PR 20569, segv in follow_exec
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
438e1e42 65#include "gdb_sys_time.h"
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
ecf45d2c 88static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 89 objfile_flags flags);
d7db6da9 90
a14ed312 91static void add_symbol_file_command (char *, int);
c906108c 92
00b5771c 93static const struct sym_fns *find_sym_fns (bfd *);
c906108c 94
a14ed312 95static void decrement_reading_symtab (void *);
c906108c 96
a14ed312 97static void overlay_invalidate_all (void);
c906108c 98
a14ed312 99static void overlay_auto_command (char *, int);
c906108c 100
a14ed312 101static void overlay_manual_command (char *, int);
c906108c 102
a14ed312 103static void overlay_off_command (char *, int);
c906108c 104
a14ed312 105static void overlay_load_command (char *, int);
c906108c 106
a14ed312 107static void overlay_command (char *, int);
c906108c 108
a14ed312 109static void simple_free_overlay_table (void);
c906108c 110
e17a4113
UW
111static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
112 enum bfd_endian);
c906108c 113
a14ed312 114static int simple_read_overlay_table (void);
c906108c 115
a14ed312 116static int simple_overlay_update_1 (struct obj_section *);
c906108c 117
a14ed312 118static void info_ext_lang_command (char *args, int from_tty);
392a587b 119
31d99776
DJ
120static void symfile_find_segment_sections (struct objfile *objfile);
121
a14ed312 122void _initialize_symfile (void);
c906108c
SS
123
124/* List of all available sym_fns. On gdb startup, each object file reader
125 calls add_symtab_fns() to register information on each format it is
c378eb4e 126 prepared to read. */
c906108c 127
c256e171
DE
128typedef struct
129{
130 /* BFD flavour that we handle. */
131 enum bfd_flavour sym_flavour;
132
133 /* The "vtable" of symbol functions. */
134 const struct sym_fns *sym_fns;
135} registered_sym_fns;
00b5771c 136
c256e171
DE
137DEF_VEC_O (registered_sym_fns);
138
139static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 140
770e7fc7
DE
141/* Values for "set print symbol-loading". */
142
143const char print_symbol_loading_off[] = "off";
144const char print_symbol_loading_brief[] = "brief";
145const char print_symbol_loading_full[] = "full";
146static const char *print_symbol_loading_enums[] =
147{
148 print_symbol_loading_off,
149 print_symbol_loading_brief,
150 print_symbol_loading_full,
151 NULL
152};
153static const char *print_symbol_loading = print_symbol_loading_full;
154
b7209cb4
FF
155/* If non-zero, shared library symbols will be added automatically
156 when the inferior is created, new libraries are loaded, or when
157 attaching to the inferior. This is almost always what users will
158 want to have happen; but for very large programs, the startup time
159 will be excessive, and so if this is a problem, the user can clear
160 this flag and then add the shared library symbols as needed. Note
161 that there is a potential for confusion, since if the shared
c906108c 162 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 163 report all the functions that are actually present. */
c906108c
SS
164
165int auto_solib_add = 1;
c906108c 166\f
c5aa993b 167
770e7fc7
DE
168/* Return non-zero if symbol-loading messages should be printed.
169 FROM_TTY is the standard from_tty argument to gdb commands.
170 If EXEC is non-zero the messages are for the executable.
171 Otherwise, messages are for shared libraries.
172 If FULL is non-zero then the caller is printing a detailed message.
173 E.g., the message includes the shared library name.
174 Otherwise, the caller is printing a brief "summary" message. */
175
176int
177print_symbol_loading_p (int from_tty, int exec, int full)
178{
179 if (!from_tty && !info_verbose)
180 return 0;
181
182 if (exec)
183 {
184 /* We don't check FULL for executables, there are few such
185 messages, therefore brief == full. */
186 return print_symbol_loading != print_symbol_loading_off;
187 }
188 if (full)
189 return print_symbol_loading == print_symbol_loading_full;
190 return print_symbol_loading == print_symbol_loading_brief;
191}
192
0d14a781 193/* True if we are reading a symbol table. */
c906108c
SS
194
195int currently_reading_symtab = 0;
196
197static void
fba45db2 198decrement_reading_symtab (void *dummy)
c906108c
SS
199{
200 currently_reading_symtab--;
2cb9c859 201 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
202}
203
ccefe4c4
TT
204/* Increment currently_reading_symtab and return a cleanup that can be
205 used to decrement it. */
3b7bacac 206
ccefe4c4
TT
207struct cleanup *
208increment_reading_symtab (void)
c906108c 209{
ccefe4c4 210 ++currently_reading_symtab;
2cb9c859 211 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 212 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
213}
214
5417f6dc
RM
215/* Remember the lowest-addressed loadable section we've seen.
216 This function is called via bfd_map_over_sections.
c906108c
SS
217
218 In case of equal vmas, the section with the largest size becomes the
219 lowest-addressed loadable section.
220
221 If the vmas and sizes are equal, the last section is considered the
222 lowest-addressed loadable section. */
223
224void
4efb68b1 225find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 226{
c5aa993b 227 asection **lowest = (asection **) obj;
c906108c 228
eb73e134 229 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
230 return;
231 if (!*lowest)
232 *lowest = sect; /* First loadable section */
233 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
234 *lowest = sect; /* A lower loadable section */
235 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
236 && (bfd_section_size (abfd, (*lowest))
237 <= bfd_section_size (abfd, sect)))
238 *lowest = sect;
239}
240
d76488d8
TT
241/* Create a new section_addr_info, with room for NUM_SECTIONS. The
242 new object's 'num_sections' field is set to 0; it must be updated
243 by the caller. */
a39a16c4
MM
244
245struct section_addr_info *
246alloc_section_addr_info (size_t num_sections)
247{
248 struct section_addr_info *sap;
249 size_t size;
250
251 size = (sizeof (struct section_addr_info)
252 + sizeof (struct other_sections) * (num_sections - 1));
253 sap = (struct section_addr_info *) xmalloc (size);
254 memset (sap, 0, size);
a39a16c4
MM
255
256 return sap;
257}
62557bbc
KB
258
259/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 260 an existing section table. */
62557bbc
KB
261
262extern struct section_addr_info *
0542c86d
PA
263build_section_addr_info_from_section_table (const struct target_section *start,
264 const struct target_section *end)
62557bbc
KB
265{
266 struct section_addr_info *sap;
0542c86d 267 const struct target_section *stp;
62557bbc
KB
268 int oidx;
269
a39a16c4 270 sap = alloc_section_addr_info (end - start);
62557bbc
KB
271
272 for (stp = start, oidx = 0; stp != end; stp++)
273 {
2b2848e2
DE
274 struct bfd_section *asect = stp->the_bfd_section;
275 bfd *abfd = asect->owner;
276
277 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 278 && oidx < end - start)
62557bbc
KB
279 {
280 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
281 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
282 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
283 oidx++;
284 }
285 }
286
d76488d8
TT
287 sap->num_sections = oidx;
288
62557bbc
KB
289 return sap;
290}
291
82ccf5a5 292/* Create a section_addr_info from section offsets in ABFD. */
089b4803 293
82ccf5a5
JK
294static struct section_addr_info *
295build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
296{
297 struct section_addr_info *sap;
298 int i;
299 struct bfd_section *sec;
300
82ccf5a5
JK
301 sap = alloc_section_addr_info (bfd_count_sections (abfd));
302 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
303 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 304 {
82ccf5a5
JK
305 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
306 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 307 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
308 i++;
309 }
d76488d8
TT
310
311 sap->num_sections = i;
312
089b4803
TG
313 return sap;
314}
315
82ccf5a5
JK
316/* Create a section_addr_info from section offsets in OBJFILE. */
317
318struct section_addr_info *
319build_section_addr_info_from_objfile (const struct objfile *objfile)
320{
321 struct section_addr_info *sap;
322 int i;
323
324 /* Before reread_symbols gets rewritten it is not safe to call:
325 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
326 */
327 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 328 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
329 {
330 int sectindex = sap->other[i].sectindex;
331
332 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
333 }
334 return sap;
335}
62557bbc 336
c378eb4e 337/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
338
339extern void
340free_section_addr_info (struct section_addr_info *sap)
341{
342 int idx;
343
a39a16c4 344 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 345 xfree (sap->other[idx].name);
b8c9b27d 346 xfree (sap);
62557bbc
KB
347}
348
e8289572 349/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 350
e8289572
JB
351static void
352init_objfile_sect_indices (struct objfile *objfile)
c906108c 353{
e8289572 354 asection *sect;
c906108c 355 int i;
5417f6dc 356
b8fbeb18 357 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 358 if (sect)
b8fbeb18
EZ
359 objfile->sect_index_text = sect->index;
360
361 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 362 if (sect)
b8fbeb18
EZ
363 objfile->sect_index_data = sect->index;
364
365 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 366 if (sect)
b8fbeb18
EZ
367 objfile->sect_index_bss = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_rodata = sect->index;
372
bbcd32ad
FF
373 /* This is where things get really weird... We MUST have valid
374 indices for the various sect_index_* members or gdb will abort.
375 So if for example, there is no ".text" section, we have to
31d99776
DJ
376 accomodate that. First, check for a file with the standard
377 one or two segments. */
378
379 symfile_find_segment_sections (objfile);
380
381 /* Except when explicitly adding symbol files at some address,
382 section_offsets contains nothing but zeros, so it doesn't matter
383 which slot in section_offsets the individual sect_index_* members
384 index into. So if they are all zero, it is safe to just point
385 all the currently uninitialized indices to the first slot. But
386 beware: if this is the main executable, it may be relocated
387 later, e.g. by the remote qOffsets packet, and then this will
388 be wrong! That's why we try segments first. */
bbcd32ad
FF
389
390 for (i = 0; i < objfile->num_sections; i++)
391 {
392 if (ANOFFSET (objfile->section_offsets, i) != 0)
393 {
394 break;
395 }
396 }
397 if (i == objfile->num_sections)
398 {
399 if (objfile->sect_index_text == -1)
400 objfile->sect_index_text = 0;
401 if (objfile->sect_index_data == -1)
402 objfile->sect_index_data = 0;
403 if (objfile->sect_index_bss == -1)
404 objfile->sect_index_bss = 0;
405 if (objfile->sect_index_rodata == -1)
406 objfile->sect_index_rodata = 0;
407 }
b8fbeb18 408}
c906108c 409
c1bd25fd
DJ
410/* The arguments to place_section. */
411
412struct place_section_arg
413{
414 struct section_offsets *offsets;
415 CORE_ADDR lowest;
416};
417
418/* Find a unique offset to use for loadable section SECT if
419 the user did not provide an offset. */
420
2c0b251b 421static void
c1bd25fd
DJ
422place_section (bfd *abfd, asection *sect, void *obj)
423{
19ba03f4 424 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
425 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
426 int done;
3bd72c6f 427 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 428
2711e456
DJ
429 /* We are only interested in allocated sections. */
430 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
431 return;
432
433 /* If the user specified an offset, honor it. */
65cf3563 434 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
435 return;
436
437 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
438 start_addr = (arg->lowest + align - 1) & -align;
439
c1bd25fd
DJ
440 do {
441 asection *cur_sec;
c1bd25fd 442
c1bd25fd
DJ
443 done = 1;
444
445 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
446 {
447 int indx = cur_sec->index;
c1bd25fd
DJ
448
449 /* We don't need to compare against ourself. */
450 if (cur_sec == sect)
451 continue;
452
2711e456
DJ
453 /* We can only conflict with allocated sections. */
454 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
455 continue;
456
457 /* If the section offset is 0, either the section has not been placed
458 yet, or it was the lowest section placed (in which case LOWEST
459 will be past its end). */
460 if (offsets[indx] == 0)
461 continue;
462
463 /* If this section would overlap us, then we must move up. */
464 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
465 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
466 {
467 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
468 start_addr = (start_addr + align - 1) & -align;
469 done = 0;
3bd72c6f 470 break;
c1bd25fd
DJ
471 }
472
473 /* Otherwise, we appear to be OK. So far. */
474 }
475 }
476 while (!done);
477
65cf3563 478 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 479 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 480}
e8289572 481
75242ef4
JK
482/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
483 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
484 entries. */
e8289572
JB
485
486void
75242ef4
JK
487relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
488 int num_sections,
3189cb12 489 const struct section_addr_info *addrs)
e8289572
JB
490{
491 int i;
492
75242ef4 493 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 494
c378eb4e 495 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 496 for (i = 0; i < addrs->num_sections; i++)
e8289572 497 {
3189cb12 498 const struct other_sections *osp;
e8289572 499
75242ef4 500 osp = &addrs->other[i];
5488dafb 501 if (osp->sectindex == -1)
e8289572
JB
502 continue;
503
c378eb4e 504 /* Record all sections in offsets. */
e8289572 505 /* The section_offsets in the objfile are here filled in using
c378eb4e 506 the BFD index. */
75242ef4
JK
507 section_offsets->offsets[osp->sectindex] = osp->addr;
508 }
509}
510
1276c759
JK
511/* Transform section name S for a name comparison. prelink can split section
512 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
513 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
514 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
515 (`.sbss') section has invalid (increased) virtual address. */
516
517static const char *
518addr_section_name (const char *s)
519{
520 if (strcmp (s, ".dynbss") == 0)
521 return ".bss";
522 if (strcmp (s, ".sdynbss") == 0)
523 return ".sbss";
524
525 return s;
526}
527
82ccf5a5
JK
528/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
529 their (name, sectindex) pair. sectindex makes the sort by name stable. */
530
531static int
532addrs_section_compar (const void *ap, const void *bp)
533{
534 const struct other_sections *a = *((struct other_sections **) ap);
535 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 536 int retval;
82ccf5a5 537
1276c759 538 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
539 if (retval)
540 return retval;
541
5488dafb 542 return a->sectindex - b->sectindex;
82ccf5a5
JK
543}
544
545/* Provide sorted array of pointers to sections of ADDRS. The array is
546 terminated by NULL. Caller is responsible to call xfree for it. */
547
548static struct other_sections **
549addrs_section_sort (struct section_addr_info *addrs)
550{
551 struct other_sections **array;
552 int i;
553
554 /* `+ 1' for the NULL terminator. */
8d749320 555 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 556 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
557 array[i] = &addrs->other[i];
558 array[i] = NULL;
559
560 qsort (array, i, sizeof (*array), addrs_section_compar);
561
562 return array;
563}
564
75242ef4 565/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
566 also SECTINDEXes specific to ABFD there. This function can be used to
567 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
568
569void
570addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
571{
572 asection *lower_sect;
75242ef4
JK
573 CORE_ADDR lower_offset;
574 int i;
82ccf5a5
JK
575 struct cleanup *my_cleanup;
576 struct section_addr_info *abfd_addrs;
577 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
578 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
579
580 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
581 continguous sections. */
582 lower_sect = NULL;
583 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
584 if (lower_sect == NULL)
585 {
586 warning (_("no loadable sections found in added symbol-file %s"),
587 bfd_get_filename (abfd));
588 lower_offset = 0;
e8289572 589 }
75242ef4
JK
590 else
591 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
592
82ccf5a5
JK
593 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
594 in ABFD. Section names are not unique - there can be multiple sections of
595 the same name. Also the sections of the same name do not have to be
596 adjacent to each other. Some sections may be present only in one of the
597 files. Even sections present in both files do not have to be in the same
598 order.
