* target.h (struct section_table): Rename to ...
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
fb14de7b
UW
40#include "inferior.h"
41#include "regcache.h"
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
ea53e89f 51#include "observer.h"
c1bd25fd 52#include "exec.h"
9bdcbae7 53#include "parser-defs.h"
8756216b 54#include "varobj.h"
77069918 55#include "elf-bfd.h"
e85a822c 56#include "solib.h"
f1838a98 57#include "remote.h"
c906108c 58
c906108c
SS
59#include <sys/types.h>
60#include <fcntl.h>
61#include "gdb_string.h"
62#include "gdb_stat.h"
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
c906108c 67
9a4105ab
AC
68int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
69void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
c2d11a7d 73 unsigned long total_size);
769d7dc4
AC
74void (*deprecated_pre_add_symbol_hook) (const char *);
75void (*deprecated_post_add_symbol_hook) (void);
c906108c 76
74b7792f
AC
77static void clear_symtab_users_cleanup (void *ignore);
78
c906108c 79/* Global variables owned by this file */
c5aa993b 80int readnow_symbol_files; /* Read full symbols immediately */
c906108c 81
c906108c
SS
82/* External variables and functions referenced. */
83
a14ed312 84extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
85
86/* Functions this file defines */
87
88#if 0
a14ed312
KB
89static int simple_read_overlay_region_table (void);
90static void simple_free_overlay_region_table (void);
c906108c
SS
91#endif
92
a14ed312 93static void load_command (char *, int);
c906108c 94
d7db6da9
FN
95static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
a14ed312 97static void add_symbol_file_command (char *, int);
c906108c 98
a14ed312 99static void add_shared_symbol_files_command (char *, int);
c906108c 100
5b5d99cf
JB
101static void reread_separate_symbols (struct objfile *objfile);
102
a14ed312 103static void cashier_psymtab (struct partial_symtab *);
c906108c 104
a14ed312 105bfd *symfile_bfd_open (char *);
c906108c 106
0e931cf0
JB
107int get_section_index (struct objfile *, char *);
108
31d99776 109static struct sym_fns *find_sym_fns (bfd *);
c906108c 110
a14ed312 111static void decrement_reading_symtab (void *);
c906108c 112
a14ed312 113static void overlay_invalidate_all (void);
c906108c 114
a14ed312 115void list_overlays_command (char *, int);
c906108c 116
a14ed312 117void map_overlay_command (char *, int);
c906108c 118
a14ed312 119void unmap_overlay_command (char *, int);
c906108c 120
a14ed312 121static void overlay_auto_command (char *, int);
c906108c 122
a14ed312 123static void overlay_manual_command (char *, int);
c906108c 124
a14ed312 125static void overlay_off_command (char *, int);
c906108c 126
a14ed312 127static void overlay_load_command (char *, int);
c906108c 128
a14ed312 129static void overlay_command (char *, int);
c906108c 130
a14ed312 131static void simple_free_overlay_table (void);
c906108c 132
a14ed312 133static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
bf250677
DE
174/* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179int print_symbol_loading = 1;
c906108c 180
b7209cb4
FF
181/* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
c906108c 188 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 189 report all the functions that are actually present. */
c906108c
SS
190
191int auto_solib_add = 1;
b7209cb4
FF
192
193/* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201int auto_solib_limit;
c906108c 202\f
c5aa993b 203
0fe19209
DC
204/* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
c906108c
SS
206
207static int
0cd64fe2 208compare_psymbols (const void *s1p, const void *s2p)
c906108c 209{
0fe19209
DC
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
4725b721
PH
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
215}
216
217void
fba45db2 218sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
219{
220 /* Sort the global list; don't sort the static list */
221
c5aa993b
JM
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
224 compare_psymbols);
225}
226
c906108c
SS
227/* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232char *
63ca651f 233obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 234{
52f0bd74 235 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
aa1ee363
AC
240 const char *p1 = ptr;
241 char *p2 = p;
63ca651f 242 const char *end = ptr + size;
c906108c
SS
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248}
249
250/* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253char *
fba45db2
KB
254obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
c906108c 256{
52f0bd74
AC
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263}
264
265/* True if we are nested inside psymtab_to_symtab. */
266
267int currently_reading_symtab = 0;
268
269static void
fba45db2 270decrement_reading_symtab (void *dummy)
c906108c
SS
271{
272 currently_reading_symtab--;
273}
274
275/* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280struct symtab *
aa1ee363 281psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
282{
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
c5aa993b 289 {
c906108c
SS
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297}
298
5417f6dc
RM
299/* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
c906108c
SS
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308void
4efb68b1 309find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 310{
c5aa993b 311 asection **lowest = (asection **) obj;
c906108c
SS
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323}
324
a39a16c4
MM
325/* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327struct section_addr_info *
328alloc_section_addr_info (size_t num_sections)
329{
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340}
62557bbc 341
7b90c3f9
JB
342
343/* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345struct section_addr_info *
346copy_section_addr_info (struct section_addr_info *addrs)
347{
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364}
365
366
367
62557bbc
KB
368/* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371extern struct section_addr_info *
0542c86d
PA
372build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
62557bbc
KB
374{
375 struct section_addr_info *sap;
0542c86d 376 const struct target_section *stp;
62557bbc
KB
377 int oidx;
378
a39a16c4 379 sap = alloc_section_addr_info (end - start);
62557bbc
KB
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
5417f6dc 383 if (bfd_get_section_flags (stp->bfd,
fbd35540 384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 385 && oidx < end - start)
62557bbc
KB
386 {
387 sap->other[oidx].addr = stp->addr;
5417f6dc 388 sap->other[oidx].name
fbd35540 389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396}
397
398
399/* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401extern void
402free_section_addr_info (struct section_addr_info *sap)
403{
404 int idx;
405
a39a16c4 406 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 407 if (sap->other[idx].name)
b8c9b27d
KB
408 xfree (sap->other[idx].name);
409 xfree (sap);
62557bbc
KB
410}
411
412
e8289572
JB
413/* Initialize OBJFILE's sect_index_* members. */
414static void
415init_objfile_sect_indices (struct objfile *objfile)
c906108c 416{
e8289572 417 asection *sect;
c906108c 418 int i;
5417f6dc 419
b8fbeb18 420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 421 if (sect)
b8fbeb18
EZ
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 425 if (sect)
b8fbeb18
EZ
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 429 if (sect)
b8fbeb18
EZ
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 433 if (sect)
b8fbeb18
EZ
434 objfile->sect_index_rodata = sect->index;
435
bbcd32ad
FF
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
31d99776
DJ
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
bbcd32ad
FF
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
b8fbeb18 471}
c906108c 472
c1bd25fd
DJ
473/* The arguments to place_section. */
474
475struct place_section_arg
476{
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479};
480
481/* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
2c0b251b 484static void
c1bd25fd
DJ
485place_section (bfd *abfd, asection *sect, void *obj)
486{
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
3bd72c6f 490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 491
2711e456
DJ
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
501 start_addr = (arg->lowest + align - 1) & -align;
502
c1bd25fd
DJ
503 do {
504 asection *cur_sec;
c1bd25fd 505
c1bd25fd
DJ
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
2711e456
DJ
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
3bd72c6f 534 break;
c1bd25fd
DJ
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 544}
e8289572
JB
545
546/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 547 of how to represent it for fast symbol reading. This is the default
e8289572
JB
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552void
553default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555{
556 int i;
557
a39a16c4 558 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 559 objfile->section_offsets = (struct section_offsets *)
5417f6dc 560 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 562 memset (objfile->section_offsets, 0,
a39a16c4 563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
a39a16c4 567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
c1bd25fd
DJ
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
2711e456
DJ
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
2711e456
DJ
644 offsets[cur_sec->index] = 0;
645 }
646 }
c1bd25fd
DJ
647 }
648
e8289572
JB
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652}
653
654
31d99776
DJ
655/* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661struct symfile_segment_data *
662default_symfile_segments (bfd *abfd)
663{
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717}
718
c906108c
SS
719/* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
96baa820
JM
722 OBJFILE is where the symbols are to be read from.
723
7e8580c1
JB
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
744
745 MAINLINE is nonzero if this is the main symbol file, or zero if
746 it's an extra symbol file such as dynamically loaded code.
747
748 VERBO is nonzero if the caller has printed a verbose message about
749 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
750
751void
7e8580c1
JB
752syms_from_objfile (struct objfile *objfile,
753 struct section_addr_info *addrs,
754 struct section_offsets *offsets,
755 int num_offsets,
756 int mainline,
757 int verbo)
c906108c 758{
a39a16c4 759 struct section_addr_info *local_addr = NULL;
c906108c 760 struct cleanup *old_chain;
2acceee2 761
7e8580c1 762 gdb_assert (! (addrs && offsets));
2acceee2 763
c906108c 764 init_entry_point_info (objfile);
31d99776 765 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 766
75245b24
MS
767 if (objfile->sf == NULL)
768 return; /* No symbols. */
769
c906108c
SS
770 /* Make sure that partially constructed symbol tables will be cleaned up
771 if an error occurs during symbol reading. */
74b7792f 772 old_chain = make_cleanup_free_objfile (objfile);
c906108c 773
a39a16c4
MM
774 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
775 list. We now establish the convention that an addr of zero means
776 no load address was specified. */
777 if (! addrs && ! offsets)
778 {
5417f6dc 779 local_addr
a39a16c4
MM
780 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
781 make_cleanup (xfree, local_addr);
782 addrs = local_addr;
783 }
784
785 /* Now either addrs or offsets is non-zero. */
786
c5aa993b 787 if (mainline)
c906108c
SS
788 {
789 /* We will modify the main symbol table, make sure that all its users
c5aa993b 790 will be cleaned up if an error occurs during symbol reading. */
74b7792f 791 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
792
793 /* Since no error yet, throw away the old symbol table. */
794
795 if (symfile_objfile != NULL)
796 {
797 free_objfile (symfile_objfile);
798 symfile_objfile = NULL;
799 }
800
801 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
802 If the user wants to get rid of them, they should do "symbol-file"
803 without arguments first. Not sure this is the best behavior
804 (PR 2207). */
c906108c 805
c5aa993b 806 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
807 }
808
809 /* Convert addr into an offset rather than an absolute address.
810 We find the lowest address of a loaded segment in the objfile,
53a5351d 811 and assume that <addr> is where that got loaded.
c906108c 812
53a5351d
JM
813 We no longer warn if the lowest section is not a text segment (as
814 happens for the PA64 port. */
1549f619 815 if (!mainline && addrs && addrs->other[0].name)
c906108c 816 {
1549f619
EZ
817 asection *lower_sect;
818 asection *sect;
819 CORE_ADDR lower_offset;
820 int i;
821
5417f6dc 822 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
823 continguous sections. FIXME!! won't work without call to find
824 .text first, but this assumes text is lowest section. */
825 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
826 if (lower_sect == NULL)
c906108c 827 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 828 &lower_sect);
2acceee2 829 if (lower_sect == NULL)
ff8e85c3
PA
830 {
831 warning (_("no loadable sections found in added symbol-file %s"),
832 objfile->name);
833 lower_offset = 0;
834 }
2acceee2 835 else
ff8e85c3 836 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 837
13de58df 838 /* Calculate offsets for the loadable sections.
2acceee2
JM
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
5417f6dc 841
13de58df
JB
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
2acceee2
JM
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
1549f619 848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
8a3fe4f8 864 warning (_("section %s not found in %s"),
5417f6dc 865 addrs->other[i].name,
7e8580c1
JB
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
c906108c
SS
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
c5aa993b 879 (*objfile->sf->sym_init) (objfile);
b9caf505 880 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 881
7e8580c1
JB
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
8b92e4d5 892 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
c906108c 897
96baa820 898 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 899
c906108c
SS
900 /* Discard cleanups as symbol reading was successful. */
901
902 discard_cleanups (old_chain);
f7545552 903 xfree (local_addr);
c906108c
SS
904}
905
906/* Perform required actions after either reading in the initial
907 symbols for a new objfile, or mapping in the symbols from a reusable
908 objfile. */
c5aa993b 909
c906108c 910void
fba45db2 911new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
912{
913
914 /* If this is the main symbol file we have to clean up all users of the
915 old main symbol file. Otherwise it is sufficient to fixup all the
916 breakpoints that may have been redefined by this symbol file. */
917 if (mainline)
918 {
919 /* OK, make it the "real" symbol file. */
920 symfile_objfile = objfile;
921
922 clear_symtab_users ();
923 }
924 else
925 {
e62c965a 926 breakpoint_re_set_objfile (objfile);
c906108c
SS
927 }
928
929 /* We're done reading the symbol file; finish off complaints. */
b9caf505 930 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
931}
932
933/* Process a symbol file, as either the main file or as a dynamically
934 loaded file.
935
5417f6dc
RM
936 ABFD is a BFD already open on the file, as from symfile_bfd_open.
937 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
938
939 FROM_TTY says how verbose to be.
940
941 MAINLINE specifies whether this is the main symbol file, or whether
942 it's an extra symbol file such as dynamically loaded code.
943
944 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
945 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
946 non-zero.
c906108c 947
c906108c
SS
948 Upon success, returns a pointer to the objfile that was added.
949 Upon failure, jumps back to command level (never returns). */
7904e09f 950static struct objfile *
5417f6dc 951symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
952 struct section_addr_info *addrs,
953 struct section_offsets *offsets,
954 int num_offsets,
955 int mainline, int flags)
c906108c
SS
956{
957 struct objfile *objfile;
958 struct partial_symtab *psymtab;
77069918 959 char *debugfile = NULL;
7b90c3f9 960 struct section_addr_info *orig_addrs = NULL;
a39a16c4 961 struct cleanup *my_cleanups;
5417f6dc 962 const char *name = bfd_get_filename (abfd);
c906108c 963
5417f6dc 964 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 965
5417f6dc
RM
966 /* Give user a chance to burp if we'd be
967 interactively wiping out any existing symbols. */
c906108c
SS
968
969 if ((have_full_symbols () || have_partial_symbols ())
970 && mainline
971 && from_tty
9e2f0ad4 972 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 973 error (_("Not confirmed."));
c906108c 974
2df3850c 975 objfile = allocate_objfile (abfd, flags);
5417f6dc 976 discard_cleanups (my_cleanups);
c906108c 977
a39a16c4 978 if (addrs)
63cd24fe 979 {
7b90c3f9
JB
980 orig_addrs = copy_section_addr_info (addrs);
981 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 982 }
a39a16c4 983
78a4a9b9
AC
984 /* We either created a new mapped symbol table, mapped an existing
985 symbol table file which has not had initial symbol reading
986 performed, or need to read an unmapped symbol table. */
987 if (from_tty || info_verbose)
c906108c 988 {
769d7dc4
AC
989 if (deprecated_pre_add_symbol_hook)
990 deprecated_pre_add_symbol_hook (name);
78a4a9b9 991 else
c906108c 992 {
bf250677
DE
993 if (print_symbol_loading)
994 {
995 printf_unfiltered (_("Reading symbols from %s..."), name);
996 wrap_here ("");
997 gdb_flush (gdb_stdout);
998 }
c906108c 999 }
c906108c 1000 }
78a4a9b9
AC
1001 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1002 mainline, from_tty);
c906108c
SS
1003
1004 /* We now have at least a partial symbol table. Check to see if the
1005 user requested that all symbols be read on initial access via either
1006 the gdb startup command line or on a per symbol file basis. Expand
1007 all partial symbol tables for this objfile if so. */
1008
2acceee2 1009 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1010 {
bf250677 1011 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1012 {
a3f17187 1013 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1014 wrap_here ("");
1015 gdb_flush (gdb_stdout);
1016 }
1017
c5aa993b 1018 for (psymtab = objfile->psymtabs;
c906108c 1019 psymtab != NULL;
c5aa993b 1020 psymtab = psymtab->next)
c906108c
SS
1021 {
1022 psymtab_to_symtab (psymtab);
1023 }
1024 }
1025
77069918
JK
1026 /* If the file has its own symbol tables it has no separate debug info.
