693 asection *lower_sect;
694 asection *sect;
695 CORE_ADDR lower_offset;
696 int i;
697
5417f6dc 698 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
699 continguous sections. FIXME!! won't work without call to find
700 .text first, but this assumes text is lowest section. */
701 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
702 if (lower_sect == NULL)
c906108c 703 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 704 &lower_sect);
2acceee2 705 if (lower_sect == NULL)
8a3fe4f8 706 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 707 objfile->name);
5417f6dc 708 else
b8fbeb18 709 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 710 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
711 objfile->name,
712 bfd_section_name (objfile->obfd, lower_sect),
713 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
714 if (lower_sect != NULL)
715 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
716 else
717 lower_offset = 0;
5417f6dc 718
13de58df 719 /* Calculate offsets for the loadable sections.
2acceee2
JM
720 FIXME! Sections must be in order of increasing loadable section
721 so that contiguous sections can use the lower-offset!!!
5417f6dc 722
13de58df
JB
723 Adjust offsets if the segments are not contiguous.
724 If the section is contiguous, its offset should be set to
2acceee2
JM
725 the offset of the highest loadable section lower than it
726 (the loadable section directly below it in memory).
727 this_offset = lower_offset = lower_addr - lower_orig_addr */
728
1549f619 729 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
730 {
731 if (addrs->other[i].addr != 0)
732 {
733 sect = bfd_get_section_by_name (objfile->obfd,
734 addrs->other[i].name);
735 if (sect)
736 {
737 addrs->other[i].addr
738 -= bfd_section_vma (objfile->obfd, sect);
739 lower_offset = addrs->other[i].addr;
740 /* This is the index used by BFD. */
741 addrs->other[i].sectindex = sect->index ;
742 }
743 else
744 {
8a3fe4f8 745 warning (_("section %s not found in %s"),
5417f6dc 746 addrs->other[i].name,
7e8580c1
JB
747 objfile->name);
748 addrs->other[i].addr = 0;
749 }
750 }
751 else
752 addrs->other[i].addr = lower_offset;
753 }
c906108c
SS
754 }
755
756 /* Initialize symbol reading routines for this objfile, allow complaints to
757 appear for this new file, and record how verbose to be, then do the
758 initial symbol reading for this file. */
759
c5aa993b 760 (*objfile->sf->sym_init) (objfile);
b9caf505 761 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 762
7e8580c1
JB
763 if (addrs)
764 (*objfile->sf->sym_offsets) (objfile, addrs);
765 else
766 {
767 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
768
769 /* Just copy in the offset table directly as given to us. */
770 objfile->num_sections = num_offsets;
771 objfile->section_offsets
772 = ((struct section_offsets *)
8b92e4d5 773 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
774 memcpy (objfile->section_offsets, offsets, size);
775
776 init_objfile_sect_indices (objfile);
777 }
c906108c 778
52d16ba8 779#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
780 /* This is a SVR4/SunOS specific hack, I think. In any event, it
781 screws RS/6000. sym_offsets should be doing this sort of thing,
782 because it knows the mapping between bfd sections and
783 section_offsets. */
784 /* This is a hack. As far as I can tell, section offsets are not
785 target dependent. They are all set to addr with a couple of
786 exceptions. The exceptions are sysvr4 shared libraries, whose
787 offsets are kept in solib structures anyway and rs6000 xcoff
788 which handles shared libraries in a completely unique way.
789
790 Section offsets are built similarly, except that they are built
791 by adding addr in all cases because there is no clear mapping
792 from section_offsets into actual sections. Note that solib.c
96baa820 793 has a different algorithm for finding section offsets.
c906108c
SS
794
795 These should probably all be collapsed into some target
796 independent form of shared library support. FIXME. */
797
2acceee2 798 if (addrs)
c906108c
SS
799 {
800 struct obj_section *s;
801
5417f6dc
RM
802 /* Map section offsets in "addr" back to the object's
803 sections by comparing the section names with bfd's
2acceee2
JM
804 section names. Then adjust the section address by
805 the offset. */ /* for gdb/13815 */
5417f6dc 806
96baa820 807 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 808 {
2acceee2
JM
809 CORE_ADDR s_addr = 0;
810 int i;
811
5417f6dc 812 for (i = 0;
a39a16c4 813 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 814 i++)
5417f6dc
RM
815 if (strcmp (bfd_section_name (s->objfile->obfd,
816 s->the_bfd_section),
fbd35540 817 addrs->other[i].name) == 0)
2acceee2 818 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 819
c906108c 820 s->addr -= s->offset;
2acceee2 821 s->addr += s_addr;
c906108c 822 s->endaddr -= s->offset;
2acceee2
JM
823 s->endaddr += s_addr;
824 s->offset += s_addr;
c906108c
SS
825 }
826 }
52d16ba8 827#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 828
96baa820 829 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 830
c906108c
SS
831 /* Don't allow char * to have a typename (else would get caddr_t).
832 Ditto void *. FIXME: Check whether this is now done by all the
833 symbol readers themselves (many of them now do), and if so remove
834 it from here. */
835
836 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
837 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
838
839 /* Mark the objfile has having had initial symbol read attempted. Note
840 that this does not mean we found any symbols... */
841
c5aa993b 842 objfile->flags |= OBJF_SYMS;
c906108c
SS
843
844 /* Discard cleanups as symbol reading was successful. */
845
846 discard_cleanups (old_chain);
c906108c
SS
847}
848
849/* Perform required actions after either reading in the initial
850 symbols for a new objfile, or mapping in the symbols from a reusable
851 objfile. */
c5aa993b 852
c906108c 853void
fba45db2 854new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
855{
856
857 /* If this is the main symbol file we have to clean up all users of the
858 old main symbol file. Otherwise it is sufficient to fixup all the
859 breakpoints that may have been redefined by this symbol file. */
860 if (mainline)
861 {
862 /* OK, make it the "real" symbol file. */
863 symfile_objfile = objfile;
864
865 clear_symtab_users ();
866 }
867 else
868 {
869 breakpoint_re_set ();
870 }
871
872 /* We're done reading the symbol file; finish off complaints. */
b9caf505 873 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
874}
875
876/* Process a symbol file, as either the main file or as a dynamically
877 loaded file.
878
5417f6dc
RM
879 ABFD is a BFD already open on the file, as from symfile_bfd_open.
880 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
881
882 FROM_TTY says how verbose to be.
883
884 MAINLINE specifies whether this is the main symbol file, or whether
885 it's an extra symbol file such as dynamically loaded code.
886
887 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
888 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
889 non-zero.
c906108c 890
c906108c
SS
891 Upon success, returns a pointer to the objfile that was added.
892 Upon failure, jumps back to command level (never returns). */
7904e09f 893static struct objfile *
5417f6dc 894symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
895 struct section_addr_info *addrs,
896 struct section_offsets *offsets,
897 int num_offsets,
898 int mainline, int flags)
c906108c
SS
899{
900 struct objfile *objfile;
901 struct partial_symtab *psymtab;
5b5d99cf 902 char *debugfile;
7b90c3f9 903 struct section_addr_info *orig_addrs = NULL;
a39a16c4 904 struct cleanup *my_cleanups;
5417f6dc 905 const char *name = bfd_get_filename (abfd);
c906108c 906
5417f6dc 907 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 908
5417f6dc
RM
909 /* Give user a chance to burp if we'd be
910 interactively wiping out any existing symbols. */
c906108c
SS
911
912 if ((have_full_symbols () || have_partial_symbols ())
913 && mainline
914 && from_tty
915 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 916 error (_("Not confirmed."));
c906108c 917
2df3850c 918 objfile = allocate_objfile (abfd, flags);
5417f6dc 919 discard_cleanups (my_cleanups);
c906108c 920
a39a16c4 921 if (addrs)
63cd24fe 922 {
7b90c3f9
JB
923 orig_addrs = copy_section_addr_info (addrs);
924 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 925 }
a39a16c4 926
78a4a9b9
AC
927 /* We either created a new mapped symbol table, mapped an existing
928 symbol table file which has not had initial symbol reading
929 performed, or need to read an unmapped symbol table. */
930 if (from_tty || info_verbose)
c906108c 931 {
769d7dc4
AC
932 if (deprecated_pre_add_symbol_hook)
933 deprecated_pre_add_symbol_hook (name);
78a4a9b9 934 else
c906108c 935 {
a3f17187 936 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
937 wrap_here ("");
938 gdb_flush (gdb_stdout);
939 }
c906108c 940 }
78a4a9b9
AC
941 syms_from_objfile (objfile, addrs, offsets, num_offsets,
942 mainline, from_tty);
c906108c
SS
943
944 /* We now have at least a partial symbol table. Check to see if the
945 user requested that all symbols be read on initial access via either
946 the gdb startup command line or on a per symbol file basis. Expand
947 all partial symbol tables for this objfile if so. */
948
2acceee2 949 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
950 {
951 if (from_tty || info_verbose)
952 {
a3f17187 953 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
954 wrap_here ("");
955 gdb_flush (gdb_stdout);
956 }
957
c5aa993b 958 for (psymtab = objfile->psymtabs;
c906108c 959 psymtab != NULL;
c5aa993b 960 psymtab = psymtab->next)
c906108c
SS
961 {
962 psymtab_to_symtab (psymtab);
963 }
964 }
965
5b5d99cf
JB
966 debugfile = find_separate_debug_file (objfile);
967 if (debugfile)
968 {
5b5d99cf
JB
969 if (addrs != NULL)
970 {
971 objfile->separate_debug_objfile
a39a16c4 972 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
973 }
974 else
975 {
976 objfile->separate_debug_objfile
977 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
978 }
979 objfile->separate_debug_objfile->separate_debug_objfile_backlink
980 = objfile;
5417f6dc 981
5b5d99cf
JB
982 /* Put the separate debug object before the normal one, this is so that
983 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
984 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 985
5b5d99cf
JB
986 xfree (debugfile);
987 }
5417f6dc 988
cb3c37b2
JB
989 if (!have_partial_symbols () && !have_full_symbols ())
990 {
991 wrap_here ("");
a3f17187 992 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
993 if (from_tty || info_verbose)
994 printf_filtered ("...");
995 else
996 printf_filtered ("\n");
cb3c37b2
JB
997 wrap_here ("");
998 }
999
c906108c
SS
1000 if (from_tty || info_verbose)
1001 {
769d7dc4
AC
1002 if (deprecated_post_add_symbol_hook)
1003 deprecated_post_add_symbol_hook ();
c906108c 1004 else
c5aa993b 1005 {
a3f17187 1006 printf_unfiltered (_("done.\n"));
c5aa993b 1007 }
c906108c
SS
1008 }
1009
481d0f41
JB
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
a39a16c4
MM
1015 do_cleanups (my_cleanups);
1016
109f874e
MS
1017 if (objfile->sf == NULL)
1018 return objfile; /* No symbols. */
1019
c906108c
SS
1020 new_symfile_objfile (objfile, mainline, from_tty);
1021
9a4105ab
AC
1022 if (deprecated_target_new_objfile_hook)
1023 deprecated_target_new_objfile_hook (objfile);
c906108c 1024
ce7d4522 1025 bfd_cache_close_all ();
c906108c
SS
1026 return (objfile);
1027}
1028
7904e09f 1029
eb4556d7
JB
1030/* Process the symbol file ABFD, as either the main file or as a
1031 dynamically loaded file.
1032
1033 See symbol_file_add_with_addrs_or_offsets's comments for
1034 details. */
1035struct objfile *
1036symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1037 struct section_addr_info *addrs,
1038 int mainline, int flags)
1039{
1040 return symbol_file_add_with_addrs_or_offsets (abfd,
1041 from_tty, addrs, 0, 0,
1042 mainline, flags);
1043}
1044
1045
7904e09f
JB
1046/* Process a symbol file, as either the main file or as a dynamically
1047 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1048 for details. */
1049struct objfile *
1050symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1051 int mainline, int flags)
1052{
eb4556d7
JB
1053 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1054 addrs, mainline, flags);
7904e09f
JB
1055}
1056
1057
d7db6da9
FN
1058/* Call symbol_file_add() with default values and update whatever is
1059 affected by the loading of a new main().
1060 Used when the file is supplied in the gdb command line
1061 and by some targets with special loading requirements.
1062 The auxiliary function, symbol_file_add_main_1(), has the flags
1063 argument for the switches that can only be specified in the symbol_file
1064 command itself. */
5417f6dc 1065
1adeb98a
FN
1066void
1067symbol_file_add_main (char *args, int from_tty)
1068{
d7db6da9
FN
1069 symbol_file_add_main_1 (args, from_tty, 0);
1070}
1071
1072static void
1073symbol_file_add_main_1 (char *args, int from_tty, int flags)
1074{
1075 symbol_file_add (args, from_tty, NULL, 1, flags);
1076
d7db6da9
FN
1077 /* Getting new symbols may change our opinion about
1078 what is frameless. */
1079 reinit_frame_cache ();
1080
1081 set_initial_language ();
1adeb98a
FN
1082}
1083
1084void
1085symbol_file_clear (int from_tty)
1086{
1087 if ((have_full_symbols () || have_partial_symbols ())
1088 && from_tty
0430b0d6
AS
1089 && (symfile_objfile
1090 ? !query (_("Discard symbol table from `%s'? "),
1091 symfile_objfile->name)
1092 : !query (_("Discard symbol table? "))))
8a3fe4f8 1093 error (_("Not confirmed."));
1adeb98a
FN
1094 free_all_objfiles ();
1095
1096 /* solib descriptors may have handles to objfiles. Since their
1097 storage has just been released, we'd better wipe the solib
1098 descriptors as well.
