* read.h (s_vendor_attribute): Move to...
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 150
b7209cb4
FF
151/* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
c906108c 158 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 159 report all the functions that are actually present. */
c906108c
SS
160
161int auto_solib_add = 1;
c906108c 162\f
c5aa993b 163
c906108c
SS
164/* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 166 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 167 may be part of a larger string and we are only saving a substring. */
c906108c
SS
168
169char *
63ca651f 170obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 171{
52f0bd74 172 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
c378eb4e 175 inline memcpy? */
c906108c 176 {
aa1ee363
AC
177 const char *p1 = ptr;
178 char *p2 = p;
63ca651f 179 const char *end = ptr + size;
433759f7 180
c906108c
SS
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186}
187
3e43a32a
MS
188/* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
c906108c
SS
192
193char *
48cb83fd 194obconcat (struct obstack *obstackp, ...)
c906108c 195{
48cb83fd
JK
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
c906108c
SS
212}
213
0d14a781 214/* True if we are reading a symbol table. */
c906108c
SS
215
216int currently_reading_symtab = 0;
217
218static void
fba45db2 219decrement_reading_symtab (void *dummy)
c906108c
SS
220{
221 currently_reading_symtab--;
222}
223
ccefe4c4
TT
224/* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226struct cleanup *
227increment_reading_symtab (void)
c906108c 228{
ccefe4c4
TT
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
231}
232
5417f6dc
RM
233/* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
c906108c
SS
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242void
4efb68b1 243find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 244{
c5aa993b 245 asection **lowest = (asection **) obj;
c906108c 246
eb73e134 247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257}
258
a39a16c4
MM
259/* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261struct section_addr_info *
262alloc_section_addr_info (size_t num_sections)
263{
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274}
62557bbc
KB
275
276/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 277 an existing section table. */
62557bbc
KB
278
279extern struct section_addr_info *
0542c86d
PA
280build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
62557bbc
KB
282{
283 struct section_addr_info *sap;
0542c86d 284 const struct target_section *stp;
62557bbc
KB
285 int oidx;
286
a39a16c4 287 sap = alloc_section_addr_info (end - start);
62557bbc
KB
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
5417f6dc 291 if (bfd_get_section_flags (stp->bfd,
fbd35540 292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 293 && oidx < end - start)
62557bbc
KB
294 {
295 sap->other[oidx].addr = stp->addr;
5417f6dc 296 sap->other[oidx].name
fbd35540 297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304}
305
82ccf5a5 306/* Create a section_addr_info from section offsets in ABFD. */
089b4803 307
82ccf5a5
JK
308static struct section_addr_info *
309build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
310{
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
82ccf5a5
JK
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 318 {
82ccf5a5
JK
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
089b4803
TG
324 return sap;
325}
326
82ccf5a5
JK
327/* Create a section_addr_info from section offsets in OBJFILE. */
328
329struct section_addr_info *
330build_section_addr_info_from_objfile (const struct objfile *objfile)
331{
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346}
62557bbc 347
c378eb4e 348/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
349
350extern void
351free_section_addr_info (struct section_addr_info *sap)
352{
353 int idx;
354
a39a16c4 355 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 356 if (sap->other[idx].name)
b8c9b27d
KB
357 xfree (sap->other[idx].name);
358 xfree (sap);
62557bbc
KB
359}
360
361
e8289572
JB
362/* Initialize OBJFILE's sect_index_* members. */
363static void
364init_objfile_sect_indices (struct objfile *objfile)
c906108c 365{
e8289572 366 asection *sect;
c906108c 367 int i;
5417f6dc 368
b8fbeb18 369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 374 if (sect)
b8fbeb18
EZ
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 378 if (sect)
b8fbeb18
EZ
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 382 if (sect)
b8fbeb18
EZ
383 objfile->sect_index_rodata = sect->index;
384
bbcd32ad
FF
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
31d99776
DJ
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
bbcd32ad
FF
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
b8fbeb18 420}
c906108c 421
c1bd25fd
DJ
422/* The arguments to place_section. */
423
424struct place_section_arg
425{
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428};
429
430/* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
2c0b251b 433static void
c1bd25fd
DJ
434place_section (bfd *abfd, asection *sect, void *obj)
435{
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
3bd72c6f 439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 440
2711e456
DJ
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
450 start_addr = (arg->lowest + align - 1) & -align;
451
c1bd25fd
DJ
452 do {
453 asection *cur_sec;
c1bd25fd 454
c1bd25fd
DJ
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
c1bd25fd
DJ
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
2711e456
DJ
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
3bd72c6f 482 break;
c1bd25fd
DJ
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 492}
e8289572 493
75242ef4
JK
494/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
e8289572
JB
497
498void
75242ef4
JK
499relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
e8289572
JB
502{
503 int i;
504
75242ef4 505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 506
c378eb4e 507 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 509 {
75242ef4 510 struct other_sections *osp;
e8289572 511
75242ef4 512 osp = &addrs->other[i];
5488dafb 513 if (osp->sectindex == -1)
e8289572
JB
514 continue;
515
c378eb4e 516 /* Record all sections in offsets. */
e8289572 517 /* The section_offsets in the objfile are here filled in using
c378eb4e 518 the BFD index. */
75242ef4
JK
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521}
522
1276c759
JK
523/* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529static const char *
530addr_section_name (const char *s)
531{
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538}
539
82ccf5a5
JK
540/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543static int
544addrs_section_compar (const void *ap, const void *bp)
545{
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 548 int retval;
82ccf5a5 549
1276c759 550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
551 if (retval)
552 return retval;
553
5488dafb 554 return a->sectindex - b->sectindex;
82ccf5a5
JK
555}
556
557/* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560static struct other_sections **
561addrs_section_sort (struct section_addr_info *addrs)
562{
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575}
576
75242ef4 577/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
580
581void
582addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583{
584 asection *lower_sect;
75242ef4
JK
585 CORE_ADDR lower_offset;
586 int i;
82ccf5a5
JK
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
591
592 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
e8289572 601 }
75242ef4
JK
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
82ccf5a5
JK
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
c378eb4e
MS
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
1276c759 632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
633
634 while (*abfd_addrs_sorted
1276c759
JK
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
82ccf5a5
JK
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
1276c759
JK
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
82ccf5a5
JK
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
75242ef4
JK
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
82ccf5a5 669 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
670
671 if (sect)
75242ef4 672 {
c378eb4e 673 /* This is the index used by BFD. */
82ccf5a5 674 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
675
676 if (addrs->other[i].addr != 0)
75242ef4 677 {
82ccf5a5 678 addrs->other[i].addr -= sect->addr;
75242ef4 679 lower_offset = addrs->other[i].addr;
75242ef4
JK
680 }
681 else
672d9c23 682 addrs->other[i].addr = lower_offset;
75242ef4
JK
683 }
684 else
672d9c23 685 {
1276c759
JK
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
b0fcb67f
JK
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
4d9743af
JK
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
1276c759
JK
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 704 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
672d9c23 716 addrs->other[i].addr = 0;
5488dafb 717 addrs->other[i].sectindex = -1;
672d9c23 718 }
75242ef4 719 }
82ccf5a5
JK
720
721 do_cleanups (my_cleanup);
75242ef4
JK
722}
723
724/* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730void
731default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733{
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
e8289572 740
c1bd25fd
DJ
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
2711e456
DJ
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
2711e456
DJ
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
30510692 803 offsets[cur_sec->index]);
2711e456
DJ
804 offsets[cur_sec->index] = 0;
805 }
806 }
c1bd25fd
DJ
807 }
808
e8289572 809 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 810 .rodata sections. */
e8289572
JB
811 init_objfile_sect_indices (objfile);
812}
813
814
31d99776
DJ
815/* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821struct symfile_segment_data *
822default_symfile_segments (bfd *abfd)
823{
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877}
878
c906108c
SS
879/* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
96baa820
JM
882 OBJFILE is where the symbols are to be read from.
883
7e8580c1
JB
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
96baa820 904
7eedccfa
PP
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
c906108c
SS
908
909void
7e8580c1
JB
910syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
7eedccfa 914 int add_flags)
c906108c 915{
a39a16c4 916 struct section_addr_info *local_addr = NULL;
c906108c 917 struct cleanup *old_chain;
7eedccfa 918 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 919
7e8580c1 920 gdb_assert (! (addrs && offsets));
2acceee2 921
c906108c 922 init_entry_point_info (objfile);
31d99776 923 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 924
75245b24 925 if (objfile->sf == NULL)
c378eb4e 926 return; /* No symbols. */
75245b24 927
c906108c
SS
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
74b7792f 930 old_chain = make_cleanup_free_objfile (objfile);
c906108c 931
a39a16c4
MM
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
c378eb4e 934 no load address was specified. */
a39a16c4
MM
935 if (! addrs && ! offsets)
936 {
5417f6dc 937 local_addr
a39a16c4
MM
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
c5aa993b 945 if (mainline)
c906108c
SS
946 {
947 /* We will modify the main symbol table, make sure that all its users
c5aa993b 948 will be cleaned up if an error occurs during symbol reading. */
74b7792f 949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
adb7f338 956 gdb_assert (symfile_objfile == NULL);
c906108c
SS
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
c906108c 963
c5aa993b 964 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
53a5351d 969 and assume that <addr> is where that got loaded.
c906108c 970
53a5351d
JM
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
0d15807d 973 if (addrs && addrs->other[0].name)
75242ef4 974 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
c378eb4e 978 initial symbol reading for this file. */
c906108c 979
c5aa993b 980 (*objfile->sf->sym_init) (objfile);
7eedccfa 981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 982
7e8580c1
JB
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
8b92e4d5 993 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
c906108c 998
f4352531 999 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1000
b11896a5
TT
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
c906108c
SS
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
f7545552 1007 xfree (local_addr);
c906108c
SS
1008}
1009
1010/* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1013
c906108c 1014void
7eedccfa 1015new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1016{
c906108c 1017 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1018 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1019 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1020 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
c1e56572 1025 clear_symtab_users (add_flags);
c906108c 1026 }
7eedccfa 1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1028 {
69de3c6a 1029 breakpoint_re_set ();
c906108c
SS
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1034}
1035
1036/* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
5417f6dc 1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1040 A new reference is acquired by this function.
7904e09f 1041
7eedccfa
PP
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1048
63524580
JK
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
c906108c 1052 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1053 Upon failure, jumps back to command level (never returns). */
7eedccfa 1054
7904e09f 1055static struct objfile *
7eedccfa
PP
1056symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
7904e09f
JB
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
63524580 1061 int flags, struct objfile *parent)
c906108c
SS
1062{
1063 struct objfile *objfile;
5417f6dc 1064 const char *name = bfd_get_filename (abfd);
7eedccfa 1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1066 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1070
9291a0cd 1071 if (readnow_symbol_files)
b11896a5
TT
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
9291a0cd 1076
5417f6dc
RM
1077 /* Give user a chance to burp if we'd be
1078 interactively wiping out any existing symbols. */
c906108c
SS
1079
1080 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1081 && mainline
c906108c 1082 && from_tty
9e2f0ad4 1083 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1084 error (_("Not confirmed."));
c906108c 1085
0838fb57 1086 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1087
63524580
JK
1088 if (parent)
1089 add_separate_debug_objfile (objfile, parent);
1090
78a4a9b9
AC
1091 /* We either created a new mapped symbol table, mapped an existing
1092 symbol table file which has not had initial symbol reading
c378eb4e 1093 performed, or need to read an unmapped symbol table. */
b11896a5 1094 if (should_print)
c906108c 1095 {
769d7dc4
AC
1096 if (deprecated_pre_add_symbol_hook)
1097 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1098 else
c906108c 1099 {
55333a84
DE
1100 printf_unfiltered (_("Reading symbols from %s..."), name);
1101 wrap_here ("");
1102 gdb_flush (gdb_stdout);
c906108c 1103 }
c906108c 1104 }
78a4a9b9 1105 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1106 add_flags);
c906108c
SS
1107
1108 /* We now have at least a partial symbol table. Check to see if the
1109 user requested that all symbols be read on initial access via either
1110 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1111 all partial symbol tables for this objfile if so. */
c906108c 1112
9291a0cd 1113 if ((flags & OBJF_READNOW))
c906108c 1114 {
b11896a5 1115 if (should_print)
c906108c 1116 {
a3f17187 1117 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1118 wrap_here ("");
1119 gdb_flush (gdb_stdout);
1120 }
1121
ccefe4c4
TT
1122 if (objfile->sf)
1123 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1124 }
1125
b11896a5 1126 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1127 {
1128 wrap_here ("");
55333a84 1129 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1130 wrap_here ("");
1131 }
1132
b11896a5 1133 if (should_print)
c906108c 1134 {
769d7dc4
AC
1135 if (deprecated_post_add_symbol_hook)
1136 deprecated_post_add_symbol_hook ();
c906108c 1137 else
55333a84 1138 printf_unfiltered (_("done.\n"));
c906108c
SS
1139 }
1140
481d0f41
JB
1141 /* We print some messages regardless of whether 'from_tty ||
1142 info_verbose' is true, so make sure they go out at the right
1143 time. */
1144 gdb_flush (gdb_stdout);
1145
109f874e 1146 if (objfile->sf == NULL)
8caee43b
PP
1147 {
1148 observer_notify_new_objfile (objfile);
c378eb4e 1149 return objfile; /* No symbols. */
8caee43b 1150 }
109f874e 1151
7eedccfa 1152 new_symfile_objfile (objfile, add_flags);
c906108c 1153
06d3b283 1154 observer_notify_new_objfile (objfile);
c906108c 1155
ce7d4522 1156 bfd_cache_close_all ();
c906108c
SS
1157 return (objfile);
1158}
1159
9cce227f
TG
1160/* Add BFD as a separate debug file for OBJFILE. */
1161
1162void
1163symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1164{
15d123c9 1165 struct objfile *new_objfile;
089b4803
TG
1166 struct section_addr_info *sap;
1167 struct cleanup *my_cleanup;
1168
1169 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1170 because sections of BFD may not match sections of OBJFILE and because
1171 vma may have been modified by tools such as prelink. */
1172 sap = build_section_addr_info_from_objfile (objfile);
1173 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1174
15d123c9 1175 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1176 (bfd, symfile_flags,
089b4803 1177 sap, NULL, 0,
9cce227f 1178 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1179 | OBJF_USERLOADED),
1180 objfile);
089b4803
TG
1181
1182 do_cleanups (my_cleanup);
9cce227f 1183}
7904e09f 1184
eb4556d7
JB
1185/* Process the symbol file ABFD, as either the main file or as a
1186 dynamically loaded file.
