* top.c (xgdb_verbose): Remove.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* Functions this file defines. */
c906108c 86
a14ed312 87static void load_command (char *, int);
c906108c 88
d7db6da9
FN
89static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
a14ed312 91static void add_symbol_file_command (char *, int);
c906108c 92
a14ed312 93bfd *symfile_bfd_open (char *);
c906108c 94
0e931cf0
JB
95int get_section_index (struct objfile *, char *);
96
00b5771c 97static const struct sym_fns *find_sym_fns (bfd *);
c906108c 98
a14ed312 99static void decrement_reading_symtab (void *);
c906108c 100
a14ed312 101static void overlay_invalidate_all (void);
c906108c 102
a14ed312 103void list_overlays_command (char *, int);
c906108c 104
a14ed312 105void map_overlay_command (char *, int);
c906108c 106
a14ed312 107void unmap_overlay_command (char *, int);
c906108c 108
a14ed312 109static void overlay_auto_command (char *, int);
c906108c 110
a14ed312 111static void overlay_manual_command (char *, int);
c906108c 112
a14ed312 113static void overlay_off_command (char *, int);
c906108c 114
a14ed312 115static void overlay_load_command (char *, int);
c906108c 116
a14ed312 117static void overlay_command (char *, int);
c906108c 118
a14ed312 119static void simple_free_overlay_table (void);
c906108c 120
e17a4113
UW
121static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
122 enum bfd_endian);
c906108c 123
a14ed312 124static int simple_read_overlay_table (void);
c906108c 125
a14ed312 126static int simple_overlay_update_1 (struct obj_section *);
c906108c 127
a14ed312 128static void add_filename_language (char *ext, enum language lang);
392a587b 129
a14ed312 130static void info_ext_lang_command (char *args, int from_tty);
392a587b 131
a14ed312 132static void init_filename_language_table (void);
392a587b 133
31d99776
DJ
134static void symfile_find_segment_sections (struct objfile *objfile);
135
a14ed312 136void _initialize_symfile (void);
c906108c
SS
137
138/* List of all available sym_fns. On gdb startup, each object file reader
139 calls add_symtab_fns() to register information on each format it is
c378eb4e 140 prepared to read. */
c906108c 141
00b5771c
TT
142typedef const struct sym_fns *sym_fns_ptr;
143DEF_VEC_P (sym_fns_ptr);
144
145static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 146
b7209cb4
FF
147/* If non-zero, shared library symbols will be added automatically
148 when the inferior is created, new libraries are loaded, or when
149 attaching to the inferior. This is almost always what users will
150 want to have happen; but for very large programs, the startup time
151 will be excessive, and so if this is a problem, the user can clear
152 this flag and then add the shared library symbols as needed. Note
153 that there is a potential for confusion, since if the shared
c906108c 154 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 155 report all the functions that are actually present. */
c906108c
SS
156
157int auto_solib_add = 1;
c906108c 158\f
c5aa993b 159
c906108c
SS
160/* Make a null terminated copy of the string at PTR with SIZE characters in
161 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 162 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 163 may be part of a larger string and we are only saving a substring. */
c906108c
SS
164
165char *
63ca651f 166obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 167{
52f0bd74 168 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
169 /* Open-coded memcpy--saves function call time. These strings are usually
170 short. FIXME: Is this really still true with a compiler that can
c378eb4e 171 inline memcpy? */
c906108c 172 {
aa1ee363
AC
173 const char *p1 = ptr;
174 char *p2 = p;
63ca651f 175 const char *end = ptr + size;
433759f7 176
c906108c
SS
177 while (p1 != end)
178 *p2++ = *p1++;
179 }
180 p[size] = 0;
181 return p;
182}
183
3e43a32a
MS
184/* Concatenate NULL terminated variable argument list of `const char *'
185 strings; return the new string. Space is found in the OBSTACKP.
186 Argument list must be terminated by a sentinel expression `(char *)
187 NULL'. */
c906108c
SS
188
189char *
48cb83fd 190obconcat (struct obstack *obstackp, ...)
c906108c 191{
48cb83fd
JK
192 va_list ap;
193
194 va_start (ap, obstackp);
195 for (;;)
196 {
197 const char *s = va_arg (ap, const char *);
198
199 if (s == NULL)
200 break;
201
202 obstack_grow_str (obstackp, s);
203 }
204 va_end (ap);
205 obstack_1grow (obstackp, 0);
206
207 return obstack_finish (obstackp);
c906108c
SS
208}
209
0d14a781 210/* True if we are reading a symbol table. */
c906108c
SS
211
212int currently_reading_symtab = 0;
213
214static void
fba45db2 215decrement_reading_symtab (void *dummy)
c906108c
SS
216{
217 currently_reading_symtab--;
218}
219
ccefe4c4
TT
220/* Increment currently_reading_symtab and return a cleanup that can be
221 used to decrement it. */
222struct cleanup *
223increment_reading_symtab (void)
c906108c 224{
ccefe4c4
TT
225 ++currently_reading_symtab;
226 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
227}
228
5417f6dc
RM
229/* Remember the lowest-addressed loadable section we've seen.
230 This function is called via bfd_map_over_sections.
c906108c
SS
231
232 In case of equal vmas, the section with the largest size becomes the
233 lowest-addressed loadable section.
234
235 If the vmas and sizes are equal, the last section is considered the
236 lowest-addressed loadable section. */
237
238void
4efb68b1 239find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 240{
c5aa993b 241 asection **lowest = (asection **) obj;
c906108c 242
eb73e134 243 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
244 return;
245 if (!*lowest)
246 *lowest = sect; /* First loadable section */
247 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
248 *lowest = sect; /* A lower loadable section */
249 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
250 && (bfd_section_size (abfd, (*lowest))
251 <= bfd_section_size (abfd, sect)))
252 *lowest = sect;
253}
254
a39a16c4
MM
255/* Create a new section_addr_info, with room for NUM_SECTIONS. */
256
257struct section_addr_info *
258alloc_section_addr_info (size_t num_sections)
259{
260 struct section_addr_info *sap;
261 size_t size;
262
263 size = (sizeof (struct section_addr_info)
264 + sizeof (struct other_sections) * (num_sections - 1));
265 sap = (struct section_addr_info *) xmalloc (size);
266 memset (sap, 0, size);
267 sap->num_sections = num_sections;
268
269 return sap;
270}
62557bbc
KB
271
272/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 273 an existing section table. */
62557bbc
KB
274
275extern struct section_addr_info *
0542c86d
PA
276build_section_addr_info_from_section_table (const struct target_section *start,
277 const struct target_section *end)
62557bbc
KB
278{
279 struct section_addr_info *sap;
0542c86d 280 const struct target_section *stp;
62557bbc
KB
281 int oidx;
282
a39a16c4 283 sap = alloc_section_addr_info (end - start);
62557bbc
KB
284
285 for (stp = start, oidx = 0; stp != end; stp++)
286 {
5417f6dc 287 if (bfd_get_section_flags (stp->bfd,
fbd35540 288 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 289 && oidx < end - start)
62557bbc
KB
290 {
291 sap->other[oidx].addr = stp->addr;
5417f6dc 292 sap->other[oidx].name
fbd35540 293 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
294 sap->other[oidx].sectindex = stp->the_bfd_section->index;
295 oidx++;
296 }
297 }
298
299 return sap;
300}
301
82ccf5a5 302/* Create a section_addr_info from section offsets in ABFD. */
089b4803 303
82ccf5a5
JK
304static struct section_addr_info *
305build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
306{
307 struct section_addr_info *sap;
308 int i;
309 struct bfd_section *sec;
310
82ccf5a5
JK
311 sap = alloc_section_addr_info (bfd_count_sections (abfd));
312 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
313 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 314 {
82ccf5a5
JK
315 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
316 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
317 sap->other[i].sectindex = sec->index;
318 i++;
319 }
089b4803
TG
320 return sap;
321}
322
82ccf5a5
JK
323/* Create a section_addr_info from section offsets in OBJFILE. */
324
325struct section_addr_info *
326build_section_addr_info_from_objfile (const struct objfile *objfile)
327{
328 struct section_addr_info *sap;
329 int i;
330
331 /* Before reread_symbols gets rewritten it is not safe to call:
332 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
333 */
334 sap = build_section_addr_info_from_bfd (objfile->obfd);
335 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
336 {
337 int sectindex = sap->other[i].sectindex;
338
339 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
340 }
341 return sap;
342}
62557bbc 343
c378eb4e 344/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
345
346extern void
347free_section_addr_info (struct section_addr_info *sap)
348{
349 int idx;
350
a39a16c4 351 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 352 if (sap->other[idx].name)
b8c9b27d
KB
353 xfree (sap->other[idx].name);
354 xfree (sap);
62557bbc
KB
355}
356
357
e8289572
JB
358/* Initialize OBJFILE's sect_index_* members. */
359static void
360init_objfile_sect_indices (struct objfile *objfile)
c906108c 361{
e8289572 362 asection *sect;
c906108c 363 int i;
5417f6dc 364
b8fbeb18 365 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 366 if (sect)
b8fbeb18
EZ
367 objfile->sect_index_text = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_data = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_bss = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_rodata = sect->index;
380
bbcd32ad
FF
381 /* This is where things get really weird... We MUST have valid
382 indices for the various sect_index_* members or gdb will abort.
383 So if for example, there is no ".text" section, we have to
31d99776
DJ
384 accomodate that. First, check for a file with the standard
385 one or two segments. */
386
387 symfile_find_segment_sections (objfile);
388
389 /* Except when explicitly adding symbol files at some address,
390 section_offsets contains nothing but zeros, so it doesn't matter
391 which slot in section_offsets the individual sect_index_* members
392 index into. So if they are all zero, it is safe to just point
393 all the currently uninitialized indices to the first slot. But
394 beware: if this is the main executable, it may be relocated
395 later, e.g. by the remote qOffsets packet, and then this will
396 be wrong! That's why we try segments first. */
bbcd32ad
FF
397
398 for (i = 0; i < objfile->num_sections; i++)
399 {
400 if (ANOFFSET (objfile->section_offsets, i) != 0)
401 {
402 break;
403 }
404 }
405 if (i == objfile->num_sections)
406 {
407 if (objfile->sect_index_text == -1)
408 objfile->sect_index_text = 0;
409 if (objfile->sect_index_data == -1)
410 objfile->sect_index_data = 0;
411 if (objfile->sect_index_bss == -1)
412 objfile->sect_index_bss = 0;
413 if (objfile->sect_index_rodata == -1)
414 objfile->sect_index_rodata = 0;
415 }
b8fbeb18 416}
c906108c 417
c1bd25fd
DJ
418/* The arguments to place_section. */
419
420struct place_section_arg
421{
422 struct section_offsets *offsets;
423 CORE_ADDR lowest;
424};
425
426/* Find a unique offset to use for loadable section SECT if
427 the user did not provide an offset. */
428
2c0b251b 429static void
c1bd25fd
DJ
430place_section (bfd *abfd, asection *sect, void *obj)
431{
432 struct place_section_arg *arg = obj;
433 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
434 int done;
3bd72c6f 435 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 436
2711e456
DJ
437 /* We are only interested in allocated sections. */
438 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
439 return;
440
441 /* If the user specified an offset, honor it. */
442 if (offsets[sect->index] != 0)
443 return;
444
445 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
446 start_addr = (arg->lowest + align - 1) & -align;
447
c1bd25fd
DJ
448 do {
449 asection *cur_sec;
c1bd25fd 450
c1bd25fd
DJ
451 done = 1;
452
453 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
454 {
455 int indx = cur_sec->index;
c1bd25fd
DJ
456
457 /* We don't need to compare against ourself. */
458 if (cur_sec == sect)
459 continue;
460
2711e456
DJ
461 /* We can only conflict with allocated sections. */
462 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
463 continue;
464
465 /* If the section offset is 0, either the section has not been placed
466 yet, or it was the lowest section placed (in which case LOWEST
467 will be past its end). */
468 if (offsets[indx] == 0)
469 continue;
470
471 /* If this section would overlap us, then we must move up. */
472 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
473 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
474 {
475 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
476 start_addr = (start_addr + align - 1) & -align;
477 done = 0;
3bd72c6f 478 break;
c1bd25fd
DJ
479 }
480
481 /* Otherwise, we appear to be OK. So far. */
482 }
483 }
484 while (!done);
485
486 offsets[sect->index] = start_addr;
487 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 488}
e8289572 489
75242ef4
JK
490/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
491 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
492 entries. */
e8289572
JB
493
494void
75242ef4
JK
495relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
496 int num_sections,
497 struct section_addr_info *addrs)
e8289572
JB
498{
499 int i;
500
75242ef4 501 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 502
c378eb4e 503 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 504 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 505 {
75242ef4 506 struct other_sections *osp;
e8289572 507
75242ef4 508 osp = &addrs->other[i];
5488dafb 509 if (osp->sectindex == -1)
e8289572
JB
510 continue;
511
c378eb4e 512 /* Record all sections in offsets. */
e8289572 513 /* The section_offsets in the objfile are here filled in using
c378eb4e 514 the BFD index. */
75242ef4
JK
515 section_offsets->offsets[osp->sectindex] = osp->addr;
516 }
517}
518
1276c759
JK
519/* Transform section name S for a name comparison. prelink can split section
520 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
521 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
522 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
523 (`.sbss') section has invalid (increased) virtual address. */
524
525static const char *
526addr_section_name (const char *s)
527{
528 if (strcmp (s, ".dynbss") == 0)
529 return ".bss";
530 if (strcmp (s, ".sdynbss") == 0)
531 return ".sbss";
532
533 return s;
534}
535
82ccf5a5
JK
536/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
537 their (name, sectindex) pair. sectindex makes the sort by name stable. */
538
539static int
540addrs_section_compar (const void *ap, const void *bp)
541{
542 const struct other_sections *a = *((struct other_sections **) ap);
543 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 544 int retval;
82ccf5a5 545
1276c759 546 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
547 if (retval)
548 return retval;
549
5488dafb 550 return a->sectindex - b->sectindex;
82ccf5a5
JK
551}
552
553/* Provide sorted array of pointers to sections of ADDRS. The array is
554 terminated by NULL. Caller is responsible to call xfree for it. */
555
556static struct other_sections **
557addrs_section_sort (struct section_addr_info *addrs)
558{
559 struct other_sections **array;
560 int i;
561
562 /* `+ 1' for the NULL terminator. */
563 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
564 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565 array[i] = &addrs->other[i];
566 array[i] = NULL;
567
568 qsort (array, i, sizeof (*array), addrs_section_compar);
569
570 return array;
571}
572
75242ef4 573/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
574 also SECTINDEXes specific to ABFD there. This function can be used to
575 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
576
577void
578addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
579{
580 asection *lower_sect;
75242ef4
JK
581 CORE_ADDR lower_offset;
582 int i;
82ccf5a5
JK
583 struct cleanup *my_cleanup;
584 struct section_addr_info *abfd_addrs;
585 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
586 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
587
588 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
589 continguous sections. */
590 lower_sect = NULL;
591 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
592 if (lower_sect == NULL)
593 {
594 warning (_("no loadable sections found in added symbol-file %s"),
595 bfd_get_filename (abfd));
596 lower_offset = 0;
e8289572 597 }
75242ef4
JK
598 else
599 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
600
82ccf5a5
JK
601 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
602 in ABFD. Section names are not unique - there can be multiple sections of
603 the same name. Also the sections of the same name do not have to be
604 adjacent to each other. Some sections may be present only in one of the
605 files. Even sections present in both files do not have to be in the same
606 order.
