(TAGS): Put DEPFILES back and add as a dependency.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2b71414d 4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
ea53e89f 51#include "observer.h"
c1bd25fd 52#include "exec.h"
c906108c 53
c906108c
SS
54#include <sys/types.h>
55#include <fcntl.h>
56#include "gdb_string.h"
57#include "gdb_stat.h"
58#include <ctype.h>
59#include <time.h>
2b71414d 60#include <sys/time.h>
c906108c
SS
61
62#ifndef O_BINARY
63#define O_BINARY 0
64#endif
65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 74void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 75
74b7792f
AC
76static void clear_symtab_users_cleanup (void *ignore);
77
c906108c 78/* Global variables owned by this file */
c5aa993b 79int readnow_symbol_files; /* Read full symbols immediately */
c906108c 80
c906108c
SS
81/* External variables and functions referenced. */
82
a14ed312 83extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
84
85/* Functions this file defines */
86
87#if 0
a14ed312
KB
88static int simple_read_overlay_region_table (void);
89static void simple_free_overlay_region_table (void);
c906108c
SS
90#endif
91
a14ed312 92static void set_initial_language (void);
c906108c 93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
a14ed312 100static void add_shared_symbol_files_command (char *, int);
c906108c 101
5b5d99cf
JB
102static void reread_separate_symbols (struct objfile *objfile);
103
a14ed312 104static void cashier_psymtab (struct partial_symtab *);
c906108c 105
a14ed312 106bfd *symfile_bfd_open (char *);
c906108c 107
0e931cf0
JB
108int get_section_index (struct objfile *, char *);
109
a14ed312 110static void find_sym_fns (struct objfile *);
c906108c 111
a14ed312 112static void decrement_reading_symtab (void *);
c906108c 113
a14ed312 114static void overlay_invalidate_all (void);
c906108c 115
a14ed312 116static int overlay_is_mapped (struct obj_section *);
c906108c 117
a14ed312 118void list_overlays_command (char *, int);
c906108c 119
a14ed312 120void map_overlay_command (char *, int);
c906108c 121
a14ed312 122void unmap_overlay_command (char *, int);
c906108c 123
a14ed312 124static void overlay_auto_command (char *, int);
c906108c 125
a14ed312 126static void overlay_manual_command (char *, int);
c906108c 127
a14ed312 128static void overlay_off_command (char *, int);
c906108c 129
a14ed312 130static void overlay_load_command (char *, int);
c906108c 131
a14ed312 132static void overlay_command (char *, int);
c906108c 133
a14ed312 134static void simple_free_overlay_table (void);
c906108c 135
a14ed312 136static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 137
a14ed312 138static int simple_read_overlay_table (void);
c906108c 139
a14ed312 140static int simple_overlay_update_1 (struct obj_section *);
c906108c 141
a14ed312 142static void add_filename_language (char *ext, enum language lang);
392a587b 143
a14ed312 144static void info_ext_lang_command (char *args, int from_tty);
392a587b 145
5b5d99cf
JB
146static char *find_separate_debug_file (struct objfile *objfile);
147
a14ed312 148static void init_filename_language_table (void);
392a587b 149
a14ed312 150void _initialize_symfile (void);
c906108c
SS
151
152/* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156static struct sym_fns *symtab_fns = NULL;
157
158/* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161#ifdef SYMBOL_RELOADING_DEFAULT
162int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163#else
164int symbol_reloading = 0;
165#endif
920d2a44
AC
166static void
167show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("\
171Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173}
174
c906108c 175
b7209cb4
FF
176/* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
c906108c 183 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 184 report all the functions that are actually present. */
c906108c
SS
185
186int auto_solib_add = 1;
b7209cb4
FF
187
188/* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196int auto_solib_limit;
c906108c 197\f
c5aa993b 198
0fe19209
DC
199/* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
c906108c
SS
201
202static int
0cd64fe2 203compare_psymbols (const void *s1p, const void *s2p)
c906108c 204{
0fe19209
DC
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
4725b721
PH
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
210}
211
212void
fba45db2 213sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
214{
215 /* Sort the global list; don't sort the static list */
216
c5aa993b
JM
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
219 compare_psymbols);
220}
221
c906108c
SS
222/* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227char *
63ca651f 228obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 229{
52f0bd74 230 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
aa1ee363
AC
235 const char *p1 = ptr;
236 char *p2 = p;
63ca651f 237 const char *end = ptr + size;
c906108c
SS
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243}
244
245/* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248char *
fba45db2
KB
249obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
c906108c 251{
52f0bd74
AC
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258}
259
260/* True if we are nested inside psymtab_to_symtab. */
261
262int currently_reading_symtab = 0;
263
264static void
fba45db2 265decrement_reading_symtab (void *dummy)
c906108c
SS
266{
267 currently_reading_symtab--;
268}
269
270/* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275struct symtab *
aa1ee363 276psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
277{
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
c5aa993b 284 {
c906108c
SS
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292}
293
5417f6dc
RM
294/* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
c906108c
SS
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303void
4efb68b1 304find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 305{
c5aa993b 306 asection **lowest = (asection **) obj;
c906108c
SS
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318}
319
a39a16c4
MM
320/* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322struct section_addr_info *
323alloc_section_addr_info (size_t num_sections)
324{
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335}
62557bbc 336
7b90c3f9
JB
337
338/* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340struct section_addr_info *
341copy_section_addr_info (struct section_addr_info *addrs)
342{
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359}
360
361
362
62557bbc
KB
363/* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366extern struct section_addr_info *
367build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369{
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
a39a16c4 374 sap = alloc_section_addr_info (end - start);
62557bbc
KB
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
5417f6dc 378 if (bfd_get_section_flags (stp->bfd,
fbd35540 379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 380 && oidx < end - start)
62557bbc
KB
381 {
382 sap->other[oidx].addr = stp->addr;
5417f6dc 383 sap->other[oidx].name
fbd35540 384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391}
392
393
394/* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396extern void
397free_section_addr_info (struct section_addr_info *sap)
398{
399 int idx;
400
a39a16c4 401 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 402 if (sap->other[idx].name)
b8c9b27d
KB
403 xfree (sap->other[idx].name);
404 xfree (sap);
62557bbc
KB
405}
406
407
e8289572
JB
408/* Initialize OBJFILE's sect_index_* members. */
409static void
410init_objfile_sect_indices (struct objfile *objfile)
c906108c 411{
e8289572 412 asection *sect;
c906108c 413 int i;
5417f6dc 414
b8fbeb18 415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 416 if (sect)
b8fbeb18
EZ
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 420 if (sect)
b8fbeb18
EZ
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 424 if (sect)
b8fbeb18
EZ
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 428 if (sect)
b8fbeb18
EZ
429 objfile->sect_index_rodata = sect->index;
430
bbcd32ad
FF
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
439 first slot. */
440
441 for (i = 0; i < objfile->num_sections; i++)
442 {
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
444 {
445 break;
446 }
447 }
448 if (i == objfile->num_sections)
449 {
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
458 }
b8fbeb18 459}
c906108c 460
c1bd25fd
DJ
461/* The arguments to place_section. */
462
463struct place_section_arg
464{
465 struct section_offsets *offsets;
466 CORE_ADDR lowest;
467};
468
469/* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
471
472void
473place_section (bfd *abfd, asection *sect, void *obj)
474{
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
477 int done;
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 do {
489 asection *cur_sec;
490 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
491
492 start_addr = (arg->lowest + align - 1) & -align;
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 continue;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538}
e8289572
JB
539
540/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 541 of how to represent it for fast symbol reading. This is the default
e8289572
JB
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546void
547default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549{
550 int i;
551
a39a16c4 552 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 553 objfile->section_offsets = (struct section_offsets *)
5417f6dc 554 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 556 memset (objfile->section_offsets, 0,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
a39a16c4 561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
c1bd25fd
DJ
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
e8289572
JB
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591}
592
593
c906108c
SS
594/* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
96baa820
JM
597 OBJFILE is where the symbols are to be read from.
598
7e8580c1
JB
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
625
626void
7e8580c1
JB
627syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
c906108c 633{
a39a16c4 634 struct section_addr_info *local_addr = NULL;
c906108c 635 struct cleanup *old_chain;
2acceee2 636
7e8580c1 637 gdb_assert (! (addrs && offsets));
2acceee2 638
c906108c
SS
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
75245b24
MS
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
c906108c
SS
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
74b7792f 647 old_chain = make_cleanup_free_objfile (objfile);
c906108c 648
a39a16c4
MM
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
5417f6dc 654 local_addr
a39a16c4
MM
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
c5aa993b 662 if (mainline)
c906108c
SS
663 {
664 /* We will modify the main symbol table, make sure that all its users
c5aa993b 665 will be cleaned up if an error occurs during symbol reading. */
74b7792f 666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
c906108c 680
c5aa993b 681 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
53a5351d 686 and assume that <addr> is where that got loaded.
c906108c 687
53a5351d
JM
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
1549f619 690 if (!mainline && addrs && addrs->other[0].name)
c906108c 691 {
1549f619
EZ
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
5417f6dc 697 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
c906108c 702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 703 &lower_sect);
2acceee2 704 if (lower_sect == NULL)
8a3fe4f8 705 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 706 objfile->name);
5417f6dc 707 else
b8fbeb18 708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 709 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
5417f6dc 717
13de58df 718 /* Calculate offsets for the loadable sections.
2acceee2
JM
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
5417f6dc 721
13de58df
JB
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
2acceee2
JM
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
1549f619 728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
8a3fe4f8 744 warning (_("section %s not found in %s"),
5417f6dc 745 addrs->other[i].name,
7e8580c1
JB
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
c906108c
SS
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
c5aa993b 759 (*objfile->sf->sym_init) (objfile);
b9caf505 760 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 761
7e8580c1
JB
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
8b92e4d5 772 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
c906108c 777
52d16ba8 778#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
96baa820 792 has a different algorithm for finding section offsets.
c906108c
SS
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
2acceee2 797 if (addrs)
c906108c
SS
798 {
799 struct obj_section *s;
800
5417f6dc
RM
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
2acceee2
JM
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
5417f6dc 805
96baa820 806 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 807 {
2acceee2
JM
808 CORE_ADDR s_addr = 0;
809 int i;
810
5417f6dc 811 for (i = 0;
a39a16c4 812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 813 i++)
5417f6dc
RM
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
fbd35540 816 addrs->other[i].name) == 0)
2acceee2 817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 818
c906108c 819 s->addr -= s->offset;
2acceee2 820 s->addr += s_addr;
c906108c 821 s->endaddr -= s->offset;
2acceee2
JM
822 s->endaddr += s_addr;
823 s->offset += s_addr;
c906108c
SS
824 }
825 }
52d16ba8 826#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 827
96baa820 828 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 829
c906108c
SS
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
c5aa993b 841 objfile->flags |= OBJF_SYMS;
c906108c
SS
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
c906108c
SS
846}
847
848/* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
c5aa993b 851
c906108c 852void
fba45db2 853new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
854{
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
b9caf505 872 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
873}
874
875/* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
5417f6dc
RM
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
c906108c 889
c906108c
SS
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
7904e09f 892static struct objfile *
5417f6dc 893symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
c906108c
SS
898{
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
5b5d99cf 901 char *debugfile;
7b90c3f9 902 struct section_addr_info *orig_addrs = NULL;
a39a16c4 903 struct cleanup *my_cleanups;
5417f6dc 904 const char *name = bfd_get_filename (abfd);
c906108c 905
5417f6dc 906 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 907
5417f6dc
RM
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
c906108c
SS
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 915 error (_("Not confirmed."));
c906108c 916
2df3850c 917 objfile = allocate_objfile (abfd, flags);
5417f6dc 918 discard_cleanups (my_cleanups);
c906108c 919
a39a16c4 920 if (addrs)
63cd24fe 921 {
7b90c3f9
JB
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 924 }
a39a16c4 925
78a4a9b9
AC
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
c906108c 930 {
769d7dc4
AC
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
78a4a9b9 933 else
c906108c 934 {
a3f17187 935 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
c906108c 939 }
78a4a9b9
AC
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
c906108c
SS
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
2acceee2 948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
949 {
950 if (from_tty || info_verbose)
951 {
a3f17187 952 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
c5aa993b 957 for (psymtab = objfile->psymtabs;
c906108c 958 psymtab != NULL;
c5aa993b 959 psymtab = psymtab->next)
c906108c
SS
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
5b5d99cf
JB
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
5b5d99cf
JB
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
a39a16c4 971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
5417f6dc 980
5b5d99cf
JB
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 984
5b5d99cf
JB
985 xfree (debugfile);
986 }
5417f6dc 987
cb3c37b2
JB
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
a3f17187 991 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
cb3c37b2
JB
996 wrap_here ("");
997 }
998
c906108c
SS
999 if (from_tty || info_verbose)
1000 {
769d7dc4
AC
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
c906108c 1003 else
c5aa993b 1004 {
a3f17187 1005 printf_unfiltered (_("done.\n"));
c5aa993b 1006 }
c906108c
SS
1007 }
1008
481d0f41
JB
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
a39a16c4
MM
1014 do_cleanups (my_cleanups);
1015
109f874e
MS
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
c906108c
SS
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
9a4105ab
AC
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
c906108c 1023
ce7d4522 1024 bfd_cache_close_all ();
c906108c
SS
1025 return (objfile);
1026}
1027
7904e09f 1028
eb4556d7
JB
1029/* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034struct objfile *
1035symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038{
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042}
1043
1044
7904e09f
JB
1045/* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048struct objfile *
1049symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051{
eb4556d7
JB
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
7904e09f
JB
1054}
1055
1056
d7db6da9
FN
1057/* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
5417f6dc 1064
1adeb98a
FN
1065void
1066symbol_file_add_main (char *args, int from_tty)
1067{
d7db6da9
FN
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069}
1070
1071static void
1072symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073{
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
d7db6da9
FN
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1adeb98a
FN
1081}
1082
1083void
1084symbol_file_clear (int from_tty)
1085{
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && !query ("Discard symbol table from `%s'? ",
1089 symfile_objfile->name))
8a3fe4f8 1090 error (_("Not confirmed."));
1adeb98a
FN
1091 free_all_objfiles ();
1092
1093 /* solib descriptors may have handles to objfiles. Since their
1094 storage has just been released, we'd better wipe the solib
1095 descriptors as well.