1027 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1028 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1029 if (objfile->psymtabs == NULL)
1030 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1031 if (debugfile)
1032 {
5b5d99cf
JB
1033 if (addrs != NULL)
1034 {
1035 objfile->separate_debug_objfile
a39a16c4 1036 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1037 }
1038 else
1039 {
1040 objfile->separate_debug_objfile
1041 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1042 }
1043 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1044 = objfile;
5417f6dc 1045
5b5d99cf
JB
1046 /* Put the separate debug object before the normal one, this is so that
1047 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1048 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1049
5b5d99cf
JB
1050 xfree (debugfile);
1051 }
5417f6dc 1052
bf250677
DE
1053 if (!have_partial_symbols () && !have_full_symbols ()
1054 && print_symbol_loading)
cb3c37b2
JB
1055 {
1056 wrap_here ("");
d4c0a7a0 1057 printf_unfiltered (_("(no debugging symbols found)"));
8f5ba92b 1058 if (from_tty || info_verbose)
d4c0a7a0 1059 printf_unfiltered ("...");
8f5ba92b 1060 else
d4c0a7a0 1061 printf_unfiltered ("\n");
cb3c37b2
JB
1062 wrap_here ("");
1063 }
1064
c906108c
SS
1065 if (from_tty || info_verbose)
1066 {
769d7dc4
AC
1067 if (deprecated_post_add_symbol_hook)
1068 deprecated_post_add_symbol_hook ();
c906108c 1069 else
c5aa993b 1070 {
bf250677
DE
1071 if (print_symbol_loading)
1072 printf_unfiltered (_("done.\n"));
c5aa993b 1073 }
c906108c
SS
1074 }
1075
481d0f41
JB
1076 /* We print some messages regardless of whether 'from_tty ||
1077 info_verbose' is true, so make sure they go out at the right
1078 time. */
1079 gdb_flush (gdb_stdout);
1080
a39a16c4
MM
1081 do_cleanups (my_cleanups);
1082
109f874e
MS
1083 if (objfile->sf == NULL)
1084 return objfile; /* No symbols. */
1085
c906108c
SS
1086 new_symfile_objfile (objfile, mainline, from_tty);
1087
06d3b283 1088 observer_notify_new_objfile (objfile);
c906108c 1089
ce7d4522 1090 bfd_cache_close_all ();
c906108c
SS
1091 return (objfile);
1092}
1093
7904e09f 1094
eb4556d7
JB
1095/* Process the symbol file ABFD, as either the main file or as a
1096 dynamically loaded file.
1097
1098 See symbol_file_add_with_addrs_or_offsets's comments for
1099 details. */
1100struct objfile *
1101symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1102 struct section_addr_info *addrs,
1103 int mainline, int flags)
1104{
1105 return symbol_file_add_with_addrs_or_offsets (abfd,
1106 from_tty, addrs, 0, 0,
1107 mainline, flags);
1108}
1109
1110
7904e09f
JB
1111/* Process a symbol file, as either the main file or as a dynamically
1112 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1113 for details. */
1114struct objfile *
1115symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1116 int mainline, int flags)
1117{
eb4556d7
JB
1118 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1119 addrs, mainline, flags);
7904e09f
JB
1120}
1121
1122
d7db6da9
FN
1123/* Call symbol_file_add() with default values and update whatever is
1124 affected by the loading of a new main().
1125 Used when the file is supplied in the gdb command line
1126 and by some targets with special loading requirements.
1127 The auxiliary function, symbol_file_add_main_1(), has the flags
1128 argument for the switches that can only be specified in the symbol_file
1129 command itself. */
5417f6dc 1130
1adeb98a
FN
1131void
1132symbol_file_add_main (char *args, int from_tty)
1133{
d7db6da9
FN
1134 symbol_file_add_main_1 (args, from_tty, 0);
1135}
1136
1137static void
1138symbol_file_add_main_1 (char *args, int from_tty, int flags)
1139{
1140 symbol_file_add (args, from_tty, NULL, 1, flags);
1141
d7db6da9
FN
1142 /* Getting new symbols may change our opinion about
1143 what is frameless. */
1144 reinit_frame_cache ();
1145
1146 set_initial_language ();
1adeb98a
FN
1147}
1148
1149void
1150symbol_file_clear (int from_tty)
1151{
1152 if ((have_full_symbols () || have_partial_symbols ())
1153 && from_tty
0430b0d6
AS
1154 && (symfile_objfile
1155 ? !query (_("Discard symbol table from `%s'? "),
1156 symfile_objfile->name)
1157 : !query (_("Discard symbol table? "))))
8a3fe4f8 1158 error (_("Not confirmed."));
1adeb98a 1159
d10c338d 1160 free_all_objfiles ();
1adeb98a 1161
d10c338d
DE
1162 /* solib descriptors may have handles to objfiles. Since their
1163 storage has just been released, we'd better wipe the solib
1164 descriptors as well. */
1165 no_shared_libraries (NULL, from_tty);
1166
1167 symfile_objfile = NULL;
1168 if (from_tty)
1169 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1170}
1171
77069918
JK
1172struct build_id
1173 {
1174 size_t size;
1175 gdb_byte data[1];
1176 };
1177
1178/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1179
1180static struct build_id *
1181build_id_bfd_get (bfd *abfd)
1182{
1183 struct build_id *retval;
1184
1185 if (!bfd_check_format (abfd, bfd_object)
1186 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1187 || elf_tdata (abfd)->build_id == NULL)
1188 return NULL;
1189
1190 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1191 retval->size = elf_tdata (abfd)->build_id_size;
1192 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1193
1194 return retval;
1195}
1196
1197/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1198
1199static int
1200build_id_verify (const char *filename, struct build_id *check)
1201{
1202 bfd *abfd;
1203 struct build_id *found = NULL;
1204 int retval = 0;
1205
1206 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1207 if (remote_filename_p (filename))
1208 abfd = remote_bfd_open (filename, gnutarget);
1209 else
1210 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1211 if (abfd == NULL)
1212 return 0;
1213
1214 found = build_id_bfd_get (abfd);
1215
1216 if (found == NULL)
1217 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1218 else if (found->size != check->size
1219 || memcmp (found->data, check->data, found->size) != 0)
1220 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1221 else
1222 retval = 1;
1223
1224 if (!bfd_close (abfd))
1225 warning (_("cannot close \"%s\": %s"), filename,
1226 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1227
1228 xfree (found);
1229
77069918
JK
1230 return retval;
1231}
1232
1233static char *
1234build_id_to_debug_filename (struct build_id *build_id)
1235{
1236 char *link, *s, *retval = NULL;
1237 gdb_byte *data = build_id->data;
1238 size_t size = build_id->size;
1239
1240 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1241 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1242 + 2 * size + (sizeof ".debug" - 1) + 1);
1243 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1244 if (size > 0)
1245 {
1246 size--;
1247 s += sprintf (s, "%02x", (unsigned) *data++);
1248 }
1249 if (size > 0)
1250 *s++ = '/';
1251 while (size-- > 0)
1252 s += sprintf (s, "%02x", (unsigned) *data++);
1253 strcpy (s, ".debug");
1254
1255 /* lrealpath() is expensive even for the usually non-existent files. */
1256 if (access (link, F_OK) == 0)
1257 retval = lrealpath (link);
1258 xfree (link);
1259
1260 if (retval != NULL && !build_id_verify (retval, build_id))
1261 {
1262 xfree (retval);
1263 retval = NULL;
1264 }
1265
1266 return retval;
1267}
1268
5b5d99cf
JB
1269static char *
1270get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1271{
1272 asection *sect;
1273 bfd_size_type debuglink_size;
1274 unsigned long crc32;
1275 char *contents;
1276 int crc_offset;
1277 unsigned char *p;
5417f6dc 1278
5b5d99cf
JB
1279 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1280
1281 if (sect == NULL)
1282 return NULL;
1283
1284 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1285
5b5d99cf
JB
1286 contents = xmalloc (debuglink_size);
1287 bfd_get_section_contents (objfile->obfd, sect, contents,
1288 (file_ptr)0, (bfd_size_type)debuglink_size);
1289
1290 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1291 crc_offset = strlen (contents) + 1;
1292 crc_offset = (crc_offset + 3) & ~3;
1293
1294 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1295
5b5d99cf
JB
1296 *crc32_out = crc32;
1297 return contents;
1298}
1299
1300static int
1301separate_debug_file_exists (const char *name, unsigned long crc)
1302{
1303 unsigned long file_crc = 0;
f1838a98 1304 bfd *abfd;
777ea8f1 1305 gdb_byte buffer[8*1024];
5b5d99cf
JB
1306 int count;
1307
f1838a98
UW
1308 if (remote_filename_p (name))
1309 abfd = remote_bfd_open (name, gnutarget);
1310 else
1311 abfd = bfd_openr (name, gnutarget);
1312
1313 if (!abfd)
5b5d99cf
JB
1314 return 0;
1315
f1838a98 1316 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1317 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1318
f1838a98 1319 bfd_close (abfd);
5b5d99cf
JB
1320
1321 return crc == file_crc;
1322}
1323
aa28a74e 1324char *debug_file_directory = NULL;
920d2a44
AC
1325static void
1326show_debug_file_directory (struct ui_file *file, int from_tty,
1327 struct cmd_list_element *c, const char *value)
1328{
1329 fprintf_filtered (file, _("\
1330The directory where separate debug symbols are searched for is \"%s\".\n"),
1331 value);
1332}
5b5d99cf
JB
1333
1334#if ! defined (DEBUG_SUBDIRECTORY)
1335#define DEBUG_SUBDIRECTORY ".debug"
1336#endif
1337
1338static char *
1339find_separate_debug_file (struct objfile *objfile)
1340{
1341 asection *sect;
1342 char *basename;
1343 char *dir;
1344 char *debugfile;
1345 char *name_copy;
aa28a74e 1346 char *canon_name;
5b5d99cf
JB
1347 bfd_size_type debuglink_size;
1348 unsigned long crc32;
1349 int i;
77069918
JK
1350 struct build_id *build_id;
1351
1352 build_id = build_id_bfd_get (objfile->obfd);
1353 if (build_id != NULL)
1354 {
1355 char *build_id_name;
1356
1357 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1358 xfree (build_id);
77069918
JK
1359 /* Prevent looping on a stripped .debug file. */
1360 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1361 {
1362 warning (_("\"%s\": separate debug info file has no debug info"),
1363 build_id_name);
1364 xfree (build_id_name);
1365 }
1366 else if (build_id_name != NULL)
1367 return build_id_name;
1368 }
5b5d99cf
JB
1369
1370 basename = get_debug_link_info (objfile, &crc32);
1371
1372 if (basename == NULL)
1373 return NULL;
5417f6dc 1374
5b5d99cf
JB
1375 dir = xstrdup (objfile->name);
1376
fe36c4f4
JB
1377 /* Strip off the final filename part, leaving the directory name,
1378 followed by a slash. Objfile names should always be absolute and
1379 tilde-expanded, so there should always be a slash in there
1380 somewhere. */
5b5d99cf
JB
1381 for (i = strlen(dir) - 1; i >= 0; i--)
1382 {
1383 if (IS_DIR_SEPARATOR (dir[i]))
1384 break;
1385 }
fe36c4f4 1386 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1387 dir[i+1] = '\0';
5417f6dc 1388
5b5d99cf
JB
1389 debugfile = alloca (strlen (debug_file_directory) + 1
1390 + strlen (dir)
1391 + strlen (DEBUG_SUBDIRECTORY)
1392 + strlen ("/")
5417f6dc 1393 + strlen (basename)
5b5d99cf
JB
1394 + 1);
1395
1396 /* First try in the same directory as the original file. */
1397 strcpy (debugfile, dir);
1398 strcat (debugfile, basename);
1399
1400 if (separate_debug_file_exists (debugfile, crc32))
1401 {
1402 xfree (basename);
1403 xfree (dir);
1404 return xstrdup (debugfile);
1405 }
5417f6dc 1406
5b5d99cf
JB
1407 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1408 strcpy (debugfile, dir);
1409 strcat (debugfile, DEBUG_SUBDIRECTORY);
1410 strcat (debugfile, "/");
1411 strcat (debugfile, basename);
1412
1413 if (separate_debug_file_exists (debugfile, crc32))
1414 {
1415 xfree (basename);
1416 xfree (dir);
1417 return xstrdup (debugfile);
1418 }
5417f6dc 1419
5b5d99cf
JB
1420 /* Then try in the global debugfile directory. */
1421 strcpy (debugfile, debug_file_directory);
1422 strcat (debugfile, "/");
1423 strcat (debugfile, dir);
5b5d99cf
JB
1424 strcat (debugfile, basename);
1425
1426 if (separate_debug_file_exists (debugfile, crc32))
1427 {
1428 xfree (basename);
1429 xfree (dir);
1430 return xstrdup (debugfile);
1431 }
5417f6dc 1432
aa28a74e
DJ
1433 /* If the file is in the sysroot, try using its base path in the
1434 global debugfile directory. */
1435 canon_name = lrealpath (dir);
1436 if (canon_name
1437 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1438 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1439 {
1440 strcpy (debugfile, debug_file_directory);
1441 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1442 strcat (debugfile, "/");
1443 strcat (debugfile, basename);
1444
1445 if (separate_debug_file_exists (debugfile, crc32))
1446 {
1447 xfree (canon_name);
1448 xfree (basename);
1449 xfree (dir);
1450 return xstrdup (debugfile);
1451 }
1452 }
1453
1454 if (canon_name)
1455 xfree (canon_name);
1456
5b5d99cf
JB
1457 xfree (basename);
1458 xfree (dir);
1459 return NULL;
1460}
1461
1462
c906108c
SS
1463/* This is the symbol-file command. Read the file, analyze its
1464 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1465 the command is rather bizarre:
1466
1467 1. The function buildargv implements various quoting conventions
1468 which are undocumented and have little or nothing in common with
1469 the way things are quoted (or not quoted) elsewhere in GDB.