607
608 Use stable sort by name for the sections in both files. Then linearly
609 scan both lists matching as most of the entries as possible. */
610
611 addrs_sorted = addrs_section_sort (addrs);
612 my_cleanup = make_cleanup (xfree, addrs_sorted);
613
614 abfd_addrs = build_section_addr_info_from_bfd (abfd);
615 make_cleanup_free_section_addr_info (abfd_addrs);
616 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
617 make_cleanup (xfree, abfd_addrs_sorted);
618
c378eb4e
MS
619 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
620 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
621
622 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
623 * addrs->num_sections);
624 make_cleanup (xfree, addrs_to_abfd_addrs);
625
626 while (*addrs_sorted)
627 {
1276c759 628 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
629
630 while (*abfd_addrs_sorted
1276c759
JK
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) < 0)
82ccf5a5
JK
633 abfd_addrs_sorted++;
634
635 if (*abfd_addrs_sorted
1276c759
JK
636 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
637 sect_name) == 0)
82ccf5a5
JK
638 {
639 int index_in_addrs;
640
641 /* Make the found item directly addressable from ADDRS. */
642 index_in_addrs = *addrs_sorted - addrs->other;
643 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
644 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
645
646 /* Never use the same ABFD entry twice. */
647 abfd_addrs_sorted++;
648 }
649
650 addrs_sorted++;
651 }
652
75242ef4
JK
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
82ccf5a5 665 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
666
667 if (sect)
75242ef4 668 {
c378eb4e 669 /* This is the index used by BFD. */
82ccf5a5 670 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
671
672 if (addrs->other[i].addr != 0)
75242ef4 673 {
82ccf5a5 674 addrs->other[i].addr -= sect->addr;
75242ef4 675 lower_offset = addrs->other[i].addr;
75242ef4
JK
676 }
677 else
672d9c23 678 addrs->other[i].addr = lower_offset;
75242ef4
JK
679 }
680 else
672d9c23 681 {
1276c759
JK
682 /* addr_section_name transformation is not used for SECT_NAME. */
683 const char *sect_name = addrs->other[i].name;
684
b0fcb67f
JK
685 /* This section does not exist in ABFD, which is normally
686 unexpected and we want to issue a warning.
687
4d9743af
JK
688 However, the ELF prelinker does create a few sections which are
689 marked in the main executable as loadable (they are loaded in
690 memory from the DYNAMIC segment) and yet are not present in
691 separate debug info files. This is fine, and should not cause
692 a warning. Shared libraries contain just the section
693 ".gnu.liblist" but it is not marked as loadable there. There is
694 no other way to identify them than by their name as the sections
1276c759
JK
695 created by prelink have no special flags.
696
697 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
698
699 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 700 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
701 || (strcmp (sect_name, ".bss") == 0
702 && i > 0
703 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
704 && addrs_to_abfd_addrs[i - 1] != NULL)
705 || (strcmp (sect_name, ".sbss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
709 warning (_("section %s not found in %s"), sect_name,
710 bfd_get_filename (abfd));
711
672d9c23 712 addrs->other[i].addr = 0;
5488dafb 713 addrs->other[i].sectindex = -1;
672d9c23 714 }
75242ef4 715 }
82ccf5a5
JK
716
717 do_cleanups (my_cleanup);
75242ef4
JK
718}
719
720/* Parse the user's idea of an offset for dynamic linking, into our idea
721 of how to represent it for fast symbol reading. This is the default
722 version of the sym_fns.sym_offsets function for symbol readers that
723 don't need to do anything special. It allocates a section_offsets table
724 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
725
726void
727default_symfile_offsets (struct objfile *objfile,
728 struct section_addr_info *addrs)
729{
730 objfile->num_sections = bfd_count_sections (objfile->obfd);
731 objfile->section_offsets = (struct section_offsets *)
732 obstack_alloc (&objfile->objfile_obstack,
733 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
734 relative_addr_info_to_section_offsets (objfile->section_offsets,
735 objfile->num_sections, addrs);
e8289572 736
c1bd25fd
DJ
737 /* For relocatable files, all loadable sections will start at zero.
738 The zero is meaningless, so try to pick arbitrary addresses such
739 that no loadable sections overlap. This algorithm is quadratic,
740 but the number of sections in a single object file is generally
741 small. */
742 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
743 {
744 struct place_section_arg arg;
2711e456
DJ
745 bfd *abfd = objfile->obfd;
746 asection *cur_sec;
2711e456
DJ
747
748 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
749 /* We do not expect this to happen; just skip this step if the
750 relocatable file has a section with an assigned VMA. */
751 if (bfd_section_vma (abfd, cur_sec) != 0)
752 break;
753
754 if (cur_sec == NULL)
755 {
756 CORE_ADDR *offsets = objfile->section_offsets->offsets;
757
758 /* Pick non-overlapping offsets for sections the user did not
759 place explicitly. */
760 arg.offsets = objfile->section_offsets;
761 arg.lowest = 0;
762 bfd_map_over_sections (objfile->obfd, place_section, &arg);
763
764 /* Correctly filling in the section offsets is not quite
765 enough. Relocatable files have two properties that
766 (most) shared objects do not:
767
768 - Their debug information will contain relocations. Some
769 shared libraries do also, but many do not, so this can not
770 be assumed.
771
772 - If there are multiple code sections they will be loaded
773 at different relative addresses in memory than they are
774 in the objfile, since all sections in the file will start
775 at address zero.
776
777 Because GDB has very limited ability to map from an
778 address in debug info to the correct code section,
779 it relies on adding SECT_OFF_TEXT to things which might be
780 code. If we clear all the section offsets, and set the
781 section VMAs instead, then symfile_relocate_debug_section
782 will return meaningful debug information pointing at the
783 correct sections.
784
785 GDB has too many different data structures for section
786 addresses - a bfd, objfile, and so_list all have section
787 tables, as does exec_ops. Some of these could probably
788 be eliminated. */
789
790 for (cur_sec = abfd->sections; cur_sec != NULL;
791 cur_sec = cur_sec->next)
792 {
793 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
794 continue;
795
796 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
797 exec_set_section_address (bfd_get_filename (abfd),
798 cur_sec->index,
30510692 799 offsets[cur_sec->index]);
2711e456
DJ
800 offsets[cur_sec->index] = 0;
801 }
802 }
c1bd25fd
DJ
803 }
804
e8289572 805 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 806 .rodata sections. */
e8289572
JB
807 init_objfile_sect_indices (objfile);
808}
809
810
31d99776
DJ
811/* Divide the file into segments, which are individual relocatable units.
812 This is the default version of the sym_fns.sym_segments function for
813 symbol readers that do not have an explicit representation of segments.
814 It assumes that object files do not have segments, and fully linked
815 files have a single segment. */
816
817struct symfile_segment_data *
818default_symfile_segments (bfd *abfd)
819{
820 int num_sections, i;
821 asection *sect;
822 struct symfile_segment_data *data;
823 CORE_ADDR low, high;
824
825 /* Relocatable files contain enough information to position each
826 loadable section independently; they should not be relocated
827 in segments. */
828 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
829 return NULL;
830
831 /* Make sure there is at least one loadable section in the file. */
832 for (sect = abfd->sections; sect != NULL; sect = sect->next)
833 {
834 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
835 continue;
836
837 break;
838 }
839 if (sect == NULL)
840 return NULL;
841
842 low = bfd_get_section_vma (abfd, sect);
843 high = low + bfd_get_section_size (sect);
844
845 data = XZALLOC (struct symfile_segment_data);
846 data->num_segments = 1;
847 data->segment_bases = XCALLOC (1, CORE_ADDR);
848 data->segment_sizes = XCALLOC (1, CORE_ADDR);
849
850 num_sections = bfd_count_sections (abfd);
851 data->segment_info = XCALLOC (num_sections, int);
852
853 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
854 {
855 CORE_ADDR vma;
856
857 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
858 continue;
859
860 vma = bfd_get_section_vma (abfd, sect);
861 if (vma < low)
862 low = vma;
863 if (vma + bfd_get_section_size (sect) > high)
864 high = vma + bfd_get_section_size (sect);
865
866 data->segment_info[i] = 1;
867 }
868
869 data->segment_bases[0] = low;
870 data->segment_sizes[0] = high - low;
871
872 return data;
873}
874
608e2dbb
TT
875/* This is a convenience function to call sym_read for OBJFILE and
876 possibly force the partial symbols to be read. */
877
878static void
879read_symbols (struct objfile *objfile, int add_flags)
880{
881 (*objfile->sf->sym_read) (objfile, add_flags);
882 if (!objfile_has_partial_symbols (objfile))
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 symbol_file_add_separate (abfd, add_flags, objfile);
889
890 do_cleanups (cleanup);
891 }
892 if ((add_flags & SYMFILE_NO_READ) == 0)
893 require_partial_symbols (objfile, 0);
894}
895
3d6e24f0
JB
896/* Initialize entry point information for this objfile. */
897
898static void
899init_entry_point_info (struct objfile *objfile)
900{
901 /* Save startup file's range of PC addresses to help blockframe.c
902 decide where the bottom of the stack is. */
903
904 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
905 {
906 /* Executable file -- record its entry point so we'll recognize
907 the startup file because it contains the entry point. */
908 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
909 objfile->ei.entry_point_p = 1;
910 }
911 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
912 && bfd_get_start_address (objfile->obfd) != 0)
913 {
914 /* Some shared libraries may have entry points set and be
915 runnable. There's no clear way to indicate this, so just check
916 for values other than zero. */
917 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
918 objfile->ei.entry_point_p = 1;
919 }
920 else
921 {
922 /* Examination of non-executable.o files. Short-circuit this stuff. */
923 objfile->ei.entry_point_p = 0;
924 }
925
926 if (objfile->ei.entry_point_p)
927 {
928 CORE_ADDR entry_point = objfile->ei.entry_point;
929
930 /* Make certain that the address points at real code, and not a
931 function descriptor. */
932 entry_point
933 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
934 entry_point,
935 &current_target);
936
937 /* Remove any ISA markers, so that this matches entries in the
938 symbol table. */
939 objfile->ei.entry_point
940 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
941 }
942}
943
c906108c
SS
944/* Process a symbol file, as either the main file or as a dynamically
945 loaded file.
946
36e4d068
JB
947 This function does not set the OBJFILE's entry-point info.
948
96baa820
JM
949 OBJFILE is where the symbols are to be read from.
950
7e8580c1
JB
951 ADDRS is the list of section load addresses. If the user has given
952 an 'add-symbol-file' command, then this is the list of offsets and
953 addresses he or she provided as arguments to the command; or, if
954 we're handling a shared library, these are the actual addresses the
955 sections are loaded at, according to the inferior's dynamic linker
956 (as gleaned by GDB's shared library code). We convert each address
957 into an offset from the section VMA's as it appears in the object
958 file, and then call the file's sym_offsets function to convert this
959 into a format-specific offset table --- a `struct section_offsets'.
960 If ADDRS is non-zero, OFFSETS must be zero.
961
962 OFFSETS is a table of section offsets already in the right
963 format-specific representation. NUM_OFFSETS is the number of
964 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
965 assume this is the proper table the call to sym_offsets described
966 above would produce. Instead of calling sym_offsets, we just dump
967 it right into objfile->section_offsets. (When we're re-reading
968 symbols from an objfile, we don't have the original load address
969 list any more; all we have is the section offset table.) If
970 OFFSETS is non-zero, ADDRS must be zero.
96baa820 971
7eedccfa
PP
972 ADD_FLAGS encodes verbosity level, whether this is main symbol or
973 an extra symbol file such as dynamically loaded code, and wether
974 breakpoint reset should be deferred. */
c906108c 975
36e4d068
JB
976static void
977syms_from_objfile_1 (struct objfile *objfile,
978 struct section_addr_info *addrs,
979 struct section_offsets *offsets,
980 int num_offsets,
981 int add_flags)
c906108c 982{
a39a16c4 983 struct section_addr_info *local_addr = NULL;
c906108c 984 struct cleanup *old_chain;
7eedccfa 985 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 986
7e8580c1 987 gdb_assert (! (addrs && offsets));
2acceee2 988
31d99776 989 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 990
75245b24 991 if (objfile->sf == NULL)
36e4d068
JB
992 {
993 /* No symbols to load, but we still need to make sure
994 that the section_offsets table is allocated. */
995 int num_sections = bfd_count_sections (objfile->obfd);
996 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
997
998 objfile->num_sections = num_sections;
999 objfile->section_offsets
1000 = obstack_alloc (&objfile->objfile_obstack, size);
1001 memset (objfile->section_offsets, 0, size);
1002 return;
1003 }
75245b24 1004
c906108c
SS
1005 /* Make sure that partially constructed symbol tables will be cleaned up
1006 if an error occurs during symbol reading. */
74b7792f 1007 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1008
a39a16c4
MM
1009 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
1010 list. We now establish the convention that an addr of zero means
c378eb4e 1011 no load address was specified. */
a39a16c4
MM
1012 if (! addrs && ! offsets)
1013 {
5417f6dc 1014 local_addr
a39a16c4
MM
1015 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
1016 make_cleanup (xfree, local_addr);
1017 addrs = local_addr;
1018 }
1019
1020 /* Now either addrs or offsets is non-zero. */
1021
c5aa993b 1022 if (mainline)
c906108c
SS
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1025 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
adb7f338 1033 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
c906108c 1040
c5aa993b 1041 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
53a5351d 1046 and assume that <addr> is where that got loaded.
c906108c 1047
53a5351d
JM
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
0d15807d 1050 if (addrs && addrs->other[0].name)
75242ef4 1051 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
c378eb4e 1055 initial symbol reading for this file. */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_init) (objfile);
7eedccfa 1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1059
7e8580c1
JB
1060 if (addrs)
1061 (*objfile->sf->sym_offsets) (objfile, addrs);
1062 else
1063 {
1064 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1065
1066 /* Just copy in the offset table directly as given to us. */
1067 objfile->num_sections = num_offsets;
1068 objfile->section_offsets
1069 = ((struct section_offsets *)
8b92e4d5 1070 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1071 memcpy (objfile->section_offsets, offsets, size);
1072
1073 init_objfile_sect_indices (objfile);
1074 }
c906108c 1075
608e2dbb 1076 read_symbols (objfile, add_flags);
b11896a5 1077
c906108c
SS
1078 /* Discard cleanups as symbol reading was successful. */
1079
1080 discard_cleanups (old_chain);
f7545552 1081 xfree (local_addr);
c906108c
SS
1082}
1083
36e4d068
JB
1084/* Same as syms_from_objfile_1, but also initializes the objfile
1085 entry-point info. */
1086
1087void
1088syms_from_objfile (struct objfile *objfile,
1089 struct section_addr_info *addrs,
1090 struct section_offsets *offsets,
1091 int num_offsets,
1092 int add_flags)
1093{
1094 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1095 init_entry_point_info (objfile);
1096}
1097
c906108c
SS
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1101
c906108c 1102void
7eedccfa 1103new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1104{
c906108c 1105 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1106 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1107 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1108 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
c1e56572 1113 clear_symtab_users (add_flags);
c906108c 1114 }
7eedccfa 1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1116 {
69de3c6a 1117 breakpoint_re_set ();
c906108c
SS
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
5417f6dc 1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1128 A new reference is acquired by this function.
7904e09f 1129
7eedccfa
PP
1130 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1131 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1132
1133 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1134 syms_from_objfile, above.