1187
1188 See symbol_file_add_with_addrs_or_offsets's comments for
1189 details. */
1190struct objfile *
7eedccfa 1191symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1192 struct section_addr_info *addrs,
63524580 1193 int flags, struct objfile *parent)
eb4556d7 1194{
7eedccfa 1195 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1196 flags, parent);
eb4556d7
JB
1197}
1198
1199
7904e09f
JB
1200/* Process a symbol file, as either the main file or as a dynamically
1201 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1202 for details. */
1203struct objfile *
7eedccfa
PP
1204symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1205 int flags)
7904e09f 1206{
8ac244b4
TT
1207 bfd *bfd = symfile_bfd_open (name);
1208 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1209 struct objfile *objf;
1210
882f447f 1211 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1212 do_cleanups (cleanup);
1213 return objf;
7904e09f
JB
1214}
1215
1216
d7db6da9
FN
1217/* Call symbol_file_add() with default values and update whatever is
1218 affected by the loading of a new main().
1219 Used when the file is supplied in the gdb command line
1220 and by some targets with special loading requirements.
1221 The auxiliary function, symbol_file_add_main_1(), has the flags
1222 argument for the switches that can only be specified in the symbol_file
1223 command itself. */
5417f6dc 1224
1adeb98a
FN
1225void
1226symbol_file_add_main (char *args, int from_tty)
1227{
d7db6da9
FN
1228 symbol_file_add_main_1 (args, from_tty, 0);
1229}
1230
1231static void
1232symbol_file_add_main_1 (char *args, int from_tty, int flags)
1233{
7dcd53a0
TT
1234 const int add_flags = (current_inferior ()->symfile_flags
1235 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1236
7eedccfa 1237 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1238
d7db6da9
FN
1239 /* Getting new symbols may change our opinion about
1240 what is frameless. */
1241 reinit_frame_cache ();
1242
7dcd53a0
TT
1243 if ((flags & SYMFILE_NO_READ) == 0)
1244 set_initial_language ();
1adeb98a
FN
1245}
1246
1247void
1248symbol_file_clear (int from_tty)
1249{
1250 if ((have_full_symbols () || have_partial_symbols ())
1251 && from_tty
0430b0d6
AS
1252 && (symfile_objfile
1253 ? !query (_("Discard symbol table from `%s'? "),
1254 symfile_objfile->name)
1255 : !query (_("Discard symbol table? "))))
8a3fe4f8 1256 error (_("Not confirmed."));
1adeb98a 1257
0133421a
JK
1258 /* solib descriptors may have handles to objfiles. Wipe them before their
1259 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1260 no_shared_libraries (NULL, from_tty);
1261
0133421a
JK
1262 free_all_objfiles ();
1263
adb7f338 1264 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1265 if (from_tty)
1266 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1267}
1268
5b5d99cf
JB
1269static char *
1270get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1271{
1272 asection *sect;
1273 bfd_size_type debuglink_size;
1274 unsigned long crc32;
1275 char *contents;
1276 int crc_offset;
5417f6dc 1277
5b5d99cf
JB
1278 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1279
1280 if (sect == NULL)
1281 return NULL;
1282
1283 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1284
5b5d99cf
JB
1285 contents = xmalloc (debuglink_size);
1286 bfd_get_section_contents (objfile->obfd, sect, contents,
1287 (file_ptr)0, (bfd_size_type)debuglink_size);
1288
c378eb4e 1289 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1290 crc_offset = strlen (contents) + 1;
1291 crc_offset = (crc_offset + 3) & ~3;
1292
1293 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1294
5b5d99cf
JB
1295 *crc32_out = crc32;
1296 return contents;
1297}
1298
904578ed
JK
1299/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1300 return 1. Otherwise print a warning and return 0. ABFD seek position is
1301 not preserved. */
1302
1303static int
1304get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1305{
1306 unsigned long file_crc = 0;
1307
1308 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1309 {
1310 warning (_("Problem reading \"%s\" for CRC: %s"),
1311 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1312 return 0;
1313 }
1314
1315 for (;;)
1316 {
1317 gdb_byte buffer[8 * 1024];
1318 bfd_size_type count;
1319
1320 count = bfd_bread (buffer, sizeof (buffer), abfd);
1321 if (count == (bfd_size_type) -1)
1322 {
1323 warning (_("Problem reading \"%s\" for CRC: %s"),
1324 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1325 return 0;
1326 }
1327 if (count == 0)
1328 break;
1329 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1330 }
1331
1332 *file_crc_return = file_crc;
1333 return 1;
1334}
1335
5b5d99cf 1336static int
287ccc17 1337separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1338 struct objfile *parent_objfile)
5b5d99cf 1339{
904578ed
JK
1340 unsigned long file_crc;
1341 int file_crc_p;
f1838a98 1342 bfd *abfd;
32a0e547 1343 struct stat parent_stat, abfd_stat;
904578ed 1344 int verified_as_different;
32a0e547
JK
1345
1346 /* Find a separate debug info file as if symbols would be present in
1347 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1348 section can contain just the basename of PARENT_OBJFILE without any
1349 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1350 the separate debug infos with the same basename can exist. */
32a0e547 1351
0ba1096a 1352 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1353 return 0;
5b5d99cf 1354
08d2cd74 1355 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1356
1357 if (!abfd)
5b5d99cf
JB
1358 return 0;
1359
0ba1096a 1360 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1361
1362 Some operating systems, e.g. Windows, do not provide a meaningful
1363 st_ino; they always set it to zero. (Windows does provide a
1364 meaningful st_dev.) Do not indicate a duplicate library in that
1365 case. While there is no guarantee that a system that provides
1366 meaningful inode numbers will never set st_ino to zero, this is
1367 merely an optimization, so we do not need to worry about false
1368 negatives. */
1369
1370 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1371 && abfd_stat.st_ino != 0
1372 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1373 {
904578ed
JK
1374 if (abfd_stat.st_dev == parent_stat.st_dev
1375 && abfd_stat.st_ino == parent_stat.st_ino)
1376 {
cbb099e8 1377 gdb_bfd_unref (abfd);
904578ed
JK
1378 return 0;
1379 }
1380 verified_as_different = 1;
32a0e547 1381 }
904578ed
JK
1382 else
1383 verified_as_different = 0;
32a0e547 1384
904578ed 1385 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1386
cbb099e8 1387 gdb_bfd_unref (abfd);
5b5d99cf 1388
904578ed
JK
1389 if (!file_crc_p)
1390 return 0;
1391
287ccc17
JK
1392 if (crc != file_crc)
1393 {
904578ed
JK
1394 /* If one (or both) the files are accessed for example the via "remote:"
1395 gdbserver way it does not support the bfd_stat operation. Verify
1396 whether those two files are not the same manually. */
1397
1398 if (!verified_as_different && !parent_objfile->crc32_p)
1399 {
1400 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1401 &parent_objfile->crc32);
1402 if (!parent_objfile->crc32_p)
1403 return 0;
1404 }
1405
0e8aefe7 1406 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1407 warning (_("the debug information found in \"%s\""
1408 " does not match \"%s\" (CRC mismatch).\n"),
1409 name, parent_objfile->name);
1410
287ccc17
JK
1411 return 0;
1412 }
1413
1414 return 1;
5b5d99cf
JB
1415}
1416
aa28a74e 1417char *debug_file_directory = NULL;
920d2a44
AC
1418static void
1419show_debug_file_directory (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421{
3e43a32a
MS
1422 fprintf_filtered (file,
1423 _("The directory where separate debug "
1424 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1425 value);
1426}
5b5d99cf
JB
1427
1428#if ! defined (DEBUG_SUBDIRECTORY)
1429#define DEBUG_SUBDIRECTORY ".debug"
1430#endif
1431
1db33378
PP
1432/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1433 where the original file resides (may not be the same as
1434 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1435 looking for. Returns the name of the debuginfo, of NULL. */
1436
1437static char *
1438find_separate_debug_file (const char *dir,
1439 const char *canon_dir,
1440 const char *debuglink,
1441 unsigned long crc32, struct objfile *objfile)
9cce227f 1442{
1db33378
PP
1443 char *debugdir;
1444 char *debugfile;
9cce227f 1445 int i;
e4ab2fad
JK
1446 VEC (char_ptr) *debugdir_vec;
1447 struct cleanup *back_to;
1448 int ix;
5b5d99cf 1449
1db33378 1450 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1451 i = strlen (dir);
1db33378
PP
1452 if (canon_dir != NULL && strlen (canon_dir) > i)
1453 i = strlen (canon_dir);
1ffa32ee 1454
25522fae
JK
1455 debugfile = xmalloc (strlen (debug_file_directory) + 1
1456 + i
1457 + strlen (DEBUG_SUBDIRECTORY)
1458 + strlen ("/")
1db33378 1459 + strlen (debuglink)
25522fae 1460 + 1);
5b5d99cf
JB
1461
1462 /* First try in the same directory as the original file. */
1463 strcpy (debugfile, dir);
1db33378 1464 strcat (debugfile, debuglink);
5b5d99cf 1465
32a0e547 1466 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1467 return debugfile;
5417f6dc 1468
5b5d99cf
JB
1469 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1470 strcpy (debugfile, dir);
1471 strcat (debugfile, DEBUG_SUBDIRECTORY);
1472 strcat (debugfile, "/");
1db33378 1473 strcat (debugfile, debuglink);
5b5d99cf 1474
32a0e547 1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1476 return debugfile;
5417f6dc 1477
24ddea62 1478 /* Then try in the global debugfile directories.
f888f159 1479
24ddea62
JK
1480 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1481 cause "/..." lookups. */
5417f6dc 1482
e4ab2fad
JK
1483 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1484 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1485
e4ab2fad
JK
1486 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1487 {
1488 strcpy (debugfile, debugdir);
aa28a74e 1489 strcat (debugfile, "/");
24ddea62 1490 strcat (debugfile, dir);
1db33378 1491 strcat (debugfile, debuglink);
aa28a74e 1492
32a0e547 1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1494 return debugfile;
24ddea62
JK
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1db33378
PP
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1500 strlen (gdb_sysroot)) == 0
1db33378 1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1502 {
e4ab2fad 1503 strcpy (debugfile, debugdir);
1db33378 1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1505 strcat (debugfile, "/");
1db33378 1506 strcat (debugfile, debuglink);
24ddea62 1507
32a0e547 1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1509 return debugfile;
24ddea62 1510 }
aa28a74e 1511 }
f888f159 1512
e4ab2fad 1513 do_cleanups (back_to);
25522fae 1514 xfree (debugfile);
1db33378
PP
1515 return NULL;
1516}
1517
1518/* Modify PATH to contain only "directory/" part of PATH.