1096 */
1097#if defined(SOLIB_RESTART)
1098 SOLIB_RESTART ();
1099#endif
1100
1101 symfile_objfile = NULL;
1102 if (from_tty)
a3f17187 1103 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1104}
1105
5b5d99cf
JB
1106static char *
1107get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1108{
1109 asection *sect;
1110 bfd_size_type debuglink_size;
1111 unsigned long crc32;
1112 char *contents;
1113 int crc_offset;
1114 unsigned char *p;
5417f6dc 1115
5b5d99cf
JB
1116 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1117
1118 if (sect == NULL)
1119 return NULL;
1120
1121 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1122
5b5d99cf
JB
1123 contents = xmalloc (debuglink_size);
1124 bfd_get_section_contents (objfile->obfd, sect, contents,
1125 (file_ptr)0, (bfd_size_type)debuglink_size);
1126
1127 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1128 crc_offset = strlen (contents) + 1;
1129 crc_offset = (crc_offset + 3) & ~3;
1130
1131 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1132
5b5d99cf
JB
1133 *crc32_out = crc32;
1134 return contents;
1135}
1136
1137static int
1138separate_debug_file_exists (const char *name, unsigned long crc)
1139{
1140 unsigned long file_crc = 0;
1141 int fd;
1142 char buffer[8*1024];
1143 int count;
1144
1145 fd = open (name, O_RDONLY | O_BINARY);
1146 if (fd < 0)
1147 return 0;
1148
1149 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1150 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1151
1152 close (fd);
1153
1154 return crc == file_crc;
1155}
1156
1157static char *debug_file_directory = NULL;
920d2a44
AC
1158static void
1159show_debug_file_directory (struct ui_file *file, int from_tty,
1160 struct cmd_list_element *c, const char *value)
1161{
1162 fprintf_filtered (file, _("\
1163The directory where separate debug symbols are searched for is \"%s\".\n"),
1164 value);
1165}
5b5d99cf
JB
1166
1167#if ! defined (DEBUG_SUBDIRECTORY)
1168#define DEBUG_SUBDIRECTORY ".debug"
1169#endif
1170
1171static char *
1172find_separate_debug_file (struct objfile *objfile)
1173{
1174 asection *sect;
1175 char *basename;
1176 char *dir;
1177 char *debugfile;
1178 char *name_copy;
1179 bfd_size_type debuglink_size;
1180 unsigned long crc32;
1181 int i;
1182
1183 basename = get_debug_link_info (objfile, &crc32);
1184
1185 if (basename == NULL)
1186 return NULL;
5417f6dc 1187
5b5d99cf
JB
1188 dir = xstrdup (objfile->name);
1189
fe36c4f4
JB
1190 /* Strip off the final filename part, leaving the directory name,
1191 followed by a slash. Objfile names should always be absolute and
1192 tilde-expanded, so there should always be a slash in there
1193 somewhere. */
5b5d99cf
JB
1194 for (i = strlen(dir) - 1; i >= 0; i--)
1195 {
1196 if (IS_DIR_SEPARATOR (dir[i]))
1197 break;
1198 }
fe36c4f4 1199 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1200 dir[i+1] = '\0';
5417f6dc 1201
5b5d99cf
JB
1202 debugfile = alloca (strlen (debug_file_directory) + 1
1203 + strlen (dir)
1204 + strlen (DEBUG_SUBDIRECTORY)
1205 + strlen ("/")
5417f6dc 1206 + strlen (basename)
5b5d99cf
JB
1207 + 1);
1208
1209 /* First try in the same directory as the original file. */
1210 strcpy (debugfile, dir);
1211 strcat (debugfile, basename);
1212
1213 if (separate_debug_file_exists (debugfile, crc32))
1214 {
1215 xfree (basename);
1216 xfree (dir);
1217 return xstrdup (debugfile);
1218 }
5417f6dc 1219
5b5d99cf
JB
1220 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1221 strcpy (debugfile, dir);
1222 strcat (debugfile, DEBUG_SUBDIRECTORY);
1223 strcat (debugfile, "/");
1224 strcat (debugfile, basename);
1225
1226 if (separate_debug_file_exists (debugfile, crc32))
1227 {
1228 xfree (basename);
1229 xfree (dir);
1230 return xstrdup (debugfile);
1231 }
5417f6dc 1232
5b5d99cf
JB
1233 /* Then try in the global debugfile directory. */
1234 strcpy (debugfile, debug_file_directory);
1235 strcat (debugfile, "/");
1236 strcat (debugfile, dir);
5b5d99cf
JB
1237 strcat (debugfile, basename);
1238
1239 if (separate_debug_file_exists (debugfile, crc32))
1240 {
1241 xfree (basename);
1242 xfree (dir);
1243 return xstrdup (debugfile);
1244 }
5417f6dc 1245
5b5d99cf
JB
1246 xfree (basename);
1247 xfree (dir);
1248 return NULL;
1249}
1250
1251
c906108c
SS
1252/* This is the symbol-file command. Read the file, analyze its
1253 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1254 the command is rather bizarre:
1255
1256 1. The function buildargv implements various quoting conventions
1257 which are undocumented and have little or nothing in common with
1258 the way things are quoted (or not quoted) elsewhere in GDB.
1259
1260 2. Options are used, which are not generally used in GDB (perhaps
1261 "set mapped on", "set readnow on" would be better)
1262
1263 3. The order of options matters, which is contrary to GNU
c906108c
SS
1264 conventions (because it is confusing and inconvenient). */
1265
1266void
fba45db2 1267symbol_file_command (char *args, int from_tty)
c906108c 1268{
c906108c
SS
1269 dont_repeat ();
1270
1271 if (args == NULL)
1272 {
1adeb98a 1273 symbol_file_clear (from_tty);
c906108c
SS
1274 }
1275 else
1276 {
cb2f3a29
MK
1277 char **argv = buildargv (args);
1278 int flags = OBJF_USERLOADED;
1279 struct cleanup *cleanups;
1280 char *name = NULL;
1281
1282 if (argv == NULL)
1283 nomem (0);
1284
7a292a7a 1285 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1286 while (*argv != NULL)
1287 {
78a4a9b9
AC
1288 if (strcmp (*argv, "-readnow") == 0)
1289 flags |= OBJF_READNOW;
1290 else if (**argv == '-')
8a3fe4f8 1291 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1292 else
1293 {
cb2f3a29 1294 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1295 name = *argv;
78a4a9b9 1296 }
cb2f3a29 1297
c906108c
SS
1298 argv++;
1299 }
1300
1301 if (name == NULL)
cb2f3a29
MK
1302 error (_("no symbol file name was specified"));
1303
c906108c
SS
1304 do_cleanups (cleanups);
1305 }
1306}
1307
1308/* Set the initial language.
1309
cb2f3a29
MK
1310 FIXME: A better solution would be to record the language in the
1311 psymtab when reading partial symbols, and then use it (if known) to
1312 set the language. This would be a win for formats that encode the
1313 language in an easily discoverable place, such as DWARF. For
1314 stabs, we can jump through hoops looking for specially named
1315 symbols or try to intuit the language from the specific type of
1316 stabs we find, but we can't do that until later when we read in
1317 full symbols. */
c906108c
SS
1318
1319static void
fba45db2 1320set_initial_language (void)
c906108c
SS
1321{
1322 struct partial_symtab *pst;
c5aa993b 1323 enum language lang = language_unknown;
c906108c
SS
1324
1325 pst = find_main_psymtab ();
1326 if (pst != NULL)
1327 {
c5aa993b 1328 if (pst->filename != NULL)
cb2f3a29
MK
1329 lang = deduce_language_from_filename (pst->filename);
1330
c906108c
SS
1331 if (lang == language_unknown)
1332 {
c5aa993b
JM
1333 /* Make C the default language */
1334 lang = language_c;
c906108c 1335 }
cb2f3a29 1336
c906108c 1337 set_language (lang);
cb2f3a29 1338 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1339 }
1340}
1341
cb2f3a29
MK
1342/* Open the file specified by NAME and hand it off to BFD for
1343 preliminary analysis. Return a newly initialized bfd *, which
1344 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1345 absolute). In case of trouble, error() is called. */
c906108c
SS
1346
1347bfd *
fba45db2 1348symfile_bfd_open (char *name)
c906108c
SS
1349{
1350 bfd *sym_bfd;
1351 int desc;
1352 char *absolute_name;
1353
cb2f3a29 1354 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1355
1356 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1357 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1358 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1359#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1360 if (desc < 0)
1361 {
1362 char *exename = alloca (strlen (name) + 5);
1363 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1364 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1365 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1366 }
1367#endif
1368 if (desc < 0)
1369 {
b8c9b27d 1370 make_cleanup (xfree, name);
c906108c
SS
1371 perror_with_name (name);
1372 }
cb2f3a29
MK
1373
1374 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1375 bfd. It'll be freed in free_objfile(). */
1376 xfree (name);
1377 name = absolute_name;
c906108c 1378
9f76c2cd 1379 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1380 if (!sym_bfd)
1381 {
1382 close (desc);
b8c9b27d 1383 make_cleanup (xfree, name);
8a3fe4f8 1384 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1385 bfd_errmsg (bfd_get_error ()));
1386 }
549c1eea 1387 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1388
1389 if (!bfd_check_format (sym_bfd, bfd_object))
1390 {
cb2f3a29
MK
1391 /* FIXME: should be checking for errors from bfd_close (for one
1392 thing, on error it does not free all the storage associated
1393 with the bfd). */
1394 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1395 make_cleanup (xfree, name);
8a3fe4f8 1396 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1397 bfd_errmsg (bfd_get_error ()));
1398 }
cb2f3a29
MK
1399
1400 return sym_bfd;
c906108c
SS
1401}
1402
cb2f3a29
MK
1403/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1404 the section was not found. */
1405
0e931cf0
JB
1406int
1407get_section_index (struct objfile *objfile, char *section_name)
1408{
1409 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1410
0e931cf0
JB
1411 if (sect)
1412 return sect->index;
1413 else
1414 return -1;
1415}
1416
cb2f3a29
MK
1417/* Link SF into the global symtab_fns list. Called on startup by the
1418 _initialize routine in each object file format reader, to register
1419 information about each format the the reader is prepared to
1420 handle. */
c906108c
SS
1421
1422void
fba45db2 1423add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1424{
1425 sf->next = symtab_fns;
1426 symtab_fns = sf;
1427}
1428
cb2f3a29
MK
1429/* Initialize OBJFILE to read symbols from its associated BFD. It
1430 either returns or calls error(). The result is an initialized
1431 struct sym_fns in the objfile structure, that contains cached
1432 information about the symbol file. */
c906108c
SS
1433
1434static void
fba45db2 1435find_sym_fns (struct objfile *objfile)
c906108c
SS
1436{
1437 struct sym_fns *sf;
c5aa993b
JM
1438 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1439 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1440
75245b24
MS
1441 if (our_flavour == bfd_target_srec_flavour
1442 || our_flavour == bfd_target_ihex_flavour
1443 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1444 return; /* No symbols. */
75245b24 1445
c5aa993b 1446 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1447 {
c5aa993b 1448 if (our_flavour == sf->sym_flavour)
c906108c 1449 {
c5aa993b 1450 objfile->sf = sf;
c906108c
SS
1451 return;
1452 }
1453 }
cb2f3a29 1454
8a3fe4f8 1455 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1456 bfd_get_target (objfile->obfd));
c906108c
SS
1457}
1458\f
cb2f3a29 1459
c906108c
SS
1460/* This function runs the load command of our current target. */
1461
1462static void
fba45db2 1463load_command (char *arg, int from_tty)
c906108c
SS
1464{
1465 if (arg == NULL)
1466 arg = get_exec_file (1);
1467 target_load (arg, from_tty);
2889e661
JB
1468
1469 /* After re-loading the executable, we don't really know which
1470 overlays are mapped any more. */
1471 overlay_cache_invalid = 1;
c906108c
SS
1472}
1473
1474/* This version of "load" should be usable for any target. Currently
1475 it is just used for remote targets, not inftarg.c or core files,
1476 on the theory that only in that case is it useful.
