* NEWS: Mention native Windows support.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
777ea8f1
DJ
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#include "defs.h"
086df311 27#include "bfdlink.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcore.h"
31#include "frame.h"
32#include "target.h"
33#include "value.h"
34#include "symfile.h"
35#include "objfiles.h"
0378c332 36#include "source.h"
c906108c
SS
37#include "gdbcmd.h"
38#include "breakpoint.h"
39#include "language.h"
40#include "complaints.h"
41#include "demangle.h"
c5aa993b 42#include "inferior.h" /* for write_pc */
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
c906108c 54
c906108c
SS
55#include <sys/types.h>
56#include <fcntl.h>
57#include "gdb_string.h"
58#include "gdb_stat.h"
59#include <ctype.h>
60#include <time.h>
2b71414d 61#include <sys/time.h>
c906108c
SS
62
63#ifndef O_BINARY
64#define O_BINARY 0
65#endif
66
9a4105ab
AC
67int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
c2d11a7d 72 unsigned long total_size);
769d7dc4
AC
73void (*deprecated_pre_add_symbol_hook) (const char *);
74void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 75void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 76
74b7792f
AC
77static void clear_symtab_users_cleanup (void *ignore);
78
c906108c 79/* Global variables owned by this file */
c5aa993b 80int readnow_symbol_files; /* Read full symbols immediately */
c906108c 81
c906108c
SS
82/* External variables and functions referenced. */
83
a14ed312 84extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
85
86/* Functions this file defines */
87
88#if 0
a14ed312
KB
89static int simple_read_overlay_region_table (void);
90static void simple_free_overlay_region_table (void);
c906108c
SS
91#endif
92
a14ed312 93static void set_initial_language (void);
c906108c 94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101static void add_shared_symbol_files_command (char *, int);
c906108c 102
5b5d99cf
JB
103static void reread_separate_symbols (struct objfile *objfile);
104
a14ed312 105static void cashier_psymtab (struct partial_symtab *);
c906108c 106
a14ed312 107bfd *symfile_bfd_open (char *);
c906108c 108
0e931cf0
JB
109int get_section_index (struct objfile *, char *);
110
a14ed312 111static void find_sym_fns (struct objfile *);
c906108c 112
a14ed312 113static void decrement_reading_symtab (void *);
c906108c 114
a14ed312 115static void overlay_invalidate_all (void);
c906108c 116
a14ed312 117static int overlay_is_mapped (struct obj_section *);
c906108c 118
a14ed312 119void list_overlays_command (char *, int);
c906108c 120
a14ed312 121void map_overlay_command (char *, int);
c906108c 122
a14ed312 123void unmap_overlay_command (char *, int);
c906108c 124
a14ed312 125static void overlay_auto_command (char *, int);
c906108c 126
a14ed312 127static void overlay_manual_command (char *, int);
c906108c 128
a14ed312 129static void overlay_off_command (char *, int);
c906108c 130
a14ed312 131static void overlay_load_command (char *, int);
c906108c 132
a14ed312 133static void overlay_command (char *, int);
c906108c 134
a14ed312 135static void simple_free_overlay_table (void);
c906108c 136
a14ed312 137static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 138
a14ed312 139static int simple_read_overlay_table (void);
c906108c 140
a14ed312 141static int simple_overlay_update_1 (struct obj_section *);
c906108c 142
a14ed312 143static void add_filename_language (char *ext, enum language lang);
392a587b 144
a14ed312 145static void info_ext_lang_command (char *args, int from_tty);
392a587b 146
5b5d99cf
JB
147static char *find_separate_debug_file (struct objfile *objfile);
148
a14ed312 149static void init_filename_language_table (void);
392a587b 150
a14ed312 151void _initialize_symfile (void);
c906108c
SS
152
153/* List of all available sym_fns. On gdb startup, each object file reader
154 calls add_symtab_fns() to register information on each format it is
155 prepared to read. */
156
157static struct sym_fns *symtab_fns = NULL;
158
159/* Flag for whether user will be reloading symbols multiple times.
160 Defaults to ON for VxWorks, otherwise OFF. */
161
162#ifdef SYMBOL_RELOADING_DEFAULT
163int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
164#else
165int symbol_reloading = 0;
166#endif
920d2a44
AC
167static void
168show_symbol_reloading (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170{
171 fprintf_filtered (file, _("\
172Dynamic symbol table reloading multiple times in one run is %s.\n"),
173 value);
174}
175
c906108c 176
b7209cb4
FF
177/* If non-zero, shared library symbols will be added automatically
178 when the inferior is created, new libraries are loaded, or when
179 attaching to the inferior. This is almost always what users will
180 want to have happen; but for very large programs, the startup time
181 will be excessive, and so if this is a problem, the user can clear
182 this flag and then add the shared library symbols as needed. Note
183 that there is a potential for confusion, since if the shared
c906108c 184 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 185 report all the functions that are actually present. */
c906108c
SS
186
187int auto_solib_add = 1;
b7209cb4
FF
188
189/* For systems that support it, a threshold size in megabytes. If
190 automatically adding a new library's symbol table to those already
191 known to the debugger would cause the total shared library symbol
192 size to exceed this threshhold, then the shlib's symbols are not
193 added. The threshold is ignored if the user explicitly asks for a
194 shlib to be added, such as when using the "sharedlibrary"
195 command. */
196
197int auto_solib_limit;
c906108c 198\f
c5aa993b 199
0fe19209
DC
200/* This compares two partial symbols by names, using strcmp_iw_ordered
201 for the comparison. */
c906108c
SS
202
203static int
0cd64fe2 204compare_psymbols (const void *s1p, const void *s2p)
c906108c 205{
0fe19209
DC
206 struct partial_symbol *const *s1 = s1p;
207 struct partial_symbol *const *s2 = s2p;
208
4725b721
PH
209 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
210 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
211}
212
213void
fba45db2 214sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
215{
216 /* Sort the global list; don't sort the static list */
217
c5aa993b
JM
218 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
219 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
220 compare_psymbols);
221}
222
c906108c
SS
223/* Make a null terminated copy of the string at PTR with SIZE characters in
224 the obstack pointed to by OBSTACKP . Returns the address of the copy.
225 Note that the string at PTR does not have to be null terminated, I.E. it
226 may be part of a larger string and we are only saving a substring. */
227
228char *
63ca651f 229obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 230{
52f0bd74 231 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
232 /* Open-coded memcpy--saves function call time. These strings are usually
233 short. FIXME: Is this really still true with a compiler that can
234 inline memcpy? */
235 {
aa1ee363
AC
236 const char *p1 = ptr;
237 char *p2 = p;
63ca651f 238 const char *end = ptr + size;
c906108c
SS
239 while (p1 != end)
240 *p2++ = *p1++;
241 }
242 p[size] = 0;
243 return p;
244}
245
246/* Concatenate strings S1, S2 and S3; return the new string. Space is found
247 in the obstack pointed to by OBSTACKP. */
248
249char *
fba45db2
KB
250obconcat (struct obstack *obstackp, const char *s1, const char *s2,
251 const char *s3)
c906108c 252{
52f0bd74
AC
253 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
254 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
255 strcpy (val, s1);
256 strcat (val, s2);
257 strcat (val, s3);
258 return val;
259}
260
261/* True if we are nested inside psymtab_to_symtab. */
262
263int currently_reading_symtab = 0;
264
265static void
fba45db2 266decrement_reading_symtab (void *dummy)
c906108c
SS
267{
268 currently_reading_symtab--;
269}
270
271/* Get the symbol table that corresponds to a partial_symtab.
272 This is fast after the first time you do it. In fact, there
273 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
274 case inline. */
275
276struct symtab *
aa1ee363 277psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
278{
279 /* If it's been looked up before, return it. */
280 if (pst->symtab)
281 return pst->symtab;
282
283 /* If it has not yet been read in, read it. */
284 if (!pst->readin)
c5aa993b 285 {
c906108c
SS
286 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
287 currently_reading_symtab++;
288 (*pst->read_symtab) (pst);
289 do_cleanups (back_to);
290 }
291
292 return pst->symtab;
293}
294
5417f6dc
RM
295/* Remember the lowest-addressed loadable section we've seen.
296 This function is called via bfd_map_over_sections.
c906108c
SS
297
298 In case of equal vmas, the section with the largest size becomes the
299 lowest-addressed loadable section.
300
301 If the vmas and sizes are equal, the last section is considered the
302 lowest-addressed loadable section. */
303
304void
4efb68b1 305find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 306{
c5aa993b 307 asection **lowest = (asection **) obj;
c906108c
SS
308
309 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
310 return;
311 if (!*lowest)
312 *lowest = sect; /* First loadable section */
313 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
314 *lowest = sect; /* A lower loadable section */
315 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
316 && (bfd_section_size (abfd, (*lowest))
317 <= bfd_section_size (abfd, sect)))
318 *lowest = sect;
319}
320
a39a16c4
MM
321/* Create a new section_addr_info, with room for NUM_SECTIONS. */
322
323struct section_addr_info *
324alloc_section_addr_info (size_t num_sections)
325{
326 struct section_addr_info *sap;
327 size_t size;
328
329 size = (sizeof (struct section_addr_info)
330 + sizeof (struct other_sections) * (num_sections - 1));
331 sap = (struct section_addr_info *) xmalloc (size);
332 memset (sap, 0, size);
333 sap->num_sections = num_sections;
334
335 return sap;
336}
62557bbc 337
7b90c3f9
JB
338
339/* Return a freshly allocated copy of ADDRS. The section names, if
340 any, are also freshly allocated copies of those in ADDRS. */
341struct section_addr_info *
342copy_section_addr_info (struct section_addr_info *addrs)
343{
344 struct section_addr_info *copy
345 = alloc_section_addr_info (addrs->num_sections);
346 int i;
347
348 copy->num_sections = addrs->num_sections;
349 for (i = 0; i < addrs->num_sections; i++)
350 {
351 copy->other[i].addr = addrs->other[i].addr;
352 if (addrs->other[i].name)
353 copy->other[i].name = xstrdup (addrs->other[i].name);
354 else
355 copy->other[i].name = NULL;
356 copy->other[i].sectindex = addrs->other[i].sectindex;
357 }
358
359 return copy;
360}
361
362
363
62557bbc
KB
364/* Build (allocate and populate) a section_addr_info struct from
365 an existing section table. */
366
367extern struct section_addr_info *
368build_section_addr_info_from_section_table (const struct section_table *start,
369 const struct section_table *end)
370{
371 struct section_addr_info *sap;
372 const struct section_table *stp;
373 int oidx;
374
a39a16c4 375 sap = alloc_section_addr_info (end - start);
62557bbc
KB
376
377 for (stp = start, oidx = 0; stp != end; stp++)
378 {
5417f6dc 379 if (bfd_get_section_flags (stp->bfd,
fbd35540 380 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 381 && oidx < end - start)
62557bbc
KB
382 {
383 sap->other[oidx].addr = stp->addr;
5417f6dc 384 sap->other[oidx].name
fbd35540 385 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
386 sap->other[oidx].sectindex = stp->the_bfd_section->index;
387 oidx++;
388 }
389 }
390
391 return sap;
392}
393
394
395/* Free all memory allocated by build_section_addr_info_from_section_table. */
396
397extern void
398free_section_addr_info (struct section_addr_info *sap)
399{
400 int idx;
401
a39a16c4 402 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 403 if (sap->other[idx].name)
b8c9b27d
KB
404 xfree (sap->other[idx].name);
405 xfree (sap);
62557bbc
KB
406}
407
408
e8289572
JB
409/* Initialize OBJFILE's sect_index_* members. */
410static void
411init_objfile_sect_indices (struct objfile *objfile)
c906108c 412{
e8289572 413 asection *sect;
c906108c 414 int i;
5417f6dc 415
b8fbeb18 416 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 417 if (sect)
b8fbeb18
EZ
418 objfile->sect_index_text = sect->index;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_data = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_bss = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_rodata = sect->index;
431
bbcd32ad
FF
432 /* This is where things get really weird... We MUST have valid
433 indices for the various sect_index_* members or gdb will abort.
434 So if for example, there is no ".text" section, we have to
435 accomodate that. Except when explicitly adding symbol files at
436 some address, section_offsets contains nothing but zeros, so it
437 doesn't matter which slot in section_offsets the individual
438 sect_index_* members index into. So if they are all zero, it is
439 safe to just point all the currently uninitialized indices to the
440 first slot. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
b8fbeb18 460}
c906108c 461
c1bd25fd
DJ
462/* The arguments to place_section. */
463
464struct place_section_arg
465{
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468};
469
470/* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473void
474place_section (bfd *abfd, asection *sect, void *obj)
475{
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479
480 /* We are only interested in loadable sections. */
481 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
482 return;
483
484 /* If the user specified an offset, honor it. */
485 if (offsets[sect->index] != 0)
486 return;
487
488 /* Otherwise, let's try to find a place for the section. */
489 do {
490 asection *cur_sec;
491 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
492
493 start_addr = (arg->lowest + align - 1) & -align;
494 done = 1;
495
496 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
497 {
498 int indx = cur_sec->index;
499 CORE_ADDR cur_offset;
500
501 /* We don't need to compare against ourself. */
502 if (cur_sec == sect)
503 continue;
504
505 /* We can only conflict with loadable sections. */
506 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
507 continue;
508
509 /* We do not expect this to happen; just ignore sections in a
510 relocatable file with an assigned VMA. */
511 if (bfd_section_vma (abfd, cur_sec) != 0)
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
527 continue;
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
537
538 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
539}
e8289572
JB
540
541/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 542 of how to represent it for fast symbol reading. This is the default
e8289572
JB
543 version of the sym_fns.sym_offsets function for symbol readers that
544 don't need to do anything special. It allocates a section_offsets table
545 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
546
547void
548default_symfile_offsets (struct objfile *objfile,
549 struct section_addr_info *addrs)
550{
551 int i;
552
a39a16c4 553 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 554 objfile->section_offsets = (struct section_offsets *)
5417f6dc 555 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 557 memset (objfile->section_offsets, 0,
a39a16c4 558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
559
560 /* Now calculate offsets for section that were specified by the
561 caller. */
a39a16c4 562 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
563 {
564 struct other_sections *osp ;
565
566 osp = &addrs->other[i] ;
567 if (osp->addr == 0)
568 continue;
569
570 /* Record all sections in offsets */
571 /* The section_offsets in the objfile are here filled in using
572 the BFD index. */
573 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
574 }
575
c1bd25fd
DJ
576 /* For relocatable files, all loadable sections will start at zero.
577 The zero is meaningless, so try to pick arbitrary addresses such
578 that no loadable sections overlap. This algorithm is quadratic,
579 but the number of sections in a single object file is generally
580 small. */
581 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
582 {
583 struct place_section_arg arg;
584 arg.offsets = objfile->section_offsets;
585 arg.lowest = 0;
586 bfd_map_over_sections (objfile->obfd, place_section, &arg);
587 }
588
e8289572
JB
589 /* Remember the bfd indexes for the .text, .data, .bss and
590 .rodata sections. */
591 init_objfile_sect_indices (objfile);
592}
593
594
c906108c
SS
595/* Process a symbol file, as either the main file or as a dynamically
596 loaded file.
597
96baa820
JM
598 OBJFILE is where the symbols are to be read from.
599
7e8580c1
JB
600 ADDRS is the list of section load addresses. If the user has given
601 an 'add-symbol-file' command, then this is the list of offsets and
602 addresses he or she provided as arguments to the command; or, if
603 we're handling a shared library, these are the actual addresses the
604 sections are loaded at, according to the inferior's dynamic linker
605 (as gleaned by GDB's shared library code). We convert each address
606 into an offset from the section VMA's as it appears in the object
607 file, and then call the file's sym_offsets function to convert this
608 into a format-specific offset table --- a `struct section_offsets'.