1519 If there were no directory separators in PATH, PATH will be empty
1520 string on return. */
1521
1522static void
1523terminate_after_last_dir_separator (char *path)
1524{
1525 int i;
1526
1527 /* Strip off the final filename part, leaving the directory name,
1528 followed by a slash. The directory can be relative or absolute. */
1529 for (i = strlen(path) - 1; i >= 0; i--)
1530 if (IS_DIR_SEPARATOR (path[i]))
1531 break;
1532
1533 /* If I is -1 then no directory is present there and DIR will be "". */
1534 path[i + 1] = '\0';
1535}
1536
1537/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1538 Returns pathname, or NULL. */
1539
1540char *
1541find_separate_debug_file_by_debuglink (struct objfile *objfile)
1542{
1543 char *debuglink;
1544 char *dir, *canon_dir;
1545 char *debugfile;
1546 unsigned long crc32;
1547 struct cleanup *cleanups;
1548
1549 debuglink = get_debug_link_info (objfile, &crc32);
1550
1551 if (debuglink == NULL)
1552 {
1553 /* There's no separate debug info, hence there's no way we could
1554 load it => no warning. */
1555 return NULL;
1556 }
1557
71bdabee 1558 cleanups = make_cleanup (xfree, debuglink);
1db33378 1559 dir = xstrdup (objfile->name);
71bdabee 1560 make_cleanup (xfree, dir);
1db33378
PP
1561 terminate_after_last_dir_separator (dir);
1562 canon_dir = lrealpath (dir);
1563
1564 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1565 crc32, objfile);
1566 xfree (canon_dir);
1567
1568 if (debugfile == NULL)
1569 {
1570#ifdef HAVE_LSTAT
1571 /* For PR gdb/9538, try again with realpath (if different from the
1572 original). */
1573
1574 struct stat st_buf;
1575
1576 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1577 {
1578 char *symlink_dir;
1579
1580 symlink_dir = lrealpath (objfile->name);
1581 if (symlink_dir != NULL)
1582 {
1583 make_cleanup (xfree, symlink_dir);
1584 terminate_after_last_dir_separator (symlink_dir);
1585 if (strcmp (dir, symlink_dir) != 0)
1586 {
1587 /* Different directory, so try using it. */
1588 debugfile = find_separate_debug_file (symlink_dir,
1589 symlink_dir,
1590 debuglink,
1591 crc32,
1592 objfile);
1593 }
1594 }
1595 }
1596#endif /* HAVE_LSTAT */
1597 }
aa28a74e 1598
1db33378 1599 do_cleanups (cleanups);
25522fae 1600 return debugfile;
5b5d99cf
JB
1601}
1602
1603
c906108c
SS
1604/* This is the symbol-file command. Read the file, analyze its
1605 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1606 the command is rather bizarre:
1607
1608 1. The function buildargv implements various quoting conventions
1609 which are undocumented and have little or nothing in common with
1610 the way things are quoted (or not quoted) elsewhere in GDB.
1611
1612 2. Options are used, which are not generally used in GDB (perhaps
1613 "set mapped on", "set readnow on" would be better)
1614
1615 3. The order of options matters, which is contrary to GNU
c906108c
SS
1616 conventions (because it is confusing and inconvenient). */
1617
1618void
fba45db2 1619symbol_file_command (char *args, int from_tty)
c906108c 1620{
c906108c
SS
1621 dont_repeat ();
1622
1623 if (args == NULL)
1624 {
1adeb98a 1625 symbol_file_clear (from_tty);
c906108c
SS
1626 }
1627 else
1628 {
d1a41061 1629 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1630 int flags = OBJF_USERLOADED;
1631 struct cleanup *cleanups;
1632 char *name = NULL;
1633
7a292a7a 1634 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1635 while (*argv != NULL)
1636 {
78a4a9b9
AC
1637 if (strcmp (*argv, "-readnow") == 0)
1638 flags |= OBJF_READNOW;
1639 else if (**argv == '-')
8a3fe4f8 1640 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1641 else
1642 {
cb2f3a29 1643 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1644 name = *argv;
78a4a9b9 1645 }
cb2f3a29 1646
c906108c
SS
1647 argv++;
1648 }
1649
1650 if (name == NULL)
cb2f3a29
MK
1651 error (_("no symbol file name was specified"));
1652
c906108c
SS
1653 do_cleanups (cleanups);
1654 }
1655}
1656
1657/* Set the initial language.
1658
cb2f3a29
MK
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
c906108c 1667
8b60591b 1668void
fba45db2 1669set_initial_language (void)
c906108c 1670{
c5aa993b 1671 enum language lang = language_unknown;
c906108c 1672
01f8c46d
JK
1673 if (language_of_main != language_unknown)
1674 lang = language_of_main;
1675 else
1676 {
1677 const char *filename;
f888f159 1678
01f8c46d
JK
1679 filename = find_main_filename ();
1680 if (filename != NULL)
1681 lang = deduce_language_from_filename (filename);
1682 }
cb2f3a29 1683
ccefe4c4
TT
1684 if (lang == language_unknown)
1685 {
1686 /* Make C the default language */
1687 lang = language_c;
c906108c 1688 }
ccefe4c4
TT
1689
1690 set_language (lang);
1691 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1692}
1693
874f5765 1694/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1695 open it normally. Returns a new reference to the BFD. On error,
1696 returns NULL with the BFD error set. */
874f5765
TG
1697
1698bfd *
08d2cd74 1699gdb_bfd_open_maybe_remote (const char *name)
874f5765 1700{
520b0001
TT
1701 bfd *result;
1702
874f5765 1703 if (remote_filename_p (name))
520b0001 1704 result = remote_bfd_open (name, gnutarget);
874f5765 1705 else
1c00ec6b 1706 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1707
520b0001 1708 return result;
874f5765
TG
1709}
1710
1711
cb2f3a29
MK
1712/* Open the file specified by NAME and hand it off to BFD for
1713 preliminary analysis. Return a newly initialized bfd *, which
1714 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1715 absolute). In case of trouble, error() is called. */
c906108c
SS
1716
1717bfd *
fba45db2 1718symfile_bfd_open (char *name)
c906108c
SS
1719{
1720 bfd *sym_bfd;
1721 int desc;
1722 char *absolute_name;
1723
f1838a98
UW
1724 if (remote_filename_p (name))
1725 {
520b0001 1726 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1727 if (!sym_bfd)
a4453b7e
TT
1728 error (_("`%s': can't open to read symbols: %s."), name,
1729 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1730
1731 if (!bfd_check_format (sym_bfd, bfd_object))
1732 {
f9a062ff 1733 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1734 error (_("`%s': can't read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736 }
1737
1738 return sym_bfd;
1739 }
1740
cb2f3a29 1741 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1742
1743 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1744 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1745 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1746#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1747 if (desc < 0)
1748 {
1749 char *exename = alloca (strlen (name) + 5);
433759f7 1750
c906108c 1751 strcat (strcpy (exename, name), ".exe");
014d698b 1752 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1753 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1754 }
1755#endif
1756 if (desc < 0)
1757 {
b8c9b27d 1758 make_cleanup (xfree, name);
c906108c
SS
1759 perror_with_name (name);
1760 }
cb2f3a29 1761
cb2f3a29
MK
1762 xfree (name);
1763 name = absolute_name;
a4453b7e 1764 make_cleanup (xfree, name);
c906108c 1765
1c00ec6b 1766 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c
SS
1767 if (!sym_bfd)
1768 {
b8c9b27d 1769 make_cleanup (xfree, name);
f1838a98 1770 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1771 bfd_errmsg (bfd_get_error ()));
1772 }
549c1eea 1773 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1774
1775 if (!bfd_check_format (sym_bfd, bfd_object))
1776 {
f9a062ff 1777 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1778 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1779 bfd_errmsg (bfd_get_error ()));
1780 }
cb2f3a29
MK
1781
1782 return sym_bfd;
c906108c
SS
1783}
1784
cb2f3a29
MK
1785/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1786 the section was not found. */
1787
0e931cf0
JB
1788int
1789get_section_index (struct objfile *objfile, char *section_name)
1790{
1791 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1792
0e931cf0
JB
1793 if (sect)
1794 return sect->index;
1795 else
1796 return -1;
1797}
1798
cb2f3a29
MK
1799/* Link SF into the global symtab_fns list. Called on startup by the
1800 _initialize routine in each object file format reader, to register
b021a221 1801 information about each format the reader is prepared to handle. */
c906108c
SS
1802
1803void
00b5771c 1804add_symtab_fns (const struct sym_fns *sf)
c906108c 1805{
00b5771c 1806 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1807}
1808
cb2f3a29
MK
1809/* Initialize OBJFILE to read symbols from its associated BFD. It
1810 either returns or calls error(). The result is an initialized
1811 struct sym_fns in the objfile structure, that contains cached
1812 information about the symbol file. */
c906108c 1813
00b5771c 1814static const struct sym_fns *
31d99776 1815find_sym_fns (bfd *abfd)
c906108c 1816{
00b5771c 1817 const struct sym_fns *sf;
31d99776 1818 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1819 int i;
c906108c 1820
75245b24
MS
1821 if (our_flavour == bfd_target_srec_flavour
1822 || our_flavour == bfd_target_ihex_flavour
1823 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1824 return NULL; /* No symbols. */
75245b24 1825
00b5771c 1826 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1827 if (our_flavour == sf->sym_flavour)
1828 return sf;
cb2f3a29 1829
8a3fe4f8 1830 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1831 bfd_get_target (abfd));
c906108c
SS
1832}
1833\f
cb2f3a29 1834
c906108c
SS
1835/* This function runs the load command of our current target. */
1836
1837static void
fba45db2 1838load_command (char *arg, int from_tty)
c906108c 1839{
e5cc9f32
JB
1840 dont_repeat ();
1841
4487aabf
PA
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1845 reread_symbols ();
1846
c906108c 1847 if (arg == NULL)
1986bccd
AS
1848 {
1849 char *parg;
1850 int count = 0;
1851
1852 parg = arg = get_exec_file (1);
1853
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1856 {
1857 parg++;
1858 count++;
1859 }
1860
1861 if (count)
1862 {
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = xmalloc (strlen (arg) + count + 1 );
1865 char *ptemp = temp;
1866 char *prev;
1867
1868 make_cleanup (xfree, temp);
1869
1870 prev = parg = arg;
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1872 {
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1875 prev = parg++;
1876 *ptemp++ = '\\';
1877 }
1878 strcpy (ptemp, prev);
1879
1880 arg = temp;
1881 }
1882 }
1883
c906108c 1884 target_load (arg, from_tty);
2889e661
JB
1885
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
c906108c
SS
1889}
1890
1891/* This version of "load" should be usable for any target. Currently
1892 it is just used for remote targets, not inftarg.c or core files,
1893 on the theory that only in that case is it useful.