1099 */
1100#if defined(SOLIB_RESTART)
1101 SOLIB_RESTART ();
1102#endif
1103
1104 symfile_objfile = NULL;
1105 if (from_tty)
a3f17187 1106 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1107}
1108
5b5d99cf
JB
1109static char *
1110get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1111{
1112 asection *sect;
1113 bfd_size_type debuglink_size;
1114 unsigned long crc32;
1115 char *contents;
1116 int crc_offset;
1117 unsigned char *p;
5417f6dc 1118
5b5d99cf
JB
1119 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1120
1121 if (sect == NULL)
1122 return NULL;
1123
1124 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1125
5b5d99cf
JB
1126 contents = xmalloc (debuglink_size);
1127 bfd_get_section_contents (objfile->obfd, sect, contents,
1128 (file_ptr)0, (bfd_size_type)debuglink_size);
1129
1130 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1131 crc_offset = strlen (contents) + 1;
1132 crc_offset = (crc_offset + 3) & ~3;
1133
1134 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1135
5b5d99cf
JB
1136 *crc32_out = crc32;
1137 return contents;
1138}
1139
1140static int
1141separate_debug_file_exists (const char *name, unsigned long crc)
1142{
1143 unsigned long file_crc = 0;
1144 int fd;
777ea8f1 1145 gdb_byte buffer[8*1024];
5b5d99cf
JB
1146 int count;
1147
1148 fd = open (name, O_RDONLY | O_BINARY);
1149 if (fd < 0)
1150 return 0;
1151
1152 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1153 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1154
1155 close (fd);
1156
1157 return crc == file_crc;
1158}
1159
aa28a74e 1160char *debug_file_directory = NULL;
920d2a44
AC
1161static void
1162show_debug_file_directory (struct ui_file *file, int from_tty,
1163 struct cmd_list_element *c, const char *value)
1164{
1165 fprintf_filtered (file, _("\
1166The directory where separate debug symbols are searched for is \"%s\".\n"),
1167 value);
1168}
5b5d99cf
JB
1169
1170#if ! defined (DEBUG_SUBDIRECTORY)
1171#define DEBUG_SUBDIRECTORY ".debug"
1172#endif
1173
1174static char *
1175find_separate_debug_file (struct objfile *objfile)
1176{
1177 asection *sect;
1178 char *basename;
1179 char *dir;
1180 char *debugfile;
1181 char *name_copy;
aa28a74e 1182 char *canon_name;
5b5d99cf
JB
1183 bfd_size_type debuglink_size;
1184 unsigned long crc32;
1185 int i;
1186
1187 basename = get_debug_link_info (objfile, &crc32);
1188
1189 if (basename == NULL)
1190 return NULL;
5417f6dc 1191
5b5d99cf
JB
1192 dir = xstrdup (objfile->name);
1193
fe36c4f4
JB
1194 /* Strip off the final filename part, leaving the directory name,
1195 followed by a slash. Objfile names should always be absolute and
1196 tilde-expanded, so there should always be a slash in there
1197 somewhere. */
5b5d99cf
JB
1198 for (i = strlen(dir) - 1; i >= 0; i--)
1199 {
1200 if (IS_DIR_SEPARATOR (dir[i]))
1201 break;
1202 }
fe36c4f4 1203 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1204 dir[i+1] = '\0';
5417f6dc 1205
5b5d99cf
JB
1206 debugfile = alloca (strlen (debug_file_directory) + 1
1207 + strlen (dir)
1208 + strlen (DEBUG_SUBDIRECTORY)
1209 + strlen ("/")
5417f6dc 1210 + strlen (basename)
5b5d99cf
JB
1211 + 1);
1212
1213 /* First try in the same directory as the original file. */
1214 strcpy (debugfile, dir);
1215 strcat (debugfile, basename);
1216
1217 if (separate_debug_file_exists (debugfile, crc32))
1218 {
1219 xfree (basename);
1220 xfree (dir);
1221 return xstrdup (debugfile);
1222 }
5417f6dc 1223
5b5d99cf
JB
1224 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1225 strcpy (debugfile, dir);
1226 strcat (debugfile, DEBUG_SUBDIRECTORY);
1227 strcat (debugfile, "/");
1228 strcat (debugfile, basename);
1229
1230 if (separate_debug_file_exists (debugfile, crc32))
1231 {
1232 xfree (basename);
1233 xfree (dir);
1234 return xstrdup (debugfile);
1235 }
5417f6dc 1236
5b5d99cf
JB
1237 /* Then try in the global debugfile directory. */
1238 strcpy (debugfile, debug_file_directory);
1239 strcat (debugfile, "/");
1240 strcat (debugfile, dir);
5b5d99cf
JB
1241 strcat (debugfile, basename);
1242
1243 if (separate_debug_file_exists (debugfile, crc32))
1244 {
1245 xfree (basename);
1246 xfree (dir);
1247 return xstrdup (debugfile);
1248 }
5417f6dc 1249
aa28a74e
DJ
1250 /* If the file is in the sysroot, try using its base path in the
1251 global debugfile directory. */
1252 canon_name = lrealpath (dir);
1253 if (canon_name
1254 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1255 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1256 {
1257 strcpy (debugfile, debug_file_directory);
1258 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1259 strcat (debugfile, "/");
1260 strcat (debugfile, basename);
1261
1262 if (separate_debug_file_exists (debugfile, crc32))
1263 {
1264 xfree (canon_name);
1265 xfree (basename);
1266 xfree (dir);
1267 return xstrdup (debugfile);
1268 }
1269 }
1270
1271 if (canon_name)
1272 xfree (canon_name);
1273
5b5d99cf
JB
1274 xfree (basename);
1275 xfree (dir);
1276 return NULL;
1277}
1278
1279
c906108c
SS
1280/* This is the symbol-file command. Read the file, analyze its
1281 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1282 the command is rather bizarre:
1283
1284 1. The function buildargv implements various quoting conventions
1285 which are undocumented and have little or nothing in common with
1286 the way things are quoted (or not quoted) elsewhere in GDB.
1287
1288 2. Options are used, which are not generally used in GDB (perhaps
1289 "set mapped on", "set readnow on" would be better)
1290
1291 3. The order of options matters, which is contrary to GNU
c906108c
SS
1292 conventions (because it is confusing and inconvenient). */
1293
1294void
fba45db2 1295symbol_file_command (char *args, int from_tty)
c906108c 1296{
c906108c
SS
1297 dont_repeat ();
1298
1299 if (args == NULL)
1300 {
1adeb98a 1301 symbol_file_clear (from_tty);
c906108c
SS
1302 }
1303 else
1304 {
cb2f3a29
MK
1305 char **argv = buildargv (args);
1306 int flags = OBJF_USERLOADED;
1307 struct cleanup *cleanups;
1308 char *name = NULL;
1309
1310 if (argv == NULL)
1311 nomem (0);
1312
7a292a7a 1313 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1314 while (*argv != NULL)
1315 {
78a4a9b9
AC
1316 if (strcmp (*argv, "-readnow") == 0)
1317 flags |= OBJF_READNOW;
1318 else if (**argv == '-')
8a3fe4f8 1319 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1320 else
1321 {
cb2f3a29 1322 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1323 name = *argv;
78a4a9b9 1324 }
cb2f3a29 1325
c906108c
SS
1326 argv++;
1327 }
1328
1329 if (name == NULL)
cb2f3a29
MK
1330 error (_("no symbol file name was specified"));
1331
c906108c
SS
1332 do_cleanups (cleanups);
1333 }
1334}
1335
1336/* Set the initial language.
1337
cb2f3a29
MK
1338 FIXME: A better solution would be to record the language in the
1339 psymtab when reading partial symbols, and then use it (if known) to
1340 set the language. This would be a win for formats that encode the
1341 language in an easily discoverable place, such as DWARF. For
1342 stabs, we can jump through hoops looking for specially named
1343 symbols or try to intuit the language from the specific type of
1344 stabs we find, but we can't do that until later when we read in
1345 full symbols. */
c906108c
SS
1346
1347static void
fba45db2 1348set_initial_language (void)
c906108c
SS
1349{
1350 struct partial_symtab *pst;
c5aa993b 1351 enum language lang = language_unknown;
c906108c
SS
1352
1353 pst = find_main_psymtab ();
1354 if (pst != NULL)
1355 {
c5aa993b 1356 if (pst->filename != NULL)
cb2f3a29
MK
1357 lang = deduce_language_from_filename (pst->filename);
1358
c906108c
SS
1359 if (lang == language_unknown)
1360 {
c5aa993b
JM
1361 /* Make C the default language */
1362 lang = language_c;
c906108c 1363 }
cb2f3a29 1364
c906108c 1365 set_language (lang);
cb2f3a29 1366 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1367 }
1368}
1369
cb2f3a29
MK
1370/* Open the file specified by NAME and hand it off to BFD for
1371 preliminary analysis. Return a newly initialized bfd *, which
1372 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1373 absolute). In case of trouble, error() is called. */
c906108c
SS
1374
1375bfd *
fba45db2 1376symfile_bfd_open (char *name)
c906108c
SS
1377{
1378 bfd *sym_bfd;
1379 int desc;
1380 char *absolute_name;
1381
cb2f3a29 1382 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1383
1384 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1385 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1386 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1387#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1388 if (desc < 0)
1389 {
1390 char *exename = alloca (strlen (name) + 5);
1391 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1392 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1393 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1394 }
1395#endif
1396 if (desc < 0)
1397 {
b8c9b27d 1398 make_cleanup (xfree, name);
c906108c
SS
1399 perror_with_name (name);
1400 }
cb2f3a29
MK
1401
1402 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1403 bfd. It'll be freed in free_objfile(). */
1404 xfree (name);
1405 name = absolute_name;
c906108c 1406
9f76c2cd 1407 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1408 if (!sym_bfd)
1409 {
1410 close (desc);
b8c9b27d 1411 make_cleanup (xfree, name);
8a3fe4f8 1412 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1413 bfd_errmsg (bfd_get_error ()));
1414 }
549c1eea 1415 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1416
1417 if (!bfd_check_format (sym_bfd, bfd_object))
1418 {
cb2f3a29
MK
1419 /* FIXME: should be checking for errors from bfd_close (for one
1420 thing, on error it does not free all the storage associated
1421 with the bfd). */
1422 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1423 make_cleanup (xfree, name);
8a3fe4f8 1424 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1425 bfd_errmsg (bfd_get_error ()));
1426 }
cb2f3a29
MK
1427
1428 return sym_bfd;
c906108c
SS
1429}
1430
cb2f3a29
MK
1431/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1432 the section was not found. */
1433
0e931cf0
JB
1434int
1435get_section_index (struct objfile *objfile, char *section_name)
1436{
1437 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1438
0e931cf0
JB
1439 if (sect)
1440 return sect->index;
1441 else
1442 return -1;
1443}
1444
cb2f3a29
MK
1445/* Link SF into the global symtab_fns list. Called on startup by the
1446 _initialize routine in each object file format reader, to register
1447 information about each format the the reader is prepared to
1448 handle. */
c906108c
SS
1449
1450void
fba45db2 1451add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1452{
1453 sf->next = symtab_fns;
1454 symtab_fns = sf;
1455}
1456
cb2f3a29
MK
1457/* Initialize OBJFILE to read symbols from its associated BFD. It
1458 either returns or calls error(). The result is an initialized
1459 struct sym_fns in the objfile structure, that contains cached
1460 information about the symbol file. */
c906108c
SS
1461
1462static void
fba45db2 1463find_sym_fns (struct objfile *objfile)
c906108c
SS
1464{
1465 struct sym_fns *sf;
c5aa993b
JM
1466 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1467 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1468
75245b24
MS
1469 if (our_flavour == bfd_target_srec_flavour
1470 || our_flavour == bfd_target_ihex_flavour
1471 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1472 return; /* No symbols. */
75245b24 1473
c5aa993b 1474 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1475 {
c5aa993b 1476 if (our_flavour == sf->sym_flavour)
c906108c 1477 {
c5aa993b 1478 objfile->sf = sf;
c906108c
SS
1479 return;
1480 }
1481 }
cb2f3a29 1482
8a3fe4f8 1483 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1484 bfd_get_target (objfile->obfd));
c906108c
SS
1485}
1486\f
cb2f3a29 1487
c906108c
SS
1488/* This function runs the load command of our current target. */
1489
1490static void
fba45db2 1491load_command (char *arg, int from_tty)
c906108c
SS
1492{
1493 if (arg == NULL)
1986bccd
AS
1494 {
1495 char *parg;
1496 int count = 0;
1497
1498 parg = arg = get_exec_file (1);
1499
1500 /* Count how many \ " ' tab space there are in the name. */
1501 while ((parg = strpbrk (parg, "\\\"'\t ")))
1502 {
1503 parg++;
1504 count++;
1505 }
1506
1507 if (count)
1508 {
1509 /* We need to quote this string so buildargv can pull it apart. */
1510 char *temp = xmalloc (strlen (arg) + count + 1 );
1511 char *ptemp = temp;
1512 char *prev;
1513
1514 make_cleanup (xfree, temp);
1515
1516 prev = parg = arg;
1517 while ((parg = strpbrk (parg, "\\\"'\t ")))
1518 {
1519 strncpy (ptemp, prev, parg - prev);
1520 ptemp += parg - prev;
1521 prev = parg++;
1522 *ptemp++ = '\\';
1523 }
1524 strcpy (ptemp, prev);
1525
1526 arg = temp;
1527 }
1528 }
1529
6490cafe
DJ
1530 /* The user might be reloading because the binary has changed. Take
1531 this opportunity to check. */
1532 reopen_exec_file ();
1533 reread_symbols ();
1534
c906108c 1535 target_load (arg, from_tty);
2889e661
JB
1536
1537 /* After re-loading the executable, we don't really know which
1538 overlays are mapped any more. */
1539 overlay_cache_invalid = 1;
c906108c
SS
1540}
1541
1542/* This version of "load" should be usable for any target. Currently
1543 it is just used for remote targets, not inftarg.c or core files,
1544 on the theory that only in that case is it useful.
