Constify some commands in exec.c, plus symbol_file_command
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
00b5771c 90static const struct sym_fns *find_sym_fns (bfd *);
c906108c 91
a14ed312 92static void overlay_invalidate_all (void);
c906108c 93
a14ed312 94static void overlay_command (char *, int);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
a14ed312 105static void info_ext_lang_command (char *args, int from_tty);
392a587b 106
31d99776
DJ
107static void symfile_find_segment_sections (struct objfile *objfile);
108
c906108c
SS
109/* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
c378eb4e 111 prepared to read. */
c906108c 112
c256e171
DE
113typedef struct
114{
115 /* BFD flavour that we handle. */
116 enum bfd_flavour sym_flavour;
117
118 /* The "vtable" of symbol functions. */
119 const struct sym_fns *sym_fns;
120} registered_sym_fns;
00b5771c 121
c256e171
DE
122DEF_VEC_O (registered_sym_fns);
123
124static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 125
770e7fc7
DE
126/* Values for "set print symbol-loading". */
127
128const char print_symbol_loading_off[] = "off";
129const char print_symbol_loading_brief[] = "brief";
130const char print_symbol_loading_full[] = "full";
131static const char *print_symbol_loading_enums[] =
132{
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137};
138static const char *print_symbol_loading = print_symbol_loading_full;
139
b7209cb4
FF
140/* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
c906108c 147 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 148 report all the functions that are actually present. */
c906108c
SS
149
150int auto_solib_add = 1;
c906108c 151\f
c5aa993b 152
770e7fc7
DE
153/* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161int
162print_symbol_loading_p (int from_tty, int exec, int full)
163{
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176}
177
0d14a781 178/* True if we are reading a symbol table. */
c906108c
SS
179
180int currently_reading_symtab = 0;
181
ccefe4c4
TT
182/* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
3b7bacac 184
c83dd867 185scoped_restore_tmpl<int>
ccefe4c4 186increment_reading_symtab (void)
c906108c 187{
c83dd867
TT
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
c906108c
SS
191}
192
5417f6dc
RM
193/* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
c906108c
SS
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202void
4efb68b1 203find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 204{
c5aa993b 205 asection **lowest = (asection **) obj;
c906108c 206
eb73e134 207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217}
218
d76488d8
TT
219/* Create a new section_addr_info, with room for NUM_SECTIONS. The
220 new object's 'num_sections' field is set to 0; it must be updated
221 by the caller. */
a39a16c4
MM
222
223struct section_addr_info *
224alloc_section_addr_info (size_t num_sections)
225{
226 struct section_addr_info *sap;
227 size_t size;
228
229 size = (sizeof (struct section_addr_info)
230 + sizeof (struct other_sections) * (num_sections - 1));
231 sap = (struct section_addr_info *) xmalloc (size);
232 memset (sap, 0, size);
a39a16c4
MM
233
234 return sap;
235}
62557bbc
KB
236
237/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 238 an existing section table. */
62557bbc
KB
239
240extern struct section_addr_info *
0542c86d
PA
241build_section_addr_info_from_section_table (const struct target_section *start,
242 const struct target_section *end)
62557bbc
KB
243{
244 struct section_addr_info *sap;
0542c86d 245 const struct target_section *stp;
62557bbc
KB
246 int oidx;
247
a39a16c4 248 sap = alloc_section_addr_info (end - start);
62557bbc
KB
249
250 for (stp = start, oidx = 0; stp != end; stp++)
251 {
2b2848e2
DE
252 struct bfd_section *asect = stp->the_bfd_section;
253 bfd *abfd = asect->owner;
254
255 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 256 && oidx < end - start)
62557bbc
KB
257 {
258 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
259 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
260 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
261 oidx++;
262 }
263 }
264
d76488d8
TT
265 sap->num_sections = oidx;
266
62557bbc
KB
267 return sap;
268}
269
82ccf5a5 270/* Create a section_addr_info from section offsets in ABFD. */
089b4803 271
82ccf5a5
JK
272static struct section_addr_info *
273build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
274{
275 struct section_addr_info *sap;
276 int i;
277 struct bfd_section *sec;
278
82ccf5a5
JK
279 sap = alloc_section_addr_info (bfd_count_sections (abfd));
280 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
281 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 282 {
82ccf5a5
JK
283 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
284 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 285 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
286 i++;
287 }
d76488d8
TT
288
289 sap->num_sections = i;
290
089b4803
TG
291 return sap;
292}
293
82ccf5a5
JK
294/* Create a section_addr_info from section offsets in OBJFILE. */
295
296struct section_addr_info *
297build_section_addr_info_from_objfile (const struct objfile *objfile)
298{
299 struct section_addr_info *sap;
300 int i;
301
302 /* Before reread_symbols gets rewritten it is not safe to call:
303 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
304 */
305 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 306 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
307 {
308 int sectindex = sap->other[i].sectindex;
309
310 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
311 }
312 return sap;
313}
62557bbc 314
c378eb4e 315/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
316
317extern void
318free_section_addr_info (struct section_addr_info *sap)
319{
320 int idx;
321
a39a16c4 322 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 323 xfree (sap->other[idx].name);
b8c9b27d 324 xfree (sap);
62557bbc
KB
325}
326
e8289572 327/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 328
e8289572
JB
329static void
330init_objfile_sect_indices (struct objfile *objfile)
c906108c 331{
e8289572 332 asection *sect;
c906108c 333 int i;
5417f6dc 334
b8fbeb18 335 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 336 if (sect)
b8fbeb18
EZ
337 objfile->sect_index_text = sect->index;
338
339 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 340 if (sect)
b8fbeb18
EZ
341 objfile->sect_index_data = sect->index;
342
343 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 344 if (sect)
b8fbeb18
EZ
345 objfile->sect_index_bss = sect->index;
346
347 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 348 if (sect)
b8fbeb18
EZ
349 objfile->sect_index_rodata = sect->index;
350
bbcd32ad
FF
351 /* This is where things get really weird... We MUST have valid
352 indices for the various sect_index_* members or gdb will abort.
353 So if for example, there is no ".text" section, we have to
31d99776
DJ
354 accomodate that. First, check for a file with the standard
355 one or two segments. */
356
357 symfile_find_segment_sections (objfile);
358
359 /* Except when explicitly adding symbol files at some address,
360 section_offsets contains nothing but zeros, so it doesn't matter
361 which slot in section_offsets the individual sect_index_* members
362 index into. So if they are all zero, it is safe to just point
363 all the currently uninitialized indices to the first slot. But
364 beware: if this is the main executable, it may be relocated
365 later, e.g. by the remote qOffsets packet, and then this will
366 be wrong! That's why we try segments first. */
bbcd32ad
FF
367
368 for (i = 0; i < objfile->num_sections; i++)
369 {
370 if (ANOFFSET (objfile->section_offsets, i) != 0)
371 {
372 break;
373 }
374 }
375 if (i == objfile->num_sections)
376 {
377 if (objfile->sect_index_text == -1)
378 objfile->sect_index_text = 0;
379 if (objfile->sect_index_data == -1)
380 objfile->sect_index_data = 0;
381 if (objfile->sect_index_bss == -1)
382 objfile->sect_index_bss = 0;
383 if (objfile->sect_index_rodata == -1)
384 objfile->sect_index_rodata = 0;
385 }
b8fbeb18 386}
c906108c 387
c1bd25fd
DJ
388/* The arguments to place_section. */
389
390struct place_section_arg
391{
392 struct section_offsets *offsets;
393 CORE_ADDR lowest;
394};
395
396/* Find a unique offset to use for loadable section SECT if
397 the user did not provide an offset. */
398
2c0b251b 399static void
c1bd25fd
DJ
400place_section (bfd *abfd, asection *sect, void *obj)
401{
19ba03f4 402 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
403 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
404 int done;
3bd72c6f 405 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 406
2711e456
DJ
407 /* We are only interested in allocated sections. */
408 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
409 return;
410
411 /* If the user specified an offset, honor it. */
65cf3563 412 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
413 return;
414
415 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
416 start_addr = (arg->lowest + align - 1) & -align;
417
c1bd25fd
DJ
418 do {
419 asection *cur_sec;
c1bd25fd 420
c1bd25fd
DJ
421 done = 1;
422
423 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
424 {
425 int indx = cur_sec->index;
c1bd25fd
DJ
426
427 /* We don't need to compare against ourself. */
428 if (cur_sec == sect)
429 continue;
430
2711e456
DJ
431 /* We can only conflict with allocated sections. */
432 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
433 continue;
434
435 /* If the section offset is 0, either the section has not been placed
436 yet, or it was the lowest section placed (in which case LOWEST
437 will be past its end). */
438 if (offsets[indx] == 0)
439 continue;
440
441 /* If this section would overlap us, then we must move up. */
442 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
443 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
444 {
445 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
446 start_addr = (start_addr + align - 1) & -align;
447 done = 0;
3bd72c6f 448 break;
c1bd25fd
DJ
449 }
450
451 /* Otherwise, we appear to be OK. So far. */
452 }
453 }
454 while (!done);
455
65cf3563 456 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 457 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 458}
e8289572 459
75242ef4
JK
460/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
461 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
462 entries. */
e8289572
JB
463
464void
75242ef4
JK
465relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
466 int num_sections,
3189cb12 467 const struct section_addr_info *addrs)
e8289572
JB
468{
469 int i;
470
75242ef4 471 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 472
c378eb4e 473 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 474 for (i = 0; i < addrs->num_sections; i++)
e8289572 475 {
3189cb12 476 const struct other_sections *osp;
e8289572 477
75242ef4 478 osp = &addrs->other[i];
5488dafb 479 if (osp->sectindex == -1)
e8289572
JB
480 continue;
481
c378eb4e 482 /* Record all sections in offsets. */
e8289572 483 /* The section_offsets in the objfile are here filled in using
c378eb4e 484 the BFD index. */
75242ef4
JK
485 section_offsets->offsets[osp->sectindex] = osp->addr;
486 }
487}
488
1276c759
JK
489/* Transform section name S for a name comparison. prelink can split section
490 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
491 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
492 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
493 (`.sbss') section has invalid (increased) virtual address. */
494
495static const char *
496addr_section_name (const char *s)
497{
498 if (strcmp (s, ".dynbss") == 0)
499 return ".bss";
500 if (strcmp (s, ".sdynbss") == 0)
501 return ".sbss";
502
503 return s;
504}
505
82ccf5a5
JK
506/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
507 their (name, sectindex) pair. sectindex makes the sort by name stable. */
508
509static int
510addrs_section_compar (const void *ap, const void *bp)
511{
512 const struct other_sections *a = *((struct other_sections **) ap);
513 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 514 int retval;
82ccf5a5 515
1276c759 516 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
517 if (retval)
518 return retval;
519
5488dafb 520 return a->sectindex - b->sectindex;
82ccf5a5
JK
521}
522
523/* Provide sorted array of pointers to sections of ADDRS. The array is
524 terminated by NULL. Caller is responsible to call xfree for it. */
525
526static struct other_sections **
527addrs_section_sort (struct section_addr_info *addrs)
528{
529 struct other_sections **array;
530 int i;
531
532 /* `+ 1' for the NULL terminator. */
8d749320 533 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 534 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
535 array[i] = &addrs->other[i];
536 array[i] = NULL;
537
538 qsort (array, i, sizeof (*array), addrs_section_compar);
539
540 return array;
541}
542
75242ef4 543/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
544 also SECTINDEXes specific to ABFD there. This function can be used to
545 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
546
547void
548addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
549{
550 asection *lower_sect;
75242ef4
JK
551 CORE_ADDR lower_offset;
552 int i;
82ccf5a5
JK
553 struct cleanup *my_cleanup;
554 struct section_addr_info *abfd_addrs;
555 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
556 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
557
558 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
559 continguous sections. */
560 lower_sect = NULL;
561 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
562 if (lower_sect == NULL)
563 {
564 warning (_("no loadable sections found in added symbol-file %s"),
565 bfd_get_filename (abfd));
566 lower_offset = 0;
e8289572 567 }
75242ef4
JK
568 else
569 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
570
82ccf5a5
JK
571 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
572 in ABFD. Section names are not unique - there can be multiple sections of
573 the same name. Also the sections of the same name do not have to be
574 adjacent to each other. Some sections may be present only in one of the
575 files. Even sections present in both files do not have to be in the same
576 order.