1470
1471 2. Options are used, which are not generally used in GDB (perhaps
1472 "set mapped on", "set readnow on" would be better)
1473
1474 3. The order of options matters, which is contrary to GNU
c906108c
SS
1475 conventions (because it is confusing and inconvenient). */
1476
1477void
fba45db2 1478symbol_file_command (char *args, int from_tty)
c906108c 1479{
c906108c
SS
1480 dont_repeat ();
1481
1482 if (args == NULL)
1483 {
1adeb98a 1484 symbol_file_clear (from_tty);
c906108c
SS
1485 }
1486 else
1487 {
d1a41061 1488 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1489 int flags = OBJF_USERLOADED;
1490 struct cleanup *cleanups;
1491 char *name = NULL;
1492
7a292a7a 1493 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1494 while (*argv != NULL)
1495 {
78a4a9b9
AC
1496 if (strcmp (*argv, "-readnow") == 0)
1497 flags |= OBJF_READNOW;
1498 else if (**argv == '-')
8a3fe4f8 1499 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1500 else
1501 {
cb2f3a29 1502 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1503 name = *argv;
78a4a9b9 1504 }
cb2f3a29 1505
c906108c
SS
1506 argv++;
1507 }
1508
1509 if (name == NULL)
cb2f3a29
MK
1510 error (_("no symbol file name was specified"));
1511
c906108c
SS
1512 do_cleanups (cleanups);
1513 }
1514}
1515
1516/* Set the initial language.
1517
cb2f3a29
MK
1518 FIXME: A better solution would be to record the language in the
1519 psymtab when reading partial symbols, and then use it (if known) to
1520 set the language. This would be a win for formats that encode the
1521 language in an easily discoverable place, such as DWARF. For
1522 stabs, we can jump through hoops looking for specially named
1523 symbols or try to intuit the language from the specific type of
1524 stabs we find, but we can't do that until later when we read in
1525 full symbols. */
c906108c 1526
8b60591b 1527void
fba45db2 1528set_initial_language (void)
c906108c
SS
1529{
1530 struct partial_symtab *pst;
c5aa993b 1531 enum language lang = language_unknown;
c906108c
SS
1532
1533 pst = find_main_psymtab ();
1534 if (pst != NULL)
1535 {
c5aa993b 1536 if (pst->filename != NULL)
cb2f3a29
MK
1537 lang = deduce_language_from_filename (pst->filename);
1538
c906108c
SS
1539 if (lang == language_unknown)
1540 {
c5aa993b
JM
1541 /* Make C the default language */
1542 lang = language_c;
c906108c 1543 }
cb2f3a29 1544
c906108c 1545 set_language (lang);
cb2f3a29 1546 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1547 }
1548}
1549
cb2f3a29
MK
1550/* Open the file specified by NAME and hand it off to BFD for
1551 preliminary analysis. Return a newly initialized bfd *, which
1552 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1553 absolute). In case of trouble, error() is called. */
c906108c
SS
1554
1555bfd *
fba45db2 1556symfile_bfd_open (char *name)
c906108c
SS
1557{
1558 bfd *sym_bfd;
1559 int desc;
1560 char *absolute_name;
1561
f1838a98
UW
1562 if (remote_filename_p (name))
1563 {
1564 name = xstrdup (name);
1565 sym_bfd = remote_bfd_open (name, gnutarget);
1566 if (!sym_bfd)
1567 {
1568 make_cleanup (xfree, name);
1569 error (_("`%s': can't open to read symbols: %s."), name,
1570 bfd_errmsg (bfd_get_error ()));
1571 }
1572
1573 if (!bfd_check_format (sym_bfd, bfd_object))
1574 {
1575 bfd_close (sym_bfd);
1576 make_cleanup (xfree, name);
1577 error (_("`%s': can't read symbols: %s."), name,
1578 bfd_errmsg (bfd_get_error ()));
1579 }
1580
1581 return sym_bfd;
1582 }
1583
cb2f3a29 1584 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1585
1586 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1587 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1588 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1589#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1590 if (desc < 0)
1591 {
1592 char *exename = alloca (strlen (name) + 5);
1593 strcat (strcpy (exename, name), ".exe");
014d698b 1594 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1595 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1596 }
1597#endif
1598 if (desc < 0)
1599 {
b8c9b27d 1600 make_cleanup (xfree, name);
c906108c
SS
1601 perror_with_name (name);
1602 }
cb2f3a29
MK
1603
1604 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1605 bfd. It'll be freed in free_objfile(). */
1606 xfree (name);
1607 name = absolute_name;
c906108c 1608
9f76c2cd 1609 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1610 if (!sym_bfd)
1611 {
1612 close (desc);
b8c9b27d 1613 make_cleanup (xfree, name);
f1838a98 1614 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1615 bfd_errmsg (bfd_get_error ()));
1616 }
549c1eea 1617 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1618
1619 if (!bfd_check_format (sym_bfd, bfd_object))
1620 {
cb2f3a29
MK
1621 /* FIXME: should be checking for errors from bfd_close (for one
1622 thing, on error it does not free all the storage associated
1623 with the bfd). */
1624 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1625 make_cleanup (xfree, name);
f1838a98 1626 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1627 bfd_errmsg (bfd_get_error ()));
1628 }
cb2f3a29
MK
1629
1630 return sym_bfd;
c906108c
SS
1631}
1632
cb2f3a29
MK
1633/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1634 the section was not found. */
1635
0e931cf0
JB
1636int
1637get_section_index (struct objfile *objfile, char *section_name)
1638{
1639 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1640
0e931cf0
JB
1641 if (sect)
1642 return sect->index;
1643 else
1644 return -1;
1645}
1646
cb2f3a29
MK
1647/* Link SF into the global symtab_fns list. Called on startup by the
1648 _initialize routine in each object file format reader, to register
1649 information about each format the the reader is prepared to
1650 handle. */
c906108c
SS
1651
1652void
fba45db2 1653add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1654{
1655 sf->next = symtab_fns;
1656 symtab_fns = sf;
1657}
1658
cb2f3a29
MK
1659/* Initialize OBJFILE to read symbols from its associated BFD. It
1660 either returns or calls error(). The result is an initialized
1661 struct sym_fns in the objfile structure, that contains cached
1662 information about the symbol file. */
c906108c 1663
31d99776
DJ
1664static struct sym_fns *
1665find_sym_fns (bfd *abfd)
c906108c
SS
1666{
1667 struct sym_fns *sf;
31d99776 1668 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1669
75245b24
MS
1670 if (our_flavour == bfd_target_srec_flavour
1671 || our_flavour == bfd_target_ihex_flavour
1672 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1673 return NULL; /* No symbols. */
75245b24 1674
c5aa993b 1675 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1676 if (our_flavour == sf->sym_flavour)
1677 return sf;
cb2f3a29 1678
8a3fe4f8 1679 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1680 bfd_get_target (abfd));
c906108c
SS
1681}
1682\f
cb2f3a29 1683
c906108c
SS
1684/* This function runs the load command of our current target. */
1685
1686static void
fba45db2 1687load_command (char *arg, int from_tty)
c906108c 1688{
4487aabf
PA
1689 /* The user might be reloading because the binary has changed. Take
1690 this opportunity to check. */
1691 reopen_exec_file ();
1692 reread_symbols ();
1693
c906108c 1694 if (arg == NULL)
1986bccd
AS
1695 {
1696 char *parg;
1697 int count = 0;
1698
1699 parg = arg = get_exec_file (1);
1700
1701 /* Count how many \ " ' tab space there are in the name. */
1702 while ((parg = strpbrk (parg, "\\\"'\t ")))
1703 {
1704 parg++;
1705 count++;
1706 }
1707
1708 if (count)
1709 {
1710 /* We need to quote this string so buildargv can pull it apart. */
1711 char *temp = xmalloc (strlen (arg) + count + 1 );
1712 char *ptemp = temp;
1713 char *prev;
1714
1715 make_cleanup (xfree, temp);
1716
1717 prev = parg = arg;
1718 while ((parg = strpbrk (parg, "\\\"'\t ")))
1719 {
1720 strncpy (ptemp, prev, parg - prev);
1721 ptemp += parg - prev;
1722 prev = parg++;
1723 *ptemp++ = '\\';
1724 }
1725 strcpy (ptemp, prev);
1726
1727 arg = temp;
1728 }
1729 }
1730
c906108c 1731 target_load (arg, from_tty);
2889e661
JB
1732
1733 /* After re-loading the executable, we don't really know which
1734 overlays are mapped any more. */
1735 overlay_cache_invalid = 1;
c906108c
SS
1736}
1737
1738/* This version of "load" should be usable for any target. Currently
1739 it is just used for remote targets, not inftarg.c or core files,
1740 on the theory that only in that case is it useful.
1741
1742 Avoiding xmodem and the like seems like a win (a) because we don't have
1743 to worry about finding it, and (b) On VMS, fork() is very slow and so
1744 we don't want to run a subprocess. On the other hand, I'm not sure how
1745 performance compares. */
917317f4 1746
917317f4
JM
1747static int validate_download = 0;
1748
e4f9b4d5
MS
1749/* Callback service function for generic_load (bfd_map_over_sections). */
1750
1751static void
1752add_section_size_callback (bfd *abfd, asection *asec, void *data)
1753{
1754 bfd_size_type *sum = data;
1755
2c500098 1756 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1757}
1758
1759/* Opaque data for load_section_callback. */
1760struct load_section_data {
1761 unsigned long load_offset;
a76d924d
DJ
1762 struct load_progress_data *progress_data;
1763 VEC(memory_write_request_s) *requests;
1764};
1765
1766/* Opaque data for load_progress. */
1767struct load_progress_data {
1768 /* Cumulative data. */
e4f9b4d5
MS
1769 unsigned long write_count;
1770 unsigned long data_count;
1771 bfd_size_type total_size;
a76d924d
DJ
1772};
1773
1774/* Opaque data for load_progress for a single section. */
1775struct load_progress_section_data {
1776 struct load_progress_data *cumulative;
cf7a04e8 1777
a76d924d 1778 /* Per-section data. */
cf7a04e8
DJ
1779 const char *section_name;
1780 ULONGEST section_sent;
1781 ULONGEST section_size;
1782 CORE_ADDR lma;
1783 gdb_byte *buffer;
e4f9b4d5
MS
1784};
1785
a76d924d 1786/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1787
1788static void
1789load_progress (ULONGEST bytes, void *untyped_arg)
1790{
a76d924d
DJ
1791 struct load_progress_section_data *args = untyped_arg;
1792 struct load_progress_data *totals;
1793
1794 if (args == NULL)
1795 /* Writing padding data. No easy way to get at the cumulative
1796 stats, so just ignore this. */
1797 return;
1798
1799 totals = args->cumulative;
1800
1801 if (bytes == 0 && args->section_sent == 0)
1802 {
1803 /* The write is just starting. Let the user know we've started
1804 this section. */
1805 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1806 args->section_name, paddr_nz (args->section_size),
1807 paddr_nz (args->lma));
1808 return;
1809 }
cf7a04e8
DJ
1810
1811 if (validate_download)
1812 {
1813 /* Broken memories and broken monitors manifest themselves here
1814 when bring new computers to life. This doubles already slow
1815 downloads. */
1816 /* NOTE: cagney/1999-10-18: A more efficient implementation
1817 might add a verify_memory() method to the target vector and
1818 then use that. remote.c could implement that method using
1819 the ``qCRC'' packet. */
1820 gdb_byte *check = xmalloc (bytes);
1821 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1822
1823 if (target_read_memory (args->lma, check, bytes) != 0)
1824 error (_("Download verify read failed at 0x%s"),
1825 paddr (args->lma));
1826 if (memcmp (args->buffer, check, bytes) != 0)
1827 error (_("Download verify compare failed at 0x%s"),
1828 paddr (args->lma));
1829 do_cleanups (verify_cleanups);
1830 }
a76d924d 1831 totals->data_count += bytes;
cf7a04e8
DJ
1832 args->lma += bytes;
1833 args->buffer += bytes;
a76d924d 1834 totals->write_count += 1;
cf7a04e8
DJ
1835 args->section_sent += bytes;
1836 if (quit_flag
1837 || (deprecated_ui_load_progress_hook != NULL
1838 && deprecated_ui_load_progress_hook (args->section_name,
1839 args->section_sent)))
1840 error (_("Canceled the download"));
1841
1842 if (deprecated_show_load_progress != NULL)
1843 deprecated_show_load_progress (args->section_name,
1844 args->section_sent,
1845 args->section_size,
a76d924d
DJ
1846 totals->data_count,
1847 totals->total_size);
cf7a04e8
DJ
1848}
1849
e4f9b4d5
MS
1850/* Callback service function for generic_load (bfd_map_over_sections). */
1851
1852static void
1853load_section_callback (bfd *abfd, asection *asec, void *data)
1854{
a76d924d 1855 struct memory_write_request *new_request;
e4f9b4d5 1856 struct load_section_data *args = data;
a76d924d 1857 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1858 bfd_size_type size = bfd_get_section_size (asec);
1859 gdb_byte *buffer;
cf7a04e8 1860 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1861
cf7a04e8
DJ
1862 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1863 return;
e4f9b4d5 1864
cf7a04e8
DJ
1865 if (size == 0)
1866 return;
e4f9b4d5 1867
a76d924d
DJ
1868 new_request = VEC_safe_push (memory_write_request_s,
1869 args->requests, NULL);
1870 memset (new_request, 0, sizeof (struct memory_write_request));
1871 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1872 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1873 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1874 new_request->data = xmalloc (size);
