Use gdb::function_view in iterate_over_symtabs & co
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void info_ext_lang_command (char *args, int from_tty);
392a587b 118
31d99776
DJ
119static void symfile_find_segment_sections (struct objfile *objfile);
120
a14ed312 121void _initialize_symfile (void);
c906108c
SS
122
123/* List of all available sym_fns. On gdb startup, each object file reader
124 calls add_symtab_fns() to register information on each format it is
c378eb4e 125 prepared to read. */
c906108c 126
c256e171
DE
127typedef struct
128{
129 /* BFD flavour that we handle. */
130 enum bfd_flavour sym_flavour;
131
132 /* The "vtable" of symbol functions. */
133 const struct sym_fns *sym_fns;
134} registered_sym_fns;
00b5771c 135
c256e171
DE
136DEF_VEC_O (registered_sym_fns);
137
138static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 139
770e7fc7
DE
140/* Values for "set print symbol-loading". */
141
142const char print_symbol_loading_off[] = "off";
143const char print_symbol_loading_brief[] = "brief";
144const char print_symbol_loading_full[] = "full";
145static const char *print_symbol_loading_enums[] =
146{
147 print_symbol_loading_off,
148 print_symbol_loading_brief,
149 print_symbol_loading_full,
150 NULL
151};
152static const char *print_symbol_loading = print_symbol_loading_full;
153
b7209cb4
FF
154/* If non-zero, shared library symbols will be added automatically
155 when the inferior is created, new libraries are loaded, or when
156 attaching to the inferior. This is almost always what users will
157 want to have happen; but for very large programs, the startup time
158 will be excessive, and so if this is a problem, the user can clear
159 this flag and then add the shared library symbols as needed. Note
160 that there is a potential for confusion, since if the shared
c906108c 161 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 162 report all the functions that are actually present. */
c906108c
SS
163
164int auto_solib_add = 1;
c906108c 165\f
c5aa993b 166
770e7fc7
DE
167/* Return non-zero if symbol-loading messages should be printed.
168 FROM_TTY is the standard from_tty argument to gdb commands.
169 If EXEC is non-zero the messages are for the executable.
170 Otherwise, messages are for shared libraries.
171 If FULL is non-zero then the caller is printing a detailed message.
172 E.g., the message includes the shared library name.
173 Otherwise, the caller is printing a brief "summary" message. */
174
175int
176print_symbol_loading_p (int from_tty, int exec, int full)
177{
178 if (!from_tty && !info_verbose)
179 return 0;
180
181 if (exec)
182 {
183 /* We don't check FULL for executables, there are few such
184 messages, therefore brief == full. */
185 return print_symbol_loading != print_symbol_loading_off;
186 }
187 if (full)
188 return print_symbol_loading == print_symbol_loading_full;
189 return print_symbol_loading == print_symbol_loading_brief;
190}
191
0d14a781 192/* True if we are reading a symbol table. */
c906108c
SS
193
194int currently_reading_symtab = 0;
195
196static void
fba45db2 197decrement_reading_symtab (void *dummy)
c906108c
SS
198{
199 currently_reading_symtab--;
2cb9c859 200 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
201}
202
ccefe4c4
TT
203/* Increment currently_reading_symtab and return a cleanup that can be
204 used to decrement it. */
3b7bacac 205
ccefe4c4
TT
206struct cleanup *
207increment_reading_symtab (void)
c906108c 208{
ccefe4c4 209 ++currently_reading_symtab;
2cb9c859 210 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 211 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
212}
213
5417f6dc
RM
214/* Remember the lowest-addressed loadable section we've seen.
215 This function is called via bfd_map_over_sections.
c906108c
SS
216
217 In case of equal vmas, the section with the largest size becomes the
218 lowest-addressed loadable section.
219
220 If the vmas and sizes are equal, the last section is considered the
221 lowest-addressed loadable section. */
222
223void
4efb68b1 224find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 225{
c5aa993b 226 asection **lowest = (asection **) obj;
c906108c 227
eb73e134 228 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
229 return;
230 if (!*lowest)
231 *lowest = sect; /* First loadable section */
232 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
233 *lowest = sect; /* A lower loadable section */
234 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
235 && (bfd_section_size (abfd, (*lowest))
236 <= bfd_section_size (abfd, sect)))
237 *lowest = sect;
238}
239
d76488d8
TT
240/* Create a new section_addr_info, with room for NUM_SECTIONS. The
241 new object's 'num_sections' field is set to 0; it must be updated
242 by the caller. */
a39a16c4
MM
243
244struct section_addr_info *
245alloc_section_addr_info (size_t num_sections)
246{
247 struct section_addr_info *sap;
248 size_t size;
249
250 size = (sizeof (struct section_addr_info)
251 + sizeof (struct other_sections) * (num_sections - 1));
252 sap = (struct section_addr_info *) xmalloc (size);
253 memset (sap, 0, size);
a39a16c4
MM
254
255 return sap;
256}
62557bbc
KB
257
258/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 259 an existing section table. */
62557bbc
KB
260
261extern struct section_addr_info *
0542c86d
PA
262build_section_addr_info_from_section_table (const struct target_section *start,
263 const struct target_section *end)
62557bbc
KB
264{
265 struct section_addr_info *sap;
0542c86d 266 const struct target_section *stp;
62557bbc
KB
267 int oidx;
268
a39a16c4 269 sap = alloc_section_addr_info (end - start);
62557bbc
KB
270
271 for (stp = start, oidx = 0; stp != end; stp++)
272 {
2b2848e2
DE
273 struct bfd_section *asect = stp->the_bfd_section;
274 bfd *abfd = asect->owner;
275
276 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 277 && oidx < end - start)
62557bbc
KB
278 {
279 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
280 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
281 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
282 oidx++;
283 }
284 }
285
d76488d8
TT
286 sap->num_sections = oidx;
287
62557bbc
KB
288 return sap;
289}
290
82ccf5a5 291/* Create a section_addr_info from section offsets in ABFD. */
089b4803 292
82ccf5a5
JK
293static struct section_addr_info *
294build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
295{
296 struct section_addr_info *sap;
297 int i;
298 struct bfd_section *sec;
299
82ccf5a5
JK
300 sap = alloc_section_addr_info (bfd_count_sections (abfd));
301 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
302 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 303 {
82ccf5a5
JK
304 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
305 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 306 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
307 i++;
308 }
d76488d8
TT
309
310 sap->num_sections = i;
311
089b4803
TG
312 return sap;
313}
314
82ccf5a5
JK
315/* Create a section_addr_info from section offsets in OBJFILE. */
316
317struct section_addr_info *
318build_section_addr_info_from_objfile (const struct objfile *objfile)
319{
320 struct section_addr_info *sap;
321 int i;
322
323 /* Before reread_symbols gets rewritten it is not safe to call:
324 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
325 */
326 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 327 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
328 {
329 int sectindex = sap->other[i].sectindex;
330
331 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
332 }
333 return sap;
334}
62557bbc 335
c378eb4e 336/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
337
338extern void
339free_section_addr_info (struct section_addr_info *sap)
340{
341 int idx;
342
a39a16c4 343 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 344 xfree (sap->other[idx].name);
b8c9b27d 345 xfree (sap);
62557bbc
KB
346}
347
e8289572 348/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 349
e8289572
JB
350static void
351init_objfile_sect_indices (struct objfile *objfile)
c906108c 352{
e8289572 353 asection *sect;
c906108c 354 int i;
5417f6dc 355
b8fbeb18 356 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 357 if (sect)
b8fbeb18
EZ
358 objfile->sect_index_text = sect->index;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_data = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_bss = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_rodata = sect->index;
371
bbcd32ad
FF
372 /* This is where things get really weird... We MUST have valid
373 indices for the various sect_index_* members or gdb will abort.
374 So if for example, there is no ".text" section, we have to
31d99776
DJ
375 accomodate that. First, check for a file with the standard
376 one or two segments. */
377
378 symfile_find_segment_sections (objfile);
379
380 /* Except when explicitly adding symbol files at some address,
381 section_offsets contains nothing but zeros, so it doesn't matter
382 which slot in section_offsets the individual sect_index_* members
383 index into. So if they are all zero, it is safe to just point
384 all the currently uninitialized indices to the first slot. But
385 beware: if this is the main executable, it may be relocated
386 later, e.g. by the remote qOffsets packet, and then this will
387 be wrong! That's why we try segments first. */
bbcd32ad
FF
388
389 for (i = 0; i < objfile->num_sections; i++)
390 {
391 if (ANOFFSET (objfile->section_offsets, i) != 0)
392 {
393 break;
394 }
395 }
396 if (i == objfile->num_sections)
397 {
398 if (objfile->sect_index_text == -1)
399 objfile->sect_index_text = 0;
400 if (objfile->sect_index_data == -1)
401 objfile->sect_index_data = 0;
402 if (objfile->sect_index_bss == -1)
403 objfile->sect_index_bss = 0;
404 if (objfile->sect_index_rodata == -1)
405 objfile->sect_index_rodata = 0;
406 }
b8fbeb18 407}
c906108c 408
c1bd25fd
DJ
409/* The arguments to place_section. */
410
411struct place_section_arg
412{
413 struct section_offsets *offsets;
414 CORE_ADDR lowest;
415};
416
417/* Find a unique offset to use for loadable section SECT if
418 the user did not provide an offset. */
419
2c0b251b 420static void
c1bd25fd
DJ
421place_section (bfd *abfd, asection *sect, void *obj)
422{
19ba03f4 423 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
424 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
425 int done;
3bd72c6f 426 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 427
2711e456
DJ
428 /* We are only interested in allocated sections. */
429 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
430 return;
431
432 /* If the user specified an offset, honor it. */
65cf3563 433 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
434 return;
435
436 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
437 start_addr = (arg->lowest + align - 1) & -align;
438
c1bd25fd
DJ
439 do {
440 asection *cur_sec;
c1bd25fd 441
c1bd25fd
DJ
442 done = 1;
443
444 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
445 {
446 int indx = cur_sec->index;
c1bd25fd
DJ
447
448 /* We don't need to compare against ourself. */
449 if (cur_sec == sect)
450 continue;
451
2711e456
DJ
452 /* We can only conflict with allocated sections. */
453 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
454 continue;
455
456 /* If the section offset is 0, either the section has not been placed
457 yet, or it was the lowest section placed (in which case LOWEST
458 will be past its end). */
459 if (offsets[indx] == 0)
460 continue;
461
462 /* If this section would overlap us, then we must move up. */
463 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
464 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
465 {
466 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
467 start_addr = (start_addr + align - 1) & -align;
468 done = 0;
3bd72c6f 469 break;
c1bd25fd
DJ
470 }
471
472 /* Otherwise, we appear to be OK. So far. */
473 }
474 }
475 while (!done);
476
65cf3563 477 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 478 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 479}
e8289572 480
75242ef4
JK
481/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
482 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
483 entries. */
e8289572
JB
484
485void
75242ef4
JK
486relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
487 int num_sections,
3189cb12 488 const struct section_addr_info *addrs)
e8289572
JB
489{
490 int i;
491
75242ef4 492 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 493
c378eb4e 494 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 495 for (i = 0; i < addrs->num_sections; i++)
e8289572 496 {
3189cb12 497 const struct other_sections *osp;
e8289572 498
75242ef4 499 osp = &addrs->other[i];
5488dafb 500 if (osp->sectindex == -1)
e8289572
JB
501 continue;
502
c378eb4e 503 /* Record all sections in offsets. */
e8289572 504 /* The section_offsets in the objfile are here filled in using
c378eb4e 505 the BFD index. */
75242ef4
JK
506 section_offsets->offsets[osp->sectindex] = osp->addr;
507 }
508}
509
1276c759
JK
510/* Transform section name S for a name comparison. prelink can split section
511 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
512 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
513 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
514 (`.sbss') section has invalid (increased) virtual address. */
515
516static const char *
517addr_section_name (const char *s)
518{
519 if (strcmp (s, ".dynbss") == 0)
520 return ".bss";
521 if (strcmp (s, ".sdynbss") == 0)
522 return ".sbss";
523
524 return s;
525}
526
82ccf5a5
JK
527/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
528 their (name, sectindex) pair. sectindex makes the sort by name stable. */
529
530static int
531addrs_section_compar (const void *ap, const void *bp)
532{
533 const struct other_sections *a = *((struct other_sections **) ap);
534 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 535 int retval;
82ccf5a5 536
1276c759 537 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
538 if (retval)
539 return retval;
540
5488dafb 541 return a->sectindex - b->sectindex;
82ccf5a5
JK
542}
543
544/* Provide sorted array of pointers to sections of ADDRS. The array is
545 terminated by NULL. Caller is responsible to call xfree for it. */
546
547static struct other_sections **
548addrs_section_sort (struct section_addr_info *addrs)
549{
550 struct other_sections **array;
551 int i;
552
553 /* `+ 1' for the NULL terminator. */
8d749320 554 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 555 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
556 array[i] = &addrs->other[i];
557 array[i] = NULL;
558
559 qsort (array, i, sizeof (*array), addrs_section_compar);
560
561 return array;
562}
563
75242ef4 564/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
565 also SECTINDEXes specific to ABFD there. This function can be used to
566 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
567
568void
569addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
570{
571 asection *lower_sect;
75242ef4
JK
572 CORE_ADDR lower_offset;
573 int i;
82ccf5a5
JK
574 struct cleanup *my_cleanup;
575 struct section_addr_info *abfd_addrs;
576 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
577 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
578
579 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
580 continguous sections. */
581 lower_sect = NULL;
582 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
583 if (lower_sect == NULL)
584 {
585 warning (_("no loadable sections found in added symbol-file %s"),
586 bfd_get_filename (abfd));
587 lower_offset = 0;
e8289572 588 }
75242ef4
JK
589 else
590 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
591
82ccf5a5
JK
592 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
593 in ABFD. Section names are not unique - there can be multiple sections of
594 the same name. Also the sections of the same name do not have to be
595 adjacent to each other. Some sections may be present only in one of the
596 files. Even sections present in both files do not have to be in the same
597 order.
598
599 Use stable sort by name for the sections in both files. Then linearly
600 scan both lists matching as most of the entries as possible. */
601
602 addrs_sorted = addrs_section_sort (addrs);
603 my_cleanup = make_cleanup (xfree, addrs_sorted);
604
605 abfd_addrs = build_section_addr_info_from_bfd (abfd);
606 make_cleanup_free_section_addr_info (abfd_addrs);
607 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
608 make_cleanup (xfree, abfd_addrs_sorted);
609
c378eb4e
MS
610 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
611 ABFD_ADDRS_SORTED. */
82ccf5a5 612
8d749320 613 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
614 make_cleanup (xfree, addrs_to_abfd_addrs);
615
616 while (*addrs_sorted)
617 {
1276c759 618 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
619
620 while (*abfd_addrs_sorted
1276c759
JK
621 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
622 sect_name) < 0)
82ccf5a5
JK
623 abfd_addrs_sorted++;
624
625 if (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) == 0)
82ccf5a5
JK
628 {
629 int index_in_addrs;
630
631 /* Make the found item directly addressable from ADDRS. */
632 index_in_addrs = *addrs_sorted - addrs->other;
633 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
634 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
635
636 /* Never use the same ABFD entry twice. */
637 abfd_addrs_sorted++;
638 }
639
640 addrs_sorted++;
641 }
642
75242ef4
JK
643 /* Calculate offsets for the loadable sections.
644 FIXME! Sections must be in order of increasing loadable section
645 so that contiguous sections can use the lower-offset!!!
646
647 Adjust offsets if the segments are not contiguous.
648 If the section is contiguous, its offset should be set to
649 the offset of the highest loadable section lower than it
650 (the loadable section directly below it in memory).