577
578 Use stable sort by name for the sections in both files. Then linearly
579 scan both lists matching as most of the entries as possible. */
580
581 addrs_sorted = addrs_section_sort (addrs);
582 my_cleanup = make_cleanup (xfree, addrs_sorted);
583
584 abfd_addrs = build_section_addr_info_from_bfd (abfd);
585 make_cleanup_free_section_addr_info (abfd_addrs);
586 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
587 make_cleanup (xfree, abfd_addrs_sorted);
588
c378eb4e
MS
589 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
590 ABFD_ADDRS_SORTED. */
82ccf5a5 591
8d749320 592 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
593 make_cleanup (xfree, addrs_to_abfd_addrs);
594
595 while (*addrs_sorted)
596 {
1276c759 597 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
598
599 while (*abfd_addrs_sorted
1276c759
JK
600 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
601 sect_name) < 0)
82ccf5a5
JK
602 abfd_addrs_sorted++;
603
604 if (*abfd_addrs_sorted
1276c759
JK
605 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
606 sect_name) == 0)
82ccf5a5
JK
607 {
608 int index_in_addrs;
609
610 /* Make the found item directly addressable from ADDRS. */
611 index_in_addrs = *addrs_sorted - addrs->other;
612 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
613 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
614
615 /* Never use the same ABFD entry twice. */
616 abfd_addrs_sorted++;
617 }
618
619 addrs_sorted++;
620 }
621
75242ef4
JK
622 /* Calculate offsets for the loadable sections.
623 FIXME! Sections must be in order of increasing loadable section
624 so that contiguous sections can use the lower-offset!!!
625
626 Adjust offsets if the segments are not contiguous.
627 If the section is contiguous, its offset should be set to
628 the offset of the highest loadable section lower than it
629 (the loadable section directly below it in memory).
630 this_offset = lower_offset = lower_addr - lower_orig_addr */
631
d76488d8 632 for (i = 0; i < addrs->num_sections; i++)
75242ef4 633 {
82ccf5a5 634 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
635
636 if (sect)
75242ef4 637 {
c378eb4e 638 /* This is the index used by BFD. */
82ccf5a5 639 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
640
641 if (addrs->other[i].addr != 0)
75242ef4 642 {
82ccf5a5 643 addrs->other[i].addr -= sect->addr;
75242ef4 644 lower_offset = addrs->other[i].addr;
75242ef4
JK
645 }
646 else
672d9c23 647 addrs->other[i].addr = lower_offset;
75242ef4
JK
648 }
649 else
672d9c23 650 {
1276c759
JK
651 /* addr_section_name transformation is not used for SECT_NAME. */
652 const char *sect_name = addrs->other[i].name;
653
b0fcb67f
JK
654 /* This section does not exist in ABFD, which is normally
655 unexpected and we want to issue a warning.
656
4d9743af
JK
657 However, the ELF prelinker does create a few sections which are
658 marked in the main executable as loadable (they are loaded in
659 memory from the DYNAMIC segment) and yet are not present in
660 separate debug info files. This is fine, and should not cause
661 a warning. Shared libraries contain just the section
662 ".gnu.liblist" but it is not marked as loadable there. There is
663 no other way to identify them than by their name as the sections
1276c759
JK
664 created by prelink have no special flags.
665
666 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
667
668 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 669 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
670 || (strcmp (sect_name, ".bss") == 0
671 && i > 0
672 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
673 && addrs_to_abfd_addrs[i - 1] != NULL)
674 || (strcmp (sect_name, ".sbss") == 0
675 && i > 0
676 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
677 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
678 warning (_("section %s not found in %s"), sect_name,
679 bfd_get_filename (abfd));
680
672d9c23 681 addrs->other[i].addr = 0;
5488dafb 682 addrs->other[i].sectindex = -1;
672d9c23 683 }
75242ef4 684 }
82ccf5a5
JK
685
686 do_cleanups (my_cleanup);
75242ef4
JK
687}
688
689/* Parse the user's idea of an offset for dynamic linking, into our idea
690 of how to represent it for fast symbol reading. This is the default
691 version of the sym_fns.sym_offsets function for symbol readers that
692 don't need to do anything special. It allocates a section_offsets table
693 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
694
695void
696default_symfile_offsets (struct objfile *objfile,
3189cb12 697 const struct section_addr_info *addrs)
75242ef4 698{
d445b2f6 699 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
700 objfile->section_offsets = (struct section_offsets *)
701 obstack_alloc (&objfile->objfile_obstack,
702 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
703 relative_addr_info_to_section_offsets (objfile->section_offsets,
704 objfile->num_sections, addrs);
e8289572 705
c1bd25fd
DJ
706 /* For relocatable files, all loadable sections will start at zero.
707 The zero is meaningless, so try to pick arbitrary addresses such
708 that no loadable sections overlap. This algorithm is quadratic,
709 but the number of sections in a single object file is generally
710 small. */
711 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
712 {
713 struct place_section_arg arg;
2711e456
DJ
714 bfd *abfd = objfile->obfd;
715 asection *cur_sec;
2711e456
DJ
716
717 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
718 /* We do not expect this to happen; just skip this step if the
719 relocatable file has a section with an assigned VMA. */
720 if (bfd_section_vma (abfd, cur_sec) != 0)
721 break;
722
723 if (cur_sec == NULL)
724 {
725 CORE_ADDR *offsets = objfile->section_offsets->offsets;
726
727 /* Pick non-overlapping offsets for sections the user did not
728 place explicitly. */
729 arg.offsets = objfile->section_offsets;
730 arg.lowest = 0;
731 bfd_map_over_sections (objfile->obfd, place_section, &arg);
732
733 /* Correctly filling in the section offsets is not quite
734 enough. Relocatable files have two properties that
735 (most) shared objects do not:
736
737 - Their debug information will contain relocations. Some
738 shared libraries do also, but many do not, so this can not
739 be assumed.
740
741 - If there are multiple code sections they will be loaded
742 at different relative addresses in memory than they are
743 in the objfile, since all sections in the file will start
744 at address zero.
745
746 Because GDB has very limited ability to map from an
747 address in debug info to the correct code section,
748 it relies on adding SECT_OFF_TEXT to things which might be
749 code. If we clear all the section offsets, and set the
750 section VMAs instead, then symfile_relocate_debug_section
751 will return meaningful debug information pointing at the
752 correct sections.
753
754 GDB has too many different data structures for section
755 addresses - a bfd, objfile, and so_list all have section
756 tables, as does exec_ops. Some of these could probably
757 be eliminated. */
758
759 for (cur_sec = abfd->sections; cur_sec != NULL;
760 cur_sec = cur_sec->next)
761 {
762 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
763 continue;
764
765 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
766 exec_set_section_address (bfd_get_filename (abfd),
767 cur_sec->index,
30510692 768 offsets[cur_sec->index]);
2711e456
DJ
769 offsets[cur_sec->index] = 0;
770 }
771 }
c1bd25fd
DJ
772 }
773
e8289572 774 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 775 .rodata sections. */
e8289572
JB
776 init_objfile_sect_indices (objfile);
777}
778
31d99776
DJ
779/* Divide the file into segments, which are individual relocatable units.
780 This is the default version of the sym_fns.sym_segments function for
781 symbol readers that do not have an explicit representation of segments.