609 If ADDRS is non-zero, OFFSETS must be zero.
610
611 OFFSETS is a table of section offsets already in the right
612 format-specific representation. NUM_OFFSETS is the number of
613 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
614 assume this is the proper table the call to sym_offsets described
615 above would produce. Instead of calling sym_offsets, we just dump
616 it right into objfile->section_offsets. (When we're re-reading
617 symbols from an objfile, we don't have the original load address
618 list any more; all we have is the section offset table.) If
619 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
620
621 MAINLINE is nonzero if this is the main symbol file, or zero if
622 it's an extra symbol file such as dynamically loaded code.
623
624 VERBO is nonzero if the caller has printed a verbose message about
625 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
626
627void
7e8580c1
JB
628syms_from_objfile (struct objfile *objfile,
629 struct section_addr_info *addrs,
630 struct section_offsets *offsets,
631 int num_offsets,
632 int mainline,
633 int verbo)
c906108c 634{
a39a16c4 635 struct section_addr_info *local_addr = NULL;
c906108c 636 struct cleanup *old_chain;
2acceee2 637
7e8580c1 638 gdb_assert (! (addrs && offsets));
2acceee2 639
c906108c
SS
640 init_entry_point_info (objfile);
641 find_sym_fns (objfile);
642
75245b24
MS
643 if (objfile->sf == NULL)
644 return; /* No symbols. */
645
c906108c
SS
646 /* Make sure that partially constructed symbol tables will be cleaned up
647 if an error occurs during symbol reading. */
74b7792f 648 old_chain = make_cleanup_free_objfile (objfile);
c906108c 649
a39a16c4
MM
650 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
651 list. We now establish the convention that an addr of zero means
652 no load address was specified. */
653 if (! addrs && ! offsets)
654 {
5417f6dc 655 local_addr
a39a16c4
MM
656 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
657 make_cleanup (xfree, local_addr);
658 addrs = local_addr;
659 }
660
661 /* Now either addrs or offsets is non-zero. */
662
c5aa993b 663 if (mainline)
c906108c
SS
664 {
665 /* We will modify the main symbol table, make sure that all its users
c5aa993b 666 will be cleaned up if an error occurs during symbol reading. */
74b7792f 667 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
668
669 /* Since no error yet, throw away the old symbol table. */
670
671 if (symfile_objfile != NULL)
672 {
673 free_objfile (symfile_objfile);
674 symfile_objfile = NULL;
675 }
676
677 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
678 If the user wants to get rid of them, they should do "symbol-file"
679 without arguments first. Not sure this is the best behavior
680 (PR 2207). */
c906108c 681
c5aa993b 682 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
683 }
684
685 /* Convert addr into an offset rather than an absolute address.
686 We find the lowest address of a loaded segment in the objfile,
53a5351d 687 and assume that <addr> is where that got loaded.
c906108c 688
53a5351d
JM
689 We no longer warn if the lowest section is not a text segment (as
690 happens for the PA64 port. */
1549f619 691 if (!mainline && addrs && addrs->other[0].name)
c906108c 692 {
1549f619
EZ
693 asection *lower_sect;
694 asection *sect;
695 CORE_ADDR lower_offset;
696 int i;
697
5417f6dc 698 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
699 continguous sections. FIXME!! won't work without call to find
700 .text first, but this assumes text is lowest section. */
701 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
702 if (lower_sect == NULL)
c906108c 703 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 704 &lower_sect);
2acceee2 705 if (lower_sect == NULL)
8a3fe4f8 706 warning (_("no loadable sections found in added symbol-file %s"),
c906108c 707 objfile->name);
5417f6dc 708 else
b8fbeb18 709 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
8a3fe4f8 710 warning (_("Lowest section in %s is %s at %s"),
b8fbeb18
EZ
711 objfile->name,
712 bfd_section_name (objfile->obfd, lower_sect),
713 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
714 if (lower_sect != NULL)
715 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
716 else
717 lower_offset = 0;
5417f6dc 718
13de58df 719 /* Calculate offsets for the loadable sections.
2acceee2
JM
720 FIXME! Sections must be in order of increasing loadable section
721 so that contiguous sections can use the lower-offset!!!
5417f6dc 722
13de58df
JB
723 Adjust offsets if the segments are not contiguous.
724 If the section is contiguous, its offset should be set to
2acceee2
JM
725 the offset of the highest loadable section lower than it
726 (the loadable section directly below it in memory).
727 this_offset = lower_offset = lower_addr - lower_orig_addr */
728
1549f619 729 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
730 {
731 if (addrs->other[i].addr != 0)
732 {
733 sect = bfd_get_section_by_name (objfile->obfd,
734 addrs->other[i].name);
735 if (sect)
736 {
737 addrs->other[i].addr
738 -= bfd_section_vma (objfile->obfd, sect);
739 lower_offset = addrs->other[i].addr;
740 /* This is the index used by BFD. */
741 addrs->other[i].sectindex = sect->index ;
742 }
743 else
744 {
8a3fe4f8 745 warning (_("section %s not found in %s"),
5417f6dc 746 addrs->other[i].name,
7e8580c1
JB
747 objfile->name);
748 addrs->other[i].addr = 0;
749 }
750 }
751 else
752 addrs->other[i].addr = lower_offset;
753 }
c906108c
SS
754 }
755
756 /* Initialize symbol reading routines for this objfile, allow complaints to
757 appear for this new file, and record how verbose to be, then do the
758 initial symbol reading for this file. */
759
c5aa993b 760 (*objfile->sf->sym_init) (objfile);
b9caf505 761 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 762
7e8580c1
JB
763 if (addrs)
764 (*objfile->sf->sym_offsets) (objfile, addrs);
765 else
766 {
767 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
768
769 /* Just copy in the offset table directly as given to us. */
770 objfile->num_sections = num_offsets;
771 objfile->section_offsets
772 = ((struct section_offsets *)
8b92e4d5 773 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
774 memcpy (objfile->section_offsets, offsets, size);
775
776 init_objfile_sect_indices (objfile);
777 }
c906108c 778
52d16ba8 779#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
780 /* This is a SVR4/SunOS specific hack, I think. In any event, it
781 screws RS/6000. sym_offsets should be doing this sort of thing,
782 because it knows the mapping between bfd sections and
783 section_offsets. */
784 /* This is a hack. As far as I can tell, section offsets are not
785 target dependent. They are all set to addr with a couple of
786 exceptions. The exceptions are sysvr4 shared libraries, whose
787 offsets are kept in solib structures anyway and rs6000 xcoff
788 which handles shared libraries in a completely unique way.
789
790 Section offsets are built similarly, except that they are built
791 by adding addr in all cases because there is no clear mapping
792 from section_offsets into actual sections. Note that solib.c
96baa820 793 has a different algorithm for finding section offsets.
c906108c
SS
794
795 These should probably all be collapsed into some target
796 independent form of shared library support. FIXME. */
797
2acceee2 798 if (addrs)
c906108c
SS
799 {
800 struct obj_section *s;
801
5417f6dc
RM
802 /* Map section offsets in "addr" back to the object's
803 sections by comparing the section names with bfd's
2acceee2
JM
804 section names. Then adjust the section address by
805 the offset. */ /* for gdb/13815 */
5417f6dc 806
96baa820 807 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 808 {
2acceee2
JM
809 CORE_ADDR s_addr = 0;
810 int i;
811
5417f6dc 812 for (i = 0;
a39a16c4 813 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 814 i++)
5417f6dc
RM
815 if (strcmp (bfd_section_name (s->objfile->obfd,
816 s->the_bfd_section),
fbd35540 817 addrs->other[i].name) == 0)
2acceee2 818 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 819
c906108c 820 s->addr -= s->offset;
2acceee2 821 s->addr += s_addr;
c906108c 822 s->endaddr -= s->offset;
2acceee2
JM
823 s->endaddr += s_addr;
824 s->offset += s_addr;
c906108c
SS
825 }
826 }
52d16ba8 827#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 828
96baa820 829 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 830
c906108c
SS
831 /* Don't allow char * to have a typename (else would get caddr_t).
832 Ditto void *. FIXME: Check whether this is now done by all the
833 symbol readers themselves (many of them now do), and if so remove
834 it from here. */
835
836 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
837 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
838
839 /* Mark the objfile has having had initial symbol read attempted. Note
840 that this does not mean we found any symbols... */
841
c5aa993b 842 objfile->flags |= OBJF_SYMS;
c906108c
SS
843
844 /* Discard cleanups as symbol reading was successful. */
845
846 discard_cleanups (old_chain);
c906108c
SS
847}
848
849/* Perform required actions after either reading in the initial
850 symbols for a new objfile, or mapping in the symbols from a reusable
851 objfile. */
c5aa993b 852
c906108c 853void
fba45db2 854new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
855{
856
857 /* If this is the main symbol file we have to clean up all users of the
858 old main symbol file. Otherwise it is sufficient to fixup all the
859 breakpoints that may have been redefined by this symbol file. */
860 if (mainline)
861 {
862 /* OK, make it the "real" symbol file. */
863 symfile_objfile = objfile;
864
865 clear_symtab_users ();
866 }
867 else
868 {
869 breakpoint_re_set ();
870 }
871
872 /* We're done reading the symbol file; finish off complaints. */
b9caf505 873 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
874}
875
876/* Process a symbol file, as either the main file or as a dynamically
877 loaded file.
878
5417f6dc
RM
879 ABFD is a BFD already open on the file, as from symfile_bfd_open.
880 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
881
882 FROM_TTY says how verbose to be.
883
884 MAINLINE specifies whether this is the main symbol file, or whether
885 it's an extra symbol file such as dynamically loaded code.
886
887 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
888 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
889 non-zero.
c906108c 890
c906108c
SS
891 Upon success, returns a pointer to the objfile that was added.
892 Upon failure, jumps back to command level (never returns). */
7904e09f 893static struct objfile *
5417f6dc 894symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
895 struct section_addr_info *addrs,
896 struct section_offsets *offsets,
897 int num_offsets,
898 int mainline, int flags)
c906108c
SS
899{
900 struct objfile *objfile;
901 struct partial_symtab *psymtab;
5b5d99cf 902 char *debugfile;
7b90c3f9 903 struct section_addr_info *orig_addrs = NULL;
a39a16c4 904 struct cleanup *my_cleanups;
5417f6dc 905 const char *name = bfd_get_filename (abfd);
c906108c 906
5417f6dc 907 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 908
5417f6dc
RM
909 /* Give user a chance to burp if we'd be
910 interactively wiping out any existing symbols. */
c906108c
SS
911
912 if ((have_full_symbols () || have_partial_symbols ())
913 && mainline
914 && from_tty
915 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 916 error (_("Not confirmed."));
c906108c 917
2df3850c 918 objfile = allocate_objfile (abfd, flags);
5417f6dc 919 discard_cleanups (my_cleanups);
c906108c 920
a39a16c4 921 if (addrs)
63cd24fe 922 {
7b90c3f9
JB
923 orig_addrs = copy_section_addr_info (addrs);
924 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 925 }
a39a16c4 926
78a4a9b9
AC
927 /* We either created a new mapped symbol table, mapped an existing
928 symbol table file which has not had initial symbol reading
929 performed, or need to read an unmapped symbol table. */
930 if (from_tty || info_verbose)
c906108c 931 {
769d7dc4
AC
932 if (deprecated_pre_add_symbol_hook)
933 deprecated_pre_add_symbol_hook (name);
78a4a9b9 934 else
c906108c 935 {
a3f17187 936 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
937 wrap_here ("");
938 gdb_flush (gdb_stdout);
939 }
c906108c 940 }
78a4a9b9
AC
941 syms_from_objfile (objfile, addrs, offsets, num_offsets,
942 mainline, from_tty);
c906108c
SS
943
944 /* We now have at least a partial symbol table. Check to see if the
945 user requested that all symbols be read on initial access via either
946 the gdb startup command line or on a per symbol file basis. Expand
947 all partial symbol tables for this objfile if so. */
948
2acceee2 949 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
950 {
951 if (from_tty || info_verbose)
952 {
a3f17187 953 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
954 wrap_here ("");
955 gdb_flush (gdb_stdout);
956 }
957
c5aa993b 958 for (psymtab = objfile->psymtabs;
c906108c 959 psymtab != NULL;
c5aa993b 960 psymtab = psymtab->next)
c906108c
SS
961 {
962 psymtab_to_symtab (psymtab);
963 }
964 }
965
5b5d99cf
JB
966 debugfile = find_separate_debug_file (objfile);
967 if (debugfile)
968 {
5b5d99cf
JB
969 if (addrs != NULL)
970 {
971 objfile->separate_debug_objfile
a39a16c4 972 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
973 }
974 else
975 {
976 objfile->separate_debug_objfile
977 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
978 }
979 objfile->separate_debug_objfile->separate_debug_objfile_backlink
980 = objfile;
5417f6dc 981
5b5d99cf
JB
982 /* Put the separate debug object before the normal one, this is so that
983 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
984 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 985
5b5d99cf
JB
986 xfree (debugfile);
987 }
5417f6dc 988
cb3c37b2
JB
989 if (!have_partial_symbols () && !have_full_symbols ())
990 {
991 wrap_here ("");
a3f17187 992 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
993 if (from_tty || info_verbose)
994 printf_filtered ("...");
995 else
996 printf_filtered ("\n");
cb3c37b2
JB
997 wrap_here ("");
998 }
999
c906108c
SS
1000 if (from_tty || info_verbose)
1001 {
769d7dc4
AC
1002 if (deprecated_post_add_symbol_hook)
1003 deprecated_post_add_symbol_hook ();
c906108c 1004 else
c5aa993b 1005 {
a3f17187 1006 printf_unfiltered (_("done.\n"));
c5aa993b 1007 }
c906108c
SS
1008 }
1009
481d0f41
JB
1010 /* We print some messages regardless of whether 'from_tty ||
1011 info_verbose' is true, so make sure they go out at the right
1012 time. */
1013 gdb_flush (gdb_stdout);
1014
a39a16c4
MM
1015 do_cleanups (my_cleanups);
1016
109f874e
MS
1017 if (objfile->sf == NULL)
1018 return objfile; /* No symbols. */
1019
c906108c
SS
1020 new_symfile_objfile (objfile, mainline, from_tty);
1021
9a4105ab
AC
1022 if (deprecated_target_new_objfile_hook)
1023 deprecated_target_new_objfile_hook (objfile);
c906108c 1024
ce7d4522 1025 bfd_cache_close_all ();
c906108c
SS
1026 return (objfile);
1027}
1028
7904e09f 1029
eb4556d7
JB
1030/* Process the symbol file ABFD, as either the main file or as a
1031 dynamically loaded file.
1032
1033 See symbol_file_add_with_addrs_or_offsets's comments for
1034 details. */
1035struct objfile *
1036symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1037 struct section_addr_info *addrs,
1038 int mainline, int flags)
1039{
1040 return symbol_file_add_with_addrs_or_offsets (abfd,
1041 from_tty, addrs, 0, 0,
1042 mainline, flags);
1043}
1044
1045
7904e09f
JB
1046/* Process a symbol file, as either the main file or as a dynamically
1047 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1048 for details. */
1049struct objfile *
1050symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1051 int mainline, int flags)
1052{
eb4556d7
JB
1053 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1054 addrs, mainline, flags);
7904e09f
JB
1055}
1056
1057
d7db6da9
FN
1058/* Call symbol_file_add() with default values and update whatever is
1059 affected by the loading of a new main().