1135 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1136
63524580
JK
1137 PARENT is the original objfile if ABFD is a separate debug info file.
1138 Otherwise PARENT is NULL.
1139
c906108c 1140 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1141 Upon failure, jumps back to command level (never returns). */
7eedccfa 1142
7904e09f 1143static struct objfile *
7eedccfa
PP
1144symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1145 int add_flags,
7904e09f
JB
1146 struct section_addr_info *addrs,
1147 struct section_offsets *offsets,
1148 int num_offsets,
63524580 1149 int flags, struct objfile *parent)
c906108c
SS
1150{
1151 struct objfile *objfile;
5417f6dc 1152 const char *name = bfd_get_filename (abfd);
7eedccfa 1153 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1154 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1155 const int should_print = ((from_tty || info_verbose)
1156 && (readnow_symbol_files
1157 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1158
9291a0cd 1159 if (readnow_symbol_files)
b11896a5
TT
1160 {
1161 flags |= OBJF_READNOW;
1162 add_flags &= ~SYMFILE_NO_READ;
1163 }
9291a0cd 1164
5417f6dc
RM
1165 /* Give user a chance to burp if we'd be
1166 interactively wiping out any existing symbols. */
c906108c
SS
1167
1168 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1169 && mainline
c906108c 1170 && from_tty
9e2f0ad4 1171 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1172 error (_("Not confirmed."));
c906108c 1173
0838fb57 1174 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1175
63524580
JK
1176 if (parent)
1177 add_separate_debug_objfile (objfile, parent);
1178
78a4a9b9
AC
1179 /* We either created a new mapped symbol table, mapped an existing
1180 symbol table file which has not had initial symbol reading
c378eb4e 1181 performed, or need to read an unmapped symbol table. */
b11896a5 1182 if (should_print)
c906108c 1183 {
769d7dc4
AC
1184 if (deprecated_pre_add_symbol_hook)
1185 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1186 else
c906108c 1187 {
55333a84
DE
1188 printf_unfiltered (_("Reading symbols from %s..."), name);
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
c906108c 1191 }
c906108c 1192 }
78a4a9b9 1193 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1194 add_flags);
c906108c
SS
1195
1196 /* We now have at least a partial symbol table. Check to see if the
1197 user requested that all symbols be read on initial access via either
1198 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1199 all partial symbol tables for this objfile if so. */
c906108c 1200
9291a0cd 1201 if ((flags & OBJF_READNOW))
c906108c 1202 {
b11896a5 1203 if (should_print)
c906108c 1204 {
a3f17187 1205 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1206 wrap_here ("");
1207 gdb_flush (gdb_stdout);
1208 }
1209
ccefe4c4
TT
1210 if (objfile->sf)
1211 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1212 }
1213
b11896a5 1214 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1215 {
1216 wrap_here ("");
55333a84 1217 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1218 wrap_here ("");
1219 }
1220
b11896a5 1221 if (should_print)
c906108c 1222 {
769d7dc4
AC
1223 if (deprecated_post_add_symbol_hook)
1224 deprecated_post_add_symbol_hook ();
c906108c 1225 else
55333a84 1226 printf_unfiltered (_("done.\n"));
c906108c
SS
1227 }
1228
481d0f41
JB
1229 /* We print some messages regardless of whether 'from_tty ||
1230 info_verbose' is true, so make sure they go out at the right
1231 time. */
1232 gdb_flush (gdb_stdout);
1233
109f874e 1234 if (objfile->sf == NULL)
8caee43b
PP
1235 {
1236 observer_notify_new_objfile (objfile);
c378eb4e 1237 return objfile; /* No symbols. */
8caee43b 1238 }
109f874e 1239
7eedccfa 1240 new_symfile_objfile (objfile, add_flags);
c906108c 1241
06d3b283 1242 observer_notify_new_objfile (objfile);
c906108c 1243
ce7d4522 1244 bfd_cache_close_all ();
c906108c
SS
1245 return (objfile);
1246}
1247
9cce227f
TG
1248/* Add BFD as a separate debug file for OBJFILE. */
1249
1250void
1251symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1252{
15d123c9 1253 struct objfile *new_objfile;
089b4803
TG
1254 struct section_addr_info *sap;
1255 struct cleanup *my_cleanup;
1256
1257 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1258 because sections of BFD may not match sections of OBJFILE and because
1259 vma may have been modified by tools such as prelink. */
1260 sap = build_section_addr_info_from_objfile (objfile);
1261 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1262
15d123c9 1263 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1264 (bfd, symfile_flags,
089b4803 1265 sap, NULL, 0,
9cce227f 1266 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1267 | OBJF_USERLOADED),
1268 objfile);
089b4803
TG
1269
1270 do_cleanups (my_cleanup);
9cce227f 1271}
7904e09f 1272
eb4556d7
JB
1273/* Process the symbol file ABFD, as either the main file or as a
1274 dynamically loaded file.
1275
1276 See symbol_file_add_with_addrs_or_offsets's comments for
1277 details. */
1278struct objfile *
7eedccfa 1279symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1280 struct section_addr_info *addrs,
63524580 1281 int flags, struct objfile *parent)
eb4556d7 1282{
7eedccfa 1283 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1284 flags, parent);
eb4556d7
JB
1285}
1286
1287
7904e09f
JB
1288/* Process a symbol file, as either the main file or as a dynamically
1289 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1290 for details. */
1291struct objfile *
7eedccfa
PP
1292symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1293 int flags)
7904e09f 1294{
8ac244b4
TT
1295 bfd *bfd = symfile_bfd_open (name);
1296 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1297 struct objfile *objf;
1298
882f447f 1299 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1300 do_cleanups (cleanup);
1301 return objf;
7904e09f
JB
1302}
1303
1304
d7db6da9
FN
1305/* Call symbol_file_add() with default values and update whatever is
1306 affected by the loading of a new main().
1307 Used when the file is supplied in the gdb command line
1308 and by some targets with special loading requirements.
1309 The auxiliary function, symbol_file_add_main_1(), has the flags
1310 argument for the switches that can only be specified in the symbol_file
1311 command itself. */
5417f6dc 1312
1adeb98a
FN
1313void
1314symbol_file_add_main (char *args, int from_tty)
1315{
d7db6da9
FN
1316 symbol_file_add_main_1 (args, from_tty, 0);
1317}
1318
1319static void
1320symbol_file_add_main_1 (char *args, int from_tty, int flags)
1321{
7dcd53a0
TT
1322 const int add_flags = (current_inferior ()->symfile_flags
1323 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1324
7eedccfa 1325 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1326
d7db6da9
FN
1327 /* Getting new symbols may change our opinion about
1328 what is frameless. */
1329 reinit_frame_cache ();
1330
7dcd53a0
TT
1331 if ((flags & SYMFILE_NO_READ) == 0)
1332 set_initial_language ();
1adeb98a
FN
1333}
1334
1335void
1336symbol_file_clear (int from_tty)
1337{
1338 if ((have_full_symbols () || have_partial_symbols ())
1339 && from_tty
0430b0d6
AS
1340 && (symfile_objfile
1341 ? !query (_("Discard symbol table from `%s'? "),
1342 symfile_objfile->name)
1343 : !query (_("Discard symbol table? "))))
8a3fe4f8 1344 error (_("Not confirmed."));
1adeb98a 1345
0133421a
JK
1346 /* solib descriptors may have handles to objfiles. Wipe them before their
1347 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1348 no_shared_libraries (NULL, from_tty);
1349
0133421a
JK
1350 free_all_objfiles ();
1351
adb7f338 1352 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1353 if (from_tty)
1354 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1355}
1356
5b5d99cf
JB
1357static char *
1358get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1359{
1360 asection *sect;
1361 bfd_size_type debuglink_size;
1362 unsigned long crc32;
1363 char *contents;
1364 int crc_offset;
5417f6dc 1365
5b5d99cf
JB
1366 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1367
1368 if (sect == NULL)
1369 return NULL;
1370
1371 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1372
5b5d99cf
JB
1373 contents = xmalloc (debuglink_size);
1374 bfd_get_section_contents (objfile->obfd, sect, contents,
1375 (file_ptr)0, (bfd_size_type)debuglink_size);
1376
c378eb4e 1377 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1378 crc_offset = strlen (contents) + 1;
1379 crc_offset = (crc_offset + 3) & ~3;
1380
1381 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1382
5b5d99cf
JB
1383 *crc32_out = crc32;
1384 return contents;
1385}
1386
904578ed
JK
1387/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1388 return 1. Otherwise print a warning and return 0. ABFD seek position is
1389 not preserved. */
1390
1391static int
1392get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1393{
1394 unsigned long file_crc = 0;
1395
1396 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1397 {
1398 warning (_("Problem reading \"%s\" for CRC: %s"),
1399 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1400 return 0;
1401 }
1402
1403 for (;;)
1404 {
1405 gdb_byte buffer[8 * 1024];
1406 bfd_size_type count;
1407
1408 count = bfd_bread (buffer, sizeof (buffer), abfd);
1409 if (count == (bfd_size_type) -1)
1410 {
1411 warning (_("Problem reading \"%s\" for CRC: %s"),
1412 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1413 return 0;
1414 }
1415 if (count == 0)
1416 break;
1417 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1418 }
1419
1420 *file_crc_return = file_crc;
1421 return 1;
1422}
1423
5b5d99cf 1424static int
287ccc17 1425separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1426 struct objfile *parent_objfile)
5b5d99cf 1427{
904578ed
JK
1428 unsigned long file_crc;
1429 int file_crc_p;
f1838a98 1430 bfd *abfd;
32a0e547 1431 struct stat parent_stat, abfd_stat;
904578ed 1432 int verified_as_different;
32a0e547
JK
1433
1434 /* Find a separate debug info file as if symbols would be present in
1435 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1436 section can contain just the basename of PARENT_OBJFILE without any
1437 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1438 the separate debug infos with the same basename can exist. */
32a0e547 1439
0ba1096a 1440 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1441 return 0;
5b5d99cf 1442
08d2cd74 1443 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1444
1445 if (!abfd)
5b5d99cf
JB
1446 return 0;
1447
0ba1096a 1448 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1449
1450 Some operating systems, e.g. Windows, do not provide a meaningful
1451 st_ino; they always set it to zero. (Windows does provide a
1452 meaningful st_dev.) Do not indicate a duplicate library in that
1453 case. While there is no guarantee that a system that provides
1454 meaningful inode numbers will never set st_ino to zero, this is
1455 merely an optimization, so we do not need to worry about false
1456 negatives. */
1457
1458 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1459 && abfd_stat.st_ino != 0
1460 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1461 {
904578ed
JK
1462 if (abfd_stat.st_dev == parent_stat.st_dev
1463 && abfd_stat.st_ino == parent_stat.st_ino)
1464 {
cbb099e8 1465 gdb_bfd_unref (abfd);
904578ed
JK
1466 return 0;
1467 }
1468 verified_as_different = 1;
32a0e547 1469 }
904578ed
JK
1470 else
1471 verified_as_different = 0;
32a0e547 1472
904578ed 1473 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1474
cbb099e8 1475 gdb_bfd_unref (abfd);
5b5d99cf 1476
904578ed
JK
1477 if (!file_crc_p)
1478 return 0;
1479
287ccc17
JK
1480 if (crc != file_crc)
1481 {
904578ed
JK
1482 /* If one (or both) the files are accessed for example the via "remote:"
1483 gdbserver way it does not support the bfd_stat operation. Verify
1484 whether those two files are not the same manually. */
1485
1486 if (!verified_as_different && !parent_objfile->crc32_p)
1487 {
1488 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1489 &parent_objfile->crc32);
1490 if (!parent_objfile->crc32_p)
1491 return 0;
1492 }
1493
0e8aefe7 1494 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1495 warning (_("the debug information found in \"%s\""
1496 " does not match \"%s\" (CRC mismatch).\n"),
1497 name, parent_objfile->name);
1498
287ccc17
JK
1499 return 0;
1500 }
1501
1502 return 1;
5b5d99cf
JB
1503}
1504
aa28a74e 1505char *debug_file_directory = NULL;
920d2a44
AC
1506static void
1507show_debug_file_directory (struct ui_file *file, int from_tty,
1508 struct cmd_list_element *c, const char *value)
1509{
3e43a32a
MS
1510 fprintf_filtered (file,
1511 _("The directory where separate debug "
1512 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1513 value);
1514}
5b5d99cf
JB
1515
1516#if ! defined (DEBUG_SUBDIRECTORY)
1517#define DEBUG_SUBDIRECTORY ".debug"
1518#endif
1519
1db33378
PP
1520/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1521 where the original file resides (may not be the same as
1522 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1523 looking for. Returns the name of the debuginfo, of NULL. */
1524
1525static char *
1526find_separate_debug_file (const char *dir,
1527 const char *canon_dir,
1528 const char *debuglink,
1529 unsigned long crc32, struct objfile *objfile)
9cce227f 1530{
1db33378
PP
1531 char *debugdir;
1532 char *debugfile;
9cce227f 1533 int i;
e4ab2fad
JK
1534 VEC (char_ptr) *debugdir_vec;
1535 struct cleanup *back_to;
1536 int ix;
5b5d99cf 1537
1db33378 1538 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1539 i = strlen (dir);
1db33378
PP
1540 if (canon_dir != NULL && strlen (canon_dir) > i)
1541 i = strlen (canon_dir);
1ffa32ee 1542
25522fae
JK
1543 debugfile = xmalloc (strlen (debug_file_directory) + 1
1544 + i
1545 + strlen (DEBUG_SUBDIRECTORY)
1546 + strlen ("/")
1db33378 1547 + strlen (debuglink)
25522fae 1548 + 1);
5b5d99cf
JB
1549
1550 /* First try in the same directory as the original file. */
1551 strcpy (debugfile, dir);
1db33378 1552 strcat (debugfile, debuglink);
5b5d99cf 1553
32a0e547 1554 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1555 return debugfile;
5417f6dc 1556
5b5d99cf
JB
1557 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1558 strcpy (debugfile, dir);
1559 strcat (debugfile, DEBUG_SUBDIRECTORY);
1560 strcat (debugfile, "/");
1db33378 1561 strcat (debugfile, debuglink);
5b5d99cf 1562
32a0e547 1563 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1564 return debugfile;
5417f6dc 1565
24ddea62 1566 /* Then try in the global debugfile directories.
f888f159 1567
24ddea62
JK
1568 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1569 cause "/..." lookups. */
5417f6dc 1570
e4ab2fad
JK
1571 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1572 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1573
e4ab2fad
JK
1574 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1575 {
1576 strcpy (debugfile, debugdir);
aa28a74e 1577 strcat (debugfile, "/");
24ddea62 1578 strcat (debugfile, dir);
1db33378 1579 strcat (debugfile, debuglink);
aa28a74e 1580
32a0e547 1581 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1582 return debugfile;
24ddea62
JK
1583
1584 /* If the file is in the sysroot, try using its base path in the
1585 global debugfile directory. */
1db33378
PP
1586 if (canon_dir != NULL
1587 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1588 strlen (gdb_sysroot)) == 0
1db33378 1589 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1590 {
e4ab2fad 1591 strcpy (debugfile, debugdir);
1db33378 1592 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1593 strcat (debugfile, "/");
1db33378 1594 strcat (debugfile, debuglink);
24ddea62 1595
32a0e547 1596 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1597 return debugfile;
24ddea62 1598 }
aa28a74e 1599 }
f888f159 1600
e4ab2fad 1601 do_cleanups (back_to);
25522fae 1602 xfree (debugfile);
1db33378
PP
1603 return NULL;
1604}
1605
1606/* Modify PATH to contain only "directory/" part of PATH.