1477
1478 Avoiding xmodem and the like seems like a win (a) because we don't have
1479 to worry about finding it, and (b) On VMS, fork() is very slow and so
1480 we don't want to run a subprocess. On the other hand, I'm not sure how
1481 performance compares. */
917317f4
JM
1482
1483static int download_write_size = 512;
920d2a44
AC
1484static void
1485show_download_write_size (struct ui_file *file, int from_tty,
1486 struct cmd_list_element *c, const char *value)
1487{
1488 fprintf_filtered (file, _("\
1489The write size used when downloading a program is %s.\n"),
1490 value);
1491}
917317f4
JM
1492static int validate_download = 0;
1493
e4f9b4d5
MS
1494/* Callback service function for generic_load (bfd_map_over_sections). */
1495
1496static void
1497add_section_size_callback (bfd *abfd, asection *asec, void *data)
1498{
1499 bfd_size_type *sum = data;
1500
2c500098 1501 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1502}
1503
1504/* Opaque data for load_section_callback. */
1505struct load_section_data {
1506 unsigned long load_offset;
1507 unsigned long write_count;
1508 unsigned long data_count;
1509 bfd_size_type total_size;
1510};
1511
1512/* Callback service function for generic_load (bfd_map_over_sections). */
1513
1514static void
1515load_section_callback (bfd *abfd, asection *asec, void *data)
1516{
1517 struct load_section_data *args = data;
1518
1519 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1520 {
2c500098 1521 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1522 if (size > 0)
1523 {
1524 char *buffer;
1525 struct cleanup *old_chain;
1526 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1527 bfd_size_type block_size;
1528 int err;
1529 const char *sect_name = bfd_get_section_name (abfd, asec);
1530 bfd_size_type sent;
1531
1532 if (download_write_size > 0 && size > download_write_size)
1533 block_size = download_write_size;
1534 else
1535 block_size = size;
1536
1537 buffer = xmalloc (size);
1538 old_chain = make_cleanup (xfree, buffer);
1539
1540 /* Is this really necessary? I guess it gives the user something
1541 to look at during a long download. */
e4f9b4d5
MS
1542 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1543 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1544
1545 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1546
1547 sent = 0;
1548 do
1549 {
1550 int len;
1551 bfd_size_type this_transfer = size - sent;
1552
1553 if (this_transfer >= block_size)
1554 this_transfer = block_size;
1555 len = target_write_memory_partial (lma, buffer,
1556 this_transfer, &err);
1557 if (err)
1558 break;
1559 if (validate_download)
1560 {
1561 /* Broken memories and broken monitors manifest
1562 themselves here when bring new computers to
1563 life. This doubles already slow downloads. */
1564 /* NOTE: cagney/1999-10-18: A more efficient
1565 implementation might add a verify_memory()
1566 method to the target vector and then use
1567 that. remote.c could implement that method
1568 using the ``qCRC'' packet. */
1569 char *check = xmalloc (len);
5417f6dc 1570 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1571 make_cleanup (xfree, check);
1572
1573 if (target_read_memory (lma, check, len) != 0)
8a3fe4f8 1574 error (_("Download verify read failed at 0x%s"),
e4f9b4d5
MS
1575 paddr (lma));
1576 if (memcmp (buffer, check, len) != 0)
8a3fe4f8 1577 error (_("Download verify compare failed at 0x%s"),
e4f9b4d5
MS
1578 paddr (lma));
1579 do_cleanups (verify_cleanups);
1580 }
1581 args->data_count += len;
1582 lma += len;
1583 buffer += len;
1584 args->write_count += 1;
1585 sent += len;
1586 if (quit_flag
9a4105ab
AC
1587 || (deprecated_ui_load_progress_hook != NULL
1588 && deprecated_ui_load_progress_hook (sect_name, sent)))
8a3fe4f8 1589 error (_("Canceled the download"));
e4f9b4d5 1590
9a4105ab
AC
1591 if (deprecated_show_load_progress != NULL)
1592 deprecated_show_load_progress (sect_name, sent, size,
1593 args->data_count,
1594 args->total_size);
e4f9b4d5
MS
1595 }
1596 while (sent < size);
1597
1598 if (err != 0)
8a3fe4f8 1599 error (_("Memory access error while loading section %s."), sect_name);
e4f9b4d5
MS
1600
1601 do_cleanups (old_chain);
1602 }
1603 }
1604}
1605
c906108c 1606void
917317f4 1607generic_load (char *args, int from_tty)
c906108c 1608{
c906108c
SS
1609 asection *s;
1610 bfd *loadfile_bfd;
2b71414d 1611 struct timeval start_time, end_time;
917317f4
JM
1612 char *filename;
1613 struct cleanup *old_cleanups;
1614 char *offptr;
e4f9b4d5
MS
1615 struct load_section_data cbdata;
1616 CORE_ADDR entry;
1617
1618 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1619 cbdata.write_count = 0; /* Number of writes needed. */
1620 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1621 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1622
1623 /* Parse the input argument - the user can specify a load offset as
1624 a second argument. */
1625 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1626 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1627 strcpy (filename, args);
1628 offptr = strchr (filename, ' ');
1629 if (offptr != NULL)
1630 {
1631 char *endptr;
ba5f2f8a 1632
e4f9b4d5 1633 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4 1634 if (offptr == endptr)
8a3fe4f8 1635 error (_("Invalid download offset:%s."), offptr);
917317f4
JM
1636 *offptr = '\0';
1637 }
c906108c 1638 else
e4f9b4d5 1639 cbdata.load_offset = 0;
c906108c 1640
917317f4 1641 /* Open the file for loading. */
c906108c
SS
1642 loadfile_bfd = bfd_openr (filename, gnutarget);
1643 if (loadfile_bfd == NULL)
1644 {
1645 perror_with_name (filename);
1646 return;
1647 }
917317f4 1648
c906108c
SS
1649 /* FIXME: should be checking for errors from bfd_close (for one thing,
1650 on error it does not free all the storage associated with the
1651 bfd). */
5c65bbb6 1652 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1653
c5aa993b 1654 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1655 {
8a3fe4f8 1656 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1657 bfd_errmsg (bfd_get_error ()));
1658 }
c5aa993b 1659
5417f6dc 1660 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1661 (void *) &cbdata.total_size);
c2d11a7d 1662
2b71414d 1663 gettimeofday (&start_time, NULL);
c906108c 1664
e4f9b4d5 1665 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c 1666
2b71414d 1667 gettimeofday (&end_time, NULL);
ba5f2f8a 1668
e4f9b4d5 1669 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1670 ui_out_text (uiout, "Start address ");
1671 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1672 ui_out_text (uiout, ", load size ");
1673 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1674 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1675 /* We were doing this in remote-mips.c, I suspect it is right
1676 for other targets too. */
1677 write_pc (entry);
c906108c 1678
7ca9f392
AC
1679 /* FIXME: are we supposed to call symbol_file_add or not? According
1680 to a comment from remote-mips.c (where a call to symbol_file_add
1681 was commented out), making the call confuses GDB if more than one
1682 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1683 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1684
5417f6dc 1685 print_transfer_performance (gdb_stdout, cbdata.data_count,
2b71414d 1686 cbdata.write_count, &start_time, &end_time);
c906108c
SS
1687
1688 do_cleanups (old_cleanups);
1689}
1690
1691/* Report how fast the transfer went. */
1692
917317f4
JM
1693/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1694 replaced by print_transfer_performance (with a very different
1695 function signature). */
1696
c906108c 1697void
fba45db2
KB
1698report_transfer_performance (unsigned long data_count, time_t start_time,
1699 time_t end_time)
c906108c 1700{
2b71414d
DJ
1701 struct timeval start, end;
1702
1703 start.tv_sec = start_time;
1704 start.tv_usec = 0;
1705 end.tv_sec = end_time;
1706 end.tv_usec = 0;
1707
1708 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1709}
1710
1711void
d9fcf2fb 1712print_transfer_performance (struct ui_file *stream,
917317f4
JM
1713 unsigned long data_count,
1714 unsigned long write_count,
2b71414d
DJ
1715 const struct timeval *start_time,
1716 const struct timeval *end_time)
917317f4 1717{
2b71414d
DJ
1718 unsigned long time_count;
1719
1720 /* Compute the elapsed time in milliseconds, as a tradeoff between
1721 accuracy and overflow. */
1722 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1723 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1724
8b93c638
JM
1725 ui_out_text (uiout, "Transfer rate: ");
1726 if (time_count > 0)
1727 {
5417f6dc 1728 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1729 1000 * (data_count * 8) / time_count);
8b93c638
JM
1730 ui_out_text (uiout, " bits/sec");
1731 }
1732 else
1733 {
ba5f2f8a 1734 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1735 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1736 }
1737 if (write_count > 0)
1738 {
1739 ui_out_text (uiout, ", ");
ba5f2f8a 1740 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1741 ui_out_text (uiout, " bytes/write");
1742 }
1743 ui_out_text (uiout, ".\n");
c906108c
SS
1744}
1745
1746/* This function allows the addition of incrementally linked object files.
1747 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1748/* Note: ezannoni 2000-04-13 This function/command used to have a
1749 special case syntax for the rombug target (Rombug is the boot
1750 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1751 rombug case, the user doesn't need to supply a text address,
1752 instead a call to target_link() (in target.c) would supply the
1753 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1754
c906108c 1755static void
fba45db2 1756add_symbol_file_command (char *args, int from_tty)
c906108c 1757{
db162d44 1758 char *filename = NULL;
2df3850c 1759 int flags = OBJF_USERLOADED;
c906108c 1760 char *arg;
2acceee2 1761 int expecting_option = 0;
db162d44 1762 int section_index = 0;
2acceee2
JM
1763 int argcnt = 0;
1764 int sec_num = 0;
1765 int i;
db162d44
EZ
1766 int expecting_sec_name = 0;
1767 int expecting_sec_addr = 0;
1768
a39a16c4 1769 struct sect_opt
2acceee2 1770 {
2acceee2
JM
1771 char *name;
1772 char *value;
a39a16c4 1773 };
db162d44 1774
a39a16c4
MM
1775 struct section_addr_info *section_addrs;
1776 struct sect_opt *sect_opts = NULL;
1777 size_t num_sect_opts = 0;
3017564a 1778 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1779
a39a16c4 1780 num_sect_opts = 16;
5417f6dc 1781 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1782 * sizeof (struct sect_opt));
1783
c906108c
SS
1784 dont_repeat ();
1785
1786 if (args == NULL)
8a3fe4f8 1787 error (_("add-symbol-file takes a file name and an address"));
c906108c
SS
1788
1789 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1790 args = xstrdup (args);
c906108c 1791
2acceee2 1792 while (*args != '\000')
c906108c 1793 {
db162d44 1794 /* Any leading spaces? */
c5aa993b 1795 while (isspace (*args))
db162d44
EZ
1796 args++;
1797
1798 /* Point arg to the beginning of the argument. */
c906108c 1799 arg = args;
db162d44
EZ
1800
1801 /* Move args pointer over the argument. */
c5aa993b 1802 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1803 args++;
1804
1805 /* If there are more arguments, terminate arg and
1806 proceed past it. */
c906108c 1807 if (*args != '\000')
db162d44
EZ
1808 *args++ = '\000';
1809
1810 /* Now process the argument. */
1811 if (argcnt == 0)
c906108c 1812 {
db162d44
EZ
1813 /* The first argument is the file name. */
1814 filename = tilde_expand (arg);
3017564a 1815 make_cleanup (xfree, filename);
c906108c 1816 }
db162d44 1817 else
7a78ae4e
ND
1818 if (argcnt == 1)
1819 {
1820 /* The second argument is always the text address at which
1821 to load the program. */
1822 sect_opts[section_index].name = ".text";
1823 sect_opts[section_index].value = arg;
5417f6dc 1824 if (++section_index > num_sect_opts)
a39a16c4
MM
1825 {
1826 num_sect_opts *= 2;
5417f6dc 1827 sect_opts = ((struct sect_opt *)
a39a16c4 1828 xrealloc (sect_opts,
5417f6dc 1829 num_sect_opts
a39a16c4
MM
1830 * sizeof (struct sect_opt)));
1831 }
7a78ae4e
ND
1832 }
1833 else
1834 {
1835 /* It's an option (starting with '-') or it's an argument
1836 to an option */
1837
1838 if (*arg == '-')
1839 {
78a4a9b9
AC
1840 if (strcmp (arg, "-readnow") == 0)
1841 flags |= OBJF_READNOW;
1842 else if (strcmp (arg, "-s") == 0)
1843 {
1844 expecting_sec_name = 1;
1845 expecting_sec_addr = 1;
1846 }
7a78ae4e
ND
1847 }
1848 else
1849 {
1850 if (expecting_sec_name)
db162d44 1851 {
7a78ae4e
ND
1852 sect_opts[section_index].name = arg;
1853 expecting_sec_name = 0;
db162d44
EZ
1854 }
1855 else
7a78ae4e
ND
1856 if (expecting_sec_addr)
1857 {
1858 sect_opts[section_index].value = arg;
1859 expecting_sec_addr = 0;
5417f6dc 1860 if (++section_index > num_sect_opts)
a39a16c4
MM
1861 {
1862 num_sect_opts *= 2;
5417f6dc 1863 sect_opts = ((struct sect_opt *)
a39a16c4 1864 xrealloc (sect_opts,
5417f6dc 1865 num_sect_opts
a39a16c4
MM
1866 * sizeof (struct sect_opt)));
1867 }
7a78ae4e
ND
1868 }
1869 else
8a3fe4f8 1870 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1871 }
1872 }
db162d44 1873 argcnt++;
c906108c 1874 }
c906108c 1875
db162d44
EZ
1876 /* Print the prompt for the query below. And save the arguments into
1877 a sect_addr_info structure to be passed around to other
1878 functions. We have to split this up into separate print
bb599908 1879 statements because hex_string returns a local static
db162d44 1880 string. */
5417f6dc 1881
a3f17187 1882 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1883 section_addrs = alloc_section_addr_info (section_index);
1884 make_cleanup (xfree, section_addrs);
db162d44 1885 for (i = 0; i < section_index; i++)
c906108c 1886 {
db162d44
EZ
1887 CORE_ADDR addr;
1888 char *val = sect_opts[i].value;
1889 char *sec = sect_opts[i].name;
5417f6dc 1890
ae822768 1891 addr = parse_and_eval_address (val);
db162d44 1892
db162d44
EZ
1893 /* Here we store the section offsets in the order they were
1894 entered on the command line. */
a39a16c4
MM
1895 section_addrs->other[sec_num].name = sec;
1896 section_addrs->other[sec_num].addr = addr;
46f45a4a 1897 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1898 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1899 sec_num++;
1900
5417f6dc 1901 /* The object's sections are initialized when a
db162d44 1902 call is made to build_objfile_section_table (objfile).
