* symfile.h (obsavestring): Don't declare.
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* Functions this file defines. */
c906108c 86
a14ed312 87static void load_command (char *, int);
c906108c 88
d7db6da9
FN
89static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
90
a14ed312 91static void add_symbol_file_command (char *, int);
c906108c 92
a14ed312 93bfd *symfile_bfd_open (char *);
c906108c 94
0e931cf0
JB
95int get_section_index (struct objfile *, char *);
96
00b5771c 97static const struct sym_fns *find_sym_fns (bfd *);
c906108c 98
a14ed312 99static void decrement_reading_symtab (void *);
c906108c 100
a14ed312 101static void overlay_invalidate_all (void);
c906108c 102
a14ed312 103static void overlay_auto_command (char *, int);
c906108c 104
a14ed312 105static void overlay_manual_command (char *, int);
c906108c 106
a14ed312 107static void overlay_off_command (char *, int);
c906108c 108
a14ed312 109static void overlay_load_command (char *, int);
c906108c 110
a14ed312 111static void overlay_command (char *, int);
c906108c 112
a14ed312 113static void simple_free_overlay_table (void);
c906108c 114
e17a4113
UW
115static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
116 enum bfd_endian);
c906108c 117
a14ed312 118static int simple_read_overlay_table (void);
c906108c 119
a14ed312 120static int simple_overlay_update_1 (struct obj_section *);
c906108c 121
a14ed312 122static void add_filename_language (char *ext, enum language lang);
392a587b 123
a14ed312 124static void info_ext_lang_command (char *args, int from_tty);
392a587b 125
a14ed312 126static void init_filename_language_table (void);
392a587b 127
31d99776
DJ
128static void symfile_find_segment_sections (struct objfile *objfile);
129
a14ed312 130void _initialize_symfile (void);
c906108c
SS
131
132/* List of all available sym_fns. On gdb startup, each object file reader
133 calls add_symtab_fns() to register information on each format it is
c378eb4e 134 prepared to read. */
c906108c 135
00b5771c
TT
136typedef const struct sym_fns *sym_fns_ptr;
137DEF_VEC_P (sym_fns_ptr);
138
139static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 140
b7209cb4
FF
141/* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
c906108c 148 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 149 report all the functions that are actually present. */
c906108c
SS
150
151int auto_solib_add = 1;
c906108c 152\f
c5aa993b 153
3e43a32a
MS
154/* Concatenate NULL terminated variable argument list of `const char *'
155 strings; return the new string. Space is found in the OBSTACKP.
156 Argument list must be terminated by a sentinel expression `(char *)
157 NULL'. */
c906108c
SS
158
159char *
48cb83fd 160obconcat (struct obstack *obstackp, ...)
c906108c 161{
48cb83fd
JK
162 va_list ap;
163
164 va_start (ap, obstackp);
165 for (;;)
166 {
167 const char *s = va_arg (ap, const char *);
168
169 if (s == NULL)
170 break;
171
172 obstack_grow_str (obstackp, s);
173 }
174 va_end (ap);
175 obstack_1grow (obstackp, 0);
176
177 return obstack_finish (obstackp);
c906108c
SS
178}
179
0d14a781 180/* True if we are reading a symbol table. */
c906108c
SS
181
182int currently_reading_symtab = 0;
183
184static void
fba45db2 185decrement_reading_symtab (void *dummy)
c906108c
SS
186{
187 currently_reading_symtab--;
188}
189
ccefe4c4
TT
190/* Increment currently_reading_symtab and return a cleanup that can be
191 used to decrement it. */
192struct cleanup *
193increment_reading_symtab (void)
c906108c 194{
ccefe4c4
TT
195 ++currently_reading_symtab;
196 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
197}
198
5417f6dc
RM
199/* Remember the lowest-addressed loadable section we've seen.
200 This function is called via bfd_map_over_sections.
c906108c
SS
201
202 In case of equal vmas, the section with the largest size becomes the
203 lowest-addressed loadable section.
204
205 If the vmas and sizes are equal, the last section is considered the
206 lowest-addressed loadable section. */
207
208void
4efb68b1 209find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 210{
c5aa993b 211 asection **lowest = (asection **) obj;
c906108c 212
eb73e134 213 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
214 return;
215 if (!*lowest)
216 *lowest = sect; /* First loadable section */
217 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
218 *lowest = sect; /* A lower loadable section */
219 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
220 && (bfd_section_size (abfd, (*lowest))
221 <= bfd_section_size (abfd, sect)))
222 *lowest = sect;
223}
224
a39a16c4
MM
225/* Create a new section_addr_info, with room for NUM_SECTIONS. */
226
227struct section_addr_info *
228alloc_section_addr_info (size_t num_sections)
229{
230 struct section_addr_info *sap;
231 size_t size;
232
233 size = (sizeof (struct section_addr_info)
234 + sizeof (struct other_sections) * (num_sections - 1));
235 sap = (struct section_addr_info *) xmalloc (size);
236 memset (sap, 0, size);
237 sap->num_sections = num_sections;
238
239 return sap;
240}
62557bbc
KB
241
242/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 243 an existing section table. */
62557bbc
KB
244
245extern struct section_addr_info *
0542c86d
PA
246build_section_addr_info_from_section_table (const struct target_section *start,
247 const struct target_section *end)
62557bbc
KB
248{
249 struct section_addr_info *sap;
0542c86d 250 const struct target_section *stp;
62557bbc
KB
251 int oidx;
252
a39a16c4 253 sap = alloc_section_addr_info (end - start);
62557bbc
KB
254
255 for (stp = start, oidx = 0; stp != end; stp++)
256 {
5417f6dc 257 if (bfd_get_section_flags (stp->bfd,
fbd35540 258 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 259 && oidx < end - start)
62557bbc
KB
260 {
261 sap->other[oidx].addr = stp->addr;
5417f6dc 262 sap->other[oidx].name
fbd35540 263 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
264 sap->other[oidx].sectindex = stp->the_bfd_section->index;
265 oidx++;
266 }
267 }
268
269 return sap;
270}
271
82ccf5a5 272/* Create a section_addr_info from section offsets in ABFD. */
089b4803 273
82ccf5a5
JK
274static struct section_addr_info *
275build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
276{
277 struct section_addr_info *sap;
278 int i;
279 struct bfd_section *sec;
280
82ccf5a5
JK
281 sap = alloc_section_addr_info (bfd_count_sections (abfd));
282 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
283 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 284 {
82ccf5a5
JK
285 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
286 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
287 sap->other[i].sectindex = sec->index;
288 i++;
289 }
089b4803
TG
290 return sap;
291}
292
82ccf5a5
JK
293/* Create a section_addr_info from section offsets in OBJFILE. */
294
295struct section_addr_info *
296build_section_addr_info_from_objfile (const struct objfile *objfile)
297{
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312}
62557bbc 313
c378eb4e 314/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
315
316extern void
317free_section_addr_info (struct section_addr_info *sap)
318{
319 int idx;
320
a39a16c4 321 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 322 if (sap->other[idx].name)
b8c9b27d
KB
323 xfree (sap->other[idx].name);
324 xfree (sap);
62557bbc
KB
325}
326
327
e8289572
JB
328/* Initialize OBJFILE's sect_index_* members. */
329static void
330init_objfile_sect_indices (struct objfile *objfile)
c906108c 331{
e8289572 332 asection *sect;
c906108c 333 int i;
5417f6dc 334
b8fbeb18 335 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 336 if (sect)
b8fbeb18
EZ
337 objfile->sect_index_text = sect->index;
338
339 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 340 if (sect)
b8fbeb18
EZ
341 objfile->sect_index_data = sect->index;
342
343 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 344 if (sect)
b8fbeb18
EZ
345 objfile->sect_index_bss = sect->index;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 348 if (sect)
b8fbeb18
EZ
349 objfile->sect_index_rodata = sect->index;
350
bbcd32ad
FF
351 /* This is where things get really weird... We MUST have valid
352 indices for the various sect_index_* members or gdb will abort.
353 So if for example, there is no ".text" section, we have to
31d99776
DJ
354 accomodate that. First, check for a file with the standard
355 one or two segments. */
356
357 symfile_find_segment_sections (objfile);
358
359 /* Except when explicitly adding symbol files at some address,
360 section_offsets contains nothing but zeros, so it doesn't matter
361 which slot in section_offsets the individual sect_index_* members
362 index into. So if they are all zero, it is safe to just point
363 all the currently uninitialized indices to the first slot. But
364 beware: if this is the main executable, it may be relocated
365 later, e.g. by the remote qOffsets packet, and then this will
366 be wrong! That's why we try segments first. */
bbcd32ad
FF
367
368 for (i = 0; i < objfile->num_sections; i++)
369 {
370 if (ANOFFSET (objfile->section_offsets, i) != 0)
371 {
372 break;
373 }
374 }
375 if (i == objfile->num_sections)
376 {
377 if (objfile->sect_index_text == -1)
378 objfile->sect_index_text = 0;
379 if (objfile->sect_index_data == -1)
380 objfile->sect_index_data = 0;
381 if (objfile->sect_index_bss == -1)
382 objfile->sect_index_bss = 0;
383 if (objfile->sect_index_rodata == -1)
384 objfile->sect_index_rodata = 0;
385 }
b8fbeb18 386}
c906108c 387
c1bd25fd
DJ
388/* The arguments to place_section. */
389
390struct place_section_arg
391{
392 struct section_offsets *offsets;
393 CORE_ADDR lowest;
394};
395
396/* Find a unique offset to use for loadable section SECT if
397 the user did not provide an offset. */
398
2c0b251b 399static void
c1bd25fd
DJ
400place_section (bfd *abfd, asection *sect, void *obj)
401{
402 struct place_section_arg *arg = obj;
403 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
404 int done;
3bd72c6f 405 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 406
2711e456
DJ
407 /* We are only interested in allocated sections. */
408 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
409 return;
410
411 /* If the user specified an offset, honor it. */
412 if (offsets[sect->index] != 0)
413 return;
414
415 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
416 start_addr = (arg->lowest + align - 1) & -align;
417
c1bd25fd
DJ
418 do {
419 asection *cur_sec;
c1bd25fd 420
c1bd25fd
DJ
421 done = 1;
422
423 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
424 {
425 int indx = cur_sec->index;
c1bd25fd
DJ
426
427 /* We don't need to compare against ourself. */
428 if (cur_sec == sect)
429 continue;
430
2711e456
DJ
431 /* We can only conflict with allocated sections. */
432 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
433 continue;
434
435 /* If the section offset is 0, either the section has not been placed
436 yet, or it was the lowest section placed (in which case LOWEST
437 will be past its end). */
438 if (offsets[indx] == 0)
439 continue;
440
441 /* If this section would overlap us, then we must move up. */
442 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
443 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
444 {
445 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
446 start_addr = (start_addr + align - 1) & -align;
447 done = 0;
3bd72c6f 448 break;
c1bd25fd
DJ
449 }
450
451 /* Otherwise, we appear to be OK. So far. */
452 }
453 }
454 while (!done);
455
456 offsets[sect->index] = start_addr;
457 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 458}
e8289572 459
75242ef4
JK
460/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
461 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
462 entries. */
e8289572
JB
463
464void
75242ef4
JK
465relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
466 int num_sections,
467 struct section_addr_info *addrs)
e8289572
JB
468{
469 int i;
470
75242ef4 471 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 472
c378eb4e 473 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 474 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 475 {
75242ef4 476 struct other_sections *osp;
e8289572 477
75242ef4 478 osp = &addrs->other[i];
5488dafb 479 if (osp->sectindex == -1)
e8289572
JB
480 continue;
481
c378eb4e 482 /* Record all sections in offsets. */
e8289572 483 /* The section_offsets in the objfile are here filled in using
c378eb4e 484 the BFD index. */
75242ef4
JK
485 section_offsets->offsets[osp->sectindex] = osp->addr;
486 }
487}
488
1276c759
JK
489/* Transform section name S for a name comparison. prelink can split section
490 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
491 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
492 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
493 (`.sbss') section has invalid (increased) virtual address. */
494
495static const char *
496addr_section_name (const char *s)
497{
498 if (strcmp (s, ".dynbss") == 0)
499 return ".bss";
500 if (strcmp (s, ".sdynbss") == 0)
501 return ".sbss";
502
503 return s;
504}
505
82ccf5a5
JK
506/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
507 their (name, sectindex) pair. sectindex makes the sort by name stable. */
508
509static int
510addrs_section_compar (const void *ap, const void *bp)
511{
512 const struct other_sections *a = *((struct other_sections **) ap);
513 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 514 int retval;
82ccf5a5 515
1276c759 516 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
517 if (retval)
518 return retval;
519
5488dafb 520 return a->sectindex - b->sectindex;
82ccf5a5
JK
521}
522
523/* Provide sorted array of pointers to sections of ADDRS. The array is
524 terminated by NULL. Caller is responsible to call xfree for it. */
525
526static struct other_sections **
527addrs_section_sort (struct section_addr_info *addrs)
528{
529 struct other_sections **array;
530 int i;
531
532 /* `+ 1' for the NULL terminator. */
533 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
534 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
535 array[i] = &addrs->other[i];
536 array[i] = NULL;
537
538 qsort (array, i, sizeof (*array), addrs_section_compar);
539
540 return array;
541}
542
75242ef4 543/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
544 also SECTINDEXes specific to ABFD there. This function can be used to
545 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
546
547void
548addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
549{
550 asection *lower_sect;
75242ef4
JK
551 CORE_ADDR lower_offset;
552 int i;
82ccf5a5
JK
553 struct cleanup *my_cleanup;
554 struct section_addr_info *abfd_addrs;
555 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
556 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
557
558 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
559 continguous sections. */
560 lower_sect = NULL;
561 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
562 if (lower_sect == NULL)
563 {
564 warning (_("no loadable sections found in added symbol-file %s"),
565 bfd_get_filename (abfd));
566 lower_offset = 0;
e8289572 567 }
75242ef4
JK
568 else
569 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
570
82ccf5a5
JK
571 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
572 in ABFD. Section names are not unique - there can be multiple sections of
573 the same name. Also the sections of the same name do not have to be
574 adjacent to each other. Some sections may be present only in one of the
575 files. Even sections present in both files do not have to be in the same
576 order.
577
578 Use stable sort by name for the sections in both files. Then linearly
579 scan both lists matching as most of the entries as possible. */
580
581 addrs_sorted = addrs_section_sort (addrs);
582 my_cleanup = make_cleanup (xfree, addrs_sorted);
583
584 abfd_addrs = build_section_addr_info_from_bfd (abfd);
585 make_cleanup_free_section_addr_info (abfd_addrs);
586 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
587 make_cleanup (xfree, abfd_addrs_sorted);
588
c378eb4e
MS
589 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
590 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
591
592 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
593 * addrs->num_sections);
594 make_cleanup (xfree, addrs_to_abfd_addrs);
595
596 while (*addrs_sorted)
597 {
1276c759 598 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
599
600 while (*abfd_addrs_sorted
1276c759
JK
601 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
602 sect_name) < 0)
82ccf5a5
JK
603 abfd_addrs_sorted++;
604
605 if (*abfd_addrs_sorted
1276c759
JK
606 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
607 sect_name) == 0)
82ccf5a5
JK
608 {
609 int index_in_addrs;
610
611 /* Make the found item directly addressable from ADDRS. */
612 index_in_addrs = *addrs_sorted - addrs->other;
613 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
614 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
615
616 /* Never use the same ABFD entry twice. */
617 abfd_addrs_sorted++;
618 }
619
620 addrs_sorted++;
621 }
622
75242ef4
JK
623 /* Calculate offsets for the loadable sections.
624 FIXME! Sections must be in order of increasing loadable section
625 so that contiguous sections can use the lower-offset!!!
626
627 Adjust offsets if the segments are not contiguous.
628 If the section is contiguous, its offset should be set to
629 the offset of the highest loadable section lower than it
630 (the loadable section directly below it in memory).