599
600 Use stable sort by name for the sections in both files. Then linearly
601 scan both lists matching as most of the entries as possible. */
602
603 addrs_sorted = addrs_section_sort (addrs);
604 my_cleanup = make_cleanup (xfree, addrs_sorted);
605
606 abfd_addrs = build_section_addr_info_from_bfd (abfd);
607 make_cleanup_free_section_addr_info (abfd_addrs);
608 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
609 make_cleanup (xfree, abfd_addrs_sorted);
610
c378eb4e
MS
611 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
612 ABFD_ADDRS_SORTED. */
82ccf5a5 613
8d749320 614 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
615 make_cleanup (xfree, addrs_to_abfd_addrs);
616
617 while (*addrs_sorted)
618 {
1276c759 619 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
620
621 while (*abfd_addrs_sorted
1276c759
JK
622 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
623 sect_name) < 0)
82ccf5a5
JK
624 abfd_addrs_sorted++;
625
626 if (*abfd_addrs_sorted
1276c759
JK
627 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
628 sect_name) == 0)
82ccf5a5
JK
629 {
630 int index_in_addrs;
631
632 /* Make the found item directly addressable from ADDRS. */
633 index_in_addrs = *addrs_sorted - addrs->other;
634 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
635 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
636
637 /* Never use the same ABFD entry twice. */
638 abfd_addrs_sorted++;
639 }
640
641 addrs_sorted++;
642 }
643
75242ef4
JK
644 /* Calculate offsets for the loadable sections.
645 FIXME! Sections must be in order of increasing loadable section
646 so that contiguous sections can use the lower-offset!!!
647
648 Adjust offsets if the segments are not contiguous.
649 If the section is contiguous, its offset should be set to
650 the offset of the highest loadable section lower than it
651 (the loadable section directly below it in memory).
652 this_offset = lower_offset = lower_addr - lower_orig_addr */
653
d76488d8 654 for (i = 0; i < addrs->num_sections; i++)
75242ef4 655 {
82ccf5a5 656 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
657
658 if (sect)
75242ef4 659 {
c378eb4e 660 /* This is the index used by BFD. */
82ccf5a5 661 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
662
663 if (addrs->other[i].addr != 0)
75242ef4 664 {
82ccf5a5 665 addrs->other[i].addr -= sect->addr;
75242ef4 666 lower_offset = addrs->other[i].addr;
75242ef4
JK
667 }
668 else
672d9c23 669 addrs->other[i].addr = lower_offset;
75242ef4
JK
670 }
671 else
672d9c23 672 {
1276c759
JK
673 /* addr_section_name transformation is not used for SECT_NAME. */
674 const char *sect_name = addrs->other[i].name;
675
b0fcb67f
JK
676 /* This section does not exist in ABFD, which is normally
677 unexpected and we want to issue a warning.
678
4d9743af
JK
679 However, the ELF prelinker does create a few sections which are
680 marked in the main executable as loadable (they are loaded in
681 memory from the DYNAMIC segment) and yet are not present in
682 separate debug info files. This is fine, and should not cause
683 a warning. Shared libraries contain just the section
684 ".gnu.liblist" but it is not marked as loadable there. There is
685 no other way to identify them than by their name as the sections
1276c759
JK
686 created by prelink have no special flags.
687
688 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
689
690 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 691 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
692 || (strcmp (sect_name, ".bss") == 0
693 && i > 0
694 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
695 && addrs_to_abfd_addrs[i - 1] != NULL)
696 || (strcmp (sect_name, ".sbss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
700 warning (_("section %s not found in %s"), sect_name,
701 bfd_get_filename (abfd));
702
672d9c23 703 addrs->other[i].addr = 0;
5488dafb 704 addrs->other[i].sectindex = -1;
672d9c23 705 }
75242ef4 706 }
82ccf5a5
JK
707
708 do_cleanups (my_cleanup);
75242ef4
JK
709}
710
711/* Parse the user's idea of an offset for dynamic linking, into our idea
712 of how to represent it for fast symbol reading. This is the default
713 version of the sym_fns.sym_offsets function for symbol readers that
714 don't need to do anything special. It allocates a section_offsets table
715 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
716
717void
718default_symfile_offsets (struct objfile *objfile,
3189cb12 719 const struct section_addr_info *addrs)
75242ef4 720{
d445b2f6 721 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
722 objfile->section_offsets = (struct section_offsets *)
723 obstack_alloc (&objfile->objfile_obstack,
724 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
725 relative_addr_info_to_section_offsets (objfile->section_offsets,
726 objfile->num_sections, addrs);
e8289572 727
c1bd25fd
DJ
728 /* For relocatable files, all loadable sections will start at zero.
729 The zero is meaningless, so try to pick arbitrary addresses such
730 that no loadable sections overlap. This algorithm is quadratic,
731 but the number of sections in a single object file is generally
732 small. */
733 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
734 {
735 struct place_section_arg arg;
2711e456
DJ
736 bfd *abfd = objfile->obfd;
737 asection *cur_sec;
2711e456
DJ
738
739 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
740 /* We do not expect this to happen; just skip this step if the
741 relocatable file has a section with an assigned VMA. */
742 if (bfd_section_vma (abfd, cur_sec) != 0)
743 break;
744
745 if (cur_sec == NULL)
746 {
747 CORE_ADDR *offsets = objfile->section_offsets->offsets;
748
749 /* Pick non-overlapping offsets for sections the user did not
750 place explicitly. */
751 arg.offsets = objfile->section_offsets;
752 arg.lowest = 0;
753 bfd_map_over_sections (objfile->obfd, place_section, &arg);
754
755 /* Correctly filling in the section offsets is not quite
756 enough. Relocatable files have two properties that
757 (most) shared objects do not:
758
759 - Their debug information will contain relocations. Some
760 shared libraries do also, but many do not, so this can not
761 be assumed.
762
763 - If there are multiple code sections they will be loaded
764 at different relative addresses in memory than they are
765 in the objfile, since all sections in the file will start
766 at address zero.
767
768 Because GDB has very limited ability to map from an
769 address in debug info to the correct code section,
770 it relies on adding SECT_OFF_TEXT to things which might be
771 code. If we clear all the section offsets, and set the
772 section VMAs instead, then symfile_relocate_debug_section
773 will return meaningful debug information pointing at the
774 correct sections.
775
776 GDB has too many different data structures for section
777 addresses - a bfd, objfile, and so_list all have section
778 tables, as does exec_ops. Some of these could probably
779 be eliminated. */
780
781 for (cur_sec = abfd->sections; cur_sec != NULL;
782 cur_sec = cur_sec->next)
783 {
784 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
785 continue;
786
787 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
788 exec_set_section_address (bfd_get_filename (abfd),
789 cur_sec->index,
30510692 790 offsets[cur_sec->index]);
2711e456
DJ
791 offsets[cur_sec->index] = 0;
792 }
793 }
c1bd25fd
DJ
794 }
795
e8289572 796 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 797 .rodata sections. */
e8289572
JB
798 init_objfile_sect_indices (objfile);
799}
800
31d99776
DJ
801/* Divide the file into segments, which are individual relocatable units.
802 This is the default version of the sym_fns.sym_segments function for
803 symbol readers that do not have an explicit representation of segments.
804 It assumes that object files do not have segments, and fully linked
805 files have a single segment. */
806
807struct symfile_segment_data *
808default_symfile_segments (bfd *abfd)
809{
810 int num_sections, i;
811 asection *sect;
812 struct symfile_segment_data *data;
813 CORE_ADDR low, high;
814
815 /* Relocatable files contain enough information to position each
816 loadable section independently; they should not be relocated
817 in segments. */
818 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
819 return NULL;
820
821 /* Make sure there is at least one loadable section in the file. */
822 for (sect = abfd->sections; sect != NULL; sect = sect->next)
823 {
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 break;
828 }
829 if (sect == NULL)
830 return NULL;
831
832 low = bfd_get_section_vma (abfd, sect);
833 high = low + bfd_get_section_size (sect);
834
41bf6aca 835 data = XCNEW (struct symfile_segment_data);
31d99776 836 data->num_segments = 1;
fc270c35
TT
837 data->segment_bases = XCNEW (CORE_ADDR);
838 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
839
840 num_sections = bfd_count_sections (abfd);
fc270c35 841 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
842
843 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
844 {
845 CORE_ADDR vma;
846
847 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
848 continue;
849
850 vma = bfd_get_section_vma (abfd, sect);
851 if (vma < low)
852 low = vma;
853 if (vma + bfd_get_section_size (sect) > high)
854 high = vma + bfd_get_section_size (sect);
855
856 data->segment_info[i] = 1;
857 }
858
859 data->segment_bases[0] = low;
860 data->segment_sizes[0] = high - low;
861
862 return data;
863}
864
608e2dbb
TT
865/* This is a convenience function to call sym_read for OBJFILE and
866 possibly force the partial symbols to be read. */
867
868static void
b15cc25c 869read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
870{
871 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 872 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
873
874 /* find_separate_debug_file_in_section should be called only if there is
875 single binary with no existing separate debug info file. */
876 if (!objfile_has_partial_symbols (objfile)
877 && objfile->separate_debug_objfile == NULL
878 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
879 {
880 bfd *abfd = find_separate_debug_file_in_section (objfile);
881 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
882
883 if (abfd != NULL)
24ba069a
JK
884 {
885 /* find_separate_debug_file_in_section uses the same filename for the
886 virtual section-as-bfd like the bfd filename containing the
887 section. Therefore use also non-canonical name form for the same
888 file containing the section. */
889 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
890 objfile);
891 }
608e2dbb
TT
892
893 do_cleanups (cleanup);
894 }
895 if ((add_flags & SYMFILE_NO_READ) == 0)
896 require_partial_symbols (objfile, 0);
897}
898
3d6e24f0
JB
899/* Initialize entry point information for this objfile. */
900
901static void
902init_entry_point_info (struct objfile *objfile)
903{
6ef55de7
TT
904 struct entry_info *ei = &objfile->per_bfd->ei;
905
906 if (ei->initialized)
907 return;
908 ei->initialized = 1;
909
3d6e24f0
JB
910 /* Save startup file's range of PC addresses to help blockframe.c
911 decide where the bottom of the stack is. */
912
913 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
914 {
915 /* Executable file -- record its entry point so we'll recognize
916 the startup file because it contains the entry point. */
6ef55de7
TT
917 ei->entry_point = bfd_get_start_address (objfile->obfd);
918 ei->entry_point_p = 1;
3d6e24f0
JB
919 }
920 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
921 && bfd_get_start_address (objfile->obfd) != 0)
922 {
923 /* Some shared libraries may have entry points set and be
924 runnable. There's no clear way to indicate this, so just check
925 for values other than zero. */
6ef55de7
TT
926 ei->entry_point = bfd_get_start_address (objfile->obfd);
927 ei->entry_point_p = 1;
3d6e24f0
JB
928 }
929 else
930 {
931 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 932 ei->entry_point_p = 0;
3d6e24f0
JB
933 }
934
6ef55de7 935 if (ei->entry_point_p)
3d6e24f0 936 {
53eddfa6 937 struct obj_section *osect;
6ef55de7 938 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 939 int found;
3d6e24f0
JB
940
941 /* Make certain that the address points at real code, and not a
942 function descriptor. */
943 entry_point
df6d5441 944 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
945 entry_point,
946 &current_target);
947
948 /* Remove any ISA markers, so that this matches entries in the
949 symbol table. */
6ef55de7 950 ei->entry_point
df6d5441 951 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
952
953 found = 0;
954 ALL_OBJFILE_OSECTIONS (objfile, osect)
955 {
956 struct bfd_section *sect = osect->the_bfd_section;
957
958 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
959 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
960 + bfd_get_section_size (sect)))
961 {
6ef55de7 962 ei->the_bfd_section_index
53eddfa6
TT
963 = gdb_bfd_section_index (objfile->obfd, sect);
964 found = 1;
965 break;
966 }
967 }
968
969 if (!found)
6ef55de7 970 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
971 }
972}
973
c906108c
SS
974/* Process a symbol file, as either the main file or as a dynamically
975 loaded file.
976
36e4d068
JB
977 This function does not set the OBJFILE's entry-point info.
978
96baa820
JM
979 OBJFILE is where the symbols are to be read from.
980
7e8580c1
JB
981 ADDRS is the list of section load addresses. If the user has given
982 an 'add-symbol-file' command, then this is the list of offsets and
983 addresses he or she provided as arguments to the command; or, if
984 we're handling a shared library, these are the actual addresses the
985 sections are loaded at, according to the inferior's dynamic linker
986 (as gleaned by GDB's shared library code). We convert each address
987 into an offset from the section VMA's as it appears in the object
988 file, and then call the file's sym_offsets function to convert this
989 into a format-specific offset table --- a `struct section_offsets'.
96baa820 990
7eedccfa
PP
991 ADD_FLAGS encodes verbosity level, whether this is main symbol or
992 an extra symbol file such as dynamically loaded code, and wether
993 breakpoint reset should be deferred. */
c906108c 994
36e4d068
JB
995static void
996syms_from_objfile_1 (struct objfile *objfile,
997 struct section_addr_info *addrs,
b15cc25c 998 symfile_add_flags add_flags)
c906108c 999{
a39a16c4 1000 struct section_addr_info *local_addr = NULL;
c906108c 1001 struct cleanup *old_chain;
7eedccfa 1002 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1003
8fb8eb5c 1004 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1005
75245b24 1006 if (objfile->sf == NULL)
36e4d068
JB
1007 {
1008 /* No symbols to load, but we still need to make sure
1009 that the section_offsets table is allocated. */
d445b2f6 1010 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1011 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1012
1013 objfile->num_sections = num_sections;
1014 objfile->section_offsets
224c3ddb
SM
1015 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1016 size);
36e4d068
JB
1017 memset (objfile->section_offsets, 0, size);
1018 return;
1019 }
75245b24 1020
c906108c
SS
1021 /* Make sure that partially constructed symbol tables will be cleaned up
1022 if an error occurs during symbol reading. */
74b7792f 1023 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1024
6bf667bb
DE
1025 /* If ADDRS is NULL, put together a dummy address list.
1026 We now establish the convention that an addr of zero means
c378eb4e 1027 no load address was specified. */
6bf667bb 1028 if (! addrs)
a39a16c4 1029 {
d445b2f6 1030 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1031 make_cleanup (xfree, local_addr);
1032 addrs = local_addr;
1033 }
1034
c5aa993b 1035 if (mainline)
c906108c
SS
1036 {
1037 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1038 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1039 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1040
1041 /* Since no error yet, throw away the old symbol table. */
1042
1043 if (symfile_objfile != NULL)
1044 {
1045 free_objfile (symfile_objfile);
adb7f338 1046 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1047 }
1048
1049 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1050 If the user wants to get rid of them, they should do "symbol-file"
1051 without arguments first. Not sure this is the best behavior
1052 (PR 2207). */
c906108c 1053
c5aa993b 1054 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1055 }
1056
1057 /* Convert addr into an offset rather than an absolute address.
1058 We find the lowest address of a loaded segment in the objfile,
53a5351d 1059 and assume that <addr> is where that got loaded.
c906108c 1060
53a5351d
JM
1061 We no longer warn if the lowest section is not a text segment (as
1062 happens for the PA64 port. */
6bf667bb 1063 if (addrs->num_sections > 0)
75242ef4 1064 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1065
1066 /* Initialize symbol reading routines for this objfile, allow complaints to
1067 appear for this new file, and record how verbose to be, then do the
c378eb4e 1068 initial symbol reading for this file. */
c906108c 1069
c5aa993b 1070 (*objfile->sf->sym_init) (objfile);
7eedccfa 1071 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1072
6bf667bb 1073 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1074
608e2dbb 1075 read_symbols (objfile, add_flags);
b11896a5 1076
c906108c
SS
1077 /* Discard cleanups as symbol reading was successful. */
1078
1079 discard_cleanups (old_chain);
f7545552 1080 xfree (local_addr);
c906108c
SS
1081}
1082
36e4d068
JB
1083/* Same as syms_from_objfile_1, but also initializes the objfile
1084 entry-point info. */
1085
6bf667bb 1086static void
36e4d068
JB
1087syms_from_objfile (struct objfile *objfile,
1088 struct section_addr_info *addrs,
b15cc25c 1089 symfile_add_flags add_flags)
36e4d068 1090{
6bf667bb 1091 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1092 init_entry_point_info (objfile);
1093}
1094
c906108c
SS
1095/* Perform required actions after either reading in the initial
1096 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1097 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1098
e7d52ed3 1099static void
b15cc25c 1100finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1101{
c906108c 1102 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1103 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1104 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1105 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1106 {
1107 /* OK, make it the "real" symbol file. */
1108 symfile_objfile = objfile;
1109
c1e56572 1110 clear_symtab_users (add_flags);
c906108c 1111 }
7eedccfa 1112 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1113 {
69de3c6a 1114 breakpoint_re_set ();
c906108c
SS
1115 }
1116
1117 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1118 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1119}
1120
1121/* Process a symbol file, as either the main file or as a dynamically
1122 loaded file.