1060 Used when the file is supplied in the gdb command line
1061 and by some targets with special loading requirements.
1062 The auxiliary function, symbol_file_add_main_1(), has the flags
1063 argument for the switches that can only be specified in the symbol_file
1064 command itself. */
5417f6dc 1065
1adeb98a
FN
1066void
1067symbol_file_add_main (char *args, int from_tty)
1068{
d7db6da9
FN
1069 symbol_file_add_main_1 (args, from_tty, 0);
1070}
1071
1072static void
1073symbol_file_add_main_1 (char *args, int from_tty, int flags)
1074{
1075 symbol_file_add (args, from_tty, NULL, 1, flags);
1076
d7db6da9
FN
1077 /* Getting new symbols may change our opinion about
1078 what is frameless. */
1079 reinit_frame_cache ();
1080
1081 set_initial_language ();
1adeb98a
FN
1082}
1083
1084void
1085symbol_file_clear (int from_tty)
1086{
1087 if ((have_full_symbols () || have_partial_symbols ())
1088 && from_tty
0430b0d6
AS
1089 && (symfile_objfile
1090 ? !query (_("Discard symbol table from `%s'? "),
1091 symfile_objfile->name)
1092 : !query (_("Discard symbol table? "))))
8a3fe4f8 1093 error (_("Not confirmed."));
1adeb98a
FN
1094 free_all_objfiles ();
1095
1096 /* solib descriptors may have handles to objfiles. Since their
1097 storage has just been released, we'd better wipe the solib
1098 descriptors as well.
1099 */
1100#if defined(SOLIB_RESTART)
1101 SOLIB_RESTART ();
1102#endif
1103
1104 symfile_objfile = NULL;
1105 if (from_tty)
a3f17187 1106 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1107}
1108
5b5d99cf
JB
1109static char *
1110get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1111{
1112 asection *sect;
1113 bfd_size_type debuglink_size;
1114 unsigned long crc32;
1115 char *contents;
1116 int crc_offset;
1117 unsigned char *p;
5417f6dc 1118
5b5d99cf
JB
1119 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1120
1121 if (sect == NULL)
1122 return NULL;
1123
1124 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1125
5b5d99cf
JB
1126 contents = xmalloc (debuglink_size);
1127 bfd_get_section_contents (objfile->obfd, sect, contents,
1128 (file_ptr)0, (bfd_size_type)debuglink_size);
1129
1130 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1131 crc_offset = strlen (contents) + 1;
1132 crc_offset = (crc_offset + 3) & ~3;
1133
1134 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1135
5b5d99cf
JB
1136 *crc32_out = crc32;
1137 return contents;
1138}
1139
1140static int
1141separate_debug_file_exists (const char *name, unsigned long crc)
1142{
1143 unsigned long file_crc = 0;
1144 int fd;
777ea8f1 1145 gdb_byte buffer[8*1024];
5b5d99cf
JB
1146 int count;
1147
1148 fd = open (name, O_RDONLY | O_BINARY);
1149 if (fd < 0)
1150 return 0;
1151
1152 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1153 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1154
1155 close (fd);
1156
1157 return crc == file_crc;
1158}
1159
1160static char *debug_file_directory = NULL;
920d2a44
AC
1161static void
1162show_debug_file_directory (struct ui_file *file, int from_tty,
1163 struct cmd_list_element *c, const char *value)
1164{
1165 fprintf_filtered (file, _("\
1166The directory where separate debug symbols are searched for is \"%s\".\n"),
1167 value);
1168}
5b5d99cf
JB
1169
1170#if ! defined (DEBUG_SUBDIRECTORY)
1171#define DEBUG_SUBDIRECTORY ".debug"
1172#endif
1173
1174static char *
1175find_separate_debug_file (struct objfile *objfile)
1176{
1177 asection *sect;
1178 char *basename;
1179 char *dir;
1180 char *debugfile;
1181 char *name_copy;
1182 bfd_size_type debuglink_size;
1183 unsigned long crc32;
1184 int i;
1185
1186 basename = get_debug_link_info (objfile, &crc32);
1187
1188 if (basename == NULL)
1189 return NULL;
5417f6dc 1190
5b5d99cf
JB
1191 dir = xstrdup (objfile->name);
1192
fe36c4f4
JB
1193 /* Strip off the final filename part, leaving the directory name,
1194 followed by a slash. Objfile names should always be absolute and
1195 tilde-expanded, so there should always be a slash in there
1196 somewhere. */
5b5d99cf
JB
1197 for (i = strlen(dir) - 1; i >= 0; i--)
1198 {
1199 if (IS_DIR_SEPARATOR (dir[i]))
1200 break;
1201 }
fe36c4f4 1202 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1203 dir[i+1] = '\0';
5417f6dc 1204
5b5d99cf
JB
1205 debugfile = alloca (strlen (debug_file_directory) + 1
1206 + strlen (dir)
1207 + strlen (DEBUG_SUBDIRECTORY)
1208 + strlen ("/")
5417f6dc 1209 + strlen (basename)
5b5d99cf
JB
1210 + 1);
1211
1212 /* First try in the same directory as the original file. */
1213 strcpy (debugfile, dir);
1214 strcat (debugfile, basename);
1215
1216 if (separate_debug_file_exists (debugfile, crc32))
1217 {
1218 xfree (basename);
1219 xfree (dir);
1220 return xstrdup (debugfile);
1221 }
5417f6dc 1222
5b5d99cf
JB
1223 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1224 strcpy (debugfile, dir);
1225 strcat (debugfile, DEBUG_SUBDIRECTORY);
1226 strcat (debugfile, "/");
1227 strcat (debugfile, basename);
1228
1229 if (separate_debug_file_exists (debugfile, crc32))
1230 {
1231 xfree (basename);
1232 xfree (dir);
1233 return xstrdup (debugfile);
1234 }
5417f6dc 1235
5b5d99cf
JB
1236 /* Then try in the global debugfile directory. */
1237 strcpy (debugfile, debug_file_directory);
1238 strcat (debugfile, "/");
1239 strcat (debugfile, dir);
5b5d99cf
JB
1240 strcat (debugfile, basename);
1241
1242 if (separate_debug_file_exists (debugfile, crc32))
1243 {
1244 xfree (basename);
1245 xfree (dir);
1246 return xstrdup (debugfile);
1247 }
5417f6dc 1248
5b5d99cf
JB
1249 xfree (basename);
1250 xfree (dir);
1251 return NULL;
1252}
1253
1254
c906108c
SS
1255/* This is the symbol-file command. Read the file, analyze its
1256 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1257 the command is rather bizarre:
1258
1259 1. The function buildargv implements various quoting conventions
1260 which are undocumented and have little or nothing in common with
1261 the way things are quoted (or not quoted) elsewhere in GDB.
1262
1263 2. Options are used, which are not generally used in GDB (perhaps
1264 "set mapped on", "set readnow on" would be better)
1265
1266 3. The order of options matters, which is contrary to GNU
c906108c
SS
1267 conventions (because it is confusing and inconvenient). */
1268
1269void
fba45db2 1270symbol_file_command (char *args, int from_tty)
c906108c 1271{
c906108c
SS
1272 dont_repeat ();
1273
1274 if (args == NULL)
1275 {
1adeb98a 1276 symbol_file_clear (from_tty);
c906108c
SS
1277 }
1278 else
1279 {
cb2f3a29
MK
1280 char **argv = buildargv (args);
1281 int flags = OBJF_USERLOADED;
1282 struct cleanup *cleanups;
1283 char *name = NULL;
1284
1285 if (argv == NULL)
1286 nomem (0);
1287
7a292a7a 1288 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1289 while (*argv != NULL)
1290 {
78a4a9b9
AC
1291 if (strcmp (*argv, "-readnow") == 0)
1292 flags |= OBJF_READNOW;
1293 else if (**argv == '-')
8a3fe4f8 1294 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1295 else
1296 {
cb2f3a29 1297 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1298 name = *argv;
78a4a9b9 1299 }
cb2f3a29 1300
c906108c
SS
1301 argv++;
1302 }
1303
1304 if (name == NULL)
cb2f3a29
MK
1305 error (_("no symbol file name was specified"));
1306
c906108c
SS
1307 do_cleanups (cleanups);
1308 }
1309}
1310
1311/* Set the initial language.
1312
cb2f3a29
MK
1313 FIXME: A better solution would be to record the language in the
1314 psymtab when reading partial symbols, and then use it (if known) to
1315 set the language. This would be a win for formats that encode the
1316 language in an easily discoverable place, such as DWARF. For
1317 stabs, we can jump through hoops looking for specially named
1318 symbols or try to intuit the language from the specific type of
1319 stabs we find, but we can't do that until later when we read in
1320 full symbols. */
c906108c
SS
1321
1322static void
fba45db2 1323set_initial_language (void)
c906108c
SS
1324{
1325 struct partial_symtab *pst;
c5aa993b 1326 enum language lang = language_unknown;
c906108c
SS
1327
1328 pst = find_main_psymtab ();
1329 if (pst != NULL)
1330 {
c5aa993b 1331 if (pst->filename != NULL)
cb2f3a29
MK
1332 lang = deduce_language_from_filename (pst->filename);
1333
c906108c
SS
1334 if (lang == language_unknown)
1335 {
c5aa993b
JM
1336 /* Make C the default language */
1337 lang = language_c;
c906108c 1338 }
cb2f3a29 1339
c906108c 1340 set_language (lang);
cb2f3a29 1341 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1342 }
1343}
1344
cb2f3a29
MK
1345/* Open the file specified by NAME and hand it off to BFD for
1346 preliminary analysis. Return a newly initialized bfd *, which
1347 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1348 absolute). In case of trouble, error() is called. */
c906108c
SS
1349
1350bfd *
fba45db2 1351symfile_bfd_open (char *name)
c906108c
SS
1352{
1353 bfd *sym_bfd;
1354 int desc;
1355 char *absolute_name;
1356
cb2f3a29 1357 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1358
1359 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1360 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1361 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1362#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1363 if (desc < 0)
1364 {
1365 char *exename = alloca (strlen (name) + 5);
1366 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1367 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1368 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1369 }
1370#endif
1371 if (desc < 0)
1372 {
b8c9b27d 1373 make_cleanup (xfree, name);
c906108c
SS
1374 perror_with_name (name);
1375 }
cb2f3a29
MK
1376
1377 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1378 bfd. It'll be freed in free_objfile(). */
1379 xfree (name);
1380 name = absolute_name;
c906108c 1381
9f76c2cd 1382 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1383 if (!sym_bfd)
1384 {
1385 close (desc);
b8c9b27d 1386 make_cleanup (xfree, name);
8a3fe4f8 1387 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1388 bfd_errmsg (bfd_get_error ()));
1389 }
549c1eea 1390 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1391
1392 if (!bfd_check_format (sym_bfd, bfd_object))
1393 {
cb2f3a29
MK
1394 /* FIXME: should be checking for errors from bfd_close (for one
1395 thing, on error it does not free all the storage associated
1396 with the bfd). */
1397 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1398 make_cleanup (xfree, name);
8a3fe4f8 1399 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1400 bfd_errmsg (bfd_get_error ()));
1401 }
cb2f3a29
MK
1402
1403 return sym_bfd;
c906108c
SS
1404}
1405
cb2f3a29
MK
1406/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1407 the section was not found. */
1408
0e931cf0
JB
1409int
1410get_section_index (struct objfile *objfile, char *section_name)
1411{
1412 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1413
0e931cf0
JB
1414 if (sect)
1415 return sect->index;
1416 else
1417 return -1;
1418}
1419
cb2f3a29
MK
1420/* Link SF into the global symtab_fns list. Called on startup by the
1421 _initialize routine in each object file format reader, to register
1422 information about each format the the reader is prepared to
1423 handle. */
c906108c
SS
1424
1425void
fba45db2 1426add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1427{
1428 sf->next = symtab_fns;
1429 symtab_fns = sf;
1430}
1431
cb2f3a29
MK
1432/* Initialize OBJFILE to read symbols from its associated BFD. It
1433 either returns or calls error(). The result is an initialized
1434 struct sym_fns in the objfile structure, that contains cached
1435 information about the symbol file. */
c906108c
SS
1436
1437static void
fba45db2 1438find_sym_fns (struct objfile *objfile)
c906108c
SS
1439{
1440 struct sym_fns *sf;
c5aa993b
JM
1441 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1442 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1443
75245b24
MS
1444 if (our_flavour == bfd_target_srec_flavour
1445 || our_flavour == bfd_target_ihex_flavour
1446 || our_flavour == bfd_target_tekhex_flavour)
cb2f3a29 1447 return; /* No symbols. */
75245b24 1448
c5aa993b 1449 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1450 {
c5aa993b 1451 if (our_flavour == sf->sym_flavour)
c906108c 1452 {
c5aa993b 1453 objfile->sf = sf;
c906108c
SS
1454 return;
1455 }
1456 }
cb2f3a29 1457
8a3fe4f8 1458 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
c5aa993b 1459 bfd_get_target (objfile->obfd));
c906108c
SS
1460}
1461\f
cb2f3a29 1462
c906108c
SS
1463/* This function runs the load command of our current target. */
1464
1465static void
fba45db2 1466load_command (char *arg, int from_tty)
c906108c
SS
1467{
1468 if (arg == NULL)
1469 arg = get_exec_file (1);
1470 target_load (arg, from_tty);
2889e661
JB
1471
1472 /* After re-loading the executable, we don't really know which
1473 overlays are mapped any more. */
1474 overlay_cache_invalid = 1;
c906108c
SS
1475}
1476
1477/* This version of "load" should be usable for any target. Currently
1478 it is just used for remote targets, not inftarg.c or core files,
1479 on the theory that only in that case is it useful.