1545
1546 Avoiding xmodem and the like seems like a win (a) because we don't have
1547 to worry about finding it, and (b) On VMS, fork() is very slow and so
1548 we don't want to run a subprocess. On the other hand, I'm not sure how
1549 performance compares. */
917317f4 1550
917317f4
JM
1551static int validate_download = 0;
1552
e4f9b4d5
MS
1553/* Callback service function for generic_load (bfd_map_over_sections). */
1554
1555static void
1556add_section_size_callback (bfd *abfd, asection *asec, void *data)
1557{
1558 bfd_size_type *sum = data;
1559
2c500098 1560 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1561}
1562
1563/* Opaque data for load_section_callback. */
1564struct load_section_data {
1565 unsigned long load_offset;
a76d924d
DJ
1566 struct load_progress_data *progress_data;
1567 VEC(memory_write_request_s) *requests;
1568};
1569
1570/* Opaque data for load_progress. */
1571struct load_progress_data {
1572 /* Cumulative data. */
e4f9b4d5
MS
1573 unsigned long write_count;
1574 unsigned long data_count;
1575 bfd_size_type total_size;
a76d924d
DJ
1576};
1577
1578/* Opaque data for load_progress for a single section. */
1579struct load_progress_section_data {
1580 struct load_progress_data *cumulative;
cf7a04e8 1581
a76d924d 1582 /* Per-section data. */
cf7a04e8
DJ
1583 const char *section_name;
1584 ULONGEST section_sent;
1585 ULONGEST section_size;
1586 CORE_ADDR lma;
1587 gdb_byte *buffer;
e4f9b4d5
MS
1588};
1589
a76d924d 1590/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1591
1592static void
1593load_progress (ULONGEST bytes, void *untyped_arg)
1594{
a76d924d
DJ
1595 struct load_progress_section_data *args = untyped_arg;
1596 struct load_progress_data *totals;
1597
1598 if (args == NULL)
1599 /* Writing padding data. No easy way to get at the cumulative
1600 stats, so just ignore this. */
1601 return;
1602
1603 totals = args->cumulative;
1604
1605 if (bytes == 0 && args->section_sent == 0)
1606 {
1607 /* The write is just starting. Let the user know we've started
1608 this section. */
1609 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1610 args->section_name, paddr_nz (args->section_size),
1611 paddr_nz (args->lma));
1612 return;
1613 }
cf7a04e8
DJ
1614
1615 if (validate_download)
1616 {
1617 /* Broken memories and broken monitors manifest themselves here
1618 when bring new computers to life. This doubles already slow
1619 downloads. */
1620 /* NOTE: cagney/1999-10-18: A more efficient implementation
1621 might add a verify_memory() method to the target vector and
1622 then use that. remote.c could implement that method using
1623 the ``qCRC'' packet. */
1624 gdb_byte *check = xmalloc (bytes);
1625 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1626
1627 if (target_read_memory (args->lma, check, bytes) != 0)
1628 error (_("Download verify read failed at 0x%s"),
1629 paddr (args->lma));
1630 if (memcmp (args->buffer, check, bytes) != 0)
1631 error (_("Download verify compare failed at 0x%s"),
1632 paddr (args->lma));
1633 do_cleanups (verify_cleanups);
1634 }
a76d924d 1635 totals->data_count += bytes;
cf7a04e8
DJ
1636 args->lma += bytes;
1637 args->buffer += bytes;
a76d924d 1638 totals->write_count += 1;
cf7a04e8
DJ
1639 args->section_sent += bytes;
1640 if (quit_flag
1641 || (deprecated_ui_load_progress_hook != NULL
1642 && deprecated_ui_load_progress_hook (args->section_name,
1643 args->section_sent)))
1644 error (_("Canceled the download"));
1645
1646 if (deprecated_show_load_progress != NULL)
1647 deprecated_show_load_progress (args->section_name,
1648 args->section_sent,
1649 args->section_size,
a76d924d
DJ
1650 totals->data_count,
1651 totals->total_size);
cf7a04e8
DJ
1652}
1653
e4f9b4d5
MS
1654/* Callback service function for generic_load (bfd_map_over_sections). */
1655
1656static void
1657load_section_callback (bfd *abfd, asection *asec, void *data)
1658{
a76d924d 1659 struct memory_write_request *new_request;
e4f9b4d5 1660 struct load_section_data *args = data;
a76d924d 1661 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1662 bfd_size_type size = bfd_get_section_size (asec);
1663 gdb_byte *buffer;
cf7a04e8 1664 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1665
cf7a04e8
DJ
1666 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1667 return;
e4f9b4d5 1668
cf7a04e8
DJ
1669 if (size == 0)
1670 return;
e4f9b4d5 1671
a76d924d
DJ
1672 new_request = VEC_safe_push (memory_write_request_s,
1673 args->requests, NULL);
1674 memset (new_request, 0, sizeof (struct memory_write_request));
1675 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1676 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1677 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1678 new_request->data = xmalloc (size);
1679 new_request->baton = section_data;
cf7a04e8 1680
a76d924d 1681 buffer = new_request->data;
cf7a04e8 1682
a76d924d
DJ
1683 section_data->cumulative = args->progress_data;
1684 section_data->section_name = sect_name;
1685 section_data->section_size = size;
1686 section_data->lma = new_request->begin;
1687 section_data->buffer = buffer;
cf7a04e8
DJ
1688
1689 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1690}
1691
1692/* Clean up an entire memory request vector, including load
1693 data and progress records. */
cf7a04e8 1694
a76d924d
DJ
1695static void
1696clear_memory_write_data (void *arg)
1697{
1698 VEC(memory_write_request_s) **vec_p = arg;
1699 VEC(memory_write_request_s) *vec = *vec_p;
1700 int i;
1701 struct memory_write_request *mr;
cf7a04e8 1702
a76d924d
DJ
1703 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1704 {
1705 xfree (mr->data);
1706 xfree (mr->baton);
1707 }
1708 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1709}
1710
c906108c 1711void
917317f4 1712generic_load (char *args, int from_tty)
c906108c 1713{
c906108c 1714 bfd *loadfile_bfd;
2b71414d 1715 struct timeval start_time, end_time;
917317f4 1716 char *filename;
1986bccd 1717 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1718 struct load_section_data cbdata;
a76d924d
DJ
1719 struct load_progress_data total_progress;
1720
e4f9b4d5 1721 CORE_ADDR entry;
1986bccd 1722 char **argv;
e4f9b4d5 1723
a76d924d
DJ
1724 memset (&cbdata, 0, sizeof (cbdata));
1725 memset (&total_progress, 0, sizeof (total_progress));
1726 cbdata.progress_data = &total_progress;
1727
1728 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1729
1986bccd
AS
1730 argv = buildargv (args);
1731
1732 if (argv == NULL)
1733 nomem(0);
1734
1735 make_cleanup_freeargv (argv);
1736
1737 filename = tilde_expand (argv[0]);
1738 make_cleanup (xfree, filename);
1739
1740 if (argv[1] != NULL)
917317f4
JM
1741 {
1742 char *endptr;
ba5f2f8a 1743
1986bccd
AS
1744 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1745
1746 /* If the last word was not a valid number then
1747 treat it as a file name with spaces in. */
1748 if (argv[1] == endptr)
1749 error (_("Invalid download offset:%s."), argv[1]);
1750
1751 if (argv[2] != NULL)
1752 error (_("Too many parameters."));
917317f4 1753 }
c906108c 1754
917317f4 1755 /* Open the file for loading. */
c906108c
SS
1756 loadfile_bfd = bfd_openr (filename, gnutarget);
1757 if (loadfile_bfd == NULL)
1758 {
1759 perror_with_name (filename);
1760 return;
1761 }
917317f4 1762
c906108c
SS
1763 /* FIXME: should be checking for errors from bfd_close (for one thing,
1764 on error it does not free all the storage associated with the
1765 bfd). */
5c65bbb6 1766 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1767
c5aa993b 1768 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1769 {
8a3fe4f8 1770 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1771 bfd_errmsg (bfd_get_error ()));
1772 }
c5aa993b 1773
5417f6dc 1774 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1775 (void *) &total_progress.total_size);
1776
1777 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1778
2b71414d 1779 gettimeofday (&start_time, NULL);
c906108c 1780
a76d924d
DJ
1781 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1782 load_progress) != 0)
1783 error (_("Load failed"));
c906108c 1784
2b71414d 1785 gettimeofday (&end_time, NULL);
ba5f2f8a 1786
e4f9b4d5 1787 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1788 ui_out_text (uiout, "Start address ");
1789 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1790 ui_out_text (uiout, ", load size ");
a76d924d 1791 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1792 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1793 /* We were doing this in remote-mips.c, I suspect it is right
1794 for other targets too. */
1795 write_pc (entry);
c906108c 1796
7ca9f392
AC
1797 /* FIXME: are we supposed to call symbol_file_add or not? According
1798 to a comment from remote-mips.c (where a call to symbol_file_add
1799 was commented out), making the call confuses GDB if more than one
1800 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1801 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1802
a76d924d
DJ
1803 print_transfer_performance (gdb_stdout, total_progress.data_count,
1804 total_progress.write_count,
1805 &start_time, &end_time);
c906108c
SS
1806
1807 do_cleanups (old_cleanups);
1808}
1809
1810/* Report how fast the transfer went. */
1811
917317f4
JM
1812/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1813 replaced by print_transfer_performance (with a very different
1814 function signature). */
1815
c906108c 1816void
fba45db2
KB
1817report_transfer_performance (unsigned long data_count, time_t start_time,
1818 time_t end_time)
c906108c 1819{
2b71414d
DJ
1820 struct timeval start, end;
1821
1822 start.tv_sec = start_time;
1823 start.tv_usec = 0;
1824 end.tv_sec = end_time;
1825 end.tv_usec = 0;
1826
1827 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1828}
1829
1830void
d9fcf2fb 1831print_transfer_performance (struct ui_file *stream,
917317f4
JM
1832 unsigned long data_count,
1833 unsigned long write_count,
2b71414d
DJ
1834 const struct timeval *start_time,
1835 const struct timeval *end_time)
917317f4 1836{
2b71414d
DJ
1837 unsigned long time_count;
1838
1839 /* Compute the elapsed time in milliseconds, as a tradeoff between
1840 accuracy and overflow. */
1841 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1842 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1843
8b93c638
JM
1844 ui_out_text (uiout, "Transfer rate: ");
1845 if (time_count > 0)
1846 {
5417f6dc 1847 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1848 1000 * (data_count * 8) / time_count);
8b93c638
JM
1849 ui_out_text (uiout, " bits/sec");
1850 }
1851 else
1852 {
ba5f2f8a 1853 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1854 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1855 }
1856 if (write_count > 0)
1857 {
1858 ui_out_text (uiout, ", ");
ba5f2f8a 1859 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1860 ui_out_text (uiout, " bytes/write");
1861 }
1862 ui_out_text (uiout, ".\n");
c906108c
SS
1863}
1864
1865/* This function allows the addition of incrementally linked object files.