1875 new_request->baton = section_data;
cf7a04e8 1876
a76d924d 1877 buffer = new_request->data;
cf7a04e8 1878
a76d924d
DJ
1879 section_data->cumulative = args->progress_data;
1880 section_data->section_name = sect_name;
1881 section_data->section_size = size;
1882 section_data->lma = new_request->begin;
1883 section_data->buffer = buffer;
cf7a04e8
DJ
1884
1885 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1886}
1887
1888/* Clean up an entire memory request vector, including load
1889 data and progress records. */
cf7a04e8 1890
a76d924d
DJ
1891static void
1892clear_memory_write_data (void *arg)
1893{
1894 VEC(memory_write_request_s) **vec_p = arg;
1895 VEC(memory_write_request_s) *vec = *vec_p;
1896 int i;
1897 struct memory_write_request *mr;
cf7a04e8 1898
a76d924d
DJ
1899 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1900 {
1901 xfree (mr->data);
1902 xfree (mr->baton);
1903 }
1904 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1905}
1906
c906108c 1907void
917317f4 1908generic_load (char *args, int from_tty)
c906108c 1909{
c906108c 1910 bfd *loadfile_bfd;
2b71414d 1911 struct timeval start_time, end_time;
917317f4 1912 char *filename;
1986bccd 1913 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1914 struct load_section_data cbdata;
a76d924d
DJ
1915 struct load_progress_data total_progress;
1916
e4f9b4d5 1917 CORE_ADDR entry;
1986bccd 1918 char **argv;
e4f9b4d5 1919
a76d924d
DJ
1920 memset (&cbdata, 0, sizeof (cbdata));
1921 memset (&total_progress, 0, sizeof (total_progress));
1922 cbdata.progress_data = &total_progress;
1923
1924 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1925
d1a41061
PP
1926 if (args == NULL)
1927 error_no_arg (_("file to load"));
1986bccd 1928
d1a41061 1929 argv = gdb_buildargv (args);
1986bccd
AS
1930 make_cleanup_freeargv (argv);
1931
1932 filename = tilde_expand (argv[0]);
1933 make_cleanup (xfree, filename);
1934
1935 if (argv[1] != NULL)
917317f4
JM
1936 {
1937 char *endptr;
ba5f2f8a 1938
1986bccd
AS
1939 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1940
1941 /* If the last word was not a valid number then
1942 treat it as a file name with spaces in. */
1943 if (argv[1] == endptr)
1944 error (_("Invalid download offset:%s."), argv[1]);
1945
1946 if (argv[2] != NULL)
1947 error (_("Too many parameters."));
917317f4 1948 }
c906108c 1949
917317f4 1950 /* Open the file for loading. */
c906108c
SS
1951 loadfile_bfd = bfd_openr (filename, gnutarget);
1952 if (loadfile_bfd == NULL)
1953 {
1954 perror_with_name (filename);
1955 return;
1956 }
917317f4 1957
c906108c
SS
1958 /* FIXME: should be checking for errors from bfd_close (for one thing,
1959 on error it does not free all the storage associated with the
1960 bfd). */
5c65bbb6 1961 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1962
c5aa993b 1963 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1964 {
8a3fe4f8 1965 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1966 bfd_errmsg (bfd_get_error ()));
1967 }
c5aa993b 1968
5417f6dc 1969 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1970 (void *) &total_progress.total_size);
1971
1972 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1973
2b71414d 1974 gettimeofday (&start_time, NULL);
c906108c 1975
a76d924d
DJ
1976 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1977 load_progress) != 0)
1978 error (_("Load failed"));
c906108c 1979
2b71414d 1980 gettimeofday (&end_time, NULL);
ba5f2f8a 1981
e4f9b4d5 1982 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1983 ui_out_text (uiout, "Start address ");
1984 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1985 ui_out_text (uiout, ", load size ");
a76d924d 1986 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 1987 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1988 /* We were doing this in remote-mips.c, I suspect it is right
1989 for other targets too. */
fb14de7b 1990 regcache_write_pc (get_current_regcache (), entry);
c906108c 1991
7ca9f392
AC
1992 /* FIXME: are we supposed to call symbol_file_add or not? According
1993 to a comment from remote-mips.c (where a call to symbol_file_add
1994 was commented out), making the call confuses GDB if more than one
1995 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1996 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1997
a76d924d
DJ
1998 print_transfer_performance (gdb_stdout, total_progress.data_count,
1999 total_progress.write_count,
2000 &start_time, &end_time);
c906108c
SS
2001
2002 do_cleanups (old_cleanups);
2003}
2004
2005/* Report how fast the transfer went. */
2006
917317f4
JM
2007/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2008 replaced by print_transfer_performance (with a very different
2009 function signature). */
2010
c906108c 2011void
fba45db2
KB
2012report_transfer_performance (unsigned long data_count, time_t start_time,
2013 time_t end_time)
c906108c 2014{
2b71414d
DJ
2015 struct timeval start, end;
2016
2017 start.tv_sec = start_time;
2018 start.tv_usec = 0;
2019 end.tv_sec = end_time;
2020 end.tv_usec = 0;
2021
2022 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2023}
2024
2025void
d9fcf2fb 2026print_transfer_performance (struct ui_file *stream,
917317f4
JM
2027 unsigned long data_count,
2028 unsigned long write_count,
2b71414d
DJ
2029 const struct timeval *start_time,
2030 const struct timeval *end_time)
917317f4 2031{
9f43d28c 2032 ULONGEST time_count;
2b71414d
DJ
2033
2034 /* Compute the elapsed time in milliseconds, as a tradeoff between
2035 accuracy and overflow. */
2036 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2037 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2038
8b93c638
JM
2039 ui_out_text (uiout, "Transfer rate: ");
2040 if (time_count > 0)
2041 {
9f43d28c
DJ
2042 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2043
2044 if (ui_out_is_mi_like_p (uiout))
2045 {
2046 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2047 ui_out_text (uiout, " bits/sec");
2048 }
2049 else if (rate < 1024)
2050 {
2051 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2052 ui_out_text (uiout, " bytes/sec");
2053 }
2054 else
2055 {
2056 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2057 ui_out_text (uiout, " KB/sec");
2058 }
8b93c638
JM
2059 }
2060 else
2061 {
ba5f2f8a 2062 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2063 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2064 }
2065 if (write_count > 0)
2066 {
2067 ui_out_text (uiout, ", ");
ba5f2f8a 2068 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2069 ui_out_text (uiout, " bytes/write");
2070 }
2071 ui_out_text (uiout, ".\n");
c906108c
SS
2072}
2073
2074/* This function allows the addition of incrementally linked object files.
2075 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2076/* Note: ezannoni 2000-04-13 This function/command used to have a
2077 special case syntax for the rombug target (Rombug is the boot
2078 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2079 rombug case, the user doesn't need to supply a text address,
2080 instead a call to target_link() (in target.c) would supply the
2081 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2082
c906108c 2083static void
fba45db2 2084add_symbol_file_command (char *args, int from_tty)
c906108c 2085{
db162d44 2086 char *filename = NULL;
2df3850c 2087 int flags = OBJF_USERLOADED;
c906108c 2088 char *arg;
2acceee2 2089 int expecting_option = 0;
db162d44 2090 int section_index = 0;
2acceee2
JM
2091 int argcnt = 0;
2092 int sec_num = 0;
2093 int i;
db162d44
EZ
2094 int expecting_sec_name = 0;
2095 int expecting_sec_addr = 0;
5b96932b 2096 char **argv;
db162d44 2097
a39a16c4 2098 struct sect_opt
2acceee2 2099 {
2acceee2
JM
2100 char *name;
2101 char *value;
a39a16c4 2102 };
db162d44 2103
a39a16c4
MM
2104 struct section_addr_info *section_addrs;
2105 struct sect_opt *sect_opts = NULL;
2106 size_t num_sect_opts = 0;
3017564a 2107 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2108
a39a16c4 2109 num_sect_opts = 16;
5417f6dc 2110 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2111 * sizeof (struct sect_opt));
2112
c906108c
SS
2113 dont_repeat ();
2114
2115 if (args == NULL)
8a3fe4f8 2116 error (_("add-symbol-file takes a file name and an address"));
c906108c 2117
d1a41061 2118 argv = gdb_buildargv (args);
5b96932b 2119 make_cleanup_freeargv (argv);
db162d44 2120
5b96932b
AS
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2122 {
2123 /* Process the argument. */
db162d44 2124 if (argcnt == 0)
c906108c 2125 {
db162d44
EZ
2126 /* The first argument is the file name. */
2127 filename = tilde_expand (arg);
3017564a 2128 make_cleanup (xfree, filename);
c906108c 2129 }
db162d44 2130 else
7a78ae4e
ND
2131 if (argcnt == 1)
2132 {
2133 /* The second argument is always the text address at which
2134 to load the program. */
2135 sect_opts[section_index].name = ".text";
2136 sect_opts[section_index].value = arg;
f414f22f 2137 if (++section_index >= num_sect_opts)
a39a16c4
MM
2138 {
2139 num_sect_opts *= 2;
5417f6dc 2140 sect_opts = ((struct sect_opt *)
a39a16c4 2141 xrealloc (sect_opts,
5417f6dc 2142 num_sect_opts
a39a16c4
MM
2143 * sizeof (struct sect_opt)));
2144 }
7a78ae4e
ND
2145 }
2146 else
2147 {
2148 /* It's an option (starting with '-') or it's an argument
2149 to an option */
2150
2151 if (*arg == '-')
2152 {
78a4a9b9
AC
2153 if (strcmp (arg, "-readnow") == 0)
2154 flags |= OBJF_READNOW;
2155 else if (strcmp (arg, "-s") == 0)
2156 {
2157 expecting_sec_name = 1;
2158 expecting_sec_addr = 1;
2159 }
7a78ae4e
ND
2160 }
2161 else
2162 {
2163 if (expecting_sec_name)
db162d44 2164 {
7a78ae4e
ND
2165 sect_opts[section_index].name = arg;
2166 expecting_sec_name = 0;
db162d44
EZ
2167 }
2168 else
7a78ae4e
ND
2169 if (expecting_sec_addr)
2170 {
2171 sect_opts[section_index].value = arg;
2172 expecting_sec_addr = 0;
f414f22f 2173 if (++section_index >= num_sect_opts)
a39a16c4
MM
2174 {
2175 num_sect_opts *= 2;
5417f6dc 2176 sect_opts = ((struct sect_opt *)
a39a16c4 2177 xrealloc (sect_opts,
5417f6dc 2178 num_sect_opts
a39a16c4
MM
2179 * sizeof (struct sect_opt)));
2180 }
7a78ae4e
ND
2181 }
2182 else
8a3fe4f8 2183 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2184 }
2185 }
c906108c 2186 }
c906108c 2187
927890d0
JB
2188 /* This command takes at least two arguments. The first one is a
2189 filename, and the second is the address where this file has been
2190 loaded. Abort now if this address hasn't been provided by the
2191 user. */
2192 if (section_index < 1)
2193 error (_("The address where %s has been loaded is missing"), filename);
2194
db162d44
EZ
2195 /* Print the prompt for the query below. And save the arguments into
2196 a sect_addr_info structure to be passed around to other
2197 functions. We have to split this up into separate print
bb599908 2198 statements because hex_string returns a local static
db162d44 2199 string. */
5417f6dc 2200
a3f17187 2201 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2202 section_addrs = alloc_section_addr_info (section_index);
2203 make_cleanup (xfree, section_addrs);
db162d44 2204 for (i = 0; i < section_index; i++)
c906108c 2205 {
db162d44
EZ
2206 CORE_ADDR addr;
2207 char *val = sect_opts[i].value;
2208 char *sec = sect_opts[i].name;
5417f6dc 2209
ae822768 2210 addr = parse_and_eval_address (val);
db162d44 2211
db162d44
EZ
2212 /* Here we store the section offsets in the order they were
2213 entered on the command line. */
a39a16c4
MM
2214 section_addrs->other[sec_num].name = sec;
2215 section_addrs->other[sec_num].addr = addr;
35076fa0 2216 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
db162d44
EZ
2217 sec_num++;
2218
5417f6dc 2219 /* The object's sections are initialized when a
db162d44 2220 call is made to build_objfile_section_table (objfile).
5417f6dc 2221 This happens in reread_symbols.
db162d44
EZ
2222 At this point, we don't know what file type this is,
2223 so we can't determine what section names are valid. */
2acceee2 2224 }
db162d44 2225
2acceee2 2226 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2227 error (_("Not confirmed."));
c906108c 2228
a39a16c4 2229 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2230
2231 /* Getting new symbols may change our opinion about what is
2232 frameless. */
2233 reinit_frame_cache ();
db162d44 2234 do_cleanups (my_cleanups);
c906108c
SS
2235}
2236\f
2237static void
fba45db2 2238add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2239{
2240#ifdef ADD_SHARED_SYMBOL_FILES
2241 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2242#else
8a3fe4f8 2243 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2244#endif
c906108c
SS
2245}
2246\f
2247/* Re-read symbols if a symbol-file has changed. */
2248void
fba45db2 2249reread_symbols (void)
c906108c
SS
2250{
2251 struct objfile *objfile;
2252 long new_modtime;
2253 int reread_one = 0;
2254 struct stat new_statbuf;
2255 int res;
2256
2257 /* With the addition of shared libraries, this should be modified,
2258 the load time should be saved in the partial symbol tables, since
2259 different tables may come from different source files. FIXME.