1607 If there were no directory separators in PATH, PATH will be empty
1608 string on return. */
1609
1610static void
1611terminate_after_last_dir_separator (char *path)
1612{
1613 int i;
1614
1615 /* Strip off the final filename part, leaving the directory name,
1616 followed by a slash. The directory can be relative or absolute. */
1617 for (i = strlen(path) - 1; i >= 0; i--)
1618 if (IS_DIR_SEPARATOR (path[i]))
1619 break;
1620
1621 /* If I is -1 then no directory is present there and DIR will be "". */
1622 path[i + 1] = '\0';
1623}
1624
1625/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1626 Returns pathname, or NULL. */
1627
1628char *
1629find_separate_debug_file_by_debuglink (struct objfile *objfile)
1630{
1631 char *debuglink;
1632 char *dir, *canon_dir;
1633 char *debugfile;
1634 unsigned long crc32;
1635 struct cleanup *cleanups;
1636
1637 debuglink = get_debug_link_info (objfile, &crc32);
1638
1639 if (debuglink == NULL)
1640 {
1641 /* There's no separate debug info, hence there's no way we could
1642 load it => no warning. */
1643 return NULL;
1644 }
1645
71bdabee 1646 cleanups = make_cleanup (xfree, debuglink);
1db33378 1647 dir = xstrdup (objfile->name);
71bdabee 1648 make_cleanup (xfree, dir);
1db33378
PP
1649 terminate_after_last_dir_separator (dir);
1650 canon_dir = lrealpath (dir);
1651
1652 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1653 crc32, objfile);
1654 xfree (canon_dir);
1655
1656 if (debugfile == NULL)
1657 {
1658#ifdef HAVE_LSTAT
1659 /* For PR gdb/9538, try again with realpath (if different from the
1660 original). */
1661
1662 struct stat st_buf;
1663
1664 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1665 {
1666 char *symlink_dir;
1667
1668 symlink_dir = lrealpath (objfile->name);
1669 if (symlink_dir != NULL)
1670 {
1671 make_cleanup (xfree, symlink_dir);
1672 terminate_after_last_dir_separator (symlink_dir);
1673 if (strcmp (dir, symlink_dir) != 0)
1674 {
1675 /* Different directory, so try using it. */
1676 debugfile = find_separate_debug_file (symlink_dir,
1677 symlink_dir,
1678 debuglink,
1679 crc32,
1680 objfile);
1681 }
1682 }
1683 }
1684#endif /* HAVE_LSTAT */
1685 }
aa28a74e 1686
1db33378 1687 do_cleanups (cleanups);
25522fae 1688 return debugfile;
5b5d99cf
JB
1689}
1690
1691
c906108c
SS
1692/* This is the symbol-file command. Read the file, analyze its
1693 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1694 the command is rather bizarre:
1695
1696 1. The function buildargv implements various quoting conventions
1697 which are undocumented and have little or nothing in common with
1698 the way things are quoted (or not quoted) elsewhere in GDB.
1699
1700 2. Options are used, which are not generally used in GDB (perhaps
1701 "set mapped on", "set readnow on" would be better)
1702
1703 3. The order of options matters, which is contrary to GNU
c906108c
SS
1704 conventions (because it is confusing and inconvenient). */
1705
1706void
fba45db2 1707symbol_file_command (char *args, int from_tty)
c906108c 1708{
c906108c
SS
1709 dont_repeat ();
1710
1711 if (args == NULL)
1712 {
1adeb98a 1713 symbol_file_clear (from_tty);
c906108c
SS
1714 }
1715 else
1716 {
d1a41061 1717 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1718 int flags = OBJF_USERLOADED;
1719 struct cleanup *cleanups;
1720 char *name = NULL;
1721
7a292a7a 1722 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1723 while (*argv != NULL)
1724 {
78a4a9b9
AC
1725 if (strcmp (*argv, "-readnow") == 0)
1726 flags |= OBJF_READNOW;
1727 else if (**argv == '-')
8a3fe4f8 1728 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1729 else
1730 {
cb2f3a29 1731 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1732 name = *argv;
78a4a9b9 1733 }
cb2f3a29 1734
c906108c
SS
1735 argv++;
1736 }
1737
1738 if (name == NULL)
cb2f3a29
MK
1739 error (_("no symbol file name was specified"));
1740
c906108c
SS
1741 do_cleanups (cleanups);
1742 }
1743}
1744
1745/* Set the initial language.
1746
cb2f3a29
MK
1747 FIXME: A better solution would be to record the language in the
1748 psymtab when reading partial symbols, and then use it (if known) to
1749 set the language. This would be a win for formats that encode the
1750 language in an easily discoverable place, such as DWARF. For
1751 stabs, we can jump through hoops looking for specially named
1752 symbols or try to intuit the language from the specific type of
1753 stabs we find, but we can't do that until later when we read in
1754 full symbols. */
c906108c 1755
8b60591b 1756void
fba45db2 1757set_initial_language (void)
c906108c 1758{
c5aa993b 1759 enum language lang = language_unknown;
c906108c 1760
01f8c46d
JK
1761 if (language_of_main != language_unknown)
1762 lang = language_of_main;
1763 else
1764 {
1765 const char *filename;
f888f159 1766
01f8c46d
JK
1767 filename = find_main_filename ();
1768 if (filename != NULL)
1769 lang = deduce_language_from_filename (filename);
1770 }
cb2f3a29 1771
ccefe4c4
TT
1772 if (lang == language_unknown)
1773 {
1774 /* Make C the default language */
1775 lang = language_c;
c906108c 1776 }
ccefe4c4
TT
1777
1778 set_language (lang);
1779 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1780}
1781
874f5765 1782/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1783 open it normally. Returns a new reference to the BFD. On error,
1784 returns NULL with the BFD error set. */
874f5765
TG
1785
1786bfd *
08d2cd74 1787gdb_bfd_open_maybe_remote (const char *name)
874f5765 1788{
520b0001
TT
1789 bfd *result;
1790
874f5765 1791 if (remote_filename_p (name))
520b0001 1792 result = remote_bfd_open (name, gnutarget);
874f5765 1793 else
1c00ec6b 1794 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1795
520b0001 1796 return result;
874f5765
TG
1797}
1798
1799
cb2f3a29
MK
1800/* Open the file specified by NAME and hand it off to BFD for
1801 preliminary analysis. Return a newly initialized bfd *, which
1802 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1803 absolute). In case of trouble, error() is called. */
c906108c
SS
1804
1805bfd *
fba45db2 1806symfile_bfd_open (char *name)
c906108c
SS
1807{
1808 bfd *sym_bfd;
1809 int desc;
1810 char *absolute_name;
1811
f1838a98
UW
1812 if (remote_filename_p (name))
1813 {
520b0001 1814 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1815 if (!sym_bfd)
a4453b7e
TT
1816 error (_("`%s': can't open to read symbols: %s."), name,
1817 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1818
1819 if (!bfd_check_format (sym_bfd, bfd_object))
1820 {
f9a062ff 1821 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1822 error (_("`%s': can't read symbols: %s."), name,
1823 bfd_errmsg (bfd_get_error ()));
1824 }
1825
1826 return sym_bfd;
1827 }
1828
cb2f3a29 1829 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1830
1831 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1832 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1833 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1834#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1835 if (desc < 0)
1836 {
1837 char *exename = alloca (strlen (name) + 5);
433759f7 1838
c906108c 1839 strcat (strcpy (exename, name), ".exe");
014d698b 1840 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1841 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1842 }
1843#endif
1844 if (desc < 0)
1845 {
b8c9b27d 1846 make_cleanup (xfree, name);
c906108c
SS
1847 perror_with_name (name);
1848 }
cb2f3a29 1849
cb2f3a29
MK
1850 xfree (name);
1851 name = absolute_name;
a4453b7e 1852 make_cleanup (xfree, name);
c906108c 1853
1c00ec6b 1854 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c
SS
1855 if (!sym_bfd)
1856 {
b8c9b27d 1857 make_cleanup (xfree, name);
f1838a98 1858 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1859 bfd_errmsg (bfd_get_error ()));
1860 }
549c1eea 1861 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1862
1863 if (!bfd_check_format (sym_bfd, bfd_object))
1864 {
f9a062ff 1865 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1866 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1867 bfd_errmsg (bfd_get_error ()));
1868 }
cb2f3a29
MK
1869
1870 return sym_bfd;
c906108c
SS
1871}
1872
cb2f3a29
MK
1873/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1874 the section was not found. */
1875
0e931cf0
JB
1876int
1877get_section_index (struct objfile *objfile, char *section_name)
1878{
1879 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1880
0e931cf0
JB
1881 if (sect)
1882 return sect->index;
1883 else
1884 return -1;
1885}
1886
cb2f3a29
MK
1887/* Link SF into the global symtab_fns list. Called on startup by the
1888 _initialize routine in each object file format reader, to register
b021a221 1889 information about each format the reader is prepared to handle. */
c906108c
SS
1890
1891void
00b5771c 1892add_symtab_fns (const struct sym_fns *sf)
c906108c 1893{
00b5771c 1894 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1895}
1896
cb2f3a29
MK
1897/* Initialize OBJFILE to read symbols from its associated BFD. It
1898 either returns or calls error(). The result is an initialized
1899 struct sym_fns in the objfile structure, that contains cached
1900 information about the symbol file. */
c906108c 1901
00b5771c 1902static const struct sym_fns *
31d99776 1903find_sym_fns (bfd *abfd)
c906108c 1904{
00b5771c 1905 const struct sym_fns *sf;
31d99776 1906 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1907 int i;
c906108c 1908
75245b24
MS
1909 if (our_flavour == bfd_target_srec_flavour
1910 || our_flavour == bfd_target_ihex_flavour
1911 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1912 return NULL; /* No symbols. */
75245b24 1913
00b5771c 1914 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1915 if (our_flavour == sf->sym_flavour)
1916 return sf;
cb2f3a29 1917
8a3fe4f8 1918 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1919 bfd_get_target (abfd));
c906108c
SS
1920}
1921\f
cb2f3a29 1922
c906108c
SS
1923/* This function runs the load command of our current target. */
1924
1925static void
fba45db2 1926load_command (char *arg, int from_tty)
c906108c 1927{
e5cc9f32
JB
1928 dont_repeat ();
1929
4487aabf
PA
1930 /* The user might be reloading because the binary has changed. Take
1931 this opportunity to check. */
1932 reopen_exec_file ();
1933 reread_symbols ();
1934
c906108c 1935 if (arg == NULL)
1986bccd
AS
1936 {
1937 char *parg;
1938 int count = 0;
1939
1940 parg = arg = get_exec_file (1);
1941
1942 /* Count how many \ " ' tab space there are in the name. */
1943 while ((parg = strpbrk (parg, "\\\"'\t ")))
1944 {
1945 parg++;
1946 count++;
1947 }
1948
1949 if (count)
1950 {
1951 /* We need to quote this string so buildargv can pull it apart. */
1952 char *temp = xmalloc (strlen (arg) + count + 1 );
1953 char *ptemp = temp;
1954 char *prev;
1955
1956 make_cleanup (xfree, temp);
1957
1958 prev = parg = arg;
1959 while ((parg = strpbrk (parg, "\\\"'\t ")))
1960 {
1961 strncpy (ptemp, prev, parg - prev);
1962 ptemp += parg - prev;
1963 prev = parg++;
1964 *ptemp++ = '\\';
1965 }
1966 strcpy (ptemp, prev);
1967
1968 arg = temp;
1969 }
1970 }
1971
c906108c 1972 target_load (arg, from_tty);
2889e661
JB
1973
1974 /* After re-loading the executable, we don't really know which
1975 overlays are mapped any more. */
1976 overlay_cache_invalid = 1;
c906108c
SS
1977}
1978
1979/* This version of "load" should be usable for any target. Currently
1980 it is just used for remote targets, not inftarg.c or core files,
1981 on the theory that only in that case is it useful.
1982
1983 Avoiding xmodem and the like seems like a win (a) because we don't have
1984 to worry about finding it, and (b) On VMS, fork() is very slow and so
1985 we don't want to run a subprocess. On the other hand, I'm not sure how
1986 performance compares. */
917317f4 1987
917317f4
JM
1988static int validate_download = 0;
1989
e4f9b4d5
MS
1990/* Callback service function for generic_load (bfd_map_over_sections). */
1991
1992static void
1993add_section_size_callback (bfd *abfd, asection *asec, void *data)
1994{
1995 bfd_size_type *sum = data;
1996
2c500098 1997 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1998}
1999
2000/* Opaque data for load_section_callback. */
2001struct load_section_data {
2002 unsigned long load_offset;
a76d924d
DJ
2003 struct load_progress_data *progress_data;
2004 VEC(memory_write_request_s) *requests;
2005};
2006
2007/* Opaque data for load_progress. */
2008struct load_progress_data {
2009 /* Cumulative data. */
e4f9b4d5
MS
2010 unsigned long write_count;
2011 unsigned long data_count;
2012 bfd_size_type total_size;
a76d924d
DJ
2013};
2014
2015/* Opaque data for load_progress for a single section. */
2016struct load_progress_section_data {
2017 struct load_progress_data *cumulative;
cf7a04e8 2018
a76d924d 2019 /* Per-section data. */
cf7a04e8
DJ
2020 const char *section_name;
2021 ULONGEST section_sent;
2022 ULONGEST section_size;
2023 CORE_ADDR lma;
2024 gdb_byte *buffer;
e4f9b4d5
MS
2025};
2026
a76d924d 2027/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
2028
2029static void
2030load_progress (ULONGEST bytes, void *untyped_arg)
2031{
a76d924d
DJ
2032 struct load_progress_section_data *args = untyped_arg;
2033 struct load_progress_data *totals;
2034
2035 if (args == NULL)
2036 /* Writing padding data. No easy way to get at the cumulative
2037 stats, so just ignore this. */
2038 return;
2039
2040 totals = args->cumulative;
2041
2042 if (bytes == 0 && args->section_sent == 0)
2043 {
2044 /* The write is just starting. Let the user know we've started
2045 this section. */
79a45e25 2046 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 2047 args->section_name, hex_string (args->section_size),
f5656ead 2048 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
2049 return;
2050 }
cf7a04e8
DJ
2051
2052 if (validate_download)
2053 {
2054 /* Broken memories and broken monitors manifest themselves here
2055 when bring new computers to life. This doubles already slow
2056 downloads. */
2057 /* NOTE: cagney/1999-10-18: A more efficient implementation
2058 might add a verify_memory() method to the target vector and
2059 then use that. remote.c could implement that method using
2060 the ``qCRC'' packet. */
2061 gdb_byte *check = xmalloc (bytes);
2062 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2063
2064 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 2065 error (_("Download verify read failed at %s"),
f5656ead 2066 paddress (target_gdbarch (), args->lma));
cf7a04e8 2067 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 2068 error (_("Download verify compare failed at %s"),
f5656ead 2069 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
2070 do_cleanups (verify_cleanups);
2071 }
a76d924d 2072 totals->data_count += bytes;
cf7a04e8
DJ
2073 args->lma += bytes;
2074 args->buffer += bytes;
a76d924d 2075 totals->write_count += 1;
cf7a04e8 2076 args->section_sent += bytes;
522002f9 2077 if (check_quit_flag ()
cf7a04e8
DJ
2078 || (deprecated_ui_load_progress_hook != NULL
2079 && deprecated_ui_load_progress_hook (args->section_name,
2080 args->section_sent)))
2081 error (_("Canceled the download"));
2082
2083 if (deprecated_show_load_progress != NULL)
2084 deprecated_show_load_progress (args->section_name,
2085 args->section_sent,
2086 args->section_size,
a76d924d
DJ
2087 totals->data_count,
2088 totals->total_size);
cf7a04e8
DJ
2089}
2090
e4f9b4d5
MS
2091/* Callback service function for generic_load (bfd_map_over_sections). */
2092
2093static void
2094load_section_callback (bfd *abfd, asection *asec, void *data)
2095{
a76d924d 2096 struct memory_write_request *new_request;
e4f9b4d5 2097 struct load_section_data *args = data;
a76d924d 2098 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2099 bfd_size_type size = bfd_get_section_size (asec);
2100 gdb_byte *buffer;
cf7a04e8 2101 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2102
cf7a04e8
DJ
2103 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2104 return;
e4f9b4d5 2105
cf7a04e8
DJ
2106 if (size == 0)
2107 return;
e4f9b4d5 2108
a76d924d
DJ
2109 new_request = VEC_safe_push (memory_write_request_s,
2110 args->requests, NULL);
2111 memset (new_request, 0, sizeof (struct memory_write_request));
2112 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2113 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2114 new_request->end = new_request->begin + size; /* FIXME Should size