651 this_offset = lower_offset = lower_addr - lower_orig_addr */
652
d76488d8 653 for (i = 0; i < addrs->num_sections; i++)
75242ef4 654 {
82ccf5a5 655 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
656
657 if (sect)
75242ef4 658 {
c378eb4e 659 /* This is the index used by BFD. */
82ccf5a5 660 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
661
662 if (addrs->other[i].addr != 0)
75242ef4 663 {
82ccf5a5 664 addrs->other[i].addr -= sect->addr;
75242ef4 665 lower_offset = addrs->other[i].addr;
75242ef4
JK
666 }
667 else
672d9c23 668 addrs->other[i].addr = lower_offset;
75242ef4
JK
669 }
670 else
672d9c23 671 {
1276c759
JK
672 /* addr_section_name transformation is not used for SECT_NAME. */
673 const char *sect_name = addrs->other[i].name;
674
b0fcb67f
JK
675 /* This section does not exist in ABFD, which is normally
676 unexpected and we want to issue a warning.
677
4d9743af
JK
678 However, the ELF prelinker does create a few sections which are
679 marked in the main executable as loadable (they are loaded in
680 memory from the DYNAMIC segment) and yet are not present in
681 separate debug info files. This is fine, and should not cause
682 a warning. Shared libraries contain just the section
683 ".gnu.liblist" but it is not marked as loadable there. There is
684 no other way to identify them than by their name as the sections
1276c759
JK
685 created by prelink have no special flags.
686
687 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
688
689 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 690 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
691 || (strcmp (sect_name, ".bss") == 0
692 && i > 0
693 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
694 && addrs_to_abfd_addrs[i - 1] != NULL)
695 || (strcmp (sect_name, ".sbss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
699 warning (_("section %s not found in %s"), sect_name,
700 bfd_get_filename (abfd));
701
672d9c23 702 addrs->other[i].addr = 0;
5488dafb 703 addrs->other[i].sectindex = -1;
672d9c23 704 }
75242ef4 705 }
82ccf5a5
JK
706
707 do_cleanups (my_cleanup);
75242ef4
JK
708}
709
710/* Parse the user's idea of an offset for dynamic linking, into our idea
711 of how to represent it for fast symbol reading. This is the default
712 version of the sym_fns.sym_offsets function for symbol readers that
713 don't need to do anything special. It allocates a section_offsets table
714 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
715
716void
717default_symfile_offsets (struct objfile *objfile,
3189cb12 718 const struct section_addr_info *addrs)
75242ef4 719{
d445b2f6 720 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
721 objfile->section_offsets = (struct section_offsets *)
722 obstack_alloc (&objfile->objfile_obstack,
723 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
724 relative_addr_info_to_section_offsets (objfile->section_offsets,
725 objfile->num_sections, addrs);
e8289572 726
c1bd25fd
DJ
727 /* For relocatable files, all loadable sections will start at zero.
728 The zero is meaningless, so try to pick arbitrary addresses such
729 that no loadable sections overlap. This algorithm is quadratic,
730 but the number of sections in a single object file is generally
731 small. */
732 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
733 {
734 struct place_section_arg arg;
2711e456
DJ
735 bfd *abfd = objfile->obfd;
736 asection *cur_sec;
2711e456
DJ
737
738 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
739 /* We do not expect this to happen; just skip this step if the
740 relocatable file has a section with an assigned VMA. */
741 if (bfd_section_vma (abfd, cur_sec) != 0)
742 break;
743
744 if (cur_sec == NULL)
745 {
746 CORE_ADDR *offsets = objfile->section_offsets->offsets;
747
748 /* Pick non-overlapping offsets for sections the user did not
749 place explicitly. */
750 arg.offsets = objfile->section_offsets;
751 arg.lowest = 0;
752 bfd_map_over_sections (objfile->obfd, place_section, &arg);
753
754 /* Correctly filling in the section offsets is not quite
755 enough. Relocatable files have two properties that
756 (most) shared objects do not:
757
758 - Their debug information will contain relocations. Some
759 shared libraries do also, but many do not, so this can not
760 be assumed.
761
762 - If there are multiple code sections they will be loaded
763 at different relative addresses in memory than they are
764 in the objfile, since all sections in the file will start
765 at address zero.
766
767 Because GDB has very limited ability to map from an
768 address in debug info to the correct code section,
769 it relies on adding SECT_OFF_TEXT to things which might be
770 code. If we clear all the section offsets, and set the
771 section VMAs instead, then symfile_relocate_debug_section
772 will return meaningful debug information pointing at the
773 correct sections.
774
775 GDB has too many different data structures for section
776 addresses - a bfd, objfile, and so_list all have section
777 tables, as does exec_ops. Some of these could probably
778 be eliminated. */
779
780 for (cur_sec = abfd->sections; cur_sec != NULL;
781 cur_sec = cur_sec->next)
782 {
783 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
784 continue;
785
786 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
787 exec_set_section_address (bfd_get_filename (abfd),
788 cur_sec->index,
30510692 789 offsets[cur_sec->index]);
2711e456
DJ
790 offsets[cur_sec->index] = 0;
791 }
792 }
c1bd25fd
DJ
793 }
794
e8289572 795 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 796 .rodata sections. */
e8289572
JB
797 init_objfile_sect_indices (objfile);
798}
799
31d99776
DJ
800/* Divide the file into segments, which are individual relocatable units.
801 This is the default version of the sym_fns.sym_segments function for
802 symbol readers that do not have an explicit representation of segments.
803 It assumes that object files do not have segments, and fully linked
804 files have a single segment. */
805
806struct symfile_segment_data *
807default_symfile_segments (bfd *abfd)
808{
809 int num_sections, i;
810 asection *sect;
811 struct symfile_segment_data *data;
812 CORE_ADDR low, high;
813
814 /* Relocatable files contain enough information to position each
815 loadable section independently; they should not be relocated
816 in segments. */
817 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
818 return NULL;
819
820 /* Make sure there is at least one loadable section in the file. */
821 for (sect = abfd->sections; sect != NULL; sect = sect->next)
822 {
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 break;
827 }
828 if (sect == NULL)
829 return NULL;
830
831 low = bfd_get_section_vma (abfd, sect);
832 high = low + bfd_get_section_size (sect);
833
41bf6aca 834 data = XCNEW (struct symfile_segment_data);
31d99776 835 data->num_segments = 1;
fc270c35
TT
836 data->segment_bases = XCNEW (CORE_ADDR);
837 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
838
839 num_sections = bfd_count_sections (abfd);
fc270c35 840 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
841
842 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
843 {
844 CORE_ADDR vma;
845
846 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
847 continue;
848
849 vma = bfd_get_section_vma (abfd, sect);
850 if (vma < low)
851 low = vma;
852 if (vma + bfd_get_section_size (sect) > high)
853 high = vma + bfd_get_section_size (sect);
854
855 data->segment_info[i] = 1;
856 }
857
858 data->segment_bases[0] = low;
859 data->segment_sizes[0] = high - low;
860
861 return data;
862}
863
608e2dbb
TT
864/* This is a convenience function to call sym_read for OBJFILE and
865 possibly force the partial symbols to be read. */
866
867static void
b15cc25c 868read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
869{
870 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 871 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
872
873 /* find_separate_debug_file_in_section should be called only if there is
874 single binary with no existing separate debug info file. */
875 if (!objfile_has_partial_symbols (objfile)
876 && objfile->separate_debug_objfile == NULL
877 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 878 {
192b62ce 879 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
880
881 if (abfd != NULL)
24ba069a
JK
882 {
883 /* find_separate_debug_file_in_section uses the same filename for the
884 virtual section-as-bfd like the bfd filename containing the
885 section. Therefore use also non-canonical name form for the same
886 file containing the section. */
192b62ce
TT
887 symbol_file_add_separate (abfd.get (), objfile->original_name,
888 add_flags, objfile);
24ba069a 889 }
608e2dbb
TT
890 }
891 if ((add_flags & SYMFILE_NO_READ) == 0)
892 require_partial_symbols (objfile, 0);
893}
894
3d6e24f0
JB
895/* Initialize entry point information for this objfile. */
896
897static void
898init_entry_point_info (struct objfile *objfile)
899{
6ef55de7
TT
900 struct entry_info *ei = &objfile->per_bfd->ei;
901
902 if (ei->initialized)
903 return;
904 ei->initialized = 1;
905
3d6e24f0
JB
906 /* Save startup file's range of PC addresses to help blockframe.c
907 decide where the bottom of the stack is. */
908
909 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
910 {
911 /* Executable file -- record its entry point so we'll recognize
912 the startup file because it contains the entry point. */
6ef55de7
TT
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
3d6e24f0
JB
915 }
916 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
917 && bfd_get_start_address (objfile->obfd) != 0)
918 {
919 /* Some shared libraries may have entry points set and be
920 runnable. There's no clear way to indicate this, so just check
921 for values other than zero. */
6ef55de7
TT
922 ei->entry_point = bfd_get_start_address (objfile->obfd);
923 ei->entry_point_p = 1;
3d6e24f0
JB
924 }
925 else
926 {
927 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 928 ei->entry_point_p = 0;
3d6e24f0
JB
929 }
930
6ef55de7 931 if (ei->entry_point_p)
3d6e24f0 932 {
53eddfa6 933 struct obj_section *osect;
6ef55de7 934 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 935 int found;
3d6e24f0
JB
936
937 /* Make certain that the address points at real code, and not a
938 function descriptor. */
939 entry_point
df6d5441 940 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
941 entry_point,
942 &current_target);
943
944 /* Remove any ISA markers, so that this matches entries in the
945 symbol table. */
6ef55de7 946 ei->entry_point
df6d5441 947 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
948
949 found = 0;
950 ALL_OBJFILE_OSECTIONS (objfile, osect)
951 {
952 struct bfd_section *sect = osect->the_bfd_section;
953
954 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
955 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
956 + bfd_get_section_size (sect)))
957 {
6ef55de7 958 ei->the_bfd_section_index
53eddfa6
TT
959 = gdb_bfd_section_index (objfile->obfd, sect);
960 found = 1;
961 break;
962 }
963 }
964
965 if (!found)
6ef55de7 966 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
967 }
968}
969
c906108c
SS
970/* Process a symbol file, as either the main file or as a dynamically
971 loaded file.
972
36e4d068
JB
973 This function does not set the OBJFILE's entry-point info.
974
96baa820
JM
975 OBJFILE is where the symbols are to be read from.
976
7e8580c1
JB
977 ADDRS is the list of section load addresses. If the user has given
978 an 'add-symbol-file' command, then this is the list of offsets and
979 addresses he or she provided as arguments to the command; or, if
980 we're handling a shared library, these are the actual addresses the
981 sections are loaded at, according to the inferior's dynamic linker
982 (as gleaned by GDB's shared library code). We convert each address
983 into an offset from the section VMA's as it appears in the object
984 file, and then call the file's sym_offsets function to convert this
985 into a format-specific offset table --- a `struct section_offsets'.
96baa820 986
7eedccfa
PP
987 ADD_FLAGS encodes verbosity level, whether this is main symbol or
988 an extra symbol file such as dynamically loaded code, and wether
989 breakpoint reset should be deferred. */
c906108c 990
36e4d068
JB
991static void
992syms_from_objfile_1 (struct objfile *objfile,
993 struct section_addr_info *addrs,
b15cc25c 994 symfile_add_flags add_flags)
c906108c 995{
a39a16c4 996 struct section_addr_info *local_addr = NULL;
c906108c 997 struct cleanup *old_chain;
7eedccfa 998 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 999
8fb8eb5c 1000 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1001
75245b24 1002 if (objfile->sf == NULL)
36e4d068
JB
1003 {
1004 /* No symbols to load, but we still need to make sure
1005 that the section_offsets table is allocated. */
d445b2f6 1006 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1007 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1008
1009 objfile->num_sections = num_sections;
1010 objfile->section_offsets
224c3ddb
SM
1011 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1012 size);
36e4d068
JB
1013 memset (objfile->section_offsets, 0, size);
1014 return;
1015 }
75245b24 1016
c906108c
SS
1017 /* Make sure that partially constructed symbol tables will be cleaned up
1018 if an error occurs during symbol reading. */
74b7792f 1019 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1020
6bf667bb
DE
1021 /* If ADDRS is NULL, put together a dummy address list.
1022 We now establish the convention that an addr of zero means
c378eb4e 1023 no load address was specified. */
6bf667bb 1024 if (! addrs)
a39a16c4 1025 {
d445b2f6 1026 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1027 make_cleanup (xfree, local_addr);
1028 addrs = local_addr;
1029 }
1030
c5aa993b 1031 if (mainline)
c906108c
SS
1032 {
1033 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1034 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1035 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1036
1037 /* Since no error yet, throw away the old symbol table. */
1038
1039 if (symfile_objfile != NULL)
1040 {
1041 free_objfile (symfile_objfile);
adb7f338 1042 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1043 }
1044
1045 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1046 If the user wants to get rid of them, they should do "symbol-file"
1047 without arguments first. Not sure this is the best behavior
1048 (PR 2207). */
c906108c 1049
c5aa993b 1050 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1051 }
1052
1053 /* Convert addr into an offset rather than an absolute address.
1054 We find the lowest address of a loaded segment in the objfile,
53a5351d 1055 and assume that <addr> is where that got loaded.
c906108c 1056
53a5351d
JM
1057 We no longer warn if the lowest section is not a text segment (as
1058 happens for the PA64 port. */
6bf667bb 1059 if (addrs->num_sections > 0)
75242ef4 1060 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1061
1062 /* Initialize symbol reading routines for this objfile, allow complaints to
1063 appear for this new file, and record how verbose to be, then do the
c378eb4e 1064 initial symbol reading for this file. */
c906108c 1065
c5aa993b 1066 (*objfile->sf->sym_init) (objfile);
7eedccfa 1067 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1068
6bf667bb 1069 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1070
608e2dbb 1071 read_symbols (objfile, add_flags);
b11896a5 1072
c906108c
SS
1073 /* Discard cleanups as symbol reading was successful. */
1074
1075 discard_cleanups (old_chain);
f7545552 1076 xfree (local_addr);
c906108c
SS
1077}
1078
36e4d068
JB
1079/* Same as syms_from_objfile_1, but also initializes the objfile
1080 entry-point info. */
1081
6bf667bb 1082static void
36e4d068
JB
1083syms_from_objfile (struct objfile *objfile,
1084 struct section_addr_info *addrs,
b15cc25c 1085 symfile_add_flags add_flags)
36e4d068 1086{
6bf667bb 1087 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1088 init_entry_point_info (objfile);
1089}
1090
c906108c
SS
1091/* Perform required actions after either reading in the initial
1092 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1093 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1094
e7d52ed3 1095static void
b15cc25c 1096finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1097{
c906108c 1098 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1099 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1100 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1101 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1102 {
1103 /* OK, make it the "real" symbol file. */
1104 symfile_objfile = objfile;
1105
c1e56572 1106 clear_symtab_users (add_flags);
c906108c 1107 }
7eedccfa 1108 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1109 {
69de3c6a 1110 breakpoint_re_set ();
c906108c
SS
1111 }
1112
1113 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1114 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1115}
1116
1117/* Process a symbol file, as either the main file or as a dynamically
1118 loaded file.
1119
5417f6dc 1120 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1121 A new reference is acquired by this function.