2260 This routine should then walk down each partial symbol table
2261 and see if the symbol table that it originates from has been changed */
2262
c5aa993b
JM
2263 for (objfile = object_files; objfile; objfile = objfile->next)
2264 {
2265 if (objfile->obfd)
2266 {
52d16ba8 2267#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2268 /* If this object is from a shared library, then you should
2269 stat on the library name, not member name. */
c906108c 2270
c5aa993b
JM
2271 if (objfile->obfd->my_archive)
2272 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2273 else
c906108c 2274#endif
c5aa993b
JM
2275 res = stat (objfile->name, &new_statbuf);
2276 if (res != 0)
c906108c 2277 {
c5aa993b 2278 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2279 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2280 objfile->name);
2281 continue;
c906108c 2282 }
c5aa993b
JM
2283 new_modtime = new_statbuf.st_mtime;
2284 if (new_modtime != objfile->mtime)
c906108c 2285 {
c5aa993b
JM
2286 struct cleanup *old_cleanups;
2287 struct section_offsets *offsets;
2288 int num_offsets;
c5aa993b
JM
2289 char *obfd_filename;
2290
a3f17187 2291 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2292 objfile->name);
2293
2294 /* There are various functions like symbol_file_add,
2295 symfile_bfd_open, syms_from_objfile, etc., which might
2296 appear to do what we want. But they have various other
2297 effects which we *don't* want. So we just do stuff
2298 ourselves. We don't worry about mapped files (for one thing,
2299 any mapped file will be out of date). */
2300
2301 /* If we get an error, blow away this objfile (not sure if
2302 that is the correct response for things like shared
2303 libraries). */
74b7792f 2304 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2305 /* We need to do this whenever any symbols go away. */
74b7792f 2306 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2307
b2de52bb
JK
2308 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2309 bfd_get_filename (exec_bfd)) == 0)
2310 {
2311 /* Reload EXEC_BFD without asking anything. */
2312
2313 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2314 }
2315
c5aa993b
JM
2316 /* Clean up any state BFD has sitting around. We don't need
2317 to close the descriptor but BFD lacks a way of closing the
2318 BFD without closing the descriptor. */
2319 obfd_filename = bfd_get_filename (objfile->obfd);
2320 if (!bfd_close (objfile->obfd))
8a3fe4f8 2321 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2322 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2323 if (remote_filename_p (obfd_filename))
2324 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2325 else
2326 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2327 if (objfile->obfd == NULL)
8a3fe4f8 2328 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2329 /* bfd_openr sets cacheable to true, which is what we want. */
2330 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2331 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2332 bfd_errmsg (bfd_get_error ()));
2333
2334 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2335 objfile_obstack. */
c5aa993b 2336 num_offsets = objfile->num_sections;
5417f6dc 2337 offsets = ((struct section_offsets *)
a39a16c4 2338 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2339 memcpy (offsets, objfile->section_offsets,
a39a16c4 2340 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2341
ae5a43e0
DJ
2342 /* Remove any references to this objfile in the global
2343 value lists. */
2344 preserve_values (objfile);
2345
c5aa993b
JM
2346 /* Nuke all the state that we will re-read. Much of the following
2347 code which sets things to NULL really is necessary to tell
2348 other parts of GDB that there is nothing currently there. */
2349
2350 /* FIXME: Do we have to free a whole linked list, or is this
2351 enough? */
2352 if (objfile->global_psymbols.list)
2dc74dc1 2353 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2354 memset (&objfile->global_psymbols, 0,
2355 sizeof (objfile->global_psymbols));
2356 if (objfile->static_psymbols.list)
2dc74dc1 2357 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2358 memset (&objfile->static_psymbols, 0,
2359 sizeof (objfile->static_psymbols));
2360
2361 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2362 bcache_xfree (objfile->psymbol_cache);
2363 objfile->psymbol_cache = bcache_xmalloc ();
2364 bcache_xfree (objfile->macro_cache);
2365 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2366 if (objfile->demangled_names_hash != NULL)
2367 {
2368 htab_delete (objfile->demangled_names_hash);
2369 objfile->demangled_names_hash = NULL;
2370 }
b99607ea 2371 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2372 objfile->sections = NULL;
2373 objfile->symtabs = NULL;
2374 objfile->psymtabs = NULL;
2375 objfile->free_psymtabs = NULL;
a1b8c067 2376 objfile->cp_namespace_symtab = NULL;
c5aa993b 2377 objfile->msymbols = NULL;
0a6ddd08 2378 objfile->deprecated_sym_private = NULL;
c5aa993b 2379 objfile->minimal_symbol_count = 0;
0a83117a
MS
2380 memset (&objfile->msymbol_hash, 0,
2381 sizeof (objfile->msymbol_hash));
2382 memset (&objfile->msymbol_demangled_hash, 0,
2383 sizeof (objfile->msymbol_demangled_hash));
7b097ae3 2384 clear_objfile_data (objfile);
c5aa993b
JM
2385 if (objfile->sf != NULL)
2386 {
2387 (*objfile->sf->sym_finish) (objfile);
2388 }
2389
af5f3db6
AC
2390 objfile->psymbol_cache = bcache_xmalloc ();
2391 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2392 /* obstack_init also initializes the obstack so it is
2393 empty. We could use obstack_specify_allocation but
2394 gdb_obstack.h specifies the alloc/dealloc
2395 functions. */
2396 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2397 if (build_objfile_section_table (objfile))
2398 {
8a3fe4f8 2399 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2400 objfile->name, bfd_errmsg (bfd_get_error ()));
2401 }
15831452 2402 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2403
2404 /* We use the same section offsets as from last time. I'm not
2405 sure whether that is always correct for shared libraries. */
2406 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2407 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2409 memcpy (objfile->section_offsets, offsets,
a39a16c4 2410 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2411 objfile->num_sections = num_offsets;
2412
2413 /* What the hell is sym_new_init for, anyway? The concept of
2414 distinguishing between the main file and additional files
2415 in this way seems rather dubious. */
2416 if (objfile == symfile_objfile)
2417 {
2418 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2419 }
2420
2421 (*objfile->sf->sym_init) (objfile);
b9caf505 2422 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2423 /* The "mainline" parameter is a hideous hack; I think leaving it
2424 zero is OK since dbxread.c also does what it needs to do if
2425 objfile->global_psymbols.size is 0. */
96baa820 2426 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2427 if (!have_partial_symbols () && !have_full_symbols ())
2428 {
2429 wrap_here ("");
a3f17187 2430 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2431 wrap_here ("");
2432 }
c5aa993b
JM
2433
2434 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2435 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2436
c5aa993b
JM
2437 /* Getting new symbols may change our opinion about what is
2438 frameless. */
c906108c 2439
c5aa993b 2440 reinit_frame_cache ();
c906108c 2441
c5aa993b
JM
2442 /* Discard cleanups as symbol reading was successful. */
2443 discard_cleanups (old_cleanups);
c906108c 2444
c5aa993b
JM
2445 /* If the mtime has changed between the time we set new_modtime
2446 and now, we *want* this to be out of date, so don't call stat
2447 again now. */
2448 objfile->mtime = new_modtime;
2449 reread_one = 1;
5b5d99cf 2450 reread_separate_symbols (objfile);
6528a9ea 2451 init_entry_point_info (objfile);
c5aa993b 2452 }
c906108c
SS
2453 }
2454 }
c906108c
SS
2455
2456 if (reread_one)
ea53e89f
JB
2457 {
2458 clear_symtab_users ();
2459 /* At least one objfile has changed, so we can consider that
2460 the executable we're debugging has changed too. */
781b42b0 2461 observer_notify_executable_changed ();
ea53e89f
JB
2462 }
2463
c906108c 2464}
5b5d99cf
JB
2465
2466
2467/* Handle separate debug info for OBJFILE, which has just been
2468 re-read:
2469 - If we had separate debug info before, but now we don't, get rid
2470 of the separated objfile.
2471 - If we didn't have separated debug info before, but now we do,
2472 read in the new separated debug info file.
2473 - If the debug link points to a different file, toss the old one
2474 and read the new one.
2475 This function does *not* handle the case where objfile is still
2476 using the same separate debug info file, but that file's timestamp
2477 has changed. That case should be handled by the loop in
2478 reread_symbols already. */
2479static void
2480reread_separate_symbols (struct objfile *objfile)
2481{
2482 char *debug_file;
2483 unsigned long crc32;
2484
2485 /* Does the updated objfile's debug info live in a
2486 separate file? */
2487 debug_file = find_separate_debug_file (objfile);
2488
2489 if (objfile->separate_debug_objfile)
2490 {
2491 /* There are two cases where we need to get rid of
2492 the old separated debug info objfile:
2493 - if the new primary objfile doesn't have
2494 separated debug info, or
2495 - if the new primary objfile has separate debug
2496 info, but it's under a different filename.
5417f6dc 2497
5b5d99cf
JB
2498 If the old and new objfiles both have separate
2499 debug info, under the same filename, then we're
2500 okay --- if the separated file's contents have
2501 changed, we will have caught that when we
2502 visited it in this function's outermost
2503 loop. */
2504 if (! debug_file
2505 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2506 free_objfile (objfile->separate_debug_objfile);
2507 }
2508
2509 /* If the new objfile has separate debug info, and we
2510 haven't loaded it already, do so now. */
2511 if (debug_file
2512 && ! objfile->separate_debug_objfile)
2513 {
2514 /* Use the same section offset table as objfile itself.
2515 Preserve the flags from objfile that make sense. */
2516 objfile->separate_debug_objfile
2517 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2518 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2519 info_verbose, /* from_tty: Don't override the default. */
2520 0, /* No addr table. */
2521 objfile->section_offsets, objfile->num_sections,
2522 0, /* Not mainline. See comments about this above. */
78a4a9b9 2523 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2524 | OBJF_USERLOADED)));
2525 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2526 = objfile;
2527 }
73780b3c
MS
2528 if (debug_file)
2529 xfree (debug_file);
5b5d99cf
JB
2530}
2531
2532
c906108c
SS
2533\f
2534
c5aa993b
JM
2535
2536typedef struct
2537{
2538 char *ext;
c906108c 2539 enum language lang;
c5aa993b
JM
2540}
2541filename_language;
c906108c 2542
c5aa993b 2543static filename_language *filename_language_table;
c906108c
SS
2544static int fl_table_size, fl_table_next;
2545
2546static void
fba45db2 2547add_filename_language (char *ext, enum language lang)
c906108c
SS
2548{
2549 if (fl_table_next >= fl_table_size)
2550 {
2551 fl_table_size += 10;
5417f6dc 2552 filename_language_table =
25bf3106
PM
2553 xrealloc (filename_language_table,
2554 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2555 }
2556
4fcf66da 2557 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2558 filename_language_table[fl_table_next].lang = lang;
2559 fl_table_next++;
2560}
2561
2562static char *ext_args;
920d2a44
AC
2563static void
2564show_ext_args (struct ui_file *file, int from_tty,
2565 struct cmd_list_element *c, const char *value)
2566{
2567 fprintf_filtered (file, _("\
2568Mapping between filename extension and source language is \"%s\".\n"),
2569 value);
2570}
c906108c
SS
2571
2572static void
26c41df3 2573set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2574{
2575 int i;
2576 char *cp = ext_args;
2577 enum language lang;
2578
2579 /* First arg is filename extension, starting with '.' */
2580 if (*cp != '.')
8a3fe4f8 2581 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2582
2583 /* Find end of first arg. */
c5aa993b 2584 while (*cp && !isspace (*cp))
c906108c
SS
2585 cp++;
2586
2587 if (*cp == '\0')
8a3fe4f8 2588 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2589 ext_args);
2590
2591 /* Null-terminate first arg */
c5aa993b 2592 *cp++ = '\0';
c906108c
SS
2593
2594 /* Find beginning of second arg, which should be a source language. */
2595 while (*cp && isspace (*cp))
2596 cp++;
2597
2598 if (*cp == '\0')
8a3fe4f8 2599 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2600 ext_args);
2601
2602 /* Lookup the language from among those we know. */
2603 lang = language_enum (cp);
2604
2605 /* Now lookup the filename extension: do we already know it? */
2606 for (i = 0; i < fl_table_next; i++)
2607 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2608 break;
2609
2610 if (i >= fl_table_next)
2611 {
2612 /* new file extension */
2613 add_filename_language (ext_args, lang);
2614 }
2615 else
2616 {
2617 /* redefining a previously known filename extension */
2618
2619 /* if (from_tty) */
2620 /* query ("Really make files of type %s '%s'?", */
2621 /* ext_args, language_str (lang)); */
2622
b8c9b27d 2623 xfree (filename_language_table[i].ext);
4fcf66da 2624 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2625 filename_language_table[i].lang = lang;
2626 }
2627}
2628
2629static void
fba45db2 2630info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2631{
2632 int i;
2633
a3f17187 2634 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2635 printf_filtered ("\n\n");
2636 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2637 printf_filtered ("\t%s\t- %s\n",
2638 filename_language_table[i].ext,
c906108c
SS
2639 language_str (filename_language_table[i].lang));
2640}
2641
2642static void
fba45db2 2643init_filename_language_table (void)
c906108c
SS
2644{
2645 if (fl_table_size == 0) /* protect against repetition */
2646 {
2647 fl_table_size = 20;
2648 fl_table_next = 0;
c5aa993b 2649 filename_language_table =
c906108c 2650 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2651 add_filename_language (".c", language_c);
2652 add_filename_language (".C", language_cplus);
2653 add_filename_language (".cc", language_cplus);
2654 add_filename_language (".cp", language_cplus);
2655 add_filename_language (".cpp", language_cplus);
2656 add_filename_language (".cxx", language_cplus);
2657 add_filename_language (".c++", language_cplus);
2658 add_filename_language (".java", language_java);
c906108c 2659 add_filename_language (".class", language_java);
da2cf7e0 2660 add_filename_language (".m", language_objc);
c5aa993b
JM
2661 add_filename_language (".f", language_fortran);
2662 add_filename_language (".F", language_fortran);
2663 add_filename_language (".s", language_asm);
aa707ed0 2664 add_filename_language (".sx", language_asm);
c5aa993b 2665 add_filename_language (".S", language_asm);
c6fd39cd
PM
2666 add_filename_language (".pas", language_pascal);
2667 add_filename_language (".p", language_pascal);
2668 add_filename_language (".pp", language_pascal);
963a6417
PH
2669 add_filename_language (".adb", language_ada);
2670 add_filename_language (".ads", language_ada);
2671 add_filename_language (".a", language_ada);
2672 add_filename_language (".ada", language_ada);
c906108c
SS
2673 }
2674}
2675
2676enum language
fba45db2 2677deduce_language_from_filename (char *filename)
c906108c
SS
2678{
2679 int i;
2680 char *cp;
2681
2682 if (filename != NULL)
2683 if ((cp = strrchr (filename, '.')) != NULL)
2684 for (i = 0; i < fl_table_next; i++)
2685 if (strcmp (cp, filename_language_table[i].ext) == 0)
2686 return filename_language_table[i].lang;
2687
2688 return language_unknown;
2689}
2690\f
2691/* allocate_symtab:
2692
2693 Allocate and partly initialize a new symbol table. Return a pointer
2694 to it. error() if no space.
2695
2696 Caller must set these fields:
c5aa993b
JM
2697 LINETABLE(symtab)
2698 symtab->blockvector
2699 symtab->dirname
2700 symtab->free_code
2701 symtab->free_ptr
2702 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2703 */
2704
2705struct symtab *
fba45db2 2706allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2707{
52f0bd74 2708 struct symtab *symtab;
c906108c
SS
2709
2710 symtab = (struct symtab *)
4a146b47 2711 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2712 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2713 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2714 &objfile->objfile_obstack);
c5aa993b
JM
2715 symtab->fullname = NULL;
2716 symtab->language = deduce_language_from_filename (filename);
2717 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2718 &objfile->objfile_obstack);
c906108c
SS
2719
2720 /* Hook it to the objfile it comes from */
2721
c5aa993b
JM
2722 symtab->objfile = objfile;
2723 symtab->next = objfile->symtabs;
2724 objfile->symtabs = symtab;
c906108c 2725
c906108c
SS
2726 return (symtab);
2727}
2728
2729struct partial_symtab *
fba45db2 2730allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2731{
2732 struct partial_symtab *psymtab;
2733
c5aa993b 2734 if (objfile->free_psymtabs)
c906108c 2735 {
c5aa993b
JM
2736 psymtab = objfile->free_psymtabs;
2737 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2738 }
2739 else
2740 psymtab = (struct partial_symtab *)
8b92e4d5 2741 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2742 sizeof (struct partial_symtab));
2743
2744 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2745 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2746 &objfile->objfile_obstack);
c5aa993b 2747 psymtab->symtab = NULL;
c906108c
SS
2748
2749 /* Prepend it to the psymtab list for the objfile it belongs to.
2750 Psymtabs are searched in most recent inserted -> least recent
2751 inserted order. */
2752
c5aa993b
JM
2753 psymtab->objfile = objfile;
2754 psymtab->next = objfile->psymtabs;
2755 objfile->psymtabs = psymtab;
c906108c
SS
2756#if 0
2757 {
2758 struct partial_symtab **prev_pst;
c5aa993b
JM
2759 psymtab->objfile = objfile;
2760 psymtab->next = NULL;
2761 prev_pst = &(objfile->psymtabs);
c906108c 2762 while ((*prev_pst) != NULL)
c5aa993b 2763 prev_pst = &((*prev_pst)->next);
c906108c 2764 (*prev_pst) = psymtab;
c5aa993b 2765 }
c906108c 2766#endif
c5aa993b 2767
c906108c
SS
2768 return (psymtab);
2769}
2770
2771void
fba45db2 2772discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2773{
2774 struct partial_symtab **prev_pst;
2775
2776 /* From dbxread.c:
2777 Empty psymtabs happen as a result of header files which don't
2778 have any symbols in them. There can be a lot of them. But this
2779 check is wrong, in that a psymtab with N_SLINE entries but
2780 nothing else is not empty, but we don't realize that. Fixing
2781 that without slowing things down might be tricky. */
2782
2783 /* First, snip it out of the psymtab chain */
2784
2785 prev_pst = &(pst->objfile->psymtabs);
2786 while ((*prev_pst) != pst)
2787 prev_pst = &((*prev_pst)->next);
2788 (*prev_pst) = pst->next;
2789
2790 /* Next, put it on a free list for recycling */
2791
2792 pst->next = pst->objfile->free_psymtabs;
2793 pst->objfile->free_psymtabs = pst;
2794}
c906108c 2795\f
c5aa993b 2796
c906108c
SS
2797/* Reset all data structures in gdb which may contain references to symbol
2798 table data. */
2799
2800void
fba45db2 2801clear_symtab_users (void)
c906108c
SS
2802{
2803 /* Someday, we should do better than this, by only blowing away
2804 the things that really need to be blown. */
c0501be5
DJ
2805
2806 /* Clear the "current" symtab first, because it is no longer valid.