2115 be in instead? */
a76d924d
DJ
2116 new_request->data = xmalloc (size);
2117 new_request->baton = section_data;
cf7a04e8 2118
a76d924d 2119 buffer = new_request->data;
cf7a04e8 2120
a76d924d
DJ
2121 section_data->cumulative = args->progress_data;
2122 section_data->section_name = sect_name;
2123 section_data->section_size = size;
2124 section_data->lma = new_request->begin;
2125 section_data->buffer = buffer;
cf7a04e8
DJ
2126
2127 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2128}
2129
2130/* Clean up an entire memory request vector, including load
2131 data and progress records. */
cf7a04e8 2132
a76d924d
DJ
2133static void
2134clear_memory_write_data (void *arg)
2135{
2136 VEC(memory_write_request_s) **vec_p = arg;
2137 VEC(memory_write_request_s) *vec = *vec_p;
2138 int i;
2139 struct memory_write_request *mr;
cf7a04e8 2140
a76d924d
DJ
2141 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2142 {
2143 xfree (mr->data);
2144 xfree (mr->baton);
2145 }
2146 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2147}
2148
c906108c 2149void
917317f4 2150generic_load (char *args, int from_tty)
c906108c 2151{
c906108c 2152 bfd *loadfile_bfd;
2b71414d 2153 struct timeval start_time, end_time;
917317f4 2154 char *filename;
1986bccd 2155 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2156 struct load_section_data cbdata;
a76d924d 2157 struct load_progress_data total_progress;
79a45e25 2158 struct ui_out *uiout = current_uiout;
a76d924d 2159
e4f9b4d5 2160 CORE_ADDR entry;
1986bccd 2161 char **argv;
e4f9b4d5 2162
a76d924d
DJ
2163 memset (&cbdata, 0, sizeof (cbdata));
2164 memset (&total_progress, 0, sizeof (total_progress));
2165 cbdata.progress_data = &total_progress;
2166
2167 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2168
d1a41061
PP
2169 if (args == NULL)
2170 error_no_arg (_("file to load"));
1986bccd 2171
d1a41061 2172 argv = gdb_buildargv (args);
1986bccd
AS
2173 make_cleanup_freeargv (argv);
2174
2175 filename = tilde_expand (argv[0]);
2176 make_cleanup (xfree, filename);
2177
2178 if (argv[1] != NULL)
917317f4
JM
2179 {
2180 char *endptr;
ba5f2f8a 2181
1986bccd
AS
2182 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2183
2184 /* If the last word was not a valid number then
2185 treat it as a file name with spaces in. */
2186 if (argv[1] == endptr)
2187 error (_("Invalid download offset:%s."), argv[1]);
2188
2189 if (argv[2] != NULL)
2190 error (_("Too many parameters."));
917317f4 2191 }
c906108c 2192
c378eb4e 2193 /* Open the file for loading. */
1c00ec6b 2194 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2195 if (loadfile_bfd == NULL)
2196 {
2197 perror_with_name (filename);
2198 return;
2199 }
917317f4 2200
f9a062ff 2201 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2202
c5aa993b 2203 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2204 {
8a3fe4f8 2205 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2206 bfd_errmsg (bfd_get_error ()));
2207 }
c5aa993b 2208
5417f6dc 2209 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2210 (void *) &total_progress.total_size);
2211
2212 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2213
2b71414d 2214 gettimeofday (&start_time, NULL);
c906108c 2215
a76d924d
DJ
2216 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2217 load_progress) != 0)
2218 error (_("Load failed"));
c906108c 2219
2b71414d 2220 gettimeofday (&end_time, NULL);
ba5f2f8a 2221
e4f9b4d5 2222 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2223 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2224 ui_out_text (uiout, "Start address ");
f5656ead 2225 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2226 ui_out_text (uiout, ", load size ");
a76d924d 2227 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2228 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2229 /* We were doing this in remote-mips.c, I suspect it is right
2230 for other targets too. */
fb14de7b 2231 regcache_write_pc (get_current_regcache (), entry);
c906108c 2232
38963c97
DJ
2233 /* Reset breakpoints, now that we have changed the load image. For
2234 instance, breakpoints may have been set (or reset, by
2235 post_create_inferior) while connected to the target but before we
2236 loaded the program. In that case, the prologue analyzer could
2237 have read instructions from the target to find the right
2238 breakpoint locations. Loading has changed the contents of that
2239 memory. */
2240
2241 breakpoint_re_set ();
2242
7ca9f392
AC
2243 /* FIXME: are we supposed to call symbol_file_add or not? According
2244 to a comment from remote-mips.c (where a call to symbol_file_add
2245 was commented out), making the call confuses GDB if more than one
2246 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2247 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2248
a76d924d
DJ
2249 print_transfer_performance (gdb_stdout, total_progress.data_count,
2250 total_progress.write_count,
2251 &start_time, &end_time);
c906108c
SS
2252
2253 do_cleanups (old_cleanups);
2254}
2255
c378eb4e 2256/* Report how fast the transfer went. */
c906108c 2257
917317f4 2258void
d9fcf2fb 2259print_transfer_performance (struct ui_file *stream,
917317f4
JM
2260 unsigned long data_count,
2261 unsigned long write_count,
2b71414d
DJ
2262 const struct timeval *start_time,
2263 const struct timeval *end_time)
917317f4 2264{
9f43d28c 2265 ULONGEST time_count;
79a45e25 2266 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2267
2268 /* Compute the elapsed time in milliseconds, as a tradeoff between
2269 accuracy and overflow. */
2270 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2271 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2272
8b93c638
JM
2273 ui_out_text (uiout, "Transfer rate: ");
2274 if (time_count > 0)
2275 {
9f43d28c
DJ
2276 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2277
2278 if (ui_out_is_mi_like_p (uiout))
2279 {
2280 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2281 ui_out_text (uiout, " bits/sec");
2282 }
2283 else if (rate < 1024)
2284 {
2285 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2286 ui_out_text (uiout, " bytes/sec");
2287 }
2288 else
2289 {
2290 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2291 ui_out_text (uiout, " KB/sec");
2292 }
8b93c638
JM
2293 }
2294 else
2295 {
ba5f2f8a 2296 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2297 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2298 }
2299 if (write_count > 0)
2300 {
2301 ui_out_text (uiout, ", ");
ba5f2f8a 2302 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2303 ui_out_text (uiout, " bytes/write");
2304 }
2305 ui_out_text (uiout, ".\n");
c906108c
SS
2306}
2307
2308/* This function allows the addition of incrementally linked object files.
2309 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2310/* Note: ezannoni 2000-04-13 This function/command used to have a
2311 special case syntax for the rombug target (Rombug is the boot
2312 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2313 rombug case, the user doesn't need to supply a text address,
2314 instead a call to target_link() (in target.c) would supply the
c378eb4e 2315 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2316
c906108c 2317static void
fba45db2 2318add_symbol_file_command (char *args, int from_tty)
c906108c 2319{
5af949e3 2320 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2321 char *filename = NULL;
2df3850c 2322 int flags = OBJF_USERLOADED;
c906108c 2323 char *arg;
db162d44 2324 int section_index = 0;
2acceee2
JM
2325 int argcnt = 0;
2326 int sec_num = 0;
2327 int i;
db162d44
EZ
2328 int expecting_sec_name = 0;
2329 int expecting_sec_addr = 0;
5b96932b 2330 char **argv;
db162d44 2331
a39a16c4 2332 struct sect_opt
2acceee2 2333 {
2acceee2
JM
2334 char *name;
2335 char *value;
a39a16c4 2336 };
db162d44 2337
a39a16c4
MM
2338 struct section_addr_info *section_addrs;
2339 struct sect_opt *sect_opts = NULL;
2340 size_t num_sect_opts = 0;
3017564a 2341 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2342
a39a16c4 2343 num_sect_opts = 16;
5417f6dc 2344 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2345 * sizeof (struct sect_opt));
2346
c906108c
SS
2347 dont_repeat ();
2348
2349 if (args == NULL)
8a3fe4f8 2350 error (_("add-symbol-file takes a file name and an address"));
c906108c 2351
d1a41061 2352 argv = gdb_buildargv (args);
5b96932b 2353 make_cleanup_freeargv (argv);
db162d44 2354
5b96932b
AS
2355 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2356 {
c378eb4e 2357 /* Process the argument. */
db162d44 2358 if (argcnt == 0)
c906108c 2359 {
c378eb4e 2360 /* The first argument is the file name. */
db162d44 2361 filename = tilde_expand (arg);
3017564a 2362 make_cleanup (xfree, filename);
c906108c 2363 }
db162d44 2364 else
7a78ae4e
ND
2365 if (argcnt == 1)
2366 {
2367 /* The second argument is always the text address at which
c378eb4e 2368 to load the program. */
7a78ae4e
ND
2369 sect_opts[section_index].name = ".text";
2370 sect_opts[section_index].value = arg;
f414f22f 2371 if (++section_index >= num_sect_opts)
a39a16c4
MM
2372 {
2373 num_sect_opts *= 2;
5417f6dc 2374 sect_opts = ((struct sect_opt *)
a39a16c4 2375 xrealloc (sect_opts,
5417f6dc 2376 num_sect_opts
a39a16c4
MM
2377 * sizeof (struct sect_opt)));
2378 }
7a78ae4e
ND
2379 }
2380 else
2381 {
2382 /* It's an option (starting with '-') or it's an argument
c378eb4e 2383 to an option. */
7a78ae4e
ND
2384
2385 if (*arg == '-')
2386 {
78a4a9b9
AC
2387 if (strcmp (arg, "-readnow") == 0)
2388 flags |= OBJF_READNOW;
2389 else if (strcmp (arg, "-s") == 0)
2390 {
2391 expecting_sec_name = 1;
2392 expecting_sec_addr = 1;
2393 }
7a78ae4e
ND
2394 }
2395 else
2396 {
2397 if (expecting_sec_name)
db162d44 2398 {
7a78ae4e
ND
2399 sect_opts[section_index].name = arg;
2400 expecting_sec_name = 0;
db162d44
EZ
2401 }
2402 else
7a78ae4e
ND
2403 if (expecting_sec_addr)
2404 {
2405 sect_opts[section_index].value = arg;
2406 expecting_sec_addr = 0;
f414f22f 2407 if (++section_index >= num_sect_opts)
a39a16c4
MM
2408 {
2409 num_sect_opts *= 2;
5417f6dc 2410 sect_opts = ((struct sect_opt *)
a39a16c4 2411 xrealloc (sect_opts,
5417f6dc 2412 num_sect_opts
a39a16c4
MM
2413 * sizeof (struct sect_opt)));
2414 }
7a78ae4e
ND
2415 }
2416 else
3e43a32a 2417 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2418 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2419 }
2420 }
c906108c 2421 }
c906108c 2422
927890d0
JB
2423 /* This command takes at least two arguments. The first one is a
2424 filename, and the second is the address where this file has been
2425 loaded. Abort now if this address hasn't been provided by the
2426 user. */
2427 if (section_index < 1)
2428 error (_("The address where %s has been loaded is missing"), filename);
2429
c378eb4e 2430 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2431 a sect_addr_info structure to be passed around to other
2432 functions. We have to split this up into separate print
bb599908 2433 statements because hex_string returns a local static
c378eb4e 2434 string. */
5417f6dc 2435
a3f17187 2436 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2437 section_addrs = alloc_section_addr_info (section_index);
2438 make_cleanup (xfree, section_addrs);
db162d44 2439 for (i = 0; i < section_index; i++)
c906108c 2440 {
db162d44
EZ
2441 CORE_ADDR addr;
2442 char *val = sect_opts[i].value;
2443 char *sec = sect_opts[i].name;
5417f6dc 2444
ae822768 2445 addr = parse_and_eval_address (val);
db162d44 2446
db162d44 2447 /* Here we store the section offsets in the order they were
c378eb4e 2448 entered on the command line. */
a39a16c4
MM
2449 section_addrs->other[sec_num].name = sec;
2450 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2451 printf_unfiltered ("\t%s_addr = %s\n", sec,
2452 paddress (gdbarch, addr));
db162d44
EZ
2453 sec_num++;
2454
5417f6dc 2455 /* The object's sections are initialized when a
db162d44 2456 call is made to build_objfile_section_table (objfile).
5417f6dc 2457 This happens in reread_symbols.
db162d44
EZ
2458 At this point, we don't know what file type this is,
2459 so we can't determine what section names are valid. */
2acceee2 2460 }
db162d44 2461
2acceee2 2462 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2463 error (_("Not confirmed."));
c906108c 2464
7eedccfa
PP
2465 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2466 section_addrs, flags);
c906108c
SS
2467
2468 /* Getting new symbols may change our opinion about what is
2469 frameless. */
2470 reinit_frame_cache ();
db162d44 2471 do_cleanups (my_cleanups);
c906108c
SS
2472}
2473\f
70992597 2474
4ac39b97
JK
2475typedef struct objfile *objfilep;
2476
2477DEF_VEC_P (objfilep);
2478
c906108c
SS
2479/* Re-read symbols if a symbol-file has changed. */
2480void
fba45db2 2481reread_symbols (void)
c906108c
SS
2482{
2483 struct objfile *objfile;
2484 long new_modtime;
c906108c
SS
2485 struct stat new_statbuf;
2486 int res;
4ac39b97
JK
2487 VEC (objfilep) *new_objfiles = NULL;
2488 struct cleanup *all_cleanups;
2489
2490 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2491
2492 /* With the addition of shared libraries, this should be modified,
2493 the load time should be saved in the partial symbol tables, since
2494 different tables may come from different source files. FIXME.
2495 This routine should then walk down each partial symbol table
c378eb4e 2496 and see if the symbol table that it originates from has been changed. */
c906108c 2497
c5aa993b
JM
2498 for (objfile = object_files; objfile; objfile = objfile->next)
2499 {
9cce227f
TG
2500 /* solib-sunos.c creates one objfile with obfd. */
2501 if (objfile->obfd == NULL)
2502 continue;
2503
2504 /* Separate debug objfiles are handled in the main objfile. */
2505 if (objfile->separate_debug_objfile_backlink)
2506 continue;
2507
02aeec7b
JB
2508 /* If this object is from an archive (what you usually create with
2509 `ar', often called a `static library' on most systems, though
2510 a `shared library' on AIX is also an archive), then you should
2511 stat on the archive name, not member name. */
9cce227f
TG
2512 if (objfile->obfd->my_archive)
2513 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2514 else
9cce227f
TG
2515 res = stat (objfile->name, &new_statbuf);
2516 if (res != 0)
2517 {
c378eb4e 2518 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2519 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2520 objfile->name);
2521 continue;
2522 }
2523 new_modtime = new_statbuf.st_mtime;
2524 if (new_modtime != objfile->mtime)
2525 {
2526 struct cleanup *old_cleanups;
2527 struct section_offsets *offsets;
2528 int num_offsets;
2529 char *obfd_filename;
2530
2531 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2532 objfile->name);
2533
2534 /* There are various functions like symbol_file_add,
2535 symfile_bfd_open, syms_from_objfile, etc., which might
2536 appear to do what we want. But they have various other
2537 effects which we *don't* want. So we just do stuff
2538 ourselves. We don't worry about mapped files (for one thing,
2539 any mapped file will be out of date). */
2540
2541 /* If we get an error, blow away this objfile (not sure if
2542 that is the correct response for things like shared
2543 libraries). */
2544 old_cleanups = make_cleanup_free_objfile (objfile);
2545 /* We need to do this whenever any symbols go away. */
2546 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2547
0ba1096a
KT
2548 if (exec_bfd != NULL
2549 && filename_cmp (bfd_get_filename (objfile->obfd),
2550 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2551 {
2552 /* Reload EXEC_BFD without asking anything. */
2553
2554 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2555 }
2556
f6eeced0
JK
2557 /* Keep the calls order approx. the same as in free_objfile. */
2558
2559 /* Free the separate debug objfiles. It will be
2560 automatically recreated by sym_read. */
2561 free_objfile_separate_debug (objfile);
2562
2563 /* Remove any references to this objfile in the global
2564 value lists. */
2565 preserve_values (objfile);
2566
2567 /* Nuke all the state that we will re-read. Much of the following
2568 code which sets things to NULL really is necessary to tell
2569 other parts of GDB that there is nothing currently there.