7904e09f 1122
24ba069a
JK
1123 For NAME description see allocate_objfile's definition.
1124
7eedccfa
PP
1125 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1126 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1127
6bf667bb 1128 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1129 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1130
63524580
JK
1131 PARENT is the original objfile if ABFD is a separate debug info file.
1132 Otherwise PARENT is NULL.
1133
c906108c 1134 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1135 Upon failure, jumps back to command level (never returns). */
7eedccfa 1136
7904e09f 1137static struct objfile *
b15cc25c
PA
1138symbol_file_add_with_addrs (bfd *abfd, const char *name,
1139 symfile_add_flags add_flags,
6bf667bb 1140 struct section_addr_info *addrs,
b15cc25c 1141 objfile_flags flags, struct objfile *parent)
c906108c
SS
1142{
1143 struct objfile *objfile;
7eedccfa 1144 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1145 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1146 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1147 && (readnow_symbol_files
1148 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1149
9291a0cd 1150 if (readnow_symbol_files)
b11896a5
TT
1151 {
1152 flags |= OBJF_READNOW;
1153 add_flags &= ~SYMFILE_NO_READ;
1154 }
9291a0cd 1155
5417f6dc
RM
1156 /* Give user a chance to burp if we'd be
1157 interactively wiping out any existing symbols. */
c906108c
SS
1158
1159 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1160 && mainline
c906108c 1161 && from_tty
9e2f0ad4 1162 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1163 error (_("Not confirmed."));
c906108c 1164
b15cc25c
PA
1165 if (mainline)
1166 flags |= OBJF_MAINLINE;
1167 objfile = allocate_objfile (abfd, name, flags);
c906108c 1168
63524580
JK
1169 if (parent)
1170 add_separate_debug_objfile (objfile, parent);
1171
78a4a9b9
AC
1172 /* We either created a new mapped symbol table, mapped an existing
1173 symbol table file which has not had initial symbol reading
c378eb4e 1174 performed, or need to read an unmapped symbol table. */
b11896a5 1175 if (should_print)
c906108c 1176 {
769d7dc4
AC
1177 if (deprecated_pre_add_symbol_hook)
1178 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1179 else
c906108c 1180 {
55333a84
DE
1181 printf_unfiltered (_("Reading symbols from %s..."), name);
1182 wrap_here ("");
1183 gdb_flush (gdb_stdout);
c906108c 1184 }
c906108c 1185 }
6bf667bb 1186 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1187
1188 /* We now have at least a partial symbol table. Check to see if the
1189 user requested that all symbols be read on initial access via either
1190 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1191 all partial symbol tables for this objfile if so. */
c906108c 1192
9291a0cd 1193 if ((flags & OBJF_READNOW))
c906108c 1194 {
b11896a5 1195 if (should_print)
c906108c 1196 {
a3f17187 1197 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1198 wrap_here ("");
1199 gdb_flush (gdb_stdout);
1200 }
1201
ccefe4c4
TT
1202 if (objfile->sf)
1203 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1204 }
1205
b11896a5 1206 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1207 {
1208 wrap_here ("");
55333a84 1209 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1210 wrap_here ("");
1211 }
1212
b11896a5 1213 if (should_print)
c906108c 1214 {
769d7dc4
AC
1215 if (deprecated_post_add_symbol_hook)
1216 deprecated_post_add_symbol_hook ();
c906108c 1217 else
55333a84 1218 printf_unfiltered (_("done.\n"));
c906108c
SS
1219 }
1220
481d0f41
JB
1221 /* We print some messages regardless of whether 'from_tty ||
1222 info_verbose' is true, so make sure they go out at the right
1223 time. */
1224 gdb_flush (gdb_stdout);
1225
109f874e 1226 if (objfile->sf == NULL)
8caee43b
PP
1227 {
1228 observer_notify_new_objfile (objfile);
c378eb4e 1229 return objfile; /* No symbols. */
8caee43b 1230 }
109f874e 1231
e7d52ed3 1232 finish_new_objfile (objfile, add_flags);
c906108c 1233
06d3b283 1234 observer_notify_new_objfile (objfile);
c906108c 1235
ce7d4522 1236 bfd_cache_close_all ();
c906108c
SS
1237 return (objfile);
1238}
1239
24ba069a
JK
1240/* Add BFD as a separate debug file for OBJFILE. For NAME description
1241 see allocate_objfile's definition. */
9cce227f
TG
1242
1243void
b15cc25c
PA
1244symbol_file_add_separate (bfd *bfd, const char *name,
1245 symfile_add_flags symfile_flags,
24ba069a 1246 struct objfile *objfile)
9cce227f 1247{
089b4803
TG
1248 struct section_addr_info *sap;
1249 struct cleanup *my_cleanup;
1250
1251 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1252 because sections of BFD may not match sections of OBJFILE and because
1253 vma may have been modified by tools such as prelink. */
1254 sap = build_section_addr_info_from_objfile (objfile);
1255 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1256
870f88f7 1257 symbol_file_add_with_addrs
24ba069a 1258 (bfd, name, symfile_flags, sap,
9cce227f 1259 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1260 | OBJF_USERLOADED),
1261 objfile);
089b4803
TG
1262
1263 do_cleanups (my_cleanup);
9cce227f 1264}
7904e09f 1265
eb4556d7
JB
1266/* Process the symbol file ABFD, as either the main file or as a
1267 dynamically loaded file.
6bf667bb 1268 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1269
eb4556d7 1270struct objfile *
b15cc25c
PA
1271symbol_file_add_from_bfd (bfd *abfd, const char *name,
1272 symfile_add_flags add_flags,
eb4556d7 1273 struct section_addr_info *addrs,
b15cc25c 1274 objfile_flags flags, struct objfile *parent)
eb4556d7 1275{
24ba069a
JK
1276 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1277 parent);
eb4556d7
JB
1278}
1279
7904e09f 1280/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1281 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1282
7904e09f 1283struct objfile *
b15cc25c
PA
1284symbol_file_add (const char *name, symfile_add_flags add_flags,
1285 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1286{
192b62ce 1287 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1288
192b62ce
TT
1289 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1290 flags, NULL);
7904e09f
JB
1291}
1292
d7db6da9
FN
1293/* Call symbol_file_add() with default values and update whatever is
1294 affected by the loading of a new main().
1295 Used when the file is supplied in the gdb command line
1296 and by some targets with special loading requirements.
1297 The auxiliary function, symbol_file_add_main_1(), has the flags
1298 argument for the switches that can only be specified in the symbol_file
1299 command itself. */
5417f6dc 1300
1adeb98a 1301void
ecf45d2c 1302symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1303{
ecf45d2c 1304 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1305}
1306
1307static void
ecf45d2c
SL
1308symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1309 objfile_flags flags)
d7db6da9 1310{
ecf45d2c 1311 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1312
7eedccfa 1313 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1314
d7db6da9
FN
1315 /* Getting new symbols may change our opinion about
1316 what is frameless. */
1317 reinit_frame_cache ();
1318
b15cc25c 1319 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1320 set_initial_language ();
1adeb98a
FN
1321}
1322
1323void
1324symbol_file_clear (int from_tty)
1325{
1326 if ((have_full_symbols () || have_partial_symbols ())
1327 && from_tty
0430b0d6
AS
1328 && (symfile_objfile
1329 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1330 objfile_name (symfile_objfile))
0430b0d6 1331 : !query (_("Discard symbol table? "))))
8a3fe4f8 1332 error (_("Not confirmed."));
1adeb98a 1333
0133421a
JK
1334 /* solib descriptors may have handles to objfiles. Wipe them before their
1335 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1336 no_shared_libraries (NULL, from_tty);
1337
0133421a
JK
1338 free_all_objfiles ();
1339
adb7f338 1340 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1341 if (from_tty)
1342 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1343}
1344
5b5d99cf 1345static int
287ccc17 1346separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1347 struct objfile *parent_objfile)
5b5d99cf 1348{
904578ed
JK
1349 unsigned long file_crc;
1350 int file_crc_p;
32a0e547 1351 struct stat parent_stat, abfd_stat;
904578ed 1352 int verified_as_different;
32a0e547
JK
1353
1354 /* Find a separate debug info file as if symbols would be present in
1355 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1356 section can contain just the basename of PARENT_OBJFILE without any
1357 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1358 the separate debug infos with the same basename can exist. */
32a0e547 1359
4262abfb 1360 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1361 return 0;
5b5d99cf 1362
192b62ce 1363 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1364
192b62ce 1365 if (abfd == NULL)
5b5d99cf
JB
1366 return 0;
1367
0ba1096a 1368 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1369
1370 Some operating systems, e.g. Windows, do not provide a meaningful
1371 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1372 meaningful st_dev.) Files accessed from gdbservers that do not
1373 support the vFile:fstat packet will also have st_ino set to zero.
1374 Do not indicate a duplicate library in either case. While there
1375 is no guarantee that a system that provides meaningful inode
1376 numbers will never set st_ino to zero, this is merely an
1377 optimization, so we do not need to worry about false negatives. */
32a0e547 1378
192b62ce 1379 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1380 && abfd_stat.st_ino != 0
1381 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1382 {
904578ed
JK
1383 if (abfd_stat.st_dev == parent_stat.st_dev
1384 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1385 return 0;
904578ed 1386 verified_as_different = 1;
32a0e547 1387 }
904578ed
JK
1388 else
1389 verified_as_different = 0;
32a0e547 1390
192b62ce 1391 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1392
904578ed
JK
1393 if (!file_crc_p)
1394 return 0;
1395
287ccc17
JK
1396 if (crc != file_crc)
1397 {
dccee2de
TT
1398 unsigned long parent_crc;
1399
0a93529c
GB
1400 /* If the files could not be verified as different with
1401 bfd_stat then we need to calculate the parent's CRC
1402 to verify whether the files are different or not. */
904578ed 1403
dccee2de 1404 if (!verified_as_different)
904578ed 1405 {
dccee2de 1406 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1407 return 0;
1408 }
1409
dccee2de 1410 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1411 warning (_("the debug information found in \"%s\""
1412 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1413 name, objfile_name (parent_objfile));
904578ed 1414
287ccc17
JK
1415 return 0;
1416 }
1417
1418 return 1;
5b5d99cf
JB
1419}
1420
aa28a74e 1421char *debug_file_directory = NULL;
920d2a44
AC
1422static void
1423show_debug_file_directory (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425{
3e43a32a
MS
1426 fprintf_filtered (file,
1427 _("The directory where separate debug "
1428 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1429 value);
1430}
5b5d99cf
JB
1431
1432#if ! defined (DEBUG_SUBDIRECTORY)
1433#define DEBUG_SUBDIRECTORY ".debug"
1434#endif
1435
1db33378
PP
1436/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1437 where the original file resides (may not be the same as
1438 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1439 looking for. CANON_DIR is the "realpath" form of DIR.
1440 DIR must contain a trailing '/'.
1441 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1442
1443static char *
1444find_separate_debug_file (const char *dir,
1445 const char *canon_dir,
1446 const char *debuglink,
1447 unsigned long crc32, struct objfile *objfile)
9cce227f 1448{
1db33378
PP
1449 char *debugdir;
1450 char *debugfile;
9cce227f 1451 int i;
e4ab2fad
JK
1452 VEC (char_ptr) *debugdir_vec;
1453 struct cleanup *back_to;
1454 int ix;
5b5d99cf 1455
325fac50 1456 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1457 i = strlen (dir);
1db33378
PP
1458 if (canon_dir != NULL && strlen (canon_dir) > i)
1459 i = strlen (canon_dir);
1ffa32ee 1460
224c3ddb
SM
1461 debugfile
1462 = (char *) xmalloc (strlen (debug_file_directory) + 1
1463 + i
1464 + strlen (DEBUG_SUBDIRECTORY)
1465 + strlen ("/")
1466 + strlen (debuglink)
1467 + 1);
5b5d99cf
JB
1468
1469 /* First try in the same directory as the original file. */
1470 strcpy (debugfile, dir);
1db33378 1471 strcat (debugfile, debuglink);
5b5d99cf 1472
32a0e547 1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1474 return debugfile;
5417f6dc 1475
5b5d99cf
JB
1476 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1477 strcpy (debugfile, dir);
1478 strcat (debugfile, DEBUG_SUBDIRECTORY);
1479 strcat (debugfile, "/");
1db33378 1480 strcat (debugfile, debuglink);
5b5d99cf 1481
32a0e547 1482 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1483 return debugfile;
5417f6dc 1484
24ddea62 1485 /* Then try in the global debugfile directories.
f888f159 1486
24ddea62
JK
1487 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1488 cause "/..." lookups. */
5417f6dc 1489
e4ab2fad
JK
1490 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1491 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1492
e4ab2fad
JK
1493 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1494 {
1495 strcpy (debugfile, debugdir);
aa28a74e 1496 strcat (debugfile, "/");
24ddea62 1497 strcat (debugfile, dir);
1db33378 1498 strcat (debugfile, debuglink);
aa28a74e 1499
32a0e547 1500 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1501 {
1502 do_cleanups (back_to);
1503 return debugfile;
1504 }
24ddea62
JK
1505
1506 /* If the file is in the sysroot, try using its base path in the
1507 global debugfile directory. */
1db33378
PP
1508 if (canon_dir != NULL
1509 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1510 strlen (gdb_sysroot)) == 0
1db33378 1511 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1512 {
e4ab2fad 1513 strcpy (debugfile, debugdir);
1db33378 1514 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1515 strcat (debugfile, "/");
1db33378 1516 strcat (debugfile, debuglink);
24ddea62 1517
32a0e547 1518 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1519 {
1520 do_cleanups (back_to);
1521 return debugfile;
1522 }
24ddea62 1523 }
aa28a74e 1524 }
f888f159 1525
e4ab2fad 1526 do_cleanups (back_to);
25522fae 1527 xfree (debugfile);
1db33378
PP
1528 return NULL;
1529}
1530
7edbb660 1531/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1532 If there were no directory separators in PATH, PATH will be empty
1533 string on return. */
1534
1535static void
1536terminate_after_last_dir_separator (char *path)
1537{
1538 int i;
1539
1540 /* Strip off the final filename part, leaving the directory name,
1541 followed by a slash. The directory can be relative or absolute. */
1542 for (i = strlen(path) - 1; i >= 0; i--)
1543 if (IS_DIR_SEPARATOR (path[i]))
1544 break;
1545
1546 /* If I is -1 then no directory is present there and DIR will be "". */
1547 path[i + 1] = '\0';
1548}
1549
1550/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1551 Returns pathname, or NULL. */
1552
1553char *
1554find_separate_debug_file_by_debuglink (struct objfile *objfile)
1555{
1556 char *debuglink;
1557 char *dir, *canon_dir;
1558 char *debugfile;
1559 unsigned long crc32;
1560 struct cleanup *cleanups;
1561
cc0ea93c 1562 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1563
1564 if (debuglink == NULL)
1565 {
1566 /* There's no separate debug info, hence there's no way we could
1567 load it => no warning. */
1568 return NULL;
1569 }
1570
71bdabee 1571 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1572 dir = xstrdup (objfile_name (objfile));
71bdabee 1573 make_cleanup (xfree, dir);
1db33378
PP
1574 terminate_after_last_dir_separator (dir);
1575 canon_dir = lrealpath (dir);
1576
1577 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1578 crc32, objfile);
1579 xfree (canon_dir);
1580
1581 if (debugfile == NULL)
1582 {
1db33378
PP
1583 /* For PR gdb/9538, try again with realpath (if different from the
1584 original). */
1585
1586 struct stat st_buf;
1587
4262abfb
JK
1588 if (lstat (objfile_name (objfile), &st_buf) == 0
1589 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1590 {
1591 char *symlink_dir;
1592
4262abfb 1593 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1594 if (symlink_dir != NULL)
1595 {
1596 make_cleanup (xfree, symlink_dir);
1597 terminate_after_last_dir_separator (symlink_dir);
1598 if (strcmp (dir, symlink_dir) != 0)
1599 {
1600 /* Different directory, so try using it. */
1601 debugfile = find_separate_debug_file (symlink_dir,
1602 symlink_dir,
1603 debuglink,
1604 crc32,
1605 objfile);
1606 }
1607 }
1608 }
1db33378 1609 }
aa28a74e 1610
1db33378 1611 do_cleanups (cleanups);
25522fae 1612 return debugfile;
5b5d99cf
JB
1613}
1614
c906108c
SS
1615/* This is the symbol-file command. Read the file, analyze its
1616 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1617 the command is rather bizarre:
1618
1619 1. The function buildargv implements various quoting conventions
1620 which are undocumented and have little or nothing in common with
1621 the way things are quoted (or not quoted) elsewhere in GDB.