631 this_offset = lower_offset = lower_addr - lower_orig_addr */
632
633 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
634 {
82ccf5a5 635 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
636
637 if (sect)
75242ef4 638 {
c378eb4e 639 /* This is the index used by BFD. */
82ccf5a5 640 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
641
642 if (addrs->other[i].addr != 0)
75242ef4 643 {
82ccf5a5 644 addrs->other[i].addr -= sect->addr;
75242ef4 645 lower_offset = addrs->other[i].addr;
75242ef4
JK
646 }
647 else
672d9c23 648 addrs->other[i].addr = lower_offset;
75242ef4
JK
649 }
650 else
672d9c23 651 {
1276c759
JK
652 /* addr_section_name transformation is not used for SECT_NAME. */
653 const char *sect_name = addrs->other[i].name;
654
b0fcb67f
JK
655 /* This section does not exist in ABFD, which is normally
656 unexpected and we want to issue a warning.
657
4d9743af
JK
658 However, the ELF prelinker does create a few sections which are
659 marked in the main executable as loadable (they are loaded in
660 memory from the DYNAMIC segment) and yet are not present in
661 separate debug info files. This is fine, and should not cause
662 a warning. Shared libraries contain just the section
663 ".gnu.liblist" but it is not marked as loadable there. There is
664 no other way to identify them than by their name as the sections
1276c759
JK
665 created by prelink have no special flags.
666
667 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
668
669 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 670 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
671 || (strcmp (sect_name, ".bss") == 0
672 && i > 0
673 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
674 && addrs_to_abfd_addrs[i - 1] != NULL)
675 || (strcmp (sect_name, ".sbss") == 0
676 && i > 0
677 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
678 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
679 warning (_("section %s not found in %s"), sect_name,
680 bfd_get_filename (abfd));
681
672d9c23 682 addrs->other[i].addr = 0;
5488dafb 683 addrs->other[i].sectindex = -1;
672d9c23 684 }
75242ef4 685 }
82ccf5a5
JK
686
687 do_cleanups (my_cleanup);
75242ef4
JK
688}
689
690/* Parse the user's idea of an offset for dynamic linking, into our idea
691 of how to represent it for fast symbol reading. This is the default
692 version of the sym_fns.sym_offsets function for symbol readers that
693 don't need to do anything special. It allocates a section_offsets table
694 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
695
696void
697default_symfile_offsets (struct objfile *objfile,
698 struct section_addr_info *addrs)
699{
700 objfile->num_sections = bfd_count_sections (objfile->obfd);
701 objfile->section_offsets = (struct section_offsets *)
702 obstack_alloc (&objfile->objfile_obstack,
703 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
704 relative_addr_info_to_section_offsets (objfile->section_offsets,
705 objfile->num_sections, addrs);
e8289572 706
c1bd25fd
DJ
707 /* For relocatable files, all loadable sections will start at zero.
708 The zero is meaningless, so try to pick arbitrary addresses such
709 that no loadable sections overlap. This algorithm is quadratic,
710 but the number of sections in a single object file is generally
711 small. */
712 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
713 {
714 struct place_section_arg arg;
2711e456
DJ
715 bfd *abfd = objfile->obfd;
716 asection *cur_sec;
2711e456
DJ
717
718 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
719 /* We do not expect this to happen; just skip this step if the
720 relocatable file has a section with an assigned VMA. */
721 if (bfd_section_vma (abfd, cur_sec) != 0)
722 break;
723
724 if (cur_sec == NULL)
725 {
726 CORE_ADDR *offsets = objfile->section_offsets->offsets;
727
728 /* Pick non-overlapping offsets for sections the user did not
729 place explicitly. */
730 arg.offsets = objfile->section_offsets;
731 arg.lowest = 0;
732 bfd_map_over_sections (objfile->obfd, place_section, &arg);
733
734 /* Correctly filling in the section offsets is not quite
735 enough. Relocatable files have two properties that
736 (most) shared objects do not:
737
738 - Their debug information will contain relocations. Some
739 shared libraries do also, but many do not, so this can not
740 be assumed.
741
742 - If there are multiple code sections they will be loaded
743 at different relative addresses in memory than they are
744 in the objfile, since all sections in the file will start
745 at address zero.
746
747 Because GDB has very limited ability to map from an
748 address in debug info to the correct code section,
749 it relies on adding SECT_OFF_TEXT to things which might be
750 code. If we clear all the section offsets, and set the
751 section VMAs instead, then symfile_relocate_debug_section
752 will return meaningful debug information pointing at the
753 correct sections.
754
755 GDB has too many different data structures for section
756 addresses - a bfd, objfile, and so_list all have section
757 tables, as does exec_ops. Some of these could probably
758 be eliminated. */
759
760 for (cur_sec = abfd->sections; cur_sec != NULL;
761 cur_sec = cur_sec->next)
762 {
763 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
764 continue;
765
766 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
767 exec_set_section_address (bfd_get_filename (abfd),
768 cur_sec->index,
30510692 769 offsets[cur_sec->index]);
2711e456
DJ
770 offsets[cur_sec->index] = 0;
771 }
772 }
c1bd25fd
DJ
773 }
774
e8289572 775 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 776 .rodata sections. */
e8289572
JB
777 init_objfile_sect_indices (objfile);
778}
779
780
31d99776
DJ
781/* Divide the file into segments, which are individual relocatable units.
782 This is the default version of the sym_fns.sym_segments function for
783 symbol readers that do not have an explicit representation of segments.
784 It assumes that object files do not have segments, and fully linked
785 files have a single segment. */
786
787struct symfile_segment_data *
788default_symfile_segments (bfd *abfd)
789{
790 int num_sections, i;
791 asection *sect;
792 struct symfile_segment_data *data;
793 CORE_ADDR low, high;
794
795 /* Relocatable files contain enough information to position each
796 loadable section independently; they should not be relocated
797 in segments. */
798 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
799 return NULL;
800
801 /* Make sure there is at least one loadable section in the file. */
802 for (sect = abfd->sections; sect != NULL; sect = sect->next)
803 {
804 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
805 continue;
806
807 break;
808 }
809 if (sect == NULL)
810 return NULL;
811
812 low = bfd_get_section_vma (abfd, sect);
813 high = low + bfd_get_section_size (sect);
814
815 data = XZALLOC (struct symfile_segment_data);
816 data->num_segments = 1;
817 data->segment_bases = XCALLOC (1, CORE_ADDR);
818 data->segment_sizes = XCALLOC (1, CORE_ADDR);
819
820 num_sections = bfd_count_sections (abfd);
821 data->segment_info = XCALLOC (num_sections, int);
822
823 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
824 {
825 CORE_ADDR vma;
826
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 vma = bfd_get_section_vma (abfd, sect);
831 if (vma < low)
832 low = vma;
833 if (vma + bfd_get_section_size (sect) > high)
834 high = vma + bfd_get_section_size (sect);
835
836 data->segment_info[i] = 1;
837 }
838
839 data->segment_bases[0] = low;
840 data->segment_sizes[0] = high - low;
841
842 return data;
843}
844
608e2dbb
TT
845/* This is a convenience function to call sym_read for OBJFILE and
846 possibly force the partial symbols to be read. */
847
848static void
849read_symbols (struct objfile *objfile, int add_flags)
850{
851 (*objfile->sf->sym_read) (objfile, add_flags);
852 if (!objfile_has_partial_symbols (objfile))
853 {
854 bfd *abfd = find_separate_debug_file_in_section (objfile);
855 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
856
857 if (abfd != NULL)
858 symbol_file_add_separate (abfd, add_flags, objfile);
859
860 do_cleanups (cleanup);
861 }
862 if ((add_flags & SYMFILE_NO_READ) == 0)
863 require_partial_symbols (objfile, 0);
864}
865
3d6e24f0
JB
866/* Initialize entry point information for this objfile. */
867
868static void
869init_entry_point_info (struct objfile *objfile)
870{
871 /* Save startup file's range of PC addresses to help blockframe.c
872 decide where the bottom of the stack is. */
873
874 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
875 {
876 /* Executable file -- record its entry point so we'll recognize
877 the startup file because it contains the entry point. */
878 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
879 objfile->ei.entry_point_p = 1;
880 }
881 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
882 && bfd_get_start_address (objfile->obfd) != 0)
883 {
884 /* Some shared libraries may have entry points set and be
885 runnable. There's no clear way to indicate this, so just check
886 for values other than zero. */
887 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
888 objfile->ei.entry_point_p = 1;
889 }
890 else
891 {
892 /* Examination of non-executable.o files. Short-circuit this stuff. */
893 objfile->ei.entry_point_p = 0;
894 }
895
896 if (objfile->ei.entry_point_p)
897 {
898 CORE_ADDR entry_point = objfile->ei.entry_point;
899
900 /* Make certain that the address points at real code, and not a
901 function descriptor. */
902 entry_point
903 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
904 entry_point,
905 &current_target);
906
907 /* Remove any ISA markers, so that this matches entries in the
908 symbol table. */
909 objfile->ei.entry_point
910 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
911 }
912}
913
c906108c
SS
914/* Process a symbol file, as either the main file or as a dynamically
915 loaded file.
916
36e4d068
JB
917 This function does not set the OBJFILE's entry-point info.
918
96baa820
JM
919 OBJFILE is where the symbols are to be read from.
920
7e8580c1
JB
921 ADDRS is the list of section load addresses. If the user has given
922 an 'add-symbol-file' command, then this is the list of offsets and
923 addresses he or she provided as arguments to the command; or, if
924 we're handling a shared library, these are the actual addresses the
925 sections are loaded at, according to the inferior's dynamic linker
926 (as gleaned by GDB's shared library code). We convert each address
927 into an offset from the section VMA's as it appears in the object
928 file, and then call the file's sym_offsets function to convert this
929 into a format-specific offset table --- a `struct section_offsets'.
930 If ADDRS is non-zero, OFFSETS must be zero.
931
932 OFFSETS is a table of section offsets already in the right
933 format-specific representation. NUM_OFFSETS is the number of
934 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
935 assume this is the proper table the call to sym_offsets described
936 above would produce. Instead of calling sym_offsets, we just dump
937 it right into objfile->section_offsets. (When we're re-reading
938 symbols from an objfile, we don't have the original load address
939 list any more; all we have is the section offset table.) If
940 OFFSETS is non-zero, ADDRS must be zero.
96baa820 941
7eedccfa
PP
942 ADD_FLAGS encodes verbosity level, whether this is main symbol or
943 an extra symbol file such as dynamically loaded code, and wether
944 breakpoint reset should be deferred. */
c906108c 945
36e4d068
JB
946static void
947syms_from_objfile_1 (struct objfile *objfile,
948 struct section_addr_info *addrs,
949 struct section_offsets *offsets,
950 int num_offsets,
951 int add_flags)
c906108c 952{
a39a16c4 953 struct section_addr_info *local_addr = NULL;
c906108c 954 struct cleanup *old_chain;
7eedccfa 955 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 956
7e8580c1 957 gdb_assert (! (addrs && offsets));
2acceee2 958
31d99776 959 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 960
75245b24 961 if (objfile->sf == NULL)
36e4d068
JB
962 {
963 /* No symbols to load, but we still need to make sure
964 that the section_offsets table is allocated. */
965 int num_sections = bfd_count_sections (objfile->obfd);
966 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
967
968 objfile->num_sections = num_sections;
969 objfile->section_offsets
970 = obstack_alloc (&objfile->objfile_obstack, size);
971 memset (objfile->section_offsets, 0, size);
972 return;
973 }
75245b24 974
c906108c
SS
975 /* Make sure that partially constructed symbol tables will be cleaned up
976 if an error occurs during symbol reading. */
74b7792f 977 old_chain = make_cleanup_free_objfile (objfile);
c906108c 978
a39a16c4
MM
979 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
980 list. We now establish the convention that an addr of zero means
c378eb4e 981 no load address was specified. */
a39a16c4
MM
982 if (! addrs && ! offsets)
983 {
5417f6dc 984 local_addr
a39a16c4
MM
985 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
986 make_cleanup (xfree, local_addr);
987 addrs = local_addr;
988 }
989
990 /* Now either addrs or offsets is non-zero. */
991
c5aa993b 992 if (mainline)
c906108c
SS
993 {
994 /* We will modify the main symbol table, make sure that all its users
c5aa993b 995 will be cleaned up if an error occurs during symbol reading. */
74b7792f 996 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
997
998 /* Since no error yet, throw away the old symbol table. */
999
1000 if (symfile_objfile != NULL)
1001 {
1002 free_objfile (symfile_objfile);
adb7f338 1003 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1004 }
1005
1006 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1007 If the user wants to get rid of them, they should do "symbol-file"
1008 without arguments first. Not sure this is the best behavior
1009 (PR 2207). */
c906108c 1010
c5aa993b 1011 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1012 }
1013
1014 /* Convert addr into an offset rather than an absolute address.
1015 We find the lowest address of a loaded segment in the objfile,
53a5351d 1016 and assume that <addr> is where that got loaded.
c906108c 1017
53a5351d
JM
1018 We no longer warn if the lowest section is not a text segment (as
1019 happens for the PA64 port. */
0d15807d 1020 if (addrs && addrs->other[0].name)
75242ef4 1021 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1022
1023 /* Initialize symbol reading routines for this objfile, allow complaints to
1024 appear for this new file, and record how verbose to be, then do the
c378eb4e 1025 initial symbol reading for this file. */
c906108c 1026
c5aa993b 1027 (*objfile->sf->sym_init) (objfile);
7eedccfa 1028 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1029
7e8580c1
JB
1030 if (addrs)
1031 (*objfile->sf->sym_offsets) (objfile, addrs);
1032 else
1033 {
1034 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1035
1036 /* Just copy in the offset table directly as given to us. */
1037 objfile->num_sections = num_offsets;
1038 objfile->section_offsets
1039 = ((struct section_offsets *)
8b92e4d5 1040 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1041 memcpy (objfile->section_offsets, offsets, size);
1042
1043 init_objfile_sect_indices (objfile);
1044 }
c906108c 1045
608e2dbb 1046 read_symbols (objfile, add_flags);
b11896a5 1047
c906108c
SS
1048 /* Discard cleanups as symbol reading was successful. */
1049
1050 discard_cleanups (old_chain);
f7545552 1051 xfree (local_addr);
c906108c
SS
1052}
1053
36e4d068
JB
1054/* Same as syms_from_objfile_1, but also initializes the objfile
1055 entry-point info. */
1056
1057void
1058syms_from_objfile (struct objfile *objfile,
1059 struct section_addr_info *addrs,
1060 struct section_offsets *offsets,
1061 int num_offsets,
1062 int add_flags)
1063{
1064 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1065 init_entry_point_info (objfile);
1066}
1067
c906108c
SS
1068/* Perform required actions after either reading in the initial
1069 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1070 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1071
c906108c 1072void
7eedccfa 1073new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1074{
c906108c 1075 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1076 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1077 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1078 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1079 {
1080 /* OK, make it the "real" symbol file. */
1081 symfile_objfile = objfile;
1082
c1e56572 1083 clear_symtab_users (add_flags);
c906108c 1084 }
7eedccfa 1085 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1086 {
69de3c6a 1087 breakpoint_re_set ();
c906108c
SS
1088 }
1089
1090 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1091 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1092}
1093
1094/* Process a symbol file, as either the main file or as a dynamically
1095 loaded file.
1096
5417f6dc 1097 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1098 A new reference is acquired by this function.
7904e09f 1099
7eedccfa
PP
1100 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1101 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1102
1103 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1104 syms_from_objfile, above.