782 It assumes that object files do not have segments, and fully linked
783 files have a single segment. */
784
785struct symfile_segment_data *
786default_symfile_segments (bfd *abfd)
787{
788 int num_sections, i;
789 asection *sect;
790 struct symfile_segment_data *data;
791 CORE_ADDR low, high;
792
793 /* Relocatable files contain enough information to position each
794 loadable section independently; they should not be relocated
795 in segments. */
796 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
797 return NULL;
798
799 /* Make sure there is at least one loadable section in the file. */
800 for (sect = abfd->sections; sect != NULL; sect = sect->next)
801 {
802 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
803 continue;
804
805 break;
806 }
807 if (sect == NULL)
808 return NULL;
809
810 low = bfd_get_section_vma (abfd, sect);
811 high = low + bfd_get_section_size (sect);
812
41bf6aca 813 data = XCNEW (struct symfile_segment_data);
31d99776 814 data->num_segments = 1;
fc270c35
TT
815 data->segment_bases = XCNEW (CORE_ADDR);
816 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
817
818 num_sections = bfd_count_sections (abfd);
fc270c35 819 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
820
821 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
822 {
823 CORE_ADDR vma;
824
825 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
826 continue;
827
828 vma = bfd_get_section_vma (abfd, sect);
829 if (vma < low)
830 low = vma;
831 if (vma + bfd_get_section_size (sect) > high)
832 high = vma + bfd_get_section_size (sect);
833
834 data->segment_info[i] = 1;
835 }
836
837 data->segment_bases[0] = low;
838 data->segment_sizes[0] = high - low;
839
840 return data;
841}
842
608e2dbb
TT
843/* This is a convenience function to call sym_read for OBJFILE and
844 possibly force the partial symbols to be read. */
845
846static void
b15cc25c 847read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
848{
849 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 850 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
851
852 /* find_separate_debug_file_in_section should be called only if there is
853 single binary with no existing separate debug info file. */
854 if (!objfile_has_partial_symbols (objfile)
855 && objfile->separate_debug_objfile == NULL
856 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 857 {
192b62ce 858 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
859
860 if (abfd != NULL)
24ba069a
JK
861 {
862 /* find_separate_debug_file_in_section uses the same filename for the
863 virtual section-as-bfd like the bfd filename containing the
864 section. Therefore use also non-canonical name form for the same
865 file containing the section. */
192b62ce
TT
866 symbol_file_add_separate (abfd.get (), objfile->original_name,
867 add_flags, objfile);
24ba069a 868 }
608e2dbb
TT
869 }
870 if ((add_flags & SYMFILE_NO_READ) == 0)
871 require_partial_symbols (objfile, 0);
872}
873
3d6e24f0
JB
874/* Initialize entry point information for this objfile. */
875
876static void
877init_entry_point_info (struct objfile *objfile)
878{
6ef55de7
TT
879 struct entry_info *ei = &objfile->per_bfd->ei;
880
881 if (ei->initialized)
882 return;
883 ei->initialized = 1;
884
3d6e24f0
JB
885 /* Save startup file's range of PC addresses to help blockframe.c
886 decide where the bottom of the stack is. */
887
888 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
889 {
890 /* Executable file -- record its entry point so we'll recognize
891 the startup file because it contains the entry point. */
6ef55de7
TT
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
3d6e24f0
JB
894 }
895 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
896 && bfd_get_start_address (objfile->obfd) != 0)
897 {
898 /* Some shared libraries may have entry points set and be
899 runnable. There's no clear way to indicate this, so just check
900 for values other than zero. */
6ef55de7
TT
901 ei->entry_point = bfd_get_start_address (objfile->obfd);
902 ei->entry_point_p = 1;
3d6e24f0
JB
903 }
904 else
905 {
906 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 907 ei->entry_point_p = 0;
3d6e24f0
JB
908 }
909
6ef55de7 910 if (ei->entry_point_p)
3d6e24f0 911 {
53eddfa6 912 struct obj_section *osect;
6ef55de7 913 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 914 int found;
3d6e24f0
JB
915
916 /* Make certain that the address points at real code, and not a
917 function descriptor. */
918 entry_point
df6d5441 919 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
920 entry_point,
921 &current_target);
922
923 /* Remove any ISA markers, so that this matches entries in the
924 symbol table. */
6ef55de7 925 ei->entry_point
df6d5441 926 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
927
928 found = 0;
929 ALL_OBJFILE_OSECTIONS (objfile, osect)
930 {
931 struct bfd_section *sect = osect->the_bfd_section;
932
933 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
934 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
935 + bfd_get_section_size (sect)))
936 {
6ef55de7 937 ei->the_bfd_section_index
53eddfa6
TT
938 = gdb_bfd_section_index (objfile->obfd, sect);
939 found = 1;
940 break;
941 }
942 }
943
944 if (!found)
6ef55de7 945 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
946 }
947}
948
c906108c
SS
949/* Process a symbol file, as either the main file or as a dynamically
950 loaded file.
951
36e4d068
JB
952 This function does not set the OBJFILE's entry-point info.
953
96baa820
JM
954 OBJFILE is where the symbols are to be read from.
955
7e8580c1
JB
956 ADDRS is the list of section load addresses. If the user has given
957 an 'add-symbol-file' command, then this is the list of offsets and
958 addresses he or she provided as arguments to the command; or, if
959 we're handling a shared library, these are the actual addresses the
960 sections are loaded at, according to the inferior's dynamic linker
961 (as gleaned by GDB's shared library code). We convert each address
962 into an offset from the section VMA's as it appears in the object
963 file, and then call the file's sym_offsets function to convert this
964 into a format-specific offset table --- a `struct section_offsets'.
96baa820 965
7eedccfa
PP
966 ADD_FLAGS encodes verbosity level, whether this is main symbol or
967 an extra symbol file such as dynamically loaded code, and wether
968 breakpoint reset should be deferred. */
c906108c 969
36e4d068
JB
970static void
971syms_from_objfile_1 (struct objfile *objfile,
972 struct section_addr_info *addrs,
b15cc25c 973 symfile_add_flags add_flags)
c906108c 974{
a39a16c4 975 struct section_addr_info *local_addr = NULL;
c906108c 976 struct cleanup *old_chain;
7eedccfa 977 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 978
8fb8eb5c 979 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 980
75245b24 981 if (objfile->sf == NULL)
36e4d068
JB
982 {
983 /* No symbols to load, but we still need to make sure
984 that the section_offsets table is allocated. */
d445b2f6 985 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
987
988 objfile->num_sections = num_sections;
989 objfile->section_offsets
224c3ddb
SM
990 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
991 size);
36e4d068
JB
992 memset (objfile->section_offsets, 0, size);
993 return;
994 }
75245b24 995
c906108c
SS
996 /* Make sure that partially constructed symbol tables will be cleaned up
997 if an error occurs during symbol reading. */
74b7792f 998 old_chain = make_cleanup_free_objfile (objfile);
c906108c 999
6bf667bb
DE
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
c378eb4e 1002 no load address was specified. */
6bf667bb 1003 if (! addrs)
a39a16c4 1004 {
d445b2f6 1005 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
c5aa993b 1010 if (mainline)
c906108c
SS
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1013 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 free_objfile (symfile_objfile);
adb7f338 1021 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
53a5351d 1034 and assume that <addr> is where that got loaded.
c906108c 1035
53a5351d
JM
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
6bf667bb 1038 if (addrs->num_sections > 0)
75242ef4 1039 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
c378eb4e 1043 initial symbol reading for this file. */
c906108c 1044
c5aa993b 1045 (*objfile->sf->sym_init) (objfile);
7eedccfa 1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1047
6bf667bb 1048 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1049
608e2dbb 1050 read_symbols (objfile, add_flags);
b11896a5 1051
c906108c
SS
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 discard_cleanups (old_chain);
f7545552 1055 xfree (local_addr);
c906108c
SS
1056}
1057
36e4d068
JB
1058/* Same as syms_from_objfile_1, but also initializes the objfile
1059 entry-point info. */
1060
6bf667bb 1061static void
36e4d068
JB
1062syms_from_objfile (struct objfile *objfile,
1063 struct section_addr_info *addrs,
b15cc25c 1064 symfile_add_flags add_flags)
36e4d068 1065{
6bf667bb 1066 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1067 init_entry_point_info (objfile);
1068}
1069
c906108c
SS
1070/* Perform required actions after either reading in the initial
1071 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1072 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1073
e7d52ed3 1074static void
b15cc25c 1075finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1076{
c906108c 1077 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1078 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1079 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1080 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1081 {
1082 /* OK, make it the "real" symbol file. */
1083 symfile_objfile = objfile;
1084
c1e56572 1085 clear_symtab_users (add_flags);
c906108c 1086 }
7eedccfa 1087 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1088 {
69de3c6a 1089 breakpoint_re_set ();
c906108c
SS
1090 }
1091
1092 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1093 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1094}
1095
1096/* Process a symbol file, as either the main file or as a dynamically
1097 loaded file.
1098
5417f6dc 1099 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1100 A new reference is acquired by this function.
7904e09f 1101
24ba069a
JK
1102 For NAME description see allocate_objfile's definition.
1103
7eedccfa
PP
1104 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1105 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1106
6bf667bb 1107 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1108 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1109
63524580
JK
1110 PARENT is the original objfile if ABFD is a separate debug info file.
1111 Otherwise PARENT is NULL.
1112
c906108c 1113 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1114 Upon failure, jumps back to command level (never returns). */
7eedccfa 1115
7904e09f 1116static struct objfile *
b15cc25c
PA
1117symbol_file_add_with_addrs (bfd *abfd, const char *name,
1118 symfile_add_flags add_flags,
6bf667bb 1119 struct section_addr_info *addrs,
b15cc25c 1120 objfile_flags flags, struct objfile *parent)
c906108c
SS
1121{
1122 struct objfile *objfile;
7eedccfa 1123 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1124 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1125 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1126 && (readnow_symbol_files
1127 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1128
9291a0cd 1129 if (readnow_symbol_files)
b11896a5
TT
1130 {
1131 flags |= OBJF_READNOW;
1132 add_flags &= ~SYMFILE_NO_READ;
1133 }
9291a0cd 1134
5417f6dc
RM
1135 /* Give user a chance to burp if we'd be
1136 interactively wiping out any existing symbols. */
c906108c
SS
1137
1138 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1139 && mainline
c906108c 1140 && from_tty
9e2f0ad4 1141 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1142 error (_("Not confirmed."));
c906108c 1143
b15cc25c
PA
1144 if (mainline)
1145 flags |= OBJF_MAINLINE;
1146 objfile = allocate_objfile (abfd, name, flags);
c906108c 1147
63524580
JK
1148 if (parent)
1149 add_separate_debug_objfile (objfile, parent);
1150
78a4a9b9
AC
1151 /* We either created a new mapped symbol table, mapped an existing
1152 symbol table file which has not had initial symbol reading
c378eb4e 1153 performed, or need to read an unmapped symbol table. */
b11896a5 1154 if (should_print)
c906108c 1155 {
769d7dc4
AC
1156 if (deprecated_pre_add_symbol_hook)
1157 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1158 else
c906108c 1159 {
55333a84
DE
1160 printf_unfiltered (_("Reading symbols from %s..."), name);
1161 wrap_here ("");
1162 gdb_flush (gdb_stdout);
c906108c 1163 }
c906108c 1164 }
6bf667bb 1165 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1166
1167 /* We now have at least a partial symbol table. Check to see if the
1168 user requested that all symbols be read on initial access via either
1169 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1170 all partial symbol tables for this objfile if so. */
c906108c 1171
9291a0cd 1172 if ((flags & OBJF_READNOW))
c906108c 1173 {
b11896a5 1174 if (should_print)
c906108c 1175 {
a3f17187 1176 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1177 wrap_here ("");
1178 gdb_flush (gdb_stdout);
1179 }
1180
ccefe4c4
TT
1181 if (objfile->sf)
1182 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1183 }
1184
b11896a5 1185 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1186 {
1187 wrap_here ("");
55333a84 1188 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1189 wrap_here ("");
1190 }
1191
b11896a5 1192 if (should_print)
c906108c 1193 {
769d7dc4
AC
1194 if (deprecated_post_add_symbol_hook)
1195 deprecated_post_add_symbol_hook ();
c906108c 1196 else
55333a84 1197 printf_unfiltered (_("done.\n"));
c906108c
SS
1198 }
1199
481d0f41
JB
1200 /* We print some messages regardless of whether 'from_tty ||
1201 info_verbose' is true, so make sure they go out at the right
1202 time. */
1203 gdb_flush (gdb_stdout);
1204
109f874e 1205 if (objfile->sf == NULL)
8caee43b
PP
1206 {
1207 observer_notify_new_objfile (objfile);
c378eb4e 1208 return objfile; /* No symbols. */
8caee43b 1209 }
109f874e 1210
e7d52ed3 1211 finish_new_objfile (objfile, add_flags);
c906108c 1212
06d3b283 1213 observer_notify_new_objfile (objfile);
c906108c 1214
ce7d4522 1215 bfd_cache_close_all ();
c906108c
SS
1216 return (objfile);
1217}
1218
24ba069a
JK
1219/* Add BFD as a separate debug file for OBJFILE. For NAME description
1220 see allocate_objfile's definition. */
9cce227f
TG
1221
1222void
b15cc25c
PA
1223symbol_file_add_separate (bfd *bfd, const char *name,
1224 symfile_add_flags symfile_flags,
24ba069a 1225 struct objfile *objfile)
9cce227f 1226{
089b4803
TG
1227 struct section_addr_info *sap;
1228 struct cleanup *my_cleanup;
1229
1230 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1231 because sections of BFD may not match sections of OBJFILE and because
1232 vma may have been modified by tools such as prelink. */
1233 sap = build_section_addr_info_from_objfile (objfile);
1234 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1235
870f88f7 1236 symbol_file_add_with_addrs
24ba069a 1237 (bfd, name, symfile_flags, sap,
9cce227f 1238 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1239 | OBJF_USERLOADED),
1240 objfile);
089b4803
TG
1241
1242 do_cleanups (my_cleanup);
9cce227f 1243}
7904e09f 1244
eb4556d7
JB
1245/* Process the symbol file ABFD, as either the main file or as a
1246 dynamically loaded file.