2570
2571 Try to keep the freeing order compatible with free_objfile. */
2572
2573 if (objfile->sf != NULL)
2574 {
2575 (*objfile->sf->sym_finish) (objfile);
2576 }
2577
2578 clear_objfile_data (objfile);
2579
e1507e95 2580 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2581 {
2582 struct bfd *obfd = objfile->obfd;
2583
2584 obfd_filename = bfd_get_filename (objfile->obfd);
2585 /* Open the new BFD before freeing the old one, so that
2586 the filename remains live. */
08d2cd74 2587 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2588 if (objfile->obfd == NULL)
2589 {
2590 /* We have to make a cleanup and error here, rather
2591 than erroring later, because once we unref OBFD,
2592 OBFD_FILENAME will be freed. */
2593 make_cleanup_bfd_unref (obfd);
2594 error (_("Can't open %s to read symbols."), obfd_filename);
2595 }
a4453b7e
TT
2596 gdb_bfd_unref (obfd);
2597 }
2598
e1507e95 2599 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2600 /* bfd_openr sets cacheable to true, which is what we want. */
2601 if (!bfd_check_format (objfile->obfd, bfd_object))
2602 error (_("Can't read symbols from %s: %s."), objfile->name,
2603 bfd_errmsg (bfd_get_error ()));
2604
2605 /* Save the offsets, we will nuke them with the rest of the
2606 objfile_obstack. */
2607 num_offsets = objfile->num_sections;
2608 offsets = ((struct section_offsets *)
2609 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2610 memcpy (offsets, objfile->section_offsets,
2611 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2612
9cce227f
TG
2613 /* FIXME: Do we have to free a whole linked list, or is this
2614 enough? */
2615 if (objfile->global_psymbols.list)
2616 xfree (objfile->global_psymbols.list);
2617 memset (&objfile->global_psymbols, 0,
2618 sizeof (objfile->global_psymbols));
2619 if (objfile->static_psymbols.list)
2620 xfree (objfile->static_psymbols.list);
2621 memset (&objfile->static_psymbols, 0,
2622 sizeof (objfile->static_psymbols));
2623
c378eb4e 2624 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2625 psymbol_bcache_free (objfile->psymbol_cache);
2626 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2627 if (objfile->demangled_names_hash != NULL)
2628 {
2629 htab_delete (objfile->demangled_names_hash);
2630 objfile->demangled_names_hash = NULL;
2631 }
2632 obstack_free (&objfile->objfile_obstack, 0);
2633 objfile->sections = NULL;
2634 objfile->symtabs = NULL;
2635 objfile->psymtabs = NULL;
2636 objfile->psymtabs_addrmap = NULL;
2637 objfile->free_psymtabs = NULL;
34eaf542 2638 objfile->template_symbols = NULL;
9cce227f 2639 objfile->msymbols = NULL;
9cce227f
TG
2640 objfile->minimal_symbol_count = 0;
2641 memset (&objfile->msymbol_hash, 0,
2642 sizeof (objfile->msymbol_hash));
2643 memset (&objfile->msymbol_demangled_hash, 0,
2644 sizeof (objfile->msymbol_demangled_hash));
2645
706e3705
TT
2646 set_objfile_per_bfd (objfile);
2647
9cce227f
TG
2648 /* obstack_init also initializes the obstack so it is
2649 empty. We could use obstack_specify_allocation but
d82ea6a8 2650 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2651 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2652 build_objfile_section_table (objfile);
9cce227f
TG
2653 terminate_minimal_symbol_table (objfile);
2654
2655 /* We use the same section offsets as from last time. I'm not
2656 sure whether that is always correct for shared libraries. */
2657 objfile->section_offsets = (struct section_offsets *)
2658 obstack_alloc (&objfile->objfile_obstack,
2659 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2660 memcpy (objfile->section_offsets, offsets,
2661 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2662 objfile->num_sections = num_offsets;
2663
2664 /* What the hell is sym_new_init for, anyway? The concept of
2665 distinguishing between the main file and additional files
2666 in this way seems rather dubious. */
2667 if (objfile == symfile_objfile)
c906108c 2668 {
9cce227f 2669 (*objfile->sf->sym_new_init) (objfile);
c906108c 2670 }
9cce227f
TG
2671
2672 (*objfile->sf->sym_init) (objfile);
2673 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2674
2675 objfile->flags &= ~OBJF_PSYMTABS_READ;
2676 read_symbols (objfile, 0);
b11896a5 2677
9cce227f 2678 if (!objfile_has_symbols (objfile))
c906108c 2679 {
9cce227f
TG
2680 wrap_here ("");
2681 printf_unfiltered (_("(no debugging symbols found)\n"));
2682 wrap_here ("");
c5aa993b 2683 }
9cce227f
TG
2684
2685 /* We're done reading the symbol file; finish off complaints. */
2686 clear_complaints (&symfile_complaints, 0, 1);
2687
2688 /* Getting new symbols may change our opinion about what is
2689 frameless. */
2690
2691 reinit_frame_cache ();
2692
2693 /* Discard cleanups as symbol reading was successful. */
2694 discard_cleanups (old_cleanups);
2695
2696 /* If the mtime has changed between the time we set new_modtime
2697 and now, we *want* this to be out of date, so don't call stat
2698 again now. */
2699 objfile->mtime = new_modtime;
9cce227f 2700 init_entry_point_info (objfile);
4ac39b97
JK
2701
2702 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2703 }
2704 }
c906108c 2705
4ac39b97 2706 if (new_objfiles)
ea53e89f 2707 {
4ac39b97
JK
2708 int ix;
2709
ff3536bc
UW
2710 /* Notify objfiles that we've modified objfile sections. */
2711 objfiles_changed ();
2712
c1e56572 2713 clear_symtab_users (0);
4ac39b97
JK
2714
2715 /* clear_objfile_data for each objfile was called before freeing it and
2716 observer_notify_new_objfile (NULL) has been called by
2717 clear_symtab_users above. Notify the new files now. */
2718 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2719 observer_notify_new_objfile (objfile);
2720
ea53e89f
JB
2721 /* At least one objfile has changed, so we can consider that
2722 the executable we're debugging has changed too. */
781b42b0 2723 observer_notify_executable_changed ();
ea53e89f 2724 }
4ac39b97
JK
2725
2726 do_cleanups (all_cleanups);
c906108c 2727}
c906108c
SS
2728\f
2729
c5aa993b
JM
2730
2731typedef struct
2732{
2733 char *ext;
c906108c 2734 enum language lang;
c5aa993b
JM
2735}
2736filename_language;
c906108c 2737
c5aa993b 2738static filename_language *filename_language_table;
c906108c
SS
2739static int fl_table_size, fl_table_next;
2740
2741static void
fba45db2 2742add_filename_language (char *ext, enum language lang)
c906108c
SS
2743{
2744 if (fl_table_next >= fl_table_size)
2745 {
2746 fl_table_size += 10;
5417f6dc 2747 filename_language_table =
25bf3106
PM
2748 xrealloc (filename_language_table,
2749 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2750 }
2751
4fcf66da 2752 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2753 filename_language_table[fl_table_next].lang = lang;
2754 fl_table_next++;
2755}
2756
2757static char *ext_args;
920d2a44
AC
2758static void
2759show_ext_args (struct ui_file *file, int from_tty,
2760 struct cmd_list_element *c, const char *value)
2761{
3e43a32a
MS
2762 fprintf_filtered (file,
2763 _("Mapping between filename extension "
2764 "and source language is \"%s\".\n"),
920d2a44
AC
2765 value);
2766}
c906108c
SS
2767
2768static void
26c41df3 2769set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2770{
2771 int i;
2772 char *cp = ext_args;
2773 enum language lang;
2774
c378eb4e 2775 /* First arg is filename extension, starting with '.' */
c906108c 2776 if (*cp != '.')
8a3fe4f8 2777 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2778
2779 /* Find end of first arg. */
c5aa993b 2780 while (*cp && !isspace (*cp))
c906108c
SS
2781 cp++;
2782
2783 if (*cp == '\0')
3e43a32a
MS
2784 error (_("'%s': two arguments required -- "
2785 "filename extension and language"),
c906108c
SS
2786 ext_args);
2787
c378eb4e 2788 /* Null-terminate first arg. */
c5aa993b 2789 *cp++ = '\0';
c906108c
SS
2790
2791 /* Find beginning of second arg, which should be a source language. */
2792 while (*cp && isspace (*cp))
2793 cp++;
2794
2795 if (*cp == '\0')
3e43a32a
MS
2796 error (_("'%s': two arguments required -- "
2797 "filename extension and language"),
c906108c
SS
2798 ext_args);
2799
2800 /* Lookup the language from among those we know. */
2801 lang = language_enum (cp);
2802
2803 /* Now lookup the filename extension: do we already know it? */
2804 for (i = 0; i < fl_table_next; i++)
2805 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2806 break;
2807
2808 if (i >= fl_table_next)
2809 {
c378eb4e 2810 /* New file extension. */
c906108c
SS
2811 add_filename_language (ext_args, lang);
2812 }
2813 else
2814 {
c378eb4e 2815 /* Redefining a previously known filename extension. */
c906108c
SS
2816
2817 /* if (from_tty) */
2818 /* query ("Really make files of type %s '%s'?", */
2819 /* ext_args, language_str (lang)); */
2820
b8c9b27d 2821 xfree (filename_language_table[i].ext);
4fcf66da 2822 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2823 filename_language_table[i].lang = lang;
2824 }
2825}
2826
2827static void
fba45db2 2828info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2829{
2830 int i;
2831
a3f17187 2832 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2833 printf_filtered ("\n\n");
2834 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2835 printf_filtered ("\t%s\t- %s\n",
2836 filename_language_table[i].ext,
c906108c
SS
2837 language_str (filename_language_table[i].lang));
2838}
2839
2840static void
fba45db2 2841init_filename_language_table (void)
c906108c 2842{
c378eb4e 2843 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2844 {
2845 fl_table_size = 20;
2846 fl_table_next = 0;
c5aa993b 2847 filename_language_table =
c906108c 2848 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2849 add_filename_language (".c", language_c);
6aecb9c2 2850 add_filename_language (".d", language_d);
c5aa993b
JM
2851 add_filename_language (".C", language_cplus);
2852 add_filename_language (".cc", language_cplus);
2853 add_filename_language (".cp", language_cplus);
2854 add_filename_language (".cpp", language_cplus);
2855 add_filename_language (".cxx", language_cplus);
2856 add_filename_language (".c++", language_cplus);
2857 add_filename_language (".java", language_java);
c906108c 2858 add_filename_language (".class", language_java);
da2cf7e0 2859 add_filename_language (".m", language_objc);
c5aa993b
JM
2860 add_filename_language (".f", language_fortran);
2861 add_filename_language (".F", language_fortran);
fd5700c7
JK
2862 add_filename_language (".for", language_fortran);
2863 add_filename_language (".FOR", language_fortran);
2864 add_filename_language (".ftn", language_fortran);
2865 add_filename_language (".FTN", language_fortran);
2866 add_filename_language (".fpp", language_fortran);
2867 add_filename_language (".FPP", language_fortran);
2868 add_filename_language (".f90", language_fortran);
2869 add_filename_language (".F90", language_fortran);
2870 add_filename_language (".f95", language_fortran);
2871 add_filename_language (".F95", language_fortran);
2872 add_filename_language (".f03", language_fortran);
2873 add_filename_language (".F03", language_fortran);
2874 add_filename_language (".f08", language_fortran);
2875 add_filename_language (".F08", language_fortran);
c5aa993b 2876 add_filename_language (".s", language_asm);
aa707ed0 2877 add_filename_language (".sx", language_asm);
c5aa993b 2878 add_filename_language (".S", language_asm);
c6fd39cd
PM
2879 add_filename_language (".pas", language_pascal);
2880 add_filename_language (".p", language_pascal);
2881 add_filename_language (".pp", language_pascal);
963a6417
PH
2882 add_filename_language (".adb", language_ada);
2883 add_filename_language (".ads", language_ada);
2884 add_filename_language (".a", language_ada);
2885 add_filename_language (".ada", language_ada);
dde59185 2886 add_filename_language (".dg", language_ada);
c906108c
SS
2887 }
2888}
2889
2890enum language
dd786858 2891deduce_language_from_filename (const char *filename)
c906108c
SS
2892{
2893 int i;
2894 char *cp;
2895
2896 if (filename != NULL)
2897 if ((cp = strrchr (filename, '.')) != NULL)
2898 for (i = 0; i < fl_table_next; i++)
2899 if (strcmp (cp, filename_language_table[i].ext) == 0)
2900 return filename_language_table[i].lang;
2901
2902 return language_unknown;
2903}
2904\f
2905/* allocate_symtab:
2906
2907 Allocate and partly initialize a new symbol table. Return a pointer
2908 to it. error() if no space.
2909
2910 Caller must set these fields:
c5aa993b
JM
2911 LINETABLE(symtab)
2912 symtab->blockvector
2913 symtab->dirname
2914 symtab->free_code
2915 symtab->free_ptr
c906108c
SS
2916 */
2917
2918struct symtab *
72b9f47f 2919allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2920{
52f0bd74 2921 struct symtab *symtab;
c906108c
SS
2922
2923 symtab = (struct symtab *)
4a146b47 2924 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2925 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2926 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2927 objfile->per_bfd->filename_cache);
c5aa993b
JM
2928 symtab->fullname = NULL;
2929 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2930 symtab->debugformat = "unknown";
c906108c 2931
c378eb4e 2932 /* Hook it to the objfile it comes from. */
c906108c 2933
c5aa993b
JM
2934 symtab->objfile = objfile;
2935 symtab->next = objfile->symtabs;
2936 objfile->symtabs = symtab;
c906108c 2937
45cfd468
DE
2938 if (symtab_create_debug)
2939 {
2940 /* Be a bit clever with debugging messages, and don't print objfile
2941 every time, only when it changes. */
2942 static char *last_objfile_name = NULL;
2943
2944 if (last_objfile_name == NULL
2945 || strcmp (last_objfile_name, objfile->name) != 0)
2946 {
2947 xfree (last_objfile_name);
2948 last_objfile_name = xstrdup (objfile->name);
2949 fprintf_unfiltered (gdb_stdlog,
2950 "Creating one or more symtabs for objfile %s ...\n",
2951 last_objfile_name);
2952 }
2953 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2954 "Created symtab %s for module %s.\n",
2955 host_address_to_string (symtab), filename);
45cfd468
DE
2956 }
2957
c906108c
SS
2958 return (symtab);
2959}
c906108c 2960\f
c5aa993b 2961
c906108c 2962/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2963 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2964
2965void
c1e56572 2966clear_symtab_users (int add_flags)
c906108c
SS
2967{
2968 /* Someday, we should do better than this, by only blowing away
2969 the things that really need to be blown. */
c0501be5
DJ
2970
2971 /* Clear the "current" symtab first, because it is no longer valid.
2972 breakpoint_re_set may try to access the current symtab. */
2973 clear_current_source_symtab_and_line ();
2974
c906108c 2975 clear_displays ();
c1e56572
JK
2976 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2977 breakpoint_re_set ();
1bfeeb0f 2978 clear_last_displayed_sal ();
c906108c 2979 clear_pc_function_cache ();
06d3b283 2980 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2981
2982 /* Clear globals which might have pointed into a removed objfile.
2983 FIXME: It's not clear which of these are supposed to persist
2984 between expressions and which ought to be reset each time. */
2985 expression_context_block = NULL;
2986 innermost_block = NULL;
8756216b
DP
2987
2988 /* Varobj may refer to old symbols, perform a cleanup. */
2989 varobj_invalidate ();
2990
c906108c
SS
2991}
2992
74b7792f
AC
2993static void
2994clear_symtab_users_cleanup (void *ignore)
2995{
c1e56572 2996 clear_symtab_users (0);
74b7792f 2997}
c906108c 2998\f
c906108c
SS
2999/* OVERLAYS:
3000 The following code implements an abstraction for debugging overlay sections.
3001
3002 The target model is as follows:
3003 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3004 same VMA, each with its own unique LMA (or load address).
c906108c 3005 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3006 sections, one by one, from the load address into the VMA address.