1480
1481 Avoiding xmodem and the like seems like a win (a) because we don't have
1482 to worry about finding it, and (b) On VMS, fork() is very slow and so
1483 we don't want to run a subprocess. On the other hand, I'm not sure how
1484 performance compares. */
917317f4
JM
1485
1486static int download_write_size = 512;
920d2a44
AC
1487static void
1488show_download_write_size (struct ui_file *file, int from_tty,
1489 struct cmd_list_element *c, const char *value)
1490{
1491 fprintf_filtered (file, _("\
1492The write size used when downloading a program is %s.\n"),
1493 value);
1494}
917317f4
JM
1495static int validate_download = 0;
1496
e4f9b4d5
MS
1497/* Callback service function for generic_load (bfd_map_over_sections). */
1498
1499static void
1500add_section_size_callback (bfd *abfd, asection *asec, void *data)
1501{
1502 bfd_size_type *sum = data;
1503
2c500098 1504 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1505}
1506
1507/* Opaque data for load_section_callback. */
1508struct load_section_data {
1509 unsigned long load_offset;
1510 unsigned long write_count;
1511 unsigned long data_count;
1512 bfd_size_type total_size;
1513};
1514
1515/* Callback service function for generic_load (bfd_map_over_sections). */
1516
1517static void
1518load_section_callback (bfd *abfd, asection *asec, void *data)
1519{
1520 struct load_section_data *args = data;
1521
1522 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1523 {
2c500098 1524 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1525 if (size > 0)
1526 {
777ea8f1 1527 gdb_byte *buffer;
e4f9b4d5
MS
1528 struct cleanup *old_chain;
1529 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1530 bfd_size_type block_size;
1531 int err;
1532 const char *sect_name = bfd_get_section_name (abfd, asec);
1533 bfd_size_type sent;
1534
1535 if (download_write_size > 0 && size > download_write_size)
1536 block_size = download_write_size;
1537 else
1538 block_size = size;
1539
1540 buffer = xmalloc (size);
1541 old_chain = make_cleanup (xfree, buffer);
1542
1543 /* Is this really necessary? I guess it gives the user something
1544 to look at during a long download. */
e4f9b4d5
MS
1545 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1546 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1547
1548 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1549
1550 sent = 0;
1551 do
1552 {
1553 int len;
1554 bfd_size_type this_transfer = size - sent;
1555
1556 if (this_transfer >= block_size)
1557 this_transfer = block_size;
1558 len = target_write_memory_partial (lma, buffer,
1559 this_transfer, &err);
1560 if (err)
1561 break;
1562 if (validate_download)
1563 {
1564 /* Broken memories and broken monitors manifest
1565 themselves here when bring new computers to
1566 life. This doubles already slow downloads. */
1567 /* NOTE: cagney/1999-10-18: A more efficient
1568 implementation might add a verify_memory()
1569 method to the target vector and then use
1570 that. remote.c could implement that method
1571 using the ``qCRC'' packet. */
777ea8f1 1572 gdb_byte *check = xmalloc (len);
5417f6dc 1573 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1574 make_cleanup (xfree, check);
1575
1576 if (target_read_memory (lma, check, len) != 0)
8a3fe4f8 1577 error (_("Download verify read failed at 0x%s"),
e4f9b4d5
MS
1578 paddr (lma));
1579 if (memcmp (buffer, check, len) != 0)
8a3fe4f8 1580 error (_("Download verify compare failed at 0x%s"),
e4f9b4d5
MS
1581 paddr (lma));
1582 do_cleanups (verify_cleanups);
1583 }
1584 args->data_count += len;
1585 lma += len;
1586 buffer += len;
1587 args->write_count += 1;
1588 sent += len;
1589 if (quit_flag
9a4105ab
AC
1590 || (deprecated_ui_load_progress_hook != NULL
1591 && deprecated_ui_load_progress_hook (sect_name, sent)))
8a3fe4f8 1592 error (_("Canceled the download"));
e4f9b4d5 1593
9a4105ab
AC
1594 if (deprecated_show_load_progress != NULL)
1595 deprecated_show_load_progress (sect_name, sent, size,
1596 args->data_count,
1597 args->total_size);
e4f9b4d5
MS
1598 }
1599 while (sent < size);
1600
1601 if (err != 0)
8a3fe4f8 1602 error (_("Memory access error while loading section %s."), sect_name);
e4f9b4d5
MS
1603
1604 do_cleanups (old_chain);
1605 }
1606 }
1607}
1608
c906108c 1609void
917317f4 1610generic_load (char *args, int from_tty)
c906108c 1611{
c906108c
SS
1612 asection *s;
1613 bfd *loadfile_bfd;
2b71414d 1614 struct timeval start_time, end_time;
917317f4
JM
1615 char *filename;
1616 struct cleanup *old_cleanups;
1617 char *offptr;
e4f9b4d5
MS
1618 struct load_section_data cbdata;
1619 CORE_ADDR entry;
1620
1621 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1622 cbdata.write_count = 0; /* Number of writes needed. */
1623 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1624 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1625
1626 /* Parse the input argument - the user can specify a load offset as
1627 a second argument. */
1628 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1629 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1630 strcpy (filename, args);
1631 offptr = strchr (filename, ' ');
1632 if (offptr != NULL)
1633 {
1634 char *endptr;
ba5f2f8a 1635
e4f9b4d5 1636 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4 1637 if (offptr == endptr)
8a3fe4f8 1638 error (_("Invalid download offset:%s."), offptr);
917317f4
JM
1639 *offptr = '\0';
1640 }
c906108c 1641 else
e4f9b4d5 1642 cbdata.load_offset = 0;
c906108c 1643
917317f4 1644 /* Open the file for loading. */
c906108c
SS
1645 loadfile_bfd = bfd_openr (filename, gnutarget);
1646 if (loadfile_bfd == NULL)
1647 {
1648 perror_with_name (filename);
1649 return;
1650 }
917317f4 1651
c906108c
SS
1652 /* FIXME: should be checking for errors from bfd_close (for one thing,
1653 on error it does not free all the storage associated with the
1654 bfd). */
5c65bbb6 1655 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1656
c5aa993b 1657 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1658 {
8a3fe4f8 1659 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1660 bfd_errmsg (bfd_get_error ()));
1661 }
c5aa993b 1662
5417f6dc 1663 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1664 (void *) &cbdata.total_size);
c2d11a7d 1665
2b71414d 1666 gettimeofday (&start_time, NULL);
c906108c 1667
e4f9b4d5 1668 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c 1669
2b71414d 1670 gettimeofday (&end_time, NULL);
ba5f2f8a 1671
e4f9b4d5 1672 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1673 ui_out_text (uiout, "Start address ");
1674 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1675 ui_out_text (uiout, ", load size ");
1676 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1677 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1678 /* We were doing this in remote-mips.c, I suspect it is right
1679 for other targets too. */
1680 write_pc (entry);
c906108c 1681
7ca9f392
AC
1682 /* FIXME: are we supposed to call symbol_file_add or not? According
1683 to a comment from remote-mips.c (where a call to symbol_file_add
1684 was commented out), making the call confuses GDB if more than one
1685 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1686 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1687
5417f6dc 1688 print_transfer_performance (gdb_stdout, cbdata.data_count,
2b71414d 1689 cbdata.write_count, &start_time, &end_time);
c906108c
SS
1690
1691 do_cleanups (old_cleanups);
1692}
1693
1694/* Report how fast the transfer went. */
1695
917317f4
JM
1696/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1697 replaced by print_transfer_performance (with a very different
1698 function signature). */
1699
c906108c 1700void
fba45db2
KB
1701report_transfer_performance (unsigned long data_count, time_t start_time,
1702 time_t end_time)
c906108c 1703{
2b71414d
DJ
1704 struct timeval start, end;
1705
1706 start.tv_sec = start_time;
1707 start.tv_usec = 0;
1708 end.tv_sec = end_time;
1709 end.tv_usec = 0;
1710
1711 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
1712}
1713
1714void
d9fcf2fb 1715print_transfer_performance (struct ui_file *stream,
917317f4
JM
1716 unsigned long data_count,
1717 unsigned long write_count,
2b71414d
DJ
1718 const struct timeval *start_time,
1719 const struct timeval *end_time)
917317f4 1720{
2b71414d
DJ
1721 unsigned long time_count;
1722
1723 /* Compute the elapsed time in milliseconds, as a tradeoff between
1724 accuracy and overflow. */
1725 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1726 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1727
8b93c638
JM
1728 ui_out_text (uiout, "Transfer rate: ");
1729 if (time_count > 0)
1730 {
5417f6dc 1731 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
2b71414d 1732 1000 * (data_count * 8) / time_count);
8b93c638
JM
1733 ui_out_text (uiout, " bits/sec");
1734 }
1735 else
1736 {
ba5f2f8a 1737 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1738 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1739 }
1740 if (write_count > 0)
1741 {
1742 ui_out_text (uiout, ", ");
ba5f2f8a 1743 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1744 ui_out_text (uiout, " bytes/write");
1745 }
1746 ui_out_text (uiout, ".\n");
c906108c
SS
1747}
1748
1749/* This function allows the addition of incrementally linked object files.
1750 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1751/* Note: ezannoni 2000-04-13 This function/command used to have a
1752 special case syntax for the rombug target (Rombug is the boot
1753 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1754 rombug case, the user doesn't need to supply a text address,
1755 instead a call to target_link() (in target.c) would supply the
1756 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1757
c906108c 1758static void
fba45db2 1759add_symbol_file_command (char *args, int from_tty)
c906108c 1760{
db162d44 1761 char *filename = NULL;
2df3850c 1762 int flags = OBJF_USERLOADED;
c906108c 1763 char *arg;
2acceee2 1764 int expecting_option = 0;
db162d44 1765 int section_index = 0;
2acceee2
JM
1766 int argcnt = 0;
1767 int sec_num = 0;
1768 int i;
db162d44
EZ
1769 int expecting_sec_name = 0;
1770 int expecting_sec_addr = 0;
1771
a39a16c4 1772 struct sect_opt
2acceee2 1773 {
2acceee2
JM
1774 char *name;
1775 char *value;
a39a16c4 1776 };
db162d44 1777
a39a16c4
MM
1778 struct section_addr_info *section_addrs;
1779 struct sect_opt *sect_opts = NULL;
1780 size_t num_sect_opts = 0;
3017564a 1781 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1782
a39a16c4 1783 num_sect_opts = 16;
5417f6dc 1784 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1785 * sizeof (struct sect_opt));
1786
c906108c
SS
1787 dont_repeat ();
1788
1789 if (args == NULL)
8a3fe4f8 1790 error (_("add-symbol-file takes a file name and an address"));
c906108c
SS
1791
1792 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1793 args = xstrdup (args);
c906108c 1794
2acceee2 1795 while (*args != '\000')
c906108c 1796 {
db162d44 1797 /* Any leading spaces? */
c5aa993b 1798 while (isspace (*args))
db162d44
EZ
1799 args++;
1800
1801 /* Point arg to the beginning of the argument. */
c906108c 1802 arg = args;
db162d44
EZ
1803
1804 /* Move args pointer over the argument. */
c5aa993b 1805 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1806 args++;
1807
1808 /* If there are more arguments, terminate arg and
1809 proceed past it. */
c906108c 1810 if (*args != '\000')
db162d44
EZ
1811 *args++ = '\000';
1812
1813 /* Now process the argument. */
1814 if (argcnt == 0)
c906108c 1815 {
db162d44
EZ
1816 /* The first argument is the file name. */
1817 filename = tilde_expand (arg);
3017564a 1818 make_cleanup (xfree, filename);
c906108c 1819 }
db162d44 1820 else
7a78ae4e
ND
1821 if (argcnt == 1)
1822 {
1823 /* The second argument is always the text address at which
1824 to load the program. */
1825 sect_opts[section_index].name = ".text";
1826 sect_opts[section_index].value = arg;
5417f6dc 1827 if (++section_index > num_sect_opts)
a39a16c4
MM
1828 {
1829 num_sect_opts *= 2;
5417f6dc 1830 sect_opts = ((struct sect_opt *)
a39a16c4 1831 xrealloc (sect_opts,
5417f6dc 1832 num_sect_opts
a39a16c4
MM
1833 * sizeof (struct sect_opt)));
1834 }
7a78ae4e
ND
1835 }
1836 else
1837 {
1838 /* It's an option (starting with '-') or it's an argument
1839 to an option */
1840
1841 if (*arg == '-')
1842 {
78a4a9b9
AC
1843 if (strcmp (arg, "-readnow") == 0)
1844 flags |= OBJF_READNOW;
1845 else if (strcmp (arg, "-s") == 0)
1846 {
1847 expecting_sec_name = 1;
1848 expecting_sec_addr = 1;
1849 }
7a78ae4e
ND
1850 }
1851 else
1852 {
1853 if (expecting_sec_name)
db162d44 1854 {
7a78ae4e
ND
1855 sect_opts[section_index].name = arg;
1856 expecting_sec_name = 0;
db162d44
EZ
1857 }
1858 else
7a78ae4e
ND
1859 if (expecting_sec_addr)
1860 {
1861 sect_opts[section_index].value = arg;
1862 expecting_sec_addr = 0;
5417f6dc 1863 if (++section_index > num_sect_opts)
a39a16c4
MM
1864 {
1865 num_sect_opts *= 2;
5417f6dc 1866 sect_opts = ((struct sect_opt *)
a39a16c4 1867 xrealloc (sect_opts,
5417f6dc 1868 num_sect_opts
a39a16c4
MM
1869 * sizeof (struct sect_opt)));
1870 }
7a78ae4e
ND
1871 }
1872 else
8a3fe4f8 1873 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
1874 }
1875 }
db162d44 1876 argcnt++;
c906108c 1877 }
c906108c 1878
927890d0
JB
1879 /* This command takes at least two arguments. The first one is a
1880 filename, and the second is the address where this file has been
1881 loaded. Abort now if this address hasn't been provided by the
1882 user. */
1883 if (section_index < 1)
1884 error (_("The address where %s has been loaded is missing"), filename);
1885
db162d44
EZ
1886 /* Print the prompt for the query below. And save the arguments into
1887 a sect_addr_info structure to be passed around to other
1888 functions. We have to split this up into separate print
bb599908 1889 statements because hex_string returns a local static
db162d44 1890 string. */
5417f6dc 1891
a3f17187 1892 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
1893 section_addrs = alloc_section_addr_info (section_index);
1894 make_cleanup (xfree, section_addrs);
db162d44 1895 for (i = 0; i < section_index; i++)
c906108c 1896 {
db162d44
EZ
1897 CORE_ADDR addr;
1898 char *val = sect_opts[i].value;
1899 char *sec = sect_opts[i].name;
5417f6dc 1900
ae822768 1901 addr = parse_and_eval_address (val);
db162d44 1902
db162d44
EZ
1903 /* Here we store the section offsets in the order they were
1904 entered on the command line. */
a39a16c4
MM
1905 section_addrs->other[sec_num].name = sec;
1906 section_addrs->other[sec_num].addr = addr;
46f45a4a 1907 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 1908 sec, hex_string ((unsigned long)addr));
db162d44
EZ
1909 sec_num++;
1910
5417f6dc 1911 /* The object's sections are initialized when a
db162d44 1912 call is made to build_objfile_section_table (objfile).
5417f6dc 1913 This happens in reread_symbols.
db162d44
EZ
1914 At this point, we don't know what file type this is,
1915 so we can't determine what section names are valid. */
2acceee2 1916 }
db162d44 1917
2acceee2 1918 if (from_tty && (!query ("%s", "")))
8a3fe4f8 1919 error (_("Not confirmed."));
c906108c 1920
a39a16c4 1921 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1922
1923 /* Getting new symbols may change our opinion about what is
1924 frameless. */
1925 reinit_frame_cache ();
db162d44 1926 do_cleanups (my_cleanups);
c906108c
SS
1927}
1928\f
1929static void
fba45db2 1930add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1931{
1932#ifdef ADD_SHARED_SYMBOL_FILES
1933 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1934#else
8a3fe4f8 1935 error (_("This command is not available in this configuration of GDB."));
c5aa993b 1936#endif
c906108c
SS
1937}
1938\f
1939/* Re-read symbols if a symbol-file has changed. */
1940void
fba45db2 1941reread_symbols (void)
c906108c
SS
1942{
1943 struct objfile *objfile;
1944 long new_modtime;
1945 int reread_one = 0;
1946 struct stat new_statbuf;
1947 int res;
1948
1949 /* With the addition of shared libraries, this should be modified,
1950 the load time should be saved in the partial symbol tables, since
1951 different tables may come from different source files. FIXME.