6bf667bb 1247 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1248
eb4556d7 1249struct objfile *
b15cc25c
PA
1250symbol_file_add_from_bfd (bfd *abfd, const char *name,
1251 symfile_add_flags add_flags,
eb4556d7 1252 struct section_addr_info *addrs,
b15cc25c 1253 objfile_flags flags, struct objfile *parent)
eb4556d7 1254{
24ba069a
JK
1255 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1256 parent);
eb4556d7
JB
1257}
1258
7904e09f 1259/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1260 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1261
7904e09f 1262struct objfile *
b15cc25c
PA
1263symbol_file_add (const char *name, symfile_add_flags add_flags,
1264 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1265{
192b62ce 1266 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1267
192b62ce
TT
1268 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1269 flags, NULL);
7904e09f
JB
1270}
1271
d7db6da9
FN
1272/* Call symbol_file_add() with default values and update whatever is
1273 affected by the loading of a new main().
1274 Used when the file is supplied in the gdb command line
1275 and by some targets with special loading requirements.
1276 The auxiliary function, symbol_file_add_main_1(), has the flags
1277 argument for the switches that can only be specified in the symbol_file
1278 command itself. */
5417f6dc 1279
1adeb98a 1280void
ecf45d2c 1281symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1282{
ecf45d2c 1283 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1284}
1285
1286static void
ecf45d2c
SL
1287symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1288 objfile_flags flags)
d7db6da9 1289{
ecf45d2c 1290 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1291
7eedccfa 1292 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1293
d7db6da9
FN
1294 /* Getting new symbols may change our opinion about
1295 what is frameless. */
1296 reinit_frame_cache ();
1297
b15cc25c 1298 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1299 set_initial_language ();
1adeb98a
FN
1300}
1301
1302void
1303symbol_file_clear (int from_tty)
1304{
1305 if ((have_full_symbols () || have_partial_symbols ())
1306 && from_tty
0430b0d6
AS
1307 && (symfile_objfile
1308 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1309 objfile_name (symfile_objfile))
0430b0d6 1310 : !query (_("Discard symbol table? "))))
8a3fe4f8 1311 error (_("Not confirmed."));
1adeb98a 1312
0133421a
JK
1313 /* solib descriptors may have handles to objfiles. Wipe them before their
1314 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1315 no_shared_libraries (NULL, from_tty);
1316
0133421a
JK
1317 free_all_objfiles ();
1318
adb7f338 1319 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1320 if (from_tty)
1321 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1322}
1323
c4dcb155
SM
1324/* See symfile.h. */
1325
1326int separate_debug_file_debug = 0;
1327
5b5d99cf 1328static int
287ccc17 1329separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1330 struct objfile *parent_objfile)
5b5d99cf 1331{
904578ed
JK
1332 unsigned long file_crc;
1333 int file_crc_p;
32a0e547 1334 struct stat parent_stat, abfd_stat;
904578ed 1335 int verified_as_different;
32a0e547
JK
1336
1337 /* Find a separate debug info file as if symbols would be present in
1338 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1339 section can contain just the basename of PARENT_OBJFILE without any
1340 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1341 the separate debug infos with the same basename can exist. */
32a0e547 1342
4262abfb 1343 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1344 return 0;
5b5d99cf 1345
c4dcb155
SM
1346 if (separate_debug_file_debug)
1347 printf_unfiltered (_(" Trying %s\n"), name);
1348
192b62ce 1349 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1350
192b62ce 1351 if (abfd == NULL)
5b5d99cf
JB
1352 return 0;
1353
0ba1096a 1354 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1355
1356 Some operating systems, e.g. Windows, do not provide a meaningful
1357 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1358 meaningful st_dev.) Files accessed from gdbservers that do not
1359 support the vFile:fstat packet will also have st_ino set to zero.
1360 Do not indicate a duplicate library in either case. While there
1361 is no guarantee that a system that provides meaningful inode
1362 numbers will never set st_ino to zero, this is merely an
1363 optimization, so we do not need to worry about false negatives. */
32a0e547 1364
192b62ce 1365 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1366 && abfd_stat.st_ino != 0
1367 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1368 {
904578ed
JK
1369 if (abfd_stat.st_dev == parent_stat.st_dev
1370 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1371 return 0;
904578ed 1372 verified_as_different = 1;
32a0e547 1373 }
904578ed
JK
1374 else
1375 verified_as_different = 0;
32a0e547 1376
192b62ce 1377 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1378
904578ed
JK
1379 if (!file_crc_p)
1380 return 0;
1381
287ccc17
JK
1382 if (crc != file_crc)
1383 {
dccee2de
TT
1384 unsigned long parent_crc;
1385
0a93529c
GB
1386 /* If the files could not be verified as different with
1387 bfd_stat then we need to calculate the parent's CRC
1388 to verify whether the files are different or not. */
904578ed 1389
dccee2de 1390 if (!verified_as_different)
904578ed 1391 {
dccee2de 1392 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1393 return 0;
1394 }
1395
dccee2de 1396 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1397 warning (_("the debug information found in \"%s\""
1398 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1399 name, objfile_name (parent_objfile));
904578ed 1400
287ccc17
JK
1401 return 0;
1402 }
1403
1404 return 1;
5b5d99cf
JB
1405}
1406
aa28a74e 1407char *debug_file_directory = NULL;
920d2a44
AC
1408static void
1409show_debug_file_directory (struct ui_file *file, int from_tty,
1410 struct cmd_list_element *c, const char *value)
1411{
3e43a32a
MS
1412 fprintf_filtered (file,
1413 _("The directory where separate debug "
1414 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1415 value);
1416}
5b5d99cf
JB
1417
1418#if ! defined (DEBUG_SUBDIRECTORY)
1419#define DEBUG_SUBDIRECTORY ".debug"
1420#endif
1421
1db33378
PP
1422/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1423 where the original file resides (may not be the same as
1424 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1425 looking for. CANON_DIR is the "realpath" form of DIR.
1426 DIR must contain a trailing '/'.
1427 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1428
1429static char *
1430find_separate_debug_file (const char *dir,
1431 const char *canon_dir,
1432 const char *debuglink,
1433 unsigned long crc32, struct objfile *objfile)
9cce227f 1434{
1db33378
PP
1435 char *debugdir;
1436 char *debugfile;
9cce227f 1437 int i;
e4ab2fad
JK
1438 VEC (char_ptr) *debugdir_vec;
1439 struct cleanup *back_to;
1440 int ix;
5b5d99cf 1441
c4dcb155
SM
1442 if (separate_debug_file_debug)
1443 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1444 "%s\n"), objfile_name (objfile));
1445
325fac50 1446 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1447 i = strlen (dir);
1db33378
PP
1448 if (canon_dir != NULL && strlen (canon_dir) > i)
1449 i = strlen (canon_dir);
1ffa32ee 1450
224c3ddb
SM
1451 debugfile
1452 = (char *) xmalloc (strlen (debug_file_directory) + 1
1453 + i
1454 + strlen (DEBUG_SUBDIRECTORY)
1455 + strlen ("/")
1456 + strlen (debuglink)
1457 + 1);
5b5d99cf
JB
1458
1459 /* First try in the same directory as the original file. */
1460 strcpy (debugfile, dir);
1db33378 1461 strcat (debugfile, debuglink);
5b5d99cf 1462
32a0e547 1463 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1464 return debugfile;
5417f6dc 1465
5b5d99cf
JB
1466 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, DEBUG_SUBDIRECTORY);
1469 strcat (debugfile, "/");
1db33378 1470 strcat (debugfile, debuglink);
5b5d99cf 1471
32a0e547 1472 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1473 return debugfile;
5417f6dc 1474
24ddea62 1475 /* Then try in the global debugfile directories.