1123
5417f6dc 1124 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1125 A new reference is acquired by this function.
7904e09f 1126
24ba069a
JK
1127 For NAME description see allocate_objfile's definition.
1128
7eedccfa
PP
1129 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1130 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1131
6bf667bb 1132 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1133 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1134
63524580
JK
1135 PARENT is the original objfile if ABFD is a separate debug info file.
1136 Otherwise PARENT is NULL.
1137
c906108c 1138 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1139 Upon failure, jumps back to command level (never returns). */
7eedccfa 1140
7904e09f 1141static struct objfile *
b15cc25c
PA
1142symbol_file_add_with_addrs (bfd *abfd, const char *name,
1143 symfile_add_flags add_flags,
6bf667bb 1144 struct section_addr_info *addrs,
b15cc25c 1145 objfile_flags flags, struct objfile *parent)
c906108c
SS
1146{
1147 struct objfile *objfile;
7eedccfa 1148 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1149 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1150 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1151 && (readnow_symbol_files
1152 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1153
9291a0cd 1154 if (readnow_symbol_files)
b11896a5
TT
1155 {
1156 flags |= OBJF_READNOW;
1157 add_flags &= ~SYMFILE_NO_READ;
1158 }
9291a0cd 1159
5417f6dc
RM
1160 /* Give user a chance to burp if we'd be
1161 interactively wiping out any existing symbols. */
c906108c
SS
1162
1163 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1164 && mainline
c906108c 1165 && from_tty
9e2f0ad4 1166 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1167 error (_("Not confirmed."));
c906108c 1168
b15cc25c
PA
1169 if (mainline)
1170 flags |= OBJF_MAINLINE;
1171 objfile = allocate_objfile (abfd, name, flags);
c906108c 1172
63524580
JK
1173 if (parent)
1174 add_separate_debug_objfile (objfile, parent);
1175
78a4a9b9
AC
1176 /* We either created a new mapped symbol table, mapped an existing
1177 symbol table file which has not had initial symbol reading
c378eb4e 1178 performed, or need to read an unmapped symbol table. */
b11896a5 1179 if (should_print)
c906108c 1180 {
769d7dc4
AC
1181 if (deprecated_pre_add_symbol_hook)
1182 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1183 else
c906108c 1184 {
55333a84
DE
1185 printf_unfiltered (_("Reading symbols from %s..."), name);
1186 wrap_here ("");
1187 gdb_flush (gdb_stdout);
c906108c 1188 }
c906108c 1189 }
6bf667bb 1190 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1191
1192 /* We now have at least a partial symbol table. Check to see if the
1193 user requested that all symbols be read on initial access via either
1194 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1195 all partial symbol tables for this objfile if so. */
c906108c 1196
9291a0cd 1197 if ((flags & OBJF_READNOW))
c906108c 1198 {
b11896a5 1199 if (should_print)
c906108c 1200 {
a3f17187 1201 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1202 wrap_here ("");
1203 gdb_flush (gdb_stdout);
1204 }
1205
ccefe4c4
TT
1206 if (objfile->sf)
1207 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1208 }
1209
b11896a5 1210 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1211 {
1212 wrap_here ("");
55333a84 1213 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1214 wrap_here ("");
1215 }
1216
b11896a5 1217 if (should_print)
c906108c 1218 {
769d7dc4
AC
1219 if (deprecated_post_add_symbol_hook)
1220 deprecated_post_add_symbol_hook ();
c906108c 1221 else
55333a84 1222 printf_unfiltered (_("done.\n"));
c906108c
SS
1223 }
1224
481d0f41
JB
1225 /* We print some messages regardless of whether 'from_tty ||
1226 info_verbose' is true, so make sure they go out at the right
1227 time. */
1228 gdb_flush (gdb_stdout);
1229
109f874e 1230 if (objfile->sf == NULL)
8caee43b
PP
1231 {
1232 observer_notify_new_objfile (objfile);
c378eb4e 1233 return objfile; /* No symbols. */
8caee43b 1234 }
109f874e 1235
e7d52ed3 1236 finish_new_objfile (objfile, add_flags);
c906108c 1237
06d3b283 1238 observer_notify_new_objfile (objfile);
c906108c 1239
ce7d4522 1240 bfd_cache_close_all ();
c906108c
SS
1241 return (objfile);
1242}
1243
24ba069a
JK
1244/* Add BFD as a separate debug file for OBJFILE. For NAME description
1245 see allocate_objfile's definition. */
9cce227f
TG
1246
1247void
b15cc25c
PA
1248symbol_file_add_separate (bfd *bfd, const char *name,
1249 symfile_add_flags symfile_flags,
24ba069a 1250 struct objfile *objfile)
9cce227f 1251{
089b4803
TG
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1260
870f88f7 1261 symbol_file_add_with_addrs
24ba069a 1262 (bfd, name, symfile_flags, sap,
9cce227f 1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1264 | OBJF_USERLOADED),
1265 objfile);
089b4803
TG
1266
1267 do_cleanups (my_cleanup);
9cce227f 1268}
7904e09f 1269
eb4556d7
JB
1270/* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
6bf667bb 1272 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
eb4556d7 1274struct objfile *
b15cc25c
PA
1275symbol_file_add_from_bfd (bfd *abfd, const char *name,
1276 symfile_add_flags add_flags,
eb4556d7 1277 struct section_addr_info *addrs,
b15cc25c 1278 objfile_flags flags, struct objfile *parent)
eb4556d7 1279{
24ba069a
JK
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
eb4556d7
JB
1282}
1283
7904e09f 1284/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1286
7904e09f 1287struct objfile *
b15cc25c
PA
1288symbol_file_add (const char *name, symfile_add_flags add_flags,
1289 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1290{
8ac244b4
TT
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
24ba069a 1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1296 do_cleanups (cleanup);
1297 return objf;
7904e09f
JB
1298}
1299
d7db6da9
FN
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
5417f6dc 1307
1adeb98a 1308void
ecf45d2c 1309symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1310{
ecf45d2c 1311 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1312}
1313
1314static void
ecf45d2c
SL
1315symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1316 objfile_flags flags)
d7db6da9 1317{
ecf45d2c 1318 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1319
7eedccfa 1320 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1321
d7db6da9
FN
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
b15cc25c 1326 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1327 set_initial_language ();
1adeb98a
FN
1328}
1329
1330void
1331symbol_file_clear (int from_tty)
1332{
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
0430b0d6
AS
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1337 objfile_name (symfile_objfile))
0430b0d6 1338 : !query (_("Discard symbol table? "))))
8a3fe4f8 1339 error (_("Not confirmed."));
1adeb98a 1340
0133421a
JK
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1343 no_shared_libraries (NULL, from_tty);
1344
0133421a
JK
1345 free_all_objfiles ();
1346
adb7f338 1347 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1350}
1351
5b5d99cf 1352static int
287ccc17 1353separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1354 struct objfile *parent_objfile)
5b5d99cf 1355{
904578ed
JK
1356 unsigned long file_crc;
1357 int file_crc_p;
f1838a98 1358 bfd *abfd;
32a0e547 1359 struct stat parent_stat, abfd_stat;
904578ed 1360 int verified_as_different;
32a0e547
JK
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1366 the separate debug infos with the same basename can exist. */
32a0e547 1367
4262abfb 1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1369 return 0;
5b5d99cf 1370
2938e6cf 1371 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1372
1373 if (!abfd)
5b5d99cf
JB
1374 return 0;
1375
0ba1096a 1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1390 {
904578ed
JK
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
cbb099e8 1394 gdb_bfd_unref (abfd);
904578ed
JK
1395 return 0;
1396 }
1397 verified_as_different = 1;
32a0e547 1398 }
904578ed
JK
1399 else
1400 verified_as_different = 0;
32a0e547 1401
dccee2de 1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1403
cbb099e8 1404 gdb_bfd_unref (abfd);
5b5d99cf 1405
904578ed
JK
1406 if (!file_crc_p)
1407 return 0;
1408
287ccc17
JK
1409 if (crc != file_crc)
1410 {
dccee2de
TT
1411 unsigned long parent_crc;
1412
0a93529c
GB
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
904578ed 1416
dccee2de 1417 if (!verified_as_different)
904578ed 1418 {
dccee2de 1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1420 return 0;
1421 }
1422
dccee2de 1423 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1426 name, objfile_name (parent_objfile));
904578ed 1427
287ccc17
JK
1428 return 0;
1429 }
1430
1431 return 1;
5b5d99cf
JB
1432}
1433
aa28a74e 1434char *debug_file_directory = NULL;
920d2a44
AC
1435static void
1436show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438{
3e43a32a
MS
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1442 value);
1443}
5b5d99cf
JB
1444
1445#if ! defined (DEBUG_SUBDIRECTORY)
1446#define DEBUG_SUBDIRECTORY ".debug"
1447#endif
1448
1db33378
PP
1449/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1455
1456static char *
1457find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
9cce227f 1461{
1db33378
PP
1462 char *debugdir;
1463 char *debugfile;
9cce227f 1464 int i;
e4ab2fad
JK
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
5b5d99cf 1468
325fac50 1469 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1470 i = strlen (dir);
1db33378
PP
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1ffa32ee 1473
224c3ddb
SM
1474 debugfile
1475 = (char *) xmalloc (strlen (debug_file_directory) + 1
1476 + i
1477 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen ("/")
1479 + strlen (debuglink)
1480 + 1);
5b5d99cf
JB
1481
1482 /* First try in the same directory as the original file. */
1483 strcpy (debugfile, dir);
1db33378 1484 strcat (debugfile, debuglink);
5b5d99cf 1485
32a0e547 1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1487 return debugfile;
5417f6dc 1488
5b5d99cf
JB
1489 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, DEBUG_SUBDIRECTORY);
1492 strcat (debugfile, "/");
1db33378 1493 strcat (debugfile, debuglink);
5b5d99cf 1494
32a0e547 1495 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1496 return debugfile;
5417f6dc 1497
24ddea62 1498 /* Then try in the global debugfile directories.
f888f159 1499
24ddea62
JK
1500 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1501 cause "/..." lookups. */
5417f6dc 1502
e4ab2fad
JK
1503 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1504 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1505
e4ab2fad
JK
1506 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 {
1508 strcpy (debugfile, debugdir);
aa28a74e 1509 strcat (debugfile, "/");
24ddea62 1510 strcat (debugfile, dir);
1db33378 1511 strcat (debugfile, debuglink);
aa28a74e 1512
32a0e547 1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1514 {
1515 do_cleanups (back_to);
1516 return debugfile;
1517 }
24ddea62
JK
1518
1519 /* If the file is in the sysroot, try using its base path in the
1520 global debugfile directory. */
1db33378
PP
1521 if (canon_dir != NULL
1522 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1523 strlen (gdb_sysroot)) == 0
1db33378 1524 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1525 {
e4ab2fad 1526 strcpy (debugfile, debugdir);
1db33378 1527 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1528 strcat (debugfile, "/");
1db33378 1529 strcat (debugfile, debuglink);
24ddea62 1530
32a0e547 1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1532 {
1533 do_cleanups (back_to);
1534 return debugfile;
1535 }
24ddea62 1536 }
aa28a74e 1537 }
f888f159 1538
e4ab2fad 1539 do_cleanups (back_to);
25522fae 1540 xfree (debugfile);
1db33378
PP
1541 return NULL;
1542}
1543
7edbb660 1544/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1545 If there were no directory separators in PATH, PATH will be empty
1546 string on return. */
1547
1548static void
1549terminate_after_last_dir_separator (char *path)
1550{
1551 int i;
1552
1553 /* Strip off the final filename part, leaving the directory name,
1554 followed by a slash. The directory can be relative or absolute. */
1555 for (i = strlen(path) - 1; i >= 0; i--)
1556 if (IS_DIR_SEPARATOR (path[i]))
1557 break;
1558
1559 /* If I is -1 then no directory is present there and DIR will be "". */
1560 path[i + 1] = '\0';
1561}
1562
1563/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1564 Returns pathname, or NULL. */
1565
1566char *
1567find_separate_debug_file_by_debuglink (struct objfile *objfile)
1568{
1569 char *debuglink;
1570 char *dir, *canon_dir;
1571 char *debugfile;
1572 unsigned long crc32;
1573 struct cleanup *cleanups;
1574
cc0ea93c 1575 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1576
1577 if (debuglink == NULL)
1578 {
1579 /* There's no separate debug info, hence there's no way we could
1580 load it => no warning. */
1581 return NULL;
1582 }
1583
71bdabee 1584 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1585 dir = xstrdup (objfile_name (objfile));
71bdabee 1586 make_cleanup (xfree, dir);
1db33378
PP
1587 terminate_after_last_dir_separator (dir);
1588 canon_dir = lrealpath (dir);
1589
1590 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1591 crc32, objfile);
1592 xfree (canon_dir);
1593
1594 if (debugfile == NULL)
1595 {
1db33378
PP
1596 /* For PR gdb/9538, try again with realpath (if different from the
1597 original). */
1598
1599 struct stat st_buf;
1600
4262abfb
JK
1601 if (lstat (objfile_name (objfile), &st_buf) == 0
1602 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1603 {
1604 char *symlink_dir;
1605
4262abfb 1606 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1607 if (symlink_dir != NULL)
1608 {
1609 make_cleanup (xfree, symlink_dir);
1610 terminate_after_last_dir_separator (symlink_dir);
1611 if (strcmp (dir, symlink_dir) != 0)
1612 {
1613 /* Different directory, so try using it. */
1614 debugfile = find_separate_debug_file (symlink_dir,
1615 symlink_dir,
1616 debuglink,
1617 crc32,
1618 objfile);
1619 }
1620 }
1621 }
1db33378 1622 }
aa28a74e 1623
1db33378 1624 do_cleanups (cleanups);
25522fae 1625 return debugfile;
5b5d99cf
JB
1626}
1627
c906108c
SS
1628/* This is the symbol-file command. Read the file, analyze its
1629 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1630 the command is rather bizarre:
1631
1632 1. The function buildargv implements various quoting conventions
1633 which are undocumented and have little or nothing in common with
1634 the way things are quoted (or not quoted) elsewhere in GDB.
1635
1636 2. Options are used, which are not generally used in GDB (perhaps
1637 "set mapped on", "set readnow on" would be better)
1638
1639 3. The order of options matters, which is contrary to GNU
c906108c
SS
1640 conventions (because it is confusing and inconvenient). */
1641
1642void
fba45db2 1643symbol_file_command (char *args, int from_tty)
c906108c 1644{
c906108c
SS
1645 dont_repeat ();
1646
1647 if (args == NULL)
1648 {
1adeb98a 1649 symbol_file_clear (from_tty);
c906108c
SS
1650 }
1651 else
1652 {
d1a41061 1653 char **argv = gdb_buildargv (args);
b15cc25c 1654 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1655 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1656 struct cleanup *cleanups;
1657 char *name = NULL;
1658
ecf45d2c
SL
1659 if (from_tty)
1660 add_flags |= SYMFILE_VERBOSE;
1661
7a292a7a 1662 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1663 while (*argv != NULL)
1664 {
78a4a9b9
AC
1665 if (strcmp (*argv, "-readnow") == 0)
1666 flags |= OBJF_READNOW;
1667 else if (**argv == '-')
8a3fe4f8 1668 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1669 else
1670 {
ecf45d2c 1671 symbol_file_add_main_1 (*argv, add_flags, flags);
78a4a9b9 1672 name = *argv;
78a4a9b9 1673 }
cb2f3a29 1674
c906108c
SS
1675 argv++;
1676 }
1677
1678 if (name == NULL)
cb2f3a29
MK
1679 error (_("no symbol file name was specified"));
1680
c906108c
SS
1681 do_cleanups (cleanups);
1682 }
1683}
1684
1685/* Set the initial language.