1622
1623 2. Options are used, which are not generally used in GDB (perhaps
1624 "set mapped on", "set readnow on" would be better)
1625
1626 3. The order of options matters, which is contrary to GNU
c906108c
SS
1627 conventions (because it is confusing and inconvenient). */
1628
1629void
fba45db2 1630symbol_file_command (char *args, int from_tty)
c906108c 1631{
c906108c
SS
1632 dont_repeat ();
1633
1634 if (args == NULL)
1635 {
1adeb98a 1636 symbol_file_clear (from_tty);
c906108c
SS
1637 }
1638 else
1639 {
d1a41061 1640 char **argv = gdb_buildargv (args);
b15cc25c 1641 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1642 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1643 struct cleanup *cleanups;
1644 char *name = NULL;
1645
ecf45d2c
SL
1646 if (from_tty)
1647 add_flags |= SYMFILE_VERBOSE;
1648
7a292a7a 1649 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1650 while (*argv != NULL)
1651 {
78a4a9b9
AC
1652 if (strcmp (*argv, "-readnow") == 0)
1653 flags |= OBJF_READNOW;
1654 else if (**argv == '-')
8a3fe4f8 1655 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1656 else
1657 {
ecf45d2c 1658 symbol_file_add_main_1 (*argv, add_flags, flags);
78a4a9b9 1659 name = *argv;
78a4a9b9 1660 }
cb2f3a29 1661
c906108c
SS
1662 argv++;
1663 }
1664
1665 if (name == NULL)
cb2f3a29
MK
1666 error (_("no symbol file name was specified"));
1667
c906108c
SS
1668 do_cleanups (cleanups);
1669 }
1670}
1671
1672/* Set the initial language.
1673
cb2f3a29
MK
1674 FIXME: A better solution would be to record the language in the
1675 psymtab when reading partial symbols, and then use it (if known) to
1676 set the language. This would be a win for formats that encode the
1677 language in an easily discoverable place, such as DWARF. For
1678 stabs, we can jump through hoops looking for specially named
1679 symbols or try to intuit the language from the specific type of
1680 stabs we find, but we can't do that until later when we read in
1681 full symbols. */
c906108c 1682
8b60591b 1683void
fba45db2 1684set_initial_language (void)
c906108c 1685{
9e6c82ad 1686 enum language lang = main_language ();
c906108c 1687
9e6c82ad 1688 if (lang == language_unknown)
01f8c46d 1689 {
bf6d8a91 1690 char *name = main_name ();
d12307c1 1691 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1692
bf6d8a91
TT
1693 if (sym != NULL)
1694 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1695 }
cb2f3a29 1696
ccefe4c4
TT
1697 if (lang == language_unknown)
1698 {
1699 /* Make C the default language */
1700 lang = language_c;
c906108c 1701 }
ccefe4c4
TT
1702
1703 set_language (lang);
1704 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1705}
1706
cb2f3a29
MK
1707/* Open the file specified by NAME and hand it off to BFD for
1708 preliminary analysis. Return a newly initialized bfd *, which
1709 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1710 absolute). In case of trouble, error() is called. */
c906108c 1711
192b62ce 1712gdb_bfd_ref_ptr
97a41605 1713symfile_bfd_open (const char *name)
c906108c 1714{
97a41605
GB
1715 int desc = -1;
1716 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1717
97a41605 1718 if (!is_target_filename (name))
f1838a98 1719 {
97a41605 1720 char *expanded_name, *absolute_name;
f1838a98 1721
97a41605 1722 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1723
97a41605
GB
1724 /* Look down path for it, allocate 2nd new malloc'd copy. */
1725 desc = openp (getenv ("PATH"),
1726 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1727 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1728#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1729 if (desc < 0)
1730 {
0ae1c716 1731 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1732
97a41605
GB
1733 strcat (strcpy (exename, expanded_name), ".exe");
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 exename, O_RDONLY | O_BINARY, &absolute_name);
1737 }
c906108c 1738#endif
97a41605
GB
1739 if (desc < 0)
1740 {
1741 make_cleanup (xfree, expanded_name);
1742 perror_with_name (expanded_name);
1743 }
cb2f3a29 1744
97a41605
GB
1745 xfree (expanded_name);
1746 make_cleanup (xfree, absolute_name);
1747 name = absolute_name;
1748 }
c906108c 1749
192b62ce
TT
1750 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1751 if (sym_bfd == NULL)
faab9922
JK
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
97a41605 1754
192b62ce
TT
1755 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1756 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1757
192b62ce
TT
1758 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1759 error (_("`%s': can't read symbols: %s."), name,
1760 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1761
faab9922
JK
1762 do_cleanups (back_to);
1763
cb2f3a29 1764 return sym_bfd;
c906108c
SS
1765}
1766
cb2f3a29
MK
1767/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1768 the section was not found. */
1769
0e931cf0
JB
1770int
1771get_section_index (struct objfile *objfile, char *section_name)
1772{
1773 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1774
0e931cf0
JB
1775 if (sect)
1776 return sect->index;
1777 else
1778 return -1;
1779}
1780
c256e171
DE
1781/* Link SF into the global symtab_fns list.
1782 FLAVOUR is the file format that SF handles.
1783 Called on startup by the _initialize routine in each object file format
1784 reader, to register information about each format the reader is prepared
1785 to handle. */
c906108c
SS
1786
1787void
c256e171 1788add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1789{
c256e171
DE
1790 registered_sym_fns fns = { flavour, sf };
1791
1792 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1793}
1794
cb2f3a29
MK
1795/* Initialize OBJFILE to read symbols from its associated BFD. It
1796 either returns or calls error(). The result is an initialized
1797 struct sym_fns in the objfile structure, that contains cached
1798 information about the symbol file. */
c906108c 1799
00b5771c 1800static const struct sym_fns *
31d99776 1801find_sym_fns (bfd *abfd)
c906108c 1802{
c256e171 1803 registered_sym_fns *rsf;
31d99776 1804 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1805 int i;
c906108c 1806
75245b24
MS
1807 if (our_flavour == bfd_target_srec_flavour
1808 || our_flavour == bfd_target_ihex_flavour
1809 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1810 return NULL; /* No symbols. */
75245b24 1811
c256e171
DE
1812 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1813 if (our_flavour == rsf->sym_flavour)
1814 return rsf->sym_fns;
cb2f3a29 1815
8a3fe4f8 1816 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1817 bfd_get_target (abfd));
c906108c
SS
1818}
1819\f
cb2f3a29 1820
c906108c
SS
1821/* This function runs the load command of our current target. */
1822
1823static void
fba45db2 1824load_command (char *arg, int from_tty)
c906108c 1825{
5b3fca71
TT
1826 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1827
e5cc9f32
JB
1828 dont_repeat ();
1829
4487aabf
PA
1830 /* The user might be reloading because the binary has changed. Take
1831 this opportunity to check. */
1832 reopen_exec_file ();
1833 reread_symbols ();
1834
c906108c 1835 if (arg == NULL)
1986bccd
AS
1836 {
1837 char *parg;
1838 int count = 0;
1839
1840 parg = arg = get_exec_file (1);
1841
1842 /* Count how many \ " ' tab space there are in the name. */
1843 while ((parg = strpbrk (parg, "\\\"'\t ")))
1844 {
1845 parg++;
1846 count++;
1847 }
1848
1849 if (count)
1850 {
1851 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1852 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1853 char *ptemp = temp;
1854 char *prev;
1855
1856 make_cleanup (xfree, temp);
1857
1858 prev = parg = arg;
1859 while ((parg = strpbrk (parg, "\\\"'\t ")))
1860 {
1861 strncpy (ptemp, prev, parg - prev);
1862 ptemp += parg - prev;
1863 prev = parg++;
1864 *ptemp++ = '\\';
1865 }
1866 strcpy (ptemp, prev);
1867
1868 arg = temp;
1869 }
1870 }
1871
c906108c 1872 target_load (arg, from_tty);
2889e661
JB
1873
1874 /* After re-loading the executable, we don't really know which
1875 overlays are mapped any more. */
1876 overlay_cache_invalid = 1;
5b3fca71
TT
1877
1878 do_cleanups (cleanup);
c906108c
SS
1879}
1880
1881/* This version of "load" should be usable for any target. Currently
1882 it is just used for remote targets, not inftarg.c or core files,
1883 on the theory that only in that case is it useful.
1884
1885 Avoiding xmodem and the like seems like a win (a) because we don't have
1886 to worry about finding it, and (b) On VMS, fork() is very slow and so
1887 we don't want to run a subprocess. On the other hand, I'm not sure how
1888 performance compares. */
917317f4 1889
917317f4
JM
1890static int validate_download = 0;
1891
e4f9b4d5
MS
1892/* Callback service function for generic_load (bfd_map_over_sections). */
1893
1894static void
1895add_section_size_callback (bfd *abfd, asection *asec, void *data)
1896{
19ba03f4 1897 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1898
2c500098 1899 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1900}
1901
1902/* Opaque data for load_section_callback. */
1903struct load_section_data {
f698ca8e 1904 CORE_ADDR load_offset;
a76d924d
DJ
1905 struct load_progress_data *progress_data;
1906 VEC(memory_write_request_s) *requests;
1907};
1908
1909/* Opaque data for load_progress. */
1910struct load_progress_data {
1911 /* Cumulative data. */
e4f9b4d5
MS
1912 unsigned long write_count;
1913 unsigned long data_count;
1914 bfd_size_type total_size;
a76d924d
DJ
1915};
1916
1917/* Opaque data for load_progress for a single section. */
1918struct load_progress_section_data {
1919 struct load_progress_data *cumulative;
cf7a04e8 1920
a76d924d 1921 /* Per-section data. */
cf7a04e8
DJ
1922 const char *section_name;
1923 ULONGEST section_sent;
1924 ULONGEST section_size;
1925 CORE_ADDR lma;
1926 gdb_byte *buffer;
e4f9b4d5
MS
1927};
1928
a76d924d 1929/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1930
1931static void
1932load_progress (ULONGEST bytes, void *untyped_arg)
1933{
19ba03f4
SM
1934 struct load_progress_section_data *args
1935 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1936 struct load_progress_data *totals;
1937
1938 if (args == NULL)
1939 /* Writing padding data. No easy way to get at the cumulative
1940 stats, so just ignore this. */
1941 return;
1942
1943 totals = args->cumulative;
1944
1945 if (bytes == 0 && args->section_sent == 0)
1946 {
1947 /* The write is just starting. Let the user know we've started
1948 this section. */
112e8700
SM
1949 current_uiout->message ("Loading section %s, size %s lma %s\n",
1950 args->section_name,
1951 hex_string (args->section_size),
1952 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1953 return;
1954 }
cf7a04e8
DJ
1955
1956 if (validate_download)
1957 {
1958 /* Broken memories and broken monitors manifest themselves here
1959 when bring new computers to life. This doubles already slow
1960 downloads. */
1961 /* NOTE: cagney/1999-10-18: A more efficient implementation
1962 might add a verify_memory() method to the target vector and
1963 then use that. remote.c could implement that method using
1964 the ``qCRC'' packet. */
224c3ddb 1965 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1966 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1967
1968 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1969 error (_("Download verify read failed at %s"),
f5656ead 1970 paddress (target_gdbarch (), args->lma));
cf7a04e8 1971 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1972 error (_("Download verify compare failed at %s"),
f5656ead 1973 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1974 do_cleanups (verify_cleanups);
1975 }
a76d924d 1976 totals->data_count += bytes;
cf7a04e8
DJ
1977 args->lma += bytes;
1978 args->buffer += bytes;
a76d924d 1979 totals->write_count += 1;
cf7a04e8 1980 args->section_sent += bytes;
522002f9 1981 if (check_quit_flag ()
cf7a04e8
DJ
1982 || (deprecated_ui_load_progress_hook != NULL
1983 && deprecated_ui_load_progress_hook (args->section_name,
1984 args->section_sent)))
1985 error (_("Canceled the download"));
1986
1987 if (deprecated_show_load_progress != NULL)
1988 deprecated_show_load_progress (args->section_name,
1989 args->section_sent,
1990 args->section_size,
a76d924d
DJ
1991 totals->data_count,
1992 totals->total_size);
cf7a04e8
DJ
1993}
1994
e4f9b4d5
MS
1995/* Callback service function for generic_load (bfd_map_over_sections). */
1996
1997static void
1998load_section_callback (bfd *abfd, asection *asec, void *data)
1999{
a76d924d 2000 struct memory_write_request *new_request;
19ba03f4 2001 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2002 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2003 bfd_size_type size = bfd_get_section_size (asec);
2004 gdb_byte *buffer;
cf7a04e8 2005 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2006
cf7a04e8
DJ
2007 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2008 return;
e4f9b4d5 2009
cf7a04e8
DJ
2010 if (size == 0)
2011 return;
e4f9b4d5 2012
a76d924d
DJ
2013 new_request = VEC_safe_push (memory_write_request_s,
2014 args->requests, NULL);
2015 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2016 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2017 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2018 new_request->end = new_request->begin + size; /* FIXME Should size
2019 be in instead? */
224c3ddb 2020 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2021 new_request->baton = section_data;
cf7a04e8 2022
a76d924d 2023 buffer = new_request->data;
cf7a04e8 2024
a76d924d
DJ
2025 section_data->cumulative = args->progress_data;
2026 section_data->section_name = sect_name;
2027 section_data->section_size = size;
2028 section_data->lma = new_request->begin;
2029 section_data->buffer = buffer;
cf7a04e8
DJ
2030
2031 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2032}
2033
2034/* Clean up an entire memory request vector, including load
2035 data and progress records. */
cf7a04e8 2036
a76d924d
DJ
2037static void
2038clear_memory_write_data (void *arg)
2039{
19ba03f4 2040 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2041 VEC(memory_write_request_s) *vec = *vec_p;
2042 int i;
2043 struct memory_write_request *mr;
cf7a04e8 2044
a76d924d
DJ
2045 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2046 {
2047 xfree (mr->data);
2048 xfree (mr->baton);
2049 }
2050 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2051}
2052
dcb07cfa
PA
2053static void print_transfer_performance (struct ui_file *stream,
2054 unsigned long data_count,
2055 unsigned long write_count,
2056 std::chrono::steady_clock::duration d);
2057
c906108c 2058void
9cbe5fff 2059generic_load (const char *args, int from_tty)
c906108c 2060{
917317f4 2061 char *filename;
1986bccd 2062 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2063 struct load_section_data cbdata;
a76d924d 2064 struct load_progress_data total_progress;
79a45e25 2065 struct ui_out *uiout = current_uiout;
a76d924d 2066
e4f9b4d5 2067 CORE_ADDR entry;
1986bccd 2068 char **argv;
e4f9b4d5 2069
a76d924d
DJ
2070 memset (&cbdata, 0, sizeof (cbdata));
2071 memset (&total_progress, 0, sizeof (total_progress));
2072 cbdata.progress_data = &total_progress;
2073
2074 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2075
d1a41061
PP
2076 if (args == NULL)
2077 error_no_arg (_("file to load"));
1986bccd 2078
d1a41061 2079 argv = gdb_buildargv (args);
1986bccd
AS
2080 make_cleanup_freeargv (argv);
2081
2082 filename = tilde_expand (argv[0]);
2083 make_cleanup (xfree, filename);
2084
2085 if (argv[1] != NULL)
917317f4 2086 {
f698ca8e 2087 const char *endptr;
ba5f2f8a 2088
f698ca8e 2089 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2090
2091 /* If the last word was not a valid number then
2092 treat it as a file name with spaces in. */
2093 if (argv[1] == endptr)
2094 error (_("Invalid download offset:%s."), argv[1]);
2095
2096 if (argv[2] != NULL)
2097 error (_("Too many parameters."));
917317f4 2098 }
c906108c 2099
c378eb4e 2100 /* Open the file for loading. */
192b62ce 2101 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
c906108c
SS
2102 if (loadfile_bfd == NULL)
2103 {
2104 perror_with_name (filename);
2105 return;
2106 }
917317f4 2107
192b62ce 2108 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2109 {
8a3fe4f8 2110 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2111 bfd_errmsg (bfd_get_error ()));
2112 }
c5aa993b 2113
192b62ce 2114 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2115 (void *) &total_progress.total_size);
2116
192b62ce 2117 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2118
dcb07cfa
PA
2119 using namespace std::chrono;
2120
2121 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2122
a76d924d
DJ
2123 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2124 load_progress) != 0)
2125 error (_("Load failed"));
c906108c 2126
dcb07cfa 2127 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2128
192b62ce 2129 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2130 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2131 uiout->text ("Start address ");
2132 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2133 uiout->text (", load size ");
2134 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2135 uiout->text ("\n");
fb14de7b 2136 regcache_write_pc (get_current_regcache (), entry);
c906108c 2137
38963c97
DJ
2138 /* Reset breakpoints, now that we have changed the load image. For
2139 instance, breakpoints may have been set (or reset, by
2140 post_create_inferior) while connected to the target but before we
2141 loaded the program. In that case, the prologue analyzer could
2142 have read instructions from the target to find the right
2143 breakpoint locations. Loading has changed the contents of that
2144 memory. */
2145
2146 breakpoint_re_set ();
2147
a76d924d
DJ
2148 print_transfer_performance (gdb_stdout, total_progress.data_count,
2149 total_progress.write_count,
dcb07cfa 2150 end_time - start_time);
c906108c
SS
2151
2152 do_cleanups (old_cleanups);
2153}
2154
dcb07cfa
PA
2155/* Report on STREAM the performance of a memory transfer operation,
2156 such as 'load'. DATA_COUNT is the number of bytes transferred.