f888f159 1476
24ddea62
JK
1477 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1478 cause "/..." lookups. */
5417f6dc 1479
e4ab2fad
JK
1480 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1481 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1482
e4ab2fad
JK
1483 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1484 {
1485 strcpy (debugfile, debugdir);
aa28a74e 1486 strcat (debugfile, "/");
24ddea62 1487 strcat (debugfile, dir);
1db33378 1488 strcat (debugfile, debuglink);
aa28a74e 1489
32a0e547 1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1491 {
1492 do_cleanups (back_to);
1493 return debugfile;
1494 }
24ddea62
JK
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1db33378
PP
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1500 strlen (gdb_sysroot)) == 0
1db33378 1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1502 {
e4ab2fad 1503 strcpy (debugfile, debugdir);
1db33378 1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1505 strcat (debugfile, "/");
1db33378 1506 strcat (debugfile, debuglink);
24ddea62 1507
32a0e547 1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
24ddea62 1513 }
aa28a74e 1514 }
f888f159 1515
e4ab2fad 1516 do_cleanups (back_to);
25522fae 1517 xfree (debugfile);
1db33378
PP
1518 return NULL;
1519}
1520
7edbb660 1521/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1522 If there were no directory separators in PATH, PATH will be empty
1523 string on return. */
1524
1525static void
1526terminate_after_last_dir_separator (char *path)
1527{
1528 int i;
1529
1530 /* Strip off the final filename part, leaving the directory name,
1531 followed by a slash. The directory can be relative or absolute. */
1532 for (i = strlen(path) - 1; i >= 0; i--)
1533 if (IS_DIR_SEPARATOR (path[i]))
1534 break;
1535
1536 /* If I is -1 then no directory is present there and DIR will be "". */
1537 path[i + 1] = '\0';
1538}
1539
1540/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1541 Returns pathname, or NULL. */
1542
1543char *
1544find_separate_debug_file_by_debuglink (struct objfile *objfile)
1545{
1546 char *debuglink;
1547 char *dir, *canon_dir;
1548 char *debugfile;
1549 unsigned long crc32;
1550 struct cleanup *cleanups;
1551
cc0ea93c 1552 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1553
1554 if (debuglink == NULL)
1555 {
1556 /* There's no separate debug info, hence there's no way we could
1557 load it => no warning. */
1558 return NULL;
1559 }
1560
71bdabee 1561 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1562 dir = xstrdup (objfile_name (objfile));
71bdabee 1563 make_cleanup (xfree, dir);
1db33378
PP
1564 terminate_after_last_dir_separator (dir);
1565 canon_dir = lrealpath (dir);
1566
1567 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1568 crc32, objfile);
1569 xfree (canon_dir);
1570
1571 if (debugfile == NULL)
1572 {
1db33378
PP
1573 /* For PR gdb/9538, try again with realpath (if different from the
1574 original). */
1575
1576 struct stat st_buf;
1577
4262abfb
JK
1578 if (lstat (objfile_name (objfile), &st_buf) == 0
1579 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1580 {
1581 char *symlink_dir;
1582
4262abfb 1583 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1584 if (symlink_dir != NULL)
1585 {
1586 make_cleanup (xfree, symlink_dir);
1587 terminate_after_last_dir_separator (symlink_dir);
1588 if (strcmp (dir, symlink_dir) != 0)
1589 {
1590 /* Different directory, so try using it. */
1591 debugfile = find_separate_debug_file (symlink_dir,
1592 symlink_dir,
1593 debuglink,
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1db33378 1599 }
aa28a74e 1600
1db33378 1601 do_cleanups (cleanups);
25522fae 1602 return debugfile;
5b5d99cf
JB
1603}
1604
c906108c
SS
1605/* This is the symbol-file command. Read the file, analyze its
1606 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1607 the command is rather bizarre:
1608
1609 1. The function buildargv implements various quoting conventions
1610 which are undocumented and have little or nothing in common with
1611 the way things are quoted (or not quoted) elsewhere in GDB.
1612
1613 2. Options are used, which are not generally used in GDB (perhaps
1614 "set mapped on", "set readnow on" would be better)
1615
1616 3. The order of options matters, which is contrary to GNU
c906108c
SS
1617 conventions (because it is confusing and inconvenient). */
1618
1619void
1d8b34a7 1620symbol_file_command (const char *args, int from_tty)
c906108c 1621{
c906108c
SS
1622 dont_repeat ();
1623
1624 if (args == NULL)
1625 {
1adeb98a 1626 symbol_file_clear (from_tty);
c906108c
SS
1627 }
1628 else
1629 {
b15cc25c 1630 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1631 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1632 struct cleanup *cleanups;
1633 char *name = NULL;
1634
ecf45d2c
SL
1635 if (from_tty)
1636 add_flags |= SYMFILE_VERBOSE;
1637
773a1edc
TT
1638 gdb_argv built_argv (args);
1639 for (char *arg : built_argv)
c906108c 1640 {
773a1edc 1641 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1642 flags |= OBJF_READNOW;
773a1edc
TT
1643 else if (*arg == '-')
1644 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1645 else
1646 {
773a1edc
TT
1647 symbol_file_add_main_1 (arg, add_flags, flags);
1648 name = arg;
78a4a9b9 1649 }
c906108c
SS
1650 }
1651
1652 if (name == NULL)
cb2f3a29 1653 error (_("no symbol file name was specified"));
c906108c
SS
1654 }
1655}
1656
1657/* Set the initial language.
1658
cb2f3a29
MK
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
c906108c 1667
8b60591b 1668void
fba45db2 1669set_initial_language (void)
c906108c 1670{
9e6c82ad 1671 enum language lang = main_language ();
c906108c 1672
9e6c82ad 1673 if (lang == language_unknown)
01f8c46d 1674 {
bf6d8a91 1675 char *name = main_name ();
d12307c1 1676 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1677
bf6d8a91
TT
1678 if (sym != NULL)
1679 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1680 }
cb2f3a29 1681
ccefe4c4
TT
1682 if (lang == language_unknown)
1683 {
1684 /* Make C the default language */
1685 lang = language_c;
c906108c 1686 }
ccefe4c4
TT
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1690}
1691
cb2f3a29
MK
1692/* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
c906108c 1696
192b62ce 1697gdb_bfd_ref_ptr
97a41605 1698symfile_bfd_open (const char *name)
c906108c 1699{
97a41605
GB
1700 int desc = -1;
1701 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1702
97a41605 1703 if (!is_target_filename (name))
f1838a98 1704 {
ee0c3293 1705 char *absolute_name;
f1838a98 1706
ee0c3293 1707 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1708
97a41605
GB
1709 /* Look down path for it, allocate 2nd new malloc'd copy. */
1710 desc = openp (getenv ("PATH"),
1711 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1712 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1713#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1714 if (desc < 0)
1715 {
ee0c3293 1716 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1717
ee0c3293 1718 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 exename, O_RDONLY | O_BINARY, &absolute_name);
1722 }
c906108c 1723#endif
97a41605 1724 if (desc < 0)
ee0c3293 1725 perror_with_name (expanded_name.get ());
cb2f3a29 1726
97a41605
GB
1727 make_cleanup (xfree, absolute_name);
1728 name = absolute_name;
1729 }
c906108c 1730
192b62ce
TT
1731 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1732 if (sym_bfd == NULL)
faab9922
JK
1733 error (_("`%s': can't open to read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
97a41605 1735
192b62ce
TT
1736 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1737 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1738
192b62ce
TT
1739 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1740 error (_("`%s': can't read symbols: %s."), name,
1741 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1742
faab9922
JK
1743 do_cleanups (back_to);
1744
cb2f3a29 1745 return sym_bfd;
c906108c
SS
1746}
1747
cb2f3a29
MK
1748/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1749 the section was not found. */
1750
0e931cf0 1751int
a121b7c1 1752get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1753{
1754 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1755
0e931cf0
JB
1756 if (sect)
1757 return sect->index;
1758 else
1759 return -1;
1760}
1761
c256e171
DE
1762/* Link SF into the global symtab_fns list.
1763 FLAVOUR is the file format that SF handles.
1764 Called on startup by the _initialize routine in each object file format
1765 reader, to register information about each format the reader is prepared
1766 to handle. */
c906108c
SS
1767
1768void
c256e171 1769add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1770{
c256e171
DE
1771 registered_sym_fns fns = { flavour, sf };
1772
1773 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1774}
1775
cb2f3a29
MK
1776/* Initialize OBJFILE to read symbols from its associated BFD. It
1777 either returns or calls error(). The result is an initialized
1778 struct sym_fns in the objfile structure, that contains cached
1779 information about the symbol file. */
c906108c 1780
00b5771c 1781static const struct sym_fns *
31d99776 1782find_sym_fns (bfd *abfd)
c906108c 1783{
c256e171 1784 registered_sym_fns *rsf;
31d99776 1785 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1786 int i;
c906108c 1787
75245b24
MS
1788 if (our_flavour == bfd_target_srec_flavour
1789 || our_flavour == bfd_target_ihex_flavour
1790 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1791 return NULL; /* No symbols. */
75245b24 1792
c256e171
DE
1793 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1794 if (our_flavour == rsf->sym_flavour)
1795 return rsf->sym_fns;
cb2f3a29 1796
8a3fe4f8 1797 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1798 bfd_get_target (abfd));
c906108c
SS
1799}
1800\f
cb2f3a29 1801
c906108c
SS
1802/* This function runs the load command of our current target. */
1803
1804static void
fba45db2 1805load_command (char *arg, int from_tty)
c906108c 1806{
5b3fca71
TT
1807 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1808
e5cc9f32
JB
1809 dont_repeat ();
1810
4487aabf
PA
1811 /* The user might be reloading because the binary has changed. Take
1812 this opportunity to check. */
1813 reopen_exec_file ();
1814 reread_symbols ();
1815
c906108c 1816 if (arg == NULL)
1986bccd
AS
1817 {
1818 char *parg;
1819 int count = 0;
1820
1821 parg = arg = get_exec_file (1);
1822
1823 /* Count how many \ " ' tab space there are in the name. */
1824 while ((parg = strpbrk (parg, "\\\"'\t ")))
1825 {
1826 parg++;
1827 count++;
1828 }
1829
1830 if (count)
1831 {
1832 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1833 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1834 char *ptemp = temp;
1835 char *prev;
1836
1837 make_cleanup (xfree, temp);
1838
1839 prev = parg = arg;
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 strncpy (ptemp, prev, parg - prev);
1843 ptemp += parg - prev;
1844 prev = parg++;
1845 *ptemp++ = '\\';
1846 }
1847 strcpy (ptemp, prev);
1848
1849 arg = temp;
1850 }
1851 }
1852
c906108c 1853 target_load (arg, from_tty);
2889e661
JB
1854
1855 /* After re-loading the executable, we don't really know which
1856 overlays are mapped any more. */
1857 overlay_cache_invalid = 1;
5b3fca71
TT
1858
1859 do_cleanups (cleanup);
c906108c
SS
1860}
1861
1862/* This version of "load" should be usable for any target. Currently
1863 it is just used for remote targets, not inftarg.c or core files,
1864 on the theory that only in that case is it useful.