5417f6dc 1903 This happens in reread_symbols.
db162d44
EZ
1904 At this point, we don't know what file type this is,
1905 so we can't determine what section names are valid. */
2acceee2 1906 }
db162d44 1907
2acceee2 1908 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1909 error (_("Not confirmed."));
c906108c 1910
a39a16c4 1911 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1912
1913 /* Getting new symbols may change our opinion about what is
1914 frameless. */
1915 reinit_frame_cache ();
db162d44 1916 do_cleanups (my_cleanups);
c906108c
SS
1917}
1918\f
1919static void
fba45db2 1920add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1921{
1922#ifdef ADD_SHARED_SYMBOL_FILES
1923 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1924#else
8a3fe4f8 1925 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1926#endif
c906108c
SS
1927}
1928\f
1929/* Re-read symbols if a symbol-file has changed. */
1930void
fba45db2 1931reread_symbols (void)
c906108c
SS
1932{
1933 struct objfile *objfile;
1934 long new_modtime;
1935 int reread_one = 0;
1936 struct stat new_statbuf;
1937 int res;
1938
1939 /* With the addition of shared libraries, this should be modified,
1940 the load time should be saved in the partial symbol tables, since
1941 different tables may come from different source files. FIXME.
1942 This routine should then walk down each partial symbol table
1943 and see if the symbol table that it originates from has been changed */
1944
c5aa993b
JM
1945 for (objfile = object_files; objfile; objfile = objfile->next)
1946 {
1947 if (objfile->obfd)
1948 {
52d16ba8 1949#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1950 /* If this object is from a shared library, then you should
1951 stat on the library name, not member name. */
c906108c 1952
c5aa993b
JM
1953 if (objfile->obfd->my_archive)
1954 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1955 else
c906108c 1956#endif
c5aa993b
JM
1957 res = stat (objfile->name, &new_statbuf);
1958 if (res != 0)
c906108c 1959 {
c5aa993b 1960 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 1961 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
1962 objfile->name);
1963 continue;
c906108c 1964 }
c5aa993b
JM
1965 new_modtime = new_statbuf.st_mtime;
1966 if (new_modtime != objfile->mtime)
c906108c 1967 {
c5aa993b
JM
1968 struct cleanup *old_cleanups;
1969 struct section_offsets *offsets;
1970 int num_offsets;
c5aa993b
JM
1971 char *obfd_filename;
1972
a3f17187 1973 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
1974 objfile->name);
1975
1976 /* There are various functions like symbol_file_add,
1977 symfile_bfd_open, syms_from_objfile, etc., which might
1978 appear to do what we want. But they have various other
1979 effects which we *don't* want. So we just do stuff
1980 ourselves. We don't worry about mapped files (for one thing,
1981 any mapped file will be out of date). */
1982
1983 /* If we get an error, blow away this objfile (not sure if
1984 that is the correct response for things like shared
1985 libraries). */
74b7792f 1986 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1987 /* We need to do this whenever any symbols go away. */
74b7792f 1988 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1989
1990 /* Clean up any state BFD has sitting around. We don't need
1991 to close the descriptor but BFD lacks a way of closing the
1992 BFD without closing the descriptor. */
1993 obfd_filename = bfd_get_filename (objfile->obfd);
1994 if (!bfd_close (objfile->obfd))
8a3fe4f8 1995 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
1996 bfd_errmsg (bfd_get_error ()));
1997 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1998 if (objfile->obfd == NULL)
8a3fe4f8 1999 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2000 /* bfd_openr sets cacheable to true, which is what we want. */
2001 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2002 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2003 bfd_errmsg (bfd_get_error ()));
2004
2005 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2006 objfile_obstack. */
c5aa993b 2007 num_offsets = objfile->num_sections;
5417f6dc 2008 offsets = ((struct section_offsets *)
a39a16c4 2009 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2010 memcpy (offsets, objfile->section_offsets,
a39a16c4 2011 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2012
2013 /* Nuke all the state that we will re-read. Much of the following
2014 code which sets things to NULL really is necessary to tell
2015 other parts of GDB that there is nothing currently there. */
2016
2017 /* FIXME: Do we have to free a whole linked list, or is this
2018 enough? */
2019 if (objfile->global_psymbols.list)
2dc74dc1 2020 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2021 memset (&objfile->global_psymbols, 0,
2022 sizeof (objfile->global_psymbols));
2023 if (objfile->static_psymbols.list)
2dc74dc1 2024 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2025 memset (&objfile->static_psymbols, 0,
2026 sizeof (objfile->static_psymbols));
2027
2028 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2029 bcache_xfree (objfile->psymbol_cache);
2030 objfile->psymbol_cache = bcache_xmalloc ();
2031 bcache_xfree (objfile->macro_cache);
2032 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2033 if (objfile->demangled_names_hash != NULL)
2034 {
2035 htab_delete (objfile->demangled_names_hash);
2036 objfile->demangled_names_hash = NULL;
2037 }
b99607ea 2038 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2039 objfile->sections = NULL;
2040 objfile->symtabs = NULL;
2041 objfile->psymtabs = NULL;
2042 objfile->free_psymtabs = NULL;
a1b8c067 2043 objfile->cp_namespace_symtab = NULL;
c5aa993b 2044 objfile->msymbols = NULL;
0a6ddd08 2045 objfile->deprecated_sym_private = NULL;
c5aa993b 2046 objfile->minimal_symbol_count = 0;
0a83117a
MS
2047 memset (&objfile->msymbol_hash, 0,
2048 sizeof (objfile->msymbol_hash));
2049 memset (&objfile->msymbol_demangled_hash, 0,
2050 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2051 objfile->fundamental_types = NULL;
7b097ae3 2052 clear_objfile_data (objfile);
c5aa993b
JM
2053 if (objfile->sf != NULL)
2054 {
2055 (*objfile->sf->sym_finish) (objfile);
2056 }
2057
2058 /* We never make this a mapped file. */
2059 objfile->md = NULL;
af5f3db6
AC
2060 objfile->psymbol_cache = bcache_xmalloc ();
2061 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2062 /* obstack_init also initializes the obstack so it is
2063 empty. We could use obstack_specify_allocation but
2064 gdb_obstack.h specifies the alloc/dealloc
2065 functions. */
2066 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2067 if (build_objfile_section_table (objfile))
2068 {
8a3fe4f8 2069 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2070 objfile->name, bfd_errmsg (bfd_get_error ()));
2071 }
15831452 2072 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2073
2074 /* We use the same section offsets as from last time. I'm not
2075 sure whether that is always correct for shared libraries. */
2076 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2077 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2078 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2079 memcpy (objfile->section_offsets, offsets,
a39a16c4 2080 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2081 objfile->num_sections = num_offsets;
2082
2083 /* What the hell is sym_new_init for, anyway? The concept of
2084 distinguishing between the main file and additional files
2085 in this way seems rather dubious. */
2086 if (objfile == symfile_objfile)
2087 {
2088 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2089 }
2090
2091 (*objfile->sf->sym_init) (objfile);
b9caf505 2092 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2093 /* The "mainline" parameter is a hideous hack; I think leaving it
2094 zero is OK since dbxread.c also does what it needs to do if
2095 objfile->global_psymbols.size is 0. */
96baa820 2096 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2097 if (!have_partial_symbols () && !have_full_symbols ())
2098 {
2099 wrap_here ("");
a3f17187 2100 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2101 wrap_here ("");
2102 }
2103 objfile->flags |= OBJF_SYMS;
2104
2105 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2106 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2107
c5aa993b
JM
2108 /* Getting new symbols may change our opinion about what is
2109 frameless. */
c906108c 2110
c5aa993b 2111 reinit_frame_cache ();
c906108c 2112
c5aa993b
JM
2113 /* Discard cleanups as symbol reading was successful. */
2114 discard_cleanups (old_cleanups);
c906108c 2115
c5aa993b
JM
2116 /* If the mtime has changed between the time we set new_modtime
2117 and now, we *want* this to be out of date, so don't call stat
2118 again now. */
2119 objfile->mtime = new_modtime;
2120 reread_one = 1;
5b5d99cf 2121 reread_separate_symbols (objfile);
c5aa993b 2122 }
c906108c
SS
2123 }
2124 }
c906108c
SS
2125
2126 if (reread_one)
ea53e89f
JB
2127 {
2128 clear_symtab_users ();
2129 /* At least one objfile has changed, so we can consider that
2130 the executable we're debugging has changed too. */
2131 observer_notify_executable_changed (NULL);
2132 }
2133
c906108c 2134}
5b5d99cf
JB
2135
2136
2137/* Handle separate debug info for OBJFILE, which has just been
2138 re-read:
2139 - If we had separate debug info before, but now we don't, get rid
2140 of the separated objfile.
2141 - If we didn't have separated debug info before, but now we do,
2142 read in the new separated debug info file.
2143 - If the debug link points to a different file, toss the old one
2144 and read the new one.
2145 This function does *not* handle the case where objfile is still
2146 using the same separate debug info file, but that file's timestamp
2147 has changed. That case should be handled by the loop in
2148 reread_symbols already. */
2149static void
2150reread_separate_symbols (struct objfile *objfile)
2151{
2152 char *debug_file;
2153 unsigned long crc32;
2154
2155 /* Does the updated objfile's debug info live in a
2156 separate file? */
2157 debug_file = find_separate_debug_file (objfile);
2158
2159 if (objfile->separate_debug_objfile)
2160 {
2161 /* There are two cases where we need to get rid of
2162 the old separated debug info objfile:
2163 - if the new primary objfile doesn't have
2164 separated debug info, or
2165 - if the new primary objfile has separate debug
2166 info, but it's under a different filename.
5417f6dc 2167
5b5d99cf
JB
2168 If the old and new objfiles both have separate
2169 debug info, under the same filename, then we're
2170 okay --- if the separated file's contents have
2171 changed, we will have caught that when we
2172 visited it in this function's outermost
2173 loop. */
2174 if (! debug_file
2175 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2176 free_objfile (objfile->separate_debug_objfile);
2177 }
2178
2179 /* If the new objfile has separate debug info, and we
2180 haven't loaded it already, do so now. */
2181 if (debug_file
2182 && ! objfile->separate_debug_objfile)
2183 {
2184 /* Use the same section offset table as objfile itself.
2185 Preserve the flags from objfile that make sense. */
2186 objfile->separate_debug_objfile
2187 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2188 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2189 info_verbose, /* from_tty: Don't override the default. */
2190 0, /* No addr table. */
2191 objfile->section_offsets, objfile->num_sections,
2192 0, /* Not mainline. See comments about this above. */
78a4a9b9 2193 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2194 | OBJF_USERLOADED)));
2195 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2196 = objfile;
2197 }
2198}
2199
2200
c906108c
SS
2201\f
2202
c5aa993b
JM
2203
2204typedef struct
2205{
2206 char *ext;
c906108c 2207 enum language lang;
c5aa993b
JM
2208}
2209filename_language;
c906108c 2210
c5aa993b 2211static filename_language *filename_language_table;
c906108c
SS
2212static int fl_table_size, fl_table_next;
2213
2214static void
fba45db2 2215add_filename_language (char *ext, enum language lang)
c906108c
SS
2216{
2217 if (fl_table_next >= fl_table_size)
2218 {
2219 fl_table_size += 10;
5417f6dc 2220 filename_language_table =
25bf3106
PM
2221 xrealloc (filename_language_table,
2222 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2223 }
2224
4fcf66da 2225 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2226 filename_language_table[fl_table_next].lang = lang;
2227 fl_table_next++;
2228}
2229
2230static char *ext_args;
920d2a44
AC
2231static void
2232show_ext_args (struct ui_file *file, int from_tty,
2233 struct cmd_list_element *c, const char *value)
2234{
2235 fprintf_filtered (file, _("\
2236Mapping between filename extension and source language is \"%s\".\n"),
2237 value);
2238}
c906108c
SS
2239
2240static void
26c41df3 2241set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2242{
2243 int i;
2244 char *cp = ext_args;
2245 enum language lang;
2246
2247 /* First arg is filename extension, starting with '.' */
2248 if (*cp != '.')