1866 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1867/* Note: ezannoni 2000-04-13 This function/command used to have a
1868 special case syntax for the rombug target (Rombug is the boot
1869 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1870 rombug case, the user doesn't need to supply a text address,
1871 instead a call to target_link() (in target.c) would supply the
1872 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1873
c906108c 1874static void
fba45db2 1875add_symbol_file_command (char *args, int from_tty)
c906108c 1876{
db162d44 1877 char *filename = NULL;
2df3850c 1878 int flags = OBJF_USERLOADED;
c906108c 1879 char *arg;
2acceee2 1880 int expecting_option = 0;
db162d44 1881 int section_index = 0;
2acceee2
JM
1882 int argcnt = 0;
1883 int sec_num = 0;
1884 int i;
db162d44
EZ
1885 int expecting_sec_name = 0;
1886 int expecting_sec_addr = 0;
5b96932b 1887 char **argv;
db162d44 1888
a39a16c4 1889 struct sect_opt
2acceee2 1890 {
2acceee2
JM
1891 char *name;
1892 char *value;
a39a16c4 1893 };
db162d44 1894
a39a16c4
MM
1895 struct section_addr_info *section_addrs;
1896 struct sect_opt *sect_opts = NULL;
1897 size_t num_sect_opts = 0;
3017564a 1898 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1899
a39a16c4 1900 num_sect_opts = 16;
5417f6dc 1901 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1902 * sizeof (struct sect_opt));
1903
c906108c
SS
1904 dont_repeat ();
1905
1906 if (args == NULL)
8a3fe4f8 1907 error (_("add-symbol-file takes a file name and an address"));
c906108c 1908
5b96932b
AS
1909 argv = buildargv (args);
1910 make_cleanup_freeargv (argv);
db162d44 1911
5b96932b
AS
1912 if (argv == NULL)
1913 nomem (0);
db162d44 1914
5b96932b
AS
1915 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1916 {
1917 /* Process the argument. */
db162d44 1918 if (argcnt == 0)
c906108c 1919 {
db162d44
EZ
1920 /* The first argument is the file name. */
1921 filename = tilde_expand (arg);
3017564a 1922 make_cleanup (xfree, filename);
c906108c 1923 }
db162d44 1924 else
7a78ae4e
ND
1925 if (argcnt == 1)
1926 {
1927 /* The second argument is always the text address at which
1928 to load the program. */
1929 sect_opts[section_index].name = ".text";
1930 sect_opts[section_index].value = arg;
f414f22f 1931 if (++section_index >= num_sect_opts)
a39a16c4
MM
1932 {
1933 num_sect_opts *= 2;
5417f6dc 1934 sect_opts = ((struct sect_opt *)
a39a16c4 1935 xrealloc (sect_opts,
5417f6dc 1936 num_sect_opts
a39a16c4
MM
1937 * sizeof (struct sect_opt)));
1938 }
7a78ae4e
ND
1939 }
1940 else
1941 {
1942 /* It's an option (starting with '-') or it's an argument
1943 to an option */
1944
1945 if (*arg == '-')
1946 {
78a4a9b9
AC
1947 if (strcmp (arg, "-readnow") == 0)
1948 flags |= OBJF_READNOW;
1949 else if (strcmp (arg, "-s") == 0)
1950 {
1951 expecting_sec_name = 1;
1952 expecting_sec_addr = 1;
1953 }
7a78ae4e
ND
1954 }
1955 else
1956 {
1957 if (expecting_sec_name)
db162d44 1958 {
7a78ae4e
ND
1959 sect_opts[section_index].name = arg;
1960 expecting_sec_name = 0;
db162d44
EZ
1961 }
1962 else
7a78ae4e
ND
1963 if (expecting_sec_addr)
1964 {
1965 sect_opts[section_index].value = arg;
1966 expecting_sec_addr = 0;
f414f22f 1967 if (++section_index >= num_sect_opts)
a39a16c4
MM
1968 {
1969 num_sect_opts *= 2;
5417f6dc 1970 sect_opts = ((struct sect_opt *)
a39a16c4 1971 xrealloc (sect_opts,
5417f6dc 1972 num_sect_opts
a39a16c4
MM
1973 * sizeof (struct sect_opt)));
1974 }
7a78ae4e
ND
1975 }
1976 else
8a3fe4f8 1977 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1978 }
1979 }
c906108c 1980 }
c906108c 1981
927890d0
JB
1982 /* This command takes at least two arguments. The first one is a
1983 filename, and the second is the address where this file has been
1984 loaded. Abort now if this address hasn't been provided by the
1985 user. */
1986 if (section_index < 1)
1987 error (_("The address where %s has been loaded is missing"), filename);
1988
db162d44
EZ
1989 /* Print the prompt for the query below. And save the arguments into
1990 a sect_addr_info structure to be passed around to other
1991 functions. We have to split this up into separate print
bb599908 1992 statements because hex_string returns a local static
db162d44 1993 string. */
5417f6dc 1994
a3f17187 1995 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1996 section_addrs = alloc_section_addr_info (section_index);
1997 make_cleanup (xfree, section_addrs);
db162d44 1998 for (i = 0; i < section_index; i++)
c906108c 1999 {
db162d44
EZ
2000 CORE_ADDR addr;
2001 char *val = sect_opts[i].value;
2002 char *sec = sect_opts[i].name;
5417f6dc 2003
ae822768 2004 addr = parse_and_eval_address (val);
db162d44 2005
db162d44
EZ
2006 /* Here we store the section offsets in the order they were
2007 entered on the command line. */
a39a16c4
MM
2008 section_addrs->other[sec_num].name = sec;
2009 section_addrs->other[sec_num].addr = addr;
46f45a4a 2010 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 2011 sec, hex_string ((unsigned long)addr));
db162d44
EZ
2012 sec_num++;
2013
5417f6dc 2014 /* The object's sections are initialized when a
db162d44 2015 call is made to build_objfile_section_table (objfile).
5417f6dc 2016 This happens in reread_symbols.
db162d44
EZ
2017 At this point, we don't know what file type this is,
2018 so we can't determine what section names are valid. */
2acceee2 2019 }
db162d44 2020
2acceee2 2021 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2022 error (_("Not confirmed."));
c906108c 2023
a39a16c4 2024 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2025
2026 /* Getting new symbols may change our opinion about what is
2027 frameless. */
2028 reinit_frame_cache ();
db162d44 2029 do_cleanups (my_cleanups);
c906108c
SS
2030}
2031\f
2032static void
fba45db2 2033add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2034{
2035#ifdef ADD_SHARED_SYMBOL_FILES
2036 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2037#else
8a3fe4f8 2038 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2039#endif
c906108c
SS
2040}
2041\f
2042/* Re-read symbols if a symbol-file has changed. */
2043void
fba45db2 2044reread_symbols (void)
c906108c
SS
2045{
2046 struct objfile *objfile;
2047 long new_modtime;
2048 int reread_one = 0;
2049 struct stat new_statbuf;
2050 int res;
2051
2052 /* With the addition of shared libraries, this should be modified,
2053 the load time should be saved in the partial symbol tables, since
2054 different tables may come from different source files. FIXME.
2055 This routine should then walk down each partial symbol table
2056 and see if the symbol table that it originates from has been changed */
2057
c5aa993b
JM
2058 for (objfile = object_files; objfile; objfile = objfile->next)
2059 {
2060 if (objfile->obfd)
2061 {
52d16ba8 2062#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2063 /* If this object is from a shared library, then you should
2064 stat on the library name, not member name. */
c906108c 2065
c5aa993b
JM
2066 if (objfile->obfd->my_archive)
2067 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2068 else
c906108c 2069#endif
c5aa993b
JM
2070 res = stat (objfile->name, &new_statbuf);
2071 if (res != 0)
c906108c 2072 {
c5aa993b 2073 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2074 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2075 objfile->name);
2076 continue;
c906108c 2077 }
c5aa993b
JM
2078 new_modtime = new_statbuf.st_mtime;
2079 if (new_modtime != objfile->mtime)
c906108c 2080 {
c5aa993b
JM
2081 struct cleanup *old_cleanups;
2082 struct section_offsets *offsets;
2083 int num_offsets;
c5aa993b
JM
2084 char *obfd_filename;
2085
a3f17187 2086 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2087 objfile->name);
2088
2089 /* There are various functions like symbol_file_add,
2090 symfile_bfd_open, syms_from_objfile, etc., which might
2091 appear to do what we want. But they have various other
2092 effects which we *don't* want. So we just do stuff
2093 ourselves. We don't worry about mapped files (for one thing,
2094 any mapped file will be out of date). */
2095
2096 /* If we get an error, blow away this objfile (not sure if
2097 that is the correct response for things like shared
2098 libraries). */
74b7792f 2099 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2100 /* We need to do this whenever any symbols go away. */
74b7792f 2101 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2102
2103 /* Clean up any state BFD has sitting around. We don't need
2104 to close the descriptor but BFD lacks a way of closing the
2105 BFD without closing the descriptor. */
2106 obfd_filename = bfd_get_filename (objfile->obfd);
2107 if (!bfd_close (objfile->obfd))
8a3fe4f8 2108 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2109 bfd_errmsg (bfd_get_error ()));
2110 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2111 if (objfile->obfd == NULL)
8a3fe4f8 2112 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2113 /* bfd_openr sets cacheable to true, which is what we want. */
2114 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2115 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2116 bfd_errmsg (bfd_get_error ()));
2117
2118 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2119 objfile_obstack. */
c5aa993b 2120 num_offsets = objfile->num_sections;
5417f6dc 2121 offsets = ((struct section_offsets *)
a39a16c4 2122 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2123 memcpy (offsets, objfile->section_offsets,
a39a16c4 2124 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2125
ae5a43e0
DJ
2126 /* Remove any references to this objfile in the global
2127 value lists. */
2128 preserve_values (objfile);
2129
c5aa993b
JM
2130 /* Nuke all the state that we will re-read. Much of the following
2131 code which sets things to NULL really is necessary to tell
2132 other parts of GDB that there is nothing currently there. */
2133
2134 /* FIXME: Do we have to free a whole linked list, or is this
2135 enough? */
2136 if (objfile->global_psymbols.list)
2dc74dc1 2137 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2138 memset (&objfile->global_psymbols, 0,
2139 sizeof (objfile->global_psymbols));
2140 if (objfile->static_psymbols.list)
2dc74dc1 2141 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2142 memset (&objfile->static_psymbols, 0,
2143 sizeof (objfile->static_psymbols));
2144
2145 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2146 bcache_xfree (objfile->psymbol_cache);
2147 objfile->psymbol_cache = bcache_xmalloc ();
2148 bcache_xfree (objfile->macro_cache);
2149 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2150 if (objfile->demangled_names_hash != NULL)
2151 {
2152 htab_delete (objfile->demangled_names_hash);
2153 objfile->demangled_names_hash = NULL;
2154 }
b99607ea 2155 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2156 objfile->sections = NULL;
2157 objfile->symtabs = NULL;
2158 objfile->psymtabs = NULL;
2159 objfile->free_psymtabs = NULL;
a1b8c067 2160 objfile->cp_namespace_symtab = NULL;
c5aa993b 2161 objfile->msymbols = NULL;
0a6ddd08 2162 objfile->deprecated_sym_private = NULL;
c5aa993b 2163 objfile->minimal_symbol_count = 0;
0a83117a
MS
2164 memset (&objfile->msymbol_hash, 0,
2165 sizeof (objfile->msymbol_hash));
2166 memset (&objfile->msymbol_demangled_hash, 0,
2167 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2168 objfile->fundamental_types = NULL;
7b097ae3 2169 clear_objfile_data (objfile);
c5aa993b
JM
2170 if (objfile->sf != NULL)
2171 {
2172 (*objfile->sf->sym_finish) (objfile);
2173 }
2174
2175 /* We never make this a mapped file. */
2176 objfile->md = NULL;
af5f3db6
AC
2177 objfile->psymbol_cache = bcache_xmalloc ();
2178 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2179 /* obstack_init also initializes the obstack so it is
2180 empty. We could use obstack_specify_allocation but
2181 gdb_obstack.h specifies the alloc/dealloc
2182 functions. */
2183 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2184 if (build_objfile_section_table (objfile))
2185 {
8a3fe4f8 2186 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2187 objfile->name, bfd_errmsg (bfd_get_error ()));
2188 }
15831452 2189 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2190
2191 /* We use the same section offsets as from last time. I'm not
2192 sure whether that is always correct for shared libraries. */
2193 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2194 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2195 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2196 memcpy (objfile->section_offsets, offsets,
a39a16c4 2197 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2198 objfile->num_sections = num_offsets;
2199
2200 /* What the hell is sym_new_init for, anyway? The concept of
2201 distinguishing between the main file and additional files
2202 in this way seems rather dubious. */
2203 if (objfile == symfile_objfile)
2204 {
2205 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2206 }
2207
2208 (*objfile->sf->sym_init) (objfile);
b9caf505 2209 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2210 /* The "mainline" parameter is a hideous hack; I think leaving it
2211 zero is OK since dbxread.c also does what it needs to do if
2212 objfile->global_psymbols.size is 0. */
96baa820 2213 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2214 if (!have_partial_symbols () && !have_full_symbols ())
2215 {
2216 wrap_here ("");
a3f17187 2217 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2218 wrap_here ("");
2219 }
2220 objfile->flags |= OBJF_SYMS;
2221
2222 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2223 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2224
c5aa993b
JM
2225 /* Getting new symbols may change our opinion about what is
2226 frameless. */
c906108c 2227
c5aa993b 2228 reinit_frame_cache ();
c906108c 2229
c5aa993b
JM
2230 /* Discard cleanups as symbol reading was successful. */
2231 discard_cleanups (old_cleanups);
c906108c 2232
c5aa993b
JM
2233 /* If the mtime has changed between the time we set new_modtime
2234 and now, we *want* this to be out of date, so don't call stat
2235 again now. */
2236 objfile->mtime = new_modtime;
2237 reread_one = 1;
5b5d99cf 2238 reread_separate_symbols (objfile);
c5aa993b 2239 }
c906108c
SS
2240 }
2241 }
c906108c
SS
2242
2243 if (reread_one)
ea53e89f
JB
2244 {
2245 clear_symtab_users ();
2246 /* At least one objfile has changed, so we can consider that
2247 the executable we're debugging has changed too. */
2248 observer_notify_executable_changed (NULL);
2249 }
2250
c906108c 2251}
5b5d99cf
JB
2252
2253
2254/* Handle separate debug info for OBJFILE, which has just been
2255 re-read:
2256 - If we had separate debug info before, but now we don't, get rid
2257 of the separated objfile.
2258 - If we didn't have separated debug info before, but now we do,
2259 read in the new separated debug info file.
2260 - If the debug link points to a different file, toss the old one
2261 and read the new one.