1894
1895 Avoiding xmodem and the like seems like a win (a) because we don't have
1896 to worry about finding it, and (b) On VMS, fork() is very slow and so
1897 we don't want to run a subprocess. On the other hand, I'm not sure how
1898 performance compares. */
917317f4 1899
917317f4
JM
1900static int validate_download = 0;
1901
e4f9b4d5
MS
1902/* Callback service function for generic_load (bfd_map_over_sections). */
1903
1904static void
1905add_section_size_callback (bfd *abfd, asection *asec, void *data)
1906{
1907 bfd_size_type *sum = data;
1908
2c500098 1909 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1910}
1911
1912/* Opaque data for load_section_callback. */
1913struct load_section_data {
1914 unsigned long load_offset;
a76d924d
DJ
1915 struct load_progress_data *progress_data;
1916 VEC(memory_write_request_s) *requests;
1917};
1918
1919/* Opaque data for load_progress. */
1920struct load_progress_data {
1921 /* Cumulative data. */
e4f9b4d5
MS
1922 unsigned long write_count;
1923 unsigned long data_count;
1924 bfd_size_type total_size;
a76d924d
DJ
1925};
1926
1927/* Opaque data for load_progress for a single section. */
1928struct load_progress_section_data {
1929 struct load_progress_data *cumulative;
cf7a04e8 1930
a76d924d 1931 /* Per-section data. */
cf7a04e8
DJ
1932 const char *section_name;
1933 ULONGEST section_sent;
1934 ULONGEST section_size;
1935 CORE_ADDR lma;
1936 gdb_byte *buffer;
e4f9b4d5
MS
1937};
1938
a76d924d 1939/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1940
1941static void
1942load_progress (ULONGEST bytes, void *untyped_arg)
1943{
a76d924d
DJ
1944 struct load_progress_section_data *args = untyped_arg;
1945 struct load_progress_data *totals;
1946
1947 if (args == NULL)
1948 /* Writing padding data. No easy way to get at the cumulative
1949 stats, so just ignore this. */
1950 return;
1951
1952 totals = args->cumulative;
1953
1954 if (bytes == 0 && args->section_sent == 0)
1955 {
1956 /* The write is just starting. Let the user know we've started
1957 this section. */
79a45e25 1958 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1959 args->section_name, hex_string (args->section_size),
1960 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1961 return;
1962 }
cf7a04e8
DJ
1963
1964 if (validate_download)
1965 {
1966 /* Broken memories and broken monitors manifest themselves here
1967 when bring new computers to life. This doubles already slow
1968 downloads. */
1969 /* NOTE: cagney/1999-10-18: A more efficient implementation
1970 might add a verify_memory() method to the target vector and
1971 then use that. remote.c could implement that method using
1972 the ``qCRC'' packet. */
1973 gdb_byte *check = xmalloc (bytes);
1974 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1975
1976 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1977 error (_("Download verify read failed at %s"),
1978 paddress (target_gdbarch, args->lma));
cf7a04e8 1979 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1980 error (_("Download verify compare failed at %s"),
1981 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1982 do_cleanups (verify_cleanups);
1983 }
a76d924d 1984 totals->data_count += bytes;
cf7a04e8
DJ
1985 args->lma += bytes;
1986 args->buffer += bytes;
a76d924d 1987 totals->write_count += 1;
cf7a04e8 1988 args->section_sent += bytes;
522002f9 1989 if (check_quit_flag ()
cf7a04e8
DJ
1990 || (deprecated_ui_load_progress_hook != NULL
1991 && deprecated_ui_load_progress_hook (args->section_name,
1992 args->section_sent)))
1993 error (_("Canceled the download"));
1994
1995 if (deprecated_show_load_progress != NULL)
1996 deprecated_show_load_progress (args->section_name,
1997 args->section_sent,
1998 args->section_size,
a76d924d
DJ
1999 totals->data_count,
2000 totals->total_size);
cf7a04e8
DJ
2001}
2002
e4f9b4d5
MS
2003/* Callback service function for generic_load (bfd_map_over_sections). */
2004
2005static void
2006load_section_callback (bfd *abfd, asection *asec, void *data)
2007{
a76d924d 2008 struct memory_write_request *new_request;
e4f9b4d5 2009 struct load_section_data *args = data;
a76d924d 2010 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2011 bfd_size_type size = bfd_get_section_size (asec);
2012 gdb_byte *buffer;
cf7a04e8 2013 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2014
cf7a04e8
DJ
2015 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2016 return;
e4f9b4d5 2017
cf7a04e8
DJ
2018 if (size == 0)
2019 return;
e4f9b4d5 2020
a76d924d
DJ
2021 new_request = VEC_safe_push (memory_write_request_s,
2022 args->requests, NULL);
2023 memset (new_request, 0, sizeof (struct memory_write_request));
2024 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2025 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2026 new_request->end = new_request->begin + size; /* FIXME Should size
2027 be in instead? */
a76d924d
DJ
2028 new_request->data = xmalloc (size);
2029 new_request->baton = section_data;
cf7a04e8 2030
a76d924d 2031 buffer = new_request->data;
cf7a04e8 2032
a76d924d
DJ
2033 section_data->cumulative = args->progress_data;
2034 section_data->section_name = sect_name;
2035 section_data->section_size = size;
2036 section_data->lma = new_request->begin;
2037 section_data->buffer = buffer;
cf7a04e8
DJ
2038
2039 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2040}
2041
2042/* Clean up an entire memory request vector, including load
2043 data and progress records. */
cf7a04e8 2044
a76d924d
DJ
2045static void
2046clear_memory_write_data (void *arg)
2047{
2048 VEC(memory_write_request_s) **vec_p = arg;
2049 VEC(memory_write_request_s) *vec = *vec_p;
2050 int i;
2051 struct memory_write_request *mr;
cf7a04e8 2052
a76d924d
DJ
2053 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2054 {
2055 xfree (mr->data);
2056 xfree (mr->baton);
2057 }
2058 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2059}
2060
c906108c 2061void
917317f4 2062generic_load (char *args, int from_tty)
c906108c 2063{
c906108c 2064 bfd *loadfile_bfd;
2b71414d 2065 struct timeval start_time, end_time;
917317f4 2066 char *filename;
1986bccd 2067 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2068 struct load_section_data cbdata;
a76d924d 2069 struct load_progress_data total_progress;
79a45e25 2070 struct ui_out *uiout = current_uiout;
a76d924d 2071
e4f9b4d5 2072 CORE_ADDR entry;
1986bccd 2073 char **argv;
e4f9b4d5 2074
a76d924d
DJ
2075 memset (&cbdata, 0, sizeof (cbdata));
2076 memset (&total_progress, 0, sizeof (total_progress));
2077 cbdata.progress_data = &total_progress;
2078
2079 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2080
d1a41061
PP
2081 if (args == NULL)
2082 error_no_arg (_("file to load"));
1986bccd 2083
d1a41061 2084 argv = gdb_buildargv (args);
1986bccd
AS
2085 make_cleanup_freeargv (argv);
2086
2087 filename = tilde_expand (argv[0]);
2088 make_cleanup (xfree, filename);
2089
2090 if (argv[1] != NULL)
917317f4
JM
2091 {
2092 char *endptr;
ba5f2f8a 2093
1986bccd
AS
2094 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2095
2096 /* If the last word was not a valid number then
2097 treat it as a file name with spaces in. */
2098 if (argv[1] == endptr)
2099 error (_("Invalid download offset:%s."), argv[1]);
2100
2101 if (argv[2] != NULL)
2102 error (_("Too many parameters."));
917317f4 2103 }
c906108c 2104
c378eb4e 2105 /* Open the file for loading. */
1c00ec6b 2106 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2107 if (loadfile_bfd == NULL)
2108 {
2109 perror_with_name (filename);
2110 return;
2111 }
917317f4 2112
f9a062ff 2113 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2114
c5aa993b 2115 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2116 {
8a3fe4f8 2117 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2118 bfd_errmsg (bfd_get_error ()));
2119 }
c5aa993b 2120
5417f6dc 2121 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2122 (void *) &total_progress.total_size);
2123
2124 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2125
2b71414d 2126 gettimeofday (&start_time, NULL);
c906108c 2127
a76d924d
DJ
2128 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2129 load_progress) != 0)
2130 error (_("Load failed"));
c906108c 2131
2b71414d 2132 gettimeofday (&end_time, NULL);
ba5f2f8a 2133
e4f9b4d5 2134 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2135 ui_out_text (uiout, "Start address ");
5af949e3 2136 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2137 ui_out_text (uiout, ", load size ");
a76d924d 2138 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2139 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2140 /* We were doing this in remote-mips.c, I suspect it is right
2141 for other targets too. */
fb14de7b 2142 regcache_write_pc (get_current_regcache (), entry);
c906108c 2143
38963c97
DJ
2144 /* Reset breakpoints, now that we have changed the load image. For
2145 instance, breakpoints may have been set (or reset, by
2146 post_create_inferior) while connected to the target but before we
2147 loaded the program. In that case, the prologue analyzer could
2148 have read instructions from the target to find the right
2149 breakpoint locations. Loading has changed the contents of that
2150 memory. */
2151
2152 breakpoint_re_set ();
2153
7ca9f392
AC
2154 /* FIXME: are we supposed to call symbol_file_add or not? According
2155 to a comment from remote-mips.c (where a call to symbol_file_add
2156 was commented out), making the call confuses GDB if more than one
2157 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2158 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2159
a76d924d
DJ
2160 print_transfer_performance (gdb_stdout, total_progress.data_count,
2161 total_progress.write_count,
2162 &start_time, &end_time);
c906108c
SS
2163
2164 do_cleanups (old_cleanups);
2165}
2166
c378eb4e 2167/* Report how fast the transfer went. */
c906108c 2168
917317f4
JM
2169/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2170 replaced by print_transfer_performance (with a very different
c378eb4e 2171 function signature). */
917317f4 2172
c906108c 2173void
fba45db2
KB
2174report_transfer_performance (unsigned long data_count, time_t start_time,
2175 time_t end_time)
c906108c 2176{
2b71414d
DJ
2177 struct timeval start, end;
2178
2179 start.tv_sec = start_time;
2180 start.tv_usec = 0;
2181 end.tv_sec = end_time;
2182 end.tv_usec = 0;
2183
2184 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2185}
2186
2187void
d9fcf2fb 2188print_transfer_performance (struct ui_file *stream,
917317f4
JM
2189 unsigned long data_count,
2190 unsigned long write_count,
2b71414d
DJ
2191 const struct timeval *start_time,
2192 const struct timeval *end_time)
917317f4 2193{
9f43d28c 2194 ULONGEST time_count;
79a45e25 2195 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2196
2197 /* Compute the elapsed time in milliseconds, as a tradeoff between
2198 accuracy and overflow. */
2199 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2200 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2201
8b93c638
JM
2202 ui_out_text (uiout, "Transfer rate: ");
2203 if (time_count > 0)
2204 {
9f43d28c
DJ
2205 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2206
2207 if (ui_out_is_mi_like_p (uiout))
2208 {
2209 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2210 ui_out_text (uiout, " bits/sec");
2211 }
2212 else if (rate < 1024)
2213 {
2214 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2215 ui_out_text (uiout, " bytes/sec");
2216 }
2217 else
2218 {
2219 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2220 ui_out_text (uiout, " KB/sec");
2221 }
8b93c638
JM
2222 }
2223 else
2224 {
ba5f2f8a 2225 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2226 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2227 }
2228 if (write_count > 0)
2229 {
2230 ui_out_text (uiout, ", ");
ba5f2f8a 2231 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2232 ui_out_text (uiout, " bytes/write");
2233 }
2234 ui_out_text (uiout, ".\n");
c906108c
SS
2235}
2236
2237/* This function allows the addition of incrementally linked object files.
2238 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2239/* Note: ezannoni 2000-04-13 This function/command used to have a
2240 special case syntax for the rombug target (Rombug is the boot
2241 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2242 rombug case, the user doesn't need to supply a text address,
2243 instead a call to target_link() (in target.c) would supply the
c378eb4e 2244 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2245
c906108c 2246static void
fba45db2 2247add_symbol_file_command (char *args, int from_tty)
c906108c 2248{
5af949e3 2249 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2250 char *filename = NULL;
2df3850c 2251 int flags = OBJF_USERLOADED;
c906108c 2252 char *arg;
db162d44 2253 int section_index = 0;
2acceee2
JM
2254 int argcnt = 0;
2255 int sec_num = 0;
2256 int i;
db162d44
EZ
2257 int expecting_sec_name = 0;
2258 int expecting_sec_addr = 0;
5b96932b 2259 char **argv;
db162d44 2260
a39a16c4 2261 struct sect_opt
2acceee2 2262 {
2acceee2
JM
2263 char *name;
2264 char *value;
a39a16c4 2265 };
db162d44 2266
a39a16c4
MM
2267 struct section_addr_info *section_addrs;
2268 struct sect_opt *sect_opts = NULL;
2269 size_t num_sect_opts = 0;
3017564a 2270 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2271
a39a16c4 2272 num_sect_opts = 16;
5417f6dc 2273 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2274 * sizeof (struct sect_opt));
2275
c906108c
SS
2276 dont_repeat ();
2277
2278 if (args == NULL)
8a3fe4f8 2279 error (_("add-symbol-file takes a file name and an address"));
c906108c 2280
d1a41061 2281 argv = gdb_buildargv (args);
5b96932b 2282 make_cleanup_freeargv (argv);
db162d44 2283
5b96932b
AS
2284 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2285 {
c378eb4e 2286 /* Process the argument. */
db162d44 2287 if (argcnt == 0)
c906108c 2288 {
c378eb4e 2289 /* The first argument is the file name. */
db162d44 2290 filename = tilde_expand (arg);
3017564a 2291 make_cleanup (xfree, filename);
c906108c 2292 }
db162d44 2293 else
7a78ae4e
ND
2294 if (argcnt == 1)
2295 {
2296 /* The second argument is always the text address at which
c378eb4e 2297 to load the program. */
7a78ae4e
ND
2298 sect_opts[section_index].name = ".text";
2299 sect_opts[section_index].value = arg;
f414f22f 2300 if (++section_index >= num_sect_opts)
a39a16c4
MM
2301 {
2302 num_sect_opts *= 2;
5417f6dc 2303 sect_opts = ((struct sect_opt *)
a39a16c4 2304 xrealloc (sect_opts,
5417f6dc 2305 num_sect_opts
a39a16c4
MM
2306 * sizeof (struct sect_opt)));
2307 }
7a78ae4e
ND
2308 }
2309 else
2310 {
2311 /* It's an option (starting with '-') or it's an argument
c378eb4e 2312 to an option. */
7a78ae4e
ND
2313
2314 if (*arg == '-')
2315 {
78a4a9b9
AC
2316 if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
7a78ae4e
ND
2323 }
2324 else
2325 {
2326 if (expecting_sec_name)
db162d44 2327 {
7a78ae4e
ND
2328 sect_opts[section_index].name = arg;
2329 expecting_sec_name = 0;
db162d44
EZ
2330 }
2331 else
7a78ae4e
ND
2332 if (expecting_sec_addr)
2333 {
2334 sect_opts[section_index].value = arg;
2335 expecting_sec_addr = 0;
f414f22f 2336 if (++section_index >= num_sect_opts)
a39a16c4
MM
2337 {
2338 num_sect_opts *= 2;
5417f6dc 2339 sect_opts = ((struct sect_opt *)
a39a16c4 2340 xrealloc (sect_opts,
5417f6dc 2341 num_sect_opts
a39a16c4
MM
2342 * sizeof (struct sect_opt)));
2343 }
7a78ae4e
ND
2344 }
2345 else
3e43a32a 2346 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2347 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2348 }
2349 }
c906108c 2350 }
c906108c 2351
927890d0
JB
2352 /* This command takes at least two arguments. The first one is a
2353 filename, and the second is the address where this file has been
2354 loaded. Abort now if this address hasn't been provided by the
2355 user. */
2356 if (section_index < 1)
2357 error (_("The address where %s has been loaded is missing"), filename);
2358
c378eb4e 2359 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2360 a sect_addr_info structure to be passed around to other
2361 functions. We have to split this up into separate print
bb599908 2362 statements because hex_string returns a local static
c378eb4e 2363 string. */
5417f6dc 2364
a3f17187 2365 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2366 section_addrs = alloc_section_addr_info (section_index);
2367 make_cleanup (xfree, section_addrs);
db162d44 2368 for (i = 0; i < section_index; i++)
c906108c 2369 {
db162d44
EZ
2370 CORE_ADDR addr;
2371 char *val = sect_opts[i].value;
2372 char *sec = sect_opts[i].name;
5417f6dc 2373
ae822768 2374 addr = parse_and_eval_address (val);
db162d44 2375
db162d44 2376 /* Here we store the section offsets in the order they were
c378eb4e 2377 entered on the command line. */
a39a16c4
MM
2378 section_addrs->other[sec_num].name = sec;
2379 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2380 printf_unfiltered ("\t%s_addr = %s\n", sec,
2381 paddress (gdbarch, addr));
db162d44
EZ
2382 sec_num++;
2383
5417f6dc 2384 /* The object's sections are initialized when a
db162d44 2385 call is made to build_objfile_section_table (objfile).