1686
cb2f3a29
MK
1687 FIXME: A better solution would be to record the language in the
1688 psymtab when reading partial symbols, and then use it (if known) to
1689 set the language. This would be a win for formats that encode the
1690 language in an easily discoverable place, such as DWARF. For
1691 stabs, we can jump through hoops looking for specially named
1692 symbols or try to intuit the language from the specific type of
1693 stabs we find, but we can't do that until later when we read in
1694 full symbols. */
c906108c 1695
8b60591b 1696void
fba45db2 1697set_initial_language (void)
c906108c 1698{
9e6c82ad 1699 enum language lang = main_language ();
c906108c 1700
9e6c82ad 1701 if (lang == language_unknown)
01f8c46d 1702 {
bf6d8a91 1703 char *name = main_name ();
d12307c1 1704 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1705
bf6d8a91
TT
1706 if (sym != NULL)
1707 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1708 }
cb2f3a29 1709
ccefe4c4
TT
1710 if (lang == language_unknown)
1711 {
1712 /* Make C the default language */
1713 lang = language_c;
c906108c 1714 }
ccefe4c4
TT
1715
1716 set_language (lang);
1717 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1718}
1719
cb2f3a29
MK
1720/* Open the file specified by NAME and hand it off to BFD for
1721 preliminary analysis. Return a newly initialized bfd *, which
1722 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1723 absolute). In case of trouble, error() is called. */
c906108c
SS
1724
1725bfd *
97a41605 1726symfile_bfd_open (const char *name)
c906108c
SS
1727{
1728 bfd *sym_bfd;
97a41605
GB
1729 int desc = -1;
1730 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1731
97a41605 1732 if (!is_target_filename (name))
f1838a98 1733 {
97a41605 1734 char *expanded_name, *absolute_name;
f1838a98 1735
97a41605 1736 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1737
97a41605
GB
1738 /* Look down path for it, allocate 2nd new malloc'd copy. */
1739 desc = openp (getenv ("PATH"),
1740 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1742#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1743 if (desc < 0)
1744 {
0ae1c716 1745 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1746
97a41605
GB
1747 strcat (strcpy (exename, expanded_name), ".exe");
1748 desc = openp (getenv ("PATH"),
1749 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1750 exename, O_RDONLY | O_BINARY, &absolute_name);
1751 }
c906108c 1752#endif
97a41605
GB
1753 if (desc < 0)
1754 {
1755 make_cleanup (xfree, expanded_name);
1756 perror_with_name (expanded_name);
1757 }
cb2f3a29 1758
97a41605
GB
1759 xfree (expanded_name);
1760 make_cleanup (xfree, absolute_name);
1761 name = absolute_name;
1762 }
c906108c 1763
1c00ec6b 1764 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1765 if (!sym_bfd)
faab9922
JK
1766 error (_("`%s': can't open to read symbols: %s."), name,
1767 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1768
1769 if (!gdb_bfd_has_target_filename (sym_bfd))
1770 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1771
1772 if (!bfd_check_format (sym_bfd, bfd_object))
1773 {
f9a062ff 1774 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1775 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1776 bfd_errmsg (bfd_get_error ()));
1777 }
cb2f3a29 1778
faab9922
JK
1779 do_cleanups (back_to);
1780
cb2f3a29 1781 return sym_bfd;
c906108c
SS
1782}
1783
cb2f3a29
MK
1784/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1785 the section was not found. */
1786
0e931cf0
JB
1787int
1788get_section_index (struct objfile *objfile, char *section_name)
1789{
1790 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1791
0e931cf0
JB
1792 if (sect)
1793 return sect->index;
1794 else
1795 return -1;
1796}
1797
c256e171
DE
1798/* Link SF into the global symtab_fns list.
1799 FLAVOUR is the file format that SF handles.
1800 Called on startup by the _initialize routine in each object file format
1801 reader, to register information about each format the reader is prepared
1802 to handle. */
c906108c
SS
1803
1804void
c256e171 1805add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1806{
c256e171
DE
1807 registered_sym_fns fns = { flavour, sf };
1808
1809 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1810}
1811
cb2f3a29
MK
1812/* Initialize OBJFILE to read symbols from its associated BFD. It
1813 either returns or calls error(). The result is an initialized
1814 struct sym_fns in the objfile structure, that contains cached
1815 information about the symbol file. */
c906108c 1816
00b5771c 1817static const struct sym_fns *
31d99776 1818find_sym_fns (bfd *abfd)
c906108c 1819{
c256e171 1820 registered_sym_fns *rsf;
31d99776 1821 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1822 int i;
c906108c 1823
75245b24
MS
1824 if (our_flavour == bfd_target_srec_flavour
1825 || our_flavour == bfd_target_ihex_flavour
1826 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1827 return NULL; /* No symbols. */
75245b24 1828
c256e171
DE
1829 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1830 if (our_flavour == rsf->sym_flavour)
1831 return rsf->sym_fns;
cb2f3a29 1832
8a3fe4f8 1833 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1834 bfd_get_target (abfd));
c906108c
SS
1835}
1836\f
cb2f3a29 1837
c906108c
SS
1838/* This function runs the load command of our current target. */
1839
1840static void
fba45db2 1841load_command (char *arg, int from_tty)
c906108c 1842{
5b3fca71
TT
1843 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1844
e5cc9f32
JB
1845 dont_repeat ();
1846
4487aabf
PA
1847 /* The user might be reloading because the binary has changed. Take
1848 this opportunity to check. */
1849 reopen_exec_file ();
1850 reread_symbols ();
1851
c906108c 1852 if (arg == NULL)
1986bccd
AS
1853 {
1854 char *parg;
1855 int count = 0;
1856
1857 parg = arg = get_exec_file (1);
1858
1859 /* Count how many \ " ' tab space there are in the name. */
1860 while ((parg = strpbrk (parg, "\\\"'\t ")))
1861 {
1862 parg++;
1863 count++;
1864 }
1865
1866 if (count)
1867 {
1868 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1869 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1870 char *ptemp = temp;
1871 char *prev;
1872
1873 make_cleanup (xfree, temp);
1874
1875 prev = parg = arg;
1876 while ((parg = strpbrk (parg, "\\\"'\t ")))
1877 {
1878 strncpy (ptemp, prev, parg - prev);
1879 ptemp += parg - prev;
1880 prev = parg++;
1881 *ptemp++ = '\\';
1882 }
1883 strcpy (ptemp, prev);
1884
1885 arg = temp;
1886 }
1887 }
1888
c906108c 1889 target_load (arg, from_tty);
2889e661
JB
1890
1891 /* After re-loading the executable, we don't really know which
1892 overlays are mapped any more. */
1893 overlay_cache_invalid = 1;
5b3fca71
TT
1894
1895 do_cleanups (cleanup);
c906108c
SS
1896}
1897
1898/* This version of "load" should be usable for any target. Currently
1899 it is just used for remote targets, not inftarg.c or core files,
1900 on the theory that only in that case is it useful.
1901
1902 Avoiding xmodem and the like seems like a win (a) because we don't have
1903 to worry about finding it, and (b) On VMS, fork() is very slow and so
1904 we don't want to run a subprocess. On the other hand, I'm not sure how
1905 performance compares. */
917317f4 1906
917317f4
JM
1907static int validate_download = 0;
1908
e4f9b4d5
MS
1909/* Callback service function for generic_load (bfd_map_over_sections). */
1910
1911static void
1912add_section_size_callback (bfd *abfd, asection *asec, void *data)
1913{
19ba03f4 1914 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1915
2c500098 1916 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1917}
1918
1919/* Opaque data for load_section_callback. */
1920struct load_section_data {
f698ca8e 1921 CORE_ADDR load_offset;
a76d924d
DJ
1922 struct load_progress_data *progress_data;
1923 VEC(memory_write_request_s) *requests;
1924};
1925
1926/* Opaque data for load_progress. */
1927struct load_progress_data {
1928 /* Cumulative data. */
e4f9b4d5
MS
1929 unsigned long write_count;
1930 unsigned long data_count;
1931 bfd_size_type total_size;
a76d924d
DJ
1932};
1933
1934/* Opaque data for load_progress for a single section. */
1935struct load_progress_section_data {
1936 struct load_progress_data *cumulative;
cf7a04e8 1937
a76d924d 1938 /* Per-section data. */
cf7a04e8
DJ
1939 const char *section_name;
1940 ULONGEST section_sent;
1941 ULONGEST section_size;
1942 CORE_ADDR lma;
1943 gdb_byte *buffer;
e4f9b4d5
MS
1944};
1945
a76d924d 1946/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1947
1948static void
1949load_progress (ULONGEST bytes, void *untyped_arg)
1950{
19ba03f4
SM
1951 struct load_progress_section_data *args
1952 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1953 struct load_progress_data *totals;
1954
1955 if (args == NULL)
1956 /* Writing padding data. No easy way to get at the cumulative
1957 stats, so just ignore this. */
1958 return;
1959
1960 totals = args->cumulative;
1961
1962 if (bytes == 0 && args->section_sent == 0)
1963 {
1964 /* The write is just starting. Let the user know we've started
1965 this section. */
79a45e25 1966 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1967 args->section_name, hex_string (args->section_size),
f5656ead 1968 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1969 return;
1970 }
cf7a04e8
DJ
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
224c3ddb 1981 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1982 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1983
1984 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1985 error (_("Download verify read failed at %s"),
f5656ead 1986 paddress (target_gdbarch (), args->lma));
cf7a04e8 1987 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1988 error (_("Download verify compare failed at %s"),
f5656ead 1989 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1990 do_cleanups (verify_cleanups);
1991 }
a76d924d 1992 totals->data_count += bytes;
cf7a04e8
DJ
1993 args->lma += bytes;
1994 args->buffer += bytes;
a76d924d 1995 totals->write_count += 1;
cf7a04e8 1996 args->section_sent += bytes;
522002f9 1997 if (check_quit_flag ()
cf7a04e8
DJ
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
a76d924d
DJ
2007 totals->data_count,
2008 totals->total_size);
cf7a04e8
DJ
2009}
2010
e4f9b4d5
MS
2011/* Callback service function for generic_load (bfd_map_over_sections). */
2012
2013static void
2014load_section_callback (bfd *abfd, asection *asec, void *data)
2015{
a76d924d 2016 struct memory_write_request *new_request;
19ba03f4 2017 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2018 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2019 bfd_size_type size = bfd_get_section_size (asec);
2020 gdb_byte *buffer;
cf7a04e8 2021 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2022
cf7a04e8
DJ
2023 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 return;
e4f9b4d5 2025
cf7a04e8
DJ
2026 if (size == 0)
2027 return;
e4f9b4d5 2028
a76d924d
DJ
2029 new_request = VEC_safe_push (memory_write_request_s,
2030 args->requests, NULL);
2031 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2032 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2033 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2034 new_request->end = new_request->begin + size; /* FIXME Should size
2035 be in instead? */
224c3ddb 2036 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2037 new_request->baton = section_data;
cf7a04e8 2038
a76d924d 2039 buffer = new_request->data;
cf7a04e8 2040
a76d924d
DJ
2041 section_data->cumulative = args->progress_data;
2042 section_data->section_name = sect_name;
2043 section_data->section_size = size;
2044 section_data->lma = new_request->begin;
2045 section_data->buffer = buffer;
cf7a04e8
DJ
2046
2047 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2048}
2049
2050/* Clean up an entire memory request vector, including load
2051 data and progress records. */
cf7a04e8 2052
a76d924d
DJ
2053static void
2054clear_memory_write_data (void *arg)
2055{
19ba03f4 2056 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2057 VEC(memory_write_request_s) *vec = *vec_p;
2058 int i;
2059 struct memory_write_request *mr;
cf7a04e8 2060
a76d924d
DJ
2061 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2062 {
2063 xfree (mr->data);
2064 xfree (mr->baton);
2065 }
2066 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2067}
2068
c906108c 2069void
9cbe5fff 2070generic_load (const char *args, int from_tty)
c906108c 2071{
c906108c 2072 bfd *loadfile_bfd;
2b71414d 2073 struct timeval start_time, end_time;
917317f4 2074 char *filename;
1986bccd 2075 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2076 struct load_section_data cbdata;
a76d924d 2077 struct load_progress_data total_progress;
79a45e25 2078 struct ui_out *uiout = current_uiout;
a76d924d 2079
e4f9b4d5 2080 CORE_ADDR entry;
1986bccd 2081 char **argv;
e4f9b4d5 2082
a76d924d
DJ
2083 memset (&cbdata, 0, sizeof (cbdata));
2084 memset (&total_progress, 0, sizeof (total_progress));
2085 cbdata.progress_data = &total_progress;
2086
2087 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2088
d1a41061
PP
2089 if (args == NULL)
2090 error_no_arg (_("file to load"));
1986bccd 2091
d1a41061 2092 argv = gdb_buildargv (args);
1986bccd
AS
2093 make_cleanup_freeargv (argv);
2094
2095 filename = tilde_expand (argv[0]);
2096 make_cleanup (xfree, filename);
2097
2098 if (argv[1] != NULL)
917317f4 2099 {
f698ca8e 2100 const char *endptr;
ba5f2f8a 2101
f698ca8e 2102 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2103
2104 /* If the last word was not a valid number then
2105 treat it as a file name with spaces in. */
2106 if (argv[1] == endptr)
2107 error (_("Invalid download offset:%s."), argv[1]);
2108
2109 if (argv[2] != NULL)
2110 error (_("Too many parameters."));
917317f4 2111 }
c906108c 2112
c378eb4e 2113 /* Open the file for loading. */
1c00ec6b 2114 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2115 if (loadfile_bfd == NULL)
2116 {
2117 perror_with_name (filename);
2118 return;
2119 }
917317f4 2120
f9a062ff 2121 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2122
c5aa993b 2123 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2124 {
8a3fe4f8 2125 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2126 bfd_errmsg (bfd_get_error ()));
2127 }
c5aa993b 2128
5417f6dc 2129 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2130 (void *) &total_progress.total_size);
2131
2132 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2133
2b71414d 2134 gettimeofday (&start_time, NULL);
c906108c 2135
a76d924d
DJ
2136 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2137 load_progress) != 0)
2138 error (_("Load failed"));
c906108c 2139
2b71414d 2140 gettimeofday (&end_time, NULL);
ba5f2f8a 2141
e4f9b4d5 2142 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2143 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2144 ui_out_text (uiout, "Start address ");
f5656ead 2145 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2146 ui_out_text (uiout, ", load size ");
a76d924d 2147 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2148 ui_out_text (uiout, "\n");
fb14de7b 2149 regcache_write_pc (get_current_regcache (), entry);
c906108c 2150
38963c97
DJ
2151 /* Reset breakpoints, now that we have changed the load image. For
2152 instance, breakpoints may have been set (or reset, by
2153 post_create_inferior) while connected to the target but before we
2154 loaded the program. In that case, the prologue analyzer could
2155 have read instructions from the target to find the right
2156 breakpoint locations. Loading has changed the contents of that
2157 memory. */
2158
2159 breakpoint_re_set ();
2160
a76d924d
DJ
2161 print_transfer_performance (gdb_stdout, total_progress.data_count,
2162 total_progress.write_count,
2163 &start_time, &end_time);
c906108c
SS
2164
2165 do_cleanups (old_cleanups);
2166}
2167
c378eb4e 2168/* Report how fast the transfer went. */
c906108c 2169
917317f4 2170void
d9fcf2fb 2171print_transfer_performance (struct ui_file *stream,
917317f4
JM
2172 unsigned long data_count,
2173 unsigned long write_count,
2b71414d
DJ
2174 const struct timeval *start_time,
2175 const struct timeval *end_time)
917317f4 2176{
9f43d28c 2177 ULONGEST time_count;
79a45e25 2178 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2179
2180 /* Compute the elapsed time in milliseconds, as a tradeoff between
2181 accuracy and overflow. */
2182 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2183 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2184
8b93c638
JM
2185 ui_out_text (uiout, "Transfer rate: ");
2186 if (time_count > 0)
2187 {
9f43d28c
DJ
2188 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2189
2190 if (ui_out_is_mi_like_p (uiout))
2191 {
2192 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2193 ui_out_text (uiout, " bits/sec");
2194 }
2195 else if (rate < 1024)
2196 {
2197 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2198 ui_out_text (uiout, " bytes/sec");
2199 }
2200 else
2201 {
2202 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2203 ui_out_text (uiout, " KB/sec");
2204 }
8b93c638
JM
2205 }
2206 else
2207 {
ba5f2f8a 2208 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2209 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2210 }
2211 if (write_count > 0)
2212 {
2213 ui_out_text (uiout, ", ");
ba5f2f8a 2214 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2215 ui_out_text (uiout, " bytes/write");
2216 }
2217 ui_out_text (uiout, ".\n");
c906108c
SS
2218}
2219
2220/* This function allows the addition of incrementally linked object files.