2262 This function does *not* handle the case where objfile is still
2263 using the same separate debug info file, but that file's timestamp
2264 has changed. That case should be handled by the loop in
2265 reread_symbols already. */
2266static void
2267reread_separate_symbols (struct objfile *objfile)
2268{
2269 char *debug_file;
2270 unsigned long crc32;
2271
2272 /* Does the updated objfile's debug info live in a
2273 separate file? */
2274 debug_file = find_separate_debug_file (objfile);
2275
2276 if (objfile->separate_debug_objfile)
2277 {
2278 /* There are two cases where we need to get rid of
2279 the old separated debug info objfile:
2280 - if the new primary objfile doesn't have
2281 separated debug info, or
2282 - if the new primary objfile has separate debug
2283 info, but it's under a different filename.
5417f6dc 2284
5b5d99cf
JB
2285 If the old and new objfiles both have separate
2286 debug info, under the same filename, then we're
2287 okay --- if the separated file's contents have
2288 changed, we will have caught that when we
2289 visited it in this function's outermost
2290 loop. */
2291 if (! debug_file
2292 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2293 free_objfile (objfile->separate_debug_objfile);
2294 }
2295
2296 /* If the new objfile has separate debug info, and we
2297 haven't loaded it already, do so now. */
2298 if (debug_file
2299 && ! objfile->separate_debug_objfile)
2300 {
2301 /* Use the same section offset table as objfile itself.
2302 Preserve the flags from objfile that make sense. */
2303 objfile->separate_debug_objfile
2304 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2305 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2306 info_verbose, /* from_tty: Don't override the default. */
2307 0, /* No addr table. */
2308 objfile->section_offsets, objfile->num_sections,
2309 0, /* Not mainline. See comments about this above. */
78a4a9b9 2310 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2311 | OBJF_USERLOADED)));
2312 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2313 = objfile;
2314 }
2315}
2316
2317
c906108c
SS
2318\f
2319
c5aa993b
JM
2320
2321typedef struct
2322{
2323 char *ext;
c906108c 2324 enum language lang;
c5aa993b
JM
2325}
2326filename_language;
c906108c 2327
c5aa993b 2328static filename_language *filename_language_table;
c906108c
SS
2329static int fl_table_size, fl_table_next;
2330
2331static void
fba45db2 2332add_filename_language (char *ext, enum language lang)
c906108c
SS
2333{
2334 if (fl_table_next >= fl_table_size)
2335 {
2336 fl_table_size += 10;
5417f6dc 2337 filename_language_table =
25bf3106
PM
2338 xrealloc (filename_language_table,
2339 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2340 }
2341
4fcf66da 2342 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2343 filename_language_table[fl_table_next].lang = lang;
2344 fl_table_next++;
2345}
2346
2347static char *ext_args;
920d2a44
AC
2348static void
2349show_ext_args (struct ui_file *file, int from_tty,
2350 struct cmd_list_element *c, const char *value)
2351{
2352 fprintf_filtered (file, _("\
2353Mapping between filename extension and source language is \"%s\".\n"),
2354 value);
2355}
c906108c
SS
2356
2357static void
26c41df3 2358set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2359{
2360 int i;
2361 char *cp = ext_args;
2362 enum language lang;
2363
2364 /* First arg is filename extension, starting with '.' */
2365 if (*cp != '.')
8a3fe4f8 2366 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2367
2368 /* Find end of first arg. */
c5aa993b 2369 while (*cp && !isspace (*cp))
c906108c
SS
2370 cp++;
2371
2372 if (*cp == '\0')
8a3fe4f8 2373 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2374 ext_args);
2375
2376 /* Null-terminate first arg */
c5aa993b 2377 *cp++ = '\0';
c906108c
SS
2378
2379 /* Find beginning of second arg, which should be a source language. */
2380 while (*cp && isspace (*cp))
2381 cp++;
2382
2383 if (*cp == '\0')
8a3fe4f8 2384 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2385 ext_args);
2386
2387 /* Lookup the language from among those we know. */
2388 lang = language_enum (cp);
2389
2390 /* Now lookup the filename extension: do we already know it? */
2391 for (i = 0; i < fl_table_next; i++)
2392 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2393 break;
2394
2395 if (i >= fl_table_next)
2396 {
2397 /* new file extension */
2398 add_filename_language (ext_args, lang);
2399 }
2400 else
2401 {
2402 /* redefining a previously known filename extension */
2403
2404 /* if (from_tty) */
2405 /* query ("Really make files of type %s '%s'?", */
2406 /* ext_args, language_str (lang)); */
2407
b8c9b27d 2408 xfree (filename_language_table[i].ext);
4fcf66da 2409 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2410 filename_language_table[i].lang = lang;
2411 }
2412}
2413
2414static void
fba45db2 2415info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2416{
2417 int i;
2418
a3f17187 2419 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2420 printf_filtered ("\n\n");
2421 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2422 printf_filtered ("\t%s\t- %s\n",
2423 filename_language_table[i].ext,
c906108c
SS
2424 language_str (filename_language_table[i].lang));
2425}
2426
2427static void
fba45db2 2428init_filename_language_table (void)
c906108c
SS
2429{
2430 if (fl_table_size == 0) /* protect against repetition */
2431 {
2432 fl_table_size = 20;
2433 fl_table_next = 0;
c5aa993b 2434 filename_language_table =
c906108c 2435 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2436 add_filename_language (".c", language_c);
2437 add_filename_language (".C", language_cplus);
2438 add_filename_language (".cc", language_cplus);
2439 add_filename_language (".cp", language_cplus);
2440 add_filename_language (".cpp", language_cplus);
2441 add_filename_language (".cxx", language_cplus);
2442 add_filename_language (".c++", language_cplus);
2443 add_filename_language (".java", language_java);
c906108c 2444 add_filename_language (".class", language_java);
da2cf7e0 2445 add_filename_language (".m", language_objc);
c5aa993b
JM
2446 add_filename_language (".f", language_fortran);
2447 add_filename_language (".F", language_fortran);
2448 add_filename_language (".s", language_asm);
2449 add_filename_language (".S", language_asm);
c6fd39cd
PM
2450 add_filename_language (".pas", language_pascal);
2451 add_filename_language (".p", language_pascal);
2452 add_filename_language (".pp", language_pascal);
963a6417
PH
2453 add_filename_language (".adb", language_ada);
2454 add_filename_language (".ads", language_ada);
2455 add_filename_language (".a", language_ada);
2456 add_filename_language (".ada", language_ada);
c906108c
SS
2457 }
2458}
2459
2460enum language
fba45db2 2461deduce_language_from_filename (char *filename)
c906108c
SS
2462{
2463 int i;
2464 char *cp;
2465
2466 if (filename != NULL)
2467 if ((cp = strrchr (filename, '.')) != NULL)
2468 for (i = 0; i < fl_table_next; i++)
2469 if (strcmp (cp, filename_language_table[i].ext) == 0)
2470 return filename_language_table[i].lang;
2471
2472 return language_unknown;
2473}
2474\f
2475/* allocate_symtab:
2476
2477 Allocate and partly initialize a new symbol table. Return a pointer
2478 to it. error() if no space.
2479
2480 Caller must set these fields:
c5aa993b
JM
2481 LINETABLE(symtab)
2482 symtab->blockvector
2483 symtab->dirname
2484 symtab->free_code
2485 symtab->free_ptr
2486 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2487 */
2488
2489struct symtab *
fba45db2 2490allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2491{
52f0bd74 2492 struct symtab *symtab;
c906108c
SS
2493
2494 symtab = (struct symtab *)
4a146b47 2495 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2496 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2497 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2498 &objfile->objfile_obstack);
c5aa993b
JM
2499 symtab->fullname = NULL;
2500 symtab->language = deduce_language_from_filename (filename);
2501 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2502 &objfile->objfile_obstack);
c906108c
SS
2503
2504 /* Hook it to the objfile it comes from */
2505
c5aa993b
JM
2506 symtab->objfile = objfile;
2507 symtab->next = objfile->symtabs;
2508 objfile->symtabs = symtab;
c906108c 2509
c906108c
SS
2510 return (symtab);
2511}
2512
2513struct partial_symtab *
fba45db2 2514allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2515{
2516 struct partial_symtab *psymtab;
2517
c5aa993b 2518 if (objfile->free_psymtabs)
c906108c 2519 {
c5aa993b
JM
2520 psymtab = objfile->free_psymtabs;
2521 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2522 }
2523 else
2524 psymtab = (struct partial_symtab *)
8b92e4d5 2525 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2526 sizeof (struct partial_symtab));
2527
2528 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2529 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2530 &objfile->objfile_obstack);
c5aa993b 2531 psymtab->symtab = NULL;
c906108c
SS
2532
2533 /* Prepend it to the psymtab list for the objfile it belongs to.
2534 Psymtabs are searched in most recent inserted -> least recent
2535 inserted order. */
2536
c5aa993b
JM
2537 psymtab->objfile = objfile;
2538 psymtab->next = objfile->psymtabs;
2539 objfile->psymtabs = psymtab;
c906108c
SS
2540#if 0
2541 {
2542 struct partial_symtab **prev_pst;
c5aa993b
JM
2543 psymtab->objfile = objfile;
2544 psymtab->next = NULL;
2545 prev_pst = &(objfile->psymtabs);
c906108c 2546 while ((*prev_pst) != NULL)
c5aa993b 2547 prev_pst = &((*prev_pst)->next);
c906108c 2548 (*prev_pst) = psymtab;
c5aa993b 2549 }
c906108c 2550#endif
c5aa993b 2551
c906108c
SS
2552 return (psymtab);
2553}
2554
2555void
fba45db2 2556discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2557{
2558 struct partial_symtab **prev_pst;
2559
2560 /* From dbxread.c:
2561 Empty psymtabs happen as a result of header files which don't
2562 have any symbols in them. There can be a lot of them. But this
2563 check is wrong, in that a psymtab with N_SLINE entries but
2564 nothing else is not empty, but we don't realize that. Fixing
2565 that without slowing things down might be tricky. */
2566
2567 /* First, snip it out of the psymtab chain */
2568
2569 prev_pst = &(pst->objfile->psymtabs);
2570 while ((*prev_pst) != pst)
2571 prev_pst = &((*prev_pst)->next);
2572 (*prev_pst) = pst->next;
2573
2574 /* Next, put it on a free list for recycling */
2575
2576 pst->next = pst->objfile->free_psymtabs;
2577 pst->objfile->free_psymtabs = pst;
2578}
c906108c 2579\f
c5aa993b 2580
c906108c
SS
2581/* Reset all data structures in gdb which may contain references to symbol
2582 table data. */
2583
2584void
fba45db2 2585clear_symtab_users (void)
c906108c
SS
2586{
2587 /* Someday, we should do better than this, by only blowing away
2588 the things that really need to be blown. */
c0501be5
DJ
2589
2590 /* Clear the "current" symtab first, because it is no longer valid.
2591 breakpoint_re_set may try to access the current symtab. */
2592 clear_current_source_symtab_and_line ();
2593
c906108c 2594 clear_displays ();
c906108c
SS
2595 breakpoint_re_set ();
2596 set_default_breakpoint (0, 0, 0, 0);
c906108c 2597 clear_pc_function_cache ();
9a4105ab
AC
2598 if (deprecated_target_new_objfile_hook)
2599 deprecated_target_new_objfile_hook (NULL);
9bdcbae7
DJ
2600
2601 /* Clear globals which might have pointed into a removed objfile.
2602 FIXME: It's not clear which of these are supposed to persist
2603 between expressions and which ought to be reset each time. */
2604 expression_context_block = NULL;
2605 innermost_block = NULL;
8756216b
DP
2606
2607 /* Varobj may refer to old symbols, perform a cleanup. */
2608 varobj_invalidate ();
2609
c906108c
SS
2610}
2611
74b7792f
AC
2612static void
2613clear_symtab_users_cleanup (void *ignore)
2614{
2615 clear_symtab_users ();
2616}
2617
c906108c
SS
2618/* clear_symtab_users_once:
2619
2620 This function is run after symbol reading, or from a cleanup.
2621 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2622 has been blown away, but the other GDB data structures that may
c906108c
SS
2623 reference it have not yet been cleared or re-directed. (The old
2624 symtab was zapped, and the cleanup queued, in free_named_symtab()
2625 below.)
2626
2627 This function can be queued N times as a cleanup, or called
2628 directly; it will do all the work the first time, and then will be a
2629 no-op until the next time it is queued. This works by bumping a
2630 counter at queueing time. Much later when the cleanup is run, or at
2631 the end of symbol processing (in case the cleanup is discarded), if
2632 the queued count is greater than the "done-count", we do the work
2633 and set the done-count to the queued count. If the queued count is
2634 less than or equal to the done-count, we just ignore the call. This
2635 is needed because reading a single .o file will often replace many
2636 symtabs (one per .h file, for example), and we don't want to reset
2637 the breakpoints N times in the user's face.