5417f6dc 2386 This happens in reread_symbols.
db162d44
EZ
2387 At this point, we don't know what file type this is,
2388 so we can't determine what section names are valid. */
2acceee2 2389 }
db162d44 2390
2acceee2 2391 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2392 error (_("Not confirmed."));
c906108c 2393
7eedccfa
PP
2394 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2395 section_addrs, flags);
c906108c
SS
2396
2397 /* Getting new symbols may change our opinion about what is
2398 frameless. */
2399 reinit_frame_cache ();
db162d44 2400 do_cleanups (my_cleanups);
c906108c
SS
2401}
2402\f
70992597 2403
4ac39b97
JK
2404typedef struct objfile *objfilep;
2405
2406DEF_VEC_P (objfilep);
2407
c906108c
SS
2408/* Re-read symbols if a symbol-file has changed. */
2409void
fba45db2 2410reread_symbols (void)
c906108c
SS
2411{
2412 struct objfile *objfile;
2413 long new_modtime;
c906108c
SS
2414 struct stat new_statbuf;
2415 int res;
4ac39b97
JK
2416 VEC (objfilep) *new_objfiles = NULL;
2417 struct cleanup *all_cleanups;
2418
2419 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2420
2421 /* With the addition of shared libraries, this should be modified,
2422 the load time should be saved in the partial symbol tables, since
2423 different tables may come from different source files. FIXME.
2424 This routine should then walk down each partial symbol table
c378eb4e 2425 and see if the symbol table that it originates from has been changed. */
c906108c 2426
c5aa993b
JM
2427 for (objfile = object_files; objfile; objfile = objfile->next)
2428 {
9cce227f
TG
2429 /* solib-sunos.c creates one objfile with obfd. */
2430 if (objfile->obfd == NULL)
2431 continue;
2432
2433 /* Separate debug objfiles are handled in the main objfile. */
2434 if (objfile->separate_debug_objfile_backlink)
2435 continue;
2436
02aeec7b
JB
2437 /* If this object is from an archive (what you usually create with
2438 `ar', often called a `static library' on most systems, though
2439 a `shared library' on AIX is also an archive), then you should
2440 stat on the archive name, not member name. */
9cce227f
TG
2441 if (objfile->obfd->my_archive)
2442 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2443 else
9cce227f
TG
2444 res = stat (objfile->name, &new_statbuf);
2445 if (res != 0)
2446 {
c378eb4e 2447 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2448 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2449 objfile->name);
2450 continue;
2451 }
2452 new_modtime = new_statbuf.st_mtime;
2453 if (new_modtime != objfile->mtime)
2454 {
2455 struct cleanup *old_cleanups;
2456 struct section_offsets *offsets;
2457 int num_offsets;
2458 char *obfd_filename;
2459
2460 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2461 objfile->name);
2462
2463 /* There are various functions like symbol_file_add,
2464 symfile_bfd_open, syms_from_objfile, etc., which might
2465 appear to do what we want. But they have various other
2466 effects which we *don't* want. So we just do stuff
2467 ourselves. We don't worry about mapped files (for one thing,
2468 any mapped file will be out of date). */
2469
2470 /* If we get an error, blow away this objfile (not sure if
2471 that is the correct response for things like shared
2472 libraries). */
2473 old_cleanups = make_cleanup_free_objfile (objfile);
2474 /* We need to do this whenever any symbols go away. */
2475 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2476
0ba1096a
KT
2477 if (exec_bfd != NULL
2478 && filename_cmp (bfd_get_filename (objfile->obfd),
2479 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2480 {
2481 /* Reload EXEC_BFD without asking anything. */
2482
2483 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2484 }
2485
f6eeced0
JK
2486 /* Keep the calls order approx. the same as in free_objfile. */
2487
2488 /* Free the separate debug objfiles. It will be
2489 automatically recreated by sym_read. */
2490 free_objfile_separate_debug (objfile);
2491
2492 /* Remove any references to this objfile in the global
2493 value lists. */
2494 preserve_values (objfile);
2495
2496 /* Nuke all the state that we will re-read. Much of the following
2497 code which sets things to NULL really is necessary to tell
2498 other parts of GDB that there is nothing currently there.
2499
2500 Try to keep the freeing order compatible with free_objfile. */
2501
2502 if (objfile->sf != NULL)
2503 {
2504 (*objfile->sf->sym_finish) (objfile);
2505 }
2506
2507 clear_objfile_data (objfile);
2508
e1507e95 2509 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2510 {
2511 struct bfd *obfd = objfile->obfd;
2512
2513 obfd_filename = bfd_get_filename (objfile->obfd);
2514 /* Open the new BFD before freeing the old one, so that
2515 the filename remains live. */
08d2cd74 2516 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2517 if (objfile->obfd == NULL)
2518 {
2519 /* We have to make a cleanup and error here, rather
2520 than erroring later, because once we unref OBFD,
2521 OBFD_FILENAME will be freed. */
2522 make_cleanup_bfd_unref (obfd);
2523 error (_("Can't open %s to read symbols."), obfd_filename);
2524 }
a4453b7e
TT
2525 gdb_bfd_unref (obfd);
2526 }
2527
e1507e95 2528 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2529 /* bfd_openr sets cacheable to true, which is what we want. */
2530 if (!bfd_check_format (objfile->obfd, bfd_object))
2531 error (_("Can't read symbols from %s: %s."), objfile->name,
2532 bfd_errmsg (bfd_get_error ()));
2533
2534 /* Save the offsets, we will nuke them with the rest of the
2535 objfile_obstack. */
2536 num_offsets = objfile->num_sections;
2537 offsets = ((struct section_offsets *)
2538 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2539 memcpy (offsets, objfile->section_offsets,
2540 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2541
9cce227f
TG
2542 /* FIXME: Do we have to free a whole linked list, or is this
2543 enough? */
2544 if (objfile->global_psymbols.list)
2545 xfree (objfile->global_psymbols.list);
2546 memset (&objfile->global_psymbols, 0,
2547 sizeof (objfile->global_psymbols));
2548 if (objfile->static_psymbols.list)
2549 xfree (objfile->static_psymbols.list);
2550 memset (&objfile->static_psymbols, 0,
2551 sizeof (objfile->static_psymbols));
2552
c378eb4e 2553 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2554 psymbol_bcache_free (objfile->psymbol_cache);
2555 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2556 if (objfile->demangled_names_hash != NULL)
2557 {
2558 htab_delete (objfile->demangled_names_hash);
2559 objfile->demangled_names_hash = NULL;
2560 }
2561 obstack_free (&objfile->objfile_obstack, 0);
2562 objfile->sections = NULL;
2563 objfile->symtabs = NULL;
2564 objfile->psymtabs = NULL;
2565 objfile->psymtabs_addrmap = NULL;
2566 objfile->free_psymtabs = NULL;
34eaf542 2567 objfile->template_symbols = NULL;
9cce227f
TG
2568 objfile->msymbols = NULL;
2569 objfile->deprecated_sym_private = NULL;
2570 objfile->minimal_symbol_count = 0;
2571 memset (&objfile->msymbol_hash, 0,
2572 sizeof (objfile->msymbol_hash));
2573 memset (&objfile->msymbol_demangled_hash, 0,
2574 sizeof (objfile->msymbol_demangled_hash));
2575
706e3705
TT
2576 set_objfile_per_bfd (objfile);
2577
9cce227f
TG
2578 /* obstack_init also initializes the obstack so it is
2579 empty. We could use obstack_specify_allocation but
d82ea6a8 2580 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2581 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2582 build_objfile_section_table (objfile);
9cce227f
TG
2583 terminate_minimal_symbol_table (objfile);
2584
2585 /* We use the same section offsets as from last time. I'm not
2586 sure whether that is always correct for shared libraries. */
2587 objfile->section_offsets = (struct section_offsets *)
2588 obstack_alloc (&objfile->objfile_obstack,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590 memcpy (objfile->section_offsets, offsets,
2591 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 objfile->num_sections = num_offsets;
2593
2594 /* What the hell is sym_new_init for, anyway? The concept of
2595 distinguishing between the main file and additional files
2596 in this way seems rather dubious. */
2597 if (objfile == symfile_objfile)
c906108c 2598 {
9cce227f 2599 (*objfile->sf->sym_new_init) (objfile);
c906108c 2600 }
9cce227f
TG
2601
2602 (*objfile->sf->sym_init) (objfile);
2603 clear_complaints (&symfile_complaints, 1, 1);
2604 /* Do not set flags as this is safe and we don't want to be
2605 verbose. */
2606 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2607 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2608 {
2609 objfile->flags &= ~OBJF_PSYMTABS_READ;
2610 require_partial_symbols (objfile, 0);
2611 }
2612
9cce227f 2613 if (!objfile_has_symbols (objfile))
c906108c 2614 {
9cce227f
TG
2615 wrap_here ("");
2616 printf_unfiltered (_("(no debugging symbols found)\n"));
2617 wrap_here ("");
c5aa993b 2618 }
9cce227f
TG
2619
2620 /* We're done reading the symbol file; finish off complaints. */
2621 clear_complaints (&symfile_complaints, 0, 1);
2622
2623 /* Getting new symbols may change our opinion about what is
2624 frameless. */
2625
2626 reinit_frame_cache ();
2627
2628 /* Discard cleanups as symbol reading was successful. */
2629 discard_cleanups (old_cleanups);
2630
2631 /* If the mtime has changed between the time we set new_modtime
2632 and now, we *want* this to be out of date, so don't call stat
2633 again now. */
2634 objfile->mtime = new_modtime;
9cce227f 2635 init_entry_point_info (objfile);
4ac39b97
JK
2636
2637 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2638 }
2639 }
c906108c 2640
4ac39b97 2641 if (new_objfiles)
ea53e89f 2642 {
4ac39b97
JK
2643 int ix;
2644
ff3536bc
UW
2645 /* Notify objfiles that we've modified objfile sections. */
2646 objfiles_changed ();
2647
c1e56572 2648 clear_symtab_users (0);
4ac39b97
JK
2649
2650 /* clear_objfile_data for each objfile was called before freeing it and
2651 observer_notify_new_objfile (NULL) has been called by
2652 clear_symtab_users above. Notify the new files now. */
2653 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2654 observer_notify_new_objfile (objfile);
2655
ea53e89f
JB
2656 /* At least one objfile has changed, so we can consider that
2657 the executable we're debugging has changed too. */
781b42b0 2658 observer_notify_executable_changed ();
ea53e89f 2659 }
4ac39b97
JK
2660
2661 do_cleanups (all_cleanups);
c906108c 2662}
c906108c
SS
2663\f
2664
c5aa993b
JM
2665
2666typedef struct
2667{
2668 char *ext;
c906108c 2669 enum language lang;
c5aa993b
JM
2670}
2671filename_language;
c906108c 2672
c5aa993b 2673static filename_language *filename_language_table;
c906108c
SS
2674static int fl_table_size, fl_table_next;
2675
2676static void
fba45db2 2677add_filename_language (char *ext, enum language lang)
c906108c
SS
2678{
2679 if (fl_table_next >= fl_table_size)
2680 {
2681 fl_table_size += 10;
5417f6dc 2682 filename_language_table =
25bf3106
PM
2683 xrealloc (filename_language_table,
2684 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2685 }
2686
4fcf66da 2687 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2688 filename_language_table[fl_table_next].lang = lang;
2689 fl_table_next++;
2690}
2691
2692static char *ext_args;
920d2a44
AC
2693static void
2694show_ext_args (struct ui_file *file, int from_tty,
2695 struct cmd_list_element *c, const char *value)
2696{
3e43a32a
MS
2697 fprintf_filtered (file,
2698 _("Mapping between filename extension "
2699 "and source language is \"%s\".\n"),
920d2a44
AC
2700 value);
2701}
c906108c
SS
2702
2703static void
26c41df3 2704set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2705{
2706 int i;
2707 char *cp = ext_args;
2708 enum language lang;
2709
c378eb4e 2710 /* First arg is filename extension, starting with '.' */
c906108c 2711 if (*cp != '.')