1105 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1106
63524580
JK
1107 PARENT is the original objfile if ABFD is a separate debug info file.
1108 Otherwise PARENT is NULL.
1109
c906108c 1110 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1111 Upon failure, jumps back to command level (never returns). */
7eedccfa 1112
7904e09f 1113static struct objfile *
7eedccfa
PP
1114symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1115 int add_flags,
7904e09f
JB
1116 struct section_addr_info *addrs,
1117 struct section_offsets *offsets,
1118 int num_offsets,
63524580 1119 int flags, struct objfile *parent)
c906108c
SS
1120{
1121 struct objfile *objfile;
5417f6dc 1122 const char *name = bfd_get_filename (abfd);
7eedccfa 1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1124 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1125 const int should_print = ((from_tty || info_verbose)
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1128
9291a0cd 1129 if (readnow_symbol_files)
b11896a5
TT
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
9291a0cd 1134
5417f6dc
RM
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
c906108c
SS
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1139 && mainline
c906108c 1140 && from_tty
9e2f0ad4 1141 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1142 error (_("Not confirmed."));
c906108c 1143
0838fb57 1144 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1145
63524580
JK
1146 if (parent)
1147 add_separate_debug_objfile (objfile, parent);
1148
78a4a9b9
AC
1149 /* We either created a new mapped symbol table, mapped an existing
1150 symbol table file which has not had initial symbol reading
c378eb4e 1151 performed, or need to read an unmapped symbol table. */
b11896a5 1152 if (should_print)
c906108c 1153 {
769d7dc4
AC
1154 if (deprecated_pre_add_symbol_hook)
1155 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1156 else
c906108c 1157 {
55333a84
DE
1158 printf_unfiltered (_("Reading symbols from %s..."), name);
1159 wrap_here ("");
1160 gdb_flush (gdb_stdout);
c906108c 1161 }
c906108c 1162 }
78a4a9b9 1163 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1164 add_flags);
c906108c
SS
1165
1166 /* We now have at least a partial symbol table. Check to see if the
1167 user requested that all symbols be read on initial access via either
1168 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1169 all partial symbol tables for this objfile if so. */
c906108c 1170
9291a0cd 1171 if ((flags & OBJF_READNOW))
c906108c 1172 {
b11896a5 1173 if (should_print)
c906108c 1174 {
a3f17187 1175 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1176 wrap_here ("");
1177 gdb_flush (gdb_stdout);
1178 }
1179
ccefe4c4
TT
1180 if (objfile->sf)
1181 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1182 }
1183
b11896a5 1184 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1185 {
1186 wrap_here ("");
55333a84 1187 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1188 wrap_here ("");
1189 }
1190
b11896a5 1191 if (should_print)
c906108c 1192 {
769d7dc4
AC
1193 if (deprecated_post_add_symbol_hook)
1194 deprecated_post_add_symbol_hook ();
c906108c 1195 else
55333a84 1196 printf_unfiltered (_("done.\n"));
c906108c
SS
1197 }
1198
481d0f41
JB
1199 /* We print some messages regardless of whether 'from_tty ||
1200 info_verbose' is true, so make sure they go out at the right
1201 time. */
1202 gdb_flush (gdb_stdout);
1203
109f874e 1204 if (objfile->sf == NULL)
8caee43b
PP
1205 {
1206 observer_notify_new_objfile (objfile);
c378eb4e 1207 return objfile; /* No symbols. */
8caee43b 1208 }
109f874e 1209
7eedccfa 1210 new_symfile_objfile (objfile, add_flags);
c906108c 1211
06d3b283 1212 observer_notify_new_objfile (objfile);
c906108c 1213
ce7d4522 1214 bfd_cache_close_all ();
c906108c
SS
1215 return (objfile);
1216}
1217
9cce227f
TG
1218/* Add BFD as a separate debug file for OBJFILE. */
1219
1220void
1221symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1222{
15d123c9 1223 struct objfile *new_objfile;
089b4803
TG
1224 struct section_addr_info *sap;
1225 struct cleanup *my_cleanup;
1226
1227 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1228 because sections of BFD may not match sections of OBJFILE and because
1229 vma may have been modified by tools such as prelink. */
1230 sap = build_section_addr_info_from_objfile (objfile);
1231 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1232
15d123c9 1233 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1234 (bfd, symfile_flags,
089b4803 1235 sap, NULL, 0,
9cce227f 1236 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1237 | OBJF_USERLOADED),
1238 objfile);
089b4803
TG
1239
1240 do_cleanups (my_cleanup);
9cce227f 1241}
7904e09f 1242
eb4556d7
JB
1243/* Process the symbol file ABFD, as either the main file or as a
1244 dynamically loaded file.
1245
1246 See symbol_file_add_with_addrs_or_offsets's comments for
1247 details. */
1248struct objfile *
7eedccfa 1249symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1250 struct section_addr_info *addrs,
63524580 1251 int flags, struct objfile *parent)
eb4556d7 1252{
7eedccfa 1253 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1254 flags, parent);
eb4556d7
JB
1255}
1256
1257
7904e09f
JB
1258/* Process a symbol file, as either the main file or as a dynamically
1259 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1260 for details. */
1261struct objfile *
7eedccfa
PP
1262symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1263 int flags)
7904e09f 1264{
8ac244b4
TT
1265 bfd *bfd = symfile_bfd_open (name);
1266 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1267 struct objfile *objf;
1268
882f447f 1269 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
8ac244b4
TT
1270 do_cleanups (cleanup);
1271 return objf;
7904e09f
JB
1272}
1273
1274
d7db6da9
FN
1275/* Call symbol_file_add() with default values and update whatever is
1276 affected by the loading of a new main().
1277 Used when the file is supplied in the gdb command line
1278 and by some targets with special loading requirements.
1279 The auxiliary function, symbol_file_add_main_1(), has the flags
1280 argument for the switches that can only be specified in the symbol_file
1281 command itself. */
5417f6dc 1282
1adeb98a
FN
1283void
1284symbol_file_add_main (char *args, int from_tty)
1285{
d7db6da9
FN
1286 symbol_file_add_main_1 (args, from_tty, 0);
1287}
1288
1289static void
1290symbol_file_add_main_1 (char *args, int from_tty, int flags)
1291{
7dcd53a0
TT
1292 const int add_flags = (current_inferior ()->symfile_flags
1293 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1294
7eedccfa 1295 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1296
d7db6da9
FN
1297 /* Getting new symbols may change our opinion about
1298 what is frameless. */
1299 reinit_frame_cache ();
1300
7dcd53a0
TT
1301 if ((flags & SYMFILE_NO_READ) == 0)
1302 set_initial_language ();
1adeb98a
FN
1303}
1304
1305void
1306symbol_file_clear (int from_tty)
1307{
1308 if ((have_full_symbols () || have_partial_symbols ())
1309 && from_tty
0430b0d6
AS
1310 && (symfile_objfile
1311 ? !query (_("Discard symbol table from `%s'? "),
1312 symfile_objfile->name)
1313 : !query (_("Discard symbol table? "))))
8a3fe4f8 1314 error (_("Not confirmed."));
1adeb98a 1315
0133421a
JK
1316 /* solib descriptors may have handles to objfiles. Wipe them before their
1317 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1318 no_shared_libraries (NULL, from_tty);
1319
0133421a
JK
1320 free_all_objfiles ();
1321
adb7f338 1322 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1323 if (from_tty)
1324 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1325}
1326
5b5d99cf
JB
1327static char *
1328get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1329{
1330 asection *sect;
1331 bfd_size_type debuglink_size;
1332 unsigned long crc32;
1333 char *contents;
1334 int crc_offset;
5417f6dc 1335
5b5d99cf
JB
1336 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1337
1338 if (sect == NULL)
1339 return NULL;
1340
1341 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1342
5b5d99cf
JB
1343 contents = xmalloc (debuglink_size);
1344 bfd_get_section_contents (objfile->obfd, sect, contents,
1345 (file_ptr)0, (bfd_size_type)debuglink_size);
1346
c378eb4e 1347 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1348 crc_offset = strlen (contents) + 1;
1349 crc_offset = (crc_offset + 3) & ~3;
1350
1351 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1352
5b5d99cf
JB
1353 *crc32_out = crc32;
1354 return contents;
1355}
1356
904578ed
JK
1357/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1358 return 1. Otherwise print a warning and return 0. ABFD seek position is
1359 not preserved. */
1360
1361static int
1362get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1363{
1364 unsigned long file_crc = 0;
1365
1366 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1367 {
1368 warning (_("Problem reading \"%s\" for CRC: %s"),
1369 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1370 return 0;
1371 }
1372
1373 for (;;)
1374 {
1375 gdb_byte buffer[8 * 1024];
1376 bfd_size_type count;
1377
1378 count = bfd_bread (buffer, sizeof (buffer), abfd);
1379 if (count == (bfd_size_type) -1)
1380 {
1381 warning (_("Problem reading \"%s\" for CRC: %s"),
1382 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1383 return 0;
1384 }
1385 if (count == 0)
1386 break;
1387 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1388 }
1389
1390 *file_crc_return = file_crc;
1391 return 1;
1392}
1393
5b5d99cf 1394static int
287ccc17 1395separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1396 struct objfile *parent_objfile)
5b5d99cf 1397{
904578ed
JK
1398 unsigned long file_crc;
1399 int file_crc_p;
f1838a98 1400 bfd *abfd;
32a0e547 1401 struct stat parent_stat, abfd_stat;
904578ed 1402 int verified_as_different;
32a0e547
JK
1403
1404 /* Find a separate debug info file as if symbols would be present in
1405 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1406 section can contain just the basename of PARENT_OBJFILE without any
1407 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1408 the separate debug infos with the same basename can exist. */
32a0e547 1409
0ba1096a 1410 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1411 return 0;
5b5d99cf 1412
08d2cd74 1413 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1414
1415 if (!abfd)
5b5d99cf
JB
1416 return 0;
1417
0ba1096a 1418 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1419
1420 Some operating systems, e.g. Windows, do not provide a meaningful
1421 st_ino; they always set it to zero. (Windows does provide a
1422 meaningful st_dev.) Do not indicate a duplicate library in that
1423 case. While there is no guarantee that a system that provides
1424 meaningful inode numbers will never set st_ino to zero, this is
1425 merely an optimization, so we do not need to worry about false
1426 negatives. */
1427
1428 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1429 && abfd_stat.st_ino != 0
1430 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1431 {
904578ed
JK
1432 if (abfd_stat.st_dev == parent_stat.st_dev
1433 && abfd_stat.st_ino == parent_stat.st_ino)
1434 {
cbb099e8 1435 gdb_bfd_unref (abfd);
904578ed
JK
1436 return 0;
1437 }
1438 verified_as_different = 1;
32a0e547 1439 }
904578ed
JK
1440 else
1441 verified_as_different = 0;
32a0e547 1442
904578ed 1443 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1444
cbb099e8 1445 gdb_bfd_unref (abfd);
5b5d99cf 1446
904578ed
JK
1447 if (!file_crc_p)
1448 return 0;
1449
287ccc17
JK
1450 if (crc != file_crc)
1451 {
904578ed
JK
1452 /* If one (or both) the files are accessed for example the via "remote:"
1453 gdbserver way it does not support the bfd_stat operation. Verify
1454 whether those two files are not the same manually. */
1455
1456 if (!verified_as_different && !parent_objfile->crc32_p)
1457 {
1458 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1459 &parent_objfile->crc32);
1460 if (!parent_objfile->crc32_p)
1461 return 0;
1462 }
1463
0e8aefe7 1464 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1465 warning (_("the debug information found in \"%s\""
1466 " does not match \"%s\" (CRC mismatch).\n"),
1467 name, parent_objfile->name);
1468
287ccc17
JK
1469 return 0;
1470 }
1471
1472 return 1;
5b5d99cf
JB
1473}
1474
aa28a74e 1475char *debug_file_directory = NULL;
920d2a44
AC
1476static void
1477show_debug_file_directory (struct ui_file *file, int from_tty,
1478 struct cmd_list_element *c, const char *value)
1479{
3e43a32a
MS
1480 fprintf_filtered (file,
1481 _("The directory where separate debug "
1482 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1483 value);
1484}
5b5d99cf
JB
1485
1486#if ! defined (DEBUG_SUBDIRECTORY)
1487#define DEBUG_SUBDIRECTORY ".debug"
1488#endif
1489
1db33378
PP
1490/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1491 where the original file resides (may not be the same as
1492 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1493 looking for. Returns the name of the debuginfo, of NULL. */
1494
1495static char *
1496find_separate_debug_file (const char *dir,
1497 const char *canon_dir,
1498 const char *debuglink,
1499 unsigned long crc32, struct objfile *objfile)
9cce227f 1500{
1db33378
PP
1501 char *debugdir;
1502 char *debugfile;
9cce227f 1503 int i;
e4ab2fad
JK
1504 VEC (char_ptr) *debugdir_vec;
1505 struct cleanup *back_to;
1506 int ix;
5b5d99cf 1507
1db33378 1508 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1509 i = strlen (dir);
1db33378
PP
1510 if (canon_dir != NULL && strlen (canon_dir) > i)
1511 i = strlen (canon_dir);
1ffa32ee 1512
25522fae
JK
1513 debugfile = xmalloc (strlen (debug_file_directory) + 1
1514 + i
1515 + strlen (DEBUG_SUBDIRECTORY)
1516 + strlen ("/")
1db33378 1517 + strlen (debuglink)
25522fae 1518 + 1);
5b5d99cf
JB
1519
1520 /* First try in the same directory as the original file. */
1521 strcpy (debugfile, dir);
1db33378 1522 strcat (debugfile, debuglink);
5b5d99cf 1523
32a0e547 1524 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1525 return debugfile;
5417f6dc 1526
5b5d99cf
JB
1527 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1528 strcpy (debugfile, dir);
1529 strcat (debugfile, DEBUG_SUBDIRECTORY);
1530 strcat (debugfile, "/");
1db33378 1531 strcat (debugfile, debuglink);
5b5d99cf 1532
32a0e547 1533 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1534 return debugfile;
5417f6dc 1535
24ddea62 1536 /* Then try in the global debugfile directories.
f888f159 1537
24ddea62
JK
1538 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1539 cause "/..." lookups. */
5417f6dc 1540
e4ab2fad
JK
1541 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1542 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1543
e4ab2fad
JK
1544 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1545 {
1546 strcpy (debugfile, debugdir);
aa28a74e 1547 strcat (debugfile, "/");
24ddea62 1548 strcat (debugfile, dir);
1db33378 1549 strcat (debugfile, debuglink);
aa28a74e 1550
32a0e547 1551 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1552 return debugfile;
24ddea62
JK
1553
1554 /* If the file is in the sysroot, try using its base path in the
1555 global debugfile directory. */
1db33378
PP
1556 if (canon_dir != NULL
1557 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1558 strlen (gdb_sysroot)) == 0
1db33378 1559 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1560 {
e4ab2fad 1561 strcpy (debugfile, debugdir);
1db33378 1562 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1563 strcat (debugfile, "/");
1db33378 1564 strcat (debugfile, debuglink);
24ddea62 1565
32a0e547 1566 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1567 return debugfile;
24ddea62 1568 }
aa28a74e 1569 }
f888f159 1570
e4ab2fad 1571 do_cleanups (back_to);
25522fae 1572 xfree (debugfile);
1db33378
PP
1573 return NULL;
1574}
1575
1576/* Modify PATH to contain only "directory/" part of PATH.