1865
1866 Avoiding xmodem and the like seems like a win (a) because we don't have
1867 to worry about finding it, and (b) On VMS, fork() is very slow and so
1868 we don't want to run a subprocess. On the other hand, I'm not sure how
1869 performance compares. */
917317f4 1870
917317f4
JM
1871static int validate_download = 0;
1872
e4f9b4d5
MS
1873/* Callback service function for generic_load (bfd_map_over_sections). */
1874
1875static void
1876add_section_size_callback (bfd *abfd, asection *asec, void *data)
1877{
19ba03f4 1878 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1879
2c500098 1880 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1881}
1882
1883/* Opaque data for load_section_callback. */
1884struct load_section_data {
f698ca8e 1885 CORE_ADDR load_offset;
a76d924d
DJ
1886 struct load_progress_data *progress_data;
1887 VEC(memory_write_request_s) *requests;
1888};
1889
1890/* Opaque data for load_progress. */
1891struct load_progress_data {
1892 /* Cumulative data. */
e4f9b4d5
MS
1893 unsigned long write_count;
1894 unsigned long data_count;
1895 bfd_size_type total_size;
a76d924d
DJ
1896};
1897
1898/* Opaque data for load_progress for a single section. */
1899struct load_progress_section_data {
1900 struct load_progress_data *cumulative;
cf7a04e8 1901
a76d924d 1902 /* Per-section data. */
cf7a04e8
DJ
1903 const char *section_name;
1904 ULONGEST section_sent;
1905 ULONGEST section_size;
1906 CORE_ADDR lma;
1907 gdb_byte *buffer;
e4f9b4d5
MS
1908};
1909
a76d924d 1910/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1911
1912static void
1913load_progress (ULONGEST bytes, void *untyped_arg)
1914{
19ba03f4
SM
1915 struct load_progress_section_data *args
1916 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1917 struct load_progress_data *totals;
1918
1919 if (args == NULL)
1920 /* Writing padding data. No easy way to get at the cumulative
1921 stats, so just ignore this. */
1922 return;
1923
1924 totals = args->cumulative;
1925
1926 if (bytes == 0 && args->section_sent == 0)
1927 {
1928 /* The write is just starting. Let the user know we've started
1929 this section. */
112e8700
SM
1930 current_uiout->message ("Loading section %s, size %s lma %s\n",
1931 args->section_name,
1932 hex_string (args->section_size),
1933 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1934 return;
1935 }
cf7a04e8
DJ
1936
1937 if (validate_download)
1938 {
1939 /* Broken memories and broken monitors manifest themselves here
1940 when bring new computers to life. This doubles already slow
1941 downloads. */
1942 /* NOTE: cagney/1999-10-18: A more efficient implementation
1943 might add a verify_memory() method to the target vector and
1944 then use that. remote.c could implement that method using
1945 the ``qCRC'' packet. */
224c3ddb 1946 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1947 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1948
1949 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1950 error (_("Download verify read failed at %s"),
f5656ead 1951 paddress (target_gdbarch (), args->lma));
cf7a04e8 1952 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1953 error (_("Download verify compare failed at %s"),
f5656ead 1954 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1955 do_cleanups (verify_cleanups);
1956 }
a76d924d 1957 totals->data_count += bytes;
cf7a04e8
DJ
1958 args->lma += bytes;
1959 args->buffer += bytes;
a76d924d 1960 totals->write_count += 1;
cf7a04e8 1961 args->section_sent += bytes;
522002f9 1962 if (check_quit_flag ()
cf7a04e8
DJ
1963 || (deprecated_ui_load_progress_hook != NULL
1964 && deprecated_ui_load_progress_hook (args->section_name,
1965 args->section_sent)))
1966 error (_("Canceled the download"));
1967
1968 if (deprecated_show_load_progress != NULL)
1969 deprecated_show_load_progress (args->section_name,
1970 args->section_sent,
1971 args->section_size,
a76d924d
DJ
1972 totals->data_count,
1973 totals->total_size);
cf7a04e8
DJ
1974}
1975
e4f9b4d5
MS
1976/* Callback service function for generic_load (bfd_map_over_sections). */
1977
1978static void
1979load_section_callback (bfd *abfd, asection *asec, void *data)
1980{
a76d924d 1981 struct memory_write_request *new_request;
19ba03f4 1982 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1983 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1984 bfd_size_type size = bfd_get_section_size (asec);
1985 gdb_byte *buffer;
cf7a04e8 1986 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1987
cf7a04e8
DJ
1988 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1989 return;
e4f9b4d5 1990
cf7a04e8
DJ
1991 if (size == 0)
1992 return;
e4f9b4d5 1993
a76d924d
DJ
1994 new_request = VEC_safe_push (memory_write_request_s,
1995 args->requests, NULL);
1996 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 1997 section_data = XCNEW (struct load_progress_section_data);
a76d924d 1998 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1999 new_request->end = new_request->begin + size; /* FIXME Should size
2000 be in instead? */
224c3ddb 2001 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2002 new_request->baton = section_data;
cf7a04e8 2003
a76d924d 2004 buffer = new_request->data;
cf7a04e8 2005
a76d924d
DJ
2006 section_data->cumulative = args->progress_data;
2007 section_data->section_name = sect_name;
2008 section_data->section_size = size;
2009 section_data->lma = new_request->begin;
2010 section_data->buffer = buffer;
cf7a04e8
DJ
2011
2012 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2013}
2014
2015/* Clean up an entire memory request vector, including load
2016 data and progress records. */
cf7a04e8 2017
a76d924d
DJ
2018static void
2019clear_memory_write_data (void *arg)
2020{
19ba03f4 2021 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2022 VEC(memory_write_request_s) *vec = *vec_p;
2023 int i;
2024 struct memory_write_request *mr;
cf7a04e8 2025
a76d924d
DJ
2026 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2027 {
2028 xfree (mr->data);
2029 xfree (mr->baton);
2030 }
2031 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2032}
2033
dcb07cfa
PA
2034static void print_transfer_performance (struct ui_file *stream,
2035 unsigned long data_count,
2036 unsigned long write_count,
2037 std::chrono::steady_clock::duration d);
2038
c906108c 2039void
9cbe5fff 2040generic_load (const char *args, int from_tty)
c906108c 2041{
773a1edc 2042 struct cleanup *old_cleanups;
e4f9b4d5 2043 struct load_section_data cbdata;
a76d924d 2044 struct load_progress_data total_progress;
79a45e25 2045 struct ui_out *uiout = current_uiout;
a76d924d 2046
e4f9b4d5
MS
2047 CORE_ADDR entry;
2048
a76d924d
DJ
2049 memset (&cbdata, 0, sizeof (cbdata));
2050 memset (&total_progress, 0, sizeof (total_progress));
2051 cbdata.progress_data = &total_progress;
2052
773a1edc 2053 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2054
d1a41061
PP
2055 if (args == NULL)
2056 error_no_arg (_("file to load"));
1986bccd 2057
773a1edc 2058 gdb_argv argv (args);
1986bccd 2059
ee0c3293 2060 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2061
2062 if (argv[1] != NULL)
917317f4 2063 {
f698ca8e 2064 const char *endptr;
ba5f2f8a 2065
f698ca8e 2066 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2067
2068 /* If the last word was not a valid number then
2069 treat it as a file name with spaces in. */
2070 if (argv[1] == endptr)
2071 error (_("Invalid download offset:%s."), argv[1]);
2072
2073 if (argv[2] != NULL)
2074 error (_("Too many parameters."));
917317f4 2075 }
c906108c 2076
c378eb4e 2077 /* Open the file for loading. */
ee0c3293 2078 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2079 if (loadfile_bfd == NULL)
ee0c3293 2080 perror_with_name (filename.get ());
917317f4 2081
192b62ce 2082 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2083 {
ee0c3293 2084 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2085 bfd_errmsg (bfd_get_error ()));
2086 }
c5aa993b 2087
192b62ce 2088 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2089 (void *) &total_progress.total_size);
2090
192b62ce 2091 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2092
dcb07cfa
PA
2093 using namespace std::chrono;
2094
2095 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2096
a76d924d
DJ
2097 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2098 load_progress) != 0)
2099 error (_("Load failed"));
c906108c 2100
dcb07cfa 2101 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2102
192b62ce 2103 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2104 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2105 uiout->text ("Start address ");
2106 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2107 uiout->text (", load size ");
2108 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2109 uiout->text ("\n");
fb14de7b 2110 regcache_write_pc (get_current_regcache (), entry);
c906108c 2111
38963c97
DJ
2112 /* Reset breakpoints, now that we have changed the load image. For
2113 instance, breakpoints may have been set (or reset, by
2114 post_create_inferior) while connected to the target but before we
2115 loaded the program. In that case, the prologue analyzer could
2116 have read instructions from the target to find the right
2117 breakpoint locations. Loading has changed the contents of that
2118 memory. */
2119
2120 breakpoint_re_set ();
2121
a76d924d
DJ
2122 print_transfer_performance (gdb_stdout, total_progress.data_count,
2123 total_progress.write_count,
dcb07cfa 2124 end_time - start_time);
c906108c
SS
2125
2126 do_cleanups (old_cleanups);
2127}
2128
dcb07cfa
PA
2129/* Report on STREAM the performance of a memory transfer operation,
2130 such as 'load'. DATA_COUNT is the number of bytes transferred.
2131 WRITE_COUNT is the number of separate write operations, or 0, if
2132 that information is not available. TIME is how long the operation
2133 lasted. */
c906108c 2134
dcb07cfa 2135static void
d9fcf2fb 2136print_transfer_performance (struct ui_file *stream,
917317f4
JM
2137 unsigned long data_count,
2138 unsigned long write_count,
dcb07cfa 2139 std::chrono::steady_clock::duration time)
917317f4 2140{
dcb07cfa 2141 using namespace std::chrono;
79a45e25 2142 struct ui_out *uiout = current_uiout;
2b71414d 2143
dcb07cfa 2144 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2145
112e8700 2146 uiout->text ("Transfer rate: ");
dcb07cfa 2147 if (ms.count () > 0)
8b93c638 2148 {
dcb07cfa 2149 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2150
112e8700 2151 if (uiout->is_mi_like_p ())
9f43d28c 2152 {
112e8700
SM
2153 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2154 uiout->text (" bits/sec");
9f43d28c
DJ
2155 }
2156 else if (rate < 1024)
2157 {
112e8700
SM
2158 uiout->field_fmt ("transfer-rate", "%lu", rate);
2159 uiout->text (" bytes/sec");
9f43d28c
DJ
2160 }
2161 else
2162 {
112e8700
SM
2163 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2164 uiout->text (" KB/sec");
9f43d28c 2165 }
8b93c638
JM
2166 }
2167 else
2168 {
112e8700
SM
2169 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2170 uiout->text (" bits in <1 sec");
8b93c638
JM
2171 }
2172 if (write_count > 0)
2173 {
112e8700
SM
2174 uiout->text (", ");
2175 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2176 uiout->text (" bytes/write");
8b93c638 2177 }
112e8700 2178 uiout->text (".\n");
c906108c
SS
2179}
2180
2181/* This function allows the addition of incrementally linked object files.