8a3fe4f8 2712 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2713
2714 /* Find end of first arg. */
c5aa993b 2715 while (*cp && !isspace (*cp))
c906108c
SS
2716 cp++;
2717
2718 if (*cp == '\0')
3e43a32a
MS
2719 error (_("'%s': two arguments required -- "
2720 "filename extension and language"),
c906108c
SS
2721 ext_args);
2722
c378eb4e 2723 /* Null-terminate first arg. */
c5aa993b 2724 *cp++ = '\0';
c906108c
SS
2725
2726 /* Find beginning of second arg, which should be a source language. */
2727 while (*cp && isspace (*cp))
2728 cp++;
2729
2730 if (*cp == '\0')
3e43a32a
MS
2731 error (_("'%s': two arguments required -- "
2732 "filename extension and language"),
c906108c
SS
2733 ext_args);
2734
2735 /* Lookup the language from among those we know. */
2736 lang = language_enum (cp);
2737
2738 /* Now lookup the filename extension: do we already know it? */
2739 for (i = 0; i < fl_table_next; i++)
2740 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2741 break;
2742
2743 if (i >= fl_table_next)
2744 {
c378eb4e 2745 /* New file extension. */
c906108c
SS
2746 add_filename_language (ext_args, lang);
2747 }
2748 else
2749 {
c378eb4e 2750 /* Redefining a previously known filename extension. */
c906108c
SS
2751
2752 /* if (from_tty) */
2753 /* query ("Really make files of type %s '%s'?", */
2754 /* ext_args, language_str (lang)); */
2755
b8c9b27d 2756 xfree (filename_language_table[i].ext);
4fcf66da 2757 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2758 filename_language_table[i].lang = lang;
2759 }
2760}
2761
2762static void
fba45db2 2763info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2764{
2765 int i;
2766
a3f17187 2767 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2768 printf_filtered ("\n\n");
2769 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2770 printf_filtered ("\t%s\t- %s\n",
2771 filename_language_table[i].ext,
c906108c
SS
2772 language_str (filename_language_table[i].lang));
2773}
2774
2775static void
fba45db2 2776init_filename_language_table (void)
c906108c 2777{
c378eb4e 2778 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2779 {
2780 fl_table_size = 20;
2781 fl_table_next = 0;
c5aa993b 2782 filename_language_table =
c906108c 2783 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2784 add_filename_language (".c", language_c);
6aecb9c2 2785 add_filename_language (".d", language_d);
c5aa993b
JM
2786 add_filename_language (".C", language_cplus);
2787 add_filename_language (".cc", language_cplus);
2788 add_filename_language (".cp", language_cplus);
2789 add_filename_language (".cpp", language_cplus);
2790 add_filename_language (".cxx", language_cplus);
2791 add_filename_language (".c++", language_cplus);
2792 add_filename_language (".java", language_java);
c906108c 2793 add_filename_language (".class", language_java);
da2cf7e0 2794 add_filename_language (".m", language_objc);
c5aa993b
JM
2795 add_filename_language (".f", language_fortran);
2796 add_filename_language (".F", language_fortran);
fd5700c7
JK
2797 add_filename_language (".for", language_fortran);
2798 add_filename_language (".FOR", language_fortran);
2799 add_filename_language (".ftn", language_fortran);
2800 add_filename_language (".FTN", language_fortran);
2801 add_filename_language (".fpp", language_fortran);
2802 add_filename_language (".FPP", language_fortran);
2803 add_filename_language (".f90", language_fortran);
2804 add_filename_language (".F90", language_fortran);
2805 add_filename_language (".f95", language_fortran);
2806 add_filename_language (".F95", language_fortran);
2807 add_filename_language (".f03", language_fortran);
2808 add_filename_language (".F03", language_fortran);
2809 add_filename_language (".f08", language_fortran);
2810 add_filename_language (".F08", language_fortran);
c5aa993b 2811 add_filename_language (".s", language_asm);
aa707ed0 2812 add_filename_language (".sx", language_asm);
c5aa993b 2813 add_filename_language (".S", language_asm);
c6fd39cd
PM
2814 add_filename_language (".pas", language_pascal);
2815 add_filename_language (".p", language_pascal);
2816 add_filename_language (".pp", language_pascal);
963a6417
PH
2817 add_filename_language (".adb", language_ada);
2818 add_filename_language (".ads", language_ada);
2819 add_filename_language (".a", language_ada);
2820 add_filename_language (".ada", language_ada);
dde59185 2821 add_filename_language (".dg", language_ada);
c906108c
SS
2822 }
2823}
2824
2825enum language
dd786858 2826deduce_language_from_filename (const char *filename)
c906108c
SS
2827{
2828 int i;
2829 char *cp;
2830
2831 if (filename != NULL)
2832 if ((cp = strrchr (filename, '.')) != NULL)
2833 for (i = 0; i < fl_table_next; i++)
2834 if (strcmp (cp, filename_language_table[i].ext) == 0)
2835 return filename_language_table[i].lang;
2836
2837 return language_unknown;
2838}
2839\f
2840/* allocate_symtab:
2841
2842 Allocate and partly initialize a new symbol table. Return a pointer
2843 to it. error() if no space.
2844
2845 Caller must set these fields:
c5aa993b
JM
2846 LINETABLE(symtab)
2847 symtab->blockvector
2848 symtab->dirname
2849 symtab->free_code
2850 symtab->free_ptr
c906108c
SS
2851 */
2852
2853struct symtab *
72b9f47f 2854allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2855{
52f0bd74 2856 struct symtab *symtab;
c906108c
SS
2857
2858 symtab = (struct symtab *)
4a146b47 2859 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2860 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2861 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2862 objfile->per_bfd->filename_cache);
c5aa993b
JM
2863 symtab->fullname = NULL;
2864 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2865 symtab->debugformat = "unknown";
c906108c 2866
c378eb4e 2867 /* Hook it to the objfile it comes from. */
c906108c 2868
c5aa993b
JM
2869 symtab->objfile = objfile;
2870 symtab->next = objfile->symtabs;
2871 objfile->symtabs = symtab;
c906108c 2872
45cfd468
DE
2873 if (symtab_create_debug)
2874 {
2875 /* Be a bit clever with debugging messages, and don't print objfile
2876 every time, only when it changes. */
2877 static char *last_objfile_name = NULL;
2878
2879 if (last_objfile_name == NULL
2880 || strcmp (last_objfile_name, objfile->name) != 0)
2881 {
2882 xfree (last_objfile_name);
2883 last_objfile_name = xstrdup (objfile->name);
2884 fprintf_unfiltered (gdb_stdlog,
2885 "Creating one or more symtabs for objfile %s ...\n",
2886 last_objfile_name);
2887 }
2888 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2889 "Created symtab %s for module %s.\n",
2890 host_address_to_string (symtab), filename);
45cfd468
DE
2891 }
2892
c906108c
SS
2893 return (symtab);
2894}
c906108c 2895\f
c5aa993b 2896
c906108c 2897/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2898 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2899
2900void
c1e56572 2901clear_symtab_users (int add_flags)
c906108c
SS
2902{
2903 /* Someday, we should do better than this, by only blowing away
2904 the things that really need to be blown. */
c0501be5
DJ
2905
2906 /* Clear the "current" symtab first, because it is no longer valid.
2907 breakpoint_re_set may try to access the current symtab. */
2908 clear_current_source_symtab_and_line ();
2909
c906108c 2910 clear_displays ();
c1e56572
JK
2911 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2912 breakpoint_re_set ();
1bfeeb0f 2913 clear_last_displayed_sal ();
c906108c 2914 clear_pc_function_cache ();
06d3b283 2915 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2916
2917 /* Clear globals which might have pointed into a removed objfile.
2918 FIXME: It's not clear which of these are supposed to persist
2919 between expressions and which ought to be reset each time. */
2920 expression_context_block = NULL;
2921 innermost_block = NULL;
8756216b
DP
2922
2923 /* Varobj may refer to old symbols, perform a cleanup. */
2924 varobj_invalidate ();
2925
c906108c
SS
2926}
2927
74b7792f
AC
2928static void
2929clear_symtab_users_cleanup (void *ignore)
2930{
c1e56572 2931 clear_symtab_users (0);
74b7792f 2932}
c906108c 2933\f
c906108c
SS
2934/* OVERLAYS:
2935 The following code implements an abstraction for debugging overlay sections.
2936
2937 The target model is as follows:
2938 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2939 same VMA, each with its own unique LMA (or load address).
c906108c 2940 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2941 sections, one by one, from the load address into the VMA address.
5417f6dc 2942 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2943 sections should be considered to be mapped from the VMA to the LMA.
2944 This information is used for symbol lookup, and memory read/write.
5417f6dc 2945 For instance, if a section has been mapped then its contents
c5aa993b 2946 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2947
2948 Two levels of debugger support for overlays are available. One is
2949 "manual", in which the debugger relies on the user to tell it which
2950 overlays are currently mapped. This level of support is
2951 implemented entirely in the core debugger, and the information about
2952 whether a section is mapped is kept in the objfile->obj_section table.
2953
2954 The second level of support is "automatic", and is only available if
2955 the target-specific code provides functionality to read the target's
2956 overlay mapping table, and translate its contents for the debugger
2957 (by updating the mapped state information in the obj_section tables).
2958
2959 The interface is as follows:
c5aa993b
JM
2960 User commands:
2961 overlay map <name> -- tell gdb to consider this section mapped
2962 overlay unmap <name> -- tell gdb to consider this section unmapped
2963 overlay list -- list the sections that GDB thinks are mapped
2964 overlay read-target -- get the target's state of what's mapped
2965 overlay off/manual/auto -- set overlay debugging state
2966 Functional interface:
2967 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2968 section, return that section.
5417f6dc 2969 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2970 the pc, either in its VMA or its LMA
714835d5 2971 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2972 section_is_overlay(sect): true if section's VMA != LMA
2973 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2974 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2975 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2976 overlay_mapped_address(...): map an address from section's LMA to VMA
2977 overlay_unmapped_address(...): map an address from section's VMA to LMA
2978 symbol_overlayed_address(...): Return a "current" address for symbol:
2979 either in VMA or LMA depending on whether
c378eb4e 2980 the symbol's section is currently mapped. */
c906108c
SS
2981
2982/* Overlay debugging state: */
2983
d874f1e2 2984enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2985int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2986
c906108c 2987/* Function: section_is_overlay (SECTION)
5417f6dc 2988 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2989 SECTION is loaded at an address different from where it will "run". */
2990
2991int
714835d5 2992section_is_overlay (struct obj_section *section)
c906108c 2993{
714835d5
UW
2994 if (overlay_debugging && section)
2995 {
2996 bfd *abfd = section->objfile->obfd;
2997 asection *bfd_section = section->the_bfd_section;
f888f159 2998
714835d5
UW
2999 if (bfd_section_lma (abfd, bfd_section) != 0
3000 && bfd_section_lma (abfd, bfd_section)
3001 != bfd_section_vma (abfd, bfd_section))
3002 return 1;
3003 }
c906108c
SS
3004
3005 return 0;
3006}
3007
3008/* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3010
3011static void
fba45db2 3012overlay_invalidate_all (void)
c906108c 3013{
c5aa993b 3014 struct objfile *objfile;
c906108c
SS
3015 struct obj_section *sect;
3016
3017 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3018 if (section_is_overlay (sect))
3019 sect->ovly_mapped = -1;
c906108c
SS
3020}
3021
714835d5 3022/* Function: section_is_mapped (SECTION)
5417f6dc 3023 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3024
3025 Access to the ovly_mapped flag is restricted to this function, so
3026 that we can do automatic update. If the global flag
3027 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3028 overlay_invalidate_all. If the mapped state of the particular
3029 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3030
714835d5
UW
3031int
3032section_is_mapped (struct obj_section *osect)
c906108c 3033{
9216df95
UW
3034 struct gdbarch *gdbarch;
3035
714835d5 3036 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3037 return 0;
3038
c5aa993b 3039 switch (overlay_debugging)
c906108c
SS
3040 {
3041 default:
d874f1e2 3042 case ovly_off:
c5aa993b 3043 return 0; /* overlay debugging off */
d874f1e2 3044 case ovly_auto: /* overlay debugging automatic */
1c772458 3045 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3046 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3047 gdbarch = get_objfile_arch (osect->objfile);
3048 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3049 {
3050 if (overlay_cache_invalid)
3051 {
3052 overlay_invalidate_all ();
3053 overlay_cache_invalid = 0;
3054 }
3055 if (osect->ovly_mapped == -1)
9216df95 3056 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3057 }
3058 /* fall thru to manual case */
d874f1e2 3059 case ovly_on: /* overlay debugging manual */
c906108c
SS
3060 return osect->ovly_mapped == 1;
3061 }
3062}
3063
c906108c
SS
3064/* Function: pc_in_unmapped_range
3065 If PC falls into the lma range of SECTION, return true, else false. */
3066
3067CORE_ADDR
714835d5 3068pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3069{
714835d5
UW
3070 if (section_is_overlay (section))
3071 {
3072 bfd *abfd = section->objfile->obfd;
3073 asection *bfd_section = section->the_bfd_section;
fbd35540 3074
714835d5
UW
3075 /* We assume the LMA is relocated by the same offset as the VMA. */
3076 bfd_vma size = bfd_get_section_size (bfd_section);
3077 CORE_ADDR offset = obj_section_offset (section);
3078
3079 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3080 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3081 return 1;
3082 }
c906108c 3083
c906108c
SS
3084 return 0;
3085}
3086
3087/* Function: pc_in_mapped_range
3088 If PC falls into the vma range of SECTION, return true, else false. */
3089
3090CORE_ADDR
714835d5 3091pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3092{
714835d5
UW
3093 if (section_is_overlay (section))
3094 {
3095 if (obj_section_addr (section) <= pc
3096 && pc < obj_section_endaddr (section))
3097 return 1;
3098 }
c906108c 3099
c906108c
SS
3100 return 0;
3101}
3102
9ec8e6a0
JB
3103
3104/* Return true if the mapped ranges of sections A and B overlap, false
3105 otherwise. */
b9362cc7 3106static int
714835d5 3107sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3108{
714835d5
UW
3109 CORE_ADDR a_start = obj_section_addr (a);
3110 CORE_ADDR a_end = obj_section_endaddr (a);
3111 CORE_ADDR b_start = obj_section_addr (b);
3112 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3113
3114 return (a_start < b_end && b_start < a_end);
3115}
3116
c906108c
SS
3117/* Function: overlay_unmapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the unmapped (load) range.