1577 If there were no directory separators in PATH, PATH will be empty
1578 string on return. */
1579
1580static void
1581terminate_after_last_dir_separator (char *path)
1582{
1583 int i;
1584
1585 /* Strip off the final filename part, leaving the directory name,
1586 followed by a slash. The directory can be relative or absolute. */
1587 for (i = strlen(path) - 1; i >= 0; i--)
1588 if (IS_DIR_SEPARATOR (path[i]))
1589 break;
1590
1591 /* If I is -1 then no directory is present there and DIR will be "". */
1592 path[i + 1] = '\0';
1593}
1594
1595/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1596 Returns pathname, or NULL. */
1597
1598char *
1599find_separate_debug_file_by_debuglink (struct objfile *objfile)
1600{
1601 char *debuglink;
1602 char *dir, *canon_dir;
1603 char *debugfile;
1604 unsigned long crc32;
1605 struct cleanup *cleanups;
1606
1607 debuglink = get_debug_link_info (objfile, &crc32);
1608
1609 if (debuglink == NULL)
1610 {
1611 /* There's no separate debug info, hence there's no way we could
1612 load it => no warning. */
1613 return NULL;
1614 }
1615
71bdabee 1616 cleanups = make_cleanup (xfree, debuglink);
1db33378 1617 dir = xstrdup (objfile->name);
71bdabee 1618 make_cleanup (xfree, dir);
1db33378
PP
1619 terminate_after_last_dir_separator (dir);
1620 canon_dir = lrealpath (dir);
1621
1622 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1623 crc32, objfile);
1624 xfree (canon_dir);
1625
1626 if (debugfile == NULL)
1627 {
1628#ifdef HAVE_LSTAT
1629 /* For PR gdb/9538, try again with realpath (if different from the
1630 original). */
1631
1632 struct stat st_buf;
1633
1634 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1635 {
1636 char *symlink_dir;
1637
1638 symlink_dir = lrealpath (objfile->name);
1639 if (symlink_dir != NULL)
1640 {
1641 make_cleanup (xfree, symlink_dir);
1642 terminate_after_last_dir_separator (symlink_dir);
1643 if (strcmp (dir, symlink_dir) != 0)
1644 {
1645 /* Different directory, so try using it. */
1646 debugfile = find_separate_debug_file (symlink_dir,
1647 symlink_dir,
1648 debuglink,
1649 crc32,
1650 objfile);
1651 }
1652 }
1653 }
1654#endif /* HAVE_LSTAT */
1655 }
aa28a74e 1656
1db33378 1657 do_cleanups (cleanups);
25522fae 1658 return debugfile;
5b5d99cf
JB
1659}
1660
1661
c906108c
SS
1662/* This is the symbol-file command. Read the file, analyze its
1663 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1664 the command is rather bizarre:
1665
1666 1. The function buildargv implements various quoting conventions
1667 which are undocumented and have little or nothing in common with
1668 the way things are quoted (or not quoted) elsewhere in GDB.
1669
1670 2. Options are used, which are not generally used in GDB (perhaps
1671 "set mapped on", "set readnow on" would be better)
1672
1673 3. The order of options matters, which is contrary to GNU
c906108c
SS
1674 conventions (because it is confusing and inconvenient). */
1675
1676void
fba45db2 1677symbol_file_command (char *args, int from_tty)
c906108c 1678{
c906108c
SS
1679 dont_repeat ();
1680
1681 if (args == NULL)
1682 {
1adeb98a 1683 symbol_file_clear (from_tty);
c906108c
SS
1684 }
1685 else
1686 {
d1a41061 1687 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1688 int flags = OBJF_USERLOADED;
1689 struct cleanup *cleanups;
1690 char *name = NULL;
1691
7a292a7a 1692 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1693 while (*argv != NULL)
1694 {
78a4a9b9
AC
1695 if (strcmp (*argv, "-readnow") == 0)
1696 flags |= OBJF_READNOW;
1697 else if (**argv == '-')
8a3fe4f8 1698 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1699 else
1700 {
cb2f3a29 1701 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1702 name = *argv;
78a4a9b9 1703 }
cb2f3a29 1704
c906108c
SS
1705 argv++;
1706 }
1707
1708 if (name == NULL)
cb2f3a29
MK
1709 error (_("no symbol file name was specified"));
1710
c906108c
SS
1711 do_cleanups (cleanups);
1712 }
1713}
1714
1715/* Set the initial language.
1716
cb2f3a29
MK
1717 FIXME: A better solution would be to record the language in the
1718 psymtab when reading partial symbols, and then use it (if known) to
1719 set the language. This would be a win for formats that encode the
1720 language in an easily discoverable place, such as DWARF. For
1721 stabs, we can jump through hoops looking for specially named
1722 symbols or try to intuit the language from the specific type of
1723 stabs we find, but we can't do that until later when we read in
1724 full symbols. */
c906108c 1725
8b60591b 1726void
fba45db2 1727set_initial_language (void)
c906108c 1728{
c5aa993b 1729 enum language lang = language_unknown;
c906108c 1730
01f8c46d
JK
1731 if (language_of_main != language_unknown)
1732 lang = language_of_main;
1733 else
1734 {
1735 const char *filename;
f888f159 1736
01f8c46d
JK
1737 filename = find_main_filename ();
1738 if (filename != NULL)
1739 lang = deduce_language_from_filename (filename);
1740 }
cb2f3a29 1741
ccefe4c4
TT
1742 if (lang == language_unknown)
1743 {
1744 /* Make C the default language */
1745 lang = language_c;
c906108c 1746 }
ccefe4c4
TT
1747
1748 set_language (lang);
1749 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1750}
1751
874f5765 1752/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1753 open it normally. Returns a new reference to the BFD. On error,
1754 returns NULL with the BFD error set. */
874f5765
TG
1755
1756bfd *
08d2cd74 1757gdb_bfd_open_maybe_remote (const char *name)
874f5765 1758{
520b0001
TT
1759 bfd *result;
1760
874f5765 1761 if (remote_filename_p (name))
520b0001 1762 result = remote_bfd_open (name, gnutarget);
874f5765 1763 else
1c00ec6b 1764 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1765
520b0001 1766 return result;
874f5765
TG
1767}
1768
1769
cb2f3a29
MK
1770/* Open the file specified by NAME and hand it off to BFD for
1771 preliminary analysis. Return a newly initialized bfd *, which
1772 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1773 absolute). In case of trouble, error() is called. */
c906108c
SS
1774
1775bfd *
fba45db2 1776symfile_bfd_open (char *name)
c906108c
SS
1777{
1778 bfd *sym_bfd;
1779 int desc;
1780 char *absolute_name;
1781
f1838a98
UW
1782 if (remote_filename_p (name))
1783 {
520b0001 1784 sym_bfd = remote_bfd_open (name, gnutarget);
f1838a98 1785 if (!sym_bfd)
a4453b7e
TT
1786 error (_("`%s': can't open to read symbols: %s."), name,
1787 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1788
1789 if (!bfd_check_format (sym_bfd, bfd_object))
1790 {
f9a062ff 1791 make_cleanup_bfd_unref (sym_bfd);
f1838a98
UW
1792 error (_("`%s': can't read symbols: %s."), name,
1793 bfd_errmsg (bfd_get_error ()));
1794 }
1795
1796 return sym_bfd;
1797 }
1798
cb2f3a29 1799 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1800
1801 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1802 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1803 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1804#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1805 if (desc < 0)
1806 {
1807 char *exename = alloca (strlen (name) + 5);
433759f7 1808
c906108c 1809 strcat (strcpy (exename, name), ".exe");
014d698b 1810 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1811 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1812 }
1813#endif
1814 if (desc < 0)
1815 {
b8c9b27d 1816 make_cleanup (xfree, name);
c906108c
SS
1817 perror_with_name (name);
1818 }
cb2f3a29 1819
cb2f3a29
MK
1820 xfree (name);
1821 name = absolute_name;
a4453b7e 1822 make_cleanup (xfree, name);
c906108c 1823
1c00ec6b 1824 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c
SS
1825 if (!sym_bfd)
1826 {
b8c9b27d 1827 make_cleanup (xfree, name);
f1838a98 1828 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1829 bfd_errmsg (bfd_get_error ()));
1830 }
549c1eea 1831 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1832
1833 if (!bfd_check_format (sym_bfd, bfd_object))
1834 {
f9a062ff 1835 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1836 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1837 bfd_errmsg (bfd_get_error ()));
1838 }
cb2f3a29
MK
1839
1840 return sym_bfd;
c906108c
SS
1841}
1842
cb2f3a29
MK
1843/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1844 the section was not found. */
1845
0e931cf0
JB
1846int
1847get_section_index (struct objfile *objfile, char *section_name)
1848{
1849 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1850
0e931cf0
JB
1851 if (sect)
1852 return sect->index;
1853 else
1854 return -1;
1855}
1856
cb2f3a29
MK
1857/* Link SF into the global symtab_fns list. Called on startup by the
1858 _initialize routine in each object file format reader, to register
b021a221 1859 information about each format the reader is prepared to handle. */
c906108c
SS
1860
1861void
00b5771c 1862add_symtab_fns (const struct sym_fns *sf)
c906108c 1863{
00b5771c 1864 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1865}
1866
cb2f3a29
MK
1867/* Initialize OBJFILE to read symbols from its associated BFD. It
1868 either returns or calls error(). The result is an initialized
1869 struct sym_fns in the objfile structure, that contains cached
1870 information about the symbol file. */
c906108c 1871
00b5771c 1872static const struct sym_fns *
31d99776 1873find_sym_fns (bfd *abfd)
c906108c 1874{
00b5771c 1875 const struct sym_fns *sf;
31d99776 1876 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1877 int i;
c906108c 1878
75245b24
MS
1879 if (our_flavour == bfd_target_srec_flavour
1880 || our_flavour == bfd_target_ihex_flavour
1881 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1882 return NULL; /* No symbols. */
75245b24 1883
00b5771c 1884 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1885 if (our_flavour == sf->sym_flavour)
1886 return sf;
cb2f3a29 1887
8a3fe4f8 1888 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1889 bfd_get_target (abfd));
c906108c
SS
1890}
1891\f
cb2f3a29 1892
c906108c
SS
1893/* This function runs the load command of our current target. */
1894
1895static void
fba45db2 1896load_command (char *arg, int from_tty)
c906108c 1897{
e5cc9f32
JB
1898 dont_repeat ();
1899
4487aabf
PA
1900 /* The user might be reloading because the binary has changed. Take
1901 this opportunity to check. */
1902 reopen_exec_file ();
1903 reread_symbols ();
1904
c906108c 1905 if (arg == NULL)
1986bccd
AS
1906 {
1907 char *parg;
1908 int count = 0;
1909
1910 parg = arg = get_exec_file (1);
1911
1912 /* Count how many \ " ' tab space there are in the name. */
1913 while ((parg = strpbrk (parg, "\\\"'\t ")))
1914 {
1915 parg++;
1916 count++;
1917 }
1918
1919 if (count)
1920 {
1921 /* We need to quote this string so buildargv can pull it apart. */
1922 char *temp = xmalloc (strlen (arg) + count + 1 );
1923 char *ptemp = temp;
1924 char *prev;
1925
1926 make_cleanup (xfree, temp);
1927
1928 prev = parg = arg;
1929 while ((parg = strpbrk (parg, "\\\"'\t ")))
1930 {
1931 strncpy (ptemp, prev, parg - prev);
1932 ptemp += parg - prev;
1933 prev = parg++;
1934 *ptemp++ = '\\';
1935 }
1936 strcpy (ptemp, prev);
1937
1938 arg = temp;
1939 }
1940 }
1941
c906108c 1942 target_load (arg, from_tty);
2889e661
JB
1943
1944 /* After re-loading the executable, we don't really know which
1945 overlays are mapped any more. */
1946 overlay_cache_invalid = 1;
c906108c
SS
1947}
1948
1949/* This version of "load" should be usable for any target. Currently
1950 it is just used for remote targets, not inftarg.c or core files,
1951 on the theory that only in that case is it useful.
1952
1953 Avoiding xmodem and the like seems like a win (a) because we don't have
1954 to worry about finding it, and (b) On VMS, fork() is very slow and so
1955 we don't want to run a subprocess. On the other hand, I'm not sure how
1956 performance compares. */
917317f4 1957
917317f4
JM
1958static int validate_download = 0;
1959
e4f9b4d5
MS
1960/* Callback service function for generic_load (bfd_map_over_sections). */
1961
1962static void
1963add_section_size_callback (bfd *abfd, asection *asec, void *data)
1964{
1965 bfd_size_type *sum = data;
1966
2c500098 1967 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1968}
1969
1970/* Opaque data for load_section_callback. */
1971struct load_section_data {
1972 unsigned long load_offset;
a76d924d
DJ
1973 struct load_progress_data *progress_data;
1974 VEC(memory_write_request_s) *requests;
1975};
1976
1977/* Opaque data for load_progress. */
1978struct load_progress_data {
1979 /* Cumulative data. */
e4f9b4d5
MS
1980 unsigned long write_count;
1981 unsigned long data_count;
1982 bfd_size_type total_size;
a76d924d
DJ
1983};
1984
1985/* Opaque data for load_progress for a single section. */
1986struct load_progress_section_data {
1987 struct load_progress_data *cumulative;
cf7a04e8 1988
a76d924d 1989 /* Per-section data. */
cf7a04e8
DJ
1990 const char *section_name;
1991 ULONGEST section_sent;
1992 ULONGEST section_size;
1993 CORE_ADDR lma;
1994 gdb_byte *buffer;
e4f9b4d5
MS
1995};
1996
a76d924d 1997/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1998
1999static void
2000load_progress (ULONGEST bytes, void *untyped_arg)
2001{
a76d924d
DJ
2002 struct load_progress_section_data *args = untyped_arg;
2003 struct load_progress_data *totals;
2004
2005 if (args == NULL)
2006 /* Writing padding data. No easy way to get at the cumulative
2007 stats, so just ignore this. */
2008 return;
2009
2010 totals = args->cumulative;
2011
2012 if (bytes == 0 && args->section_sent == 0)
2013 {
2014 /* The write is just starting. Let the user know we've started
2015 this section. */
79a45e25 2016 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 2017 args->section_name, hex_string (args->section_size),
f5656ead 2018 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
2019 return;
2020 }
cf7a04e8
DJ
2021
2022 if (validate_download)
2023 {
2024 /* Broken memories and broken monitors manifest themselves here
2025 when bring new computers to life. This doubles already slow
2026 downloads. */
2027 /* NOTE: cagney/1999-10-18: A more efficient implementation
2028 might add a verify_memory() method to the target vector and
2029 then use that. remote.c could implement that method using
2030 the ``qCRC'' packet. */
2031 gdb_byte *check = xmalloc (bytes);
2032 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2033
2034 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 2035 error (_("Download verify read failed at %s"),
f5656ead 2036 paddress (target_gdbarch (), args->lma));
cf7a04e8 2037 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 2038 error (_("Download verify compare failed at %s"),
f5656ead 2039 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
2040 do_cleanups (verify_cleanups);
2041 }
a76d924d 2042 totals->data_count += bytes;
cf7a04e8
DJ
2043 args->lma += bytes;
2044 args->buffer += bytes;
a76d924d 2045 totals->write_count += 1;
cf7a04e8 2046 args->section_sent += bytes;
522002f9 2047 if (check_quit_flag ()
cf7a04e8
DJ
2048 || (deprecated_ui_load_progress_hook != NULL
2049 && deprecated_ui_load_progress_hook (args->section_name,
2050 args->section_sent)))
2051 error (_("Canceled the download"));
2052
2053 if (deprecated_show_load_progress != NULL)
2054 deprecated_show_load_progress (args->section_name,
2055 args->section_sent,
2056 args->section_size,
a76d924d
DJ
2057 totals->data_count,
2058 totals->total_size);
cf7a04e8
DJ
2059}
2060
e4f9b4d5
MS
2061/* Callback service function for generic_load (bfd_map_over_sections). */
2062
2063static void
2064load_section_callback (bfd *abfd, asection *asec, void *data)
2065{
a76d924d 2066 struct memory_write_request *new_request;
e4f9b4d5 2067 struct load_section_data *args = data;
a76d924d 2068 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2069 bfd_size_type size = bfd_get_section_size (asec);
2070 gdb_byte *buffer;
cf7a04e8 2071 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2072
cf7a04e8
DJ
2073 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2074 return;
e4f9b4d5 2075
cf7a04e8
DJ
2076 if (size == 0)
2077 return;
e4f9b4d5 2078
a76d924d
DJ
2079 new_request = VEC_safe_push (memory_write_request_s,
2080 args->requests, NULL);
2081 memset (new_request, 0, sizeof (struct memory_write_request));
2082 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2083 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2084 new_request->end = new_request->begin + size; /* FIXME Should size