2807 breakpoint_re_set may try to access the current symtab. */
2808 clear_current_source_symtab_and_line ();
2809
c906108c 2810 clear_displays ();
c906108c
SS
2811 breakpoint_re_set ();
2812 set_default_breakpoint (0, 0, 0, 0);
c906108c 2813 clear_pc_function_cache ();
06d3b283 2814 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2815
2816 /* Clear globals which might have pointed into a removed objfile.
2817 FIXME: It's not clear which of these are supposed to persist
2818 between expressions and which ought to be reset each time. */
2819 expression_context_block = NULL;
2820 innermost_block = NULL;
8756216b
DP
2821
2822 /* Varobj may refer to old symbols, perform a cleanup. */
2823 varobj_invalidate ();
2824
c906108c
SS
2825}
2826
74b7792f
AC
2827static void
2828clear_symtab_users_cleanup (void *ignore)
2829{
2830 clear_symtab_users ();
2831}
2832
c906108c
SS
2833/* clear_symtab_users_once:
2834
2835 This function is run after symbol reading, or from a cleanup.
2836 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2837 has been blown away, but the other GDB data structures that may
c906108c
SS
2838 reference it have not yet been cleared or re-directed. (The old
2839 symtab was zapped, and the cleanup queued, in free_named_symtab()
2840 below.)
2841
2842 This function can be queued N times as a cleanup, or called
2843 directly; it will do all the work the first time, and then will be a
2844 no-op until the next time it is queued. This works by bumping a
2845 counter at queueing time. Much later when the cleanup is run, or at
2846 the end of symbol processing (in case the cleanup is discarded), if
2847 the queued count is greater than the "done-count", we do the work
2848 and set the done-count to the queued count. If the queued count is
2849 less than or equal to the done-count, we just ignore the call. This
2850 is needed because reading a single .o file will often replace many
2851 symtabs (one per .h file, for example), and we don't want to reset
2852 the breakpoints N times in the user's face.
2853
2854 The reason we both queue a cleanup, and call it directly after symbol
2855 reading, is because the cleanup protects us in case of errors, but is
2856 discarded if symbol reading is successful. */
2857
2858#if 0
2859/* FIXME: As free_named_symtabs is currently a big noop this function
2860 is no longer needed. */
a14ed312 2861static void clear_symtab_users_once (void);
c906108c
SS
2862
2863static int clear_symtab_users_queued;
2864static int clear_symtab_users_done;
2865
2866static void
fba45db2 2867clear_symtab_users_once (void)
c906108c
SS
2868{
2869 /* Enforce once-per-`do_cleanups'-semantics */
2870 if (clear_symtab_users_queued <= clear_symtab_users_done)
2871 return;
2872 clear_symtab_users_done = clear_symtab_users_queued;
2873
2874 clear_symtab_users ();
2875}
2876#endif
2877
2878/* Delete the specified psymtab, and any others that reference it. */
2879
2880static void
fba45db2 2881cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2882{
2883 struct partial_symtab *ps, *pprev = NULL;
2884 int i;
2885
2886 /* Find its previous psymtab in the chain */
c5aa993b
JM
2887 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2888 {
2889 if (ps == pst)
2890 break;
2891 pprev = ps;
2892 }
c906108c 2893
c5aa993b
JM
2894 if (ps)
2895 {
2896 /* Unhook it from the chain. */
2897 if (ps == pst->objfile->psymtabs)
2898 pst->objfile->psymtabs = ps->next;
2899 else
2900 pprev->next = ps->next;
2901
2902 /* FIXME, we can't conveniently deallocate the entries in the
2903 partial_symbol lists (global_psymbols/static_psymbols) that
2904 this psymtab points to. These just take up space until all
2905 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2906 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2907
2908 /* We need to cashier any psymtab that has this one as a dependency... */
2909 again:
2910 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2911 {
2912 for (i = 0; i < ps->number_of_dependencies; i++)
2913 {
2914 if (ps->dependencies[i] == pst)
2915 {
2916 cashier_psymtab (ps);
2917 goto again; /* Must restart, chain has been munged. */
2918 }
2919 }
c906108c 2920 }
c906108c 2921 }
c906108c
SS
2922}
2923
2924/* If a symtab or psymtab for filename NAME is found, free it along
2925 with any dependent breakpoints, displays, etc.
2926 Used when loading new versions of object modules with the "add-file"
2927 command. This is only called on the top-level symtab or psymtab's name;
2928 it is not called for subsidiary files such as .h files.
2929
2930 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2931 FIXME. The return value appears to never be used.
c906108c
SS
2932
2933 FIXME. I think this is not the best way to do this. We should
2934 work on being gentler to the environment while still cleaning up
2935 all stray pointers into the freed symtab. */
2936
2937int
fba45db2 2938free_named_symtabs (char *name)
c906108c
SS
2939{
2940#if 0
2941 /* FIXME: With the new method of each objfile having it's own
2942 psymtab list, this function needs serious rethinking. In particular,
2943 why was it ever necessary to toss psymtabs with specific compilation
2944 unit filenames, as opposed to all psymtabs from a particular symbol
2945 file? -- fnf
2946 Well, the answer is that some systems permit reloading of particular
2947 compilation units. We want to blow away any old info about these
2948 compilation units, regardless of which objfiles they arrived in. --gnu. */
2949
52f0bd74
AC
2950 struct symtab *s;
2951 struct symtab *prev;
2952 struct partial_symtab *ps;
c906108c
SS
2953 struct blockvector *bv;
2954 int blewit = 0;
2955
2956 /* We only wack things if the symbol-reload switch is set. */
2957 if (!symbol_reloading)
2958 return 0;
2959
2960 /* Some symbol formats have trouble providing file names... */
2961 if (name == 0 || *name == '\0')
2962 return 0;
2963
2964 /* Look for a psymtab with the specified name. */
2965
2966again2:
c5aa993b
JM
2967 for (ps = partial_symtab_list; ps; ps = ps->next)
2968 {
6314a349 2969 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2970 {
2971 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2972 goto again2; /* Must restart, chain has been munged */
2973 }
c906108c 2974 }
c906108c
SS
2975
2976 /* Look for a symtab with the specified name. */
2977
2978 for (s = symtab_list; s; s = s->next)
2979 {
6314a349 2980 if (strcmp (name, s->filename) == 0)
c906108c
SS
2981 break;
2982 prev = s;
2983 }
2984
2985 if (s)
2986 {
2987 if (s == symtab_list)
2988 symtab_list = s->next;
2989 else
2990 prev->next = s->next;
2991
2992 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2993 or not they depend on the symtab being freed. This should be
2994 changed so that only those data structures affected are deleted. */
c906108c
SS
2995
2996 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2997 This test is necessary due to a bug in "dbxread.c" that
2998 causes empty symtabs to be created for N_SO symbols that
2999 contain the pathname of the object file. (This problem
3000 has been fixed in GDB 3.9x). */
c906108c
SS
3001
3002 bv = BLOCKVECTOR (s);
3003 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3004 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3005 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3006 {
e2e0b3e5 3007 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3008 name);
c906108c
SS
3009 clear_symtab_users_queued++;
3010 make_cleanup (clear_symtab_users_once, 0);
3011 blewit = 1;
c5aa993b
JM
3012 }
3013 else
e2e0b3e5
AC
3014 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3015 name);
c906108c
SS
3016
3017 free_symtab (s);
3018 }
3019 else
3020 {
3021 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3022 even though no symtab was found, since the file might have
3023 been compiled without debugging, and hence not be associated
3024 with a symtab. In order to handle this correctly, we would need
3025 to keep a list of text address ranges for undebuggable files.
3026 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3027 ;
3028 }
3029
3030 /* FIXME, what about the minimal symbol table? */
3031 return blewit;
3032#else
3033 return (0);
3034#endif
3035}
3036\f
3037/* Allocate and partially fill a partial symtab. It will be
3038 completely filled at the end of the symbol list.
3039
d4f3574e 3040 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3041
3042struct partial_symtab *
fba45db2
KB
3043start_psymtab_common (struct objfile *objfile,
3044 struct section_offsets *section_offsets, char *filename,
3045 CORE_ADDR textlow, struct partial_symbol **global_syms,
3046 struct partial_symbol **static_syms)
c906108c
SS
3047{
3048 struct partial_symtab *psymtab;
3049
3050 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3051 psymtab->section_offsets = section_offsets;
3052 psymtab->textlow = textlow;
3053 psymtab->texthigh = psymtab->textlow; /* default */
3054 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3055 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3056 return (psymtab);
3057}
3058\f
2e618c13
AR
3059/* Helper function, initialises partial symbol structure and stashes
3060 it into objfile's bcache. Note that our caching mechanism will
3061 use all fields of struct partial_symbol to determine hash value of the
3062 structure. In other words, having two symbols with the same name but
3063 different domain (or address) is possible and correct. */
3064
11d31d94 3065static const struct partial_symbol *
2e618c13
AR
3066add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3067 enum address_class class,
3068 long val, /* Value as a long */
3069 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3070 enum language language, struct objfile *objfile,
3071 int *added)
3072{
3073 char *buf = name;
3074 /* psymbol is static so that there will be no uninitialized gaps in the
3075 structure which might contain random data, causing cache misses in
3076 bcache. */
3077 static struct partial_symbol psymbol;
3078
3079 if (name[namelength] != '\0')
3080 {
3081 buf = alloca (namelength + 1);
3082 /* Create local copy of the partial symbol */
3083 memcpy (buf, name, namelength);
3084 buf[namelength] = '\0';
3085 }
3086 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3087 if (val != 0)
3088 {
3089 SYMBOL_VALUE (&psymbol) = val;
3090 }
3091 else
3092 {
3093 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3094 }
3095 SYMBOL_SECTION (&psymbol) = 0;
3096 SYMBOL_LANGUAGE (&psymbol) = language;
3097 PSYMBOL_DOMAIN (&psymbol) = domain;
3098 PSYMBOL_CLASS (&psymbol) = class;
3099
3100 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3101
3102 /* Stash the partial symbol away in the cache */
11d31d94
TT
3103 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3104 objfile->psymbol_cache, added);
2e618c13
AR
3105}
3106
3107/* Helper function, adds partial symbol to the given partial symbol
3108 list. */
3109
3110static void
3111append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3112 const struct partial_symbol *psym,
2e618c13
AR
3113 struct objfile *objfile)
3114{
3115 if (list->next >= list->list + list->size)
3116 extend_psymbol_list (list, objfile);
11d31d94 3117 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3118 OBJSTAT (objfile, n_psyms++);
3119}
3120
c906108c 3121/* Add a symbol with a long value to a psymtab.
5417f6dc 3122 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3123 Return the partial symbol that has been added. */
3124
3125/* NOTE: carlton/2003-09-11: The reason why we return the partial
3126 symbol is so that callers can get access to the symbol's demangled
3127 name, which they don't have any cheap way to determine otherwise.
3128 (Currenly, dwarf2read.c is the only file who uses that information,
3129 though it's possible that other readers might in the future.)
3130 Elena wasn't thrilled about that, and I don't blame her, but we
3131 couldn't come up with a better way to get that information. If
3132 it's needed in other situations, we could consider breaking up
3133 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3134 cache. */
3135
3136const struct partial_symbol *
176620f1 3137add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3138 enum address_class class,
2e618c13
AR
3139 struct psymbol_allocation_list *list,
3140 long val, /* Value as a long */
fba45db2
KB
3141 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3142 enum language language, struct objfile *objfile)
c906108c 3143{
11d31d94 3144 const struct partial_symbol *psym;
2de7ced7 3145
2e618c13 3146 int added;
c906108c
SS
3147
3148 /* Stash the partial symbol away in the cache */
2e618c13
AR
3149 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3150 val, coreaddr, language, objfile, &added);
c906108c 3151
2e618c13
AR
3152 /* Do not duplicate global partial symbols. */
3153 if (list == &objfile->global_psymbols
3154 && !added)
3155 return psym;
5c4e30ca 3156
2e618c13
AR
3157 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3158 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3159 return psym;
c906108c
SS
3160}
3161
c906108c
SS
3162/* Initialize storage for partial symbols. */
3163
3164void
fba45db2 3165init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3166{
3167 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3168
3169 if (objfile->global_psymbols.list)
c906108c 3170 {
2dc74dc1 3171 xfree (objfile->global_psymbols.list);
c906108c 3172 }
c5aa993b 3173 if (objfile->static_psymbols.list)
c906108c 3174 {
2dc74dc1 3175 xfree (objfile->static_psymbols.list);
c906108c 3176 }
c5aa993b 3177
c906108c
SS
3178 /* Current best guess is that approximately a twentieth
3179 of the total symbols (in a debugging file) are global or static
3180 oriented symbols */
c906108c 3181
c5aa993b
JM
3182 objfile->global_psymbols.size = total_symbols / 10;
3183 objfile->static_psymbols.size = total_symbols / 10;
3184
3185 if (objfile->global_psymbols.size > 0)
c906108c 3186 {
c5aa993b
JM
3187 objfile->global_psymbols.next =
3188 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3189 xmalloc ((objfile->global_psymbols.size
3190 * sizeof (struct partial_symbol *)));
c906108c 3191 }
c5aa993b 3192 if (objfile->static_psymbols.size > 0)
c906108c 3193 {
c5aa993b
JM
3194 objfile->static_psymbols.next =
3195 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3196 xmalloc ((objfile->static_psymbols.size
3197 * sizeof (struct partial_symbol *)));
c906108c
SS
3198 }
3199}
3200
3201/* OVERLAYS:
3202 The following code implements an abstraction for debugging overlay sections.
3203
3204 The target model is as follows:
3205 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3206 same VMA, each with its own unique LMA (or load address).
c906108c 3207 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3208 sections, one by one, from the load address into the VMA address.
5417f6dc 3209 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3210 sections should be considered to be mapped from the VMA to the LMA.
3211 This information is used for symbol lookup, and memory read/write.
5417f6dc 3212 For instance, if a section has been mapped then its contents
c5aa993b 3213 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3214
3215 Two levels of debugger support for overlays are available. One is
3216 "manual", in which the debugger relies on the user to tell it which
3217 overlays are currently mapped. This level of support is
3218 implemented entirely in the core debugger, and the information about
3219 whether a section is mapped is kept in the objfile->obj_section table.
3220
3221 The second level of support is "automatic", and is only available if
3222 the target-specific code provides functionality to read the target's
3223 overlay mapping table, and translate its contents for the debugger
3224 (by updating the mapped state information in the obj_section tables).
3225
3226 The interface is as follows:
c5aa993b
JM
3227 User commands:
3228 overlay map <name> -- tell gdb to consider this section mapped
3229 overlay unmap <name> -- tell gdb to consider this section unmapped
3230 overlay list -- list the sections that GDB thinks are mapped
3231 overlay read-target -- get the target's state of what's mapped
3232 overlay off/manual/auto -- set overlay debugging state
3233 Functional interface:
3234 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3235 section, return that section.