3119 May be the same as PC. */
3120
3121CORE_ADDR
714835d5 3122overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3123{
714835d5
UW
3124 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3125 {
3126 bfd *abfd = section->objfile->obfd;
3127 asection *bfd_section = section->the_bfd_section;
fbd35540 3128
714835d5
UW
3129 return pc + bfd_section_lma (abfd, bfd_section)
3130 - bfd_section_vma (abfd, bfd_section);
3131 }
c906108c
SS
3132
3133 return pc;
3134}
3135
3136/* Function: overlay_mapped_address (PC, SECTION)
3137 Returns the address corresponding to PC in the mapped (runtime) range.
3138 May be the same as PC. */
3139
3140CORE_ADDR
714835d5 3141overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3142{
714835d5
UW
3143 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3144 {
3145 bfd *abfd = section->objfile->obfd;
3146 asection *bfd_section = section->the_bfd_section;
fbd35540 3147
714835d5
UW
3148 return pc + bfd_section_vma (abfd, bfd_section)
3149 - bfd_section_lma (abfd, bfd_section);
3150 }
c906108c
SS
3151
3152 return pc;
3153}
3154
3155
5417f6dc 3156/* Function: symbol_overlayed_address
c906108c
SS
3157 Return one of two addresses (relative to the VMA or to the LMA),
3158 depending on whether the section is mapped or not. */
3159
c5aa993b 3160CORE_ADDR
714835d5 3161symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3162{
3163 if (overlay_debugging)
3164 {
c378eb4e 3165 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3166 if (section == 0)
3167 return address;
c378eb4e
MS
3168 /* If the symbol's section is not an overlay, just return its
3169 address. */
c906108c
SS
3170 if (!section_is_overlay (section))
3171 return address;
c378eb4e 3172 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3173 if (section_is_mapped (section))
3174 return address;
3175 /*
3176 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3177 * then return its LOADED address rather than its vma address!!
3178 */
3179 return overlay_unmapped_address (address, section);
3180 }
3181 return address;
3182}
3183
5417f6dc 3184/* Function: find_pc_overlay (PC)
c906108c
SS
3185 Return the best-match overlay section for PC:
3186 If PC matches a mapped overlay section's VMA, return that section.
3187 Else if PC matches an unmapped section's VMA, return that section.
3188 Else if PC matches an unmapped section's LMA, return that section. */
3189
714835d5 3190struct obj_section *
fba45db2 3191find_pc_overlay (CORE_ADDR pc)
c906108c 3192{
c5aa993b 3193 struct objfile *objfile;
c906108c
SS
3194 struct obj_section *osect, *best_match = NULL;
3195
3196 if (overlay_debugging)
3197 ALL_OBJSECTIONS (objfile, osect)
714835d5 3198 if (section_is_overlay (osect))
c5aa993b 3199 {
714835d5 3200 if (pc_in_mapped_range (pc, osect))
c5aa993b 3201 {
714835d5
UW
3202 if (section_is_mapped (osect))
3203 return osect;
c5aa993b
JM
3204 else
3205 best_match = osect;
3206 }
714835d5 3207 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3208 best_match = osect;
3209 }
714835d5 3210 return best_match;
c906108c
SS
3211}
3212
3213/* Function: find_pc_mapped_section (PC)
5417f6dc 3214 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3215 currently marked as MAPPED, return that section. Else return NULL. */
3216
714835d5 3217struct obj_section *
fba45db2 3218find_pc_mapped_section (CORE_ADDR pc)
c906108c 3219{
c5aa993b 3220 struct objfile *objfile;
c906108c
SS
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3226 return osect;
c906108c
SS
3227
3228 return NULL;
3229}
3230
3231/* Function: list_overlays_command
c378eb4e 3232 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3233
3234void
fba45db2 3235list_overlays_command (char *args, int from_tty)
c906108c 3236{
c5aa993b
JM
3237 int nmapped = 0;
3238 struct objfile *objfile;
c906108c
SS
3239 struct obj_section *osect;
3240
3241 if (overlay_debugging)
3242 ALL_OBJSECTIONS (objfile, osect)
714835d5 3243 if (section_is_mapped (osect))
c5aa993b 3244 {
5af949e3 3245 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3246 const char *name;
3247 bfd_vma lma, vma;
3248 int size;
3249
3250 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3251 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3252 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3253 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3254
3255 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3256 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3257 puts_filtered (" - ");
5af949e3 3258 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3259 printf_filtered (", mapped at ");
5af949e3 3260 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3261 puts_filtered (" - ");
5af949e3 3262 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3263 puts_filtered ("\n");
3264
3265 nmapped++;
3266 }
c906108c 3267 if (nmapped == 0)
a3f17187 3268 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3269}
3270
3271/* Function: map_overlay_command
3272 Mark the named section as mapped (ie. residing at its VMA address). */
3273
3274void
fba45db2 3275map_overlay_command (char *args, int from_tty)
c906108c 3276{
c5aa993b
JM
3277 struct objfile *objfile, *objfile2;
3278 struct obj_section *sec, *sec2;
c906108c
SS
3279
3280 if (!overlay_debugging)
3e43a32a
MS
3281 error (_("Overlay debugging not enabled. Use "
3282 "either the 'overlay auto' or\n"
3283 "the 'overlay manual' command."));
c906108c
SS
3284
3285 if (args == 0 || *args == 0)
8a3fe4f8 3286 error (_("Argument required: name of an overlay section"));
c906108c 3287
c378eb4e 3288 /* First, find a section matching the user supplied argument. */
c906108c
SS
3289 ALL_OBJSECTIONS (objfile, sec)
3290 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3291 {
c378eb4e 3292 /* Now, check to see if the section is an overlay. */
714835d5 3293 if (!section_is_overlay (sec))
c5aa993b
JM
3294 continue; /* not an overlay section */
3295
c378eb4e 3296 /* Mark the overlay as "mapped". */
c5aa993b
JM
3297 sec->ovly_mapped = 1;
3298
3299 /* Next, make a pass and unmap any sections that are
3300 overlapped by this new section: */
3301 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3302 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3303 {
3304 if (info_verbose)
a3f17187 3305 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3306 bfd_section_name (objfile->obfd,
3307 sec2->the_bfd_section));
c378eb4e 3308 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3309 }
3310 return;
3311 }
8a3fe4f8 3312 error (_("No overlay section called %s"), args);
c906108c
SS
3313}
3314
3315/* Function: unmap_overlay_command
5417f6dc 3316 Mark the overlay section as unmapped
c906108c
SS
3317 (ie. resident in its LMA address range, rather than the VMA range). */
3318
3319void
fba45db2 3320unmap_overlay_command (char *args, int from_tty)
c906108c 3321{
c5aa993b 3322 struct objfile *objfile;
c906108c
SS
3323 struct obj_section *sec;
3324
3325 if (!overlay_debugging)
3e43a32a
MS
3326 error (_("Overlay debugging not enabled. "
3327 "Use either the 'overlay auto' or\n"
3328 "the 'overlay manual' command."));
c906108c
SS
3329
3330 if (args == 0 || *args == 0)
8a3fe4f8 3331 error (_("Argument required: name of an overlay section"));
c906108c 3332
c378eb4e 3333 /* First, find a section matching the user supplied argument. */
c906108c
SS
3334 ALL_OBJSECTIONS (objfile, sec)
3335 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3336 {
3337 if (!sec->ovly_mapped)
8a3fe4f8 3338 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3339 sec->ovly_mapped = 0;
3340 return;
3341 }
8a3fe4f8 3342 error (_("No overlay section called %s"), args);
c906108c
SS
3343}
3344
3345/* Function: overlay_auto_command
3346 A utility command to turn on overlay debugging.
c378eb4e 3347 Possibly this should be done via a set/show command. */
c906108c
SS
3348
3349static void
fba45db2 3350overlay_auto_command (char *args, int from_tty)
c906108c 3351{
d874f1e2 3352 overlay_debugging = ovly_auto;
1900040c 3353 enable_overlay_breakpoints ();
c906108c 3354 if (info_verbose)
a3f17187 3355 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3356}
3357
3358/* Function: overlay_manual_command
3359 A utility command to turn on overlay debugging.
c378eb4e 3360 Possibly this should be done via a set/show command. */
c906108c
SS
3361
3362static void
fba45db2 3363overlay_manual_command (char *args, int from_tty)
c906108c 3364{
d874f1e2 3365 overlay_debugging = ovly_on;
1900040c 3366 disable_overlay_breakpoints ();
c906108c 3367 if (info_verbose)
a3f17187 3368 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3369}
3370
3371/* Function: overlay_off_command
3372 A utility command to turn on overlay debugging.
c378eb4e 3373 Possibly this should be done via a set/show command. */
c906108c
SS
3374
3375static void
fba45db2 3376overlay_off_command (char *args, int from_tty)
c906108c 3377{
d874f1e2 3378 overlay_debugging = ovly_off;
1900040c 3379 disable_overlay_breakpoints ();
c906108c 3380 if (info_verbose)
a3f17187 3381 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3382}
3383
3384static void
fba45db2 3385overlay_load_command (char *args, int from_tty)
c906108c 3386{
e17c207e
UW
3387 struct gdbarch *gdbarch = get_current_arch ();
3388
3389 if (gdbarch_overlay_update_p (gdbarch))
3390 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3391 else
8a3fe4f8 3392 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3393}
3394
3395/* Function: overlay_command
c378eb4e 3396 A place-holder for a mis-typed command. */
c906108c 3397
c378eb4e 3398/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3399static struct cmd_list_element *overlaylist;
c906108c
SS
3400
3401static void
fba45db2 3402overlay_command (char *args, int from_tty)
c906108c 3403{
c5aa993b 3404 printf_unfiltered
c906108c
SS
3405 ("\"overlay\" must be followed by the name of an overlay command.\n");
3406 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3407}
3408
3409
3410/* Target Overlays for the "Simplest" overlay manager:
3411
5417f6dc
RM
3412 This is GDB's default target overlay layer. It works with the
3413 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3414 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3415 so targets that use a different runtime overlay manager can
c906108c
SS
3416 substitute their own overlay_update function and take over the
3417 function pointer.
3418
3419 The overlay_update function pokes around in the target's data structures
3420 to see what overlays are mapped, and updates GDB's overlay mapping with
3421 this information.
3422
3423 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3424 unsigned _novlys; /# number of overlay sections #/
3425 unsigned _ovly_table[_novlys][4] = {
3426 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3427 {..., ..., ..., ...},
3428 }
3429 unsigned _novly_regions; /# number of overlay regions #/
3430 unsigned _ovly_region_table[_novly_regions][3] = {
3431 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3432 {..., ..., ...},
3433 }
c906108c
SS
3434 These functions will attempt to update GDB's mappedness state in the
3435 symbol section table, based on the target's mappedness state.