2157 WRITE_COUNT is the number of separate write operations, or 0, if
2158 that information is not available. TIME is how long the operation
2159 lasted. */
c906108c 2160
dcb07cfa 2161static void
d9fcf2fb 2162print_transfer_performance (struct ui_file *stream,
917317f4
JM
2163 unsigned long data_count,
2164 unsigned long write_count,
dcb07cfa 2165 std::chrono::steady_clock::duration time)
917317f4 2166{
dcb07cfa 2167 using namespace std::chrono;
79a45e25 2168 struct ui_out *uiout = current_uiout;
2b71414d 2169
dcb07cfa 2170 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2171
112e8700 2172 uiout->text ("Transfer rate: ");
dcb07cfa 2173 if (ms.count () > 0)
8b93c638 2174 {
dcb07cfa 2175 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2176
112e8700 2177 if (uiout->is_mi_like_p ())
9f43d28c 2178 {
112e8700
SM
2179 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2180 uiout->text (" bits/sec");
9f43d28c
DJ
2181 }
2182 else if (rate < 1024)
2183 {
112e8700
SM
2184 uiout->field_fmt ("transfer-rate", "%lu", rate);
2185 uiout->text (" bytes/sec");
9f43d28c
DJ
2186 }
2187 else
2188 {
112e8700
SM
2189 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2190 uiout->text (" KB/sec");
9f43d28c 2191 }
8b93c638
JM
2192 }
2193 else
2194 {
112e8700
SM
2195 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2196 uiout->text (" bits in <1 sec");
8b93c638
JM
2197 }
2198 if (write_count > 0)
2199 {
112e8700
SM
2200 uiout->text (", ");
2201 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2202 uiout->text (" bytes/write");
8b93c638 2203 }
112e8700 2204 uiout->text (".\n");
c906108c
SS
2205}
2206
2207/* This function allows the addition of incrementally linked object files.
2208 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2209/* Note: ezannoni 2000-04-13 This function/command used to have a
2210 special case syntax for the rombug target (Rombug is the boot
2211 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2212 rombug case, the user doesn't need to supply a text address,
2213 instead a call to target_link() (in target.c) would supply the
c378eb4e 2214 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2215
c906108c 2216static void
fba45db2 2217add_symbol_file_command (char *args, int from_tty)
c906108c 2218{
5af949e3 2219 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2220 char *filename = NULL;
c906108c 2221 char *arg;
db162d44 2222 int section_index = 0;
2acceee2
JM
2223 int argcnt = 0;
2224 int sec_num = 0;
2225 int i;
db162d44
EZ
2226 int expecting_sec_name = 0;
2227 int expecting_sec_addr = 0;
5b96932b 2228 char **argv;
76ad5e1e 2229 struct objfile *objf;
b15cc25c
PA
2230 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2231 symfile_add_flags add_flags = 0;
2232
2233 if (from_tty)
2234 add_flags |= SYMFILE_VERBOSE;
db162d44 2235
a39a16c4 2236 struct sect_opt
2acceee2 2237 {
2acceee2
JM
2238 char *name;
2239 char *value;
a39a16c4 2240 };
db162d44 2241
a39a16c4
MM
2242 struct section_addr_info *section_addrs;
2243 struct sect_opt *sect_opts = NULL;
2244 size_t num_sect_opts = 0;
3017564a 2245 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2246
a39a16c4 2247 num_sect_opts = 16;
8d749320 2248 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2249
c906108c
SS
2250 dont_repeat ();
2251
2252 if (args == NULL)
8a3fe4f8 2253 error (_("add-symbol-file takes a file name and an address"));
c906108c 2254
d1a41061 2255 argv = gdb_buildargv (args);
5b96932b 2256 make_cleanup_freeargv (argv);
db162d44 2257
5b96932b
AS
2258 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2259 {
c378eb4e 2260 /* Process the argument. */
db162d44 2261 if (argcnt == 0)
c906108c 2262 {
c378eb4e 2263 /* The first argument is the file name. */
db162d44 2264 filename = tilde_expand (arg);
3017564a 2265 make_cleanup (xfree, filename);
c906108c 2266 }
41dc8db8
MB
2267 else if (argcnt == 1)
2268 {
2269 /* The second argument is always the text address at which
2270 to load the program. */
2271 sect_opts[section_index].name = ".text";
2272 sect_opts[section_index].value = arg;
2273 if (++section_index >= num_sect_opts)
2274 {
2275 num_sect_opts *= 2;
2276 sect_opts = ((struct sect_opt *)
2277 xrealloc (sect_opts,
2278 num_sect_opts
2279 * sizeof (struct sect_opt)));
2280 }
2281 }
db162d44 2282 else
41dc8db8
MB
2283 {
2284 /* It's an option (starting with '-') or it's an argument
2285 to an option. */
41dc8db8
MB
2286 if (expecting_sec_name)
2287 {
2288 sect_opts[section_index].name = arg;
2289 expecting_sec_name = 0;
2290 }
2291 else if (expecting_sec_addr)
2292 {
2293 sect_opts[section_index].value = arg;
2294 expecting_sec_addr = 0;
2295 if (++section_index >= num_sect_opts)
2296 {
2297 num_sect_opts *= 2;
2298 sect_opts = ((struct sect_opt *)
2299 xrealloc (sect_opts,
2300 num_sect_opts
2301 * sizeof (struct sect_opt)));
2302 }
2303 }
2304 else if (strcmp (arg, "-readnow") == 0)
2305 flags |= OBJF_READNOW;
2306 else if (strcmp (arg, "-s") == 0)
2307 {
2308 expecting_sec_name = 1;
2309 expecting_sec_addr = 1;
2310 }
2311 else
2312 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2313 " [-readnow] [-s <secname> <addr>]*"));
2314 }
c906108c 2315 }
c906108c 2316
927890d0
JB
2317 /* This command takes at least two arguments. The first one is a
2318 filename, and the second is the address where this file has been
2319 loaded. Abort now if this address hasn't been provided by the
2320 user. */
2321 if (section_index < 1)
2322 error (_("The address where %s has been loaded is missing"), filename);
2323
c378eb4e 2324 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2325 a sect_addr_info structure to be passed around to other
2326 functions. We have to split this up into separate print
bb599908 2327 statements because hex_string returns a local static
c378eb4e 2328 string. */
5417f6dc 2329
a3f17187 2330 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2331 section_addrs = alloc_section_addr_info (section_index);
2332 make_cleanup (xfree, section_addrs);
db162d44 2333 for (i = 0; i < section_index; i++)
c906108c 2334 {
db162d44
EZ
2335 CORE_ADDR addr;
2336 char *val = sect_opts[i].value;
2337 char *sec = sect_opts[i].name;
5417f6dc 2338
ae822768 2339 addr = parse_and_eval_address (val);
db162d44 2340
db162d44 2341 /* Here we store the section offsets in the order they were
c378eb4e 2342 entered on the command line. */
a39a16c4
MM
2343 section_addrs->other[sec_num].name = sec;
2344 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2345 printf_unfiltered ("\t%s_addr = %s\n", sec,
2346 paddress (gdbarch, addr));
db162d44
EZ
2347 sec_num++;
2348
5417f6dc 2349 /* The object's sections are initialized when a
db162d44 2350 call is made to build_objfile_section_table (objfile).
5417f6dc 2351 This happens in reread_symbols.
db162d44
EZ
2352 At this point, we don't know what file type this is,
2353 so we can't determine what section names are valid. */
2acceee2 2354 }
d76488d8 2355 section_addrs->num_sections = sec_num;
db162d44 2356
2acceee2 2357 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2358 error (_("Not confirmed."));
c906108c 2359
b15cc25c 2360 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2361
2362 add_target_sections_of_objfile (objf);
c906108c
SS
2363
2364 /* Getting new symbols may change our opinion about what is
2365 frameless. */
2366 reinit_frame_cache ();
db162d44 2367 do_cleanups (my_cleanups);
c906108c
SS
2368}
2369\f
70992597 2370
63644780
NB
2371/* This function removes a symbol file that was added via add-symbol-file. */
2372
2373static void
2374remove_symbol_file_command (char *args, int from_tty)
2375{
2376 char **argv;
2377 struct objfile *objf = NULL;
2378 struct cleanup *my_cleanups;
2379 struct program_space *pspace = current_program_space;
63644780
NB
2380
2381 dont_repeat ();
2382
2383 if (args == NULL)
2384 error (_("remove-symbol-file: no symbol file provided"));
2385
2386 my_cleanups = make_cleanup (null_cleanup, NULL);
2387
2388 argv = gdb_buildargv (args);
2389
2390 if (strcmp (argv[0], "-a") == 0)
2391 {
2392 /* Interpret the next argument as an address. */
2393 CORE_ADDR addr;
2394
2395 if (argv[1] == NULL)
2396 error (_("Missing address argument"));
2397
2398 if (argv[2] != NULL)
2399 error (_("Junk after %s"), argv[1]);
2400
2401 addr = parse_and_eval_address (argv[1]);
2402
2403 ALL_OBJFILES (objf)
2404 {
d03de421
PA
2405 if ((objf->flags & OBJF_USERLOADED) != 0
2406 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2407 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2408 break;
2409 }
2410 }
2411 else if (argv[0] != NULL)
2412 {
2413 /* Interpret the current argument as a file name. */
2414 char *filename;
2415
2416 if (argv[1] != NULL)
2417 error (_("Junk after %s"), argv[0]);
2418
2419 filename = tilde_expand (argv[0]);
2420 make_cleanup (xfree, filename);
2421
2422 ALL_OBJFILES (objf)
2423 {
d03de421
PA
2424 if ((objf->flags & OBJF_USERLOADED) != 0
2425 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2426 && objf->pspace == pspace
2427 && filename_cmp (filename, objfile_name (objf)) == 0)
2428 break;
2429 }
2430 }
2431
2432 if (objf == NULL)
2433 error (_("No symbol file found"));
2434
2435 if (from_tty
2436 && !query (_("Remove symbol table from file \"%s\"? "),
2437 objfile_name (objf)))
2438 error (_("Not confirmed."));
2439
2440 free_objfile (objf);
2441 clear_symtab_users (0);
2442
2443 do_cleanups (my_cleanups);
2444}
2445
4ac39b97
JK
2446typedef struct objfile *objfilep;
2447
2448DEF_VEC_P (objfilep);
2449
c906108c 2450/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2451
c906108c 2452void
fba45db2 2453reread_symbols (void)
c906108c
SS
2454{
2455 struct objfile *objfile;
2456 long new_modtime;
c906108c
SS
2457 struct stat new_statbuf;
2458 int res;
4ac39b97
JK
2459 VEC (objfilep) *new_objfiles = NULL;
2460 struct cleanup *all_cleanups;
2461
2462 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2463
2464 /* With the addition of shared libraries, this should be modified,
2465 the load time should be saved in the partial symbol tables, since
2466 different tables may come from different source files. FIXME.
2467 This routine should then walk down each partial symbol table
c378eb4e 2468 and see if the symbol table that it originates from has been changed. */
c906108c 2469
c5aa993b
JM
2470 for (objfile = object_files; objfile; objfile = objfile->next)
2471 {
9cce227f
TG
2472 if (objfile->obfd == NULL)
2473 continue;
2474
2475 /* Separate debug objfiles are handled in the main objfile. */
2476 if (objfile->separate_debug_objfile_backlink)
2477 continue;
2478
02aeec7b
JB
2479 /* If this object is from an archive (what you usually create with
2480 `ar', often called a `static library' on most systems, though
2481 a `shared library' on AIX is also an archive), then you should
2482 stat on the archive name, not member name. */
9cce227f
TG
2483 if (objfile->obfd->my_archive)
2484 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2485 else
4262abfb 2486 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2487 if (res != 0)
2488 {
c378eb4e 2489 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2490 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2491 objfile_name (objfile));
9cce227f
TG
2492 continue;
2493 }
2494 new_modtime = new_statbuf.st_mtime;
2495 if (new_modtime != objfile->mtime)
2496 {
2497 struct cleanup *old_cleanups;
2498 struct section_offsets *offsets;
2499 int num_offsets;
24ba069a 2500 char *original_name;
9cce227f
TG
2501
2502 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2503 objfile_name (objfile));
9cce227f
TG
2504
2505 /* There are various functions like symbol_file_add,
2506 symfile_bfd_open, syms_from_objfile, etc., which might
2507 appear to do what we want. But they have various other
2508 effects which we *don't* want. So we just do stuff
2509 ourselves. We don't worry about mapped files (for one thing,
2510 any mapped file will be out of date). */
2511
2512 /* If we get an error, blow away this objfile (not sure if
2513 that is the correct response for things like shared
2514 libraries). */
2515 old_cleanups = make_cleanup_free_objfile (objfile);
2516 /* We need to do this whenever any symbols go away. */
2517 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2518
0ba1096a
KT
2519 if (exec_bfd != NULL
2520 && filename_cmp (bfd_get_filename (objfile->obfd),
2521 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2522 {
2523 /* Reload EXEC_BFD without asking anything. */
2524
2525 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2526 }
2527
f6eeced0
JK
2528 /* Keep the calls order approx. the same as in free_objfile. */
2529
2530 /* Free the separate debug objfiles. It will be
2531 automatically recreated by sym_read. */
2532 free_objfile_separate_debug (objfile);
2533
2534 /* Remove any references to this objfile in the global
2535 value lists. */
2536 preserve_values (objfile);
2537
2538 /* Nuke all the state that we will re-read. Much of the following
2539 code which sets things to NULL really is necessary to tell
2540 other parts of GDB that there is nothing currently there.