5417f6dc 3236 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3237 the pc, either in its VMA or its LMA
714835d5 3238 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3239 section_is_overlay(sect): true if section's VMA != LMA
3240 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3241 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3242 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3243 overlay_mapped_address(...): map an address from section's LMA to VMA
3244 overlay_unmapped_address(...): map an address from section's VMA to LMA
3245 symbol_overlayed_address(...): Return a "current" address for symbol:
3246 either in VMA or LMA depending on whether
3247 the symbol's section is currently mapped
c906108c
SS
3248 */
3249
3250/* Overlay debugging state: */
3251
d874f1e2 3252enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3253int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3254
c906108c 3255/* Function: section_is_overlay (SECTION)
5417f6dc 3256 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3257 SECTION is loaded at an address different from where it will "run". */
3258
3259int
714835d5 3260section_is_overlay (struct obj_section *section)
c906108c 3261{
714835d5
UW
3262 if (overlay_debugging && section)
3263 {
3264 bfd *abfd = section->objfile->obfd;
3265 asection *bfd_section = section->the_bfd_section;
3266
3267 if (bfd_section_lma (abfd, bfd_section) != 0
3268 && bfd_section_lma (abfd, bfd_section)
3269 != bfd_section_vma (abfd, bfd_section))
3270 return 1;
3271 }
c906108c
SS
3272
3273 return 0;
3274}
3275
3276/* Function: overlay_invalidate_all (void)
3277 Invalidate the mapped state of all overlay sections (mark it as stale). */
3278
3279static void
fba45db2 3280overlay_invalidate_all (void)
c906108c 3281{
c5aa993b 3282 struct objfile *objfile;
c906108c
SS
3283 struct obj_section *sect;
3284
3285 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3286 if (section_is_overlay (sect))
3287 sect->ovly_mapped = -1;
c906108c
SS
3288}
3289
714835d5 3290/* Function: section_is_mapped (SECTION)
5417f6dc 3291 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3292
3293 Access to the ovly_mapped flag is restricted to this function, so
3294 that we can do automatic update. If the global flag
3295 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3296 overlay_invalidate_all. If the mapped state of the particular
3297 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3298
714835d5
UW
3299int
3300section_is_mapped (struct obj_section *osect)
c906108c 3301{
714835d5 3302 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3303 return 0;
3304
c5aa993b 3305 switch (overlay_debugging)
c906108c
SS
3306 {
3307 default:
d874f1e2 3308 case ovly_off:
c5aa993b 3309 return 0; /* overlay debugging off */
d874f1e2 3310 case ovly_auto: /* overlay debugging automatic */
1c772458 3311 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3312 there's really nothing useful to do here (can't really go auto) */
1c772458 3313 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3314 {
3315 if (overlay_cache_invalid)
3316 {
3317 overlay_invalidate_all ();
3318 overlay_cache_invalid = 0;
3319 }
3320 if (osect->ovly_mapped == -1)
1c772458 3321 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3322 }
3323 /* fall thru to manual case */
d874f1e2 3324 case ovly_on: /* overlay debugging manual */
c906108c
SS
3325 return osect->ovly_mapped == 1;
3326 }
3327}
3328
c906108c
SS
3329/* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332CORE_ADDR
714835d5 3333pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3334{
714835d5
UW
3335 if (section_is_overlay (section))
3336 {
3337 bfd *abfd = section->objfile->obfd;
3338 asection *bfd_section = section->the_bfd_section;
fbd35540 3339
714835d5
UW
3340 /* We assume the LMA is relocated by the same offset as the VMA. */
3341 bfd_vma size = bfd_get_section_size (bfd_section);
3342 CORE_ADDR offset = obj_section_offset (section);
3343
3344 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3345 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3346 return 1;
3347 }
c906108c 3348
c906108c
SS
3349 return 0;
3350}
3351
3352/* Function: pc_in_mapped_range
3353 If PC falls into the vma range of SECTION, return true, else false. */
3354
3355CORE_ADDR
714835d5 3356pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3357{
714835d5
UW
3358 if (section_is_overlay (section))
3359 {
3360 if (obj_section_addr (section) <= pc
3361 && pc < obj_section_endaddr (section))
3362 return 1;
3363 }
c906108c 3364
c906108c
SS
3365 return 0;
3366}
3367
9ec8e6a0
JB
3368
3369/* Return true if the mapped ranges of sections A and B overlap, false
3370 otherwise. */
b9362cc7 3371static int
714835d5 3372sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3373{
714835d5
UW
3374 CORE_ADDR a_start = obj_section_addr (a);
3375 CORE_ADDR a_end = obj_section_endaddr (a);
3376 CORE_ADDR b_start = obj_section_addr (b);
3377 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3378
3379 return (a_start < b_end && b_start < a_end);
3380}
3381
c906108c
SS
3382/* Function: overlay_unmapped_address (PC, SECTION)
3383 Returns the address corresponding to PC in the unmapped (load) range.
3384 May be the same as PC. */
3385
3386CORE_ADDR
714835d5 3387overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3388{
714835d5
UW
3389 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3390 {
3391 bfd *abfd = section->objfile->obfd;
3392 asection *bfd_section = section->the_bfd_section;
fbd35540 3393
714835d5
UW
3394 return pc + bfd_section_lma (abfd, bfd_section)
3395 - bfd_section_vma (abfd, bfd_section);
3396 }
c906108c
SS
3397
3398 return pc;
3399}
3400
3401/* Function: overlay_mapped_address (PC, SECTION)
3402 Returns the address corresponding to PC in the mapped (runtime) range.
3403 May be the same as PC. */
3404
3405CORE_ADDR
714835d5 3406overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3407{
714835d5
UW
3408 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3409 {
3410 bfd *abfd = section->objfile->obfd;
3411 asection *bfd_section = section->the_bfd_section;
fbd35540 3412
714835d5
UW
3413 return pc + bfd_section_vma (abfd, bfd_section)
3414 - bfd_section_lma (abfd, bfd_section);
3415 }
c906108c
SS
3416
3417 return pc;
3418}
3419
3420
5417f6dc 3421/* Function: symbol_overlayed_address
c906108c
SS
3422 Return one of two addresses (relative to the VMA or to the LMA),
3423 depending on whether the section is mapped or not. */
3424
c5aa993b 3425CORE_ADDR
714835d5 3426symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3427{
3428 if (overlay_debugging)
3429 {
3430 /* If the symbol has no section, just return its regular address. */
3431 if (section == 0)
3432 return address;
3433 /* If the symbol's section is not an overlay, just return its address */
3434 if (!section_is_overlay (section))
3435 return address;
3436 /* If the symbol's section is mapped, just return its address */
3437 if (section_is_mapped (section))
3438 return address;
3439 /*
3440 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3441 * then return its LOADED address rather than its vma address!!
3442 */
3443 return overlay_unmapped_address (address, section);
3444 }
3445 return address;
3446}
3447
5417f6dc 3448/* Function: find_pc_overlay (PC)
c906108c
SS
3449 Return the best-match overlay section for PC:
3450 If PC matches a mapped overlay section's VMA, return that section.
3451 Else if PC matches an unmapped section's VMA, return that section.
3452 Else if PC matches an unmapped section's LMA, return that section. */
3453
714835d5 3454struct obj_section *
fba45db2 3455find_pc_overlay (CORE_ADDR pc)
c906108c 3456{
c5aa993b 3457 struct objfile *objfile;
c906108c
SS
3458 struct obj_section *osect, *best_match = NULL;
3459
3460 if (overlay_debugging)
3461 ALL_OBJSECTIONS (objfile, osect)
714835d5 3462 if (section_is_overlay (osect))
c5aa993b 3463 {
714835d5 3464 if (pc_in_mapped_range (pc, osect))
c5aa993b 3465 {
714835d5
UW
3466 if (section_is_mapped (osect))
3467 return osect;
c5aa993b
JM
3468 else
3469 best_match = osect;
3470 }
714835d5 3471 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3472 best_match = osect;
3473 }
714835d5 3474 return best_match;
c906108c
SS
3475}
3476
3477/* Function: find_pc_mapped_section (PC)
5417f6dc 3478 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3479 currently marked as MAPPED, return that section. Else return NULL. */
3480
714835d5 3481struct obj_section *
fba45db2 3482find_pc_mapped_section (CORE_ADDR pc)
c906108c 3483{
c5aa993b 3484 struct objfile *objfile;
c906108c
SS
3485 struct obj_section *osect;
3486
3487 if (overlay_debugging)
3488 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3489 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3490 return osect;
c906108c
SS
3491
3492 return NULL;
3493}
3494
3495/* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498void
fba45db2 3499list_overlays_command (char *args, int from_tty)
c906108c 3500{
c5aa993b
JM
3501 int nmapped = 0;
3502 struct objfile *objfile;
c906108c
SS
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
714835d5 3507 if (section_is_mapped (osect))
c5aa993b
JM
3508 {
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3515 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3519 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3520 puts_filtered (" - ");
ed49a04f 3521 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3522 printf_filtered (", mapped at ");
ed49a04f 3523 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3524 puts_filtered (" - ");
ed49a04f 3525 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
c906108c 3530 if (nmapped == 0)
a3f17187 3531 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3532}
3533
3534/* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537void
fba45db2 3538map_overlay_command (char *args, int from_tty)
c906108c 3539{
c5aa993b
JM
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
c906108c
SS
3542
3543 if (!overlay_debugging)
8a3fe4f8 3544 error (_("\
515ad16c 3545Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3546the 'overlay manual' command."));
c906108c
SS
3547
3548 if (args == 0 || *args == 0)
8a3fe4f8 3549 error (_("Argument required: name of an overlay section"));
c906108c
SS
3550
3551 /* First, find a section matching the user supplied argument */
3552 ALL_OBJSECTIONS (objfile, sec)
3553 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3554 {
3555 /* Now, check to see if the section is an overlay. */
714835d5 3556 if (!section_is_overlay (sec))
c5aa993b
JM
3557 continue; /* not an overlay section */
3558
3559 /* Mark the overlay as "mapped" */
3560 sec->ovly_mapped = 1;
3561
3562 /* Next, make a pass and unmap any sections that are
3563 overlapped by this new section: */
3564 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3565 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3566 {
3567 if (info_verbose)
a3f17187 3568 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3569 bfd_section_name (objfile->obfd,
3570 sec2->the_bfd_section));
3571 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3572 }
3573 return;
3574 }
8a3fe4f8 3575 error (_("No overlay section called %s"), args);
c906108c
SS
3576}
3577
3578/* Function: unmap_overlay_command
5417f6dc 3579 Mark the overlay section as unmapped
c906108c
SS
3580 (ie. resident in its LMA address range, rather than the VMA range). */
3581
3582void
fba45db2 3583unmap_overlay_command (char *args, int from_tty)
c906108c 3584{
c5aa993b 3585 struct objfile *objfile;
c906108c
SS
3586 struct obj_section *sec;
3587
3588 if (!overlay_debugging)
8a3fe4f8 3589 error (_("\
515ad16c 3590Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3591the 'overlay manual' command."));
c906108c
SS
3592
3593 if (args == 0 || *args == 0)
8a3fe4f8 3594 error (_("Argument required: name of an overlay section"));
c906108c
SS
3595
3596 /* First, find a section matching the user supplied argument */
3597 ALL_OBJSECTIONS (objfile, sec)
3598 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3599 {
3600 if (!sec->ovly_mapped)
8a3fe4f8 3601 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3602 sec->ovly_mapped = 0;
3603 return;
3604 }
8a3fe4f8 3605 error (_("No overlay section called %s"), args);
c906108c
SS
3606}
3607
3608/* Function: overlay_auto_command
3609 A utility command to turn on overlay debugging.
3610 Possibly this should be done via a set/show command. */
3611
3612static void
fba45db2 3613overlay_auto_command (char *args, int from_tty)
c906108c 3614{
d874f1e2 3615 overlay_debugging = ovly_auto;
1900040c 3616 enable_overlay_breakpoints ();
c906108c 3617 if (info_verbose)
a3f17187 3618 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3619}
3620
3621/* Function: overlay_manual_command
3622 A utility command to turn on overlay debugging.
3623 Possibly this should be done via a set/show command. */
3624
3625static void
fba45db2 3626overlay_manual_command (char *args, int from_tty)
c906108c 3627{
d874f1e2 3628 overlay_debugging = ovly_on;
1900040c 3629 disable_overlay_breakpoints ();
c906108c 3630 if (info_verbose)
a3f17187 3631 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3632}
3633
3634/* Function: overlay_off_command
3635 A utility command to turn on overlay debugging.
3636 Possibly this should be done via a set/show command. */
3637
3638static void
fba45db2 3639overlay_off_command (char *args, int from_tty)
c906108c 3640{
d874f1e2 3641 overlay_debugging = ovly_off;
1900040c 3642 disable_overlay_breakpoints ();
c906108c 3643 if (info_verbose)
a3f17187 3644 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3645}
3646
3647static void
fba45db2 3648overlay_load_command (char *args, int from_tty)
c906108c 3649{
1c772458
UW
3650 if (gdbarch_overlay_update_p (current_gdbarch))
3651 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3652 else
8a3fe4f8 3653 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3654}
3655
3656/* Function: overlay_command
3657 A place-holder for a mis-typed command */
3658
3659/* Command list chain containing all defined "overlay" subcommands. */
3660struct cmd_list_element *overlaylist;
3661
3662static void
fba45db2 3663overlay_command (char *args, int from_tty)
c906108c 3664{
c5aa993b 3665 printf_unfiltered
c906108c
SS
3666 ("\"overlay\" must be followed by the name of an overlay command.\n");
3667 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3668}
3669
3670
3671/* Target Overlays for the "Simplest" overlay manager:
3672
5417f6dc
RM
3673 This is GDB's default target overlay layer. It works with the
3674 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3675 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3676 so targets that use a different runtime overlay manager can
c906108c
SS
3677 substitute their own overlay_update function and take over the
3678 function pointer.
3679
3680 The overlay_update function pokes around in the target's data structures
3681 to see what overlays are mapped, and updates GDB's overlay mapping with
3682 this information.
3683
3684 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3685 unsigned _novlys; /# number of overlay sections #/
3686 unsigned _ovly_table[_novlys][4] = {
3687 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3688 {..., ..., ..., ...},
3689 }
3690 unsigned _novly_regions; /# number of overlay regions #/
3691 unsigned _ovly_region_table[_novly_regions][3] = {
3692 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3693 {..., ..., ...},
3694 }
c906108c
SS
3695 These functions will attempt to update GDB's mappedness state in the
3696 symbol section table, based on the target's mappedness state.
3697
3698 To do this, we keep a cached copy of the target's _ovly_table, and
3699 attempt to detect when the cached copy is invalidated. The main
3700 entry point is "simple_overlay_update(SECT), which looks up SECT in
3701 the cached table and re-reads only the entry for that section from
3702 the target (whenever possible).