8a3fe4f8 2249 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2250
2251 /* Find end of first arg. */
c5aa993b 2252 while (*cp && !isspace (*cp))
c906108c
SS
2253 cp++;
2254
2255 if (*cp == '\0')
8a3fe4f8 2256 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2257 ext_args);
2258
2259 /* Null-terminate first arg */
c5aa993b 2260 *cp++ = '\0';
c906108c
SS
2261
2262 /* Find beginning of second arg, which should be a source language. */
2263 while (*cp && isspace (*cp))
2264 cp++;
2265
2266 if (*cp == '\0')
8a3fe4f8 2267 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2268 ext_args);
2269
2270 /* Lookup the language from among those we know. */
2271 lang = language_enum (cp);
2272
2273 /* Now lookup the filename extension: do we already know it? */
2274 for (i = 0; i < fl_table_next; i++)
2275 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2276 break;
2277
2278 if (i >= fl_table_next)
2279 {
2280 /* new file extension */
2281 add_filename_language (ext_args, lang);
2282 }
2283 else
2284 {
2285 /* redefining a previously known filename extension */
2286
2287 /* if (from_tty) */
2288 /* query ("Really make files of type %s '%s'?", */
2289 /* ext_args, language_str (lang)); */
2290
b8c9b27d 2291 xfree (filename_language_table[i].ext);
4fcf66da 2292 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2293 filename_language_table[i].lang = lang;
2294 }
2295}
2296
2297static void
fba45db2 2298info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2299{
2300 int i;
2301
a3f17187 2302 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2303 printf_filtered ("\n\n");
2304 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2305 printf_filtered ("\t%s\t- %s\n",
2306 filename_language_table[i].ext,
c906108c
SS
2307 language_str (filename_language_table[i].lang));
2308}
2309
2310static void
fba45db2 2311init_filename_language_table (void)
c906108c
SS
2312{
2313 if (fl_table_size == 0) /* protect against repetition */
2314 {
2315 fl_table_size = 20;
2316 fl_table_next = 0;
c5aa993b 2317 filename_language_table =
c906108c 2318 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2319 add_filename_language (".c", language_c);
2320 add_filename_language (".C", language_cplus);
2321 add_filename_language (".cc", language_cplus);
2322 add_filename_language (".cp", language_cplus);
2323 add_filename_language (".cpp", language_cplus);
2324 add_filename_language (".cxx", language_cplus);
2325 add_filename_language (".c++", language_cplus);
2326 add_filename_language (".java", language_java);
c906108c 2327 add_filename_language (".class", language_java);
da2cf7e0 2328 add_filename_language (".m", language_objc);
c5aa993b
JM
2329 add_filename_language (".f", language_fortran);
2330 add_filename_language (".F", language_fortran);
2331 add_filename_language (".s", language_asm);
2332 add_filename_language (".S", language_asm);
c6fd39cd
PM
2333 add_filename_language (".pas", language_pascal);
2334 add_filename_language (".p", language_pascal);
2335 add_filename_language (".pp", language_pascal);
963a6417
PH
2336 add_filename_language (".adb", language_ada);
2337 add_filename_language (".ads", language_ada);
2338 add_filename_language (".a", language_ada);
2339 add_filename_language (".ada", language_ada);
c906108c
SS
2340 }
2341}
2342
2343enum language
fba45db2 2344deduce_language_from_filename (char *filename)
c906108c
SS
2345{
2346 int i;
2347 char *cp;
2348
2349 if (filename != NULL)
2350 if ((cp = strrchr (filename, '.')) != NULL)
2351 for (i = 0; i < fl_table_next; i++)
2352 if (strcmp (cp, filename_language_table[i].ext) == 0)
2353 return filename_language_table[i].lang;
2354
2355 return language_unknown;
2356}
2357\f
2358/* allocate_symtab:
2359
2360 Allocate and partly initialize a new symbol table. Return a pointer
2361 to it. error() if no space.
2362
2363 Caller must set these fields:
c5aa993b
JM
2364 LINETABLE(symtab)
2365 symtab->blockvector
2366 symtab->dirname
2367 symtab->free_code
2368 symtab->free_ptr
2369 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2370 */
2371
2372struct symtab *
fba45db2 2373allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2374{
52f0bd74 2375 struct symtab *symtab;
c906108c
SS
2376
2377 symtab = (struct symtab *)
4a146b47 2378 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2379 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2380 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2381 &objfile->objfile_obstack);
c5aa993b
JM
2382 symtab->fullname = NULL;
2383 symtab->language = deduce_language_from_filename (filename);
2384 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2385 &objfile->objfile_obstack);
c906108c
SS
2386
2387 /* Hook it to the objfile it comes from */
2388
c5aa993b
JM
2389 symtab->objfile = objfile;
2390 symtab->next = objfile->symtabs;
2391 objfile->symtabs = symtab;
c906108c
SS
2392
2393 /* FIXME: This should go away. It is only defined for the Z8000,
2394 and the Z8000 definition of this macro doesn't have anything to
2395 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2396 here for convenience. */
2397#ifdef INIT_EXTRA_SYMTAB_INFO
2398 INIT_EXTRA_SYMTAB_INFO (symtab);
2399#endif
2400
2401 return (symtab);
2402}
2403
2404struct partial_symtab *
fba45db2 2405allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2406{
2407 struct partial_symtab *psymtab;
2408
c5aa993b 2409 if (objfile->free_psymtabs)
c906108c 2410 {
c5aa993b
JM
2411 psymtab = objfile->free_psymtabs;
2412 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2413 }
2414 else
2415 psymtab = (struct partial_symtab *)
8b92e4d5 2416 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2417 sizeof (struct partial_symtab));
2418
2419 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2420 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2421 &objfile->objfile_obstack);
c5aa993b 2422 psymtab->symtab = NULL;
c906108c
SS
2423
2424 /* Prepend it to the psymtab list for the objfile it belongs to.
2425 Psymtabs are searched in most recent inserted -> least recent
2426 inserted order. */
2427
c5aa993b
JM
2428 psymtab->objfile = objfile;
2429 psymtab->next = objfile->psymtabs;
2430 objfile->psymtabs = psymtab;
c906108c
SS
2431#if 0
2432 {
2433 struct partial_symtab **prev_pst;
c5aa993b
JM
2434 psymtab->objfile = objfile;
2435 psymtab->next = NULL;
2436 prev_pst = &(objfile->psymtabs);
c906108c 2437 while ((*prev_pst) != NULL)
c5aa993b 2438 prev_pst = &((*prev_pst)->next);
c906108c 2439 (*prev_pst) = psymtab;
c5aa993b 2440 }
c906108c 2441#endif
c5aa993b 2442
c906108c
SS
2443 return (psymtab);
2444}
2445
2446void
fba45db2 2447discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2448{
2449 struct partial_symtab **prev_pst;
2450
2451 /* From dbxread.c:
2452 Empty psymtabs happen as a result of header files which don't
2453 have any symbols in them. There can be a lot of them. But this
2454 check is wrong, in that a psymtab with N_SLINE entries but
2455 nothing else is not empty, but we don't realize that. Fixing
2456 that without slowing things down might be tricky. */
2457
2458 /* First, snip it out of the psymtab chain */
2459
2460 prev_pst = &(pst->objfile->psymtabs);
2461 while ((*prev_pst) != pst)
2462 prev_pst = &((*prev_pst)->next);
2463 (*prev_pst) = pst->next;
2464
2465 /* Next, put it on a free list for recycling */
2466
2467 pst->next = pst->objfile->free_psymtabs;
2468 pst->objfile->free_psymtabs = pst;
2469}
c906108c 2470\f
c5aa993b 2471
c906108c
SS
2472/* Reset all data structures in gdb which may contain references to symbol
2473 table data. */
2474
2475void
fba45db2 2476clear_symtab_users (void)
c906108c
SS
2477{
2478 /* Someday, we should do better than this, by only blowing away
2479 the things that really need to be blown. */
c0501be5
DJ
2480
2481 /* Clear the "current" symtab first, because it is no longer valid.
2482 breakpoint_re_set may try to access the current symtab. */
2483 clear_current_source_symtab_and_line ();
2484
c906108c
SS
2485 clear_value_history ();
2486 clear_displays ();
2487 clear_internalvars ();
2488 breakpoint_re_set ();
2489 set_default_breakpoint (0, 0, 0, 0);
c906108c 2490 clear_pc_function_cache ();
9a4105ab
AC
2491 if (deprecated_target_new_objfile_hook)
2492 deprecated_target_new_objfile_hook (NULL);
c906108c
SS
2493}
2494
74b7792f
AC
2495static void
2496clear_symtab_users_cleanup (void *ignore)
2497{
2498 clear_symtab_users ();
2499}
2500
c906108c
SS
2501/* clear_symtab_users_once:
2502
2503 This function is run after symbol reading, or from a cleanup.
2504 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2505 has been blown away, but the other GDB data structures that may
c906108c
SS
2506 reference it have not yet been cleared or re-directed. (The old
2507 symtab was zapped, and the cleanup queued, in free_named_symtab()
2508 below.)
2509
2510 This function can be queued N times as a cleanup, or called
2511 directly; it will do all the work the first time, and then will be a
2512 no-op until the next time it is queued. This works by bumping a
2513 counter at queueing time. Much later when the cleanup is run, or at
2514 the end of symbol processing (in case the cleanup is discarded), if
2515 the queued count is greater than the "done-count", we do the work
2516 and set the done-count to the queued count. If the queued count is
2517 less than or equal to the done-count, we just ignore the call. This
2518 is needed because reading a single .o file will often replace many
2519 symtabs (one per .h file, for example), and we don't want to reset
2520 the breakpoints N times in the user's face.
2521
2522 The reason we both queue a cleanup, and call it directly after symbol
2523 reading, is because the cleanup protects us in case of errors, but is
2524 discarded if symbol reading is successful. */
2525
2526#if 0
2527/* FIXME: As free_named_symtabs is currently a big noop this function
2528 is no longer needed. */
a14ed312 2529static void clear_symtab_users_once (void);
c906108c
SS
2530
2531static int clear_symtab_users_queued;
2532static int clear_symtab_users_done;
2533
2534static void
fba45db2 2535clear_symtab_users_once (void)
c906108c
SS
2536{
2537 /* Enforce once-per-`do_cleanups'-semantics */
2538 if (clear_symtab_users_queued <= clear_symtab_users_done)
2539 return;
2540 clear_symtab_users_done = clear_symtab_users_queued;
2541
2542 clear_symtab_users ();
2543}
2544#endif
2545
2546/* Delete the specified psymtab, and any others that reference it. */
2547
2548static void
fba45db2 2549cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2550{
2551 struct partial_symtab *ps, *pprev = NULL;
2552 int i;
2553
2554 /* Find its previous psymtab in the chain */
c5aa993b
JM
2555 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2556 {
2557 if (ps == pst)
2558 break;
2559 pprev = ps;
2560 }
c906108c 2561
c5aa993b
JM
2562 if (ps)
2563 {
2564 /* Unhook it from the chain. */
2565 if (ps == pst->objfile->psymtabs)
2566 pst->objfile->psymtabs = ps->next;
2567 else
2568 pprev->next = ps->next;
2569
2570 /* FIXME, we can't conveniently deallocate the entries in the
2571 partial_symbol lists (global_psymbols/static_psymbols) that
2572 this psymtab points to. These just take up space until all
2573 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2574 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2575
2576 /* We need to cashier any psymtab that has this one as a dependency... */
2577 again:
2578 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2579 {
2580 for (i = 0; i < ps->number_of_dependencies; i++)
2581 {
2582 if (ps->dependencies[i] == pst)
2583 {
2584 cashier_psymtab (ps);
2585 goto again; /* Must restart, chain has been munged. */
2586 }
2587 }
c906108c 2588 }
c906108c 2589 }
c906108c
SS
2590}
2591
2592/* If a symtab or psymtab for filename NAME is found, free it along
2593 with any dependent breakpoints, displays, etc.
2594 Used when loading new versions of object modules with the "add-file"
2595 command. This is only called on the top-level symtab or psymtab's name;
2596 it is not called for subsidiary files such as .h files.