2541
2542 Try to keep the freeing order compatible with free_objfile. */
2543
2544 if (objfile->sf != NULL)
2545 {
2546 (*objfile->sf->sym_finish) (objfile);
2547 }
2548
2549 clear_objfile_data (objfile);
2550
e1507e95 2551 /* Clean up any state BFD has sitting around. */
a4453b7e 2552 {
192b62ce 2553 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2554 char *obfd_filename;
a4453b7e
TT
2555
2556 obfd_filename = bfd_get_filename (objfile->obfd);
2557 /* Open the new BFD before freeing the old one, so that
2558 the filename remains live. */
192b62ce
TT
2559 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2560 objfile->obfd = temp.release ();
e1507e95 2561 if (objfile->obfd == NULL)
192b62ce 2562 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2563 }
2564
24ba069a
JK
2565 original_name = xstrdup (objfile->original_name);
2566 make_cleanup (xfree, original_name);
2567
9cce227f
TG
2568 /* bfd_openr sets cacheable to true, which is what we want. */
2569 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2570 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2571 bfd_errmsg (bfd_get_error ()));
2572
2573 /* Save the offsets, we will nuke them with the rest of the
2574 objfile_obstack. */
2575 num_offsets = objfile->num_sections;
2576 offsets = ((struct section_offsets *)
2577 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2578 memcpy (offsets, objfile->section_offsets,
2579 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2580
9cce227f
TG
2581 /* FIXME: Do we have to free a whole linked list, or is this
2582 enough? */
2583 if (objfile->global_psymbols.list)
2584 xfree (objfile->global_psymbols.list);
2585 memset (&objfile->global_psymbols, 0,
2586 sizeof (objfile->global_psymbols));
2587 if (objfile->static_psymbols.list)
2588 xfree (objfile->static_psymbols.list);
2589 memset (&objfile->static_psymbols, 0,
2590 sizeof (objfile->static_psymbols));
2591
c378eb4e 2592 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2593 psymbol_bcache_free (objfile->psymbol_cache);
2594 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2595 obstack_free (&objfile->objfile_obstack, 0);
2596 objfile->sections = NULL;
43f3e411 2597 objfile->compunit_symtabs = NULL;
9cce227f
TG
2598 objfile->psymtabs = NULL;
2599 objfile->psymtabs_addrmap = NULL;
2600 objfile->free_psymtabs = NULL;
34eaf542 2601 objfile->template_symbols = NULL;
9cce227f 2602
9cce227f
TG
2603 /* obstack_init also initializes the obstack so it is
2604 empty. We could use obstack_specify_allocation but
d82ea6a8 2605 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2606 obstack_init (&objfile->objfile_obstack);
779bd270 2607
846060df
JB
2608 /* set_objfile_per_bfd potentially allocates the per-bfd
2609 data on the objfile's obstack (if sharing data across
2610 multiple users is not possible), so it's important to
2611 do it *after* the obstack has been initialized. */
2612 set_objfile_per_bfd (objfile);
2613
224c3ddb
SM
2614 objfile->original_name
2615 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2616 strlen (original_name));
24ba069a 2617
779bd270
DE
2618 /* Reset the sym_fns pointer. The ELF reader can change it
2619 based on whether .gdb_index is present, and we need it to
2620 start over. PR symtab/15885 */
8fb8eb5c 2621 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2622
d82ea6a8 2623 build_objfile_section_table (objfile);
9cce227f
TG
2624 terminate_minimal_symbol_table (objfile);
2625
2626 /* We use the same section offsets as from last time. I'm not
2627 sure whether that is always correct for shared libraries. */
2628 objfile->section_offsets = (struct section_offsets *)
2629 obstack_alloc (&objfile->objfile_obstack,
2630 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2631 memcpy (objfile->section_offsets, offsets,
2632 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2633 objfile->num_sections = num_offsets;
2634
2635 /* What the hell is sym_new_init for, anyway? The concept of
2636 distinguishing between the main file and additional files
2637 in this way seems rather dubious. */
2638 if (objfile == symfile_objfile)
c906108c 2639 {
9cce227f 2640 (*objfile->sf->sym_new_init) (objfile);
c906108c 2641 }
9cce227f
TG
2642
2643 (*objfile->sf->sym_init) (objfile);
2644 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2645
2646 objfile->flags &= ~OBJF_PSYMTABS_READ;
2647 read_symbols (objfile, 0);
b11896a5 2648
9cce227f 2649 if (!objfile_has_symbols (objfile))
c906108c 2650 {
9cce227f
TG
2651 wrap_here ("");
2652 printf_unfiltered (_("(no debugging symbols found)\n"));
2653 wrap_here ("");
c5aa993b 2654 }
9cce227f
TG
2655
2656 /* We're done reading the symbol file; finish off complaints. */
2657 clear_complaints (&symfile_complaints, 0, 1);
2658
2659 /* Getting new symbols may change our opinion about what is
2660 frameless. */
2661
2662 reinit_frame_cache ();
2663
2664 /* Discard cleanups as symbol reading was successful. */
2665 discard_cleanups (old_cleanups);
2666
2667 /* If the mtime has changed between the time we set new_modtime
2668 and now, we *want* this to be out of date, so don't call stat
2669 again now. */
2670 objfile->mtime = new_modtime;
9cce227f 2671 init_entry_point_info (objfile);
4ac39b97
JK
2672
2673 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2674 }
2675 }
c906108c 2676
4ac39b97 2677 if (new_objfiles)
ea53e89f 2678 {
4ac39b97
JK
2679 int ix;
2680
ff3536bc
UW
2681 /* Notify objfiles that we've modified objfile sections. */
2682 objfiles_changed ();
2683
c1e56572 2684 clear_symtab_users (0);
4ac39b97
JK
2685
2686 /* clear_objfile_data for each objfile was called before freeing it and
2687 observer_notify_new_objfile (NULL) has been called by
2688 clear_symtab_users above. Notify the new files now. */
2689 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2690 observer_notify_new_objfile (objfile);
2691
ea53e89f
JB
2692 /* At least one objfile has changed, so we can consider that
2693 the executable we're debugging has changed too. */
781b42b0 2694 observer_notify_executable_changed ();
ea53e89f 2695 }
4ac39b97
JK
2696
2697 do_cleanups (all_cleanups);
c906108c 2698}
c906108c
SS
2699\f
2700
c5aa993b
JM
2701typedef struct
2702{
2703 char *ext;
c906108c 2704 enum language lang;
3fcf0b0d
TT
2705} filename_language;
2706
2707DEF_VEC_O (filename_language);
c906108c 2708
3fcf0b0d 2709static VEC (filename_language) *filename_language_table;
c906108c 2710
56618e20
TT
2711/* See symfile.h. */
2712
2713void
2714add_filename_language (const char *ext, enum language lang)
c906108c 2715{
3fcf0b0d
TT
2716 filename_language entry;
2717
2718 entry.ext = xstrdup (ext);
2719 entry.lang = lang;
c906108c 2720
3fcf0b0d 2721 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2722}
2723
2724static char *ext_args;
920d2a44
AC
2725static void
2726show_ext_args (struct ui_file *file, int from_tty,
2727 struct cmd_list_element *c, const char *value)
2728{
3e43a32a
MS
2729 fprintf_filtered (file,
2730 _("Mapping between filename extension "
2731 "and source language is \"%s\".\n"),
920d2a44
AC
2732 value);
2733}
c906108c
SS
2734
2735static void
26c41df3 2736set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2737{
2738 int i;
2739 char *cp = ext_args;
2740 enum language lang;
3fcf0b0d 2741 filename_language *entry;
c906108c 2742
c378eb4e 2743 /* First arg is filename extension, starting with '.' */
c906108c 2744 if (*cp != '.')
8a3fe4f8 2745 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2746
2747 /* Find end of first arg. */
c5aa993b 2748 while (*cp && !isspace (*cp))
c906108c
SS
2749 cp++;
2750
2751 if (*cp == '\0')
3e43a32a
MS
2752 error (_("'%s': two arguments required -- "
2753 "filename extension and language"),
c906108c
SS
2754 ext_args);
2755
c378eb4e 2756 /* Null-terminate first arg. */
c5aa993b 2757 *cp++ = '\0';
c906108c
SS
2758
2759 /* Find beginning of second arg, which should be a source language. */
529480d0 2760 cp = skip_spaces (cp);
c906108c
SS
2761
2762 if (*cp == '\0')
3e43a32a
MS
2763 error (_("'%s': two arguments required -- "
2764 "filename extension and language"),
c906108c
SS
2765 ext_args);
2766
2767 /* Lookup the language from among those we know. */
2768 lang = language_enum (cp);
2769
2770 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2771 for (i = 0;
2772 VEC_iterate (filename_language, filename_language_table, i, entry);
2773 ++i)
2774 {
2775 if (0 == strcmp (ext_args, entry->ext))
2776 break;
2777 }
c906108c 2778
3fcf0b0d 2779 if (entry == NULL)
c906108c 2780 {
c378eb4e 2781 /* New file extension. */
c906108c
SS
2782 add_filename_language (ext_args, lang);
2783 }
2784 else
2785 {
c378eb4e 2786 /* Redefining a previously known filename extension. */
c906108c
SS
2787
2788 /* if (from_tty) */
2789 /* query ("Really make files of type %s '%s'?", */
2790 /* ext_args, language_str (lang)); */
2791
3fcf0b0d
TT
2792 xfree (entry->ext);
2793 entry->ext = xstrdup (ext_args);
2794 entry->lang = lang;
c906108c
SS
2795 }
2796}
2797
2798static void
fba45db2 2799info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2800{
2801 int i;
3fcf0b0d 2802 filename_language *entry;
c906108c 2803
a3f17187 2804 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2805 printf_filtered ("\n\n");
3fcf0b0d
TT
2806 for (i = 0;
2807 VEC_iterate (filename_language, filename_language_table, i, entry);
2808 ++i)
2809 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2810}
2811
c906108c 2812enum language
dd786858 2813deduce_language_from_filename (const char *filename)
c906108c
SS
2814{
2815 int i;
e6a959d6 2816 const char *cp;
c906108c
SS
2817
2818 if (filename != NULL)
2819 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2820 {
2821 filename_language *entry;
2822
2823 for (i = 0;
2824 VEC_iterate (filename_language, filename_language_table, i, entry);
2825 ++i)
2826 if (strcmp (cp, entry->ext) == 0)
2827 return entry->lang;
2828 }
c906108c
SS
2829
2830 return language_unknown;
2831}
2832\f
43f3e411
DE
2833/* Allocate and initialize a new symbol table.
2834 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2835
2836struct symtab *
43f3e411 2837allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2838{
43f3e411
DE
2839 struct objfile *objfile = cust->objfile;
2840 struct symtab *symtab
2841 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2842
19ba03f4
SM
2843 symtab->filename
2844 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2845 objfile->per_bfd->filename_cache);
c5aa993b
JM
2846 symtab->fullname = NULL;
2847 symtab->language = deduce_language_from_filename (filename);
c906108c 2848
db0fec5c
DE
2849 /* This can be very verbose with lots of headers.
2850 Only print at higher debug levels. */
2851 if (symtab_create_debug >= 2)
45cfd468
DE
2852 {
2853 /* Be a bit clever with debugging messages, and don't print objfile
2854 every time, only when it changes. */
2855 static char *last_objfile_name = NULL;
2856
2857 if (last_objfile_name == NULL
4262abfb 2858 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2859 {
2860 xfree (last_objfile_name);
4262abfb 2861 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2862 fprintf_unfiltered (gdb_stdlog,
2863 "Creating one or more symtabs for objfile %s ...\n",
2864 last_objfile_name);
2865 }
2866 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2867 "Created symtab %s for module %s.\n",
2868 host_address_to_string (symtab), filename);
45cfd468
DE
2869 }
2870
43f3e411
DE
2871 /* Add it to CUST's list of symtabs. */
2872 if (cust->filetabs == NULL)
2873 {
2874 cust->filetabs = symtab;
2875 cust->last_filetab = symtab;
2876 }
2877 else
2878 {
2879 cust->last_filetab->next = symtab;
2880 cust->last_filetab = symtab;
2881 }
2882
2883 /* Backlink to the containing compunit symtab. */
2884 symtab->compunit_symtab = cust;
2885
2886 return symtab;
2887}
2888
2889/* Allocate and initialize a new compunit.
2890 NAME is the name of the main source file, if there is one, or some
2891 descriptive text if there are no source files. */
2892
2893struct compunit_symtab *
2894allocate_compunit_symtab (struct objfile *objfile, const char *name)
2895{
2896 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2897 struct compunit_symtab);
2898 const char *saved_name;
2899
2900 cu->objfile = objfile;
2901
2902 /* The name we record here is only for display/debugging purposes.
2903 Just save the basename to avoid path issues (too long for display,
2904 relative vs absolute, etc.). */
2905 saved_name = lbasename (name);
224c3ddb
SM
2906 cu->name
2907 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2908 strlen (saved_name));
43f3e411
DE
2909
2910 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2911
2912 if (symtab_create_debug)
2913 {
2914 fprintf_unfiltered (gdb_stdlog,
2915 "Created compunit symtab %s for %s.\n",
2916 host_address_to_string (cu),
2917 cu->name);
2918 }
2919
2920 return cu;
2921}
2922
2923/* Hook CU to the objfile it comes from. */
2924
2925void
2926add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2927{
2928 cu->next = cu->objfile->compunit_symtabs;
2929 cu->objfile->compunit_symtabs = cu;
c906108c 2930}
c906108c 2931\f
c5aa993b 2932
b15cc25c
PA
2933/* Reset all data structures in gdb which may contain references to
2934 symbol table data. */
c906108c
SS
2935
2936void
b15cc25c 2937clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2938{
2939 /* Someday, we should do better than this, by only blowing away
2940 the things that really need to be blown. */
c0501be5
DJ
2941
2942 /* Clear the "current" symtab first, because it is no longer valid.
2943 breakpoint_re_set may try to access the current symtab. */
2944 clear_current_source_symtab_and_line ();
2945
c906108c 2946 clear_displays ();
1bfeeb0f 2947 clear_last_displayed_sal ();
c906108c 2948 clear_pc_function_cache ();
06d3b283 2949 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2950
2951 /* Clear globals which might have pointed into a removed objfile.
2952 FIXME: It's not clear which of these are supposed to persist
2953 between expressions and which ought to be reset each time. */
2954 expression_context_block = NULL;
2955 innermost_block = NULL;
8756216b
DP
2956
2957 /* Varobj may refer to old symbols, perform a cleanup. */
2958 varobj_invalidate ();
2959
e700d1b2
JB
2960 /* Now that the various caches have been cleared, we can re_set
2961 our breakpoints without risking it using stale data. */
2962 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2963 breakpoint_re_set ();
c906108c
SS
2964}
2965
74b7792f
AC
2966static void
2967clear_symtab_users_cleanup (void *ignore)
2968{
c1e56572 2969 clear_symtab_users (0);
74b7792f 2970}
c906108c 2971\f
c906108c
SS
2972/* OVERLAYS:
2973 The following code implements an abstraction for debugging overlay sections.
2974
2975 The target model is as follows:
2976 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2977 same VMA, each with its own unique LMA (or load address).
c906108c 2978 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2979 sections, one by one, from the load address into the VMA address.
5417f6dc 2980 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2981 sections should be considered to be mapped from the VMA to the LMA.
2982 This information is used for symbol lookup, and memory read/write.
5417f6dc 2983 For instance, if a section has been mapped then its contents
c5aa993b 2984 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2985
2986 Two levels of debugger support for overlays are available. One is
2987 "manual", in which the debugger relies on the user to tell it which
2988 overlays are currently mapped. This level of support is
2989 implemented entirely in the core debugger, and the information about
2990 whether a section is mapped is kept in the objfile->obj_section table.
2991
2992 The second level of support is "automatic", and is only available if
2993 the target-specific code provides functionality to read the target's
2994 overlay mapping table, and translate its contents for the debugger
2995 (by updating the mapped state information in the obj_section tables).
2996
2997 The interface is as follows:
c5aa993b
JM
2998 User commands:
2999 overlay map <name> -- tell gdb to consider this section mapped
3000 overlay unmap <name> -- tell gdb to consider this section unmapped
3001 overlay list -- list the sections that GDB thinks are mapped
3002 overlay read-target -- get the target's state of what's mapped
3003 overlay off/manual/auto -- set overlay debugging state
3004 Functional interface:
3005 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3006 section, return that section.