2085 be in instead? */
a76d924d
DJ
2086 new_request->data = xmalloc (size);
2087 new_request->baton = section_data;
cf7a04e8 2088
a76d924d 2089 buffer = new_request->data;
cf7a04e8 2090
a76d924d
DJ
2091 section_data->cumulative = args->progress_data;
2092 section_data->section_name = sect_name;
2093 section_data->section_size = size;
2094 section_data->lma = new_request->begin;
2095 section_data->buffer = buffer;
cf7a04e8
DJ
2096
2097 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2098}
2099
2100/* Clean up an entire memory request vector, including load
2101 data and progress records. */
cf7a04e8 2102
a76d924d
DJ
2103static void
2104clear_memory_write_data (void *arg)
2105{
2106 VEC(memory_write_request_s) **vec_p = arg;
2107 VEC(memory_write_request_s) *vec = *vec_p;
2108 int i;
2109 struct memory_write_request *mr;
cf7a04e8 2110
a76d924d
DJ
2111 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2112 {
2113 xfree (mr->data);
2114 xfree (mr->baton);
2115 }
2116 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2117}
2118
c906108c 2119void
917317f4 2120generic_load (char *args, int from_tty)
c906108c 2121{
c906108c 2122 bfd *loadfile_bfd;
2b71414d 2123 struct timeval start_time, end_time;
917317f4 2124 char *filename;
1986bccd 2125 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2126 struct load_section_data cbdata;
a76d924d 2127 struct load_progress_data total_progress;
79a45e25 2128 struct ui_out *uiout = current_uiout;
a76d924d 2129
e4f9b4d5 2130 CORE_ADDR entry;
1986bccd 2131 char **argv;
e4f9b4d5 2132
a76d924d
DJ
2133 memset (&cbdata, 0, sizeof (cbdata));
2134 memset (&total_progress, 0, sizeof (total_progress));
2135 cbdata.progress_data = &total_progress;
2136
2137 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2138
d1a41061
PP
2139 if (args == NULL)
2140 error_no_arg (_("file to load"));
1986bccd 2141
d1a41061 2142 argv = gdb_buildargv (args);
1986bccd
AS
2143 make_cleanup_freeargv (argv);
2144
2145 filename = tilde_expand (argv[0]);
2146 make_cleanup (xfree, filename);
2147
2148 if (argv[1] != NULL)
917317f4
JM
2149 {
2150 char *endptr;
ba5f2f8a 2151
1986bccd
AS
2152 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2153
2154 /* If the last word was not a valid number then
2155 treat it as a file name with spaces in. */
2156 if (argv[1] == endptr)
2157 error (_("Invalid download offset:%s."), argv[1]);
2158
2159 if (argv[2] != NULL)
2160 error (_("Too many parameters."));
917317f4 2161 }
c906108c 2162
c378eb4e 2163 /* Open the file for loading. */
1c00ec6b 2164 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2165 if (loadfile_bfd == NULL)
2166 {
2167 perror_with_name (filename);
2168 return;
2169 }
917317f4 2170
f9a062ff 2171 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2172
c5aa993b 2173 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2174 {
8a3fe4f8 2175 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2176 bfd_errmsg (bfd_get_error ()));
2177 }
c5aa993b 2178
5417f6dc 2179 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2180 (void *) &total_progress.total_size);
2181
2182 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2183
2b71414d 2184 gettimeofday (&start_time, NULL);
c906108c 2185
a76d924d
DJ
2186 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2187 load_progress) != 0)
2188 error (_("Load failed"));
c906108c 2189
2b71414d 2190 gettimeofday (&end_time, NULL);
ba5f2f8a 2191
e4f9b4d5 2192 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2193 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2194 ui_out_text (uiout, "Start address ");
f5656ead 2195 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2196 ui_out_text (uiout, ", load size ");
a76d924d 2197 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2198 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2199 /* We were doing this in remote-mips.c, I suspect it is right
2200 for other targets too. */
fb14de7b 2201 regcache_write_pc (get_current_regcache (), entry);
c906108c 2202
38963c97
DJ
2203 /* Reset breakpoints, now that we have changed the load image. For
2204 instance, breakpoints may have been set (or reset, by
2205 post_create_inferior) while connected to the target but before we
2206 loaded the program. In that case, the prologue analyzer could
2207 have read instructions from the target to find the right
2208 breakpoint locations. Loading has changed the contents of that
2209 memory. */
2210
2211 breakpoint_re_set ();
2212
7ca9f392
AC
2213 /* FIXME: are we supposed to call symbol_file_add or not? According
2214 to a comment from remote-mips.c (where a call to symbol_file_add
2215 was commented out), making the call confuses GDB if more than one
2216 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2217 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2218
a76d924d
DJ
2219 print_transfer_performance (gdb_stdout, total_progress.data_count,
2220 total_progress.write_count,
2221 &start_time, &end_time);
c906108c
SS
2222
2223 do_cleanups (old_cleanups);
2224}
2225
c378eb4e 2226/* Report how fast the transfer went. */
c906108c 2227
917317f4 2228void
d9fcf2fb 2229print_transfer_performance (struct ui_file *stream,
917317f4
JM
2230 unsigned long data_count,
2231 unsigned long write_count,
2b71414d
DJ
2232 const struct timeval *start_time,
2233 const struct timeval *end_time)
917317f4 2234{
9f43d28c 2235 ULONGEST time_count;
79a45e25 2236 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2237
2238 /* Compute the elapsed time in milliseconds, as a tradeoff between
2239 accuracy and overflow. */
2240 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2241 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2242
8b93c638
JM
2243 ui_out_text (uiout, "Transfer rate: ");
2244 if (time_count > 0)
2245 {
9f43d28c
DJ
2246 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2247
2248 if (ui_out_is_mi_like_p (uiout))
2249 {
2250 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2251 ui_out_text (uiout, " bits/sec");
2252 }
2253 else if (rate < 1024)
2254 {
2255 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2256 ui_out_text (uiout, " bytes/sec");
2257 }
2258 else
2259 {
2260 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2261 ui_out_text (uiout, " KB/sec");
2262 }
8b93c638
JM
2263 }
2264 else
2265 {
ba5f2f8a 2266 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2267 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2268 }
2269 if (write_count > 0)
2270 {
2271 ui_out_text (uiout, ", ");
ba5f2f8a 2272 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2273 ui_out_text (uiout, " bytes/write");
2274 }
2275 ui_out_text (uiout, ".\n");
c906108c
SS
2276}
2277
2278/* This function allows the addition of incrementally linked object files.
2279 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2280/* Note: ezannoni 2000-04-13 This function/command used to have a
2281 special case syntax for the rombug target (Rombug is the boot
2282 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2283 rombug case, the user doesn't need to supply a text address,
2284 instead a call to target_link() (in target.c) would supply the
c378eb4e 2285 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2286
c906108c 2287static void
fba45db2 2288add_symbol_file_command (char *args, int from_tty)
c906108c 2289{
5af949e3 2290 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2291 char *filename = NULL;
2df3850c 2292 int flags = OBJF_USERLOADED;
c906108c 2293 char *arg;
db162d44 2294 int section_index = 0;
2acceee2
JM
2295 int argcnt = 0;
2296 int sec_num = 0;
2297 int i;
db162d44
EZ
2298 int expecting_sec_name = 0;
2299 int expecting_sec_addr = 0;
5b96932b 2300 char **argv;
db162d44 2301
a39a16c4 2302 struct sect_opt
2acceee2 2303 {
2acceee2
JM
2304 char *name;
2305 char *value;
a39a16c4 2306 };
db162d44 2307
a39a16c4
MM
2308 struct section_addr_info *section_addrs;
2309 struct sect_opt *sect_opts = NULL;
2310 size_t num_sect_opts = 0;
3017564a 2311 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2312
a39a16c4 2313 num_sect_opts = 16;
5417f6dc 2314 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2315 * sizeof (struct sect_opt));
2316
c906108c
SS
2317 dont_repeat ();
2318
2319 if (args == NULL)
8a3fe4f8 2320 error (_("add-symbol-file takes a file name and an address"));
c906108c 2321
d1a41061 2322 argv = gdb_buildargv (args);
5b96932b 2323 make_cleanup_freeargv (argv);
db162d44 2324
5b96932b
AS
2325 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2326 {
c378eb4e 2327 /* Process the argument. */
db162d44 2328 if (argcnt == 0)
c906108c 2329 {
c378eb4e 2330 /* The first argument is the file name. */
db162d44 2331 filename = tilde_expand (arg);
3017564a 2332 make_cleanup (xfree, filename);
c906108c 2333 }
db162d44 2334 else
7a78ae4e
ND
2335 if (argcnt == 1)
2336 {
2337 /* The second argument is always the text address at which
c378eb4e 2338 to load the program. */
7a78ae4e
ND
2339 sect_opts[section_index].name = ".text";
2340 sect_opts[section_index].value = arg;
f414f22f 2341 if (++section_index >= num_sect_opts)
a39a16c4
MM
2342 {
2343 num_sect_opts *= 2;
5417f6dc 2344 sect_opts = ((struct sect_opt *)
a39a16c4 2345 xrealloc (sect_opts,
5417f6dc 2346 num_sect_opts
a39a16c4
MM
2347 * sizeof (struct sect_opt)));
2348 }
7a78ae4e
ND
2349 }
2350 else
2351 {
2352 /* It's an option (starting with '-') or it's an argument
c378eb4e 2353 to an option. */
7a78ae4e
ND
2354
2355 if (*arg == '-')
2356 {
78a4a9b9
AC
2357 if (strcmp (arg, "-readnow") == 0)
2358 flags |= OBJF_READNOW;
2359 else if (strcmp (arg, "-s") == 0)
2360 {
2361 expecting_sec_name = 1;
2362 expecting_sec_addr = 1;
2363 }
7a78ae4e
ND
2364 }
2365 else
2366 {
2367 if (expecting_sec_name)
db162d44 2368 {
7a78ae4e
ND
2369 sect_opts[section_index].name = arg;
2370 expecting_sec_name = 0;
db162d44
EZ
2371 }
2372 else
7a78ae4e
ND
2373 if (expecting_sec_addr)
2374 {
2375 sect_opts[section_index].value = arg;
2376 expecting_sec_addr = 0;
f414f22f 2377 if (++section_index >= num_sect_opts)
a39a16c4
MM
2378 {
2379 num_sect_opts *= 2;
5417f6dc 2380 sect_opts = ((struct sect_opt *)
a39a16c4 2381 xrealloc (sect_opts,
5417f6dc 2382 num_sect_opts
a39a16c4
MM
2383 * sizeof (struct sect_opt)));
2384 }
7a78ae4e
ND
2385 }
2386 else
3e43a32a 2387 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2388 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2389 }
2390 }
c906108c 2391 }
c906108c 2392
927890d0
JB
2393 /* This command takes at least two arguments. The first one is a
2394 filename, and the second is the address where this file has been
2395 loaded. Abort now if this address hasn't been provided by the
2396 user. */
2397 if (section_index < 1)
2398 error (_("The address where %s has been loaded is missing"), filename);
2399
c378eb4e 2400 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2401 a sect_addr_info structure to be passed around to other
2402 functions. We have to split this up into separate print
bb599908 2403 statements because hex_string returns a local static
c378eb4e 2404 string. */
5417f6dc 2405
a3f17187 2406 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2407 section_addrs = alloc_section_addr_info (section_index);
2408 make_cleanup (xfree, section_addrs);
db162d44 2409 for (i = 0; i < section_index; i++)
c906108c 2410 {
db162d44
EZ
2411 CORE_ADDR addr;
2412 char *val = sect_opts[i].value;
2413 char *sec = sect_opts[i].name;
5417f6dc 2414
ae822768 2415 addr = parse_and_eval_address (val);
db162d44 2416
db162d44 2417 /* Here we store the section offsets in the order they were
c378eb4e 2418 entered on the command line. */
a39a16c4
MM
2419 section_addrs->other[sec_num].name = sec;
2420 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2421 printf_unfiltered ("\t%s_addr = %s\n", sec,
2422 paddress (gdbarch, addr));
db162d44
EZ
2423 sec_num++;
2424
5417f6dc 2425 /* The object's sections are initialized when a
db162d44 2426 call is made to build_objfile_section_table (objfile).
5417f6dc 2427 This happens in reread_symbols.
db162d44
EZ
2428 At this point, we don't know what file type this is,
2429 so we can't determine what section names are valid. */
2acceee2 2430 }
db162d44 2431
2acceee2 2432 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2433 error (_("Not confirmed."));
c906108c 2434
7eedccfa
PP
2435 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2436 section_addrs, flags);
c906108c
SS
2437
2438 /* Getting new symbols may change our opinion about what is
2439 frameless. */
2440 reinit_frame_cache ();
db162d44 2441 do_cleanups (my_cleanups);
c906108c
SS
2442}
2443\f
70992597 2444
4ac39b97
JK
2445typedef struct objfile *objfilep;
2446
2447DEF_VEC_P (objfilep);
2448
c906108c
SS
2449/* Re-read symbols if a symbol-file has changed. */
2450void
fba45db2 2451reread_symbols (void)
c906108c
SS
2452{
2453 struct objfile *objfile;
2454 long new_modtime;
c906108c
SS
2455 struct stat new_statbuf;
2456 int res;
4ac39b97
JK
2457 VEC (objfilep) *new_objfiles = NULL;
2458 struct cleanup *all_cleanups;
2459
2460 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2461
2462 /* With the addition of shared libraries, this should be modified,
2463 the load time should be saved in the partial symbol tables, since
2464 different tables may come from different source files. FIXME.
2465 This routine should then walk down each partial symbol table
c378eb4e 2466 and see if the symbol table that it originates from has been changed. */
c906108c 2467
c5aa993b
JM
2468 for (objfile = object_files; objfile; objfile = objfile->next)
2469 {
9cce227f
TG
2470 /* solib-sunos.c creates one objfile with obfd. */
2471 if (objfile->obfd == NULL)
2472 continue;
2473
2474 /* Separate debug objfiles are handled in the main objfile. */
2475 if (objfile->separate_debug_objfile_backlink)
2476 continue;
2477
02aeec7b
JB
2478 /* If this object is from an archive (what you usually create with
2479 `ar', often called a `static library' on most systems, though
2480 a `shared library' on AIX is also an archive), then you should
2481 stat on the archive name, not member name. */
9cce227f
TG
2482 if (objfile->obfd->my_archive)
2483 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2484 else
9cce227f
TG
2485 res = stat (objfile->name, &new_statbuf);
2486 if (res != 0)
2487 {
c378eb4e 2488 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2489 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2490 objfile->name);
2491 continue;
2492 }
2493 new_modtime = new_statbuf.st_mtime;
2494 if (new_modtime != objfile->mtime)
2495 {
2496 struct cleanup *old_cleanups;
2497 struct section_offsets *offsets;
2498 int num_offsets;
2499 char *obfd_filename;
2500
2501 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2502 objfile->name);
2503
2504 /* There are various functions like symbol_file_add,
2505 symfile_bfd_open, syms_from_objfile, etc., which might
2506 appear to do what we want. But they have various other
2507 effects which we *don't* want. So we just do stuff
2508 ourselves. We don't worry about mapped files (for one thing,
2509 any mapped file will be out of date). */
2510
2511 /* If we get an error, blow away this objfile (not sure if
2512 that is the correct response for things like shared
2513 libraries). */
2514 old_cleanups = make_cleanup_free_objfile (objfile);
2515 /* We need to do this whenever any symbols go away. */
2516 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2517
0ba1096a
KT
2518 if (exec_bfd != NULL
2519 && filename_cmp (bfd_get_filename (objfile->obfd),
2520 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2521 {
2522 /* Reload EXEC_BFD without asking anything. */
2523
2524 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2525 }
2526
f6eeced0
JK
2527 /* Keep the calls order approx. the same as in free_objfile. */
2528
2529 /* Free the separate debug objfiles. It will be
2530 automatically recreated by sym_read. */
2531 free_objfile_separate_debug (objfile);
2532
2533 /* Remove any references to this objfile in the global
2534 value lists. */
2535 preserve_values (objfile);
2536
2537 /* Nuke all the state that we will re-read. Much of the following
2538 code which sets things to NULL really is necessary to tell
2539 other parts of GDB that there is nothing currently there.