1952 This routine should then walk down each partial symbol table
1953 and see if the symbol table that it originates from has been changed */
1954
c5aa993b
JM
1955 for (objfile = object_files; objfile; objfile = objfile->next)
1956 {
1957 if (objfile->obfd)
1958 {
52d16ba8 1959#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1960 /* If this object is from a shared library, then you should
1961 stat on the library name, not member name. */
c906108c 1962
c5aa993b
JM
1963 if (objfile->obfd->my_archive)
1964 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1965 else
c906108c 1966#endif
c5aa993b
JM
1967 res = stat (objfile->name, &new_statbuf);
1968 if (res != 0)
c906108c 1969 {
c5aa993b 1970 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 1971 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
1972 objfile->name);
1973 continue;
c906108c 1974 }
c5aa993b
JM
1975 new_modtime = new_statbuf.st_mtime;
1976 if (new_modtime != objfile->mtime)
c906108c 1977 {
c5aa993b
JM
1978 struct cleanup *old_cleanups;
1979 struct section_offsets *offsets;
1980 int num_offsets;
c5aa993b
JM
1981 char *obfd_filename;
1982
a3f17187 1983 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
1984 objfile->name);
1985
1986 /* There are various functions like symbol_file_add,
1987 symfile_bfd_open, syms_from_objfile, etc., which might
1988 appear to do what we want. But they have various other
1989 effects which we *don't* want. So we just do stuff
1990 ourselves. We don't worry about mapped files (for one thing,
1991 any mapped file will be out of date). */
1992
1993 /* If we get an error, blow away this objfile (not sure if
1994 that is the correct response for things like shared
1995 libraries). */
74b7792f 1996 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1997 /* We need to do this whenever any symbols go away. */
74b7792f 1998 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1999
2000 /* Clean up any state BFD has sitting around. We don't need
2001 to close the descriptor but BFD lacks a way of closing the
2002 BFD without closing the descriptor. */
2003 obfd_filename = bfd_get_filename (objfile->obfd);
2004 if (!bfd_close (objfile->obfd))
8a3fe4f8 2005 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2006 bfd_errmsg (bfd_get_error ()));
2007 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2008 if (objfile->obfd == NULL)
8a3fe4f8 2009 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2010 /* bfd_openr sets cacheable to true, which is what we want. */
2011 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2012 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2013 bfd_errmsg (bfd_get_error ()));
2014
2015 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2016 objfile_obstack. */
c5aa993b 2017 num_offsets = objfile->num_sections;
5417f6dc 2018 offsets = ((struct section_offsets *)
a39a16c4 2019 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2020 memcpy (offsets, objfile->section_offsets,
a39a16c4 2021 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2022
ae5a43e0
DJ
2023 /* Remove any references to this objfile in the global
2024 value lists. */
2025 preserve_values (objfile);
2026
c5aa993b
JM
2027 /* Nuke all the state that we will re-read. Much of the following
2028 code which sets things to NULL really is necessary to tell
2029 other parts of GDB that there is nothing currently there. */
2030
2031 /* FIXME: Do we have to free a whole linked list, or is this
2032 enough? */
2033 if (objfile->global_psymbols.list)
2dc74dc1 2034 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2035 memset (&objfile->global_psymbols, 0,
2036 sizeof (objfile->global_psymbols));
2037 if (objfile->static_psymbols.list)
2dc74dc1 2038 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2039 memset (&objfile->static_psymbols, 0,
2040 sizeof (objfile->static_psymbols));
2041
2042 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2043 bcache_xfree (objfile->psymbol_cache);
2044 objfile->psymbol_cache = bcache_xmalloc ();
2045 bcache_xfree (objfile->macro_cache);
2046 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2047 if (objfile->demangled_names_hash != NULL)
2048 {
2049 htab_delete (objfile->demangled_names_hash);
2050 objfile->demangled_names_hash = NULL;
2051 }
b99607ea 2052 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2053 objfile->sections = NULL;
2054 objfile->symtabs = NULL;
2055 objfile->psymtabs = NULL;
2056 objfile->free_psymtabs = NULL;
a1b8c067 2057 objfile->cp_namespace_symtab = NULL;
c5aa993b 2058 objfile->msymbols = NULL;
0a6ddd08 2059 objfile->deprecated_sym_private = NULL;
c5aa993b 2060 objfile->minimal_symbol_count = 0;
0a83117a
MS
2061 memset (&objfile->msymbol_hash, 0,
2062 sizeof (objfile->msymbol_hash));
2063 memset (&objfile->msymbol_demangled_hash, 0,
2064 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2065 objfile->fundamental_types = NULL;
7b097ae3 2066 clear_objfile_data (objfile);
c5aa993b
JM
2067 if (objfile->sf != NULL)
2068 {
2069 (*objfile->sf->sym_finish) (objfile);
2070 }
2071
2072 /* We never make this a mapped file. */
2073 objfile->md = NULL;
af5f3db6
AC
2074 objfile->psymbol_cache = bcache_xmalloc ();
2075 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2076 /* obstack_init also initializes the obstack so it is
2077 empty. We could use obstack_specify_allocation but
2078 gdb_obstack.h specifies the alloc/dealloc
2079 functions. */
2080 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2081 if (build_objfile_section_table (objfile))
2082 {
8a3fe4f8 2083 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2084 objfile->name, bfd_errmsg (bfd_get_error ()));
2085 }
15831452 2086 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2087
2088 /* We use the same section offsets as from last time. I'm not
2089 sure whether that is always correct for shared libraries. */
2090 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2091 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2092 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2093 memcpy (objfile->section_offsets, offsets,
a39a16c4 2094 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2095 objfile->num_sections = num_offsets;
2096
2097 /* What the hell is sym_new_init for, anyway? The concept of
2098 distinguishing between the main file and additional files
2099 in this way seems rather dubious. */
2100 if (objfile == symfile_objfile)
2101 {
2102 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2103 }
2104
2105 (*objfile->sf->sym_init) (objfile);
b9caf505 2106 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2107 /* The "mainline" parameter is a hideous hack; I think leaving it
2108 zero is OK since dbxread.c also does what it needs to do if
2109 objfile->global_psymbols.size is 0. */
96baa820 2110 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2111 if (!have_partial_symbols () && !have_full_symbols ())
2112 {
2113 wrap_here ("");
a3f17187 2114 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2115 wrap_here ("");
2116 }
2117 objfile->flags |= OBJF_SYMS;
2118
2119 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2120 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2121
c5aa993b
JM
2122 /* Getting new symbols may change our opinion about what is
2123 frameless. */
c906108c 2124
c5aa993b 2125 reinit_frame_cache ();
c906108c 2126
c5aa993b
JM
2127 /* Discard cleanups as symbol reading was successful. */
2128 discard_cleanups (old_cleanups);
c906108c 2129
c5aa993b
JM
2130 /* If the mtime has changed between the time we set new_modtime
2131 and now, we *want* this to be out of date, so don't call stat
2132 again now. */
2133 objfile->mtime = new_modtime;
2134 reread_one = 1;
5b5d99cf 2135 reread_separate_symbols (objfile);
c5aa993b 2136 }
c906108c
SS
2137 }
2138 }
c906108c
SS
2139
2140 if (reread_one)
ea53e89f
JB
2141 {
2142 clear_symtab_users ();
2143 /* At least one objfile has changed, so we can consider that
2144 the executable we're debugging has changed too. */
2145 observer_notify_executable_changed (NULL);
2146 }
2147
c906108c 2148}
5b5d99cf
JB
2149
2150
2151/* Handle separate debug info for OBJFILE, which has just been
2152 re-read:
2153 - If we had separate debug info before, but now we don't, get rid
2154 of the separated objfile.
2155 - If we didn't have separated debug info before, but now we do,
2156 read in the new separated debug info file.
2157 - If the debug link points to a different file, toss the old one
2158 and read the new one.
2159 This function does *not* handle the case where objfile is still
2160 using the same separate debug info file, but that file's timestamp
2161 has changed. That case should be handled by the loop in
2162 reread_symbols already. */
2163static void
2164reread_separate_symbols (struct objfile *objfile)
2165{
2166 char *debug_file;
2167 unsigned long crc32;
2168
2169 /* Does the updated objfile's debug info live in a
2170 separate file? */
2171 debug_file = find_separate_debug_file (objfile);
2172
2173 if (objfile->separate_debug_objfile)
2174 {
2175 /* There are two cases where we need to get rid of
2176 the old separated debug info objfile:
2177 - if the new primary objfile doesn't have
2178 separated debug info, or
2179 - if the new primary objfile has separate debug
2180 info, but it's under a different filename.
5417f6dc 2181
5b5d99cf
JB
2182 If the old and new objfiles both have separate
2183 debug info, under the same filename, then we're
2184 okay --- if the separated file's contents have
2185 changed, we will have caught that when we
2186 visited it in this function's outermost
2187 loop. */
2188 if (! debug_file
2189 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2190 free_objfile (objfile->separate_debug_objfile);
2191 }
2192
2193 /* If the new objfile has separate debug info, and we
2194 haven't loaded it already, do so now. */
2195 if (debug_file
2196 && ! objfile->separate_debug_objfile)
2197 {
2198 /* Use the same section offset table as objfile itself.
2199 Preserve the flags from objfile that make sense. */
2200 objfile->separate_debug_objfile
2201 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2202 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2203 info_verbose, /* from_tty: Don't override the default. */
2204 0, /* No addr table. */
2205 objfile->section_offsets, objfile->num_sections,
2206 0, /* Not mainline. See comments about this above. */
78a4a9b9 2207 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2208 | OBJF_USERLOADED)));
2209 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2210 = objfile;
2211 }
2212}
2213
2214
c906108c
SS
2215\f
2216
c5aa993b
JM
2217
2218typedef struct
2219{
2220 char *ext;
c906108c 2221 enum language lang;
c5aa993b
JM
2222}
2223filename_language;
c906108c 2224
c5aa993b 2225static filename_language *filename_language_table;
c906108c
SS
2226static int fl_table_size, fl_table_next;
2227
2228static void
fba45db2 2229add_filename_language (char *ext, enum language lang)
c906108c
SS
2230{
2231 if (fl_table_next >= fl_table_size)
2232 {
2233 fl_table_size += 10;
5417f6dc 2234 filename_language_table =
25bf3106
PM
2235 xrealloc (filename_language_table,
2236 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2237 }
2238
4fcf66da 2239 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2240 filename_language_table[fl_table_next].lang = lang;
2241 fl_table_next++;
2242}
2243
2244static char *ext_args;
920d2a44
AC
2245static void
2246show_ext_args (struct ui_file *file, int from_tty,
2247 struct cmd_list_element *c, const char *value)
2248{
2249 fprintf_filtered (file, _("\
2250Mapping between filename extension and source language is \"%s\".\n"),
2251 value);
2252}
c906108c
SS
2253
2254static void
26c41df3 2255set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2256{
2257 int i;
2258 char *cp = ext_args;
2259 enum language lang;
2260
2261 /* First arg is filename extension, starting with '.' */
2262 if (*cp != '.')
8a3fe4f8 2263 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2264
2265 /* Find end of first arg. */
c5aa993b 2266 while (*cp && !isspace (*cp))
c906108c
SS
2267 cp++;
2268
2269 if (*cp == '\0')
8a3fe4f8 2270 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2271 ext_args);
2272
2273 /* Null-terminate first arg */
c5aa993b 2274 *cp++ = '\0';
c906108c
SS
2275
2276 /* Find beginning of second arg, which should be a source language. */
2277 while (*cp && isspace (*cp))
2278 cp++;
2279
2280 if (*cp == '\0')
8a3fe4f8 2281 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2282 ext_args);
2283
2284 /* Lookup the language from among those we know. */
2285 lang = language_enum (cp);
2286
2287 /* Now lookup the filename extension: do we already know it? */
2288 for (i = 0; i < fl_table_next; i++)
2289 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2290 break;
2291
2292 if (i >= fl_table_next)
2293 {
2294 /* new file extension */
2295 add_filename_language (ext_args, lang);
2296 }
2297 else
2298 {
2299 /* redefining a previously known filename extension */
2300
2301 /* if (from_tty) */
2302 /* query ("Really make files of type %s '%s'?", */
2303 /* ext_args, language_str (lang)); */
2304
b8c9b27d 2305 xfree (filename_language_table[i].ext);
4fcf66da 2306 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2307 filename_language_table[i].lang = lang;
2308 }
2309}
2310
2311static void
fba45db2 2312info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2313{
2314 int i;
2315
a3f17187 2316 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2317 printf_filtered ("\n\n");
2318 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2319 printf_filtered ("\t%s\t- %s\n",
2320 filename_language_table[i].ext,
c906108c
SS
2321 language_str (filename_language_table[i].lang));
2322}
2323
2324static void
fba45db2 2325init_filename_language_table (void)
c906108c
SS
2326{
2327 if (fl_table_size == 0) /* protect against repetition */
2328 {
2329 fl_table_size = 20;
2330 fl_table_next = 0;
c5aa993b 2331 filename_language_table =
c906108c 2332 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2333 add_filename_language (".c", language_c);
2334 add_filename_language (".C", language_cplus);
2335 add_filename_language (".cc", language_cplus);
2336 add_filename_language (".cp", language_cplus);
2337 add_filename_language (".cpp", language_cplus);
2338 add_filename_language (".cxx", language_cplus);
2339 add_filename_language (".c++", language_cplus);
2340 add_filename_language (".java", language_java);
c906108c 2341 add_filename_language (".class", language_java);
da2cf7e0 2342 add_filename_language (".m", language_objc);
c5aa993b
JM
2343 add_filename_language (".f", language_fortran);
2344 add_filename_language (".F", language_fortran);
2345 add_filename_language (".s", language_asm);
2346 add_filename_language (".S", language_asm);
c6fd39cd
PM
2347 add_filename_language (".pas", language_pascal);
2348 add_filename_language (".p", language_pascal);
2349 add_filename_language (".pp", language_pascal);
963a6417
PH
2350 add_filename_language (".adb", language_ada);
2351 add_filename_language (".ads", language_ada);
2352 add_filename_language (".a", language_ada);
2353 add_filename_language (".ada", language_ada);
c906108c
SS
2354 }
2355}
2356
2357enum language
fba45db2 2358deduce_language_from_filename (char *filename)
c906108c
SS
2359{
2360 int i;
2361 char *cp;
2362
2363 if (filename != NULL)
2364 if ((cp = strrchr (filename, '.')) != NULL)
2365 for (i = 0; i < fl_table_next; i++)
2366 if (strcmp (cp, filename_language_table[i].ext) == 0)
2367 return filename_language_table[i].lang;
2368
2369 return language_unknown;
2370}
2371\f
2372/* allocate_symtab:
2373
2374 Allocate and partly initialize a new symbol table. Return a pointer
2375 to it. error() if no space.
2376
2377 Caller must set these fields:
c5aa993b
JM
2378 LINETABLE(symtab)
2379 symtab->blockvector
2380 symtab->dirname
2381 symtab->free_code
2382 symtab->free_ptr
2383 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2384 */
2385
2386struct symtab *
fba45db2 2387allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2388{
52f0bd74 2389 struct symtab *symtab;
c906108c
SS
2390
2391 symtab = (struct symtab *)
4a146b47 2392 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2393 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2394 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2395 &objfile->objfile_obstack);
c5aa993b
JM
2396 symtab->fullname = NULL;
2397 symtab->language = deduce_language_from_filename (filename);
2398 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2399 &objfile->objfile_obstack);
c906108c
SS
2400
2401 /* Hook it to the objfile it comes from */
2402
c5aa993b
JM
2403 symtab->objfile = objfile;
2404 symtab->next = objfile->symtabs;
2405 objfile->symtabs = symtab;
c906108c
SS
2406
2407 /* FIXME: This should go away. It is only defined for the Z8000,
2408 and the Z8000 definition of this macro doesn't have anything to
2409 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2410 here for convenience. */
2411#ifdef INIT_EXTRA_SYMTAB_INFO
2412 INIT_EXTRA_SYMTAB_INFO (symtab);
2413#endif
2414
2415 return (symtab);
2416}
2417
2418struct partial_symtab *
fba45db2 2419allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2420{
2421 struct partial_symtab *psymtab;
2422
c5aa993b 2423 if (objfile->free_psymtabs)
c906108c 2424 {
c5aa993b
JM
2425 psymtab = objfile->free_psymtabs;
2426 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2427 }
2428 else
2429 psymtab = (struct partial_symtab *)
8b92e4d5 2430 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2431 sizeof (struct partial_symtab));
2432
2433 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2434 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2435 &objfile->objfile_obstack);
c5aa993b 2436 psymtab->symtab = NULL;
c906108c
SS
2437
2438 /* Prepend it to the psymtab list for the objfile it belongs to.