5417f6dc 3007 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3008 the pc, either in its VMA or its LMA
714835d5 3009 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3010 section_is_overlay(sect): true if section's VMA != LMA
3011 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3012 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3013 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3014 overlay_mapped_address(...): map an address from section's LMA to VMA
3015 overlay_unmapped_address(...): map an address from section's VMA to LMA
3016 symbol_overlayed_address(...): Return a "current" address for symbol:
3017 either in VMA or LMA depending on whether
c378eb4e 3018 the symbol's section is currently mapped. */
c906108c
SS
3019
3020/* Overlay debugging state: */
3021
d874f1e2 3022enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3023int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3024
c906108c 3025/* Function: section_is_overlay (SECTION)
5417f6dc 3026 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3027 SECTION is loaded at an address different from where it will "run". */
3028
3029int
714835d5 3030section_is_overlay (struct obj_section *section)
c906108c 3031{
714835d5
UW
3032 if (overlay_debugging && section)
3033 {
3034 bfd *abfd = section->objfile->obfd;
3035 asection *bfd_section = section->the_bfd_section;
f888f159 3036
714835d5
UW
3037 if (bfd_section_lma (abfd, bfd_section) != 0
3038 && bfd_section_lma (abfd, bfd_section)
3039 != bfd_section_vma (abfd, bfd_section))
3040 return 1;
3041 }
c906108c
SS
3042
3043 return 0;
3044}
3045
3046/* Function: overlay_invalidate_all (void)
3047 Invalidate the mapped state of all overlay sections (mark it as stale). */
3048
3049static void
fba45db2 3050overlay_invalidate_all (void)
c906108c 3051{
c5aa993b 3052 struct objfile *objfile;
c906108c
SS
3053 struct obj_section *sect;
3054
3055 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3056 if (section_is_overlay (sect))
3057 sect->ovly_mapped = -1;
c906108c
SS
3058}
3059
714835d5 3060/* Function: section_is_mapped (SECTION)
5417f6dc 3061 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3062
3063 Access to the ovly_mapped flag is restricted to this function, so
3064 that we can do automatic update. If the global flag
3065 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3066 overlay_invalidate_all. If the mapped state of the particular
3067 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3068
714835d5
UW
3069int
3070section_is_mapped (struct obj_section *osect)
c906108c 3071{
9216df95
UW
3072 struct gdbarch *gdbarch;
3073
714835d5 3074 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3075 return 0;
3076
c5aa993b 3077 switch (overlay_debugging)
c906108c
SS
3078 {
3079 default:
d874f1e2 3080 case ovly_off:
c5aa993b 3081 return 0; /* overlay debugging off */
d874f1e2 3082 case ovly_auto: /* overlay debugging automatic */
1c772458 3083 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3084 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3085 gdbarch = get_objfile_arch (osect->objfile);
3086 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3087 {
3088 if (overlay_cache_invalid)
3089 {
3090 overlay_invalidate_all ();
3091 overlay_cache_invalid = 0;
3092 }
3093 if (osect->ovly_mapped == -1)
9216df95 3094 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3095 }
3096 /* fall thru to manual case */
d874f1e2 3097 case ovly_on: /* overlay debugging manual */
c906108c
SS
3098 return osect->ovly_mapped == 1;
3099 }
3100}
3101
c906108c
SS
3102/* Function: pc_in_unmapped_range
3103 If PC falls into the lma range of SECTION, return true, else false. */
3104
3105CORE_ADDR
714835d5 3106pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3107{
714835d5
UW
3108 if (section_is_overlay (section))
3109 {
3110 bfd *abfd = section->objfile->obfd;
3111 asection *bfd_section = section->the_bfd_section;
fbd35540 3112
714835d5
UW
3113 /* We assume the LMA is relocated by the same offset as the VMA. */
3114 bfd_vma size = bfd_get_section_size (bfd_section);
3115 CORE_ADDR offset = obj_section_offset (section);
3116
3117 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3118 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3119 return 1;
3120 }
c906108c 3121
c906108c
SS
3122 return 0;
3123}
3124
3125/* Function: pc_in_mapped_range
3126 If PC falls into the vma range of SECTION, return true, else false. */
3127
3128CORE_ADDR
714835d5 3129pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3130{
714835d5
UW
3131 if (section_is_overlay (section))
3132 {
3133 if (obj_section_addr (section) <= pc
3134 && pc < obj_section_endaddr (section))
3135 return 1;
3136 }
c906108c 3137
c906108c
SS
3138 return 0;
3139}
3140
9ec8e6a0
JB
3141/* Return true if the mapped ranges of sections A and B overlap, false
3142 otherwise. */
3b7bacac 3143
b9362cc7 3144static int
714835d5 3145sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3146{
714835d5
UW
3147 CORE_ADDR a_start = obj_section_addr (a);
3148 CORE_ADDR a_end = obj_section_endaddr (a);
3149 CORE_ADDR b_start = obj_section_addr (b);
3150 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3151
3152 return (a_start < b_end && b_start < a_end);
3153}
3154
c906108c
SS
3155/* Function: overlay_unmapped_address (PC, SECTION)
3156 Returns the address corresponding to PC in the unmapped (load) range.
3157 May be the same as PC. */
3158
3159CORE_ADDR
714835d5 3160overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3161{
714835d5
UW
3162 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3163 {
3164 bfd *abfd = section->objfile->obfd;
3165 asection *bfd_section = section->the_bfd_section;
fbd35540 3166
714835d5
UW
3167 return pc + bfd_section_lma (abfd, bfd_section)
3168 - bfd_section_vma (abfd, bfd_section);
3169 }
c906108c
SS
3170
3171 return pc;
3172}
3173
3174/* Function: overlay_mapped_address (PC, SECTION)
3175 Returns the address corresponding to PC in the mapped (runtime) range.
3176 May be the same as PC. */
3177
3178CORE_ADDR
714835d5 3179overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3180{
714835d5
UW
3181 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3182 {
3183 bfd *abfd = section->objfile->obfd;
3184 asection *bfd_section = section->the_bfd_section;
fbd35540 3185
714835d5
UW
3186 return pc + bfd_section_vma (abfd, bfd_section)
3187 - bfd_section_lma (abfd, bfd_section);
3188 }
c906108c
SS
3189
3190 return pc;
3191}
3192
5417f6dc 3193/* Function: symbol_overlayed_address
c906108c
SS
3194 Return one of two addresses (relative to the VMA or to the LMA),
3195 depending on whether the section is mapped or not. */
3196
c5aa993b 3197CORE_ADDR
714835d5 3198symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3199{
3200 if (overlay_debugging)
3201 {
c378eb4e 3202 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3203 if (section == 0)
3204 return address;
c378eb4e
MS
3205 /* If the symbol's section is not an overlay, just return its
3206 address. */
c906108c
SS
3207 if (!section_is_overlay (section))
3208 return address;
c378eb4e 3209 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3210 if (section_is_mapped (section))
3211 return address;
3212 /*
3213 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3214 * then return its LOADED address rather than its vma address!!
3215 */
3216 return overlay_unmapped_address (address, section);
3217 }
3218 return address;
3219}
3220
5417f6dc 3221/* Function: find_pc_overlay (PC)
c906108c
SS
3222 Return the best-match overlay section for PC:
3223 If PC matches a mapped overlay section's VMA, return that section.
3224 Else if PC matches an unmapped section's VMA, return that section.
3225 Else if PC matches an unmapped section's LMA, return that section. */
3226
714835d5 3227struct obj_section *
fba45db2 3228find_pc_overlay (CORE_ADDR pc)
c906108c 3229{
c5aa993b 3230 struct objfile *objfile;
c906108c
SS
3231 struct obj_section *osect, *best_match = NULL;
3232
3233 if (overlay_debugging)
b631e59b
KT
3234 {
3235 ALL_OBJSECTIONS (objfile, osect)
3236 if (section_is_overlay (osect))
c5aa993b 3237 {
b631e59b
KT
3238 if (pc_in_mapped_range (pc, osect))
3239 {
3240 if (section_is_mapped (osect))
3241 return osect;
3242 else
3243 best_match = osect;
3244 }
3245 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3246 best_match = osect;
3247 }
b631e59b 3248 }
714835d5 3249 return best_match;
c906108c
SS
3250}
3251
3252/* Function: find_pc_mapped_section (PC)
5417f6dc 3253 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3254 currently marked as MAPPED, return that section. Else return NULL. */
3255
714835d5 3256struct obj_section *
fba45db2 3257find_pc_mapped_section (CORE_ADDR pc)
c906108c 3258{
c5aa993b 3259 struct objfile *objfile;
c906108c
SS
3260 struct obj_section *osect;
3261
3262 if (overlay_debugging)
b631e59b
KT
3263 {
3264 ALL_OBJSECTIONS (objfile, osect)
3265 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3266 return osect;
3267 }
c906108c
SS
3268
3269 return NULL;
3270}
3271
3272/* Function: list_overlays_command
c378eb4e 3273 Print a list of mapped sections and their PC ranges. */
c906108c 3274
5d3055ad 3275static void
fba45db2 3276list_overlays_command (char *args, int from_tty)
c906108c 3277{
c5aa993b
JM
3278 int nmapped = 0;
3279 struct objfile *objfile;
c906108c
SS
3280 struct obj_section *osect;
3281
3282 if (overlay_debugging)
b631e59b
KT
3283 {
3284 ALL_OBJSECTIONS (objfile, osect)
714835d5 3285 if (section_is_mapped (osect))
b631e59b
KT
3286 {
3287 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3288 const char *name;
3289 bfd_vma lma, vma;
3290 int size;
3291
3292 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3293 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3294 size = bfd_get_section_size (osect->the_bfd_section);
3295 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3296
3297 printf_filtered ("Section %s, loaded at ", name);
3298 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3299 puts_filtered (" - ");
3300 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3301 printf_filtered (", mapped at ");
3302 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3303 puts_filtered (" - ");
3304 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3305 puts_filtered ("\n");
3306
3307 nmapped++;
3308 }
3309 }
c906108c 3310 if (nmapped == 0)
a3f17187 3311 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3312}
3313
3314/* Function: map_overlay_command
3315 Mark the named section as mapped (ie. residing at its VMA address). */
3316
5d3055ad 3317static void
fba45db2 3318map_overlay_command (char *args, int from_tty)
c906108c 3319{
c5aa993b
JM
3320 struct objfile *objfile, *objfile2;
3321 struct obj_section *sec, *sec2;
c906108c
SS
3322
3323 if (!overlay_debugging)
3e43a32a
MS
3324 error (_("Overlay debugging not enabled. Use "
3325 "either the 'overlay auto' or\n"
3326 "the 'overlay manual' command."));
c906108c
SS
3327
3328 if (args == 0 || *args == 0)
8a3fe4f8 3329 error (_("Argument required: name of an overlay section"));
c906108c 3330
c378eb4e 3331 /* First, find a section matching the user supplied argument. */
c906108c
SS
3332 ALL_OBJSECTIONS (objfile, sec)
3333 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3334 {
c378eb4e 3335 /* Now, check to see if the section is an overlay. */
714835d5 3336 if (!section_is_overlay (sec))
c5aa993b
JM
3337 continue; /* not an overlay section */
3338
c378eb4e 3339 /* Mark the overlay as "mapped". */
c5aa993b
JM
3340 sec->ovly_mapped = 1;
3341
3342 /* Next, make a pass and unmap any sections that are
3343 overlapped by this new section: */
3344 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3345 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3346 {
3347 if (info_verbose)
a3f17187 3348 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3349 bfd_section_name (objfile->obfd,
3350 sec2->the_bfd_section));
c378eb4e 3351 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3352 }
3353 return;
3354 }
8a3fe4f8 3355 error (_("No overlay section called %s"), args);
c906108c
SS
3356}
3357
3358/* Function: unmap_overlay_command
5417f6dc 3359 Mark the overlay section as unmapped
c906108c
SS
3360 (ie. resident in its LMA address range, rather than the VMA range). */
3361
5d3055ad 3362static void
fba45db2 3363unmap_overlay_command (char *args, int from_tty)
c906108c 3364{
c5aa993b 3365 struct objfile *objfile;
7a270e0c 3366 struct obj_section *sec = NULL;
c906108c
SS
3367
3368 if (!overlay_debugging)
3e43a32a
MS
3369 error (_("Overlay debugging not enabled. "
3370 "Use either the 'overlay auto' or\n"
3371 "the 'overlay manual' command."));
c906108c
SS
3372
3373 if (args == 0 || *args == 0)
8a3fe4f8 3374 error (_("Argument required: name of an overlay section"));
c906108c 3375
c378eb4e 3376 /* First, find a section matching the user supplied argument. */
c906108c
SS
3377 ALL_OBJSECTIONS (objfile, sec)
3378 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3379 {
3380 if (!sec->ovly_mapped)
8a3fe4f8 3381 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3382 sec->ovly_mapped = 0;
3383 return;
3384 }
8a3fe4f8 3385 error (_("No overlay section called %s"), args);
c906108c
SS
3386}
3387
3388/* Function: overlay_auto_command
3389 A utility command to turn on overlay debugging.
c378eb4e 3390 Possibly this should be done via a set/show command. */
c906108c
SS
3391
3392static void
fba45db2 3393overlay_auto_command (char *args, int from_tty)
c906108c 3394{
d874f1e2 3395 overlay_debugging = ovly_auto;
1900040c 3396 enable_overlay_breakpoints ();
c906108c 3397 if (info_verbose)
a3f17187 3398 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3399}
3400
3401/* Function: overlay_manual_command
3402 A utility command to turn on overlay debugging.
c378eb4e 3403 Possibly this should be done via a set/show command. */
c906108c
SS
3404
3405static void
fba45db2 3406overlay_manual_command (char *args, int from_tty)
c906108c 3407{
d874f1e2 3408 overlay_debugging = ovly_on;
1900040c 3409 disable_overlay_breakpoints ();
c906108c 3410 if (info_verbose)
a3f17187 3411 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3412}
3413
3414/* Function: overlay_off_command
3415 A utility command to turn on overlay debugging.
c378eb4e 3416 Possibly this should be done via a set/show command. */
c906108c
SS
3417
3418static void
fba45db2 3419overlay_off_command (char *args, int from_tty)
c906108c 3420{
d874f1e2 3421 overlay_debugging = ovly_off;
1900040c 3422 disable_overlay_breakpoints ();
c906108c 3423 if (info_verbose)
a3f17187 3424 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3425}
3426
3427static void
fba45db2 3428overlay_load_command (char *args, int from_tty)
c906108c 3429{
e17c207e
UW
3430 struct gdbarch *gdbarch = get_current_arch ();
3431
3432 if (gdbarch_overlay_update_p (gdbarch))
3433 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3434 else
8a3fe4f8 3435 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3436}
3437
3438/* Function: overlay_command
c378eb4e 3439 A place-holder for a mis-typed command. */
c906108c 3440
c378eb4e 3441/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3442static struct cmd_list_element *overlaylist;
c906108c
SS
3443
3444static void
fba45db2 3445overlay_command (char *args, int from_tty)
c906108c 3446{
c5aa993b 3447 printf_unfiltered
c906108c 3448 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3449 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3450}
3451
c906108c
SS
3452/* Target Overlays for the "Simplest" overlay manager:
3453
5417f6dc
RM
3454 This is GDB's default target overlay layer. It works with the
3455 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3456 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3457 so targets that use a different runtime overlay manager can
c906108c
SS
3458 substitute their own overlay_update function and take over the
3459 function pointer.
3460
3461 The overlay_update function pokes around in the target's data structures
3462 to see what overlays are mapped, and updates GDB's overlay mapping with
3463 this information.
3464
3465 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3466 unsigned _novlys; /# number of overlay sections #/
3467 unsigned _ovly_table[_novlys][4] = {
438e1e42 3468 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3469 {..., ..., ..., ...},
3470 }
3471 unsigned _novly_regions; /# number of overlay regions #/
3472 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3473 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3474 {..., ..., ...},
3475 }
c906108c
SS
3476 These functions will attempt to update GDB's mappedness state in the
3477 symbol section table, based on the target's mappedness state.