3436
3437 To do this, we keep a cached copy of the target's _ovly_table, and
3438 attempt to detect when the cached copy is invalidated. The main
3439 entry point is "simple_overlay_update(SECT), which looks up SECT in
3440 the cached table and re-reads only the entry for that section from
c378eb4e 3441 the target (whenever possible). */
c906108c
SS
3442
3443/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3444static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3445static unsigned cache_novlys = 0;
c906108c 3446static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3447enum ovly_index
3448 {
3449 VMA, SIZE, LMA, MAPPED
3450 };
c906108c 3451
c378eb4e 3452/* Throw away the cached copy of _ovly_table. */
c906108c 3453static void
fba45db2 3454simple_free_overlay_table (void)
c906108c
SS
3455{
3456 if (cache_ovly_table)
b8c9b27d 3457 xfree (cache_ovly_table);
c5aa993b 3458 cache_novlys = 0;
c906108c
SS
3459 cache_ovly_table = NULL;
3460 cache_ovly_table_base = 0;
3461}
3462
9216df95 3463/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3464 Convert to host order. int LEN is number of ints. */
c906108c 3465static void
9216df95 3466read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3467 int len, int size, enum bfd_endian byte_order)
c906108c 3468{
c378eb4e 3469 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3470 gdb_byte *buf = alloca (len * size);
c5aa993b 3471 int i;
c906108c 3472
9216df95 3473 read_memory (memaddr, buf, len * size);
c906108c 3474 for (i = 0; i < len; i++)
e17a4113 3475 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3476}
3477
3478/* Find and grab a copy of the target _ovly_table
c378eb4e 3479 (and _novlys, which is needed for the table's size). */
c5aa993b 3480static int
fba45db2 3481simple_read_overlay_table (void)
c906108c 3482{
0d43edd1 3483 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3484 struct gdbarch *gdbarch;
3485 int word_size;
e17a4113 3486 enum bfd_endian byte_order;
c906108c
SS
3487
3488 simple_free_overlay_table ();
9b27852e 3489 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3490 if (! novlys_msym)
c906108c 3491 {
8a3fe4f8 3492 error (_("Error reading inferior's overlay table: "
0d43edd1 3493 "couldn't find `_novlys' variable\n"
8a3fe4f8 3494 "in inferior. Use `overlay manual' mode."));
0d43edd1 3495 return 0;
c906108c 3496 }
0d43edd1 3497
9b27852e 3498 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3499 if (! ovly_table_msym)
3500 {
8a3fe4f8 3501 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3502 "`_ovly_table' array\n"
8a3fe4f8 3503 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3504 return 0;
3505 }
3506
9216df95
UW
3507 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3508 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3509 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3510
e17a4113
UW
3511 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3512 4, byte_order);
0d43edd1
JB
3513 cache_ovly_table
3514 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3515 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3516 read_target_long_array (cache_ovly_table_base,
777ea8f1 3517 (unsigned int *) cache_ovly_table,
e17a4113 3518 cache_novlys * 4, word_size, byte_order);
0d43edd1 3519
c5aa993b 3520 return 1; /* SUCCESS */
c906108c
SS
3521}
3522
5417f6dc 3523/* Function: simple_overlay_update_1
c906108c
SS
3524 A helper function for simple_overlay_update. Assuming a cached copy
3525 of _ovly_table exists, look through it to find an entry whose vma,
3526 lma and size match those of OSECT. Re-read the entry and make sure
3527 it still matches OSECT (else the table may no longer be valid).
3528 Set OSECT's mapped state to match the entry. Return: 1 for
3529 success, 0 for failure. */
3530
3531static int
fba45db2 3532simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3533{
3534 int i, size;
fbd35540
MS
3535 bfd *obfd = osect->objfile->obfd;
3536 asection *bsect = osect->the_bfd_section;
9216df95
UW
3537 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3538 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3540
2c500098 3541 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3542 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3543 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3544 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3545 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3546 {
9216df95
UW
3547 read_target_long_array (cache_ovly_table_base + i * word_size,
3548 (unsigned int *) cache_ovly_table[i],
e17a4113 3549 4, word_size, byte_order);
fbd35540
MS
3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3552 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3553 {
3554 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3555 return 1;
3556 }
c378eb4e 3557 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3558 return 0;
3559 }
3560 return 0;
3561}
3562
3563/* Function: simple_overlay_update
5417f6dc
RM
3564 If OSECT is NULL, then update all sections' mapped state
3565 (after re-reading the entire target _ovly_table).
3566 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3567 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3568 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3569 re-read the entire cache, and go ahead and update all sections. */
3570
1c772458 3571void
fba45db2 3572simple_overlay_update (struct obj_section *osect)
c906108c 3573{
c5aa993b 3574 struct objfile *objfile;
c906108c 3575
c378eb4e 3576 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3577 if (osect)
c378eb4e 3578 /* Have we got a cached copy of the target's overlay table? */
c906108c 3579 if (cache_ovly_table != NULL)
9cc89665
MS
3580 {
3581 /* Does its cached location match what's currently in the
3582 symtab? */
3583 struct minimal_symbol *minsym
3584 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3585
3586 if (minsym == NULL)
3587 error (_("Error reading inferior's overlay table: couldn't "
3588 "find `_ovly_table' array\n"
3589 "in inferior. Use `overlay manual' mode."));
3590
3591 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3592 /* Then go ahead and try to look up this single section in
3593 the cache. */
3594 if (simple_overlay_update_1 (osect))
3595 /* Found it! We're done. */
3596 return;
3597 }
c906108c
SS
3598
3599 /* Cached table no good: need to read the entire table anew.
3600 Or else we want all the sections, in which case it's actually
3601 more efficient to read the whole table in one block anyway. */
3602
0d43edd1
JB
3603 if (! simple_read_overlay_table ())
3604 return;
3605
c378eb4e 3606 /* Now may as well update all sections, even if only one was requested. */
c906108c 3607 ALL_OBJSECTIONS (objfile, osect)
714835d5 3608 if (section_is_overlay (osect))
c5aa993b
JM
3609 {
3610 int i, size;
fbd35540
MS
3611 bfd *obfd = osect->objfile->obfd;
3612 asection *bsect = osect->the_bfd_section;
c5aa993b 3613
2c500098 3614 size = bfd_get_section_size (bsect);
c5aa993b 3615 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3616 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3617 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3618 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3619 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3620 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3621 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3622 }
3623 }
c906108c
SS
3624}
3625
086df311
DJ
3626/* Set the output sections and output offsets for section SECTP in
3627 ABFD. The relocation code in BFD will read these offsets, so we
3628 need to be sure they're initialized. We map each section to itself,
3629 with no offset; this means that SECTP->vma will be honored. */
3630
3631static void
3632symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3633{
3634 sectp->output_section = sectp;
3635 sectp->output_offset = 0;
3636}
3637
ac8035ab
TG
3638/* Default implementation for sym_relocate. */
3639
3640
3641bfd_byte *
3642default_symfile_relocate (struct objfile *objfile, asection *sectp,
3643 bfd_byte *buf)
3644{
3019eac3
DE
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3646 DWO file. */
3647 bfd *abfd = sectp->owner;
ac8035ab
TG
3648
3649 /* We're only interested in sections with relocation
3650 information. */
3651 if ((sectp->flags & SEC_RELOC) == 0)
3652 return NULL;
3653
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3657
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3659}
3660
086df311
DJ
3661/* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3673 debug section. */
086df311
DJ
3674
3675bfd_byte *
ac8035ab
TG
3676symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
086df311 3678{
ac8035ab 3679 gdb_assert (objfile->sf->sym_relocate);
086df311 3680
ac8035ab 3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3682}
c906108c 3683
31d99776
DJ
3684struct symfile_segment_data *
3685get_symfile_segment_data (bfd *abfd)
3686{
00b5771c 3687 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3688
3689 if (sf == NULL)
3690 return NULL;
3691
3692 return sf->sym_segments (abfd);
3693}
3694
3695void
3696free_symfile_segment_data (struct symfile_segment_data *data)
3697{
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3701 xfree (data);
3702}
3703
28c32713
JB
3704
3705/* Given:
3706 - DATA, containing segment addresses from the object file ABFD, and
3707 the mapping from ABFD's sections onto the segments that own them,
3708 and
3709 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3710 segment addresses reported by the target,
3711 store the appropriate offsets for each section in OFFSETS.
3712
3713 If there are fewer entries in SEGMENT_BASES than there are segments
3714 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3715
8d385431
DJ
3716 If there are more entries, then ignore the extra. The target may
3717 not be able to distinguish between an empty data segment and a
3718 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3719int
3720symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3721 struct section_offsets *offsets,
3722 int num_segment_bases,
3723 const CORE_ADDR *segment_bases)
3724{
3725 int i;
3726 asection *sect;
3727
28c32713
JB
3728 /* It doesn't make sense to call this function unless you have some
3729 segment base addresses. */
202b96c1 3730 gdb_assert (num_segment_bases > 0);
28c32713 3731
31d99776
DJ
3732 /* If we do not have segment mappings for the object file, we
3733 can not relocate it by segments. */
3734 gdb_assert (data != NULL);
3735 gdb_assert (data->num_segments > 0);
3736
31d99776
DJ
3737 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3738 {
31d99776
DJ
3739 int which = data->segment_info[i];
3740
28c32713
JB
3741 gdb_assert (0 <= which && which <= data->num_segments);
3742
3743 /* Don't bother computing offsets for sections that aren't
3744 loaded as part of any segment. */
3745 if (! which)
3746 continue;
3747
3748 /* Use the last SEGMENT_BASES entry as the address of any extra
3749 segments mentioned in DATA->segment_info. */
31d99776 3750 if (which > num_segment_bases)
28c32713 3751 which = num_segment_bases;
31d99776 3752
28c32713
JB
3753 offsets->offsets[i] = (segment_bases[which - 1]
3754 - data->segment_bases[which - 1]);
31d99776
DJ
3755 }
3756
3757 return 1;
3758}
3759
3760static void
3761symfile_find_segment_sections (struct objfile *objfile)
3762{
3763 bfd *abfd = objfile->obfd;
3764 int i;
3765 asection *sect;
3766 struct symfile_segment_data *data;
3767
3768 data = get_symfile_segment_data (objfile->obfd);
3769 if (data == NULL)
3770 return;
3771
3772 if (data->num_segments != 1 && data->num_segments != 2)
3773 {
3774 free_symfile_segment_data (data);
3775 return;
3776 }
3777
3778 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3779 {
31d99776
DJ
3780 int which = data->segment_info[i];
3781
3782 if (which == 1)
3783 {
3784 if (objfile->sect_index_text == -1)
3785 objfile->sect_index_text = sect->index;
3786
3787 if (objfile->sect_index_rodata == -1)
3788 objfile->sect_index_rodata = sect->index;
3789 }
3790 else if (which == 2)
3791 {
3792 if (objfile->sect_index_data == -1)
3793 objfile->sect_index_data = sect->index;
3794
3795 if (objfile->sect_index_bss == -1)
3796 objfile->sect_index_bss = sect->index;
3797 }
3798 }
3799
3800 free_symfile_segment_data (data);
3801}
3802
c906108c 3803void
fba45db2 3804_initialize_symfile (void)
c906108c
SS
3805{
3806 struct cmd_list_element *c;
c5aa993b 3807
1a966eab
AC
3808 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3809Load symbol table from executable file FILE.\n\
c906108c 3810The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3811to execute."), &cmdlist);
5ba2abeb 3812 set_cmd_completer (c, filename_completer);
c906108c 3813
1a966eab 3814 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3815Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3816Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3817 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3818The optional arguments are section-name section-address pairs and\n\
3819should be specified if the data and bss segments are not contiguous\n\
1a966eab 3820with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3821 &cmdlist);
5ba2abeb 3822 set_cmd_completer (c, filename_completer);
c906108c 3823
1a966eab
AC
3824 c = add_cmd ("load", class_files, load_command, _("\
3825Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3826for access from GDB.\n\
3827A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3828 set_cmd_completer (c, filename_completer);
c906108c 3829
c5aa993b 3830 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3831 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3832 "overlay ", 0, &cmdlist);
3833
3834 add_com_alias ("ovly", "overlay", class_alias, 1);
3835 add_com_alias ("ov", "overlay", class_alias, 1);
3836
c5aa993b 3837 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3838 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3839
c5aa993b 3840 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3841 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3842
c5aa993b 3843 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3844 _("List mappings of overlay sections."), &overlaylist);
c906108c 3845
c5aa993b 3846 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3847 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3848 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3849 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3850 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3851 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3852 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3853 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3854
3855 /* Filename extension to source language lookup table: */
3856 init_filename_language_table ();
26c41df3
AC
3857 add_setshow_string_noescape_cmd ("extension-language", class_files,
3858 &ext_args, _("\
3859Set mapping between filename extension and source language."), _("\
3860Show mapping between filename extension and source language."), _("\
3861Usage: set extension-language .foo bar"),
3862 set_ext_lang_command,
920d2a44 3863 show_ext_args,
26c41df3 3864 &setlist, &showlist);
c906108c 3865
c5aa993b 3866 add_info ("extensions", info_ext_lang_command,
1bedd215 3867 _("All filename extensions associated with a source language."));
917317f4 3868
525226b5
AC
3869 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3870 &debug_file_directory, _("\
24ddea62
JK
3871Set the directories where separate debug symbols are searched for."), _("\
3872Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3873Separate debug symbols are first searched for in the same\n\
3874directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3875and lastly at the path of the directory of the binary with\n\
24ddea62 3876each global debug-file-directory component prepended."),
525226b5 3877 NULL,
920d2a44 3878 show_debug_file_directory,
525226b5 3879 &setlist, &showlist);
c906108c 3880}
This page took 1.651614 seconds and 4 git commands to generate.