2439 Psymtabs are searched in most recent inserted -> least recent
2440 inserted order. */
2441
c5aa993b
JM
2442 psymtab->objfile = objfile;
2443 psymtab->next = objfile->psymtabs;
2444 objfile->psymtabs = psymtab;
c906108c
SS
2445#if 0
2446 {
2447 struct partial_symtab **prev_pst;
c5aa993b
JM
2448 psymtab->objfile = objfile;
2449 psymtab->next = NULL;
2450 prev_pst = &(objfile->psymtabs);
c906108c 2451 while ((*prev_pst) != NULL)
c5aa993b 2452 prev_pst = &((*prev_pst)->next);
c906108c 2453 (*prev_pst) = psymtab;
c5aa993b 2454 }
c906108c 2455#endif
c5aa993b 2456
c906108c
SS
2457 return (psymtab);
2458}
2459
2460void
fba45db2 2461discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2462{
2463 struct partial_symtab **prev_pst;
2464
2465 /* From dbxread.c:
2466 Empty psymtabs happen as a result of header files which don't
2467 have any symbols in them. There can be a lot of them. But this
2468 check is wrong, in that a psymtab with N_SLINE entries but
2469 nothing else is not empty, but we don't realize that. Fixing
2470 that without slowing things down might be tricky. */
2471
2472 /* First, snip it out of the psymtab chain */
2473
2474 prev_pst = &(pst->objfile->psymtabs);
2475 while ((*prev_pst) != pst)
2476 prev_pst = &((*prev_pst)->next);
2477 (*prev_pst) = pst->next;
2478
2479 /* Next, put it on a free list for recycling */
2480
2481 pst->next = pst->objfile->free_psymtabs;
2482 pst->objfile->free_psymtabs = pst;
2483}
c906108c 2484\f
c5aa993b 2485
c906108c
SS
2486/* Reset all data structures in gdb which may contain references to symbol
2487 table data. */
2488
2489void
fba45db2 2490clear_symtab_users (void)
c906108c
SS
2491{
2492 /* Someday, we should do better than this, by only blowing away
2493 the things that really need to be blown. */
c0501be5
DJ
2494
2495 /* Clear the "current" symtab first, because it is no longer valid.
2496 breakpoint_re_set may try to access the current symtab. */
2497 clear_current_source_symtab_and_line ();
2498
c906108c 2499 clear_displays ();
c906108c
SS
2500 breakpoint_re_set ();
2501 set_default_breakpoint (0, 0, 0, 0);
c906108c 2502 clear_pc_function_cache ();
9a4105ab
AC
2503 if (deprecated_target_new_objfile_hook)
2504 deprecated_target_new_objfile_hook (NULL);
c906108c
SS
2505}
2506
74b7792f
AC
2507static void
2508clear_symtab_users_cleanup (void *ignore)
2509{
2510 clear_symtab_users ();
2511}
2512
c906108c
SS
2513/* clear_symtab_users_once:
2514
2515 This function is run after symbol reading, or from a cleanup.
2516 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2517 has been blown away, but the other GDB data structures that may
c906108c
SS
2518 reference it have not yet been cleared or re-directed. (The old
2519 symtab was zapped, and the cleanup queued, in free_named_symtab()
2520 below.)
2521
2522 This function can be queued N times as a cleanup, or called
2523 directly; it will do all the work the first time, and then will be a
2524 no-op until the next time it is queued. This works by bumping a
2525 counter at queueing time. Much later when the cleanup is run, or at
2526 the end of symbol processing (in case the cleanup is discarded), if
2527 the queued count is greater than the "done-count", we do the work
2528 and set the done-count to the queued count. If the queued count is
2529 less than or equal to the done-count, we just ignore the call. This
2530 is needed because reading a single .o file will often replace many
2531 symtabs (one per .h file, for example), and we don't want to reset
2532 the breakpoints N times in the user's face.
2533
2534 The reason we both queue a cleanup, and call it directly after symbol
2535 reading, is because the cleanup protects us in case of errors, but is
2536 discarded if symbol reading is successful. */
2537
2538#if 0
2539/* FIXME: As free_named_symtabs is currently a big noop this function
2540 is no longer needed. */
a14ed312 2541static void clear_symtab_users_once (void);
c906108c
SS
2542
2543static int clear_symtab_users_queued;
2544static int clear_symtab_users_done;
2545
2546static void
fba45db2 2547clear_symtab_users_once (void)
c906108c
SS
2548{
2549 /* Enforce once-per-`do_cleanups'-semantics */
2550 if (clear_symtab_users_queued <= clear_symtab_users_done)
2551 return;
2552 clear_symtab_users_done = clear_symtab_users_queued;
2553
2554 clear_symtab_users ();
2555}
2556#endif
2557
2558/* Delete the specified psymtab, and any others that reference it. */
2559
2560static void
fba45db2 2561cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2562{
2563 struct partial_symtab *ps, *pprev = NULL;
2564 int i;
2565
2566 /* Find its previous psymtab in the chain */
c5aa993b
JM
2567 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2568 {
2569 if (ps == pst)
2570 break;
2571 pprev = ps;
2572 }
c906108c 2573
c5aa993b
JM
2574 if (ps)
2575 {
2576 /* Unhook it from the chain. */
2577 if (ps == pst->objfile->psymtabs)
2578 pst->objfile->psymtabs = ps->next;
2579 else
2580 pprev->next = ps->next;
2581
2582 /* FIXME, we can't conveniently deallocate the entries in the
2583 partial_symbol lists (global_psymbols/static_psymbols) that
2584 this psymtab points to. These just take up space until all
2585 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2586 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2587
2588 /* We need to cashier any psymtab that has this one as a dependency... */
2589 again:
2590 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2591 {
2592 for (i = 0; i < ps->number_of_dependencies; i++)
2593 {
2594 if (ps->dependencies[i] == pst)
2595 {
2596 cashier_psymtab (ps);
2597 goto again; /* Must restart, chain has been munged. */
2598 }
2599 }
c906108c 2600 }
c906108c 2601 }
c906108c
SS
2602}
2603
2604/* If a symtab or psymtab for filename NAME is found, free it along
2605 with any dependent breakpoints, displays, etc.
2606 Used when loading new versions of object modules with the "add-file"
2607 command. This is only called on the top-level symtab or psymtab's name;
2608 it is not called for subsidiary files such as .h files.
2609
2610 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2611 FIXME. The return value appears to never be used.
c906108c
SS
2612
2613 FIXME. I think this is not the best way to do this. We should
2614 work on being gentler to the environment while still cleaning up
2615 all stray pointers into the freed symtab. */
2616
2617int
fba45db2 2618free_named_symtabs (char *name)
c906108c
SS
2619{
2620#if 0
2621 /* FIXME: With the new method of each objfile having it's own
2622 psymtab list, this function needs serious rethinking. In particular,
2623 why was it ever necessary to toss psymtabs with specific compilation
2624 unit filenames, as opposed to all psymtabs from a particular symbol
2625 file? -- fnf
2626 Well, the answer is that some systems permit reloading of particular
2627 compilation units. We want to blow away any old info about these
2628 compilation units, regardless of which objfiles they arrived in. --gnu. */
2629
52f0bd74
AC
2630 struct symtab *s;
2631 struct symtab *prev;
2632 struct partial_symtab *ps;
c906108c
SS
2633 struct blockvector *bv;
2634 int blewit = 0;
2635
2636 /* We only wack things if the symbol-reload switch is set. */
2637 if (!symbol_reloading)
2638 return 0;
2639
2640 /* Some symbol formats have trouble providing file names... */
2641 if (name == 0 || *name == '\0')
2642 return 0;
2643
2644 /* Look for a psymtab with the specified name. */
2645
2646again2:
c5aa993b
JM
2647 for (ps = partial_symtab_list; ps; ps = ps->next)
2648 {
6314a349 2649 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2650 {
2651 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2652 goto again2; /* Must restart, chain has been munged */
2653 }
c906108c 2654 }
c906108c
SS
2655
2656 /* Look for a symtab with the specified name. */
2657
2658 for (s = symtab_list; s; s = s->next)
2659 {
6314a349 2660 if (strcmp (name, s->filename) == 0)
c906108c
SS
2661 break;
2662 prev = s;
2663 }
2664
2665 if (s)
2666 {
2667 if (s == symtab_list)
2668 symtab_list = s->next;
2669 else
2670 prev->next = s->next;
2671
2672 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2673 or not they depend on the symtab being freed. This should be
2674 changed so that only those data structures affected are deleted. */
c906108c
SS
2675
2676 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2677 This test is necessary due to a bug in "dbxread.c" that
2678 causes empty symtabs to be created for N_SO symbols that
2679 contain the pathname of the object file. (This problem
2680 has been fixed in GDB 3.9x). */
c906108c
SS
2681
2682 bv = BLOCKVECTOR (s);
2683 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2684 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2685 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2686 {
e2e0b3e5 2687 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 2688 name);
c906108c
SS
2689 clear_symtab_users_queued++;
2690 make_cleanup (clear_symtab_users_once, 0);
2691 blewit = 1;
c5aa993b
JM
2692 }
2693 else
e2e0b3e5
AC
2694 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2695 name);
c906108c
SS
2696
2697 free_symtab (s);
2698 }
2699 else
2700 {
2701 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2702 even though no symtab was found, since the file might have
2703 been compiled without debugging, and hence not be associated
2704 with a symtab. In order to handle this correctly, we would need
2705 to keep a list of text address ranges for undebuggable files.
2706 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2707 ;
2708 }
2709
2710 /* FIXME, what about the minimal symbol table? */
2711 return blewit;
2712#else
2713 return (0);
2714#endif
2715}
2716\f
2717/* Allocate and partially fill a partial symtab. It will be
2718 completely filled at the end of the symbol list.
2719
d4f3574e 2720 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2721
2722struct partial_symtab *
fba45db2
KB
2723start_psymtab_common (struct objfile *objfile,
2724 struct section_offsets *section_offsets, char *filename,
2725 CORE_ADDR textlow, struct partial_symbol **global_syms,
2726 struct partial_symbol **static_syms)
c906108c
SS
2727{
2728 struct partial_symtab *psymtab;
2729
2730 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2731 psymtab->section_offsets = section_offsets;
2732 psymtab->textlow = textlow;
2733 psymtab->texthigh = psymtab->textlow; /* default */
2734 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2735 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2736 return (psymtab);
2737}
2738\f
2739/* Add a symbol with a long value to a psymtab.
5417f6dc 2740 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2741 Return the partial symbol that has been added. */
2742
2743/* NOTE: carlton/2003-09-11: The reason why we return the partial
2744 symbol is so that callers can get access to the symbol's demangled
2745 name, which they don't have any cheap way to determine otherwise.
2746 (Currenly, dwarf2read.c is the only file who uses that information,
2747 though it's possible that other readers might in the future.)
2748 Elena wasn't thrilled about that, and I don't blame her, but we
2749 couldn't come up with a better way to get that information. If
2750 it's needed in other situations, we could consider breaking up
2751 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2752 cache. */
2753
2754const struct partial_symbol *
176620f1 2755add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2756 enum address_class class,
2757 struct psymbol_allocation_list *list, long val, /* Value as a long */
2758 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2759 enum language language, struct objfile *objfile)
c906108c 2760{
52f0bd74 2761 struct partial_symbol *psym;
c906108c
SS
2762 char *buf = alloca (namelength + 1);
2763 /* psymbol is static so that there will be no uninitialized gaps in the
2764 structure which might contain random data, causing cache misses in
2765 bcache. */
2766 static struct partial_symbol psymbol;
2767
2768 /* Create local copy of the partial symbol */
2769 memcpy (buf, name, namelength);
2770 buf[namelength] = '\0';
c906108c
SS
2771 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2772 if (val != 0)
2773 {
2774 SYMBOL_VALUE (&psymbol) = val;
2775 }
2776 else
2777 {
2778 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2779 }
2780 SYMBOL_SECTION (&psymbol) = 0;
2781 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2782 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2783 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2784
2785 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2786
2787 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2788 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2789 objfile->psymbol_cache);
c906108c
SS
2790
2791 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2792 if (list->next >= list->list + list->size)
2793 {
2794 extend_psymbol_list (list, objfile);
2795 }
2796 *list->next++ = psym;
2797 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2798
2799 return psym;
c906108c
SS
2800}
2801
2802/* Add a symbol with a long value to a psymtab. This differs from
2803 * add_psymbol_to_list above in taking both a mangled and a demangled
2804 * name. */
2805
2806void
fba45db2 2807add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2808 int dem_namelength, domain_enum domain,
fba45db2
KB
2809 enum address_class class,
2810 struct psymbol_allocation_list *list, long val, /* Value as a long */
2811 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2812 enum language language,
2813 struct objfile *objfile)
c906108c 2814{
52f0bd74 2815 struct partial_symbol *psym;
c906108c
SS
2816 char *buf = alloca (namelength + 1);
2817 /* psymbol is static so that there will be no uninitialized gaps in the
2818 structure which might contain random data, causing cache misses in
2819 bcache. */
2820 static struct partial_symbol psymbol;
2821
2822 /* Create local copy of the partial symbol */
2823
2824 memcpy (buf, name, namelength);
2825 buf[namelength] = '\0';
3a16a68c
AC
2826 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2827 objfile->psymbol_cache);
c906108c
SS
2828
2829 buf = alloca (dem_namelength + 1);
2830 memcpy (buf, dem_name, dem_namelength);
2831 buf[dem_namelength] = '\0';
c5aa993b 2832
c906108c
SS
2833 switch (language)
2834 {
c5aa993b
JM
2835 case language_c:
2836 case language_cplus:
2837 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2838 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2839 break;
c906108c
SS
2840 /* FIXME What should be done for the default case? Ignoring for now. */
2841 }
2842
2843 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2844 if (val != 0)
2845 {
2846 SYMBOL_VALUE (&psymbol) = val;
2847 }
2848 else
2849 {
2850 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2851 }
2852 SYMBOL_SECTION (&psymbol) = 0;
2853 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2854 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2855 PSYMBOL_CLASS (&psymbol) = class;
2856 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2857
2858 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2859 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2860 objfile->psymbol_cache);
c906108c
SS
2861
2862 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2863 if (list->next >= list->list + list->size)
2864 {
2865 extend_psymbol_list (list, objfile);
2866 }
2867 *list->next++ = psym;
2868 OBJSTAT (objfile, n_psyms++);
2869}
2870
2871/* Initialize storage for partial symbols. */
2872
2873void
fba45db2 2874init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2875{
2876 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2877
2878 if (objfile->global_psymbols.list)
c906108c 2879 {
2dc74dc1 2880 xfree (objfile->global_psymbols.list);
c906108c 2881 }
c5aa993b 2882 if (objfile->static_psymbols.list)
c906108c 2883 {
2dc74dc1 2884 xfree (objfile->static_psymbols.list);
c906108c 2885 }
c5aa993b 2886
c906108c
SS
2887 /* Current best guess is that approximately a twentieth
2888 of the total symbols (in a debugging file) are global or static
2889 oriented symbols */
c906108c 2890
c5aa993b
JM
2891 objfile->global_psymbols.size = total_symbols / 10;
2892 objfile->static_psymbols.size = total_symbols / 10;
2893
2894 if (objfile->global_psymbols.size > 0)
c906108c 2895 {
c5aa993b
JM
2896 objfile->global_psymbols.next =
2897 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2898 xmalloc ((objfile->global_psymbols.size
2899 * sizeof (struct partial_symbol *)));
c906108c 2900 }
c5aa993b 2901 if (objfile->static_psymbols.size > 0)
c906108c 2902 {
c5aa993b
JM
2903 objfile->static_psymbols.next =
2904 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2905 xmalloc ((objfile->static_psymbols.size
2906 * sizeof (struct partial_symbol *)));
c906108c
SS
2907 }
2908}
2909
2910/* OVERLAYS:
2911 The following code implements an abstraction for debugging overlay sections.
2912
2913 The target model is as follows:
2914 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2915 same VMA, each with its own unique LMA (or load address).
c906108c 2916 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2917 sections, one by one, from the load address into the VMA address.