2182 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2183/* Note: ezannoni 2000-04-13 This function/command used to have a
2184 special case syntax for the rombug target (Rombug is the boot
2185 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2186 rombug case, the user doesn't need to supply a text address,
2187 instead a call to target_link() (in target.c) would supply the
c378eb4e 2188 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2189
c906108c 2190static void
2cf311eb 2191add_symbol_file_command (const char *args, int from_tty)
c906108c 2192{
5af949e3 2193 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2194 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2195 char *arg;
2acceee2
JM
2196 int argcnt = 0;
2197 int sec_num = 0;
db162d44
EZ
2198 int expecting_sec_name = 0;
2199 int expecting_sec_addr = 0;
76ad5e1e 2200 struct objfile *objf;
b15cc25c
PA
2201 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2202 symfile_add_flags add_flags = 0;
2203
2204 if (from_tty)
2205 add_flags |= SYMFILE_VERBOSE;
db162d44 2206
a39a16c4 2207 struct sect_opt
2acceee2 2208 {
a121b7c1
PA
2209 const char *name;
2210 const char *value;
a39a16c4 2211 };
db162d44 2212
a39a16c4 2213 struct section_addr_info *section_addrs;
f978cb06 2214 std::vector<sect_opt> sect_opts;
3017564a 2215 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2216
c906108c
SS
2217 dont_repeat ();
2218
2219 if (args == NULL)
8a3fe4f8 2220 error (_("add-symbol-file takes a file name and an address"));
c906108c 2221
773a1edc 2222 gdb_argv argv (args);
db162d44 2223
5b96932b
AS
2224 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2225 {
c378eb4e 2226 /* Process the argument. */
db162d44 2227 if (argcnt == 0)
c906108c 2228 {
c378eb4e 2229 /* The first argument is the file name. */
ee0c3293 2230 filename.reset (tilde_expand (arg));
c906108c 2231 }
41dc8db8
MB
2232 else if (argcnt == 1)
2233 {
2234 /* The second argument is always the text address at which
2235 to load the program. */
f978cb06
TT
2236 sect_opt sect = { ".text", arg };
2237 sect_opts.push_back (sect);
41dc8db8 2238 }
db162d44 2239 else
41dc8db8
MB
2240 {
2241 /* It's an option (starting with '-') or it's an argument
2242 to an option. */
41dc8db8
MB
2243 if (expecting_sec_name)
2244 {
f978cb06
TT
2245 sect_opt sect = { arg, NULL };
2246 sect_opts.push_back (sect);
41dc8db8
MB
2247 expecting_sec_name = 0;
2248 }
2249 else if (expecting_sec_addr)
2250 {
f978cb06 2251 sect_opts.back ().value = arg;
41dc8db8 2252 expecting_sec_addr = 0;
41dc8db8
MB
2253 }
2254 else if (strcmp (arg, "-readnow") == 0)
2255 flags |= OBJF_READNOW;
2256 else if (strcmp (arg, "-s") == 0)
2257 {
2258 expecting_sec_name = 1;
2259 expecting_sec_addr = 1;
2260 }
2261 else
2262 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2263 " [-readnow] [-s <secname> <addr>]*"));
2264 }
c906108c 2265 }
c906108c 2266
927890d0
JB
2267 /* This command takes at least two arguments. The first one is a
2268 filename, and the second is the address where this file has been
2269 loaded. Abort now if this address hasn't been provided by the
2270 user. */
f978cb06 2271 if (sect_opts.empty ())
ee0c3293
TT
2272 error (_("The address where %s has been loaded is missing"),
2273 filename.get ());
927890d0 2274
c378eb4e 2275 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2276 a sect_addr_info structure to be passed around to other
2277 functions. We have to split this up into separate print
bb599908 2278 statements because hex_string returns a local static
c378eb4e 2279 string. */
5417f6dc 2280
ee0c3293
TT
2281 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2282 filename.get ());
f978cb06 2283 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2284 make_cleanup (xfree, section_addrs);
f978cb06 2285 for (sect_opt &sect : sect_opts)
c906108c 2286 {
db162d44 2287 CORE_ADDR addr;
f978cb06
TT
2288 const char *val = sect.value;
2289 const char *sec = sect.name;
5417f6dc 2290
ae822768 2291 addr = parse_and_eval_address (val);
db162d44 2292
db162d44 2293 /* Here we store the section offsets in the order they were
c378eb4e 2294 entered on the command line. */
a121b7c1 2295 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2296 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2297 printf_unfiltered ("\t%s_addr = %s\n", sec,
2298 paddress (gdbarch, addr));
db162d44
EZ
2299 sec_num++;
2300
5417f6dc 2301 /* The object's sections are initialized when a
db162d44 2302 call is made to build_objfile_section_table (objfile).
5417f6dc 2303 This happens in reread_symbols.
db162d44
EZ
2304 At this point, we don't know what file type this is,
2305 so we can't determine what section names are valid. */
2acceee2 2306 }
d76488d8 2307 section_addrs->num_sections = sec_num;
db162d44 2308
2acceee2 2309 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2310 error (_("Not confirmed."));
c906108c 2311
ee0c3293 2312 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2313
2314 add_target_sections_of_objfile (objf);
c906108c
SS
2315
2316 /* Getting new symbols may change our opinion about what is
2317 frameless. */
2318 reinit_frame_cache ();
db162d44 2319 do_cleanups (my_cleanups);
c906108c
SS
2320}
2321\f
70992597 2322
63644780
NB
2323/* This function removes a symbol file that was added via add-symbol-file. */
2324
2325static void
2cf311eb 2326remove_symbol_file_command (const char *args, int from_tty)
63644780 2327{
63644780 2328 struct objfile *objf = NULL;
63644780 2329 struct program_space *pspace = current_program_space;
63644780
NB
2330
2331 dont_repeat ();
2332
2333 if (args == NULL)
2334 error (_("remove-symbol-file: no symbol file provided"));
2335
773a1edc 2336 gdb_argv argv (args);
63644780
NB
2337
2338 if (strcmp (argv[0], "-a") == 0)
2339 {
2340 /* Interpret the next argument as an address. */
2341 CORE_ADDR addr;
2342
2343 if (argv[1] == NULL)
2344 error (_("Missing address argument"));
2345
2346 if (argv[2] != NULL)
2347 error (_("Junk after %s"), argv[1]);
2348
2349 addr = parse_and_eval_address (argv[1]);
2350
2351 ALL_OBJFILES (objf)
2352 {
d03de421
PA
2353 if ((objf->flags & OBJF_USERLOADED) != 0
2354 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2355 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2356 break;
2357 }
2358 }
2359 else if (argv[0] != NULL)
2360 {
2361 /* Interpret the current argument as a file name. */
63644780
NB
2362
2363 if (argv[1] != NULL)
2364 error (_("Junk after %s"), argv[0]);
2365
ee0c3293 2366 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2367
2368 ALL_OBJFILES (objf)
2369 {
d03de421
PA
2370 if ((objf->flags & OBJF_USERLOADED) != 0
2371 && (objf->flags & OBJF_SHARED) != 0
63644780 2372 && objf->pspace == pspace
ee0c3293 2373 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2374 break;
2375 }
2376 }
2377
2378 if (objf == NULL)
2379 error (_("No symbol file found"));
2380
2381 if (from_tty
2382 && !query (_("Remove symbol table from file \"%s\"? "),
2383 objfile_name (objf)))
2384 error (_("Not confirmed."));
2385
2386 free_objfile (objf);
2387 clear_symtab_users (0);
63644780
NB
2388}
2389
c906108c 2390/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2391
c906108c 2392void
fba45db2 2393reread_symbols (void)
c906108c
SS
2394{
2395 struct objfile *objfile;
2396 long new_modtime;
c906108c
SS
2397 struct stat new_statbuf;
2398 int res;
4c404b8b 2399 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2400
2401 /* With the addition of shared libraries, this should be modified,
2402 the load time should be saved in the partial symbol tables, since
2403 different tables may come from different source files. FIXME.
2404 This routine should then walk down each partial symbol table
c378eb4e 2405 and see if the symbol table that it originates from has been changed. */
c906108c 2406
c5aa993b
JM
2407 for (objfile = object_files; objfile; objfile = objfile->next)
2408 {
9cce227f
TG
2409 if (objfile->obfd == NULL)
2410 continue;
2411
2412 /* Separate debug objfiles are handled in the main objfile. */
2413 if (objfile->separate_debug_objfile_backlink)
2414 continue;
2415
02aeec7b
JB
2416 /* If this object is from an archive (what you usually create with
2417 `ar', often called a `static library' on most systems, though
2418 a `shared library' on AIX is also an archive), then you should
2419 stat on the archive name, not member name. */
9cce227f
TG
2420 if (objfile->obfd->my_archive)
2421 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2422 else
4262abfb 2423 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2424 if (res != 0)
2425 {
c378eb4e 2426 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2427 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2428 objfile_name (objfile));
9cce227f
TG
2429 continue;
2430 }
2431 new_modtime = new_statbuf.st_mtime;
2432 if (new_modtime != objfile->mtime)
2433 {
2434 struct cleanup *old_cleanups;
2435 struct section_offsets *offsets;
2436 int num_offsets;
24ba069a 2437 char *original_name;
9cce227f
TG
2438
2439 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2440 objfile_name (objfile));
9cce227f
TG
2441
2442 /* There are various functions like symbol_file_add,
2443 symfile_bfd_open, syms_from_objfile, etc., which might
2444 appear to do what we want. But they have various other
2445 effects which we *don't* want. So we just do stuff
2446 ourselves. We don't worry about mapped files (for one thing,
2447 any mapped file will be out of date). */
2448
2449 /* If we get an error, blow away this objfile (not sure if
2450 that is the correct response for things like shared
2451 libraries). */
2452 old_cleanups = make_cleanup_free_objfile (objfile);
2453 /* We need to do this whenever any symbols go away. */
2454 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2455
0ba1096a
KT
2456 if (exec_bfd != NULL
2457 && filename_cmp (bfd_get_filename (objfile->obfd),
2458 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2459 {
2460 /* Reload EXEC_BFD without asking anything. */
2461
2462 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2463 }
2464
f6eeced0
JK
2465 /* Keep the calls order approx. the same as in free_objfile. */
2466
2467 /* Free the separate debug objfiles. It will be
2468 automatically recreated by sym_read. */
2469 free_objfile_separate_debug (objfile);
2470
2471 /* Remove any references to this objfile in the global
2472 value lists. */
2473 preserve_values (objfile);
2474
2475 /* Nuke all the state that we will re-read. Much of the following
2476 code which sets things to NULL really is necessary to tell
2477 other parts of GDB that there is nothing currently there.