2638
2639 The reason we both queue a cleanup, and call it directly after symbol
2640 reading, is because the cleanup protects us in case of errors, but is
2641 discarded if symbol reading is successful. */
2642
2643#if 0
2644/* FIXME: As free_named_symtabs is currently a big noop this function
2645 is no longer needed. */
a14ed312 2646static void clear_symtab_users_once (void);
c906108c
SS
2647
2648static int clear_symtab_users_queued;
2649static int clear_symtab_users_done;
2650
2651static void
fba45db2 2652clear_symtab_users_once (void)
c906108c
SS
2653{
2654 /* Enforce once-per-`do_cleanups'-semantics */
2655 if (clear_symtab_users_queued <= clear_symtab_users_done)
2656 return;
2657 clear_symtab_users_done = clear_symtab_users_queued;
2658
2659 clear_symtab_users ();
2660}
2661#endif
2662
2663/* Delete the specified psymtab, and any others that reference it. */
2664
2665static void
fba45db2 2666cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2667{
2668 struct partial_symtab *ps, *pprev = NULL;
2669 int i;
2670
2671 /* Find its previous psymtab in the chain */
c5aa993b
JM
2672 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2673 {
2674 if (ps == pst)
2675 break;
2676 pprev = ps;
2677 }
c906108c 2678
c5aa993b
JM
2679 if (ps)
2680 {
2681 /* Unhook it from the chain. */
2682 if (ps == pst->objfile->psymtabs)
2683 pst->objfile->psymtabs = ps->next;
2684 else
2685 pprev->next = ps->next;
2686
2687 /* FIXME, we can't conveniently deallocate the entries in the
2688 partial_symbol lists (global_psymbols/static_psymbols) that
2689 this psymtab points to. These just take up space until all
2690 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2691 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2692
2693 /* We need to cashier any psymtab that has this one as a dependency... */
2694 again:
2695 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2696 {
2697 for (i = 0; i < ps->number_of_dependencies; i++)
2698 {
2699 if (ps->dependencies[i] == pst)
2700 {
2701 cashier_psymtab (ps);
2702 goto again; /* Must restart, chain has been munged. */
2703 }
2704 }
c906108c 2705 }
c906108c 2706 }
c906108c
SS
2707}
2708
2709/* If a symtab or psymtab for filename NAME is found, free it along
2710 with any dependent breakpoints, displays, etc.
2711 Used when loading new versions of object modules with the "add-file"
2712 command. This is only called on the top-level symtab or psymtab's name;
2713 it is not called for subsidiary files such as .h files.
2714
2715 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2716 FIXME. The return value appears to never be used.
c906108c
SS
2717
2718 FIXME. I think this is not the best way to do this. We should
2719 work on being gentler to the environment while still cleaning up
2720 all stray pointers into the freed symtab. */
2721
2722int
fba45db2 2723free_named_symtabs (char *name)
c906108c
SS
2724{
2725#if 0
2726 /* FIXME: With the new method of each objfile having it's own
2727 psymtab list, this function needs serious rethinking. In particular,
2728 why was it ever necessary to toss psymtabs with specific compilation
2729 unit filenames, as opposed to all psymtabs from a particular symbol
2730 file? -- fnf
2731 Well, the answer is that some systems permit reloading of particular
2732 compilation units. We want to blow away any old info about these
2733 compilation units, regardless of which objfiles they arrived in. --gnu. */
2734
52f0bd74
AC
2735 struct symtab *s;
2736 struct symtab *prev;
2737 struct partial_symtab *ps;
c906108c
SS
2738 struct blockvector *bv;
2739 int blewit = 0;
2740
2741 /* We only wack things if the symbol-reload switch is set. */
2742 if (!symbol_reloading)
2743 return 0;
2744
2745 /* Some symbol formats have trouble providing file names... */
2746 if (name == 0 || *name == '\0')
2747 return 0;
2748
2749 /* Look for a psymtab with the specified name. */
2750
2751again2:
c5aa993b
JM
2752 for (ps = partial_symtab_list; ps; ps = ps->next)
2753 {
6314a349 2754 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2755 {
2756 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2757 goto again2; /* Must restart, chain has been munged */
2758 }
c906108c 2759 }
c906108c
SS
2760
2761 /* Look for a symtab with the specified name. */
2762
2763 for (s = symtab_list; s; s = s->next)
2764 {
6314a349 2765 if (strcmp (name, s->filename) == 0)
c906108c
SS
2766 break;
2767 prev = s;
2768 }
2769
2770 if (s)
2771 {
2772 if (s == symtab_list)
2773 symtab_list = s->next;
2774 else
2775 prev->next = s->next;
2776
2777 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2778 or not they depend on the symtab being freed. This should be
2779 changed so that only those data structures affected are deleted. */
c906108c
SS
2780
2781 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2782 This test is necessary due to a bug in "dbxread.c" that
2783 causes empty symtabs to be created for N_SO symbols that
2784 contain the pathname of the object file. (This problem
2785 has been fixed in GDB 3.9x). */
c906108c
SS
2786
2787 bv = BLOCKVECTOR (s);
2788 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2789 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2790 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2791 {
e2e0b3e5 2792 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2793 name);
c906108c
SS
2794 clear_symtab_users_queued++;
2795 make_cleanup (clear_symtab_users_once, 0);
2796 blewit = 1;
c5aa993b
JM
2797 }
2798 else
e2e0b3e5
AC
2799 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2800 name);
c906108c
SS
2801
2802 free_symtab (s);
2803 }
2804 else
2805 {
2806 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2807 even though no symtab was found, since the file might have
2808 been compiled without debugging, and hence not be associated
2809 with a symtab. In order to handle this correctly, we would need
2810 to keep a list of text address ranges for undebuggable files.
2811 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2812 ;
2813 }
2814
2815 /* FIXME, what about the minimal symbol table? */
2816 return blewit;
2817#else
2818 return (0);
2819#endif
2820}
2821\f
2822/* Allocate and partially fill a partial symtab. It will be
2823 completely filled at the end of the symbol list.
2824
d4f3574e 2825 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2826
2827struct partial_symtab *
fba45db2
KB
2828start_psymtab_common (struct objfile *objfile,
2829 struct section_offsets *section_offsets, char *filename,
2830 CORE_ADDR textlow, struct partial_symbol **global_syms,
2831 struct partial_symbol **static_syms)
c906108c
SS
2832{
2833 struct partial_symtab *psymtab;
2834
2835 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2836 psymtab->section_offsets = section_offsets;
2837 psymtab->textlow = textlow;
2838 psymtab->texthigh = psymtab->textlow; /* default */
2839 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2840 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2841 return (psymtab);
2842}
2843\f
2844/* Add a symbol with a long value to a psymtab.
5417f6dc 2845 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2846 Return the partial symbol that has been added. */
2847
2848/* NOTE: carlton/2003-09-11: The reason why we return the partial
2849 symbol is so that callers can get access to the symbol's demangled
2850 name, which they don't have any cheap way to determine otherwise.
2851 (Currenly, dwarf2read.c is the only file who uses that information,
2852 though it's possible that other readers might in the future.)
2853 Elena wasn't thrilled about that, and I don't blame her, but we
2854 couldn't come up with a better way to get that information. If
2855 it's needed in other situations, we could consider breaking up
2856 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2857 cache. */
2858
2859const struct partial_symbol *
176620f1 2860add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2861 enum address_class class,
2862 struct psymbol_allocation_list *list, long val, /* Value as a long */
2863 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2864 enum language language, struct objfile *objfile)
c906108c 2865{
52f0bd74 2866 struct partial_symbol *psym;
c906108c
SS
2867 char *buf = alloca (namelength + 1);
2868 /* psymbol is static so that there will be no uninitialized gaps in the
2869 structure which might contain random data, causing cache misses in
2870 bcache. */
2871 static struct partial_symbol psymbol;
2872
2873 /* Create local copy of the partial symbol */
2874 memcpy (buf, name, namelength);
2875 buf[namelength] = '\0';
c906108c
SS
2876 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2877 if (val != 0)
2878 {
2879 SYMBOL_VALUE (&psymbol) = val;
2880 }
2881 else
2882 {
2883 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2884 }
2885 SYMBOL_SECTION (&psymbol) = 0;
2886 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2887 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2888 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2889
2890 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2891
2892 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2893 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2894 objfile->psymbol_cache);
c906108c
SS
2895
2896 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2897 if (list->next >= list->list + list->size)
2898 {
2899 extend_psymbol_list (list, objfile);
2900 }
2901 *list->next++ = psym;
2902 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2903
2904 return psym;
c906108c
SS
2905}
2906
2907/* Add a symbol with a long value to a psymtab. This differs from
2908 * add_psymbol_to_list above in taking both a mangled and a demangled
2909 * name. */
2910
2911void
fba45db2 2912add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2913 int dem_namelength, domain_enum domain,
fba45db2
KB
2914 enum address_class class,
2915 struct psymbol_allocation_list *list, long val, /* Value as a long */
2916 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2917 enum language language,
2918 struct objfile *objfile)
c906108c 2919{
52f0bd74 2920 struct partial_symbol *psym;
c906108c
SS
2921 char *buf = alloca (namelength + 1);
2922 /* psymbol is static so that there will be no uninitialized gaps in the
2923 structure which might contain random data, causing cache misses in
2924 bcache. */
2925 static struct partial_symbol psymbol;
2926
2927 /* Create local copy of the partial symbol */
2928
2929 memcpy (buf, name, namelength);
2930 buf[namelength] = '\0';
3a16a68c
AC
2931 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2932 objfile->psymbol_cache);
c906108c
SS
2933
2934 buf = alloca (dem_namelength + 1);
2935 memcpy (buf, dem_name, dem_namelength);
2936 buf[dem_namelength] = '\0';
c5aa993b 2937
c906108c
SS
2938 switch (language)
2939 {
c5aa993b
JM
2940 case language_c:
2941 case language_cplus:
2942 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2943 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2944 break;
c906108c
SS
2945 /* FIXME What should be done for the default case? Ignoring for now. */
2946 }
2947
2948 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2949 if (val != 0)
2950 {
2951 SYMBOL_VALUE (&psymbol) = val;
2952 }
2953 else
2954 {
2955 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2956 }
2957 SYMBOL_SECTION (&psymbol) = 0;
2958 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2959 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2960 PSYMBOL_CLASS (&psymbol) = class;
2961 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2962
2963 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2964 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2965 objfile->psymbol_cache);
c906108c
SS
2966
2967 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2968 if (list->next >= list->list + list->size)
2969 {
2970 extend_psymbol_list (list, objfile);
2971 }
2972 *list->next++ = psym;
2973 OBJSTAT (objfile, n_psyms++);
2974}
2975
2976/* Initialize storage for partial symbols. */
2977
2978void
fba45db2 2979init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2980{
2981 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2982
2983 if (objfile->global_psymbols.list)
c906108c 2984 {
2dc74dc1 2985 xfree (objfile->global_psymbols.list);
c906108c 2986 }
c5aa993b 2987 if (objfile->static_psymbols.list)
c906108c 2988 {
2dc74dc1 2989 xfree (objfile->static_psymbols.list);
c906108c 2990 }
c5aa993b 2991
c906108c
SS
2992 /* Current best guess is that approximately a twentieth
2993 of the total symbols (in a debugging file) are global or static
2994 oriented symbols */
c906108c 2995
c5aa993b
JM
2996 objfile->global_psymbols.size = total_symbols / 10;
2997 objfile->static_psymbols.size = total_symbols / 10;
2998
2999 if (objfile->global_psymbols.size > 0)
c906108c 3000 {
c5aa993b
JM
3001 objfile->global_psymbols.next =
3002 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3003 xmalloc ((objfile->global_psymbols.size
3004 * sizeof (struct partial_symbol *)));
c906108c 3005 }
c5aa993b 3006 if (objfile->static_psymbols.size > 0)
c906108c 3007 {
c5aa993b
JM
3008 objfile->static_psymbols.next =
3009 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3010 xmalloc ((objfile->static_psymbols.size
3011 * sizeof (struct partial_symbol *)));
c906108c
SS
3012 }
3013}
3014
3015/* OVERLAYS:
3016 The following code implements an abstraction for debugging overlay sections.
3017
3018 The target model is as follows:
3019 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3020 same VMA, each with its own unique LMA (or load address).
c906108c 3021 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3022 sections, one by one, from the load address into the VMA address.
5417f6dc 3023 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3024 sections should be considered to be mapped from the VMA to the LMA.
3025 This information is used for symbol lookup, and memory read/write.
5417f6dc 3026 For instance, if a section has been mapped then its contents
c5aa993b 3027 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3028
3029 Two levels of debugger support for overlays are available. One is
3030 "manual", in which the debugger relies on the user to tell it which
3031 overlays are currently mapped. This level of support is
3032 implemented entirely in the core debugger, and the information about
3033 whether a section is mapped is kept in the objfile->obj_section table.
3034
3035 The second level of support is "automatic", and is only available if
3036 the target-specific code provides functionality to read the target's
3037 overlay mapping table, and translate its contents for the debugger
3038 (by updating the mapped state information in the obj_section tables).
3039
3040 The interface is as follows:
c5aa993b
JM
3041 User commands:
3042 overlay map <name> -- tell gdb to consider this section mapped
3043 overlay unmap <name> -- tell gdb to consider this section unmapped
3044 overlay list -- list the sections that GDB thinks are mapped
3045 overlay read-target -- get the target's state of what's mapped
3046 overlay off/manual/auto -- set overlay debugging state
3047 Functional interface:
3048 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3049 section, return that section.