2221 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2222/* Note: ezannoni 2000-04-13 This function/command used to have a
2223 special case syntax for the rombug target (Rombug is the boot
2224 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2225 rombug case, the user doesn't need to supply a text address,
2226 instead a call to target_link() (in target.c) would supply the
c378eb4e 2227 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2228
c906108c 2229static void
fba45db2 2230add_symbol_file_command (char *args, int from_tty)
c906108c 2231{
5af949e3 2232 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2233 char *filename = NULL;
c906108c 2234 char *arg;
db162d44 2235 int section_index = 0;
2acceee2
JM
2236 int argcnt = 0;
2237 int sec_num = 0;
2238 int i;
db162d44
EZ
2239 int expecting_sec_name = 0;
2240 int expecting_sec_addr = 0;
5b96932b 2241 char **argv;
76ad5e1e 2242 struct objfile *objf;
b15cc25c
PA
2243 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2244 symfile_add_flags add_flags = 0;
2245
2246 if (from_tty)
2247 add_flags |= SYMFILE_VERBOSE;
db162d44 2248
a39a16c4 2249 struct sect_opt
2acceee2 2250 {
2acceee2
JM
2251 char *name;
2252 char *value;
a39a16c4 2253 };
db162d44 2254
a39a16c4
MM
2255 struct section_addr_info *section_addrs;
2256 struct sect_opt *sect_opts = NULL;
2257 size_t num_sect_opts = 0;
3017564a 2258 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2259
a39a16c4 2260 num_sect_opts = 16;
8d749320 2261 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2262
c906108c
SS
2263 dont_repeat ();
2264
2265 if (args == NULL)
8a3fe4f8 2266 error (_("add-symbol-file takes a file name and an address"));
c906108c 2267
d1a41061 2268 argv = gdb_buildargv (args);
5b96932b 2269 make_cleanup_freeargv (argv);
db162d44 2270
5b96932b
AS
2271 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2272 {
c378eb4e 2273 /* Process the argument. */
db162d44 2274 if (argcnt == 0)
c906108c 2275 {
c378eb4e 2276 /* The first argument is the file name. */
db162d44 2277 filename = tilde_expand (arg);
3017564a 2278 make_cleanup (xfree, filename);
c906108c 2279 }
41dc8db8
MB
2280 else if (argcnt == 1)
2281 {
2282 /* The second argument is always the text address at which
2283 to load the program. */
2284 sect_opts[section_index].name = ".text";
2285 sect_opts[section_index].value = arg;
2286 if (++section_index >= num_sect_opts)
2287 {
2288 num_sect_opts *= 2;
2289 sect_opts = ((struct sect_opt *)
2290 xrealloc (sect_opts,
2291 num_sect_opts
2292 * sizeof (struct sect_opt)));
2293 }
2294 }
db162d44 2295 else
41dc8db8
MB
2296 {
2297 /* It's an option (starting with '-') or it's an argument
2298 to an option. */
41dc8db8
MB
2299 if (expecting_sec_name)
2300 {
2301 sect_opts[section_index].name = arg;
2302 expecting_sec_name = 0;
2303 }
2304 else if (expecting_sec_addr)
2305 {
2306 sect_opts[section_index].value = arg;
2307 expecting_sec_addr = 0;
2308 if (++section_index >= num_sect_opts)
2309 {
2310 num_sect_opts *= 2;
2311 sect_opts = ((struct sect_opt *)
2312 xrealloc (sect_opts,
2313 num_sect_opts
2314 * sizeof (struct sect_opt)));
2315 }
2316 }
2317 else if (strcmp (arg, "-readnow") == 0)
2318 flags |= OBJF_READNOW;
2319 else if (strcmp (arg, "-s") == 0)
2320 {
2321 expecting_sec_name = 1;
2322 expecting_sec_addr = 1;
2323 }
2324 else
2325 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2326 " [-readnow] [-s <secname> <addr>]*"));
2327 }
c906108c 2328 }
c906108c 2329
927890d0
JB
2330 /* This command takes at least two arguments. The first one is a
2331 filename, and the second is the address where this file has been
2332 loaded. Abort now if this address hasn't been provided by the
2333 user. */
2334 if (section_index < 1)
2335 error (_("The address where %s has been loaded is missing"), filename);
2336
c378eb4e 2337 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2338 a sect_addr_info structure to be passed around to other
2339 functions. We have to split this up into separate print
bb599908 2340 statements because hex_string returns a local static
c378eb4e 2341 string. */
5417f6dc 2342
a3f17187 2343 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2344 section_addrs = alloc_section_addr_info (section_index);
2345 make_cleanup (xfree, section_addrs);
db162d44 2346 for (i = 0; i < section_index; i++)
c906108c 2347 {
db162d44
EZ
2348 CORE_ADDR addr;
2349 char *val = sect_opts[i].value;
2350 char *sec = sect_opts[i].name;
5417f6dc 2351
ae822768 2352 addr = parse_and_eval_address (val);
db162d44 2353
db162d44 2354 /* Here we store the section offsets in the order they were
c378eb4e 2355 entered on the command line. */
a39a16c4
MM
2356 section_addrs->other[sec_num].name = sec;
2357 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2358 printf_unfiltered ("\t%s_addr = %s\n", sec,
2359 paddress (gdbarch, addr));
db162d44
EZ
2360 sec_num++;
2361
5417f6dc 2362 /* The object's sections are initialized when a
db162d44 2363 call is made to build_objfile_section_table (objfile).
5417f6dc 2364 This happens in reread_symbols.
db162d44
EZ
2365 At this point, we don't know what file type this is,
2366 so we can't determine what section names are valid. */
2acceee2 2367 }
d76488d8 2368 section_addrs->num_sections = sec_num;
db162d44 2369
2acceee2 2370 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2371 error (_("Not confirmed."));
c906108c 2372
b15cc25c 2373 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2374
2375 add_target_sections_of_objfile (objf);
c906108c
SS
2376
2377 /* Getting new symbols may change our opinion about what is
2378 frameless. */
2379 reinit_frame_cache ();
db162d44 2380 do_cleanups (my_cleanups);
c906108c
SS
2381}
2382\f
70992597 2383
63644780
NB
2384/* This function removes a symbol file that was added via add-symbol-file. */
2385
2386static void
2387remove_symbol_file_command (char *args, int from_tty)
2388{
2389 char **argv;
2390 struct objfile *objf = NULL;
2391 struct cleanup *my_cleanups;
2392 struct program_space *pspace = current_program_space;
63644780
NB
2393
2394 dont_repeat ();
2395
2396 if (args == NULL)
2397 error (_("remove-symbol-file: no symbol file provided"));
2398
2399 my_cleanups = make_cleanup (null_cleanup, NULL);
2400
2401 argv = gdb_buildargv (args);
2402
2403 if (strcmp (argv[0], "-a") == 0)
2404 {
2405 /* Interpret the next argument as an address. */
2406 CORE_ADDR addr;
2407
2408 if (argv[1] == NULL)
2409 error (_("Missing address argument"));
2410
2411 if (argv[2] != NULL)
2412 error (_("Junk after %s"), argv[1]);
2413
2414 addr = parse_and_eval_address (argv[1]);
2415
2416 ALL_OBJFILES (objf)
2417 {
d03de421
PA
2418 if ((objf->flags & OBJF_USERLOADED) != 0
2419 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2420 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2421 break;
2422 }
2423 }
2424 else if (argv[0] != NULL)
2425 {
2426 /* Interpret the current argument as a file name. */
2427 char *filename;
2428
2429 if (argv[1] != NULL)
2430 error (_("Junk after %s"), argv[0]);
2431
2432 filename = tilde_expand (argv[0]);
2433 make_cleanup (xfree, filename);
2434
2435 ALL_OBJFILES (objf)
2436 {
d03de421
PA
2437 if ((objf->flags & OBJF_USERLOADED) != 0
2438 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2439 && objf->pspace == pspace
2440 && filename_cmp (filename, objfile_name (objf)) == 0)
2441 break;
2442 }
2443 }
2444
2445 if (objf == NULL)
2446 error (_("No symbol file found"));
2447
2448 if (from_tty
2449 && !query (_("Remove symbol table from file \"%s\"? "),
2450 objfile_name (objf)))
2451 error (_("Not confirmed."));
2452
2453 free_objfile (objf);
2454 clear_symtab_users (0);
2455
2456 do_cleanups (my_cleanups);
2457}
2458
4ac39b97
JK
2459typedef struct objfile *objfilep;
2460
2461DEF_VEC_P (objfilep);
2462
c906108c 2463/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2464
c906108c 2465void
fba45db2 2466reread_symbols (void)
c906108c
SS
2467{
2468 struct objfile *objfile;
2469 long new_modtime;
c906108c
SS
2470 struct stat new_statbuf;
2471 int res;
4ac39b97
JK
2472 VEC (objfilep) *new_objfiles = NULL;
2473 struct cleanup *all_cleanups;
2474
2475 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2476
2477 /* With the addition of shared libraries, this should be modified,
2478 the load time should be saved in the partial symbol tables, since
2479 different tables may come from different source files. FIXME.
2480 This routine should then walk down each partial symbol table
c378eb4e 2481 and see if the symbol table that it originates from has been changed. */
c906108c 2482
c5aa993b
JM
2483 for (objfile = object_files; objfile; objfile = objfile->next)
2484 {
9cce227f
TG
2485 if (objfile->obfd == NULL)
2486 continue;
2487
2488 /* Separate debug objfiles are handled in the main objfile. */
2489 if (objfile->separate_debug_objfile_backlink)
2490 continue;
2491
02aeec7b
JB
2492 /* If this object is from an archive (what you usually create with
2493 `ar', often called a `static library' on most systems, though
2494 a `shared library' on AIX is also an archive), then you should
2495 stat on the archive name, not member name. */
9cce227f
TG
2496 if (objfile->obfd->my_archive)
2497 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2498 else
4262abfb 2499 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2500 if (res != 0)
2501 {
c378eb4e 2502 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2503 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2504 objfile_name (objfile));
9cce227f
TG
2505 continue;
2506 }
2507 new_modtime = new_statbuf.st_mtime;
2508 if (new_modtime != objfile->mtime)
2509 {
2510 struct cleanup *old_cleanups;
2511 struct section_offsets *offsets;
2512 int num_offsets;
24ba069a 2513 char *original_name;
9cce227f
TG
2514
2515 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2516 objfile_name (objfile));
9cce227f
TG
2517
2518 /* There are various functions like symbol_file_add,
2519 symfile_bfd_open, syms_from_objfile, etc., which might
2520 appear to do what we want. But they have various other
2521 effects which we *don't* want. So we just do stuff
2522 ourselves. We don't worry about mapped files (for one thing,
2523 any mapped file will be out of date). */
2524
2525 /* If we get an error, blow away this objfile (not sure if
2526 that is the correct response for things like shared
2527 libraries). */
2528 old_cleanups = make_cleanup_free_objfile (objfile);
2529 /* We need to do this whenever any symbols go away. */
2530 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2531
0ba1096a
KT
2532 if (exec_bfd != NULL
2533 && filename_cmp (bfd_get_filename (objfile->obfd),
2534 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2535 {
2536 /* Reload EXEC_BFD without asking anything. */
2537
2538 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2539 }
2540
f6eeced0
JK
2541 /* Keep the calls order approx. the same as in free_objfile. */
2542
2543 /* Free the separate debug objfiles. It will be
2544 automatically recreated by sym_read. */
2545 free_objfile_separate_debug (objfile);
2546
2547 /* Remove any references to this objfile in the global
2548 value lists. */
2549 preserve_values (objfile);
2550
2551 /* Nuke all the state that we will re-read. Much of the following
2552 code which sets things to NULL really is necessary to tell
2553 other parts of GDB that there is nothing currently there.