2597
2598 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2599 FIXME. The return value appears to never be used.
c906108c
SS
2600
2601 FIXME. I think this is not the best way to do this. We should
2602 work on being gentler to the environment while still cleaning up
2603 all stray pointers into the freed symtab. */
2604
2605int
fba45db2 2606free_named_symtabs (char *name)
c906108c
SS
2607{
2608#if 0
2609 /* FIXME: With the new method of each objfile having it's own
2610 psymtab list, this function needs serious rethinking. In particular,
2611 why was it ever necessary to toss psymtabs with specific compilation
2612 unit filenames, as opposed to all psymtabs from a particular symbol
2613 file? -- fnf
2614 Well, the answer is that some systems permit reloading of particular
2615 compilation units. We want to blow away any old info about these
2616 compilation units, regardless of which objfiles they arrived in. --gnu. */
2617
52f0bd74
AC
2618 struct symtab *s;
2619 struct symtab *prev;
2620 struct partial_symtab *ps;
c906108c
SS
2621 struct blockvector *bv;
2622 int blewit = 0;
2623
2624 /* We only wack things if the symbol-reload switch is set. */
2625 if (!symbol_reloading)
2626 return 0;
2627
2628 /* Some symbol formats have trouble providing file names... */
2629 if (name == 0 || *name == '\0')
2630 return 0;
2631
2632 /* Look for a psymtab with the specified name. */
2633
2634again2:
c5aa993b
JM
2635 for (ps = partial_symtab_list; ps; ps = ps->next)
2636 {
6314a349 2637 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2638 {
2639 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2640 goto again2; /* Must restart, chain has been munged */
2641 }
c906108c 2642 }
c906108c
SS
2643
2644 /* Look for a symtab with the specified name. */
2645
2646 for (s = symtab_list; s; s = s->next)
2647 {
6314a349 2648 if (strcmp (name, s->filename) == 0)
c906108c
SS
2649 break;
2650 prev = s;
2651 }
2652
2653 if (s)
2654 {
2655 if (s == symtab_list)
2656 symtab_list = s->next;
2657 else
2658 prev->next = s->next;
2659
2660 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2661 or not they depend on the symtab being freed. This should be
2662 changed so that only those data structures affected are deleted. */
c906108c
SS
2663
2664 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2665 This test is necessary due to a bug in "dbxread.c" that
2666 causes empty symtabs to be created for N_SO symbols that
2667 contain the pathname of the object file. (This problem
2668 has been fixed in GDB 3.9x). */
c906108c
SS
2669
2670 bv = BLOCKVECTOR (s);
2671 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2672 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2673 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2674 {
e2e0b3e5 2675 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2676 name);
c906108c
SS
2677 clear_symtab_users_queued++;
2678 make_cleanup (clear_symtab_users_once, 0);
2679 blewit = 1;
c5aa993b
JM
2680 }
2681 else
e2e0b3e5
AC
2682 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2683 name);
c906108c
SS
2684
2685 free_symtab (s);
2686 }
2687 else
2688 {
2689 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2690 even though no symtab was found, since the file might have
2691 been compiled without debugging, and hence not be associated
2692 with a symtab. In order to handle this correctly, we would need
2693 to keep a list of text address ranges for undebuggable files.
2694 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2695 ;
2696 }
2697
2698 /* FIXME, what about the minimal symbol table? */
2699 return blewit;
2700#else
2701 return (0);
2702#endif
2703}
2704\f
2705/* Allocate and partially fill a partial symtab. It will be
2706 completely filled at the end of the symbol list.
2707
d4f3574e 2708 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2709
2710struct partial_symtab *
fba45db2
KB
2711start_psymtab_common (struct objfile *objfile,
2712 struct section_offsets *section_offsets, char *filename,
2713 CORE_ADDR textlow, struct partial_symbol **global_syms,
2714 struct partial_symbol **static_syms)
c906108c
SS
2715{
2716 struct partial_symtab *psymtab;
2717
2718 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2719 psymtab->section_offsets = section_offsets;
2720 psymtab->textlow = textlow;
2721 psymtab->texthigh = psymtab->textlow; /* default */
2722 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2723 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2724 return (psymtab);
2725}
2726\f
2727/* Add a symbol with a long value to a psymtab.
5417f6dc 2728 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2729 Return the partial symbol that has been added. */
2730
2731/* NOTE: carlton/2003-09-11: The reason why we return the partial
2732 symbol is so that callers can get access to the symbol's demangled
2733 name, which they don't have any cheap way to determine otherwise.
2734 (Currenly, dwarf2read.c is the only file who uses that information,
2735 though it's possible that other readers might in the future.)
2736 Elena wasn't thrilled about that, and I don't blame her, but we
2737 couldn't come up with a better way to get that information. If
2738 it's needed in other situations, we could consider breaking up
2739 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2740 cache. */
2741
2742const struct partial_symbol *
176620f1 2743add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2744 enum address_class class,
2745 struct psymbol_allocation_list *list, long val, /* Value as a long */
2746 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2747 enum language language, struct objfile *objfile)
c906108c 2748{
52f0bd74 2749 struct partial_symbol *psym;
c906108c
SS
2750 char *buf = alloca (namelength + 1);
2751 /* psymbol is static so that there will be no uninitialized gaps in the
2752 structure which might contain random data, causing cache misses in
2753 bcache. */
2754 static struct partial_symbol psymbol;
2755
2756 /* Create local copy of the partial symbol */
2757 memcpy (buf, name, namelength);
2758 buf[namelength] = '\0';
c906108c
SS
2759 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2760 if (val != 0)
2761 {
2762 SYMBOL_VALUE (&psymbol) = val;
2763 }
2764 else
2765 {
2766 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2767 }
2768 SYMBOL_SECTION (&psymbol) = 0;
2769 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2770 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2771 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2772
2773 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2774
2775 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2776 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2777 objfile->psymbol_cache);
c906108c
SS
2778
2779 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2780 if (list->next >= list->list + list->size)
2781 {
2782 extend_psymbol_list (list, objfile);
2783 }
2784 *list->next++ = psym;
2785 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2786
2787 return psym;
c906108c
SS
2788}
2789
2790/* Add a symbol with a long value to a psymtab. This differs from
2791 * add_psymbol_to_list above in taking both a mangled and a demangled
2792 * name. */
2793
2794void
fba45db2 2795add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2796 int dem_namelength, domain_enum domain,
fba45db2
KB
2797 enum address_class class,
2798 struct psymbol_allocation_list *list, long val, /* Value as a long */
2799 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2800 enum language language,
2801 struct objfile *objfile)
c906108c 2802{
52f0bd74 2803 struct partial_symbol *psym;
c906108c
SS
2804 char *buf = alloca (namelength + 1);
2805 /* psymbol is static so that there will be no uninitialized gaps in the
2806 structure which might contain random data, causing cache misses in
2807 bcache. */
2808 static struct partial_symbol psymbol;
2809
2810 /* Create local copy of the partial symbol */
2811
2812 memcpy (buf, name, namelength);
2813 buf[namelength] = '\0';
3a16a68c
AC
2814 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2815 objfile->psymbol_cache);
c906108c
SS
2816
2817 buf = alloca (dem_namelength + 1);
2818 memcpy (buf, dem_name, dem_namelength);
2819 buf[dem_namelength] = '\0';
c5aa993b 2820
c906108c
SS
2821 switch (language)
2822 {
c5aa993b
JM
2823 case language_c:
2824 case language_cplus:
2825 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2826 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2827 break;
c906108c
SS
2828 /* FIXME What should be done for the default case? Ignoring for now. */
2829 }
2830
2831 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2832 if (val != 0)
2833 {
2834 SYMBOL_VALUE (&psymbol) = val;
2835 }
2836 else
2837 {
2838 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2839 }
2840 SYMBOL_SECTION (&psymbol) = 0;
2841 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2842 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2843 PSYMBOL_CLASS (&psymbol) = class;
2844 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2845
2846 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2847 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2848 objfile->psymbol_cache);
c906108c
SS
2849
2850 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2851 if (list->next >= list->list + list->size)
2852 {
2853 extend_psymbol_list (list, objfile);
2854 }
2855 *list->next++ = psym;
2856 OBJSTAT (objfile, n_psyms++);
2857}
2858
2859/* Initialize storage for partial symbols. */
2860
2861void
fba45db2 2862init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2863{
2864 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2865
2866 if (objfile->global_psymbols.list)
c906108c 2867 {
2dc74dc1 2868 xfree (objfile->global_psymbols.list);
c906108c 2869 }
c5aa993b 2870 if (objfile->static_psymbols.list)
c906108c 2871 {
2dc74dc1 2872 xfree (objfile->static_psymbols.list);
c906108c 2873 }
c5aa993b 2874
c906108c
SS
2875 /* Current best guess is that approximately a twentieth
2876 of the total symbols (in a debugging file) are global or static
2877 oriented symbols */
c906108c 2878
c5aa993b
JM
2879 objfile->global_psymbols.size = total_symbols / 10;
2880 objfile->static_psymbols.size = total_symbols / 10;
2881
2882 if (objfile->global_psymbols.size > 0)
c906108c 2883 {
c5aa993b
JM
2884 objfile->global_psymbols.next =
2885 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2886 xmalloc ((objfile->global_psymbols.size
2887 * sizeof (struct partial_symbol *)));
c906108c 2888 }
c5aa993b 2889 if (objfile->static_psymbols.size > 0)
c906108c 2890 {
c5aa993b
JM
2891 objfile->static_psymbols.next =
2892 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2893 xmalloc ((objfile->static_psymbols.size
2894 * sizeof (struct partial_symbol *)));
c906108c
SS
2895 }
2896}
2897
2898/* OVERLAYS:
2899 The following code implements an abstraction for debugging overlay sections.
2900
2901 The target model is as follows:
2902 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2903 same VMA, each with its own unique LMA (or load address).
c906108c 2904 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2905 sections, one by one, from the load address into the VMA address.
5417f6dc 2906 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2907 sections should be considered to be mapped from the VMA to the LMA.
2908 This information is used for symbol lookup, and memory read/write.
5417f6dc 2909 For instance, if a section has been mapped then its contents
c5aa993b 2910 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2911
2912 Two levels of debugger support for overlays are available. One is
2913 "manual", in which the debugger relies on the user to tell it which
2914 overlays are currently mapped. This level of support is
2915 implemented entirely in the core debugger, and the information about
2916 whether a section is mapped is kept in the objfile->obj_section table.
2917
2918 The second level of support is "automatic", and is only available if
2919 the target-specific code provides functionality to read the target's
2920 overlay mapping table, and translate its contents for the debugger
2921 (by updating the mapped state information in the obj_section tables).
2922
2923 The interface is as follows:
c5aa993b
JM
2924 User commands:
2925 overlay map <name> -- tell gdb to consider this section mapped
2926 overlay unmap <name> -- tell gdb to consider this section unmapped
2927 overlay list -- list the sections that GDB thinks are mapped
2928 overlay read-target -- get the target's state of what's mapped
2929 overlay off/manual/auto -- set overlay debugging state
2930 Functional interface:
2931 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2932 section, return that section.
5417f6dc 2933 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2934 the pc, either in its VMA or its LMA
2935 overlay_is_mapped(sect): true if overlay is marked as mapped
2936 section_is_overlay(sect): true if section's VMA != LMA
2937 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2938 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2939 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2940 overlay_mapped_address(...): map an address from section's LMA to VMA
2941 overlay_unmapped_address(...): map an address from section's VMA to LMA
2942 symbol_overlayed_address(...): Return a "current" address for symbol:
2943 either in VMA or LMA depending on whether
2944 the symbol's section is currently mapped
c906108c
SS
2945 */
2946
2947/* Overlay debugging state: */
2948
d874f1e2 2949enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2950int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2951
2952/* Target vector for refreshing overlay mapped state */
a14ed312 2953static void simple_overlay_update (struct obj_section *);
507f3c78 2954void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2955
2956/* Function: section_is_overlay (SECTION)
5417f6dc 2957 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2958 SECTION is loaded at an address different from where it will "run". */
2959
2960int
fba45db2 2961section_is_overlay (asection *section)
c906108c 2962{
fbd35540
MS
2963 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2964
c906108c
SS
2965 if (overlay_debugging)
2966 if (section && section->lma != 0 &&
2967 section->vma != section->lma)
2968 return 1;
2969
2970 return 0;
2971}
2972
2973/* Function: overlay_invalidate_all (void)
2974 Invalidate the mapped state of all overlay sections (mark it as stale). */
2975
2976static void
fba45db2 2977overlay_invalidate_all (void)
c906108c 2978{
c5aa993b 2979 struct objfile *objfile;
c906108c
SS
2980 struct obj_section *sect;
2981
2982 ALL_OBJSECTIONS (objfile, sect)
2983 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2984 sect->ovly_mapped = -1;
c906108c
SS
2985}
2986
2987/* Function: overlay_is_mapped (SECTION)
5417f6dc 2988 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2989 Private: public access is thru function section_is_mapped.