5417f6dc 3007 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3008 sections should be considered to be mapped from the VMA to the LMA.
3009 This information is used for symbol lookup, and memory read/write.
5417f6dc 3010 For instance, if a section has been mapped then its contents
c5aa993b 3011 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3012
3013 Two levels of debugger support for overlays are available. One is
3014 "manual", in which the debugger relies on the user to tell it which
3015 overlays are currently mapped. This level of support is
3016 implemented entirely in the core debugger, and the information about
3017 whether a section is mapped is kept in the objfile->obj_section table.
3018
3019 The second level of support is "automatic", and is only available if
3020 the target-specific code provides functionality to read the target's
3021 overlay mapping table, and translate its contents for the debugger
3022 (by updating the mapped state information in the obj_section tables).
3023
3024 The interface is as follows:
c5aa993b
JM
3025 User commands:
3026 overlay map <name> -- tell gdb to consider this section mapped
3027 overlay unmap <name> -- tell gdb to consider this section unmapped
3028 overlay list -- list the sections that GDB thinks are mapped
3029 overlay read-target -- get the target's state of what's mapped
3030 overlay off/manual/auto -- set overlay debugging state
3031 Functional interface:
3032 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3033 section, return that section.
5417f6dc 3034 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3035 the pc, either in its VMA or its LMA
714835d5 3036 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3037 section_is_overlay(sect): true if section's VMA != LMA
3038 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3039 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3040 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3041 overlay_mapped_address(...): map an address from section's LMA to VMA
3042 overlay_unmapped_address(...): map an address from section's VMA to LMA
3043 symbol_overlayed_address(...): Return a "current" address for symbol:
3044 either in VMA or LMA depending on whether
c378eb4e 3045 the symbol's section is currently mapped. */
c906108c
SS
3046
3047/* Overlay debugging state: */
3048
d874f1e2 3049enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3050int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3051
c906108c 3052/* Function: section_is_overlay (SECTION)
5417f6dc 3053 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3054 SECTION is loaded at an address different from where it will "run". */
3055
3056int
714835d5 3057section_is_overlay (struct obj_section *section)
c906108c 3058{
714835d5
UW
3059 if (overlay_debugging && section)
3060 {
3061 bfd *abfd = section->objfile->obfd;
3062 asection *bfd_section = section->the_bfd_section;
f888f159 3063
714835d5
UW
3064 if (bfd_section_lma (abfd, bfd_section) != 0
3065 && bfd_section_lma (abfd, bfd_section)
3066 != bfd_section_vma (abfd, bfd_section))
3067 return 1;
3068 }
c906108c
SS
3069
3070 return 0;
3071}
3072
3073/* Function: overlay_invalidate_all (void)
3074 Invalidate the mapped state of all overlay sections (mark it as stale). */
3075
3076static void
fba45db2 3077overlay_invalidate_all (void)
c906108c 3078{
c5aa993b 3079 struct objfile *objfile;
c906108c
SS
3080 struct obj_section *sect;
3081
3082 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3083 if (section_is_overlay (sect))
3084 sect->ovly_mapped = -1;
c906108c
SS
3085}
3086
714835d5 3087/* Function: section_is_mapped (SECTION)
5417f6dc 3088 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3089
3090 Access to the ovly_mapped flag is restricted to this function, so
3091 that we can do automatic update. If the global flag
3092 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3093 overlay_invalidate_all. If the mapped state of the particular
3094 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3095
714835d5
UW
3096int
3097section_is_mapped (struct obj_section *osect)
c906108c 3098{
9216df95
UW
3099 struct gdbarch *gdbarch;
3100
714835d5 3101 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3102 return 0;
3103
c5aa993b 3104 switch (overlay_debugging)
c906108c
SS
3105 {
3106 default:
d874f1e2 3107 case ovly_off:
c5aa993b 3108 return 0; /* overlay debugging off */
d874f1e2 3109 case ovly_auto: /* overlay debugging automatic */
1c772458 3110 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3111 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3112 gdbarch = get_objfile_arch (osect->objfile);
3113 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3114 {
3115 if (overlay_cache_invalid)
3116 {
3117 overlay_invalidate_all ();
3118 overlay_cache_invalid = 0;
3119 }
3120 if (osect->ovly_mapped == -1)
9216df95 3121 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3122 }
3123 /* fall thru to manual case */
d874f1e2 3124 case ovly_on: /* overlay debugging manual */
c906108c
SS
3125 return osect->ovly_mapped == 1;
3126 }
3127}
3128
c906108c
SS
3129/* Function: pc_in_unmapped_range
3130 If PC falls into the lma range of SECTION, return true, else false. */
3131
3132CORE_ADDR
714835d5 3133pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3134{
714835d5
UW
3135 if (section_is_overlay (section))
3136 {
3137 bfd *abfd = section->objfile->obfd;
3138 asection *bfd_section = section->the_bfd_section;
fbd35540 3139
714835d5
UW
3140 /* We assume the LMA is relocated by the same offset as the VMA. */
3141 bfd_vma size = bfd_get_section_size (bfd_section);
3142 CORE_ADDR offset = obj_section_offset (section);
3143
3144 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3145 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3146 return 1;
3147 }
c906108c 3148
c906108c
SS
3149 return 0;
3150}
3151
3152/* Function: pc_in_mapped_range
3153 If PC falls into the vma range of SECTION, return true, else false. */
3154
3155CORE_ADDR
714835d5 3156pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3157{
714835d5
UW
3158 if (section_is_overlay (section))
3159 {
3160 if (obj_section_addr (section) <= pc
3161 && pc < obj_section_endaddr (section))
3162 return 1;
3163 }
c906108c 3164
c906108c
SS
3165 return 0;
3166}
3167
9ec8e6a0
JB
3168
3169/* Return true if the mapped ranges of sections A and B overlap, false
3170 otherwise. */
b9362cc7 3171static int
714835d5 3172sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3173{
714835d5
UW
3174 CORE_ADDR a_start = obj_section_addr (a);
3175 CORE_ADDR a_end = obj_section_endaddr (a);
3176 CORE_ADDR b_start = obj_section_addr (b);
3177 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3178
3179 return (a_start < b_end && b_start < a_end);
3180}
3181
c906108c
SS
3182/* Function: overlay_unmapped_address (PC, SECTION)
3183 Returns the address corresponding to PC in the unmapped (load) range.
3184 May be the same as PC. */
3185
3186CORE_ADDR
714835d5 3187overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3188{
714835d5
UW
3189 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3190 {
3191 bfd *abfd = section->objfile->obfd;
3192 asection *bfd_section = section->the_bfd_section;
fbd35540 3193
714835d5
UW
3194 return pc + bfd_section_lma (abfd, bfd_section)
3195 - bfd_section_vma (abfd, bfd_section);
3196 }
c906108c
SS
3197
3198 return pc;
3199}
3200
3201/* Function: overlay_mapped_address (PC, SECTION)
3202 Returns the address corresponding to PC in the mapped (runtime) range.
3203 May be the same as PC. */
3204
3205CORE_ADDR
714835d5 3206overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3207{
714835d5
UW
3208 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3209 {
3210 bfd *abfd = section->objfile->obfd;
3211 asection *bfd_section = section->the_bfd_section;
fbd35540 3212
714835d5
UW
3213 return pc + bfd_section_vma (abfd, bfd_section)
3214 - bfd_section_lma (abfd, bfd_section);
3215 }
c906108c
SS
3216
3217 return pc;
3218}
3219
3220
5417f6dc 3221/* Function: symbol_overlayed_address
c906108c
SS
3222 Return one of two addresses (relative to the VMA or to the LMA),
3223 depending on whether the section is mapped or not. */
3224
c5aa993b 3225CORE_ADDR
714835d5 3226symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3227{
3228 if (overlay_debugging)
3229 {
c378eb4e 3230 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3231 if (section == 0)
3232 return address;
c378eb4e
MS
3233 /* If the symbol's section is not an overlay, just return its
3234 address. */
c906108c
SS
3235 if (!section_is_overlay (section))
3236 return address;
c378eb4e 3237 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3238 if (section_is_mapped (section))
3239 return address;
3240 /*
3241 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3242 * then return its LOADED address rather than its vma address!!
3243 */
3244 return overlay_unmapped_address (address, section);
3245 }
3246 return address;
3247}
3248
5417f6dc 3249/* Function: find_pc_overlay (PC)
c906108c
SS
3250 Return the best-match overlay section for PC:
3251 If PC matches a mapped overlay section's VMA, return that section.
3252 Else if PC matches an unmapped section's VMA, return that section.
3253 Else if PC matches an unmapped section's LMA, return that section. */
3254
714835d5 3255struct obj_section *
fba45db2 3256find_pc_overlay (CORE_ADDR pc)
c906108c 3257{
c5aa993b 3258 struct objfile *objfile;
c906108c
SS
3259 struct obj_section *osect, *best_match = NULL;
3260
3261 if (overlay_debugging)
3262 ALL_OBJSECTIONS (objfile, osect)
714835d5 3263 if (section_is_overlay (osect))
c5aa993b 3264 {
714835d5 3265 if (pc_in_mapped_range (pc, osect))
c5aa993b 3266 {
714835d5
UW
3267 if (section_is_mapped (osect))
3268 return osect;
c5aa993b
JM
3269 else
3270 best_match = osect;
3271 }
714835d5 3272 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3273 best_match = osect;
3274 }
714835d5 3275 return best_match;
c906108c
SS
3276}
3277
3278/* Function: find_pc_mapped_section (PC)
5417f6dc 3279 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3280 currently marked as MAPPED, return that section. Else return NULL. */
3281
714835d5 3282struct obj_section *
fba45db2 3283find_pc_mapped_section (CORE_ADDR pc)
c906108c 3284{
c5aa993b 3285 struct objfile *objfile;
c906108c
SS
3286 struct obj_section *osect;
3287
3288 if (overlay_debugging)
3289 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3290 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3291 return osect;
c906108c
SS
3292
3293 return NULL;
3294}
3295
3296/* Function: list_overlays_command
c378eb4e 3297 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3298
3299void
fba45db2 3300list_overlays_command (char *args, int from_tty)
c906108c 3301{
c5aa993b
JM
3302 int nmapped = 0;
3303 struct objfile *objfile;
c906108c
SS
3304 struct obj_section *osect;
3305
3306 if (overlay_debugging)
3307 ALL_OBJSECTIONS (objfile, osect)
714835d5 3308 if (section_is_mapped (osect))
c5aa993b 3309 {
5af949e3 3310 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3311 const char *name;
3312 bfd_vma lma, vma;
3313 int size;
3314
3315 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3316 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3317 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3318 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3319
3320 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3321 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3322 puts_filtered (" - ");
5af949e3 3323 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3324 printf_filtered (", mapped at ");
5af949e3 3325 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3326 puts_filtered (" - ");
5af949e3 3327 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3328 puts_filtered ("\n");
3329
3330 nmapped++;
3331 }
c906108c 3332 if (nmapped == 0)
a3f17187 3333 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3334}
3335
3336/* Function: map_overlay_command
3337 Mark the named section as mapped (ie. residing at its VMA address). */
3338
3339void
fba45db2 3340map_overlay_command (char *args, int from_tty)
c906108c 3341{
c5aa993b
JM
3342 struct objfile *objfile, *objfile2;
3343 struct obj_section *sec, *sec2;
c906108c
SS
3344
3345 if (!overlay_debugging)
3e43a32a
MS
3346 error (_("Overlay debugging not enabled. Use "
3347 "either the 'overlay auto' or\n"
3348 "the 'overlay manual' command."));
c906108c
SS
3349
3350 if (args == 0 || *args == 0)
8a3fe4f8 3351 error (_("Argument required: name of an overlay section"));
c906108c 3352
c378eb4e 3353 /* First, find a section matching the user supplied argument. */
c906108c
SS
3354 ALL_OBJSECTIONS (objfile, sec)
3355 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3356 {
c378eb4e 3357 /* Now, check to see if the section is an overlay. */
714835d5 3358 if (!section_is_overlay (sec))
c5aa993b
JM
3359 continue; /* not an overlay section */
3360
c378eb4e 3361 /* Mark the overlay as "mapped". */
c5aa993b
JM
3362 sec->ovly_mapped = 1;
3363
3364 /* Next, make a pass and unmap any sections that are
3365 overlapped by this new section: */
3366 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3367 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3368 {
3369 if (info_verbose)
a3f17187 3370 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3371 bfd_section_name (objfile->obfd,
3372 sec2->the_bfd_section));
c378eb4e 3373 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3374 }
3375 return;
3376 }
8a3fe4f8 3377 error (_("No overlay section called %s"), args);
c906108c
SS
3378}
3379
3380/* Function: unmap_overlay_command
5417f6dc 3381 Mark the overlay section as unmapped
c906108c
SS
3382 (ie. resident in its LMA address range, rather than the VMA range). */
3383
3384void
fba45db2 3385unmap_overlay_command (char *args, int from_tty)
c906108c 3386{
c5aa993b 3387 struct objfile *objfile;
c906108c
SS
3388 struct obj_section *sec;
3389
3390 if (!overlay_debugging)
3e43a32a
MS
3391 error (_("Overlay debugging not enabled. "
3392 "Use either the 'overlay auto' or\n"
3393 "the 'overlay manual' command."));
c906108c
SS
3394
3395 if (args == 0 || *args == 0)
8a3fe4f8 3396 error (_("Argument required: name of an overlay section"));
c906108c 3397
c378eb4e 3398 /* First, find a section matching the user supplied argument. */
c906108c
SS
3399 ALL_OBJSECTIONS (objfile, sec)
3400 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3401 {
3402 if (!sec->ovly_mapped)
8a3fe4f8 3403 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3404 sec->ovly_mapped = 0;
3405 return;
3406 }
8a3fe4f8 3407 error (_("No overlay section called %s"), args);
c906108c
SS
3408}
3409
3410/* Function: overlay_auto_command
3411 A utility command to turn on overlay debugging.
c378eb4e 3412 Possibly this should be done via a set/show command. */
c906108c
SS
3413
3414static void
fba45db2 3415overlay_auto_command (char *args, int from_tty)
c906108c 3416{
d874f1e2 3417 overlay_debugging = ovly_auto;
1900040c 3418 enable_overlay_breakpoints ();
c906108c 3419 if (info_verbose)
a3f17187 3420 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3421}
3422
3423/* Function: overlay_manual_command
3424 A utility command to turn on overlay debugging.
c378eb4e 3425 Possibly this should be done via a set/show command. */
c906108c
SS
3426
3427static void
fba45db2 3428overlay_manual_command (char *args, int from_tty)
c906108c 3429{
d874f1e2 3430 overlay_debugging = ovly_on;
1900040c 3431 disable_overlay_breakpoints ();
c906108c 3432 if (info_verbose)
a3f17187 3433 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3434}
3435
3436/* Function: overlay_off_command
3437 A utility command to turn on overlay debugging.
c378eb4e 3438 Possibly this should be done via a set/show command. */
c906108c
SS
3439
3440static void
fba45db2 3441overlay_off_command (char *args, int from_tty)
c906108c 3442{
d874f1e2 3443 overlay_debugging = ovly_off;
1900040c 3444 disable_overlay_breakpoints ();
c906108c 3445 if (info_verbose)
a3f17187 3446 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3447}
3448
3449static void
fba45db2 3450overlay_load_command (char *args, int from_tty)
c906108c 3451{
e17c207e
UW
3452 struct gdbarch *gdbarch = get_current_arch ();
3453
3454 if (gdbarch_overlay_update_p (gdbarch))
3455 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3456 else
8a3fe4f8 3457 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3458}
3459
3460/* Function: overlay_command
c378eb4e 3461 A place-holder for a mis-typed command. */
c906108c 3462
c378eb4e 3463/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3464static struct cmd_list_element *overlaylist;
c906108c
SS
3465
3466static void
fba45db2 3467overlay_command (char *args, int from_tty)
c906108c 3468{
c5aa993b 3469 printf_unfiltered
c906108c
SS
3470 ("\"overlay\" must be followed by the name of an overlay command.\n");
3471 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3472}
3473
3474
3475/* Target Overlays for the "Simplest" overlay manager:
3476
5417f6dc
RM
3477 This is GDB's default target overlay layer. It works with the
3478 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3479 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3480 so targets that use a different runtime overlay manager can
c906108c
SS
3481 substitute their own overlay_update function and take over the
3482 function pointer.