2554
2555 Try to keep the freeing order compatible with free_objfile. */
2556
2557 if (objfile->sf != NULL)
2558 {
2559 (*objfile->sf->sym_finish) (objfile);
2560 }
2561
2562 clear_objfile_data (objfile);
2563
e1507e95 2564 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2565 {
2566 struct bfd *obfd = objfile->obfd;
d3846e71 2567 char *obfd_filename;
a4453b7e
TT
2568
2569 obfd_filename = bfd_get_filename (objfile->obfd);
2570 /* Open the new BFD before freeing the old one, so that
2571 the filename remains live. */
2938e6cf 2572 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2573 if (objfile->obfd == NULL)
2574 {
2575 /* We have to make a cleanup and error here, rather
2576 than erroring later, because once we unref OBFD,
2577 OBFD_FILENAME will be freed. */
2578 make_cleanup_bfd_unref (obfd);
2579 error (_("Can't open %s to read symbols."), obfd_filename);
2580 }
a4453b7e
TT
2581 gdb_bfd_unref (obfd);
2582 }
2583
24ba069a
JK
2584 original_name = xstrdup (objfile->original_name);
2585 make_cleanup (xfree, original_name);
2586
9cce227f
TG
2587 /* bfd_openr sets cacheable to true, which is what we want. */
2588 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2589 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2590 bfd_errmsg (bfd_get_error ()));
2591
2592 /* Save the offsets, we will nuke them with the rest of the
2593 objfile_obstack. */
2594 num_offsets = objfile->num_sections;
2595 offsets = ((struct section_offsets *)
2596 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2597 memcpy (offsets, objfile->section_offsets,
2598 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2599
9cce227f
TG
2600 /* FIXME: Do we have to free a whole linked list, or is this
2601 enough? */
2602 if (objfile->global_psymbols.list)
2603 xfree (objfile->global_psymbols.list);
2604 memset (&objfile->global_psymbols, 0,
2605 sizeof (objfile->global_psymbols));
2606 if (objfile->static_psymbols.list)
2607 xfree (objfile->static_psymbols.list);
2608 memset (&objfile->static_psymbols, 0,
2609 sizeof (objfile->static_psymbols));
2610
c378eb4e 2611 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2612 psymbol_bcache_free (objfile->psymbol_cache);
2613 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2614 obstack_free (&objfile->objfile_obstack, 0);
2615 objfile->sections = NULL;
43f3e411 2616 objfile->compunit_symtabs = NULL;
9cce227f
TG
2617 objfile->psymtabs = NULL;
2618 objfile->psymtabs_addrmap = NULL;
2619 objfile->free_psymtabs = NULL;
34eaf542 2620 objfile->template_symbols = NULL;
9cce227f 2621
9cce227f
TG
2622 /* obstack_init also initializes the obstack so it is
2623 empty. We could use obstack_specify_allocation but
d82ea6a8 2624 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2625 obstack_init (&objfile->objfile_obstack);
779bd270 2626
846060df
JB
2627 /* set_objfile_per_bfd potentially allocates the per-bfd
2628 data on the objfile's obstack (if sharing data across
2629 multiple users is not possible), so it's important to
2630 do it *after* the obstack has been initialized. */
2631 set_objfile_per_bfd (objfile);
2632
224c3ddb
SM
2633 objfile->original_name
2634 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2635 strlen (original_name));
24ba069a 2636
779bd270
DE
2637 /* Reset the sym_fns pointer. The ELF reader can change it
2638 based on whether .gdb_index is present, and we need it to
2639 start over. PR symtab/15885 */
8fb8eb5c 2640 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2641
d82ea6a8 2642 build_objfile_section_table (objfile);
9cce227f
TG
2643 terminate_minimal_symbol_table (objfile);
2644
2645 /* We use the same section offsets as from last time. I'm not
2646 sure whether that is always correct for shared libraries. */
2647 objfile->section_offsets = (struct section_offsets *)
2648 obstack_alloc (&objfile->objfile_obstack,
2649 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2650 memcpy (objfile->section_offsets, offsets,
2651 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2652 objfile->num_sections = num_offsets;
2653
2654 /* What the hell is sym_new_init for, anyway? The concept of
2655 distinguishing between the main file and additional files
2656 in this way seems rather dubious. */
2657 if (objfile == symfile_objfile)
c906108c 2658 {
9cce227f 2659 (*objfile->sf->sym_new_init) (objfile);
c906108c 2660 }
9cce227f
TG
2661
2662 (*objfile->sf->sym_init) (objfile);
2663 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2664
2665 objfile->flags &= ~OBJF_PSYMTABS_READ;
2666 read_symbols (objfile, 0);
b11896a5 2667
9cce227f 2668 if (!objfile_has_symbols (objfile))
c906108c 2669 {
9cce227f
TG
2670 wrap_here ("");
2671 printf_unfiltered (_("(no debugging symbols found)\n"));
2672 wrap_here ("");
c5aa993b 2673 }
9cce227f
TG
2674
2675 /* We're done reading the symbol file; finish off complaints. */
2676 clear_complaints (&symfile_complaints, 0, 1);
2677
2678 /* Getting new symbols may change our opinion about what is
2679 frameless. */
2680
2681 reinit_frame_cache ();
2682
2683 /* Discard cleanups as symbol reading was successful. */
2684 discard_cleanups (old_cleanups);
2685
2686 /* If the mtime has changed between the time we set new_modtime
2687 and now, we *want* this to be out of date, so don't call stat
2688 again now. */
2689 objfile->mtime = new_modtime;
9cce227f 2690 init_entry_point_info (objfile);
4ac39b97
JK
2691
2692 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2693 }
2694 }
c906108c 2695
4ac39b97 2696 if (new_objfiles)
ea53e89f 2697 {
4ac39b97
JK
2698 int ix;
2699
ff3536bc
UW
2700 /* Notify objfiles that we've modified objfile sections. */
2701 objfiles_changed ();
2702
c1e56572 2703 clear_symtab_users (0);
4ac39b97
JK
2704
2705 /* clear_objfile_data for each objfile was called before freeing it and
2706 observer_notify_new_objfile (NULL) has been called by
2707 clear_symtab_users above. Notify the new files now. */
2708 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2709 observer_notify_new_objfile (objfile);
2710
ea53e89f
JB
2711 /* At least one objfile has changed, so we can consider that
2712 the executable we're debugging has changed too. */
781b42b0 2713 observer_notify_executable_changed ();
ea53e89f 2714 }
4ac39b97
JK
2715
2716 do_cleanups (all_cleanups);
c906108c 2717}
c906108c
SS
2718\f
2719
c5aa993b
JM
2720typedef struct
2721{
2722 char *ext;
c906108c 2723 enum language lang;
3fcf0b0d
TT
2724} filename_language;
2725
2726DEF_VEC_O (filename_language);
c906108c 2727
3fcf0b0d 2728static VEC (filename_language) *filename_language_table;
c906108c 2729
56618e20
TT
2730/* See symfile.h. */
2731
2732void
2733add_filename_language (const char *ext, enum language lang)
c906108c 2734{
3fcf0b0d
TT
2735 filename_language entry;
2736
2737 entry.ext = xstrdup (ext);
2738 entry.lang = lang;
c906108c 2739
3fcf0b0d 2740 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2741}
2742
2743static char *ext_args;
920d2a44
AC
2744static void
2745show_ext_args (struct ui_file *file, int from_tty,
2746 struct cmd_list_element *c, const char *value)
2747{
3e43a32a
MS
2748 fprintf_filtered (file,
2749 _("Mapping between filename extension "
2750 "and source language is \"%s\".\n"),
920d2a44
AC
2751 value);
2752}
c906108c
SS
2753
2754static void
26c41df3 2755set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2756{
2757 int i;
2758 char *cp = ext_args;
2759 enum language lang;
3fcf0b0d 2760 filename_language *entry;
c906108c 2761
c378eb4e 2762 /* First arg is filename extension, starting with '.' */
c906108c 2763 if (*cp != '.')
8a3fe4f8 2764 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2765
2766 /* Find end of first arg. */
c5aa993b 2767 while (*cp && !isspace (*cp))
c906108c
SS
2768 cp++;
2769
2770 if (*cp == '\0')
3e43a32a
MS
2771 error (_("'%s': two arguments required -- "
2772 "filename extension and language"),
c906108c
SS
2773 ext_args);
2774
c378eb4e 2775 /* Null-terminate first arg. */
c5aa993b 2776 *cp++ = '\0';
c906108c
SS
2777
2778 /* Find beginning of second arg, which should be a source language. */
529480d0 2779 cp = skip_spaces (cp);
c906108c
SS
2780
2781 if (*cp == '\0')
3e43a32a
MS
2782 error (_("'%s': two arguments required -- "
2783 "filename extension and language"),
c906108c
SS
2784 ext_args);
2785
2786 /* Lookup the language from among those we know. */
2787 lang = language_enum (cp);
2788
2789 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2790 for (i = 0;
2791 VEC_iterate (filename_language, filename_language_table, i, entry);
2792 ++i)
2793 {
2794 if (0 == strcmp (ext_args, entry->ext))
2795 break;
2796 }
c906108c 2797
3fcf0b0d 2798 if (entry == NULL)
c906108c 2799 {
c378eb4e 2800 /* New file extension. */
c906108c
SS
2801 add_filename_language (ext_args, lang);
2802 }
2803 else
2804 {
c378eb4e 2805 /* Redefining a previously known filename extension. */
c906108c
SS
2806
2807 /* if (from_tty) */
2808 /* query ("Really make files of type %s '%s'?", */
2809 /* ext_args, language_str (lang)); */
2810
3fcf0b0d
TT
2811 xfree (entry->ext);
2812 entry->ext = xstrdup (ext_args);
2813 entry->lang = lang;
c906108c
SS
2814 }
2815}
2816
2817static void
fba45db2 2818info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2819{
2820 int i;
3fcf0b0d 2821 filename_language *entry;
c906108c 2822
a3f17187 2823 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2824 printf_filtered ("\n\n");
3fcf0b0d
TT
2825 for (i = 0;
2826 VEC_iterate (filename_language, filename_language_table, i, entry);
2827 ++i)
2828 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2829}
2830
c906108c 2831enum language
dd786858 2832deduce_language_from_filename (const char *filename)
c906108c
SS
2833{
2834 int i;
e6a959d6 2835 const char *cp;
c906108c
SS
2836
2837 if (filename != NULL)
2838 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2839 {
2840 filename_language *entry;
2841
2842 for (i = 0;
2843 VEC_iterate (filename_language, filename_language_table, i, entry);
2844 ++i)
2845 if (strcmp (cp, entry->ext) == 0)
2846 return entry->lang;
2847 }
c906108c
SS
2848
2849 return language_unknown;
2850}
2851\f
43f3e411
DE
2852/* Allocate and initialize a new symbol table.
2853 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2854
2855struct symtab *
43f3e411 2856allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2857{
43f3e411
DE
2858 struct objfile *objfile = cust->objfile;
2859 struct symtab *symtab
2860 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2861
19ba03f4
SM
2862 symtab->filename
2863 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2864 objfile->per_bfd->filename_cache);
c5aa993b
JM
2865 symtab->fullname = NULL;
2866 symtab->language = deduce_language_from_filename (filename);
c906108c 2867
db0fec5c
DE
2868 /* This can be very verbose with lots of headers.
2869 Only print at higher debug levels. */
2870 if (symtab_create_debug >= 2)
45cfd468
DE
2871 {
2872 /* Be a bit clever with debugging messages, and don't print objfile
2873 every time, only when it changes. */
2874 static char *last_objfile_name = NULL;
2875
2876 if (last_objfile_name == NULL
4262abfb 2877 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2878 {
2879 xfree (last_objfile_name);
4262abfb 2880 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2881 fprintf_unfiltered (gdb_stdlog,
2882 "Creating one or more symtabs for objfile %s ...\n",
2883 last_objfile_name);
2884 }
2885 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2886 "Created symtab %s for module %s.\n",
2887 host_address_to_string (symtab), filename);
45cfd468
DE
2888 }
2889
43f3e411
DE
2890 /* Add it to CUST's list of symtabs. */
2891 if (cust->filetabs == NULL)
2892 {
2893 cust->filetabs = symtab;
2894 cust->last_filetab = symtab;
2895 }
2896 else
2897 {
2898 cust->last_filetab->next = symtab;
2899 cust->last_filetab = symtab;
2900 }
2901
2902 /* Backlink to the containing compunit symtab. */
2903 symtab->compunit_symtab = cust;
2904
2905 return symtab;
2906}
2907
2908/* Allocate and initialize a new compunit.
2909 NAME is the name of the main source file, if there is one, or some
2910 descriptive text if there are no source files. */
2911
2912struct compunit_symtab *
2913allocate_compunit_symtab (struct objfile *objfile, const char *name)
2914{
2915 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2916 struct compunit_symtab);
2917 const char *saved_name;
2918
2919 cu->objfile = objfile;
2920
2921 /* The name we record here is only for display/debugging purposes.
2922 Just save the basename to avoid path issues (too long for display,
2923 relative vs absolute, etc.). */
2924 saved_name = lbasename (name);
224c3ddb
SM
2925 cu->name
2926 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2927 strlen (saved_name));
43f3e411
DE
2928
2929 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2930
2931 if (symtab_create_debug)
2932 {
2933 fprintf_unfiltered (gdb_stdlog,
2934 "Created compunit symtab %s for %s.\n",
2935 host_address_to_string (cu),
2936 cu->name);
2937 }
2938
2939 return cu;
2940}
2941
2942/* Hook CU to the objfile it comes from. */
2943
2944void
2945add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2946{
2947 cu->next = cu->objfile->compunit_symtabs;
2948 cu->objfile->compunit_symtabs = cu;
c906108c 2949}
c906108c 2950\f
c5aa993b 2951
b15cc25c
PA
2952/* Reset all data structures in gdb which may contain references to
2953 symbol table data. */
c906108c
SS
2954
2955void
b15cc25c 2956clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2957{
2958 /* Someday, we should do better than this, by only blowing away
2959 the things that really need to be blown. */
c0501be5
DJ
2960
2961 /* Clear the "current" symtab first, because it is no longer valid.
2962 breakpoint_re_set may try to access the current symtab. */
2963 clear_current_source_symtab_and_line ();
2964
c906108c 2965 clear_displays ();
1bfeeb0f 2966 clear_last_displayed_sal ();
c906108c 2967 clear_pc_function_cache ();
06d3b283 2968 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2969
2970 /* Clear globals which might have pointed into a removed objfile.
2971 FIXME: It's not clear which of these are supposed to persist
2972 between expressions and which ought to be reset each time. */
2973 expression_context_block = NULL;
2974 innermost_block = NULL;
8756216b
DP
2975
2976 /* Varobj may refer to old symbols, perform a cleanup. */
2977 varobj_invalidate ();
2978
e700d1b2
JB
2979 /* Now that the various caches have been cleared, we can re_set
2980 our breakpoints without risking it using stale data. */
2981 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2982 breakpoint_re_set ();
c906108c
SS
2983}
2984
74b7792f
AC
2985static void
2986clear_symtab_users_cleanup (void *ignore)
2987{
c1e56572 2988 clear_symtab_users (0);
74b7792f 2989}
c906108c 2990\f
c906108c
SS
2991/* OVERLAYS:
2992 The following code implements an abstraction for debugging overlay sections.
2993
2994 The target model is as follows:
2995 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2996 same VMA, each with its own unique LMA (or load address).
c906108c 2997 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2998 sections, one by one, from the load address into the VMA address.
5417f6dc 2999 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3000 sections should be considered to be mapped from the VMA to the LMA.
3001 This information is used for symbol lookup, and memory read/write.
5417f6dc 3002 For instance, if a section has been mapped then its contents
c5aa993b 3003 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3004
3005 Two levels of debugger support for overlays are available. One is
3006 "manual", in which the debugger relies on the user to tell it which
3007 overlays are currently mapped. This level of support is
3008 implemented entirely in the core debugger, and the information about
3009 whether a section is mapped is kept in the objfile->obj_section table.
3010
3011 The second level of support is "automatic", and is only available if
3012 the target-specific code provides functionality to read the target's
3013 overlay mapping table, and translate its contents for the debugger
3014 (by updating the mapped state information in the obj_section tables).
3015
3016 The interface is as follows:
c5aa993b
JM
3017 User commands:
3018 overlay map <name> -- tell gdb to consider this section mapped
3019 overlay unmap <name> -- tell gdb to consider this section unmapped
3020 overlay list -- list the sections that GDB thinks are mapped
3021 overlay read-target -- get the target's state of what's mapped
3022 overlay off/manual/auto -- set overlay debugging state
3023 Functional interface:
3024 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3025 section, return that section.