5417f6dc 2918 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2919 sections should be considered to be mapped from the VMA to the LMA.
2920 This information is used for symbol lookup, and memory read/write.
5417f6dc 2921 For instance, if a section has been mapped then its contents
c5aa993b 2922 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2923
2924 Two levels of debugger support for overlays are available. One is
2925 "manual", in which the debugger relies on the user to tell it which
2926 overlays are currently mapped. This level of support is
2927 implemented entirely in the core debugger, and the information about
2928 whether a section is mapped is kept in the objfile->obj_section table.
2929
2930 The second level of support is "automatic", and is only available if
2931 the target-specific code provides functionality to read the target's
2932 overlay mapping table, and translate its contents for the debugger
2933 (by updating the mapped state information in the obj_section tables).
2934
2935 The interface is as follows:
c5aa993b
JM
2936 User commands:
2937 overlay map <name> -- tell gdb to consider this section mapped
2938 overlay unmap <name> -- tell gdb to consider this section unmapped
2939 overlay list -- list the sections that GDB thinks are mapped
2940 overlay read-target -- get the target's state of what's mapped
2941 overlay off/manual/auto -- set overlay debugging state
2942 Functional interface:
2943 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2944 section, return that section.
5417f6dc 2945 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2946 the pc, either in its VMA or its LMA
2947 overlay_is_mapped(sect): true if overlay is marked as mapped
2948 section_is_overlay(sect): true if section's VMA != LMA
2949 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2950 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2951 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2952 overlay_mapped_address(...): map an address from section's LMA to VMA
2953 overlay_unmapped_address(...): map an address from section's VMA to LMA
2954 symbol_overlayed_address(...): Return a "current" address for symbol:
2955 either in VMA or LMA depending on whether
2956 the symbol's section is currently mapped
c906108c
SS
2957 */
2958
2959/* Overlay debugging state: */
2960
d874f1e2 2961enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2962int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2963
2964/* Target vector for refreshing overlay mapped state */
a14ed312 2965static void simple_overlay_update (struct obj_section *);
507f3c78 2966void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2967
2968/* Function: section_is_overlay (SECTION)
5417f6dc 2969 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2970 SECTION is loaded at an address different from where it will "run". */
2971
2972int
fba45db2 2973section_is_overlay (asection *section)
c906108c 2974{
fbd35540
MS
2975 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2976
c906108c
SS
2977 if (overlay_debugging)
2978 if (section && section->lma != 0 &&
2979 section->vma != section->lma)
2980 return 1;
2981
2982 return 0;
2983}
2984
2985/* Function: overlay_invalidate_all (void)
2986 Invalidate the mapped state of all overlay sections (mark it as stale). */
2987
2988static void
fba45db2 2989overlay_invalidate_all (void)
c906108c 2990{
c5aa993b 2991 struct objfile *objfile;
c906108c
SS
2992 struct obj_section *sect;
2993
2994 ALL_OBJSECTIONS (objfile, sect)
2995 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2996 sect->ovly_mapped = -1;
c906108c
SS
2997}
2998
2999/* Function: overlay_is_mapped (SECTION)
5417f6dc 3000 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3001 Private: public access is thru function section_is_mapped.
3002
3003 Access to the ovly_mapped flag is restricted to this function, so
3004 that we can do automatic update. If the global flag
3005 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3006 overlay_invalidate_all. If the mapped state of the particular
3007 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3008
c5aa993b 3009static int
fba45db2 3010overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3011{
3012 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3013 return 0;
3014
c5aa993b 3015 switch (overlay_debugging)
c906108c
SS
3016 {
3017 default:
d874f1e2 3018 case ovly_off:
c5aa993b 3019 return 0; /* overlay debugging off */
d874f1e2 3020 case ovly_auto: /* overlay debugging automatic */
5417f6dc 3021 /* Unles there is a target_overlay_update function,
c5aa993b 3022 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
3023 if (target_overlay_update)
3024 {
3025 if (overlay_cache_invalid)
3026 {
3027 overlay_invalidate_all ();
3028 overlay_cache_invalid = 0;
3029 }
3030 if (osect->ovly_mapped == -1)
3031 (*target_overlay_update) (osect);
3032 }
3033 /* fall thru to manual case */
d874f1e2 3034 case ovly_on: /* overlay debugging manual */
c906108c
SS
3035 return osect->ovly_mapped == 1;
3036 }
3037}
3038
3039/* Function: section_is_mapped
3040 Returns true if section is an overlay, and is currently mapped. */
3041
3042int
fba45db2 3043section_is_mapped (asection *section)
c906108c 3044{
c5aa993b 3045 struct objfile *objfile;
c906108c
SS
3046 struct obj_section *osect;
3047
3048 if (overlay_debugging)
3049 if (section && section_is_overlay (section))
3050 ALL_OBJSECTIONS (objfile, osect)
3051 if (osect->the_bfd_section == section)
c5aa993b 3052 return overlay_is_mapped (osect);
c906108c
SS
3053
3054 return 0;
3055}
3056
3057/* Function: pc_in_unmapped_range
3058 If PC falls into the lma range of SECTION, return true, else false. */
3059
3060CORE_ADDR
fba45db2 3061pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3062{
fbd35540
MS
3063 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3064
c906108c
SS
3065 int size;
3066
3067 if (overlay_debugging)
3068 if (section && section_is_overlay (section))
3069 {
2c500098 3070 size = bfd_get_section_size (section);
c906108c
SS
3071 if (section->lma <= pc && pc < section->lma + size)
3072 return 1;
3073 }
3074 return 0;
3075}
3076
3077/* Function: pc_in_mapped_range
3078 If PC falls into the vma range of SECTION, return true, else false. */
3079
3080CORE_ADDR
fba45db2 3081pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3082{
fbd35540
MS
3083 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3084
c906108c
SS
3085 int size;
3086
3087 if (overlay_debugging)
3088 if (section && section_is_overlay (section))
3089 {
2c500098 3090 size = bfd_get_section_size (section);
c906108c
SS
3091 if (section->vma <= pc && pc < section->vma + size)
3092 return 1;
3093 }
3094 return 0;
3095}
3096
9ec8e6a0
JB
3097
3098/* Return true if the mapped ranges of sections A and B overlap, false
3099 otherwise. */
b9362cc7 3100static int
9ec8e6a0
JB
3101sections_overlap (asection *a, asection *b)
3102{
fbd35540
MS
3103 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3104
9ec8e6a0 3105 CORE_ADDR a_start = a->vma;
2c500098 3106 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3107 CORE_ADDR b_start = b->vma;
2c500098 3108 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3109
3110 return (a_start < b_end && b_start < a_end);
3111}
3112
c906108c
SS
3113/* Function: overlay_unmapped_address (PC, SECTION)
3114 Returns the address corresponding to PC in the unmapped (load) range.
3115 May be the same as PC. */
3116
3117CORE_ADDR
fba45db2 3118overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3119{
fbd35540
MS
3120 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3121
c906108c
SS
3122 if (overlay_debugging)
3123 if (section && section_is_overlay (section) &&
3124 pc_in_mapped_range (pc, section))
3125 return pc + section->lma - section->vma;
3126
3127 return pc;
3128}
3129
3130/* Function: overlay_mapped_address (PC, SECTION)
3131 Returns the address corresponding to PC in the mapped (runtime) range.
3132 May be the same as PC. */
3133
3134CORE_ADDR
fba45db2 3135overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3136{
fbd35540
MS
3137 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3138
c906108c
SS
3139 if (overlay_debugging)
3140 if (section && section_is_overlay (section) &&
3141 pc_in_unmapped_range (pc, section))
3142 return pc + section->vma - section->lma;
3143
3144 return pc;
3145}
3146
3147
5417f6dc 3148/* Function: symbol_overlayed_address
c906108c
SS
3149 Return one of two addresses (relative to the VMA or to the LMA),
3150 depending on whether the section is mapped or not. */
3151
c5aa993b 3152CORE_ADDR
fba45db2 3153symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3154{
3155 if (overlay_debugging)
3156 {
3157 /* If the symbol has no section, just return its regular address. */
3158 if (section == 0)
3159 return address;
3160 /* If the symbol's section is not an overlay, just return its address */
3161 if (!section_is_overlay (section))
3162 return address;
3163 /* If the symbol's section is mapped, just return its address */
3164 if (section_is_mapped (section))
3165 return address;
3166 /*
3167 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3168 * then return its LOADED address rather than its vma address!!
3169 */
3170 return overlay_unmapped_address (address, section);
3171 }
3172 return address;
3173}
3174
5417f6dc 3175/* Function: find_pc_overlay (PC)
c906108c
SS
3176 Return the best-match overlay section for PC:
3177 If PC matches a mapped overlay section's VMA, return that section.
3178 Else if PC matches an unmapped section's VMA, return that section.
3179 Else if PC matches an unmapped section's LMA, return that section. */
3180
3181asection *
fba45db2 3182find_pc_overlay (CORE_ADDR pc)
c906108c 3183{
c5aa993b 3184 struct objfile *objfile;
c906108c
SS
3185 struct obj_section *osect, *best_match = NULL;
3186
3187 if (overlay_debugging)
3188 ALL_OBJSECTIONS (objfile, osect)
3189 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3190 {
3191 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3192 {
3193 if (overlay_is_mapped (osect))
3194 return osect->the_bfd_section;
3195 else
3196 best_match = osect;
3197 }
3198 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3199 best_match = osect;
3200 }
c906108c
SS
3201 return best_match ? best_match->the_bfd_section : NULL;
3202}
3203
3204/* Function: find_pc_mapped_section (PC)
5417f6dc 3205 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3206 currently marked as MAPPED, return that section. Else return NULL. */
3207
3208asection *
fba45db2 3209find_pc_mapped_section (CORE_ADDR pc)
c906108c 3210{
c5aa993b 3211 struct objfile *objfile;
c906108c
SS
3212 struct obj_section *osect;
3213
3214 if (overlay_debugging)
3215 ALL_OBJSECTIONS (objfile, osect)
3216 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3217 overlay_is_mapped (osect))
c5aa993b 3218 return osect->the_bfd_section;
c906108c
SS
3219
3220 return NULL;
3221}
3222
3223/* Function: list_overlays_command
3224 Print a list of mapped sections and their PC ranges */
3225
3226void
fba45db2 3227list_overlays_command (char *args, int from_tty)
c906108c 3228{
c5aa993b
JM
3229 int nmapped = 0;
3230 struct objfile *objfile;
c906108c
SS
3231 struct obj_section *osect;
3232
3233 if (overlay_debugging)
3234 ALL_OBJSECTIONS (objfile, osect)
3235 if (overlay_is_mapped (osect))
c5aa993b
JM
3236 {
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3242 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3243 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3244 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3245
3246 printf_filtered ("Section %s, loaded at ", name);
66bf4b3a 3247 deprecated_print_address_numeric (lma, 1, gdb_stdout);
c5aa993b 3248 puts_filtered (" - ");
66bf4b3a 3249 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
c5aa993b 3250 printf_filtered (", mapped at ");
66bf4b3a 3251 deprecated_print_address_numeric (vma, 1, gdb_stdout);
c5aa993b 3252 puts_filtered (" - ");
66bf4b3a 3253 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
c5aa993b
JM
3254 puts_filtered ("\n");
3255
3256 nmapped++;
3257 }
c906108c 3258 if (nmapped == 0)
a3f17187 3259 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3260}
3261
3262/* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265void
fba45db2 3266map_overlay_command (char *args, int from_tty)
c906108c 3267{
c5aa993b
JM
3268 struct objfile *objfile, *objfile2;
3269 struct obj_section *sec, *sec2;
3270 asection *bfdsec;
c906108c
SS
3271
3272 if (!overlay_debugging)
8a3fe4f8 3273 error (_("\
515ad16c 3274Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3275the 'overlay manual' command."));
c906108c
SS
3276
3277 if (args == 0 || *args == 0)
8a3fe4f8 3278 error (_("Argument required: name of an overlay section"));
c906108c
SS
3279
3280 /* First, find a section matching the user supplied argument */
3281 ALL_OBJSECTIONS (objfile, sec)
3282 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3283 {
3284 /* Now, check to see if the section is an overlay. */
3285 bfdsec = sec->the_bfd_section;
3286 if (!section_is_overlay (bfdsec))
3287 continue; /* not an overlay section */
3288
3289 /* Mark the overlay as "mapped" */
3290 sec->ovly_mapped = 1;
3291
3292 /* Next, make a pass and unmap any sections that are
3293 overlapped by this new section: */
3294 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3295 if (sec2->ovly_mapped
3296 && sec != sec2
3297 && sec->the_bfd_section != sec2->the_bfd_section
3298 && sections_overlap (sec->the_bfd_section,
3299 sec2->the_bfd_section))
c5aa993b
JM
3300 {
3301 if (info_verbose)
a3f17187 3302 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3303 bfd_section_name (objfile->obfd,
3304 sec2->the_bfd_section));
3305 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3306 }
3307 return;
3308 }
8a3fe4f8 3309 error (_("No overlay section called %s"), args);
c906108c
SS
3310}
3311
3312/* Function: unmap_overlay_command
5417f6dc 3313 Mark the overlay section as unmapped
c906108c
SS
3314 (ie. resident in its LMA address range, rather than the VMA range). */
3315
3316void
fba45db2 3317unmap_overlay_command (char *args, int from_tty)
c906108c 3318{
c5aa993b 3319 struct objfile *objfile;
c906108c
SS
3320 struct obj_section *sec;
3321
3322 if (!overlay_debugging)
8a3fe4f8 3323 error (_("\
515ad16c 3324Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3325the 'overlay manual' command."));
c906108c
SS
3326
3327 if (args == 0 || *args == 0)
8a3fe4f8 3328 error (_("Argument required: name of an overlay section"));
c906108c
SS
3329
3330 /* First, find a section matching the user supplied argument */
3331 ALL_OBJSECTIONS (objfile, sec)
3332 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3333 {
3334 if (!sec->ovly_mapped)
8a3fe4f8 3335 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3336 sec->ovly_mapped = 0;
3337 return;
3338 }
8a3fe4f8 3339 error (_("No overlay section called %s"), args);