3478
3479 To do this, we keep a cached copy of the target's _ovly_table, and
3480 attempt to detect when the cached copy is invalidated. The main
3481 entry point is "simple_overlay_update(SECT), which looks up SECT in
3482 the cached table and re-reads only the entry for that section from
c378eb4e 3483 the target (whenever possible). */
c906108c
SS
3484
3485/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3486static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3487static unsigned cache_novlys = 0;
c906108c 3488static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3489enum ovly_index
3490 {
438e1e42 3491 VMA, OSIZE, LMA, MAPPED
c5aa993b 3492 };
c906108c 3493
c378eb4e 3494/* Throw away the cached copy of _ovly_table. */
3b7bacac 3495
c906108c 3496static void
fba45db2 3497simple_free_overlay_table (void)
c906108c
SS
3498{
3499 if (cache_ovly_table)
b8c9b27d 3500 xfree (cache_ovly_table);
c5aa993b 3501 cache_novlys = 0;
c906108c
SS
3502 cache_ovly_table = NULL;
3503 cache_ovly_table_base = 0;
3504}
3505
9216df95 3506/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3507 Convert to host order. int LEN is number of ints. */
3b7bacac 3508
c906108c 3509static void
9216df95 3510read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3511 int len, int size, enum bfd_endian byte_order)
c906108c 3512{
c378eb4e 3513 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3514 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3515 int i;
c906108c 3516
9216df95 3517 read_memory (memaddr, buf, len * size);
c906108c 3518 for (i = 0; i < len; i++)
e17a4113 3519 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3520}
3521
3522/* Find and grab a copy of the target _ovly_table
c378eb4e 3523 (and _novlys, which is needed for the table's size). */
3b7bacac 3524
c5aa993b 3525static int
fba45db2 3526simple_read_overlay_table (void)
c906108c 3527{
3b7344d5 3528 struct bound_minimal_symbol novlys_msym;
7c7b6655 3529 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3530 struct gdbarch *gdbarch;
3531 int word_size;
e17a4113 3532 enum bfd_endian byte_order;
c906108c
SS
3533
3534 simple_free_overlay_table ();
9b27852e 3535 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3536 if (! novlys_msym.minsym)
c906108c 3537 {
8a3fe4f8 3538 error (_("Error reading inferior's overlay table: "
0d43edd1 3539 "couldn't find `_novlys' variable\n"
8a3fe4f8 3540 "in inferior. Use `overlay manual' mode."));
0d43edd1 3541 return 0;
c906108c 3542 }
0d43edd1 3543
7c7b6655
TT
3544 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3545 if (! ovly_table_msym.minsym)
0d43edd1 3546 {
8a3fe4f8 3547 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3548 "`_ovly_table' array\n"
8a3fe4f8 3549 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3550 return 0;
3551 }
3552
7c7b6655 3553 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3554 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3555 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3556
77e371c0
TT
3557 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3558 4, byte_order);
0d43edd1 3559 cache_ovly_table
224c3ddb 3560 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3561 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3562 read_target_long_array (cache_ovly_table_base,
777ea8f1 3563 (unsigned int *) cache_ovly_table,
e17a4113 3564 cache_novlys * 4, word_size, byte_order);
0d43edd1 3565
c5aa993b 3566 return 1; /* SUCCESS */
c906108c
SS
3567}
3568
5417f6dc 3569/* Function: simple_overlay_update_1
c906108c
SS
3570 A helper function for simple_overlay_update. Assuming a cached copy
3571 of _ovly_table exists, look through it to find an entry whose vma,
3572 lma and size match those of OSECT. Re-read the entry and make sure
3573 it still matches OSECT (else the table may no longer be valid).
3574 Set OSECT's mapped state to match the entry. Return: 1 for
3575 success, 0 for failure. */
3576
3577static int
fba45db2 3578simple_overlay_update_1 (struct obj_section *osect)
c906108c 3579{
764c99c1 3580 int i;
fbd35540
MS
3581 bfd *obfd = osect->objfile->obfd;
3582 asection *bsect = osect->the_bfd_section;
9216df95
UW
3583 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3584 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3586
c906108c 3587 for (i = 0; i < cache_novlys; i++)
fbd35540 3588 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3589 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3590 {
9216df95
UW
3591 read_target_long_array (cache_ovly_table_base + i * word_size,
3592 (unsigned int *) cache_ovly_table[i],
e17a4113 3593 4, word_size, byte_order);
fbd35540 3594 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3595 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3596 {
3597 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3598 return 1;
3599 }
c378eb4e 3600 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3601 return 0;
3602 }
3603 return 0;
3604}
3605
3606/* Function: simple_overlay_update
5417f6dc
RM
3607 If OSECT is NULL, then update all sections' mapped state
3608 (after re-reading the entire target _ovly_table).
3609 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3610 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3611 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3612 re-read the entire cache, and go ahead and update all sections. */
3613
1c772458 3614void
fba45db2 3615simple_overlay_update (struct obj_section *osect)
c906108c 3616{
c5aa993b 3617 struct objfile *objfile;
c906108c 3618
c378eb4e 3619 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3620 if (osect)
c378eb4e 3621 /* Have we got a cached copy of the target's overlay table? */
c906108c 3622 if (cache_ovly_table != NULL)
9cc89665
MS
3623 {
3624 /* Does its cached location match what's currently in the
3625 symtab? */
3b7344d5 3626 struct bound_minimal_symbol minsym
9cc89665
MS
3627 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3628
3b7344d5 3629 if (minsym.minsym == NULL)
9cc89665
MS
3630 error (_("Error reading inferior's overlay table: couldn't "
3631 "find `_ovly_table' array\n"
3632 "in inferior. Use `overlay manual' mode."));
3633
77e371c0 3634 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3635 /* Then go ahead and try to look up this single section in
3636 the cache. */
3637 if (simple_overlay_update_1 (osect))
3638 /* Found it! We're done. */
3639 return;
3640 }
c906108c
SS
3641
3642 /* Cached table no good: need to read the entire table anew.
3643 Or else we want all the sections, in which case it's actually
3644 more efficient to read the whole table in one block anyway. */
3645
0d43edd1
JB
3646 if (! simple_read_overlay_table ())
3647 return;
3648
c378eb4e 3649 /* Now may as well update all sections, even if only one was requested. */
c906108c 3650 ALL_OBJSECTIONS (objfile, osect)
714835d5 3651 if (section_is_overlay (osect))
c5aa993b 3652 {
764c99c1 3653 int i;
fbd35540
MS
3654 bfd *obfd = osect->objfile->obfd;
3655 asection *bsect = osect->the_bfd_section;
c5aa993b 3656
c5aa993b 3657 for (i = 0; i < cache_novlys; i++)
fbd35540 3658 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3659 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3660 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3661 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3662 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3663 }
3664 }
c906108c
SS
3665}
3666
086df311
DJ
3667/* Set the output sections and output offsets for section SECTP in
3668 ABFD. The relocation code in BFD will read these offsets, so we
3669 need to be sure they're initialized. We map each section to itself,
3670 with no offset; this means that SECTP->vma will be honored. */
3671
3672static void
3673symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3674{
3675 sectp->output_section = sectp;
3676 sectp->output_offset = 0;
3677}
3678
ac8035ab
TG
3679/* Default implementation for sym_relocate. */
3680
ac8035ab
TG
3681bfd_byte *
3682default_symfile_relocate (struct objfile *objfile, asection *sectp,
3683 bfd_byte *buf)
3684{
3019eac3
DE
3685 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3686 DWO file. */
3687 bfd *abfd = sectp->owner;
ac8035ab
TG
3688
3689 /* We're only interested in sections with relocation
3690 information. */
3691 if ((sectp->flags & SEC_RELOC) == 0)
3692 return NULL;
3693
3694 /* We will handle section offsets properly elsewhere, so relocate as if
3695 all sections begin at 0. */
3696 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3697
3698 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3699}
3700
086df311
DJ
3701/* Relocate the contents of a debug section SECTP in ABFD. The
3702 contents are stored in BUF if it is non-NULL, or returned in a
3703 malloc'd buffer otherwise.
3704
3705 For some platforms and debug info formats, shared libraries contain
3706 relocations against the debug sections (particularly for DWARF-2;
3707 one affected platform is PowerPC GNU/Linux, although it depends on
3708 the version of the linker in use). Also, ELF object files naturally
3709 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3710 the relocations in order to get the locations of symbols correct.
3711 Another example that may require relocation processing, is the
3712 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3713 debug section. */
086df311
DJ
3714
3715bfd_byte *
ac8035ab
TG
3716symfile_relocate_debug_section (struct objfile *objfile,
3717 asection *sectp, bfd_byte *buf)
086df311 3718{
ac8035ab 3719 gdb_assert (objfile->sf->sym_relocate);
086df311 3720
ac8035ab 3721 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3722}
c906108c 3723
31d99776
DJ
3724struct symfile_segment_data *
3725get_symfile_segment_data (bfd *abfd)
3726{
00b5771c 3727 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3728
3729 if (sf == NULL)
3730 return NULL;
3731
3732 return sf->sym_segments (abfd);
3733}
3734
3735void
3736free_symfile_segment_data (struct symfile_segment_data *data)
3737{
3738 xfree (data->segment_bases);
3739 xfree (data->segment_sizes);
3740 xfree (data->segment_info);
3741 xfree (data);
3742}
3743
28c32713
JB
3744/* Given:
3745 - DATA, containing segment addresses from the object file ABFD, and
3746 the mapping from ABFD's sections onto the segments that own them,
3747 and
3748 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3749 segment addresses reported by the target,
3750 store the appropriate offsets for each section in OFFSETS.
3751
3752 If there are fewer entries in SEGMENT_BASES than there are segments
3753 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3754
8d385431
DJ
3755 If there are more entries, then ignore the extra. The target may
3756 not be able to distinguish between an empty data segment and a
3757 missing data segment; a missing text segment is less plausible. */
3b7bacac 3758
31d99776 3759int
3189cb12
DE
3760symfile_map_offsets_to_segments (bfd *abfd,
3761 const struct symfile_segment_data *data,
31d99776
DJ
3762 struct section_offsets *offsets,
3763 int num_segment_bases,
3764 const CORE_ADDR *segment_bases)
3765{
3766 int i;
3767 asection *sect;
3768
28c32713
JB
3769 /* It doesn't make sense to call this function unless you have some
3770 segment base addresses. */
202b96c1 3771 gdb_assert (num_segment_bases > 0);
28c32713 3772
31d99776
DJ
3773 /* If we do not have segment mappings for the object file, we
3774 can not relocate it by segments. */
3775 gdb_assert (data != NULL);
3776 gdb_assert (data->num_segments > 0);
3777
31d99776
DJ
3778 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3779 {
31d99776
DJ
3780 int which = data->segment_info[i];
3781
28c32713
JB
3782 gdb_assert (0 <= which && which <= data->num_segments);
3783
3784 /* Don't bother computing offsets for sections that aren't
3785 loaded as part of any segment. */
3786 if (! which)
3787 continue;
3788
3789 /* Use the last SEGMENT_BASES entry as the address of any extra
3790 segments mentioned in DATA->segment_info. */
31d99776 3791 if (which > num_segment_bases)
28c32713 3792 which = num_segment_bases;
31d99776 3793
28c32713
JB
3794 offsets->offsets[i] = (segment_bases[which - 1]
3795 - data->segment_bases[which - 1]);
31d99776
DJ
3796 }
3797
3798 return 1;
3799}
3800
3801static void
3802symfile_find_segment_sections (struct objfile *objfile)
3803{
3804 bfd *abfd = objfile->obfd;
3805 int i;
3806 asection *sect;
3807 struct symfile_segment_data *data;
3808
3809 data = get_symfile_segment_data (objfile->obfd);
3810 if (data == NULL)
3811 return;
3812
3813 if (data->num_segments != 1 && data->num_segments != 2)
3814 {
3815 free_symfile_segment_data (data);
3816 return;
3817 }
3818
3819 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3820 {
31d99776
DJ
3821 int which = data->segment_info[i];
3822
3823 if (which == 1)
3824 {
3825 if (objfile->sect_index_text == -1)
3826 objfile->sect_index_text = sect->index;
3827
3828 if (objfile->sect_index_rodata == -1)
3829 objfile->sect_index_rodata = sect->index;
3830 }
3831 else if (which == 2)
3832 {
3833 if (objfile->sect_index_data == -1)
3834 objfile->sect_index_data = sect->index;
3835
3836 if (objfile->sect_index_bss == -1)
3837 objfile->sect_index_bss = sect->index;
3838 }
3839 }
3840
3841 free_symfile_segment_data (data);
3842}
3843
76ad5e1e
NB
3844/* Listen for free_objfile events. */
3845
3846static void
3847symfile_free_objfile (struct objfile *objfile)
3848{
c33b2f12
MM
3849 /* Remove the target sections owned by this objfile. */
3850 if (objfile != NULL)
76ad5e1e
NB
3851 remove_target_sections ((void *) objfile);
3852}
3853
540c2971
DE
3854/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3855 Expand all symtabs that match the specified criteria.
3856 See quick_symbol_functions.expand_symtabs_matching for details. */
3857
3858void
14bc53a8
PA
3859expand_symtabs_matching
3860 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3861 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3862 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3863 enum search_domain kind)
540c2971
DE
3864{
3865 struct objfile *objfile;
3866
3867 ALL_OBJFILES (objfile)
3868 {
3869 if (objfile->sf)
bb4142cf 3870 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3871 symbol_matcher,
14bc53a8 3872 expansion_notify, kind);
540c2971
DE
3873 }
3874}
3875
3876/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3877 Map function FUN over every file.
3878 See quick_symbol_functions.map_symbol_filenames for details. */
3879
3880void
bb4142cf
DE
3881map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3882 int need_fullname)
540c2971
DE
3883{
3884 struct objfile *objfile;
3885
3886 ALL_OBJFILES (objfile)
3887 {
3888 if (objfile->sf)
3889 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3890 need_fullname);
3891 }
3892}
3893
c906108c 3894void
fba45db2 3895_initialize_symfile (void)
c906108c
SS
3896{
3897 struct cmd_list_element *c;
c5aa993b 3898
76ad5e1e
NB
3899 observer_attach_free_objfile (symfile_free_objfile);
3900
1a966eab
AC
3901 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3902Load symbol table from executable file FILE.\n\
c906108c 3903The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3904to execute."), &cmdlist);
5ba2abeb 3905 set_cmd_completer (c, filename_completer);
c906108c 3906
1a966eab 3907 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3908Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3909Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3910 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3911The optional arguments are section-name section-address pairs and\n\
3912should be specified if the data and bss segments are not contiguous\n\
1a966eab 3913with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3914 &cmdlist);
5ba2abeb 3915 set_cmd_completer (c, filename_completer);
c906108c 3916
63644780
NB
3917 c = add_cmd ("remove-symbol-file", class_files,
3918 remove_symbol_file_command, _("\
3919Remove a symbol file added via the add-symbol-file command.\n\
3920Usage: remove-symbol-file FILENAME\n\
3921 remove-symbol-file -a ADDRESS\n\
3922The file to remove can be identified by its filename or by an address\n\
3923that lies within the boundaries of this symbol file in memory."),
3924 &cmdlist);
3925
1a966eab
AC
3926 c = add_cmd ("load", class_files, load_command, _("\
3927Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3928for access from GDB.\n\
5cf30ebf
LM
3929An optional load OFFSET may also be given as a literal address.\n\
3930When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3931on its own.\n\
3932Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3933 set_cmd_completer (c, filename_completer);
c906108c 3934
c5aa993b 3935 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3936 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3937 "overlay ", 0, &cmdlist);
3938
3939 add_com_alias ("ovly", "overlay", class_alias, 1);
3940 add_com_alias ("ov", "overlay", class_alias, 1);
3941
c5aa993b 3942 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3943 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3944
c5aa993b 3945 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3946 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3947
c5aa993b 3948 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3949 _("List mappings of overlay sections."), &overlaylist);
c906108c 3950
c5aa993b 3951 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3952 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3953 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3954 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3955 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3956 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3957 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3958 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3959
3960 /* Filename extension to source language lookup table: */
26c41df3
AC
3961 add_setshow_string_noescape_cmd ("extension-language", class_files,
3962 &ext_args, _("\
3963Set mapping between filename extension and source language."), _("\
3964Show mapping between filename extension and source language."), _("\
3965Usage: set extension-language .foo bar"),
3966 set_ext_lang_command,
920d2a44 3967 show_ext_args,
26c41df3 3968 &setlist, &showlist);
c906108c 3969
c5aa993b 3970 add_info ("extensions", info_ext_lang_command,
1bedd215 3971 _("All filename extensions associated with a source language."));
917317f4 3972
525226b5
AC
3973 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3974 &debug_file_directory, _("\
24ddea62
JK
3975Set the directories where separate debug symbols are searched for."), _("\
3976Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3977Separate debug symbols are first searched for in the same\n\
3978directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3979and lastly at the path of the directory of the binary with\n\
24ddea62 3980each global debug-file-directory component prepended."),
525226b5 3981 NULL,
920d2a44 3982 show_debug_file_directory,
525226b5 3983 &setlist, &showlist);
770e7fc7
DE
3984
3985 add_setshow_enum_cmd ("symbol-loading", no_class,
3986 print_symbol_loading_enums, &print_symbol_loading,
3987 _("\
3988Set printing of symbol loading messages."), _("\
3989Show printing of symbol loading messages."), _("\
3990off == turn all messages off\n\
3991brief == print messages for the executable,\n\
3992 and brief messages for shared libraries\n\
3993full == print messages for the executable,\n\
3994 and messages for each shared library."),
3995 NULL,
3996 NULL,
3997 &setprintlist, &showprintlist);
c906108c 3998}
This page took 2.14947 seconds and 4 git commands to generate.