3483
3484 The overlay_update function pokes around in the target's data structures
3485 to see what overlays are mapped, and updates GDB's overlay mapping with
3486 this information.
3487
3488 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3489 unsigned _novlys; /# number of overlay sections #/
3490 unsigned _ovly_table[_novlys][4] = {
3491 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3492 {..., ..., ..., ...},
3493 }
3494 unsigned _novly_regions; /# number of overlay regions #/
3495 unsigned _ovly_region_table[_novly_regions][3] = {
3496 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3497 {..., ..., ...},
3498 }
c906108c
SS
3499 These functions will attempt to update GDB's mappedness state in the
3500 symbol section table, based on the target's mappedness state.
3501
3502 To do this, we keep a cached copy of the target's _ovly_table, and
3503 attempt to detect when the cached copy is invalidated. The main
3504 entry point is "simple_overlay_update(SECT), which looks up SECT in
3505 the cached table and re-reads only the entry for that section from
c378eb4e 3506 the target (whenever possible). */
c906108c
SS
3507
3508/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3509static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3510static unsigned cache_novlys = 0;
c906108c 3511static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3512enum ovly_index
3513 {
3514 VMA, SIZE, LMA, MAPPED
3515 };
c906108c 3516
c378eb4e 3517/* Throw away the cached copy of _ovly_table. */
c906108c 3518static void
fba45db2 3519simple_free_overlay_table (void)
c906108c
SS
3520{
3521 if (cache_ovly_table)
b8c9b27d 3522 xfree (cache_ovly_table);
c5aa993b 3523 cache_novlys = 0;
c906108c
SS
3524 cache_ovly_table = NULL;
3525 cache_ovly_table_base = 0;
3526}
3527
9216df95 3528/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3529 Convert to host order. int LEN is number of ints. */
c906108c 3530static void
9216df95 3531read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3532 int len, int size, enum bfd_endian byte_order)
c906108c 3533{
c378eb4e 3534 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3535 gdb_byte *buf = alloca (len * size);
c5aa993b 3536 int i;
c906108c 3537
9216df95 3538 read_memory (memaddr, buf, len * size);
c906108c 3539 for (i = 0; i < len; i++)
e17a4113 3540 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3541}
3542
3543/* Find and grab a copy of the target _ovly_table
c378eb4e 3544 (and _novlys, which is needed for the table's size). */
c5aa993b 3545static int
fba45db2 3546simple_read_overlay_table (void)
c906108c 3547{
0d43edd1 3548 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3549 struct gdbarch *gdbarch;
3550 int word_size;
e17a4113 3551 enum bfd_endian byte_order;
c906108c
SS
3552
3553 simple_free_overlay_table ();
9b27852e 3554 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3555 if (! novlys_msym)
c906108c 3556 {
8a3fe4f8 3557 error (_("Error reading inferior's overlay table: "
0d43edd1 3558 "couldn't find `_novlys' variable\n"
8a3fe4f8 3559 "in inferior. Use `overlay manual' mode."));
0d43edd1 3560 return 0;
c906108c 3561 }
0d43edd1 3562
9b27852e 3563 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3564 if (! ovly_table_msym)
3565 {
8a3fe4f8 3566 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3567 "`_ovly_table' array\n"
8a3fe4f8 3568 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3569 return 0;
3570 }
3571
9216df95
UW
3572 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3573 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3574 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3575
e17a4113
UW
3576 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3577 4, byte_order);
0d43edd1
JB
3578 cache_ovly_table
3579 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3580 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3581 read_target_long_array (cache_ovly_table_base,
777ea8f1 3582 (unsigned int *) cache_ovly_table,
e17a4113 3583 cache_novlys * 4, word_size, byte_order);
0d43edd1 3584
c5aa993b 3585 return 1; /* SUCCESS */
c906108c
SS
3586}
3587
5417f6dc 3588/* Function: simple_overlay_update_1
c906108c
SS
3589 A helper function for simple_overlay_update. Assuming a cached copy
3590 of _ovly_table exists, look through it to find an entry whose vma,
3591 lma and size match those of OSECT. Re-read the entry and make sure
3592 it still matches OSECT (else the table may no longer be valid).
3593 Set OSECT's mapped state to match the entry. Return: 1 for
3594 success, 0 for failure. */
3595
3596static int
fba45db2 3597simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3598{
3599 int i, size;
fbd35540
MS
3600 bfd *obfd = osect->objfile->obfd;
3601 asection *bsect = osect->the_bfd_section;
9216df95
UW
3602 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3603 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3605
2c500098 3606 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3607 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3610 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3611 {
9216df95
UW
3612 read_target_long_array (cache_ovly_table_base + i * word_size,
3613 (unsigned int *) cache_ovly_table[i],
e17a4113 3614 4, word_size, byte_order);
fbd35540
MS
3615 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3616 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3617 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3618 {
3619 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3620 return 1;
3621 }
c378eb4e 3622 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3623 return 0;
3624 }
3625 return 0;
3626}
3627
3628/* Function: simple_overlay_update
5417f6dc
RM
3629 If OSECT is NULL, then update all sections' mapped state
3630 (after re-reading the entire target _ovly_table).
3631 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3632 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3633 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3634 re-read the entire cache, and go ahead and update all sections. */
3635
1c772458 3636void
fba45db2 3637simple_overlay_update (struct obj_section *osect)
c906108c 3638{
c5aa993b 3639 struct objfile *objfile;
c906108c 3640
c378eb4e 3641 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3642 if (osect)
c378eb4e 3643 /* Have we got a cached copy of the target's overlay table? */
c906108c 3644 if (cache_ovly_table != NULL)
9cc89665
MS
3645 {
3646 /* Does its cached location match what's currently in the
3647 symtab? */
3648 struct minimal_symbol *minsym
3649 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3650
3651 if (minsym == NULL)
3652 error (_("Error reading inferior's overlay table: couldn't "
3653 "find `_ovly_table' array\n"
3654 "in inferior. Use `overlay manual' mode."));
3655
3656 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3657 /* Then go ahead and try to look up this single section in
3658 the cache. */
3659 if (simple_overlay_update_1 (osect))
3660 /* Found it! We're done. */
3661 return;
3662 }
c906108c
SS
3663
3664 /* Cached table no good: need to read the entire table anew.
3665 Or else we want all the sections, in which case it's actually
3666 more efficient to read the whole table in one block anyway. */
3667
0d43edd1
JB
3668 if (! simple_read_overlay_table ())
3669 return;
3670
c378eb4e 3671 /* Now may as well update all sections, even if only one was requested. */
c906108c 3672 ALL_OBJSECTIONS (objfile, osect)
714835d5 3673 if (section_is_overlay (osect))
c5aa993b
JM
3674 {
3675 int i, size;
fbd35540
MS
3676 bfd *obfd = osect->objfile->obfd;
3677 asection *bsect = osect->the_bfd_section;
c5aa993b 3678
2c500098 3679 size = bfd_get_section_size (bsect);
c5aa993b 3680 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3681 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3682 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3683 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3684 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3685 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3686 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3687 }
3688 }
c906108c
SS
3689}
3690
086df311
DJ
3691/* Set the output sections and output offsets for section SECTP in
3692 ABFD. The relocation code in BFD will read these offsets, so we
3693 need to be sure they're initialized. We map each section to itself,
3694 with no offset; this means that SECTP->vma will be honored. */
3695
3696static void
3697symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3698{
3699 sectp->output_section = sectp;
3700 sectp->output_offset = 0;
3701}
3702
ac8035ab
TG
3703/* Default implementation for sym_relocate. */
3704
3705
3706bfd_byte *
3707default_symfile_relocate (struct objfile *objfile, asection *sectp,
3708 bfd_byte *buf)
3709{
3019eac3
DE
3710 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3711 DWO file. */
3712 bfd *abfd = sectp->owner;
ac8035ab
TG
3713
3714 /* We're only interested in sections with relocation
3715 information. */
3716 if ((sectp->flags & SEC_RELOC) == 0)
3717 return NULL;
3718
3719 /* We will handle section offsets properly elsewhere, so relocate as if
3720 all sections begin at 0. */
3721 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3722
3723 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3724}
3725
086df311
DJ
3726/* Relocate the contents of a debug section SECTP in ABFD. The
3727 contents are stored in BUF if it is non-NULL, or returned in a
3728 malloc'd buffer otherwise.
3729
3730 For some platforms and debug info formats, shared libraries contain
3731 relocations against the debug sections (particularly for DWARF-2;
3732 one affected platform is PowerPC GNU/Linux, although it depends on
3733 the version of the linker in use). Also, ELF object files naturally
3734 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3735 the relocations in order to get the locations of symbols correct.
3736 Another example that may require relocation processing, is the
3737 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3738 debug section. */
086df311
DJ
3739
3740bfd_byte *
ac8035ab
TG
3741symfile_relocate_debug_section (struct objfile *objfile,
3742 asection *sectp, bfd_byte *buf)
086df311 3743{
ac8035ab 3744 gdb_assert (objfile->sf->sym_relocate);
086df311 3745
ac8035ab 3746 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3747}
c906108c 3748
31d99776
DJ
3749struct symfile_segment_data *
3750get_symfile_segment_data (bfd *abfd)
3751{
00b5771c 3752 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3753
3754 if (sf == NULL)
3755 return NULL;
3756
3757 return sf->sym_segments (abfd);
3758}
3759
3760void
3761free_symfile_segment_data (struct symfile_segment_data *data)
3762{
3763 xfree (data->segment_bases);
3764 xfree (data->segment_sizes);
3765 xfree (data->segment_info);
3766 xfree (data);
3767}
3768
28c32713
JB
3769
3770/* Given:
3771 - DATA, containing segment addresses from the object file ABFD, and
3772 the mapping from ABFD's sections onto the segments that own them,
3773 and
3774 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3775 segment addresses reported by the target,
3776 store the appropriate offsets for each section in OFFSETS.
3777
3778 If there are fewer entries in SEGMENT_BASES than there are segments
3779 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3780
8d385431
DJ
3781 If there are more entries, then ignore the extra. The target may
3782 not be able to distinguish between an empty data segment and a
3783 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3784int
3785symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3786 struct section_offsets *offsets,
3787 int num_segment_bases,
3788 const CORE_ADDR *segment_bases)
3789{
3790 int i;
3791 asection *sect;
3792
28c32713
JB
3793 /* It doesn't make sense to call this function unless you have some
3794 segment base addresses. */
202b96c1 3795 gdb_assert (num_segment_bases > 0);
28c32713 3796
31d99776
DJ
3797 /* If we do not have segment mappings for the object file, we
3798 can not relocate it by segments. */
3799 gdb_assert (data != NULL);
3800 gdb_assert (data->num_segments > 0);
3801
31d99776
DJ
3802 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3803 {
31d99776
DJ
3804 int which = data->segment_info[i];
3805
28c32713
JB
3806 gdb_assert (0 <= which && which <= data->num_segments);
3807
3808 /* Don't bother computing offsets for sections that aren't
3809 loaded as part of any segment. */
3810 if (! which)
3811 continue;
3812
3813 /* Use the last SEGMENT_BASES entry as the address of any extra
3814 segments mentioned in DATA->segment_info. */
31d99776 3815 if (which > num_segment_bases)
28c32713 3816 which = num_segment_bases;
31d99776 3817
28c32713
JB
3818 offsets->offsets[i] = (segment_bases[which - 1]
3819 - data->segment_bases[which - 1]);
31d99776
DJ
3820 }
3821
3822 return 1;
3823}
3824
3825static void
3826symfile_find_segment_sections (struct objfile *objfile)
3827{
3828 bfd *abfd = objfile->obfd;
3829 int i;
3830 asection *sect;
3831 struct symfile_segment_data *data;
3832
3833 data = get_symfile_segment_data (objfile->obfd);
3834 if (data == NULL)
3835 return;
3836
3837 if (data->num_segments != 1 && data->num_segments != 2)
3838 {
3839 free_symfile_segment_data (data);
3840 return;
3841 }
3842
3843 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3844 {
31d99776
DJ
3845 int which = data->segment_info[i];
3846
3847 if (which == 1)
3848 {
3849 if (objfile->sect_index_text == -1)
3850 objfile->sect_index_text = sect->index;
3851
3852 if (objfile->sect_index_rodata == -1)
3853 objfile->sect_index_rodata = sect->index;
3854 }
3855 else if (which == 2)
3856 {
3857 if (objfile->sect_index_data == -1)
3858 objfile->sect_index_data = sect->index;
3859
3860 if (objfile->sect_index_bss == -1)
3861 objfile->sect_index_bss = sect->index;
3862 }
3863 }
3864
3865 free_symfile_segment_data (data);
3866}
3867
c906108c 3868void
fba45db2 3869_initialize_symfile (void)
c906108c
SS
3870{
3871 struct cmd_list_element *c;
c5aa993b 3872
1a966eab
AC
3873 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3874Load symbol table from executable file FILE.\n\
c906108c 3875The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3876to execute."), &cmdlist);
5ba2abeb 3877 set_cmd_completer (c, filename_completer);
c906108c 3878
1a966eab 3879 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3880Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3881Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3882 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3883The optional arguments are section-name section-address pairs and\n\
3884should be specified if the data and bss segments are not contiguous\n\
1a966eab 3885with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3886 &cmdlist);
5ba2abeb 3887 set_cmd_completer (c, filename_completer);
c906108c 3888
1a966eab
AC
3889 c = add_cmd ("load", class_files, load_command, _("\
3890Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3891for access from GDB.\n\
3892A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3893 set_cmd_completer (c, filename_completer);
c906108c 3894
c5aa993b 3895 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3896 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3897 "overlay ", 0, &cmdlist);
3898
3899 add_com_alias ("ovly", "overlay", class_alias, 1);
3900 add_com_alias ("ov", "overlay", class_alias, 1);
3901
c5aa993b 3902 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3903 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3904
c5aa993b 3905 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3906 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3907
c5aa993b 3908 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3909 _("List mappings of overlay sections."), &overlaylist);
c906108c 3910
c5aa993b 3911 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3912 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3913 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3914 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3915 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3916 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3917 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3918 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3919
3920 /* Filename extension to source language lookup table: */
3921 init_filename_language_table ();
26c41df3
AC
3922 add_setshow_string_noescape_cmd ("extension-language", class_files,
3923 &ext_args, _("\
3924Set mapping between filename extension and source language."), _("\
3925Show mapping between filename extension and source language."), _("\
3926Usage: set extension-language .foo bar"),
3927 set_ext_lang_command,
920d2a44 3928 show_ext_args,
26c41df3 3929 &setlist, &showlist);
c906108c 3930
c5aa993b 3931 add_info ("extensions", info_ext_lang_command,
1bedd215 3932 _("All filename extensions associated with a source language."));
917317f4 3933
525226b5
AC
3934 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3935 &debug_file_directory, _("\
24ddea62
JK
3936Set the directories where separate debug symbols are searched for."), _("\
3937Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3938Separate debug symbols are first searched for in the same\n\
3939directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3940and lastly at the path of the directory of the binary with\n\
24ddea62 3941each global debug-file-directory component prepended."),
525226b5 3942 NULL,
920d2a44 3943 show_debug_file_directory,
525226b5 3944 &setlist, &showlist);
c906108c 3945}
This page took 2.319259 seconds and 4 git commands to generate.