2540
2541 Try to keep the freeing order compatible with free_objfile. */
2542
2543 if (objfile->sf != NULL)
2544 {
2545 (*objfile->sf->sym_finish) (objfile);
2546 }
2547
2548 clear_objfile_data (objfile);
2549
e1507e95 2550 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2551 {
2552 struct bfd *obfd = objfile->obfd;
2553
2554 obfd_filename = bfd_get_filename (objfile->obfd);
2555 /* Open the new BFD before freeing the old one, so that
2556 the filename remains live. */
08d2cd74 2557 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2558 if (objfile->obfd == NULL)
2559 {
2560 /* We have to make a cleanup and error here, rather
2561 than erroring later, because once we unref OBFD,
2562 OBFD_FILENAME will be freed. */
2563 make_cleanup_bfd_unref (obfd);
2564 error (_("Can't open %s to read symbols."), obfd_filename);
2565 }
a4453b7e
TT
2566 gdb_bfd_unref (obfd);
2567 }
2568
e1507e95 2569 objfile->name = bfd_get_filename (objfile->obfd);
9cce227f
TG
2570 /* bfd_openr sets cacheable to true, which is what we want. */
2571 if (!bfd_check_format (objfile->obfd, bfd_object))
2572 error (_("Can't read symbols from %s: %s."), objfile->name,
2573 bfd_errmsg (bfd_get_error ()));
2574
2575 /* Save the offsets, we will nuke them with the rest of the
2576 objfile_obstack. */
2577 num_offsets = objfile->num_sections;
2578 offsets = ((struct section_offsets *)
2579 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2580 memcpy (offsets, objfile->section_offsets,
2581 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2582
9cce227f
TG
2583 /* FIXME: Do we have to free a whole linked list, or is this
2584 enough? */
2585 if (objfile->global_psymbols.list)
2586 xfree (objfile->global_psymbols.list);
2587 memset (&objfile->global_psymbols, 0,
2588 sizeof (objfile->global_psymbols));
2589 if (objfile->static_psymbols.list)
2590 xfree (objfile->static_psymbols.list);
2591 memset (&objfile->static_psymbols, 0,
2592 sizeof (objfile->static_psymbols));
2593
c378eb4e 2594 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2595 psymbol_bcache_free (objfile->psymbol_cache);
2596 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2597 if (objfile->demangled_names_hash != NULL)
2598 {
2599 htab_delete (objfile->demangled_names_hash);
2600 objfile->demangled_names_hash = NULL;
2601 }
2602 obstack_free (&objfile->objfile_obstack, 0);
2603 objfile->sections = NULL;
2604 objfile->symtabs = NULL;
2605 objfile->psymtabs = NULL;
2606 objfile->psymtabs_addrmap = NULL;
2607 objfile->free_psymtabs = NULL;
34eaf542 2608 objfile->template_symbols = NULL;
9cce227f 2609 objfile->msymbols = NULL;
9cce227f
TG
2610 objfile->minimal_symbol_count = 0;
2611 memset (&objfile->msymbol_hash, 0,
2612 sizeof (objfile->msymbol_hash));
2613 memset (&objfile->msymbol_demangled_hash, 0,
2614 sizeof (objfile->msymbol_demangled_hash));
2615
706e3705
TT
2616 set_objfile_per_bfd (objfile);
2617
9cce227f
TG
2618 /* obstack_init also initializes the obstack so it is
2619 empty. We could use obstack_specify_allocation but
d82ea6a8 2620 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2621 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2622 build_objfile_section_table (objfile);
9cce227f
TG
2623 terminate_minimal_symbol_table (objfile);
2624
2625 /* We use the same section offsets as from last time. I'm not
2626 sure whether that is always correct for shared libraries. */
2627 objfile->section_offsets = (struct section_offsets *)
2628 obstack_alloc (&objfile->objfile_obstack,
2629 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2630 memcpy (objfile->section_offsets, offsets,
2631 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2632 objfile->num_sections = num_offsets;
2633
2634 /* What the hell is sym_new_init for, anyway? The concept of
2635 distinguishing between the main file and additional files
2636 in this way seems rather dubious. */
2637 if (objfile == symfile_objfile)
c906108c 2638 {
9cce227f 2639 (*objfile->sf->sym_new_init) (objfile);
c906108c 2640 }
9cce227f
TG
2641
2642 (*objfile->sf->sym_init) (objfile);
2643 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2644
2645 objfile->flags &= ~OBJF_PSYMTABS_READ;
2646 read_symbols (objfile, 0);
b11896a5 2647
9cce227f 2648 if (!objfile_has_symbols (objfile))
c906108c 2649 {
9cce227f
TG
2650 wrap_here ("");
2651 printf_unfiltered (_("(no debugging symbols found)\n"));
2652 wrap_here ("");
c5aa993b 2653 }
9cce227f
TG
2654
2655 /* We're done reading the symbol file; finish off complaints. */
2656 clear_complaints (&symfile_complaints, 0, 1);
2657
2658 /* Getting new symbols may change our opinion about what is
2659 frameless. */
2660
2661 reinit_frame_cache ();
2662
2663 /* Discard cleanups as symbol reading was successful. */
2664 discard_cleanups (old_cleanups);
2665
2666 /* If the mtime has changed between the time we set new_modtime
2667 and now, we *want* this to be out of date, so don't call stat
2668 again now. */
2669 objfile->mtime = new_modtime;
9cce227f 2670 init_entry_point_info (objfile);
4ac39b97
JK
2671
2672 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2673 }
2674 }
c906108c 2675
4ac39b97 2676 if (new_objfiles)
ea53e89f 2677 {
4ac39b97
JK
2678 int ix;
2679
ff3536bc
UW
2680 /* Notify objfiles that we've modified objfile sections. */
2681 objfiles_changed ();
2682
c1e56572 2683 clear_symtab_users (0);
4ac39b97
JK
2684
2685 /* clear_objfile_data for each objfile was called before freeing it and
2686 observer_notify_new_objfile (NULL) has been called by
2687 clear_symtab_users above. Notify the new files now. */
2688 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2689 observer_notify_new_objfile (objfile);
2690
ea53e89f
JB
2691 /* At least one objfile has changed, so we can consider that
2692 the executable we're debugging has changed too. */
781b42b0 2693 observer_notify_executable_changed ();
ea53e89f 2694 }
4ac39b97
JK
2695
2696 do_cleanups (all_cleanups);
c906108c 2697}
c906108c
SS
2698\f
2699
c5aa993b
JM
2700
2701typedef struct
2702{
2703 char *ext;
c906108c 2704 enum language lang;
c5aa993b
JM
2705}
2706filename_language;
c906108c 2707
c5aa993b 2708static filename_language *filename_language_table;
c906108c
SS
2709static int fl_table_size, fl_table_next;
2710
2711static void
fba45db2 2712add_filename_language (char *ext, enum language lang)
c906108c
SS
2713{
2714 if (fl_table_next >= fl_table_size)
2715 {
2716 fl_table_size += 10;
5417f6dc 2717 filename_language_table =
25bf3106
PM
2718 xrealloc (filename_language_table,
2719 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2720 }
2721
4fcf66da 2722 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2723 filename_language_table[fl_table_next].lang = lang;
2724 fl_table_next++;
2725}
2726
2727static char *ext_args;
920d2a44
AC
2728static void
2729show_ext_args (struct ui_file *file, int from_tty,
2730 struct cmd_list_element *c, const char *value)
2731{
3e43a32a
MS
2732 fprintf_filtered (file,
2733 _("Mapping between filename extension "
2734 "and source language is \"%s\".\n"),
920d2a44
AC
2735 value);
2736}
c906108c
SS
2737
2738static void
26c41df3 2739set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2740{
2741 int i;
2742 char *cp = ext_args;
2743 enum language lang;
2744
c378eb4e 2745 /* First arg is filename extension, starting with '.' */
c906108c 2746 if (*cp != '.')
8a3fe4f8 2747 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2748
2749 /* Find end of first arg. */
c5aa993b 2750 while (*cp && !isspace (*cp))
c906108c
SS
2751 cp++;
2752
2753 if (*cp == '\0')
3e43a32a
MS
2754 error (_("'%s': two arguments required -- "
2755 "filename extension and language"),
c906108c
SS
2756 ext_args);
2757
c378eb4e 2758 /* Null-terminate first arg. */
c5aa993b 2759 *cp++ = '\0';
c906108c
SS
2760
2761 /* Find beginning of second arg, which should be a source language. */
2762 while (*cp && isspace (*cp))
2763 cp++;
2764
2765 if (*cp == '\0')
3e43a32a
MS
2766 error (_("'%s': two arguments required -- "
2767 "filename extension and language"),
c906108c
SS
2768 ext_args);
2769
2770 /* Lookup the language from among those we know. */
2771 lang = language_enum (cp);
2772
2773 /* Now lookup the filename extension: do we already know it? */
2774 for (i = 0; i < fl_table_next; i++)
2775 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2776 break;
2777
2778 if (i >= fl_table_next)
2779 {
c378eb4e 2780 /* New file extension. */
c906108c
SS
2781 add_filename_language (ext_args, lang);
2782 }
2783 else
2784 {
c378eb4e 2785 /* Redefining a previously known filename extension. */
c906108c
SS
2786
2787 /* if (from_tty) */
2788 /* query ("Really make files of type %s '%s'?", */
2789 /* ext_args, language_str (lang)); */
2790
b8c9b27d 2791 xfree (filename_language_table[i].ext);
4fcf66da 2792 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2793 filename_language_table[i].lang = lang;
2794 }
2795}
2796
2797static void
fba45db2 2798info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2799{
2800 int i;
2801
a3f17187 2802 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2803 printf_filtered ("\n\n");
2804 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2805 printf_filtered ("\t%s\t- %s\n",
2806 filename_language_table[i].ext,
c906108c
SS
2807 language_str (filename_language_table[i].lang));
2808}
2809
2810static void
fba45db2 2811init_filename_language_table (void)
c906108c 2812{
c378eb4e 2813 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2814 {
2815 fl_table_size = 20;
2816 fl_table_next = 0;
c5aa993b 2817 filename_language_table =
c906108c 2818 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2819 add_filename_language (".c", language_c);
6aecb9c2 2820 add_filename_language (".d", language_d);
c5aa993b
JM
2821 add_filename_language (".C", language_cplus);
2822 add_filename_language (".cc", language_cplus);
2823 add_filename_language (".cp", language_cplus);
2824 add_filename_language (".cpp", language_cplus);
2825 add_filename_language (".cxx", language_cplus);
2826 add_filename_language (".c++", language_cplus);
2827 add_filename_language (".java", language_java);
c906108c 2828 add_filename_language (".class", language_java);
da2cf7e0 2829 add_filename_language (".m", language_objc);
c5aa993b
JM
2830 add_filename_language (".f", language_fortran);
2831 add_filename_language (".F", language_fortran);
fd5700c7
JK
2832 add_filename_language (".for", language_fortran);
2833 add_filename_language (".FOR", language_fortran);
2834 add_filename_language (".ftn", language_fortran);
2835 add_filename_language (".FTN", language_fortran);
2836 add_filename_language (".fpp", language_fortran);
2837 add_filename_language (".FPP", language_fortran);
2838 add_filename_language (".f90", language_fortran);
2839 add_filename_language (".F90", language_fortran);
2840 add_filename_language (".f95", language_fortran);
2841 add_filename_language (".F95", language_fortran);
2842 add_filename_language (".f03", language_fortran);
2843 add_filename_language (".F03", language_fortran);
2844 add_filename_language (".f08", language_fortran);
2845 add_filename_language (".F08", language_fortran);
c5aa993b 2846 add_filename_language (".s", language_asm);
aa707ed0 2847 add_filename_language (".sx", language_asm);
c5aa993b 2848 add_filename_language (".S", language_asm);
c6fd39cd
PM
2849 add_filename_language (".pas", language_pascal);
2850 add_filename_language (".p", language_pascal);
2851 add_filename_language (".pp", language_pascal);
963a6417
PH
2852 add_filename_language (".adb", language_ada);
2853 add_filename_language (".ads", language_ada);
2854 add_filename_language (".a", language_ada);
2855 add_filename_language (".ada", language_ada);
dde59185 2856 add_filename_language (".dg", language_ada);
c906108c
SS
2857 }
2858}
2859
2860enum language
dd786858 2861deduce_language_from_filename (const char *filename)
c906108c
SS
2862{
2863 int i;
2864 char *cp;
2865
2866 if (filename != NULL)
2867 if ((cp = strrchr (filename, '.')) != NULL)
2868 for (i = 0; i < fl_table_next; i++)
2869 if (strcmp (cp, filename_language_table[i].ext) == 0)
2870 return filename_language_table[i].lang;
2871
2872 return language_unknown;
2873}
2874\f
2875/* allocate_symtab:
2876
2877 Allocate and partly initialize a new symbol table. Return a pointer
2878 to it. error() if no space.
2879
2880 Caller must set these fields:
c5aa993b
JM
2881 LINETABLE(symtab)
2882 symtab->blockvector
2883 symtab->dirname
2884 symtab->free_code
2885 symtab->free_ptr
c906108c
SS
2886 */
2887
2888struct symtab *
72b9f47f 2889allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2890{
52f0bd74 2891 struct symtab *symtab;
c906108c
SS
2892
2893 symtab = (struct symtab *)
4a146b47 2894 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2895 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2896 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2897 objfile->per_bfd->filename_cache);
c5aa993b
JM
2898 symtab->fullname = NULL;
2899 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2900 symtab->debugformat = "unknown";
c906108c 2901
c378eb4e 2902 /* Hook it to the objfile it comes from. */
c906108c 2903
c5aa993b
JM
2904 symtab->objfile = objfile;
2905 symtab->next = objfile->symtabs;
2906 objfile->symtabs = symtab;
c906108c 2907
45cfd468
DE
2908 if (symtab_create_debug)
2909 {
2910 /* Be a bit clever with debugging messages, and don't print objfile
2911 every time, only when it changes. */
2912 static char *last_objfile_name = NULL;
2913
2914 if (last_objfile_name == NULL
2915 || strcmp (last_objfile_name, objfile->name) != 0)
2916 {
2917 xfree (last_objfile_name);
2918 last_objfile_name = xstrdup (objfile->name);
2919 fprintf_unfiltered (gdb_stdlog,
2920 "Creating one or more symtabs for objfile %s ...\n",
2921 last_objfile_name);
2922 }
2923 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2924 "Created symtab %s for module %s.\n",
2925 host_address_to_string (symtab), filename);
45cfd468
DE
2926 }
2927
c906108c
SS
2928 return (symtab);
2929}
c906108c 2930\f
c5aa993b 2931
c906108c 2932/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2933 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2934
2935void
c1e56572 2936clear_symtab_users (int add_flags)
c906108c
SS
2937{
2938 /* Someday, we should do better than this, by only blowing away
2939 the things that really need to be blown. */
c0501be5
DJ
2940
2941 /* Clear the "current" symtab first, because it is no longer valid.
2942 breakpoint_re_set may try to access the current symtab. */
2943 clear_current_source_symtab_and_line ();
2944
c906108c 2945 clear_displays ();
c1e56572
JK
2946 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2947 breakpoint_re_set ();
1bfeeb0f 2948 clear_last_displayed_sal ();
c906108c 2949 clear_pc_function_cache ();
06d3b283 2950 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2951
2952 /* Clear globals which might have pointed into a removed objfile.
2953 FIXME: It's not clear which of these are supposed to persist
2954 between expressions and which ought to be reset each time. */
2955 expression_context_block = NULL;
2956 innermost_block = NULL;
8756216b
DP
2957
2958 /* Varobj may refer to old symbols, perform a cleanup. */
2959 varobj_invalidate ();
2960
c906108c
SS
2961}
2962
74b7792f
AC
2963static void
2964clear_symtab_users_cleanup (void *ignore)
2965{
c1e56572 2966 clear_symtab_users (0);
74b7792f 2967}
c906108c 2968\f
c906108c
SS
2969/* OVERLAYS:
2970 The following code implements an abstraction for debugging overlay sections.
2971
2972 The target model is as follows:
2973 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2974 same VMA, each with its own unique LMA (or load address).
c906108c 2975 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2976 sections, one by one, from the load address into the VMA address.