5417f6dc 3026 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3027 the pc, either in its VMA or its LMA
714835d5 3028 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3029 section_is_overlay(sect): true if section's VMA != LMA
3030 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3031 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3032 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3033 overlay_mapped_address(...): map an address from section's LMA to VMA
3034 overlay_unmapped_address(...): map an address from section's VMA to LMA
3035 symbol_overlayed_address(...): Return a "current" address for symbol:
3036 either in VMA or LMA depending on whether
c378eb4e 3037 the symbol's section is currently mapped. */
c906108c
SS
3038
3039/* Overlay debugging state: */
3040
d874f1e2 3041enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3042int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3043
c906108c 3044/* Function: section_is_overlay (SECTION)
5417f6dc 3045 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3046 SECTION is loaded at an address different from where it will "run". */
3047
3048int
714835d5 3049section_is_overlay (struct obj_section *section)
c906108c 3050{
714835d5
UW
3051 if (overlay_debugging && section)
3052 {
3053 bfd *abfd = section->objfile->obfd;
3054 asection *bfd_section = section->the_bfd_section;
f888f159 3055
714835d5
UW
3056 if (bfd_section_lma (abfd, bfd_section) != 0
3057 && bfd_section_lma (abfd, bfd_section)
3058 != bfd_section_vma (abfd, bfd_section))
3059 return 1;
3060 }
c906108c
SS
3061
3062 return 0;
3063}
3064
3065/* Function: overlay_invalidate_all (void)
3066 Invalidate the mapped state of all overlay sections (mark it as stale). */
3067
3068static void
fba45db2 3069overlay_invalidate_all (void)
c906108c 3070{
c5aa993b 3071 struct objfile *objfile;
c906108c
SS
3072 struct obj_section *sect;
3073
3074 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3075 if (section_is_overlay (sect))
3076 sect->ovly_mapped = -1;
c906108c
SS
3077}
3078
714835d5 3079/* Function: section_is_mapped (SECTION)
5417f6dc 3080 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3081
3082 Access to the ovly_mapped flag is restricted to this function, so
3083 that we can do automatic update. If the global flag
3084 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3085 overlay_invalidate_all. If the mapped state of the particular
3086 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3087
714835d5
UW
3088int
3089section_is_mapped (struct obj_section *osect)
c906108c 3090{
9216df95
UW
3091 struct gdbarch *gdbarch;
3092
714835d5 3093 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3094 return 0;
3095
c5aa993b 3096 switch (overlay_debugging)
c906108c
SS
3097 {
3098 default:
d874f1e2 3099 case ovly_off:
c5aa993b 3100 return 0; /* overlay debugging off */
d874f1e2 3101 case ovly_auto: /* overlay debugging automatic */
1c772458 3102 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3103 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3104 gdbarch = get_objfile_arch (osect->objfile);
3105 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3106 {
3107 if (overlay_cache_invalid)
3108 {
3109 overlay_invalidate_all ();
3110 overlay_cache_invalid = 0;
3111 }
3112 if (osect->ovly_mapped == -1)
9216df95 3113 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3114 }
3115 /* fall thru to manual case */
d874f1e2 3116 case ovly_on: /* overlay debugging manual */
c906108c
SS
3117 return osect->ovly_mapped == 1;
3118 }
3119}
3120
c906108c
SS
3121/* Function: pc_in_unmapped_range
3122 If PC falls into the lma range of SECTION, return true, else false. */
3123
3124CORE_ADDR
714835d5 3125pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3126{
714835d5
UW
3127 if (section_is_overlay (section))
3128 {
3129 bfd *abfd = section->objfile->obfd;
3130 asection *bfd_section = section->the_bfd_section;
fbd35540 3131
714835d5
UW
3132 /* We assume the LMA is relocated by the same offset as the VMA. */
3133 bfd_vma size = bfd_get_section_size (bfd_section);
3134 CORE_ADDR offset = obj_section_offset (section);
3135
3136 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3137 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3138 return 1;
3139 }
c906108c 3140
c906108c
SS
3141 return 0;
3142}
3143
3144/* Function: pc_in_mapped_range
3145 If PC falls into the vma range of SECTION, return true, else false. */
3146
3147CORE_ADDR
714835d5 3148pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3149{
714835d5
UW
3150 if (section_is_overlay (section))
3151 {
3152 if (obj_section_addr (section) <= pc
3153 && pc < obj_section_endaddr (section))
3154 return 1;
3155 }
c906108c 3156
c906108c
SS
3157 return 0;
3158}
3159
9ec8e6a0
JB
3160/* Return true if the mapped ranges of sections A and B overlap, false
3161 otherwise. */
3b7bacac 3162
b9362cc7 3163static int
714835d5 3164sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3165{
714835d5
UW
3166 CORE_ADDR a_start = obj_section_addr (a);
3167 CORE_ADDR a_end = obj_section_endaddr (a);
3168 CORE_ADDR b_start = obj_section_addr (b);
3169 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3170
3171 return (a_start < b_end && b_start < a_end);
3172}
3173
c906108c
SS
3174/* Function: overlay_unmapped_address (PC, SECTION)
3175 Returns the address corresponding to PC in the unmapped (load) range.
3176 May be the same as PC. */
3177
3178CORE_ADDR
714835d5 3179overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3180{
714835d5
UW
3181 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3182 {
3183 bfd *abfd = section->objfile->obfd;
3184 asection *bfd_section = section->the_bfd_section;
fbd35540 3185
714835d5
UW
3186 return pc + bfd_section_lma (abfd, bfd_section)
3187 - bfd_section_vma (abfd, bfd_section);
3188 }
c906108c
SS
3189
3190 return pc;
3191}
3192
3193/* Function: overlay_mapped_address (PC, SECTION)
3194 Returns the address corresponding to PC in the mapped (runtime) range.
3195 May be the same as PC. */
3196
3197CORE_ADDR
714835d5 3198overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3199{
714835d5
UW
3200 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3201 {
3202 bfd *abfd = section->objfile->obfd;
3203 asection *bfd_section = section->the_bfd_section;
fbd35540 3204
714835d5
UW
3205 return pc + bfd_section_vma (abfd, bfd_section)
3206 - bfd_section_lma (abfd, bfd_section);
3207 }
c906108c
SS
3208
3209 return pc;
3210}
3211
5417f6dc 3212/* Function: symbol_overlayed_address
c906108c
SS
3213 Return one of two addresses (relative to the VMA or to the LMA),
3214 depending on whether the section is mapped or not. */
3215
c5aa993b 3216CORE_ADDR
714835d5 3217symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3218{
3219 if (overlay_debugging)
3220 {
c378eb4e 3221 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3222 if (section == 0)
3223 return address;
c378eb4e
MS
3224 /* If the symbol's section is not an overlay, just return its
3225 address. */
c906108c
SS
3226 if (!section_is_overlay (section))
3227 return address;
c378eb4e 3228 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3229 if (section_is_mapped (section))
3230 return address;
3231 /*
3232 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3233 * then return its LOADED address rather than its vma address!!
3234 */
3235 return overlay_unmapped_address (address, section);
3236 }
3237 return address;
3238}
3239
5417f6dc 3240/* Function: find_pc_overlay (PC)
c906108c
SS
3241 Return the best-match overlay section for PC:
3242 If PC matches a mapped overlay section's VMA, return that section.
3243 Else if PC matches an unmapped section's VMA, return that section.
3244 Else if PC matches an unmapped section's LMA, return that section. */
3245
714835d5 3246struct obj_section *
fba45db2 3247find_pc_overlay (CORE_ADDR pc)
c906108c 3248{
c5aa993b 3249 struct objfile *objfile;
c906108c
SS
3250 struct obj_section *osect, *best_match = NULL;
3251
3252 if (overlay_debugging)
b631e59b
KT
3253 {
3254 ALL_OBJSECTIONS (objfile, osect)
3255 if (section_is_overlay (osect))
c5aa993b 3256 {
b631e59b
KT
3257 if (pc_in_mapped_range (pc, osect))
3258 {
3259 if (section_is_mapped (osect))
3260 return osect;
3261 else
3262 best_match = osect;
3263 }
3264 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3265 best_match = osect;
3266 }
b631e59b 3267 }
714835d5 3268 return best_match;
c906108c
SS
3269}
3270
3271/* Function: find_pc_mapped_section (PC)
5417f6dc 3272 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3273 currently marked as MAPPED, return that section. Else return NULL. */
3274
714835d5 3275struct obj_section *
fba45db2 3276find_pc_mapped_section (CORE_ADDR pc)
c906108c 3277{
c5aa993b 3278 struct objfile *objfile;
c906108c
SS
3279 struct obj_section *osect;
3280
3281 if (overlay_debugging)
b631e59b
KT
3282 {
3283 ALL_OBJSECTIONS (objfile, osect)
3284 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3285 return osect;
3286 }
c906108c
SS
3287
3288 return NULL;
3289}
3290
3291/* Function: list_overlays_command
c378eb4e 3292 Print a list of mapped sections and their PC ranges. */
c906108c 3293
5d3055ad 3294static void
fba45db2 3295list_overlays_command (char *args, int from_tty)
c906108c 3296{
c5aa993b
JM
3297 int nmapped = 0;
3298 struct objfile *objfile;
c906108c
SS
3299 struct obj_section *osect;
3300
3301 if (overlay_debugging)
b631e59b
KT
3302 {
3303 ALL_OBJSECTIONS (objfile, osect)
714835d5 3304 if (section_is_mapped (osect))
b631e59b
KT
3305 {
3306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3307 const char *name;
3308 bfd_vma lma, vma;
3309 int size;
3310
3311 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3312 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3313 size = bfd_get_section_size (osect->the_bfd_section);
3314 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3315
3316 printf_filtered ("Section %s, loaded at ", name);
3317 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3318 puts_filtered (" - ");
3319 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3320 printf_filtered (", mapped at ");
3321 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3322 puts_filtered (" - ");
3323 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3324 puts_filtered ("\n");
3325
3326 nmapped++;
3327 }
3328 }
c906108c 3329 if (nmapped == 0)
a3f17187 3330 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3331}
3332
3333/* Function: map_overlay_command
3334 Mark the named section as mapped (ie. residing at its VMA address). */
3335
5d3055ad 3336static void
fba45db2 3337map_overlay_command (char *args, int from_tty)
c906108c 3338{
c5aa993b
JM
3339 struct objfile *objfile, *objfile2;
3340 struct obj_section *sec, *sec2;
c906108c
SS
3341
3342 if (!overlay_debugging)
3e43a32a
MS
3343 error (_("Overlay debugging not enabled. Use "
3344 "either the 'overlay auto' or\n"
3345 "the 'overlay manual' command."));
c906108c
SS
3346
3347 if (args == 0 || *args == 0)
8a3fe4f8 3348 error (_("Argument required: name of an overlay section"));
c906108c 3349
c378eb4e 3350 /* First, find a section matching the user supplied argument. */
c906108c
SS
3351 ALL_OBJSECTIONS (objfile, sec)
3352 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3353 {
c378eb4e 3354 /* Now, check to see if the section is an overlay. */
714835d5 3355 if (!section_is_overlay (sec))
c5aa993b
JM
3356 continue; /* not an overlay section */
3357
c378eb4e 3358 /* Mark the overlay as "mapped". */
c5aa993b
JM
3359 sec->ovly_mapped = 1;
3360
3361 /* Next, make a pass and unmap any sections that are
3362 overlapped by this new section: */
3363 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3364 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3365 {
3366 if (info_verbose)
a3f17187 3367 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3368 bfd_section_name (objfile->obfd,
3369 sec2->the_bfd_section));
c378eb4e 3370 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3371 }
3372 return;
3373 }
8a3fe4f8 3374 error (_("No overlay section called %s"), args);
c906108c
SS
3375}
3376
3377/* Function: unmap_overlay_command
5417f6dc 3378 Mark the overlay section as unmapped
c906108c
SS
3379 (ie. resident in its LMA address range, rather than the VMA range). */
3380
5d3055ad 3381static void
fba45db2 3382unmap_overlay_command (char *args, int from_tty)
c906108c 3383{
c5aa993b 3384 struct objfile *objfile;
7a270e0c 3385 struct obj_section *sec = NULL;
c906108c
SS
3386
3387 if (!overlay_debugging)
3e43a32a
MS
3388 error (_("Overlay debugging not enabled. "
3389 "Use either the 'overlay auto' or\n"
3390 "the 'overlay manual' command."));
c906108c
SS
3391
3392 if (args == 0 || *args == 0)
8a3fe4f8 3393 error (_("Argument required: name of an overlay section"));
c906108c 3394
c378eb4e 3395 /* First, find a section matching the user supplied argument. */
c906108c
SS
3396 ALL_OBJSECTIONS (objfile, sec)
3397 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3398 {
3399 if (!sec->ovly_mapped)
8a3fe4f8 3400 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3401 sec->ovly_mapped = 0;
3402 return;
3403 }
8a3fe4f8 3404 error (_("No overlay section called %s"), args);
c906108c
SS
3405}
3406
3407/* Function: overlay_auto_command
3408 A utility command to turn on overlay debugging.
c378eb4e 3409 Possibly this should be done via a set/show command. */
c906108c
SS
3410
3411static void
fba45db2 3412overlay_auto_command (char *args, int from_tty)
c906108c 3413{
d874f1e2 3414 overlay_debugging = ovly_auto;
1900040c 3415 enable_overlay_breakpoints ();
c906108c 3416 if (info_verbose)
a3f17187 3417 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3418}
3419
3420/* Function: overlay_manual_command
3421 A utility command to turn on overlay debugging.
c378eb4e 3422 Possibly this should be done via a set/show command. */
c906108c
SS
3423
3424static void
fba45db2 3425overlay_manual_command (char *args, int from_tty)
c906108c 3426{
d874f1e2 3427 overlay_debugging = ovly_on;
1900040c 3428 disable_overlay_breakpoints ();
c906108c 3429 if (info_verbose)
a3f17187 3430 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3431}
3432
3433/* Function: overlay_off_command
3434 A utility command to turn on overlay debugging.
c378eb4e 3435 Possibly this should be done via a set/show command. */
c906108c
SS
3436
3437static void
fba45db2 3438overlay_off_command (char *args, int from_tty)
c906108c 3439{
d874f1e2 3440 overlay_debugging = ovly_off;
1900040c 3441 disable_overlay_breakpoints ();
c906108c 3442 if (info_verbose)
a3f17187 3443 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3444}
3445
3446static void
fba45db2 3447overlay_load_command (char *args, int from_tty)
c906108c 3448{
e17c207e
UW
3449 struct gdbarch *gdbarch = get_current_arch ();
3450
3451 if (gdbarch_overlay_update_p (gdbarch))
3452 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3453 else
8a3fe4f8 3454 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3455}
3456
3457/* Function: overlay_command
c378eb4e 3458 A place-holder for a mis-typed command. */
c906108c 3459
c378eb4e 3460/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3461static struct cmd_list_element *overlaylist;
c906108c
SS
3462
3463static void
fba45db2 3464overlay_command (char *args, int from_tty)
c906108c 3465{
c5aa993b 3466 printf_unfiltered
c906108c 3467 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3468 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3469}
3470
c906108c
SS
3471/* Target Overlays for the "Simplest" overlay manager:
3472
5417f6dc
RM
3473 This is GDB's default target overlay layer. It works with the
3474 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3475 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3476 so targets that use a different runtime overlay manager can
c906108c
SS
3477 substitute their own overlay_update function and take over the
3478 function pointer.
3479
3480 The overlay_update function pokes around in the target's data structures
3481 to see what overlays are mapped, and updates GDB's overlay mapping with
3482 this information.
3483
3484 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3485 unsigned _novlys; /# number of overlay sections #/
3486 unsigned _ovly_table[_novlys][4] = {
438e1e42 3487 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3488 {..., ..., ..., ...},
3489 }
3490 unsigned _novly_regions; /# number of overlay regions #/
3491 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3492 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3493 {..., ..., ...},
3494 }
c906108c
SS
3495 These functions will attempt to update GDB's mappedness state in the
3496 symbol section table, based on the target's mappedness state.