c906108c
SS
3340}
3341
3342/* Function: overlay_auto_command
3343 A utility command to turn on overlay debugging.
3344 Possibly this should be done via a set/show command. */
3345
3346static void
fba45db2 3347overlay_auto_command (char *args, int from_tty)
c906108c 3348{
d874f1e2 3349 overlay_debugging = ovly_auto;
1900040c 3350 enable_overlay_breakpoints ();
c906108c 3351 if (info_verbose)
a3f17187 3352 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3353}
3354
3355/* Function: overlay_manual_command
3356 A utility command to turn on overlay debugging.
3357 Possibly this should be done via a set/show command. */
3358
3359static void
fba45db2 3360overlay_manual_command (char *args, int from_tty)
c906108c 3361{
d874f1e2 3362 overlay_debugging = ovly_on;
1900040c 3363 disable_overlay_breakpoints ();
c906108c 3364 if (info_verbose)
a3f17187 3365 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3366}
3367
3368/* Function: overlay_off_command
3369 A utility command to turn on overlay debugging.
3370 Possibly this should be done via a set/show command. */
3371
3372static void
fba45db2 3373overlay_off_command (char *args, int from_tty)
c906108c 3374{
d874f1e2 3375 overlay_debugging = ovly_off;
1900040c 3376 disable_overlay_breakpoints ();
c906108c 3377 if (info_verbose)
a3f17187 3378 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3379}
3380
3381static void
fba45db2 3382overlay_load_command (char *args, int from_tty)
c906108c
SS
3383{
3384 if (target_overlay_update)
3385 (*target_overlay_update) (NULL);
3386 else
8a3fe4f8 3387 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3388}
3389
3390/* Function: overlay_command
3391 A place-holder for a mis-typed command */
3392
3393/* Command list chain containing all defined "overlay" subcommands. */
3394struct cmd_list_element *overlaylist;
3395
3396static void
fba45db2 3397overlay_command (char *args, int from_tty)
c906108c 3398{
c5aa993b 3399 printf_unfiltered
c906108c
SS
3400 ("\"overlay\" must be followed by the name of an overlay command.\n");
3401 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3402}
3403
3404
3405/* Target Overlays for the "Simplest" overlay manager:
3406
5417f6dc
RM
3407 This is GDB's default target overlay layer. It works with the
3408 minimal overlay manager supplied as an example by Cygnus. The
3409 entry point is via a function pointer "target_overlay_update",
3410 so targets that use a different runtime overlay manager can
c906108c
SS
3411 substitute their own overlay_update function and take over the
3412 function pointer.
3413
3414 The overlay_update function pokes around in the target's data structures
3415 to see what overlays are mapped, and updates GDB's overlay mapping with
3416 this information.
3417
3418 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3419 unsigned _novlys; /# number of overlay sections #/
3420 unsigned _ovly_table[_novlys][4] = {
3421 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3422 {..., ..., ..., ...},
3423 }
3424 unsigned _novly_regions; /# number of overlay regions #/
3425 unsigned _ovly_region_table[_novly_regions][3] = {
3426 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3427 {..., ..., ...},
3428 }
c906108c
SS
3429 These functions will attempt to update GDB's mappedness state in the
3430 symbol section table, based on the target's mappedness state.
3431
3432 To do this, we keep a cached copy of the target's _ovly_table, and
3433 attempt to detect when the cached copy is invalidated. The main
3434 entry point is "simple_overlay_update(SECT), which looks up SECT in
3435 the cached table and re-reads only the entry for that section from
3436 the target (whenever possible).
3437 */
3438
3439/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3440static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3441#if 0
c5aa993b 3442static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3443#endif
c5aa993b 3444static unsigned cache_novlys = 0;
c906108c 3445#if 0
c5aa993b 3446static unsigned cache_novly_regions = 0;
c906108c
SS
3447#endif
3448static CORE_ADDR cache_ovly_table_base = 0;
3449#if 0
3450static CORE_ADDR cache_ovly_region_table_base = 0;
3451#endif
c5aa993b
JM
3452enum ovly_index
3453 {
3454 VMA, SIZE, LMA, MAPPED
3455 };
c906108c
SS
3456#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3457
3458/* Throw away the cached copy of _ovly_table */
3459static void
fba45db2 3460simple_free_overlay_table (void)
c906108c
SS
3461{
3462 if (cache_ovly_table)
b8c9b27d 3463 xfree (cache_ovly_table);
c5aa993b 3464 cache_novlys = 0;
c906108c
SS
3465 cache_ovly_table = NULL;
3466 cache_ovly_table_base = 0;
3467}
3468
3469#if 0
3470/* Throw away the cached copy of _ovly_region_table */
3471static void
fba45db2 3472simple_free_overlay_region_table (void)
c906108c
SS
3473{
3474 if (cache_ovly_region_table)
b8c9b27d 3475 xfree (cache_ovly_region_table);
c5aa993b 3476 cache_novly_regions = 0;
c906108c
SS
3477 cache_ovly_region_table = NULL;
3478 cache_ovly_region_table_base = 0;
3479}
3480#endif
3481
3482/* Read an array of ints from the target into a local buffer.
3483 Convert to host order. int LEN is number of ints */
3484static void
fba45db2 3485read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3486{
34c0bd93 3487 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3488 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3489 int i;
c906108c
SS
3490
3491 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3492 for (i = 0; i < len; i++)
c5aa993b 3493 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3494 TARGET_LONG_BYTES);
3495}
3496
3497/* Find and grab a copy of the target _ovly_table
3498 (and _novlys, which is needed for the table's size) */
c5aa993b 3499static int
fba45db2 3500simple_read_overlay_table (void)
c906108c 3501{
0d43edd1 3502 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3503
3504 simple_free_overlay_table ();
9b27852e 3505 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3506 if (! novlys_msym)
c906108c 3507 {
8a3fe4f8 3508 error (_("Error reading inferior's overlay table: "
0d43edd1 3509 "couldn't find `_novlys' variable\n"
8a3fe4f8 3510 "in inferior. Use `overlay manual' mode."));
0d43edd1 3511 return 0;
c906108c 3512 }
0d43edd1 3513
9b27852e 3514 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3515 if (! ovly_table_msym)
3516 {
8a3fe4f8 3517 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3518 "`_ovly_table' array\n"
8a3fe4f8 3519 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3520 return 0;
3521 }
3522
3523 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3524 cache_ovly_table
3525 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3526 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3527 read_target_long_array (cache_ovly_table_base,
777ea8f1 3528 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3529 cache_novlys * 4);
3530
c5aa993b 3531 return 1; /* SUCCESS */
c906108c
SS
3532}
3533
3534#if 0
3535/* Find and grab a copy of the target _ovly_region_table
3536 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3537static int
fba45db2 3538simple_read_overlay_region_table (void)
c906108c
SS
3539{
3540 struct minimal_symbol *msym;
3541
3542 simple_free_overlay_region_table ();
9b27852e 3543 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3544 if (msym != NULL)
3545 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3546 else
3547 return 0; /* failure */
c906108c
SS
3548 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3549 if (cache_ovly_region_table != NULL)
3550 {
9b27852e 3551 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3552 if (msym != NULL)
3553 {
3554 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3555 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3556 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3557 cache_novly_regions * 3);
3558 }
c5aa993b
JM
3559 else
3560 return 0; /* failure */
c906108c 3561 }
c5aa993b
JM
3562 else
3563 return 0; /* failure */
3564 return 1; /* SUCCESS */
c906108c
SS
3565}
3566#endif
3567
5417f6dc 3568/* Function: simple_overlay_update_1
c906108c
SS
3569 A helper function for simple_overlay_update. Assuming a cached copy
3570 of _ovly_table exists, look through it to find an entry whose vma,
3571 lma and size match those of OSECT. Re-read the entry and make sure
3572 it still matches OSECT (else the table may no longer be valid).
3573 Set OSECT's mapped state to match the entry. Return: 1 for
3574 success, 0 for failure. */
3575
3576static int
fba45db2 3577simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3578{
3579 int i, size;
fbd35540
MS
3580 bfd *obfd = osect->objfile->obfd;
3581 asection *bsect = osect->the_bfd_section;
c906108c 3582
2c500098 3583 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3584 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3585 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3586 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3587 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3588 {
3589 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3590 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3591 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3592 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3593 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3594 {
3595 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3596 return 1;
3597 }
fbd35540 3598 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3599 return 0;
3600 }
3601 return 0;
3602}
3603
3604/* Function: simple_overlay_update
5417f6dc
RM
3605 If OSECT is NULL, then update all sections' mapped state
3606 (after re-reading the entire target _ovly_table).
3607 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3608 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3609 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3610 re-read the entire cache, and go ahead and update all sections. */
3611
3612static void
fba45db2 3613simple_overlay_update (struct obj_section *osect)
c906108c 3614{
c5aa993b 3615 struct objfile *objfile;
c906108c
SS
3616
3617 /* Were we given an osect to look up? NULL means do all of them. */
3618 if (osect)
3619 /* Have we got a cached copy of the target's overlay table? */
3620 if (cache_ovly_table != NULL)
3621 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3622 if (cache_ovly_table_base ==
9b27852e 3623 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3624 /* Then go ahead and try to look up this single section in the cache */
3625 if (simple_overlay_update_1 (osect))
3626 /* Found it! We're done. */
3627 return;
3628
3629 /* Cached table no good: need to read the entire table anew.
3630 Or else we want all the sections, in which case it's actually
3631 more efficient to read the whole table in one block anyway. */
3632
0d43edd1
JB
3633 if (! simple_read_overlay_table ())
3634 return;
3635
c906108c
SS
3636 /* Now may as well update all sections, even if only one was requested. */
3637 ALL_OBJSECTIONS (objfile, osect)
3638 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3639 {
3640 int i, size;
fbd35540
MS
3641 bfd *obfd = osect->objfile->obfd;
3642 asection *bsect = osect->the_bfd_section;
c5aa993b 3643
2c500098 3644 size = bfd_get_section_size (bsect);
c5aa993b 3645 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3646 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3647 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3648 /* && cache_ovly_table[i][SIZE] == size */ )
3649 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3650 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3651 break; /* finished with inner for loop: break out */
3652 }
3653 }
c906108c
SS
3654}
3655
086df311
DJ
3656/* Set the output sections and output offsets for section SECTP in
3657 ABFD. The relocation code in BFD will read these offsets, so we
3658 need to be sure they're initialized. We map each section to itself,
3659 with no offset; this means that SECTP->vma will be honored. */
3660
3661static void
3662symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3663{
3664 sectp->output_section = sectp;
3665 sectp->output_offset = 0;
3666}
3667
3668/* Relocate the contents of a debug section SECTP in ABFD. The
3669 contents are stored in BUF if it is non-NULL, or returned in a
3670 malloc'd buffer otherwise.
3671
3672 For some platforms and debug info formats, shared libraries contain
3673 relocations against the debug sections (particularly for DWARF-2;
3674 one affected platform is PowerPC GNU/Linux, although it depends on
3675 the version of the linker in use). Also, ELF object files naturally
3676 have unresolved relocations for their debug sections. We need to apply
3677 the relocations in order to get the locations of symbols correct. */
3678
3679bfd_byte *
3680symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3681{
3682 /* We're only interested in debugging sections with relocation
3683 information. */
3684 if ((sectp->flags & SEC_RELOC) == 0)
3685 return NULL;
3686 if ((sectp->flags & SEC_DEBUGGING) == 0)
3687 return NULL;
3688
3689 /* We will handle section offsets properly elsewhere, so relocate as if
3690 all sections begin at 0. */
3691 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3692
97606a13 3693 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3694}
c906108c
SS
3695
3696void
fba45db2 3697_initialize_symfile (void)
c906108c
SS
3698{
3699 struct cmd_list_element *c;
c5aa993b 3700
1a966eab
AC
3701 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3702Load symbol table from executable file FILE.\n\
c906108c 3703The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3704to execute."), &cmdlist);
5ba2abeb 3705 set_cmd_completer (c, filename_completer);
c906108c 3706
1a966eab
AC
3707 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3708Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3709Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3710ADDR is the starting address of the file's text.\n\
db162d44
EZ
3711The optional arguments are section-name section-address pairs and\n\
3712should be specified if the data and bss segments are not contiguous\n\
1a966eab 3713with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3714 &cmdlist);
5ba2abeb 3715 set_cmd_completer (c, filename_completer);
c906108c
SS
3716
3717 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
3718 add_shared_symbol_files_command, _("\
3719Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 3720 &cmdlist);
c906108c
SS
3721 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3722 &cmdlist);
3723
1a966eab
AC
3724 c = add_cmd ("load", class_files, load_command, _("\
3725Dynamically load FILE into the running program, and record its symbols\n\
3726for access from GDB."), &cmdlist);
5ba2abeb 3727 set_cmd_completer (c, filename_completer);
c906108c 3728
5bf193a2
AC
3729 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3730 &symbol_reloading, _("\
3731Set dynamic symbol table reloading multiple times in one run."), _("\
3732Show dynamic symbol table reloading multiple times in one run."), NULL,
3733 NULL,
920d2a44 3734 show_symbol_reloading,
5bf193a2 3735 &setlist, &showlist);
c906108c 3736
c5aa993b 3737 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3738 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3739 "overlay ", 0, &cmdlist);
3740
3741 add_com_alias ("ovly", "overlay", class_alias, 1);
3742 add_com_alias ("ov", "overlay", class_alias, 1);
3743
c5aa993b 3744 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3745 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3746
c5aa993b 3747 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3748 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3749
c5aa993b 3750 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3751 _("List mappings of overlay sections."), &overlaylist);
c906108c 3752
c5aa993b 3753 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3754 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3755 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3756 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3757 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3758 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3759 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3760 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3761
3762 /* Filename extension to source language lookup table: */
3763 init_filename_language_table ();
26c41df3
AC
3764 add_setshow_string_noescape_cmd ("extension-language", class_files,
3765 &ext_args, _("\
3766Set mapping between filename extension and source language."), _("\
3767Show mapping between filename extension and source language."), _("\
3768Usage: set extension-language .foo bar"),
3769 set_ext_lang_command,
920d2a44 3770 show_ext_args,
26c41df3 3771 &setlist, &showlist);
c906108c 3772
c5aa993b 3773 add_info ("extensions", info_ext_lang_command,
1bedd215 3774 _("All filename extensions associated with a source language."));
917317f4 3775
4d28ad1e
AC
3776 add_setshow_integer_cmd ("download-write-size", class_obscure,
3777 &download_write_size, _("\
3778Set the write size used when downloading a program."), _("\
3779Show the write size used when downloading a program."), _("\
3780Only used when downloading a program onto a remote\n\
3781target. Specify zero, or a negative value, to disable\n\
3782blocked writes. The actual size of each transfer is also\n\
3783limited by the size of the target packet and the memory\n\
3784cache."),
3785 NULL,
920d2a44 3786 show_download_write_size,
4d28ad1e 3787 &setlist, &showlist);
5b5d99cf
JB
3788
3789 debug_file_directory = xstrdup (DEBUGDIR);
525226b5
AC
3790 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3791 &debug_file_directory, _("\
3792Set the directory where separate debug symbols are searched for."), _("\
3793Show the directory where separate debug symbols are searched for."), _("\
3794Separate debug symbols are first searched for in the same\n\
3795directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3796and lastly at the path of the directory of the binary with\n\
3797the global debug-file directory prepended."),
3798 NULL,
920d2a44 3799 show_debug_file_directory,
525226b5 3800 &setlist, &showlist);
c906108c 3801}
This page took 0.867856 seconds and 4 git commands to generate.