5417f6dc 3050 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3051 the pc, either in its VMA or its LMA
3052 overlay_is_mapped(sect): true if overlay is marked as mapped
3053 section_is_overlay(sect): true if section's VMA != LMA
3054 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3055 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3056 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3057 overlay_mapped_address(...): map an address from section's LMA to VMA
3058 overlay_unmapped_address(...): map an address from section's VMA to LMA
3059 symbol_overlayed_address(...): Return a "current" address for symbol:
3060 either in VMA or LMA depending on whether
3061 the symbol's section is currently mapped
c906108c
SS
3062 */
3063
3064/* Overlay debugging state: */
3065
d874f1e2 3066enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3067int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3068
3069/* Target vector for refreshing overlay mapped state */
a14ed312 3070static void simple_overlay_update (struct obj_section *);
507f3c78 3071void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
3072
3073/* Function: section_is_overlay (SECTION)
5417f6dc 3074 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3075 SECTION is loaded at an address different from where it will "run". */
3076
3077int
fba45db2 3078section_is_overlay (asection *section)
c906108c 3079{
fbd35540
MS
3080 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3081
c906108c
SS
3082 if (overlay_debugging)
3083 if (section && section->lma != 0 &&
3084 section->vma != section->lma)
3085 return 1;
3086
3087 return 0;
3088}
3089
3090/* Function: overlay_invalidate_all (void)
3091 Invalidate the mapped state of all overlay sections (mark it as stale). */
3092
3093static void
fba45db2 3094overlay_invalidate_all (void)
c906108c 3095{
c5aa993b 3096 struct objfile *objfile;
c906108c
SS
3097 struct obj_section *sect;
3098
3099 ALL_OBJSECTIONS (objfile, sect)
3100 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3101 sect->ovly_mapped = -1;
c906108c
SS
3102}
3103
3104/* Function: overlay_is_mapped (SECTION)
5417f6dc 3105 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3106 Private: public access is thru function section_is_mapped.
3107
3108 Access to the ovly_mapped flag is restricted to this function, so
3109 that we can do automatic update. If the global flag
3110 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3111 overlay_invalidate_all. If the mapped state of the particular
3112 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3113
c5aa993b 3114static int
fba45db2 3115overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3116{
3117 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3118 return 0;
3119
c5aa993b 3120 switch (overlay_debugging)
c906108c
SS
3121 {
3122 default:
d874f1e2 3123 case ovly_off:
c5aa993b 3124 return 0; /* overlay debugging off */
d874f1e2 3125 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3126 /* Unles there is a target_overlay_update function,
c5aa993b 3127 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3128 if (target_overlay_update)
3129 {
3130 if (overlay_cache_invalid)
3131 {
3132 overlay_invalidate_all ();
3133 overlay_cache_invalid = 0;
3134 }
3135 if (osect->ovly_mapped == -1)
3136 (*target_overlay_update) (osect);
3137 }
3138 /* fall thru to manual case */
d874f1e2 3139 case ovly_on: /* overlay debugging manual */
c906108c
SS
3140 return osect->ovly_mapped == 1;
3141 }
3142}
3143
3144/* Function: section_is_mapped
3145 Returns true if section is an overlay, and is currently mapped. */
3146
3147int
fba45db2 3148section_is_mapped (asection *section)
c906108c 3149{
c5aa993b 3150 struct objfile *objfile;
c906108c
SS
3151 struct obj_section *osect;
3152
3153 if (overlay_debugging)
3154 if (section && section_is_overlay (section))
3155 ALL_OBJSECTIONS (objfile, osect)
3156 if (osect->the_bfd_section == section)
c5aa993b 3157 return overlay_is_mapped (osect);
c906108c
SS
3158
3159 return 0;
3160}
3161
3162/* Function: pc_in_unmapped_range
3163 If PC falls into the lma range of SECTION, return true, else false. */
3164
3165CORE_ADDR
fba45db2 3166pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3167{
fbd35540
MS
3168 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3169
c906108c
SS
3170 int size;
3171
3172 if (overlay_debugging)
3173 if (section && section_is_overlay (section))
3174 {
2c500098 3175 size = bfd_get_section_size (section);
c906108c
SS
3176 if (section->lma <= pc && pc < section->lma + size)
3177 return 1;
3178 }
3179 return 0;
3180}
3181
3182/* Function: pc_in_mapped_range
3183 If PC falls into the vma range of SECTION, return true, else false. */
3184
3185CORE_ADDR
fba45db2 3186pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3187{
fbd35540
MS
3188 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3189
c906108c
SS
3190 int size;
3191
3192 if (overlay_debugging)
3193 if (section && section_is_overlay (section))
3194 {
2c500098 3195 size = bfd_get_section_size (section);
c906108c
SS
3196 if (section->vma <= pc && pc < section->vma + size)
3197 return 1;
3198 }
3199 return 0;
3200}
3201
9ec8e6a0
JB
3202
3203/* Return true if the mapped ranges of sections A and B overlap, false
3204 otherwise. */
b9362cc7 3205static int
9ec8e6a0
JB
3206sections_overlap (asection *a, asection *b)
3207{
fbd35540
MS
3208 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3209
9ec8e6a0 3210 CORE_ADDR a_start = a->vma;
2c500098 3211 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3212 CORE_ADDR b_start = b->vma;
2c500098 3213 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3214
3215 return (a_start < b_end && b_start < a_end);
3216}
3217
c906108c
SS
3218/* Function: overlay_unmapped_address (PC, SECTION)
3219 Returns the address corresponding to PC in the unmapped (load) range.
3220 May be the same as PC. */
3221
3222CORE_ADDR
fba45db2 3223overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3224{
fbd35540
MS
3225 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3226
c906108c
SS
3227 if (overlay_debugging)
3228 if (section && section_is_overlay (section) &&
3229 pc_in_mapped_range (pc, section))
3230 return pc + section->lma - section->vma;
3231
3232 return pc;
3233}
3234
3235/* Function: overlay_mapped_address (PC, SECTION)
3236 Returns the address corresponding to PC in the mapped (runtime) range.
3237 May be the same as PC. */
3238
3239CORE_ADDR
fba45db2 3240overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3241{
fbd35540
MS
3242 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3243
c906108c
SS
3244 if (overlay_debugging)
3245 if (section && section_is_overlay (section) &&
3246 pc_in_unmapped_range (pc, section))
3247 return pc + section->vma - section->lma;
3248
3249 return pc;
3250}
3251
3252
5417f6dc 3253/* Function: symbol_overlayed_address
c906108c
SS
3254 Return one of two addresses (relative to the VMA or to the LMA),
3255 depending on whether the section is mapped or not. */
3256
c5aa993b 3257CORE_ADDR
fba45db2 3258symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3259{
3260 if (overlay_debugging)
3261 {
3262 /* If the symbol has no section, just return its regular address. */
3263 if (section == 0)
3264 return address;
3265 /* If the symbol's section is not an overlay, just return its address */
3266 if (!section_is_overlay (section))
3267 return address;
3268 /* If the symbol's section is mapped, just return its address */
3269 if (section_is_mapped (section))
3270 return address;
3271 /*
3272 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3273 * then return its LOADED address rather than its vma address!!
3274 */
3275 return overlay_unmapped_address (address, section);
3276 }
3277 return address;
3278}
3279
5417f6dc 3280/* Function: find_pc_overlay (PC)
c906108c
SS
3281 Return the best-match overlay section for PC:
3282 If PC matches a mapped overlay section's VMA, return that section.
3283 Else if PC matches an unmapped section's VMA, return that section.
3284 Else if PC matches an unmapped section's LMA, return that section. */
3285
3286asection *
fba45db2 3287find_pc_overlay (CORE_ADDR pc)
c906108c 3288{
c5aa993b 3289 struct objfile *objfile;
c906108c
SS
3290 struct obj_section *osect, *best_match = NULL;
3291
3292 if (overlay_debugging)
3293 ALL_OBJSECTIONS (objfile, osect)
3294 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3295 {
3296 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3297 {
3298 if (overlay_is_mapped (osect))
3299 return osect->the_bfd_section;
3300 else
3301 best_match = osect;
3302 }
3303 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3304 best_match = osect;
3305 }
c906108c
SS
3306 return best_match ? best_match->the_bfd_section : NULL;
3307}
3308
3309/* Function: find_pc_mapped_section (PC)
5417f6dc 3310 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3311 currently marked as MAPPED, return that section. Else return NULL. */
3312
3313asection *
fba45db2 3314find_pc_mapped_section (CORE_ADDR pc)
c906108c 3315{
c5aa993b 3316 struct objfile *objfile;
c906108c
SS
3317 struct obj_section *osect;
3318
3319 if (overlay_debugging)
3320 ALL_OBJSECTIONS (objfile, osect)
3321 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3322 overlay_is_mapped (osect))
c5aa993b 3323 return osect->the_bfd_section;
c906108c
SS
3324
3325 return NULL;
3326}
3327
3328/* Function: list_overlays_command
3329 Print a list of mapped sections and their PC ranges */
3330
3331void
fba45db2 3332list_overlays_command (char *args, int from_tty)
c906108c 3333{
c5aa993b
JM
3334 int nmapped = 0;
3335 struct objfile *objfile;
c906108c
SS
3336 struct obj_section *osect;
3337
3338 if (overlay_debugging)
3339 ALL_OBJSECTIONS (objfile, osect)
3340 if (overlay_is_mapped (osect))
c5aa993b
JM
3341 {
3342 const char *name;
3343 bfd_vma lma, vma;
3344 int size;
3345
3346 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3347 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3348 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3349 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3350
3351 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3352 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3353 puts_filtered (" - ");
66bf4b3a 3354 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3355 printf_filtered (", mapped at ");
66bf4b3a 3356 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3357 puts_filtered (" - ");
66bf4b3a 3358 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3359 puts_filtered ("\n");
3360
3361 nmapped++;
3362 }
c906108c 3363 if (nmapped == 0)
a3f17187 3364 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3365}
3366
3367/* Function: map_overlay_command
3368 Mark the named section as mapped (ie. residing at its VMA address). */
3369
3370void
fba45db2 3371map_overlay_command (char *args, int from_tty)
c906108c 3372{
c5aa993b
JM
3373 struct objfile *objfile, *objfile2;
3374 struct obj_section *sec, *sec2;
3375 asection *bfdsec;
c906108c
SS
3376
3377 if (!overlay_debugging)
8a3fe4f8 3378 error (_("\
515ad16c 3379Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3380the 'overlay manual' command."));
c906108c
SS
3381
3382 if (args == 0 || *args == 0)
8a3fe4f8 3383 error (_("Argument required: name of an overlay section"));
c906108c
SS
3384
3385 /* First, find a section matching the user supplied argument */
3386 ALL_OBJSECTIONS (objfile, sec)
3387 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3388 {
3389 /* Now, check to see if the section is an overlay. */
3390 bfdsec = sec->the_bfd_section;
3391 if (!section_is_overlay (bfdsec))
3392 continue; /* not an overlay section */
3393
3394 /* Mark the overlay as "mapped" */
3395 sec->ovly_mapped = 1;
3396
3397 /* Next, make a pass and unmap any sections that are
3398 overlapped by this new section: */
3399 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3400 if (sec2->ovly_mapped
3401 && sec != sec2
3402 && sec->the_bfd_section != sec2->the_bfd_section
3403 && sections_overlap (sec->the_bfd_section,
3404 sec2->the_bfd_section))
c5aa993b
JM
3405 {
3406 if (info_verbose)
a3f17187 3407 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3408 bfd_section_name (objfile->obfd,
3409 sec2->the_bfd_section));
3410 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3411 }
3412 return;
3413 }
8a3fe4f8 3414 error (_("No overlay section called %s"), args);
c906108c
SS
3415}
3416
3417/* Function: unmap_overlay_command
5417f6dc 3418 Mark the overlay section as unmapped
c906108c
SS
3419 (ie. resident in its LMA address range, rather than the VMA range). */
3420
3421void
fba45db2 3422unmap_overlay_command (char *args, int from_tty)
c906108c 3423{
c5aa993b 3424 struct objfile *objfile;
c906108c
SS
3425 struct obj_section *sec;
3426
3427 if (!overlay_debugging)
8a3fe4f8 3428 error (_("\
515ad16c 3429Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3430the 'overlay manual' command."));
c906108c
SS
3431
3432 if (args == 0 || *args == 0)
8a3fe4f8 3433 error (_("Argument required: name of an overlay section"));
c906108c
SS
3434
3435 /* First, find a section matching the user supplied argument */
3436 ALL_OBJSECTIONS (objfile, sec)
3437 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3438 {
3439 if (!sec->ovly_mapped)
8a3fe4f8 3440 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3441 sec->ovly_mapped = 0;
3442 return;
3443 }
8a3fe4f8 3444 error (_("No overlay section called %s"), args);
c906108c
SS
3445}
3446
3447/* Function: overlay_auto_command
3448 A utility command to turn on overlay debugging.
3449 Possibly this should be done via a set/show command. */
3450
3451static void
fba45db2 3452overlay_auto_command (char *args, int from_tty)
c906108c 3453{
d874f1e2 3454 overlay_debugging = ovly_auto;
1900040c 3455 enable_overlay_breakpoints ();
c906108c 3456 if (info_verbose)
a3f17187 3457 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3458}
3459
3460/* Function: overlay_manual_command
3461 A utility command to turn on overlay debugging.
3462 Possibly this should be done via a set/show command. */
3463
3464static void
fba45db2 3465overlay_manual_command (char *args, int from_tty)
c906108c 3466{
d874f1e2 3467 overlay_debugging = ovly_on;
1900040c 3468 disable_overlay_breakpoints ();
c906108c 3469 if (info_verbose)
a3f17187 3470 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3471}
3472
3473/* Function: overlay_off_command
3474 A utility command to turn on overlay debugging.
3475 Possibly this should be done via a set/show command. */
3476
3477static void
fba45db2 3478overlay_off_command (char *args, int from_tty)
c906108c 3479{
d874f1e2 3480 overlay_debugging = ovly_off;
1900040c 3481 disable_overlay_breakpoints ();
c906108c 3482 if (info_verbose)
a3f17187 3483 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3484}
3485
3486static void
fba45db2 3487overlay_load_command (char *args, int from_tty)
c906108c
SS
3488{
3489 if (target_overlay_update)
3490 (*target_overlay_update) (NULL);
3491 else
8a3fe4f8 3492 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3493}
3494
3495/* Function: overlay_command
3496 A place-holder for a mis-typed command */
3497
3498/* Command list chain containing all defined "overlay" subcommands. */
3499struct cmd_list_element *overlaylist;
3500
3501static void
fba45db2 3502overlay_command (char *args, int from_tty)
c906108c 3503{
c5aa993b 3504 printf_unfiltered
c906108c
SS
3505 ("\"overlay\" must be followed by the name of an overlay command.\n");
3506 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3507}
3508
3509
3510/* Target Overlays for the "Simplest" overlay manager:
3511
5417f6dc
RM
3512 This is GDB's default target overlay layer. It works with the
3513 minimal overlay manager supplied as an example by Cygnus. The
3514 entry point is via a function pointer "target_overlay_update",
3515 so targets that use a different runtime overlay manager can
c906108c
SS
3516 substitute their own overlay_update function and take over the
3517 function pointer.