5417f6dc 2977 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2978 sections should be considered to be mapped from the VMA to the LMA.
2979 This information is used for symbol lookup, and memory read/write.
5417f6dc 2980 For instance, if a section has been mapped then its contents
c5aa993b 2981 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2982
2983 Two levels of debugger support for overlays are available. One is
2984 "manual", in which the debugger relies on the user to tell it which
2985 overlays are currently mapped. This level of support is
2986 implemented entirely in the core debugger, and the information about
2987 whether a section is mapped is kept in the objfile->obj_section table.
2988
2989 The second level of support is "automatic", and is only available if
2990 the target-specific code provides functionality to read the target's
2991 overlay mapping table, and translate its contents for the debugger
2992 (by updating the mapped state information in the obj_section tables).
2993
2994 The interface is as follows:
c5aa993b
JM
2995 User commands:
2996 overlay map <name> -- tell gdb to consider this section mapped
2997 overlay unmap <name> -- tell gdb to consider this section unmapped
2998 overlay list -- list the sections that GDB thinks are mapped
2999 overlay read-target -- get the target's state of what's mapped
3000 overlay off/manual/auto -- set overlay debugging state
3001 Functional interface:
3002 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3003 section, return that section.
5417f6dc 3004 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3005 the pc, either in its VMA or its LMA
714835d5 3006 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3007 section_is_overlay(sect): true if section's VMA != LMA
3008 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3009 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3010 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3011 overlay_mapped_address(...): map an address from section's LMA to VMA
3012 overlay_unmapped_address(...): map an address from section's VMA to LMA
3013 symbol_overlayed_address(...): Return a "current" address for symbol:
3014 either in VMA or LMA depending on whether
c378eb4e 3015 the symbol's section is currently mapped. */
c906108c
SS
3016
3017/* Overlay debugging state: */
3018
d874f1e2 3019enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3020int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3021
c906108c 3022/* Function: section_is_overlay (SECTION)
5417f6dc 3023 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3024 SECTION is loaded at an address different from where it will "run". */
3025
3026int
714835d5 3027section_is_overlay (struct obj_section *section)
c906108c 3028{
714835d5
UW
3029 if (overlay_debugging && section)
3030 {
3031 bfd *abfd = section->objfile->obfd;
3032 asection *bfd_section = section->the_bfd_section;
f888f159 3033
714835d5
UW
3034 if (bfd_section_lma (abfd, bfd_section) != 0
3035 && bfd_section_lma (abfd, bfd_section)
3036 != bfd_section_vma (abfd, bfd_section))
3037 return 1;
3038 }
c906108c
SS
3039
3040 return 0;
3041}
3042
3043/* Function: overlay_invalidate_all (void)
3044 Invalidate the mapped state of all overlay sections (mark it as stale). */
3045
3046static void
fba45db2 3047overlay_invalidate_all (void)
c906108c 3048{
c5aa993b 3049 struct objfile *objfile;
c906108c
SS
3050 struct obj_section *sect;
3051
3052 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3053 if (section_is_overlay (sect))
3054 sect->ovly_mapped = -1;
c906108c
SS
3055}
3056
714835d5 3057/* Function: section_is_mapped (SECTION)
5417f6dc 3058 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3059
3060 Access to the ovly_mapped flag is restricted to this function, so
3061 that we can do automatic update. If the global flag
3062 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3063 overlay_invalidate_all. If the mapped state of the particular
3064 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3065
714835d5
UW
3066int
3067section_is_mapped (struct obj_section *osect)
c906108c 3068{
9216df95
UW
3069 struct gdbarch *gdbarch;
3070
714835d5 3071 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3072 return 0;
3073
c5aa993b 3074 switch (overlay_debugging)
c906108c
SS
3075 {
3076 default:
d874f1e2 3077 case ovly_off:
c5aa993b 3078 return 0; /* overlay debugging off */
d874f1e2 3079 case ovly_auto: /* overlay debugging automatic */
1c772458 3080 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3081 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3082 gdbarch = get_objfile_arch (osect->objfile);
3083 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3084 {
3085 if (overlay_cache_invalid)
3086 {
3087 overlay_invalidate_all ();
3088 overlay_cache_invalid = 0;
3089 }
3090 if (osect->ovly_mapped == -1)
9216df95 3091 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3092 }
3093 /* fall thru to manual case */
d874f1e2 3094 case ovly_on: /* overlay debugging manual */
c906108c
SS
3095 return osect->ovly_mapped == 1;
3096 }
3097}
3098
c906108c
SS
3099/* Function: pc_in_unmapped_range
3100 If PC falls into the lma range of SECTION, return true, else false. */
3101
3102CORE_ADDR
714835d5 3103pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3104{
714835d5
UW
3105 if (section_is_overlay (section))
3106 {
3107 bfd *abfd = section->objfile->obfd;
3108 asection *bfd_section = section->the_bfd_section;
fbd35540 3109
714835d5
UW
3110 /* We assume the LMA is relocated by the same offset as the VMA. */
3111 bfd_vma size = bfd_get_section_size (bfd_section);
3112 CORE_ADDR offset = obj_section_offset (section);
3113
3114 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3115 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3116 return 1;
3117 }
c906108c 3118
c906108c
SS
3119 return 0;
3120}
3121
3122/* Function: pc_in_mapped_range
3123 If PC falls into the vma range of SECTION, return true, else false. */
3124
3125CORE_ADDR
714835d5 3126pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3127{
714835d5
UW
3128 if (section_is_overlay (section))
3129 {
3130 if (obj_section_addr (section) <= pc
3131 && pc < obj_section_endaddr (section))
3132 return 1;
3133 }
c906108c 3134
c906108c
SS
3135 return 0;
3136}
3137
9ec8e6a0
JB
3138
3139/* Return true if the mapped ranges of sections A and B overlap, false
3140 otherwise. */
b9362cc7 3141static int
714835d5 3142sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3143{
714835d5
UW
3144 CORE_ADDR a_start = obj_section_addr (a);
3145 CORE_ADDR a_end = obj_section_endaddr (a);
3146 CORE_ADDR b_start = obj_section_addr (b);
3147 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3148
3149 return (a_start < b_end && b_start < a_end);
3150}
3151
c906108c
SS
3152/* Function: overlay_unmapped_address (PC, SECTION)
3153 Returns the address corresponding to PC in the unmapped (load) range.
3154 May be the same as PC. */
3155
3156CORE_ADDR
714835d5 3157overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3158{
714835d5
UW
3159 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3160 {
3161 bfd *abfd = section->objfile->obfd;
3162 asection *bfd_section = section->the_bfd_section;
fbd35540 3163
714835d5
UW
3164 return pc + bfd_section_lma (abfd, bfd_section)
3165 - bfd_section_vma (abfd, bfd_section);
3166 }
c906108c
SS
3167
3168 return pc;
3169}
3170
3171/* Function: overlay_mapped_address (PC, SECTION)
3172 Returns the address corresponding to PC in the mapped (runtime) range.
3173 May be the same as PC. */
3174
3175CORE_ADDR
714835d5 3176overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3177{
714835d5
UW
3178 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3179 {
3180 bfd *abfd = section->objfile->obfd;
3181 asection *bfd_section = section->the_bfd_section;
fbd35540 3182
714835d5
UW
3183 return pc + bfd_section_vma (abfd, bfd_section)
3184 - bfd_section_lma (abfd, bfd_section);
3185 }
c906108c
SS
3186
3187 return pc;
3188}
3189
3190
5417f6dc 3191/* Function: symbol_overlayed_address
c906108c
SS
3192 Return one of two addresses (relative to the VMA or to the LMA),
3193 depending on whether the section is mapped or not. */
3194
c5aa993b 3195CORE_ADDR
714835d5 3196symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3197{
3198 if (overlay_debugging)
3199 {
c378eb4e 3200 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3201 if (section == 0)
3202 return address;
c378eb4e
MS
3203 /* If the symbol's section is not an overlay, just return its
3204 address. */
c906108c
SS
3205 if (!section_is_overlay (section))
3206 return address;
c378eb4e 3207 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3208 if (section_is_mapped (section))
3209 return address;
3210 /*
3211 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3212 * then return its LOADED address rather than its vma address!!
3213 */
3214 return overlay_unmapped_address (address, section);
3215 }
3216 return address;
3217}
3218
5417f6dc 3219/* Function: find_pc_overlay (PC)
c906108c
SS
3220 Return the best-match overlay section for PC:
3221 If PC matches a mapped overlay section's VMA, return that section.
3222 Else if PC matches an unmapped section's VMA, return that section.
3223 Else if PC matches an unmapped section's LMA, return that section. */
3224
714835d5 3225struct obj_section *
fba45db2 3226find_pc_overlay (CORE_ADDR pc)
c906108c 3227{
c5aa993b 3228 struct objfile *objfile;
c906108c
SS
3229 struct obj_section *osect, *best_match = NULL;
3230
3231 if (overlay_debugging)
3232 ALL_OBJSECTIONS (objfile, osect)
714835d5 3233 if (section_is_overlay (osect))
c5aa993b 3234 {
714835d5 3235 if (pc_in_mapped_range (pc, osect))
c5aa993b 3236 {
714835d5
UW
3237 if (section_is_mapped (osect))
3238 return osect;
c5aa993b
JM
3239 else
3240 best_match = osect;
3241 }
714835d5 3242 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3243 best_match = osect;
3244 }
714835d5 3245 return best_match;
c906108c
SS
3246}
3247
3248/* Function: find_pc_mapped_section (PC)
5417f6dc 3249 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3250 currently marked as MAPPED, return that section. Else return NULL. */
3251
714835d5 3252struct obj_section *
fba45db2 3253find_pc_mapped_section (CORE_ADDR pc)
c906108c 3254{
c5aa993b 3255 struct objfile *objfile;
c906108c
SS
3256 struct obj_section *osect;
3257
3258 if (overlay_debugging)
3259 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3260 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3261 return osect;
c906108c
SS
3262
3263 return NULL;
3264}
3265
3266/* Function: list_overlays_command
c378eb4e 3267 Print a list of mapped sections and their PC ranges. */
c906108c 3268
5d3055ad 3269static void
fba45db2 3270list_overlays_command (char *args, int from_tty)
c906108c 3271{
c5aa993b
JM
3272 int nmapped = 0;
3273 struct objfile *objfile;
c906108c
SS
3274 struct obj_section *osect;
3275
3276 if (overlay_debugging)
3277 ALL_OBJSECTIONS (objfile, osect)
714835d5 3278 if (section_is_mapped (osect))
c5aa993b 3279 {
5af949e3 3280 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3281 const char *name;
3282 bfd_vma lma, vma;
3283 int size;
3284
3285 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3286 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3287 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3288 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3289
3290 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3291 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3292 puts_filtered (" - ");
5af949e3 3293 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3294 printf_filtered (", mapped at ");
5af949e3 3295 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3296 puts_filtered (" - ");
5af949e3 3297 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3298 puts_filtered ("\n");
3299
3300 nmapped++;
3301 }
c906108c 3302 if (nmapped == 0)
a3f17187 3303 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3304}
3305
3306/* Function: map_overlay_command
3307 Mark the named section as mapped (ie. residing at its VMA address). */
3308
5d3055ad 3309static void
fba45db2 3310map_overlay_command (char *args, int from_tty)
c906108c 3311{
c5aa993b
JM
3312 struct objfile *objfile, *objfile2;
3313 struct obj_section *sec, *sec2;
c906108c
SS
3314
3315 if (!overlay_debugging)
3e43a32a
MS
3316 error (_("Overlay debugging not enabled. Use "
3317 "either the 'overlay auto' or\n"
3318 "the 'overlay manual' command."));
c906108c
SS
3319
3320 if (args == 0 || *args == 0)
8a3fe4f8 3321 error (_("Argument required: name of an overlay section"));
c906108c 3322
c378eb4e 3323 /* First, find a section matching the user supplied argument. */
c906108c
SS
3324 ALL_OBJSECTIONS (objfile, sec)
3325 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3326 {
c378eb4e 3327 /* Now, check to see if the section is an overlay. */
714835d5 3328 if (!section_is_overlay (sec))
c5aa993b
JM
3329 continue; /* not an overlay section */
3330
c378eb4e 3331 /* Mark the overlay as "mapped". */
c5aa993b
JM
3332 sec->ovly_mapped = 1;
3333
3334 /* Next, make a pass and unmap any sections that are
3335 overlapped by this new section: */
3336 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3337 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3338 {
3339 if (info_verbose)
a3f17187 3340 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3341 bfd_section_name (objfile->obfd,
3342 sec2->the_bfd_section));
c378eb4e 3343 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3344 }
3345 return;
3346 }
8a3fe4f8 3347 error (_("No overlay section called %s"), args);
c906108c
SS
3348}
3349
3350/* Function: unmap_overlay_command
5417f6dc 3351 Mark the overlay section as unmapped
c906108c
SS
3352 (ie. resident in its LMA address range, rather than the VMA range). */
3353
5d3055ad 3354static void
fba45db2 3355unmap_overlay_command (char *args, int from_tty)
c906108c 3356{
c5aa993b 3357 struct objfile *objfile;
c906108c
SS
3358 struct obj_section *sec;
3359
3360 if (!overlay_debugging)
3e43a32a
MS
3361 error (_("Overlay debugging not enabled. "
3362 "Use either the 'overlay auto' or\n"
3363 "the 'overlay manual' command."));
c906108c
SS
3364
3365 if (args == 0 || *args == 0)
8a3fe4f8 3366 error (_("Argument required: name of an overlay section"));
c906108c 3367
c378eb4e 3368 /* First, find a section matching the user supplied argument. */
c906108c
SS
3369 ALL_OBJSECTIONS (objfile, sec)
3370 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3371 {
3372 if (!sec->ovly_mapped)
8a3fe4f8 3373 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3374 sec->ovly_mapped = 0;
3375 return;
3376 }
8a3fe4f8 3377 error (_("No overlay section called %s"), args);
c906108c
SS
3378}
3379
3380/* Function: overlay_auto_command
3381 A utility command to turn on overlay debugging.
c378eb4e 3382 Possibly this should be done via a set/show command. */
c906108c
SS
3383
3384static void
fba45db2 3385overlay_auto_command (char *args, int from_tty)
c906108c 3386{
d874f1e2 3387 overlay_debugging = ovly_auto;
1900040c 3388 enable_overlay_breakpoints ();
c906108c 3389 if (info_verbose)
a3f17187 3390 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3391}
3392
3393/* Function: overlay_manual_command
3394 A utility command to turn on overlay debugging.
c378eb4e 3395 Possibly this should be done via a set/show command. */
c906108c
SS
3396
3397static void
fba45db2 3398overlay_manual_command (char *args, int from_tty)
c906108c 3399{
d874f1e2 3400 overlay_debugging = ovly_on;
1900040c 3401 disable_overlay_breakpoints ();
c906108c 3402 if (info_verbose)
a3f17187 3403 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3404}
3405
3406/* Function: overlay_off_command
3407 A utility command to turn on overlay debugging.
c378eb4e 3408 Possibly this should be done via a set/show command. */
c906108c
SS
3409
3410static void
fba45db2 3411overlay_off_command (char *args, int from_tty)
c906108c 3412{
d874f1e2 3413 overlay_debugging = ovly_off;
1900040c 3414 disable_overlay_breakpoints ();
c906108c 3415 if (info_verbose)
a3f17187 3416 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3417}
3418
3419static void
fba45db2 3420overlay_load_command (char *args, int from_tty)
c906108c 3421{
e17c207e
UW
3422 struct gdbarch *gdbarch = get_current_arch ();
3423
3424 if (gdbarch_overlay_update_p (gdbarch))
3425 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3426 else
8a3fe4f8 3427 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3428}
3429
3430/* Function: overlay_command
c378eb4e 3431 A place-holder for a mis-typed command. */
c906108c 3432
c378eb4e 3433/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3434static struct cmd_list_element *overlaylist;
c906108c
SS
3435
3436static void
fba45db2 3437overlay_command (char *args, int from_tty)
c906108c 3438{
c5aa993b 3439 printf_unfiltered
c906108c
SS
3440 ("\"overlay\" must be followed by the name of an overlay command.\n");
3441 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3442}
3443
3444
3445/* Target Overlays for the "Simplest" overlay manager:
3446
5417f6dc
RM
3447 This is GDB's default target overlay layer. It works with the
3448 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3449 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3450 so targets that use a different runtime overlay manager can
c906108c
SS
3451 substitute their own overlay_update function and take over the
3452 function pointer.