3497
3498 To do this, we keep a cached copy of the target's _ovly_table, and
3499 attempt to detect when the cached copy is invalidated. The main
3500 entry point is "simple_overlay_update(SECT), which looks up SECT in
3501 the cached table and re-reads only the entry for that section from
c378eb4e 3502 the target (whenever possible). */
c906108c
SS
3503
3504/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3505static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3506static unsigned cache_novlys = 0;
c906108c 3507static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3508enum ovly_index
3509 {
438e1e42 3510 VMA, OSIZE, LMA, MAPPED
c5aa993b 3511 };
c906108c 3512
c378eb4e 3513/* Throw away the cached copy of _ovly_table. */
3b7bacac 3514
c906108c 3515static void
fba45db2 3516simple_free_overlay_table (void)
c906108c
SS
3517{
3518 if (cache_ovly_table)
b8c9b27d 3519 xfree (cache_ovly_table);
c5aa993b 3520 cache_novlys = 0;
c906108c
SS
3521 cache_ovly_table = NULL;
3522 cache_ovly_table_base = 0;
3523}
3524
9216df95 3525/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3526 Convert to host order. int LEN is number of ints. */
3b7bacac 3527
c906108c 3528static void
9216df95 3529read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3530 int len, int size, enum bfd_endian byte_order)
c906108c 3531{
c378eb4e 3532 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3533 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3534 int i;
c906108c 3535
9216df95 3536 read_memory (memaddr, buf, len * size);
c906108c 3537 for (i = 0; i < len; i++)
e17a4113 3538 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3539}
3540
3541/* Find and grab a copy of the target _ovly_table
c378eb4e 3542 (and _novlys, which is needed for the table's size). */
3b7bacac 3543
c5aa993b 3544static int
fba45db2 3545simple_read_overlay_table (void)
c906108c 3546{
3b7344d5 3547 struct bound_minimal_symbol novlys_msym;
7c7b6655 3548 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3549 struct gdbarch *gdbarch;
3550 int word_size;
e17a4113 3551 enum bfd_endian byte_order;
c906108c
SS
3552
3553 simple_free_overlay_table ();
9b27852e 3554 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3555 if (! novlys_msym.minsym)
c906108c 3556 {
8a3fe4f8 3557 error (_("Error reading inferior's overlay table: "
0d43edd1 3558 "couldn't find `_novlys' variable\n"
8a3fe4f8 3559 "in inferior. Use `overlay manual' mode."));
0d43edd1 3560 return 0;
c906108c 3561 }
0d43edd1 3562
7c7b6655
TT
3563 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3564 if (! ovly_table_msym.minsym)
0d43edd1 3565 {
8a3fe4f8 3566 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3567 "`_ovly_table' array\n"
8a3fe4f8 3568 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3569 return 0;
3570 }
3571
7c7b6655 3572 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3573 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3574 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3575
77e371c0
TT
3576 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3577 4, byte_order);
0d43edd1 3578 cache_ovly_table
224c3ddb 3579 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3580 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3581 read_target_long_array (cache_ovly_table_base,
777ea8f1 3582 (unsigned int *) cache_ovly_table,
e17a4113 3583 cache_novlys * 4, word_size, byte_order);
0d43edd1 3584
c5aa993b 3585 return 1; /* SUCCESS */
c906108c
SS
3586}
3587
5417f6dc 3588/* Function: simple_overlay_update_1
c906108c
SS
3589 A helper function for simple_overlay_update. Assuming a cached copy
3590 of _ovly_table exists, look through it to find an entry whose vma,
3591 lma and size match those of OSECT. Re-read the entry and make sure
3592 it still matches OSECT (else the table may no longer be valid).
3593 Set OSECT's mapped state to match the entry. Return: 1 for
3594 success, 0 for failure. */
3595
3596static int
fba45db2 3597simple_overlay_update_1 (struct obj_section *osect)
c906108c 3598{
764c99c1 3599 int i;
fbd35540
MS
3600 bfd *obfd = osect->objfile->obfd;
3601 asection *bsect = osect->the_bfd_section;
9216df95
UW
3602 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3603 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3605
c906108c 3606 for (i = 0; i < cache_novlys; i++)
fbd35540 3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3609 {
9216df95
UW
3610 read_target_long_array (cache_ovly_table_base + i * word_size,
3611 (unsigned int *) cache_ovly_table[i],
e17a4113 3612 4, word_size, byte_order);
fbd35540 3613 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3614 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3615 {
3616 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3617 return 1;
3618 }
c378eb4e 3619 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3620 return 0;
3621 }
3622 return 0;
3623}
3624
3625/* Function: simple_overlay_update
5417f6dc
RM
3626 If OSECT is NULL, then update all sections' mapped state
3627 (after re-reading the entire target _ovly_table).
3628 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3629 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3630 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3631 re-read the entire cache, and go ahead and update all sections. */
3632
1c772458 3633void
fba45db2 3634simple_overlay_update (struct obj_section *osect)
c906108c 3635{
c5aa993b 3636 struct objfile *objfile;
c906108c 3637
c378eb4e 3638 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3639 if (osect)
c378eb4e 3640 /* Have we got a cached copy of the target's overlay table? */
c906108c 3641 if (cache_ovly_table != NULL)
9cc89665
MS
3642 {
3643 /* Does its cached location match what's currently in the
3644 symtab? */
3b7344d5 3645 struct bound_minimal_symbol minsym
9cc89665
MS
3646 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3647
3b7344d5 3648 if (minsym.minsym == NULL)
9cc89665
MS
3649 error (_("Error reading inferior's overlay table: couldn't "
3650 "find `_ovly_table' array\n"
3651 "in inferior. Use `overlay manual' mode."));
3652
77e371c0 3653 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3654 /* Then go ahead and try to look up this single section in
3655 the cache. */
3656 if (simple_overlay_update_1 (osect))
3657 /* Found it! We're done. */
3658 return;
3659 }
c906108c
SS
3660
3661 /* Cached table no good: need to read the entire table anew.
3662 Or else we want all the sections, in which case it's actually
3663 more efficient to read the whole table in one block anyway. */
3664
0d43edd1
JB
3665 if (! simple_read_overlay_table ())
3666 return;
3667
c378eb4e 3668 /* Now may as well update all sections, even if only one was requested. */
c906108c 3669 ALL_OBJSECTIONS (objfile, osect)
714835d5 3670 if (section_is_overlay (osect))
c5aa993b 3671 {
764c99c1 3672 int i;
fbd35540
MS
3673 bfd *obfd = osect->objfile->obfd;
3674 asection *bsect = osect->the_bfd_section;
c5aa993b 3675
c5aa993b 3676 for (i = 0; i < cache_novlys; i++)
fbd35540 3677 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3678 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3679 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3680 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3681 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3682 }
3683 }
c906108c
SS
3684}
3685
086df311
DJ
3686/* Set the output sections and output offsets for section SECTP in
3687 ABFD. The relocation code in BFD will read these offsets, so we
3688 need to be sure they're initialized. We map each section to itself,
3689 with no offset; this means that SECTP->vma will be honored. */
3690
3691static void
3692symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3693{
3694 sectp->output_section = sectp;
3695 sectp->output_offset = 0;
3696}
3697
ac8035ab
TG
3698/* Default implementation for sym_relocate. */
3699
ac8035ab
TG
3700bfd_byte *
3701default_symfile_relocate (struct objfile *objfile, asection *sectp,
3702 bfd_byte *buf)
3703{
3019eac3
DE
3704 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3705 DWO file. */
3706 bfd *abfd = sectp->owner;
ac8035ab
TG
3707
3708 /* We're only interested in sections with relocation
3709 information. */
3710 if ((sectp->flags & SEC_RELOC) == 0)
3711 return NULL;
3712
3713 /* We will handle section offsets properly elsewhere, so relocate as if
3714 all sections begin at 0. */
3715 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3716
3717 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3718}
3719
086df311
DJ
3720/* Relocate the contents of a debug section SECTP in ABFD. The
3721 contents are stored in BUF if it is non-NULL, or returned in a
3722 malloc'd buffer otherwise.
3723
3724 For some platforms and debug info formats, shared libraries contain
3725 relocations against the debug sections (particularly for DWARF-2;
3726 one affected platform is PowerPC GNU/Linux, although it depends on
3727 the version of the linker in use). Also, ELF object files naturally
3728 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3729 the relocations in order to get the locations of symbols correct.
3730 Another example that may require relocation processing, is the
3731 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3732 debug section. */
086df311
DJ
3733
3734bfd_byte *
ac8035ab
TG
3735symfile_relocate_debug_section (struct objfile *objfile,
3736 asection *sectp, bfd_byte *buf)
086df311 3737{
ac8035ab 3738 gdb_assert (objfile->sf->sym_relocate);
086df311 3739
ac8035ab 3740 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3741}
c906108c 3742
31d99776
DJ
3743struct symfile_segment_data *
3744get_symfile_segment_data (bfd *abfd)
3745{
00b5771c 3746 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3747
3748 if (sf == NULL)
3749 return NULL;
3750
3751 return sf->sym_segments (abfd);
3752}
3753
3754void
3755free_symfile_segment_data (struct symfile_segment_data *data)
3756{
3757 xfree (data->segment_bases);
3758 xfree (data->segment_sizes);
3759 xfree (data->segment_info);
3760 xfree (data);
3761}
3762
28c32713
JB
3763/* Given:
3764 - DATA, containing segment addresses from the object file ABFD, and
3765 the mapping from ABFD's sections onto the segments that own them,
3766 and
3767 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3768 segment addresses reported by the target,
3769 store the appropriate offsets for each section in OFFSETS.
3770
3771 If there are fewer entries in SEGMENT_BASES than there are segments
3772 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3773
8d385431
DJ
3774 If there are more entries, then ignore the extra. The target may
3775 not be able to distinguish between an empty data segment and a
3776 missing data segment; a missing text segment is less plausible. */
3b7bacac 3777
31d99776 3778int
3189cb12
DE
3779symfile_map_offsets_to_segments (bfd *abfd,
3780 const struct symfile_segment_data *data,
31d99776
DJ
3781 struct section_offsets *offsets,
3782 int num_segment_bases,
3783 const CORE_ADDR *segment_bases)
3784{
3785 int i;
3786 asection *sect;
3787
28c32713
JB
3788 /* It doesn't make sense to call this function unless you have some
3789 segment base addresses. */
202b96c1 3790 gdb_assert (num_segment_bases > 0);
28c32713 3791
31d99776
DJ
3792 /* If we do not have segment mappings for the object file, we
3793 can not relocate it by segments. */
3794 gdb_assert (data != NULL);
3795 gdb_assert (data->num_segments > 0);
3796
31d99776
DJ
3797 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3798 {
31d99776
DJ
3799 int which = data->segment_info[i];
3800
28c32713
JB
3801 gdb_assert (0 <= which && which <= data->num_segments);
3802
3803 /* Don't bother computing offsets for sections that aren't
3804 loaded as part of any segment. */
3805 if (! which)
3806 continue;
3807
3808 /* Use the last SEGMENT_BASES entry as the address of any extra
3809 segments mentioned in DATA->segment_info. */
31d99776 3810 if (which > num_segment_bases)
28c32713 3811 which = num_segment_bases;
31d99776 3812
28c32713
JB
3813 offsets->offsets[i] = (segment_bases[which - 1]
3814 - data->segment_bases[which - 1]);
31d99776
DJ
3815 }
3816
3817 return 1;
3818}
3819
3820static void
3821symfile_find_segment_sections (struct objfile *objfile)
3822{
3823 bfd *abfd = objfile->obfd;
3824 int i;
3825 asection *sect;
3826 struct symfile_segment_data *data;
3827
3828 data = get_symfile_segment_data (objfile->obfd);
3829 if (data == NULL)
3830 return;
3831
3832 if (data->num_segments != 1 && data->num_segments != 2)
3833 {
3834 free_symfile_segment_data (data);
3835 return;
3836 }
3837
3838 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3839 {
31d99776
DJ
3840 int which = data->segment_info[i];
3841
3842 if (which == 1)
3843 {
3844 if (objfile->sect_index_text == -1)
3845 objfile->sect_index_text = sect->index;
3846
3847 if (objfile->sect_index_rodata == -1)
3848 objfile->sect_index_rodata = sect->index;
3849 }
3850 else if (which == 2)
3851 {
3852 if (objfile->sect_index_data == -1)
3853 objfile->sect_index_data = sect->index;
3854
3855 if (objfile->sect_index_bss == -1)
3856 objfile->sect_index_bss = sect->index;
3857 }
3858 }
3859
3860 free_symfile_segment_data (data);
3861}
3862
76ad5e1e
NB
3863/* Listen for free_objfile events. */
3864
3865static void
3866symfile_free_objfile (struct objfile *objfile)
3867{
c33b2f12
MM
3868 /* Remove the target sections owned by this objfile. */
3869 if (objfile != NULL)
76ad5e1e
NB
3870 remove_target_sections ((void *) objfile);
3871}
3872
540c2971
DE
3873/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3874 Expand all symtabs that match the specified criteria.
3875 See quick_symbol_functions.expand_symtabs_matching for details. */
3876
3877void
bb4142cf
DE
3878expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3879 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3880 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3881 enum search_domain kind,
3882 void *data)
540c2971
DE
3883{
3884 struct objfile *objfile;
3885
3886 ALL_OBJFILES (objfile)
3887 {
3888 if (objfile->sf)
bb4142cf 3889 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3890 symbol_matcher,
3891 expansion_notify, kind,
bb4142cf 3892 data);
540c2971
DE
3893 }
3894}
3895
3896/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3897 Map function FUN over every file.
3898 See quick_symbol_functions.map_symbol_filenames for details. */
3899
3900void
bb4142cf
DE
3901map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3902 int need_fullname)
540c2971
DE
3903{
3904 struct objfile *objfile;
3905
3906 ALL_OBJFILES (objfile)
3907 {
3908 if (objfile->sf)
3909 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3910 need_fullname);
3911 }
3912}
3913
c906108c 3914void
fba45db2 3915_initialize_symfile (void)
c906108c
SS
3916{
3917 struct cmd_list_element *c;
c5aa993b 3918
76ad5e1e
NB
3919 observer_attach_free_objfile (symfile_free_objfile);
3920
1a966eab
AC
3921 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3922Load symbol table from executable file FILE.\n\
c906108c 3923The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3924to execute."), &cmdlist);
5ba2abeb 3925 set_cmd_completer (c, filename_completer);
c906108c 3926
1a966eab 3927 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3928Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3929Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3930 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3931The optional arguments are section-name section-address pairs and\n\
3932should be specified if the data and bss segments are not contiguous\n\
1a966eab 3933with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3934 &cmdlist);
5ba2abeb 3935 set_cmd_completer (c, filename_completer);
c906108c 3936
63644780
NB
3937 c = add_cmd ("remove-symbol-file", class_files,
3938 remove_symbol_file_command, _("\
3939Remove a symbol file added via the add-symbol-file command.\n\
3940Usage: remove-symbol-file FILENAME\n\
3941 remove-symbol-file -a ADDRESS\n\
3942The file to remove can be identified by its filename or by an address\n\
3943that lies within the boundaries of this symbol file in memory."),
3944 &cmdlist);
3945
1a966eab
AC
3946 c = add_cmd ("load", class_files, load_command, _("\
3947Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3948for access from GDB.\n\
3949A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3950 set_cmd_completer (c, filename_completer);
c906108c 3951
c5aa993b 3952 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3953 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3954 "overlay ", 0, &cmdlist);
3955
3956 add_com_alias ("ovly", "overlay", class_alias, 1);
3957 add_com_alias ("ov", "overlay", class_alias, 1);
3958
c5aa993b 3959 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3960 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3961
c5aa993b 3962 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3963 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3964
c5aa993b 3965 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3966 _("List mappings of overlay sections."), &overlaylist);
c906108c 3967
c5aa993b 3968 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3969 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3970 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3971 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3972 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3973 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3974 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3975 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3976
3977 /* Filename extension to source language lookup table: */
26c41df3
AC
3978 add_setshow_string_noescape_cmd ("extension-language", class_files,
3979 &ext_args, _("\
3980Set mapping between filename extension and source language."), _("\
3981Show mapping between filename extension and source language."), _("\
3982Usage: set extension-language .foo bar"),
3983 set_ext_lang_command,
920d2a44 3984 show_ext_args,
26c41df3 3985 &setlist, &showlist);
c906108c 3986
c5aa993b 3987 add_info ("extensions", info_ext_lang_command,
1bedd215 3988 _("All filename extensions associated with a source language."));
917317f4 3989
525226b5
AC
3990 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3991 &debug_file_directory, _("\
24ddea62
JK
3992Set the directories where separate debug symbols are searched for."), _("\
3993Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3994Separate debug symbols are first searched for in the same\n\
3995directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3996and lastly at the path of the directory of the binary with\n\
24ddea62 3997each global debug-file-directory component prepended."),
525226b5 3998 NULL,
920d2a44 3999 show_debug_file_directory,
525226b5 4000 &setlist, &showlist);
770e7fc7
DE
4001
4002 add_setshow_enum_cmd ("symbol-loading", no_class,
4003 print_symbol_loading_enums, &print_symbol_loading,
4004 _("\
4005Set printing of symbol loading messages."), _("\
4006Show printing of symbol loading messages."), _("\
4007off == turn all messages off\n\
4008brief == print messages for the executable,\n\
4009 and brief messages for shared libraries\n\
4010full == print messages for the executable,\n\
4011 and messages for each shared library."),
4012 NULL,
4013 NULL,
4014 &setprintlist, &showprintlist);
c906108c 4015}
This page took 2.36472 seconds and 4 git commands to generate.