3518
3519 The overlay_update function pokes around in the target's data structures
3520 to see what overlays are mapped, and updates GDB's overlay mapping with
3521 this information.
3522
3523 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3524 unsigned _novlys; /# number of overlay sections #/
3525 unsigned _ovly_table[_novlys][4] = {
3526 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3527 {..., ..., ..., ...},
3528 }
3529 unsigned _novly_regions; /# number of overlay regions #/
3530 unsigned _ovly_region_table[_novly_regions][3] = {
3531 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3532 {..., ..., ...},
3533 }
c906108c
SS
3534 These functions will attempt to update GDB's mappedness state in the
3535 symbol section table, based on the target's mappedness state.
3536
3537 To do this, we keep a cached copy of the target's _ovly_table, and
3538 attempt to detect when the cached copy is invalidated. The main
3539 entry point is "simple_overlay_update(SECT), which looks up SECT in
3540 the cached table and re-reads only the entry for that section from
3541 the target (whenever possible).
3542 */
3543
3544/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3545static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3546#if 0
c5aa993b 3547static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3548#endif
c5aa993b 3549static unsigned cache_novlys = 0;
c906108c 3550#if 0
c5aa993b 3551static unsigned cache_novly_regions = 0;
c906108c
SS
3552#endif
3553static CORE_ADDR cache_ovly_table_base = 0;
3554#if 0
3555static CORE_ADDR cache_ovly_region_table_base = 0;
3556#endif
c5aa993b
JM
3557enum ovly_index
3558 {
3559 VMA, SIZE, LMA, MAPPED
3560 };
c906108c
SS
3561#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3562
3563/* Throw away the cached copy of _ovly_table */
3564static void
fba45db2 3565simple_free_overlay_table (void)
c906108c
SS
3566{
3567 if (cache_ovly_table)
b8c9b27d 3568 xfree (cache_ovly_table);
c5aa993b 3569 cache_novlys = 0;
c906108c
SS
3570 cache_ovly_table = NULL;
3571 cache_ovly_table_base = 0;
3572}
3573
3574#if 0
3575/* Throw away the cached copy of _ovly_region_table */
3576static void
fba45db2 3577simple_free_overlay_region_table (void)
c906108c
SS
3578{
3579 if (cache_ovly_region_table)
b8c9b27d 3580 xfree (cache_ovly_region_table);
c5aa993b 3581 cache_novly_regions = 0;
c906108c
SS
3582 cache_ovly_region_table = NULL;
3583 cache_ovly_region_table_base = 0;
3584}
3585#endif
3586
3587/* Read an array of ints from the target into a local buffer.
3588 Convert to host order. int LEN is number of ints */
3589static void
fba45db2 3590read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3591{
34c0bd93 3592 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3593 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3594 int i;
c906108c
SS
3595
3596 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3597 for (i = 0; i < len; i++)
c5aa993b 3598 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3599 TARGET_LONG_BYTES);
3600}
3601
3602/* Find and grab a copy of the target _ovly_table
3603 (and _novlys, which is needed for the table's size) */
c5aa993b 3604static int
fba45db2 3605simple_read_overlay_table (void)
c906108c 3606{
0d43edd1 3607 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3608
3609 simple_free_overlay_table ();
9b27852e 3610 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3611 if (! novlys_msym)
c906108c 3612 {
8a3fe4f8 3613 error (_("Error reading inferior's overlay table: "
0d43edd1 3614 "couldn't find `_novlys' variable\n"
8a3fe4f8 3615 "in inferior. Use `overlay manual' mode."));
0d43edd1 3616 return 0;
c906108c 3617 }
0d43edd1 3618
9b27852e 3619 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3620 if (! ovly_table_msym)
3621 {
8a3fe4f8 3622 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3623 "`_ovly_table' array\n"
8a3fe4f8 3624 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3625 return 0;
3626 }
3627
3628 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3629 cache_ovly_table
3630 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3631 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3632 read_target_long_array (cache_ovly_table_base,
777ea8f1 3633 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3634 cache_novlys * 4);
3635
c5aa993b 3636 return 1; /* SUCCESS */
c906108c
SS
3637}
3638
3639#if 0
3640/* Find and grab a copy of the target _ovly_region_table
3641 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3642static int
fba45db2 3643simple_read_overlay_region_table (void)
c906108c
SS
3644{
3645 struct minimal_symbol *msym;
3646
3647 simple_free_overlay_region_table ();
9b27852e 3648 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3649 if (msym != NULL)
3650 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3651 else
3652 return 0; /* failure */
c906108c
SS
3653 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3654 if (cache_ovly_region_table != NULL)
3655 {
9b27852e 3656 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3657 if (msym != NULL)
3658 {
3659 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3660 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3661 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3662 cache_novly_regions * 3);
3663 }
c5aa993b
JM
3664 else
3665 return 0; /* failure */
c906108c 3666 }
c5aa993b
JM
3667 else
3668 return 0; /* failure */
3669 return 1; /* SUCCESS */
c906108c
SS
3670}
3671#endif
3672
5417f6dc 3673/* Function: simple_overlay_update_1
c906108c
SS
3674 A helper function for simple_overlay_update. Assuming a cached copy
3675 of _ovly_table exists, look through it to find an entry whose vma,
3676 lma and size match those of OSECT. Re-read the entry and make sure
3677 it still matches OSECT (else the table may no longer be valid).
3678 Set OSECT's mapped state to match the entry. Return: 1 for
3679 success, 0 for failure. */
3680
3681static int
fba45db2 3682simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3683{
3684 int i, size;
fbd35540
MS
3685 bfd *obfd = osect->objfile->obfd;
3686 asection *bsect = osect->the_bfd_section;
c906108c 3687
2c500098 3688 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3689 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3690 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3691 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3692 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3693 {
3694 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3695 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3696 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3697 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3698 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3699 {
3700 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3701 return 1;
3702 }
fbd35540 3703 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3704 return 0;
3705 }
3706 return 0;
3707}
3708
3709/* Function: simple_overlay_update
5417f6dc
RM
3710 If OSECT is NULL, then update all sections' mapped state
3711 (after re-reading the entire target _ovly_table).
3712 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3713 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3714 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3715 re-read the entire cache, and go ahead and update all sections. */
3716
3717static void
fba45db2 3718simple_overlay_update (struct obj_section *osect)
c906108c 3719{
c5aa993b 3720 struct objfile *objfile;
c906108c
SS
3721
3722 /* Were we given an osect to look up? NULL means do all of them. */
3723 if (osect)
3724 /* Have we got a cached copy of the target's overlay table? */
3725 if (cache_ovly_table != NULL)
3726 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3727 if (cache_ovly_table_base ==
9b27852e 3728 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3729 /* Then go ahead and try to look up this single section in the cache */
3730 if (simple_overlay_update_1 (osect))
3731 /* Found it! We're done. */
3732 return;
3733
3734 /* Cached table no good: need to read the entire table anew.
3735 Or else we want all the sections, in which case it's actually
3736 more efficient to read the whole table in one block anyway. */
3737
0d43edd1
JB
3738 if (! simple_read_overlay_table ())
3739 return;
3740
c906108c
SS
3741 /* Now may as well update all sections, even if only one was requested. */
3742 ALL_OBJSECTIONS (objfile, osect)
3743 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3744 {
3745 int i, size;
fbd35540
MS
3746 bfd *obfd = osect->objfile->obfd;
3747 asection *bsect = osect->the_bfd_section;
c5aa993b 3748
2c500098 3749 size = bfd_get_section_size (bsect);
c5aa993b 3750 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3751 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3752 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3753 /* && cache_ovly_table[i][SIZE] == size */ )
3754 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3755 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3756 break; /* finished with inner for loop: break out */
3757 }
3758 }
c906108c
SS
3759}
3760
086df311
DJ
3761/* Set the output sections and output offsets for section SECTP in
3762 ABFD. The relocation code in BFD will read these offsets, so we
3763 need to be sure they're initialized. We map each section to itself,
3764 with no offset; this means that SECTP->vma will be honored. */
3765
3766static void
3767symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3768{
3769 sectp->output_section = sectp;
3770 sectp->output_offset = 0;
3771}
3772
3773/* Relocate the contents of a debug section SECTP in ABFD. The
3774 contents are stored in BUF if it is non-NULL, or returned in a
3775 malloc'd buffer otherwise.
3776
3777 For some platforms and debug info formats, shared libraries contain
3778 relocations against the debug sections (particularly for DWARF-2;
3779 one affected platform is PowerPC GNU/Linux, although it depends on
3780 the version of the linker in use). Also, ELF object files naturally
3781 have unresolved relocations for their debug sections. We need to apply
3782 the relocations in order to get the locations of symbols correct. */
3783
3784bfd_byte *
3785symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3786{
3787 /* We're only interested in debugging sections with relocation
3788 information. */
3789 if ((sectp->flags & SEC_RELOC) == 0)
3790 return NULL;
3791 if ((sectp->flags & SEC_DEBUGGING) == 0)
3792 return NULL;
3793
3794 /* We will handle section offsets properly elsewhere, so relocate as if
3795 all sections begin at 0. */
3796 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3797
97606a13 3798 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3799}
c906108c
SS
3800
3801void
fba45db2 3802_initialize_symfile (void)
c906108c
SS
3803{
3804 struct cmd_list_element *c;
c5aa993b 3805
1a966eab
AC
3806 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3807Load symbol table from executable file FILE.\n\
c906108c 3808The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3809to execute."), &cmdlist);
5ba2abeb 3810 set_cmd_completer (c, filename_completer);
c906108c 3811
1a966eab 3812 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3813Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3814Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3815ADDR is the starting address of the file's text.\n\
db162d44
EZ
3816The optional arguments are section-name section-address pairs and\n\
3817should be specified if the data and bss segments are not contiguous\n\
1a966eab 3818with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3819 &cmdlist);
5ba2abeb 3820 set_cmd_completer (c, filename_completer);
c906108c
SS
3821
3822 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3823 add_shared_symbol_files_command, _("\
3824Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3825 &cmdlist);
c906108c
SS
3826 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3827 &cmdlist);
3828
1a966eab
AC
3829 c = add_cmd ("load", class_files, load_command, _("\
3830Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3831for access from GDB.\n\
3832A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3833 set_cmd_completer (c, filename_completer);
c906108c 3834
5bf193a2
AC
3835 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3836 &symbol_reloading, _("\
3837Set dynamic symbol table reloading multiple times in one run."), _("\
3838Show dynamic symbol table reloading multiple times in one run."), NULL,
3839 NULL,
920d2a44 3840 show_symbol_reloading,
5bf193a2 3841 &setlist, &showlist);
c906108c 3842
c5aa993b 3843 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3844 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3845 "overlay ", 0, &cmdlist);
3846
3847 add_com_alias ("ovly", "overlay", class_alias, 1);
3848 add_com_alias ("ov", "overlay", class_alias, 1);
3849
c5aa993b 3850 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3851 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3852
c5aa993b 3853 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3854 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3855
c5aa993b 3856 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3857 _("List mappings of overlay sections."), &overlaylist);
c906108c 3858
c5aa993b 3859 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3860 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3861 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3862 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3863 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3864 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3865 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3866 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3867
3868 /* Filename extension to source language lookup table: */
3869 init_filename_language_table ();
26c41df3
AC
3870 add_setshow_string_noescape_cmd ("extension-language", class_files,
3871 &ext_args, _("\
3872Set mapping between filename extension and source language."), _("\
3873Show mapping between filename extension and source language."), _("\
3874Usage: set extension-language .foo bar"),
3875 set_ext_lang_command,
920d2a44 3876 show_ext_args,
26c41df3 3877 &setlist, &showlist);
c906108c 3878
c5aa993b 3879 add_info ("extensions", info_ext_lang_command,
1bedd215 3880 _("All filename extensions associated with a source language."));
917317f4 3881
525226b5
AC
3882 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3883 &debug_file_directory, _("\
3884Set the directory where separate debug symbols are searched for."), _("\
3885Show the directory where separate debug symbols are searched for."), _("\
3886Separate debug symbols are first searched for in the same\n\
3887directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3888and lastly at the path of the directory of the binary with\n\
3889the global debug-file directory prepended."),
3890 NULL,
920d2a44 3891 show_debug_file_directory,
525226b5 3892 &setlist, &showlist);
c906108c 3893}
This page took 1.430427 seconds and 4 git commands to generate.