3453
3454 The overlay_update function pokes around in the target's data structures
3455 to see what overlays are mapped, and updates GDB's overlay mapping with
3456 this information.
3457
3458 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3459 unsigned _novlys; /# number of overlay sections #/
3460 unsigned _ovly_table[_novlys][4] = {
3461 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3462 {..., ..., ..., ...},
3463 }
3464 unsigned _novly_regions; /# number of overlay regions #/
3465 unsigned _ovly_region_table[_novly_regions][3] = {
3466 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3467 {..., ..., ...},
3468 }
c906108c
SS
3469 These functions will attempt to update GDB's mappedness state in the
3470 symbol section table, based on the target's mappedness state.
3471
3472 To do this, we keep a cached copy of the target's _ovly_table, and
3473 attempt to detect when the cached copy is invalidated. The main
3474 entry point is "simple_overlay_update(SECT), which looks up SECT in
3475 the cached table and re-reads only the entry for that section from
c378eb4e 3476 the target (whenever possible). */
c906108c
SS
3477
3478/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3479static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3480static unsigned cache_novlys = 0;
c906108c 3481static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3482enum ovly_index
3483 {
3484 VMA, SIZE, LMA, MAPPED
3485 };
c906108c 3486
c378eb4e 3487/* Throw away the cached copy of _ovly_table. */
c906108c 3488static void
fba45db2 3489simple_free_overlay_table (void)
c906108c
SS
3490{
3491 if (cache_ovly_table)
b8c9b27d 3492 xfree (cache_ovly_table);
c5aa993b 3493 cache_novlys = 0;
c906108c
SS
3494 cache_ovly_table = NULL;
3495 cache_ovly_table_base = 0;
3496}
3497
9216df95 3498/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3499 Convert to host order. int LEN is number of ints. */
c906108c 3500static void
9216df95 3501read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3502 int len, int size, enum bfd_endian byte_order)
c906108c 3503{
c378eb4e 3504 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3505 gdb_byte *buf = alloca (len * size);
c5aa993b 3506 int i;
c906108c 3507
9216df95 3508 read_memory (memaddr, buf, len * size);
c906108c 3509 for (i = 0; i < len; i++)
e17a4113 3510 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3511}
3512
3513/* Find and grab a copy of the target _ovly_table
c378eb4e 3514 (and _novlys, which is needed for the table's size). */
c5aa993b 3515static int
fba45db2 3516simple_read_overlay_table (void)
c906108c 3517{
0d43edd1 3518 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3519 struct gdbarch *gdbarch;
3520 int word_size;
e17a4113 3521 enum bfd_endian byte_order;
c906108c
SS
3522
3523 simple_free_overlay_table ();
9b27852e 3524 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3525 if (! novlys_msym)
c906108c 3526 {
8a3fe4f8 3527 error (_("Error reading inferior's overlay table: "
0d43edd1 3528 "couldn't find `_novlys' variable\n"
8a3fe4f8 3529 "in inferior. Use `overlay manual' mode."));
0d43edd1 3530 return 0;
c906108c 3531 }
0d43edd1 3532
9b27852e 3533 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3534 if (! ovly_table_msym)
3535 {
8a3fe4f8 3536 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3537 "`_ovly_table' array\n"
8a3fe4f8 3538 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3539 return 0;
3540 }
3541
9216df95
UW
3542 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3543 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3544 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3545
e17a4113
UW
3546 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3547 4, byte_order);
0d43edd1
JB
3548 cache_ovly_table
3549 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3550 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3551 read_target_long_array (cache_ovly_table_base,
777ea8f1 3552 (unsigned int *) cache_ovly_table,
e17a4113 3553 cache_novlys * 4, word_size, byte_order);
0d43edd1 3554
c5aa993b 3555 return 1; /* SUCCESS */
c906108c
SS
3556}
3557
5417f6dc 3558/* Function: simple_overlay_update_1
c906108c
SS
3559 A helper function for simple_overlay_update. Assuming a cached copy
3560 of _ovly_table exists, look through it to find an entry whose vma,
3561 lma and size match those of OSECT. Re-read the entry and make sure
3562 it still matches OSECT (else the table may no longer be valid).
3563 Set OSECT's mapped state to match the entry. Return: 1 for
3564 success, 0 for failure. */
3565
3566static int
fba45db2 3567simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3568{
3569 int i, size;
fbd35540
MS
3570 bfd *obfd = osect->objfile->obfd;
3571 asection *bsect = osect->the_bfd_section;
9216df95
UW
3572 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3573 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3575
2c500098 3576 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3577 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3578 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3579 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3580 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3581 {
9216df95
UW
3582 read_target_long_array (cache_ovly_table_base + i * word_size,
3583 (unsigned int *) cache_ovly_table[i],
e17a4113 3584 4, word_size, byte_order);
fbd35540
MS
3585 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3586 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3587 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3588 {
3589 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3590 return 1;
3591 }
c378eb4e 3592 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3593 return 0;
3594 }
3595 return 0;
3596}
3597
3598/* Function: simple_overlay_update
5417f6dc
RM
3599 If OSECT is NULL, then update all sections' mapped state
3600 (after re-reading the entire target _ovly_table).
3601 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3602 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3603 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3604 re-read the entire cache, and go ahead and update all sections. */
3605
1c772458 3606void
fba45db2 3607simple_overlay_update (struct obj_section *osect)
c906108c 3608{
c5aa993b 3609 struct objfile *objfile;
c906108c 3610
c378eb4e 3611 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3612 if (osect)
c378eb4e 3613 /* Have we got a cached copy of the target's overlay table? */
c906108c 3614 if (cache_ovly_table != NULL)
9cc89665
MS
3615 {
3616 /* Does its cached location match what's currently in the
3617 symtab? */
3618 struct minimal_symbol *minsym
3619 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3620
3621 if (minsym == NULL)
3622 error (_("Error reading inferior's overlay table: couldn't "
3623 "find `_ovly_table' array\n"
3624 "in inferior. Use `overlay manual' mode."));
3625
3626 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3627 /* Then go ahead and try to look up this single section in
3628 the cache. */
3629 if (simple_overlay_update_1 (osect))
3630 /* Found it! We're done. */
3631 return;
3632 }
c906108c
SS
3633
3634 /* Cached table no good: need to read the entire table anew.
3635 Or else we want all the sections, in which case it's actually
3636 more efficient to read the whole table in one block anyway. */
3637
0d43edd1
JB
3638 if (! simple_read_overlay_table ())
3639 return;
3640
c378eb4e 3641 /* Now may as well update all sections, even if only one was requested. */
c906108c 3642 ALL_OBJSECTIONS (objfile, osect)
714835d5 3643 if (section_is_overlay (osect))
c5aa993b
JM
3644 {
3645 int i, size;
fbd35540
MS
3646 bfd *obfd = osect->objfile->obfd;
3647 asection *bsect = osect->the_bfd_section;
c5aa993b 3648
2c500098 3649 size = bfd_get_section_size (bsect);
c5aa993b 3650 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3651 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3652 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3653 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3654 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3655 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3656 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3657 }
3658 }
c906108c
SS
3659}
3660
086df311
DJ
3661/* Set the output sections and output offsets for section SECTP in
3662 ABFD. The relocation code in BFD will read these offsets, so we
3663 need to be sure they're initialized. We map each section to itself,
3664 with no offset; this means that SECTP->vma will be honored. */
3665
3666static void
3667symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3668{
3669 sectp->output_section = sectp;
3670 sectp->output_offset = 0;
3671}
3672
ac8035ab
TG
3673/* Default implementation for sym_relocate. */
3674
3675
3676bfd_byte *
3677default_symfile_relocate (struct objfile *objfile, asection *sectp,
3678 bfd_byte *buf)
3679{
3019eac3
DE
3680 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3681 DWO file. */
3682 bfd *abfd = sectp->owner;
ac8035ab
TG
3683
3684 /* We're only interested in sections with relocation
3685 information. */
3686 if ((sectp->flags & SEC_RELOC) == 0)
3687 return NULL;
3688
3689 /* We will handle section offsets properly elsewhere, so relocate as if
3690 all sections begin at 0. */
3691 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3692
3693 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3694}
3695
086df311
DJ
3696/* Relocate the contents of a debug section SECTP in ABFD. The
3697 contents are stored in BUF if it is non-NULL, or returned in a
3698 malloc'd buffer otherwise.
3699
3700 For some platforms and debug info formats, shared libraries contain
3701 relocations against the debug sections (particularly for DWARF-2;
3702 one affected platform is PowerPC GNU/Linux, although it depends on
3703 the version of the linker in use). Also, ELF object files naturally
3704 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3705 the relocations in order to get the locations of symbols correct.
3706 Another example that may require relocation processing, is the
3707 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3708 debug section. */
086df311
DJ
3709
3710bfd_byte *
ac8035ab
TG
3711symfile_relocate_debug_section (struct objfile *objfile,
3712 asection *sectp, bfd_byte *buf)
086df311 3713{
ac8035ab 3714 gdb_assert (objfile->sf->sym_relocate);
086df311 3715
ac8035ab 3716 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3717}
c906108c 3718
31d99776
DJ
3719struct symfile_segment_data *
3720get_symfile_segment_data (bfd *abfd)
3721{
00b5771c 3722 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3723
3724 if (sf == NULL)
3725 return NULL;
3726
3727 return sf->sym_segments (abfd);
3728}
3729
3730void
3731free_symfile_segment_data (struct symfile_segment_data *data)
3732{
3733 xfree (data->segment_bases);
3734 xfree (data->segment_sizes);
3735 xfree (data->segment_info);
3736 xfree (data);
3737}
3738
28c32713
JB
3739
3740/* Given:
3741 - DATA, containing segment addresses from the object file ABFD, and
3742 the mapping from ABFD's sections onto the segments that own them,
3743 and
3744 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3745 segment addresses reported by the target,
3746 store the appropriate offsets for each section in OFFSETS.
3747
3748 If there are fewer entries in SEGMENT_BASES than there are segments
3749 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3750
8d385431
DJ
3751 If there are more entries, then ignore the extra. The target may
3752 not be able to distinguish between an empty data segment and a
3753 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3754int
3755symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3756 struct section_offsets *offsets,
3757 int num_segment_bases,
3758 const CORE_ADDR *segment_bases)
3759{
3760 int i;
3761 asection *sect;
3762
28c32713
JB
3763 /* It doesn't make sense to call this function unless you have some
3764 segment base addresses. */
202b96c1 3765 gdb_assert (num_segment_bases > 0);
28c32713 3766
31d99776
DJ
3767 /* If we do not have segment mappings for the object file, we
3768 can not relocate it by segments. */
3769 gdb_assert (data != NULL);
3770 gdb_assert (data->num_segments > 0);
3771
31d99776
DJ
3772 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3773 {
31d99776
DJ
3774 int which = data->segment_info[i];
3775
28c32713
JB
3776 gdb_assert (0 <= which && which <= data->num_segments);
3777
3778 /* Don't bother computing offsets for sections that aren't
3779 loaded as part of any segment. */
3780 if (! which)
3781 continue;
3782
3783 /* Use the last SEGMENT_BASES entry as the address of any extra
3784 segments mentioned in DATA->segment_info. */
31d99776 3785 if (which > num_segment_bases)
28c32713 3786 which = num_segment_bases;
31d99776 3787
28c32713
JB
3788 offsets->offsets[i] = (segment_bases[which - 1]
3789 - data->segment_bases[which - 1]);
31d99776
DJ
3790 }
3791
3792 return 1;
3793}
3794
3795static void
3796symfile_find_segment_sections (struct objfile *objfile)
3797{
3798 bfd *abfd = objfile->obfd;
3799 int i;
3800 asection *sect;
3801 struct symfile_segment_data *data;
3802
3803 data = get_symfile_segment_data (objfile->obfd);
3804 if (data == NULL)
3805 return;
3806
3807 if (data->num_segments != 1 && data->num_segments != 2)
3808 {
3809 free_symfile_segment_data (data);
3810 return;
3811 }
3812
3813 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3814 {
31d99776
DJ
3815 int which = data->segment_info[i];
3816
3817 if (which == 1)
3818 {
3819 if (objfile->sect_index_text == -1)
3820 objfile->sect_index_text = sect->index;
3821
3822 if (objfile->sect_index_rodata == -1)
3823 objfile->sect_index_rodata = sect->index;
3824 }
3825 else if (which == 2)
3826 {
3827 if (objfile->sect_index_data == -1)
3828 objfile->sect_index_data = sect->index;
3829
3830 if (objfile->sect_index_bss == -1)
3831 objfile->sect_index_bss = sect->index;
3832 }
3833 }
3834
3835 free_symfile_segment_data (data);
3836}
3837
c906108c 3838void
fba45db2 3839_initialize_symfile (void)
c906108c
SS
3840{
3841 struct cmd_list_element *c;
c5aa993b 3842
1a966eab
AC
3843 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3844Load symbol table from executable file FILE.\n\
c906108c 3845The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3846to execute."), &cmdlist);
5ba2abeb 3847 set_cmd_completer (c, filename_completer);
c906108c 3848
1a966eab 3849 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3850Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3851Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3852 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3853The optional arguments are section-name section-address pairs and\n\
3854should be specified if the data and bss segments are not contiguous\n\
1a966eab 3855with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3856 &cmdlist);
5ba2abeb 3857 set_cmd_completer (c, filename_completer);
c906108c 3858
1a966eab
AC
3859 c = add_cmd ("load", class_files, load_command, _("\
3860Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3861for access from GDB.\n\
3862A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3863 set_cmd_completer (c, filename_completer);
c906108c 3864
c5aa993b 3865 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3866 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3867 "overlay ", 0, &cmdlist);
3868
3869 add_com_alias ("ovly", "overlay", class_alias, 1);
3870 add_com_alias ("ov", "overlay", class_alias, 1);
3871
c5aa993b 3872 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3873 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3874
c5aa993b 3875 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3876 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3877
c5aa993b 3878 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3879 _("List mappings of overlay sections."), &overlaylist);
c906108c 3880
c5aa993b 3881 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3882 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3883 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3884 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3885 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3886 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3887 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3888 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3889
3890 /* Filename extension to source language lookup table: */
3891 init_filename_language_table ();
26c41df3
AC
3892 add_setshow_string_noescape_cmd ("extension-language", class_files,
3893 &ext_args, _("\
3894Set mapping between filename extension and source language."), _("\
3895Show mapping between filename extension and source language."), _("\
3896Usage: set extension-language .foo bar"),
3897 set_ext_lang_command,
920d2a44 3898 show_ext_args,
26c41df3 3899 &setlist, &showlist);
c906108c 3900
c5aa993b 3901 add_info ("extensions", info_ext_lang_command,
1bedd215 3902 _("All filename extensions associated with a source language."));
917317f4 3903
525226b5
AC
3904 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3905 &debug_file_directory, _("\
24ddea62
JK
3906Set the directories where separate debug symbols are searched for."), _("\
3907Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3908Separate debug symbols are first searched for in the same\n\
3909directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3910and lastly at the path of the directory of the binary with\n\
24ddea62 3911each global debug-file-directory component prepended."),
525226b5 3912 NULL,
920d2a44 3913 show_debug_file_directory,
525226b5 3914 &setlist, &showlist);
c906108c 3915}
This page took 1.709226 seconds and 4 git commands to generate.