2990
2991 Access to the ovly_mapped flag is restricted to this function, so
2992 that we can do automatic update. If the global flag
2993 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2994 overlay_invalidate_all. If the mapped state of the particular
2995 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2996
c5aa993b 2997static int
fba45db2 2998overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2999{
3000 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3001 return 0;
3002
c5aa993b 3003 switch (overlay_debugging)
c906108c
SS
3004 {
3005 default:
d874f1e2 3006 case ovly_off:
c5aa993b 3007 return 0; /* overlay debugging off */
d874f1e2 3008 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3009 /* Unles there is a target_overlay_update function,
c5aa993b 3010 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3011 if (target_overlay_update)
3012 {
3013 if (overlay_cache_invalid)
3014 {
3015 overlay_invalidate_all ();
3016 overlay_cache_invalid = 0;
3017 }
3018 if (osect->ovly_mapped == -1)
3019 (*target_overlay_update) (osect);
3020 }
3021 /* fall thru to manual case */
d874f1e2 3022 case ovly_on: /* overlay debugging manual */
c906108c
SS
3023 return osect->ovly_mapped == 1;
3024 }
3025}
3026
3027/* Function: section_is_mapped
3028 Returns true if section is an overlay, and is currently mapped. */
3029
3030int
fba45db2 3031section_is_mapped (asection *section)
c906108c 3032{
c5aa993b 3033 struct objfile *objfile;
c906108c
SS
3034 struct obj_section *osect;
3035
3036 if (overlay_debugging)
3037 if (section && section_is_overlay (section))
3038 ALL_OBJSECTIONS (objfile, osect)
3039 if (osect->the_bfd_section == section)
c5aa993b 3040 return overlay_is_mapped (osect);
c906108c
SS
3041
3042 return 0;
3043}
3044
3045/* Function: pc_in_unmapped_range
3046 If PC falls into the lma range of SECTION, return true, else false. */
3047
3048CORE_ADDR
fba45db2 3049pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3050{
fbd35540
MS
3051 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3052
c906108c
SS
3053 int size;
3054
3055 if (overlay_debugging)
3056 if (section && section_is_overlay (section))
3057 {
2c500098 3058 size = bfd_get_section_size (section);
c906108c
SS
3059 if (section->lma <= pc && pc < section->lma + size)
3060 return 1;
3061 }
3062 return 0;
3063}
3064
3065/* Function: pc_in_mapped_range
3066 If PC falls into the vma range of SECTION, return true, else false. */
3067
3068CORE_ADDR
fba45db2 3069pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3070{
fbd35540
MS
3071 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3072
c906108c
SS
3073 int size;
3074
3075 if (overlay_debugging)
3076 if (section && section_is_overlay (section))
3077 {
2c500098 3078 size = bfd_get_section_size (section);
c906108c
SS
3079 if (section->vma <= pc && pc < section->vma + size)
3080 return 1;
3081 }
3082 return 0;
3083}
3084
9ec8e6a0
JB
3085
3086/* Return true if the mapped ranges of sections A and B overlap, false
3087 otherwise. */
b9362cc7 3088static int
9ec8e6a0
JB
3089sections_overlap (asection *a, asection *b)
3090{
fbd35540
MS
3091 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3092
9ec8e6a0 3093 CORE_ADDR a_start = a->vma;
2c500098 3094 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3095 CORE_ADDR b_start = b->vma;
2c500098 3096 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3097
3098 return (a_start < b_end && b_start < a_end);
3099}
3100
c906108c
SS
3101/* Function: overlay_unmapped_address (PC, SECTION)
3102 Returns the address corresponding to PC in the unmapped (load) range.
3103 May be the same as PC. */
3104
3105CORE_ADDR
fba45db2 3106overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3107{
fbd35540
MS
3108 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3109
c906108c
SS
3110 if (overlay_debugging)
3111 if (section && section_is_overlay (section) &&
3112 pc_in_mapped_range (pc, section))
3113 return pc + section->lma - section->vma;
3114
3115 return pc;
3116}
3117
3118/* Function: overlay_mapped_address (PC, SECTION)
3119 Returns the address corresponding to PC in the mapped (runtime) range.
3120 May be the same as PC. */
3121
3122CORE_ADDR
fba45db2 3123overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3124{
fbd35540
MS
3125 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3126
c906108c
SS
3127 if (overlay_debugging)
3128 if (section && section_is_overlay (section) &&
3129 pc_in_unmapped_range (pc, section))
3130 return pc + section->vma - section->lma;
3131
3132 return pc;
3133}
3134
3135
5417f6dc 3136/* Function: symbol_overlayed_address
c906108c
SS
3137 Return one of two addresses (relative to the VMA or to the LMA),
3138 depending on whether the section is mapped or not. */
3139
c5aa993b 3140CORE_ADDR
fba45db2 3141symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3142{
3143 if (overlay_debugging)
3144 {
3145 /* If the symbol has no section, just return its regular address. */
3146 if (section == 0)
3147 return address;
3148 /* If the symbol's section is not an overlay, just return its address */
3149 if (!section_is_overlay (section))
3150 return address;
3151 /* If the symbol's section is mapped, just return its address */
3152 if (section_is_mapped (section))
3153 return address;
3154 /*
3155 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3156 * then return its LOADED address rather than its vma address!!
3157 */
3158 return overlay_unmapped_address (address, section);
3159 }
3160 return address;
3161}
3162
5417f6dc 3163/* Function: find_pc_overlay (PC)
c906108c
SS
3164 Return the best-match overlay section for PC:
3165 If PC matches a mapped overlay section's VMA, return that section.
3166 Else if PC matches an unmapped section's VMA, return that section.
3167 Else if PC matches an unmapped section's LMA, return that section. */
3168
3169asection *
fba45db2 3170find_pc_overlay (CORE_ADDR pc)
c906108c 3171{
c5aa993b 3172 struct objfile *objfile;
c906108c
SS
3173 struct obj_section *osect, *best_match = NULL;
3174
3175 if (overlay_debugging)
3176 ALL_OBJSECTIONS (objfile, osect)
3177 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3178 {
3179 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3180 {
3181 if (overlay_is_mapped (osect))
3182 return osect->the_bfd_section;
3183 else
3184 best_match = osect;
3185 }
3186 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3187 best_match = osect;
3188 }
c906108c
SS
3189 return best_match ? best_match->the_bfd_section : NULL;
3190}
3191
3192/* Function: find_pc_mapped_section (PC)
5417f6dc 3193 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3194 currently marked as MAPPED, return that section. Else return NULL. */
3195
3196asection *
fba45db2 3197find_pc_mapped_section (CORE_ADDR pc)
c906108c 3198{
c5aa993b 3199 struct objfile *objfile;
c906108c
SS
3200 struct obj_section *osect;
3201
3202 if (overlay_debugging)
3203 ALL_OBJSECTIONS (objfile, osect)
3204 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3205 overlay_is_mapped (osect))
c5aa993b 3206 return osect->the_bfd_section;
c906108c
SS
3207
3208 return NULL;
3209}
3210
3211/* Function: list_overlays_command
3212 Print a list of mapped sections and their PC ranges */
3213
3214void
fba45db2 3215list_overlays_command (char *args, int from_tty)
c906108c 3216{
c5aa993b
JM
3217 int nmapped = 0;
3218 struct objfile *objfile;
c906108c
SS
3219 struct obj_section *osect;
3220
3221 if (overlay_debugging)
3222 ALL_OBJSECTIONS (objfile, osect)
3223 if (overlay_is_mapped (osect))
c5aa993b
JM
3224 {
3225 const char *name;
3226 bfd_vma lma, vma;
3227 int size;
3228
3229 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3230 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3231 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3232 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3233
3234 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3235 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3236 puts_filtered (" - ");
66bf4b3a 3237 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3238 printf_filtered (", mapped at ");
66bf4b3a 3239 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3240 puts_filtered (" - ");
66bf4b3a 3241 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3242 puts_filtered ("\n");
3243
3244 nmapped++;
3245 }
c906108c 3246 if (nmapped == 0)
a3f17187 3247 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3248}
3249
3250/* Function: map_overlay_command
3251 Mark the named section as mapped (ie. residing at its VMA address). */
3252
3253void
fba45db2 3254map_overlay_command (char *args, int from_tty)
c906108c 3255{
c5aa993b
JM
3256 struct objfile *objfile, *objfile2;
3257 struct obj_section *sec, *sec2;
3258 asection *bfdsec;
c906108c
SS
3259
3260 if (!overlay_debugging)
8a3fe4f8 3261 error (_("\
515ad16c 3262Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3263the 'overlay manual' command."));
c906108c
SS
3264
3265 if (args == 0 || *args == 0)
8a3fe4f8 3266 error (_("Argument required: name of an overlay section"));
c906108c
SS
3267
3268 /* First, find a section matching the user supplied argument */
3269 ALL_OBJSECTIONS (objfile, sec)
3270 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3271 {
3272 /* Now, check to see if the section is an overlay. */
3273 bfdsec = sec->the_bfd_section;
3274 if (!section_is_overlay (bfdsec))
3275 continue; /* not an overlay section */
3276
3277 /* Mark the overlay as "mapped" */
3278 sec->ovly_mapped = 1;
3279
3280 /* Next, make a pass and unmap any sections that are
3281 overlapped by this new section: */
3282 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3283 if (sec2->ovly_mapped
3284 && sec != sec2
3285 && sec->the_bfd_section != sec2->the_bfd_section
3286 && sections_overlap (sec->the_bfd_section,
3287 sec2->the_bfd_section))
c5aa993b
JM
3288 {
3289 if (info_verbose)
a3f17187 3290 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3291 bfd_section_name (objfile->obfd,
3292 sec2->the_bfd_section));
3293 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3294 }
3295 return;
3296 }
8a3fe4f8 3297 error (_("No overlay section called %s"), args);
c906108c
SS
3298}
3299
3300/* Function: unmap_overlay_command
5417f6dc 3301 Mark the overlay section as unmapped
c906108c
SS
3302 (ie. resident in its LMA address range, rather than the VMA range). */
3303
3304void
fba45db2 3305unmap_overlay_command (char *args, int from_tty)
c906108c 3306{
c5aa993b 3307 struct objfile *objfile;
c906108c
SS
3308 struct obj_section *sec;
3309
3310 if (!overlay_debugging)
8a3fe4f8 3311 error (_("\
515ad16c 3312Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3313the 'overlay manual' command."));
c906108c
SS
3314
3315 if (args == 0 || *args == 0)
8a3fe4f8 3316 error (_("Argument required: name of an overlay section"));
c906108c
SS
3317
3318 /* First, find a section matching the user supplied argument */
3319 ALL_OBJSECTIONS (objfile, sec)
3320 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3321 {
3322 if (!sec->ovly_mapped)
8a3fe4f8 3323 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3324 sec->ovly_mapped = 0;
3325 return;
3326 }
8a3fe4f8 3327 error (_("No overlay section called %s"), args);
c906108c
SS
3328}
3329
3330/* Function: overlay_auto_command
3331 A utility command to turn on overlay debugging.
3332 Possibly this should be done via a set/show command. */
3333
3334static void
fba45db2 3335overlay_auto_command (char *args, int from_tty)
c906108c 3336{
d874f1e2 3337 overlay_debugging = ovly_auto;
1900040c 3338 enable_overlay_breakpoints ();
c906108c 3339 if (info_verbose)
a3f17187 3340 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3341}
3342
3343/* Function: overlay_manual_command
3344 A utility command to turn on overlay debugging.
3345 Possibly this should be done via a set/show command. */
3346
3347static void
fba45db2 3348overlay_manual_command (char *args, int from_tty)
c906108c 3349{
d874f1e2 3350 overlay_debugging = ovly_on;
1900040c 3351 disable_overlay_breakpoints ();
c906108c 3352 if (info_verbose)
a3f17187 3353 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3354}
3355
3356/* Function: overlay_off_command
3357 A utility command to turn on overlay debugging.
3358 Possibly this should be done via a set/show command. */
3359
3360static void
fba45db2 3361overlay_off_command (char *args, int from_tty)
c906108c 3362{
d874f1e2 3363 overlay_debugging = ovly_off;
1900040c 3364 disable_overlay_breakpoints ();
c906108c 3365 if (info_verbose)
a3f17187 3366 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3367}
3368
3369static void
fba45db2 3370overlay_load_command (char *args, int from_tty)
c906108c
SS
3371{
3372 if (target_overlay_update)
3373 (*target_overlay_update) (NULL);
3374 else
8a3fe4f8 3375 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3376}
3377
3378/* Function: overlay_command
3379 A place-holder for a mis-typed command */
3380
3381/* Command list chain containing all defined "overlay" subcommands. */
3382struct cmd_list_element *overlaylist;
3383
3384static void
fba45db2 3385overlay_command (char *args, int from_tty)
c906108c 3386{
c5aa993b 3387 printf_unfiltered
c906108c
SS
3388 ("\"overlay\" must be followed by the name of an overlay command.\n");
3389 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3390}
3391
3392
3393/* Target Overlays for the "Simplest" overlay manager:
3394
5417f6dc
RM
3395 This is GDB's default target overlay layer. It works with the
3396 minimal overlay manager supplied as an example by Cygnus. The
3397 entry point is via a function pointer "target_overlay_update",
3398 so targets that use a different runtime overlay manager can
c906108c
SS
3399 substitute their own overlay_update function and take over the
3400 function pointer.
3401
3402 The overlay_update function pokes around in the target's data structures
3403 to see what overlays are mapped, and updates GDB's overlay mapping with
3404 this information.