3703 */
3704
3705/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3706static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3707#if 0
c5aa993b 3708static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3709#endif
c5aa993b 3710static unsigned cache_novlys = 0;
c906108c 3711#if 0
c5aa993b 3712static unsigned cache_novly_regions = 0;
c906108c
SS
3713#endif
3714static CORE_ADDR cache_ovly_table_base = 0;
3715#if 0
3716static CORE_ADDR cache_ovly_region_table_base = 0;
3717#endif
c5aa993b
JM
3718enum ovly_index
3719 {
3720 VMA, SIZE, LMA, MAPPED
3721 };
9a76efb6
UW
3722#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3723 / TARGET_CHAR_BIT)
c906108c
SS
3724
3725/* Throw away the cached copy of _ovly_table */
3726static void
fba45db2 3727simple_free_overlay_table (void)
c906108c
SS
3728{
3729 if (cache_ovly_table)
b8c9b27d 3730 xfree (cache_ovly_table);
c5aa993b 3731 cache_novlys = 0;
c906108c
SS
3732 cache_ovly_table = NULL;
3733 cache_ovly_table_base = 0;
3734}
3735
3736#if 0
3737/* Throw away the cached copy of _ovly_region_table */
3738static void
fba45db2 3739simple_free_overlay_region_table (void)
c906108c
SS
3740{
3741 if (cache_ovly_region_table)
b8c9b27d 3742 xfree (cache_ovly_region_table);
c5aa993b 3743 cache_novly_regions = 0;
c906108c
SS
3744 cache_ovly_region_table = NULL;
3745 cache_ovly_region_table_base = 0;
3746}
3747#endif
3748
3749/* Read an array of ints from the target into a local buffer.
3750 Convert to host order. int LEN is number of ints */
3751static void
fba45db2 3752read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3753{
34c0bd93 3754 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3755 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3756 int i;
c906108c
SS
3757
3758 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3759 for (i = 0; i < len; i++)
c5aa993b 3760 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3761 TARGET_LONG_BYTES);
3762}
3763
3764/* Find and grab a copy of the target _ovly_table
3765 (and _novlys, which is needed for the table's size) */
c5aa993b 3766static int
fba45db2 3767simple_read_overlay_table (void)
c906108c 3768{
0d43edd1 3769 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3770
3771 simple_free_overlay_table ();
9b27852e 3772 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3773 if (! novlys_msym)
c906108c 3774 {
8a3fe4f8 3775 error (_("Error reading inferior's overlay table: "
0d43edd1 3776 "couldn't find `_novlys' variable\n"
8a3fe4f8 3777 "in inferior. Use `overlay manual' mode."));
0d43edd1 3778 return 0;
c906108c 3779 }
0d43edd1 3780
9b27852e 3781 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3782 if (! ovly_table_msym)
3783 {
8a3fe4f8 3784 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3785 "`_ovly_table' array\n"
8a3fe4f8 3786 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3787 return 0;
3788 }
3789
3790 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3791 cache_ovly_table
3792 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3793 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3794 read_target_long_array (cache_ovly_table_base,
777ea8f1 3795 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3796 cache_novlys * 4);
3797
c5aa993b 3798 return 1; /* SUCCESS */
c906108c
SS
3799}
3800
3801#if 0
3802/* Find and grab a copy of the target _ovly_region_table
3803 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3804static int
fba45db2 3805simple_read_overlay_region_table (void)
c906108c
SS
3806{
3807 struct minimal_symbol *msym;
3808
3809 simple_free_overlay_region_table ();
9b27852e 3810 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3811 if (msym != NULL)
3812 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3813 else
3814 return 0; /* failure */
c906108c
SS
3815 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3816 if (cache_ovly_region_table != NULL)
3817 {
9b27852e 3818 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3819 if (msym != NULL)
3820 {
3821 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3822 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3823 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3824 cache_novly_regions * 3);
3825 }
c5aa993b
JM
3826 else
3827 return 0; /* failure */
c906108c 3828 }
c5aa993b
JM
3829 else
3830 return 0; /* failure */
3831 return 1; /* SUCCESS */
c906108c
SS
3832}
3833#endif
3834
5417f6dc 3835/* Function: simple_overlay_update_1
c906108c
SS
3836 A helper function for simple_overlay_update. Assuming a cached copy
3837 of _ovly_table exists, look through it to find an entry whose vma,
3838 lma and size match those of OSECT. Re-read the entry and make sure
3839 it still matches OSECT (else the table may no longer be valid).
3840 Set OSECT's mapped state to match the entry. Return: 1 for
3841 success, 0 for failure. */
3842
3843static int
fba45db2 3844simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3845{
3846 int i, size;
fbd35540
MS
3847 bfd *obfd = osect->objfile->obfd;
3848 asection *bsect = osect->the_bfd_section;
c906108c 3849
2c500098 3850 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3851 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3852 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3853 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3854 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3855 {
3856 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3857 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3861 {
3862 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3863 return 1;
3864 }
fbd35540 3865 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3866 return 0;
3867 }
3868 return 0;
3869}
3870
3871/* Function: simple_overlay_update
5417f6dc
RM
3872 If OSECT is NULL, then update all sections' mapped state
3873 (after re-reading the entire target _ovly_table).
3874 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3875 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3876 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3877 re-read the entire cache, and go ahead and update all sections. */
3878
1c772458 3879void
fba45db2 3880simple_overlay_update (struct obj_section *osect)
c906108c 3881{
c5aa993b 3882 struct objfile *objfile;
c906108c
SS
3883
3884 /* Were we given an osect to look up? NULL means do all of them. */
3885 if (osect)
3886 /* Have we got a cached copy of the target's overlay table? */
3887 if (cache_ovly_table != NULL)
3888 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3889 if (cache_ovly_table_base ==
9b27852e 3890 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3891 /* Then go ahead and try to look up this single section in the cache */
3892 if (simple_overlay_update_1 (osect))
3893 /* Found it! We're done. */
3894 return;
3895
3896 /* Cached table no good: need to read the entire table anew.
3897 Or else we want all the sections, in which case it's actually
3898 more efficient to read the whole table in one block anyway. */
3899
0d43edd1
JB
3900 if (! simple_read_overlay_table ())
3901 return;
3902
c906108c
SS
3903 /* Now may as well update all sections, even if only one was requested. */
3904 ALL_OBJSECTIONS (objfile, osect)
714835d5 3905 if (section_is_overlay (osect))
c5aa993b
JM
3906 {
3907 int i, size;
fbd35540
MS
3908 bfd *obfd = osect->objfile->obfd;
3909 asection *bsect = osect->the_bfd_section;
c5aa993b 3910
2c500098 3911 size = bfd_get_section_size (bsect);
c5aa993b 3912 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3913 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3914 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3915 /* && cache_ovly_table[i][SIZE] == size */ )
3916 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3917 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3918 break; /* finished with inner for loop: break out */
3919 }
3920 }
c906108c
SS
3921}
3922
086df311
DJ
3923/* Set the output sections and output offsets for section SECTP in
3924 ABFD. The relocation code in BFD will read these offsets, so we
3925 need to be sure they're initialized. We map each section to itself,
3926 with no offset; this means that SECTP->vma will be honored. */
3927
3928static void
3929symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3930{
3931 sectp->output_section = sectp;
3932 sectp->output_offset = 0;
3933}
3934
3935/* Relocate the contents of a debug section SECTP in ABFD. The
3936 contents are stored in BUF if it is non-NULL, or returned in a
3937 malloc'd buffer otherwise.
3938
3939 For some platforms and debug info formats, shared libraries contain
3940 relocations against the debug sections (particularly for DWARF-2;
3941 one affected platform is PowerPC GNU/Linux, although it depends on
3942 the version of the linker in use). Also, ELF object files naturally
3943 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3944 the relocations in order to get the locations of symbols correct.
3945 Another example that may require relocation processing, is the
3946 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3947 debug section. */
086df311
DJ
3948
3949bfd_byte *
3950symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3951{
065a2c74 3952 /* We're only interested in sections with relocation
086df311
DJ
3953 information. */
3954 if ((sectp->flags & SEC_RELOC) == 0)
3955 return NULL;
086df311
DJ
3956
3957 /* We will handle section offsets properly elsewhere, so relocate as if
3958 all sections begin at 0. */
3959 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3960
97606a13 3961 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3962}
c906108c 3963
31d99776
DJ
3964struct symfile_segment_data *
3965get_symfile_segment_data (bfd *abfd)
3966{
3967 struct sym_fns *sf = find_sym_fns (abfd);
3968
3969 if (sf == NULL)
3970 return NULL;
3971
3972 return sf->sym_segments (abfd);
3973}
3974
3975void
3976free_symfile_segment_data (struct symfile_segment_data *data)
3977{
3978 xfree (data->segment_bases);
3979 xfree (data->segment_sizes);
3980 xfree (data->segment_info);
3981 xfree (data);
3982}
3983
28c32713
JB
3984
3985/* Given:
3986 - DATA, containing segment addresses from the object file ABFD, and
3987 the mapping from ABFD's sections onto the segments that own them,
3988 and
3989 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3990 segment addresses reported by the target,
3991 store the appropriate offsets for each section in OFFSETS.
3992
3993 If there are fewer entries in SEGMENT_BASES than there are segments
3994 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3995
8d385431
DJ
3996 If there are more entries, then ignore the extra. The target may
3997 not be able to distinguish between an empty data segment and a
3998 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3999int
4000symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4001 struct section_offsets *offsets,
4002 int num_segment_bases,
4003 const CORE_ADDR *segment_bases)
4004{
4005 int i;
4006 asection *sect;
4007
28c32713
JB
4008 /* It doesn't make sense to call this function unless you have some
4009 segment base addresses. */
4010 gdb_assert (segment_bases > 0);
4011
31d99776
DJ
4012 /* If we do not have segment mappings for the object file, we
4013 can not relocate it by segments. */
4014 gdb_assert (data != NULL);
4015 gdb_assert (data->num_segments > 0);
4016
31d99776
DJ
4017 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4018 {
31d99776
DJ
4019 int which = data->segment_info[i];
4020
28c32713
JB
4021 gdb_assert (0 <= which && which <= data->num_segments);
4022
4023 /* Don't bother computing offsets for sections that aren't
4024 loaded as part of any segment. */
4025 if (! which)
4026 continue;
4027
4028 /* Use the last SEGMENT_BASES entry as the address of any extra
4029 segments mentioned in DATA->segment_info. */
31d99776 4030 if (which > num_segment_bases)
28c32713 4031 which = num_segment_bases;
31d99776 4032
28c32713
JB
4033 offsets->offsets[i] = (segment_bases[which - 1]
4034 - data->segment_bases[which - 1]);
31d99776
DJ
4035 }
4036
4037 return 1;
4038}
4039
4040static void
4041symfile_find_segment_sections (struct objfile *objfile)
4042{
4043 bfd *abfd = objfile->obfd;
4044 int i;
4045 asection *sect;
4046 struct symfile_segment_data *data;
4047
4048 data = get_symfile_segment_data (objfile->obfd);
4049 if (data == NULL)
4050 return;
4051
4052 if (data->num_segments != 1 && data->num_segments != 2)
4053 {
4054 free_symfile_segment_data (data);
4055 return;
4056 }
4057
4058 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4059 {
4060 CORE_ADDR vma;
4061 int which = data->segment_info[i];
4062
4063 if (which == 1)
4064 {
4065 if (objfile->sect_index_text == -1)
4066 objfile->sect_index_text = sect->index;
4067
4068 if (objfile->sect_index_rodata == -1)
4069 objfile->sect_index_rodata = sect->index;
4070 }
4071 else if (which == 2)
4072 {
4073 if (objfile->sect_index_data == -1)
4074 objfile->sect_index_data = sect->index;
4075
4076 if (objfile->sect_index_bss == -1)
4077 objfile->sect_index_bss = sect->index;
4078 }
4079 }
4080
4081 free_symfile_segment_data (data);
4082}
4083
c906108c 4084void
fba45db2 4085_initialize_symfile (void)
c906108c
SS
4086{
4087 struct cmd_list_element *c;
c5aa993b 4088
1a966eab
AC
4089 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4090Load symbol table from executable file FILE.\n\
c906108c 4091The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4092to execute."), &cmdlist);
5ba2abeb 4093 set_cmd_completer (c, filename_completer);
c906108c 4094
1a966eab 4095 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4096Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4097Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4098ADDR is the starting address of the file's text.\n\
db162d44
EZ
4099The optional arguments are section-name section-address pairs and\n\
4100should be specified if the data and bss segments are not contiguous\n\
1a966eab 4101with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4102 &cmdlist);
5ba2abeb 4103 set_cmd_completer (c, filename_completer);
c906108c
SS
4104
4105 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
4106 add_shared_symbol_files_command, _("\
4107Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 4108 &cmdlist);
c906108c
SS
4109 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4110 &cmdlist);
4111
1a966eab
AC
4112 c = add_cmd ("load", class_files, load_command, _("\
4113Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4114for access from GDB.\n\
4115A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4116 set_cmd_completer (c, filename_completer);
c906108c 4117
5bf193a2
AC
4118 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4119 &symbol_reloading, _("\
4120Set dynamic symbol table reloading multiple times in one run."), _("\
4121Show dynamic symbol table reloading multiple times in one run."), NULL,
4122 NULL,
920d2a44 4123 show_symbol_reloading,
5bf193a2 4124 &setlist, &showlist);
c906108c 4125
c5aa993b 4126 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4127 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4128 "overlay ", 0, &cmdlist);
4129
4130 add_com_alias ("ovly", "overlay", class_alias, 1);
4131 add_com_alias ("ov", "overlay", class_alias, 1);
4132
c5aa993b 4133 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4134 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4135
c5aa993b 4136 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4137 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4138
c5aa993b 4139 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4140 _("List mappings of overlay sections."), &overlaylist);
c906108c 4141
c5aa993b 4142 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4143 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4144 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4145 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4146 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4147 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4148 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4149 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4150
4151 /* Filename extension to source language lookup table: */
4152 init_filename_language_table ();
26c41df3
AC
4153 add_setshow_string_noescape_cmd ("extension-language", class_files,
4154 &ext_args, _("\
4155Set mapping between filename extension and source language."), _("\
4156Show mapping between filename extension and source language."), _("\
4157Usage: set extension-language .foo bar"),
4158 set_ext_lang_command,
920d2a44 4159 show_ext_args,
26c41df3 4160 &setlist, &showlist);
c906108c 4161
c5aa993b 4162 add_info ("extensions", info_ext_lang_command,
1bedd215 4163 _("All filename extensions associated with a source language."));
917317f4 4164
525226b5
AC
4165 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4166 &debug_file_directory, _("\
4167Set the directory where separate debug symbols are searched for."), _("\
4168Show the directory where separate debug symbols are searched for."), _("\
4169Separate debug symbols are first searched for in the same\n\
4170directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4171and lastly at the path of the directory of the binary with\n\
4172the global debug-file directory prepended."),
4173 NULL,
920d2a44 4174 show_debug_file_directory,
525226b5 4175 &setlist, &showlist);
bf250677
DE
4176
4177 add_setshow_boolean_cmd ("symbol-loading", no_class,
4178 &print_symbol_loading, _("\
4179Set printing of symbol loading messages."), _("\
4180Show printing of symbol loading messages."), NULL,
4181 NULL,
4182 NULL,
4183 &setprintlist, &showprintlist);
c906108c 4184}
This page took 1.388119 seconds and 4 git commands to generate.