3405
3406 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3407 unsigned _novlys; /# number of overlay sections #/
3408 unsigned _ovly_table[_novlys][4] = {
3409 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3410 {..., ..., ..., ...},
3411 }
3412 unsigned _novly_regions; /# number of overlay regions #/
3413 unsigned _ovly_region_table[_novly_regions][3] = {
3414 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3415 {..., ..., ...},
3416 }
c906108c
SS
3417 These functions will attempt to update GDB's mappedness state in the
3418 symbol section table, based on the target's mappedness state.
3419
3420 To do this, we keep a cached copy of the target's _ovly_table, and
3421 attempt to detect when the cached copy is invalidated. The main
3422 entry point is "simple_overlay_update(SECT), which looks up SECT in
3423 the cached table and re-reads only the entry for that section from
3424 the target (whenever possible).
3425 */
3426
3427/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3428static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3429#if 0
c5aa993b 3430static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3431#endif
c5aa993b 3432static unsigned cache_novlys = 0;
c906108c 3433#if 0
c5aa993b 3434static unsigned cache_novly_regions = 0;
c906108c
SS
3435#endif
3436static CORE_ADDR cache_ovly_table_base = 0;
3437#if 0
3438static CORE_ADDR cache_ovly_region_table_base = 0;
3439#endif
c5aa993b
JM
3440enum ovly_index
3441 {
3442 VMA, SIZE, LMA, MAPPED
3443 };
c906108c
SS
3444#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3445
3446/* Throw away the cached copy of _ovly_table */
3447static void
fba45db2 3448simple_free_overlay_table (void)
c906108c
SS
3449{
3450 if (cache_ovly_table)
b8c9b27d 3451 xfree (cache_ovly_table);
c5aa993b 3452 cache_novlys = 0;
c906108c
SS
3453 cache_ovly_table = NULL;
3454 cache_ovly_table_base = 0;
3455}
3456
3457#if 0
3458/* Throw away the cached copy of _ovly_region_table */
3459static void
fba45db2 3460simple_free_overlay_region_table (void)
c906108c
SS
3461{
3462 if (cache_ovly_region_table)
b8c9b27d 3463 xfree (cache_ovly_region_table);
c5aa993b 3464 cache_novly_regions = 0;
c906108c
SS
3465 cache_ovly_region_table = NULL;
3466 cache_ovly_region_table_base = 0;
3467}
3468#endif
3469
3470/* Read an array of ints from the target into a local buffer.
3471 Convert to host order. int LEN is number of ints */
3472static void
fba45db2 3473read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3474{
34c0bd93 3475 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3476 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3477 int i;
c906108c
SS
3478
3479 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3480 for (i = 0; i < len; i++)
c5aa993b 3481 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3482 TARGET_LONG_BYTES);
3483}
3484
3485/* Find and grab a copy of the target _ovly_table
3486 (and _novlys, which is needed for the table's size) */
c5aa993b 3487static int
fba45db2 3488simple_read_overlay_table (void)
c906108c 3489{
0d43edd1 3490 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3491
3492 simple_free_overlay_table ();
9b27852e 3493 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3494 if (! novlys_msym)
c906108c 3495 {
8a3fe4f8 3496 error (_("Error reading inferior's overlay table: "
0d43edd1 3497 "couldn't find `_novlys' variable\n"
8a3fe4f8 3498 "in inferior. Use `overlay manual' mode."));
0d43edd1 3499 return 0;
c906108c 3500 }
0d43edd1 3501
9b27852e 3502 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3503 if (! ovly_table_msym)
3504 {
8a3fe4f8 3505 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3506 "`_ovly_table' array\n"
8a3fe4f8 3507 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3508 return 0;
3509 }
3510
3511 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3512 cache_ovly_table
3513 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3514 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3515 read_target_long_array (cache_ovly_table_base,
3516 (int *) cache_ovly_table,
3517 cache_novlys * 4);
3518
c5aa993b 3519 return 1; /* SUCCESS */
c906108c
SS
3520}
3521
3522#if 0
3523/* Find and grab a copy of the target _ovly_region_table
3524 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3525static int
fba45db2 3526simple_read_overlay_region_table (void)
c906108c
SS
3527{
3528 struct minimal_symbol *msym;
3529
3530 simple_free_overlay_region_table ();
9b27852e 3531 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3532 if (msym != NULL)
3533 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3534 else
3535 return 0; /* failure */
c906108c
SS
3536 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3537 if (cache_ovly_region_table != NULL)
3538 {
9b27852e 3539 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3540 if (msym != NULL)
3541 {
3542 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3543 read_target_long_array (cache_ovly_region_table_base,
3544 (int *) cache_ovly_region_table,
c906108c
SS
3545 cache_novly_regions * 3);
3546 }
c5aa993b
JM
3547 else
3548 return 0; /* failure */
c906108c 3549 }
c5aa993b
JM
3550 else
3551 return 0; /* failure */
3552 return 1; /* SUCCESS */
c906108c
SS
3553}
3554#endif
3555
5417f6dc 3556/* Function: simple_overlay_update_1
c906108c
SS
3557 A helper function for simple_overlay_update. Assuming a cached copy
3558 of _ovly_table exists, look through it to find an entry whose vma,
3559 lma and size match those of OSECT. Re-read the entry and make sure
3560 it still matches OSECT (else the table may no longer be valid).
3561 Set OSECT's mapped state to match the entry. Return: 1 for
3562 success, 0 for failure. */
3563
3564static int
fba45db2 3565simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3566{
3567 int i, size;
fbd35540
MS
3568 bfd *obfd = osect->objfile->obfd;
3569 asection *bsect = osect->the_bfd_section;
c906108c 3570
2c500098 3571 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3572 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3573 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3574 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3575 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3576 {
3577 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3578 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3579 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3580 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3581 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3582 {
3583 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3584 return 1;
3585 }
fbd35540 3586 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3587 return 0;
3588 }
3589 return 0;
3590}
3591
3592/* Function: simple_overlay_update
5417f6dc
RM
3593 If OSECT is NULL, then update all sections' mapped state
3594 (after re-reading the entire target _ovly_table).
3595 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3596 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3597 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3598 re-read the entire cache, and go ahead and update all sections. */
3599
3600static void
fba45db2 3601simple_overlay_update (struct obj_section *osect)
c906108c 3602{
c5aa993b 3603 struct objfile *objfile;
c906108c
SS
3604
3605 /* Were we given an osect to look up? NULL means do all of them. */
3606 if (osect)
3607 /* Have we got a cached copy of the target's overlay table? */
3608 if (cache_ovly_table != NULL)
3609 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3610 if (cache_ovly_table_base ==
9b27852e 3611 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3612 /* Then go ahead and try to look up this single section in the cache */
3613 if (simple_overlay_update_1 (osect))
3614 /* Found it! We're done. */
3615 return;
3616
3617 /* Cached table no good: need to read the entire table anew.
3618 Or else we want all the sections, in which case it's actually
3619 more efficient to read the whole table in one block anyway. */
3620
0d43edd1
JB
3621 if (! simple_read_overlay_table ())
3622 return;
3623
c906108c
SS
3624 /* Now may as well update all sections, even if only one was requested. */
3625 ALL_OBJSECTIONS (objfile, osect)
3626 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3627 {
3628 int i, size;
fbd35540
MS
3629 bfd *obfd = osect->objfile->obfd;
3630 asection *bsect = osect->the_bfd_section;
c5aa993b 3631
2c500098 3632 size = bfd_get_section_size (bsect);
c5aa993b 3633 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3634 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3635 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3636 /* && cache_ovly_table[i][SIZE] == size */ )
3637 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3638 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3639 break; /* finished with inner for loop: break out */
3640 }
3641 }
c906108c
SS
3642}
3643
086df311
DJ
3644/* Set the output sections and output offsets for section SECTP in
3645 ABFD. The relocation code in BFD will read these offsets, so we
3646 need to be sure they're initialized. We map each section to itself,
3647 with no offset; this means that SECTP->vma will be honored. */
3648
3649static void
3650symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3651{
3652 sectp->output_section = sectp;
3653 sectp->output_offset = 0;
3654}
3655
3656/* Relocate the contents of a debug section SECTP in ABFD. The
3657 contents are stored in BUF if it is non-NULL, or returned in a
3658 malloc'd buffer otherwise.
3659
3660 For some platforms and debug info formats, shared libraries contain
3661 relocations against the debug sections (particularly for DWARF-2;
3662 one affected platform is PowerPC GNU/Linux, although it depends on
3663 the version of the linker in use). Also, ELF object files naturally
3664 have unresolved relocations for their debug sections. We need to apply
3665 the relocations in order to get the locations of symbols correct. */
3666
3667bfd_byte *
3668symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3669{
3670 /* We're only interested in debugging sections with relocation
3671 information. */
3672 if ((sectp->flags & SEC_RELOC) == 0)
3673 return NULL;
3674 if ((sectp->flags & SEC_DEBUGGING) == 0)
3675 return NULL;
3676
3677 /* We will handle section offsets properly elsewhere, so relocate as if
3678 all sections begin at 0. */
3679 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3680
97606a13 3681 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3682}
c906108c
SS
3683
3684void
fba45db2 3685_initialize_symfile (void)
c906108c
SS
3686{
3687 struct cmd_list_element *c;
c5aa993b 3688
1a966eab
AC
3689 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3690Load symbol table from executable file FILE.\n\
c906108c 3691The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3692to execute."), &cmdlist);
5ba2abeb 3693 set_cmd_completer (c, filename_completer);
c906108c 3694
1a966eab
AC
3695 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3696Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3697Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3698ADDR is the starting address of the file's text.\n\
db162d44
EZ
3699The optional arguments are section-name section-address pairs and\n\
3700should be specified if the data and bss segments are not contiguous\n\
1a966eab 3701with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3702 &cmdlist);
5ba2abeb 3703 set_cmd_completer (c, filename_completer);
c906108c
SS
3704
3705 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3706 add_shared_symbol_files_command, _("\
3707Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3708 &cmdlist);
c906108c
SS
3709 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3710 &cmdlist);
3711
1a966eab
AC
3712 c = add_cmd ("load", class_files, load_command, _("\
3713Dynamically load FILE into the running program, and record its symbols\n\
3714for access from GDB."), &cmdlist);
5ba2abeb 3715 set_cmd_completer (c, filename_completer);
c906108c 3716
5bf193a2
AC
3717 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3718 &symbol_reloading, _("\
3719Set dynamic symbol table reloading multiple times in one run."), _("\
3720Show dynamic symbol table reloading multiple times in one run."), NULL,
3721 NULL,
920d2a44 3722 show_symbol_reloading,
5bf193a2 3723 &setlist, &showlist);
c906108c 3724
c5aa993b 3725 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3726 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3727 "overlay ", 0, &cmdlist);
3728
3729 add_com_alias ("ovly", "overlay", class_alias, 1);
3730 add_com_alias ("ov", "overlay", class_alias, 1);
3731
c5aa993b 3732 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3733 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3734
c5aa993b 3735 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3736 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3737
c5aa993b 3738 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3739 _("List mappings of overlay sections."), &overlaylist);
c906108c 3740
c5aa993b 3741 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3742 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3743 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3744 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3745 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3746 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3747 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3748 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3749
3750 /* Filename extension to source language lookup table: */
3751 init_filename_language_table ();
26c41df3
AC
3752 add_setshow_string_noescape_cmd ("extension-language", class_files,
3753 &ext_args, _("\
3754Set mapping between filename extension and source language."), _("\
3755Show mapping between filename extension and source language."), _("\
3756Usage: set extension-language .foo bar"),
3757 set_ext_lang_command,
920d2a44 3758 show_ext_args,
26c41df3 3759 &setlist, &showlist);
c906108c 3760
c5aa993b 3761 add_info ("extensions", info_ext_lang_command,
1bedd215 3762 _("All filename extensions associated with a source language."));
917317f4 3763
4d28ad1e
AC
3764 add_setshow_integer_cmd ("download-write-size", class_obscure,
3765 &download_write_size, _("\
3766Set the write size used when downloading a program."), _("\
3767Show the write size used when downloading a program."), _("\
3768Only used when downloading a program onto a remote\n\
3769target. Specify zero, or a negative value, to disable\n\
3770blocked writes. The actual size of each transfer is also\n\
3771limited by the size of the target packet and the memory\n\
3772cache."),
3773 NULL,
920d2a44 3774 show_download_write_size,
4d28ad1e 3775 &setlist, &showlist);
5b5d99cf
JB
3776
3777 debug_file_directory = xstrdup (DEBUGDIR);
525226b5
AC
3778 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3779 &debug_file_directory, _("\
3780Set the directory where separate debug symbols are searched for."), _("\
3781Show the directory where separate debug symbols are searched for."), _("\
3782Separate debug symbols are first searched for in the same\n\
3783directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3784and lastly at the path of the directory of the binary with\n\
3785the global debug-file directory prepended."),
3786 NULL,
920d2a44 3787 show_debug_file_directory,
525226b5 3788 &setlist, &showlist);
c906108c 3789}
This page took 0.784795 seconds and 4 git commands to generate.