2478
2479 Try to keep the freeing order compatible with free_objfile. */
2480
2481 if (objfile->sf != NULL)
2482 {
2483 (*objfile->sf->sym_finish) (objfile);
2484 }
2485
2486 clear_objfile_data (objfile);
2487
e1507e95 2488 /* Clean up any state BFD has sitting around. */
a4453b7e 2489 {
192b62ce 2490 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2491 char *obfd_filename;
a4453b7e
TT
2492
2493 obfd_filename = bfd_get_filename (objfile->obfd);
2494 /* Open the new BFD before freeing the old one, so that
2495 the filename remains live. */
192b62ce
TT
2496 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2497 objfile->obfd = temp.release ();
e1507e95 2498 if (objfile->obfd == NULL)
192b62ce 2499 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2500 }
2501
24ba069a
JK
2502 original_name = xstrdup (objfile->original_name);
2503 make_cleanup (xfree, original_name);
2504
9cce227f
TG
2505 /* bfd_openr sets cacheable to true, which is what we want. */
2506 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2507 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2508 bfd_errmsg (bfd_get_error ()));
2509
2510 /* Save the offsets, we will nuke them with the rest of the
2511 objfile_obstack. */
2512 num_offsets = objfile->num_sections;
2513 offsets = ((struct section_offsets *)
2514 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2515 memcpy (offsets, objfile->section_offsets,
2516 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2517
9cce227f
TG
2518 /* FIXME: Do we have to free a whole linked list, or is this
2519 enough? */
2520 if (objfile->global_psymbols.list)
2521 xfree (objfile->global_psymbols.list);
2522 memset (&objfile->global_psymbols, 0,
2523 sizeof (objfile->global_psymbols));
2524 if (objfile->static_psymbols.list)
2525 xfree (objfile->static_psymbols.list);
2526 memset (&objfile->static_psymbols, 0,
2527 sizeof (objfile->static_psymbols));
2528
c378eb4e 2529 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2530 psymbol_bcache_free (objfile->psymbol_cache);
2531 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2532
2533 /* NB: after this call to obstack_free, objfiles_changed
2534 will need to be called (see discussion below). */
9cce227f
TG
2535 obstack_free (&objfile->objfile_obstack, 0);
2536 objfile->sections = NULL;
43f3e411 2537 objfile->compunit_symtabs = NULL;
9cce227f
TG
2538 objfile->psymtabs = NULL;
2539 objfile->psymtabs_addrmap = NULL;
2540 objfile->free_psymtabs = NULL;
34eaf542 2541 objfile->template_symbols = NULL;
9cce227f 2542
9cce227f
TG
2543 /* obstack_init also initializes the obstack so it is
2544 empty. We could use obstack_specify_allocation but
d82ea6a8 2545 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2546 obstack_init (&objfile->objfile_obstack);
779bd270 2547
846060df
JB
2548 /* set_objfile_per_bfd potentially allocates the per-bfd
2549 data on the objfile's obstack (if sharing data across
2550 multiple users is not possible), so it's important to
2551 do it *after* the obstack has been initialized. */
2552 set_objfile_per_bfd (objfile);
2553
224c3ddb
SM
2554 objfile->original_name
2555 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2556 strlen (original_name));
24ba069a 2557
779bd270
DE
2558 /* Reset the sym_fns pointer. The ELF reader can change it
2559 based on whether .gdb_index is present, and we need it to
2560 start over. PR symtab/15885 */
8fb8eb5c 2561 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2562
d82ea6a8 2563 build_objfile_section_table (objfile);
9cce227f
TG
2564 terminate_minimal_symbol_table (objfile);
2565
2566 /* We use the same section offsets as from last time. I'm not
2567 sure whether that is always correct for shared libraries. */
2568 objfile->section_offsets = (struct section_offsets *)
2569 obstack_alloc (&objfile->objfile_obstack,
2570 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2571 memcpy (objfile->section_offsets, offsets,
2572 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2573 objfile->num_sections = num_offsets;
2574
2575 /* What the hell is sym_new_init for, anyway? The concept of
2576 distinguishing between the main file and additional files
2577 in this way seems rather dubious. */
2578 if (objfile == symfile_objfile)
c906108c 2579 {
9cce227f 2580 (*objfile->sf->sym_new_init) (objfile);
c906108c 2581 }
9cce227f
TG
2582
2583 (*objfile->sf->sym_init) (objfile);
2584 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2585
2586 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2587
2588 /* We are about to read new symbols and potentially also
2589 DWARF information. Some targets may want to pass addresses
2590 read from DWARF DIE's through an adjustment function before
2591 saving them, like MIPS, which may call into
2592 "find_pc_section". When called, that function will make
2593 use of per-objfile program space data.
2594
2595 Since we discarded our section information above, we have
2596 dangling pointers in the per-objfile program space data
2597 structure. Force GDB to update the section mapping
2598 information by letting it know the objfile has changed,
2599 making the dangling pointers point to correct data
2600 again. */
2601
2602 objfiles_changed ();
2603
608e2dbb 2604 read_symbols (objfile, 0);
b11896a5 2605
9cce227f 2606 if (!objfile_has_symbols (objfile))
c906108c 2607 {
9cce227f
TG
2608 wrap_here ("");
2609 printf_unfiltered (_("(no debugging symbols found)\n"));
2610 wrap_here ("");
c5aa993b 2611 }
9cce227f
TG
2612
2613 /* We're done reading the symbol file; finish off complaints. */
2614 clear_complaints (&symfile_complaints, 0, 1);
2615
2616 /* Getting new symbols may change our opinion about what is
2617 frameless. */
2618
2619 reinit_frame_cache ();
2620
2621 /* Discard cleanups as symbol reading was successful. */
2622 discard_cleanups (old_cleanups);
2623
2624 /* If the mtime has changed between the time we set new_modtime
2625 and now, we *want* this to be out of date, so don't call stat
2626 again now. */
2627 objfile->mtime = new_modtime;
9cce227f 2628 init_entry_point_info (objfile);
4ac39b97 2629
4c404b8b 2630 new_objfiles.push_back (objfile);
c906108c
SS
2631 }
2632 }
c906108c 2633
4c404b8b 2634 if (!new_objfiles.empty ())
ea53e89f 2635 {
c1e56572 2636 clear_symtab_users (0);
4ac39b97
JK
2637
2638 /* clear_objfile_data for each objfile was called before freeing it and
2639 observer_notify_new_objfile (NULL) has been called by
2640 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2641 for (auto iter : new_objfiles)
2642 observer_notify_new_objfile (iter);
4ac39b97 2643
ea53e89f
JB
2644 /* At least one objfile has changed, so we can consider that
2645 the executable we're debugging has changed too. */
781b42b0 2646 observer_notify_executable_changed ();
ea53e89f 2647 }
c906108c 2648}
c906108c
SS
2649\f
2650
c5aa993b
JM
2651typedef struct
2652{
2653 char *ext;
c906108c 2654 enum language lang;
3fcf0b0d
TT
2655} filename_language;
2656
2657DEF_VEC_O (filename_language);
c906108c 2658
3fcf0b0d 2659static VEC (filename_language) *filename_language_table;
c906108c 2660
56618e20
TT
2661/* See symfile.h. */
2662
2663void
2664add_filename_language (const char *ext, enum language lang)
c906108c 2665{
3fcf0b0d
TT
2666 filename_language entry;
2667
2668 entry.ext = xstrdup (ext);
2669 entry.lang = lang;
c906108c 2670
3fcf0b0d 2671 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2672}
2673
2674static char *ext_args;
920d2a44
AC
2675static void
2676show_ext_args (struct ui_file *file, int from_tty,
2677 struct cmd_list_element *c, const char *value)
2678{
3e43a32a
MS
2679 fprintf_filtered (file,
2680 _("Mapping between filename extension "
2681 "and source language is \"%s\".\n"),
920d2a44
AC
2682 value);
2683}
c906108c
SS
2684
2685static void
26c41df3 2686set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2687{
2688 int i;
2689 char *cp = ext_args;
2690 enum language lang;
3fcf0b0d 2691 filename_language *entry;
c906108c 2692
c378eb4e 2693 /* First arg is filename extension, starting with '.' */
c906108c 2694 if (*cp != '.')
8a3fe4f8 2695 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2696
2697 /* Find end of first arg. */
c5aa993b 2698 while (*cp && !isspace (*cp))
c906108c
SS
2699 cp++;
2700
2701 if (*cp == '\0')
3e43a32a
MS
2702 error (_("'%s': two arguments required -- "
2703 "filename extension and language"),
c906108c
SS
2704 ext_args);
2705
c378eb4e 2706 /* Null-terminate first arg. */
c5aa993b 2707 *cp++ = '\0';
c906108c
SS
2708
2709 /* Find beginning of second arg, which should be a source language. */
529480d0 2710 cp = skip_spaces (cp);
c906108c
SS
2711
2712 if (*cp == '\0')
3e43a32a
MS
2713 error (_("'%s': two arguments required -- "
2714 "filename extension and language"),
c906108c
SS
2715 ext_args);
2716
2717 /* Lookup the language from among those we know. */
2718 lang = language_enum (cp);
2719
2720 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2721 for (i = 0;
2722 VEC_iterate (filename_language, filename_language_table, i, entry);
2723 ++i)
2724 {
2725 if (0 == strcmp (ext_args, entry->ext))
2726 break;
2727 }
c906108c 2728
3fcf0b0d 2729 if (entry == NULL)
c906108c 2730 {
c378eb4e 2731 /* New file extension. */
c906108c
SS
2732 add_filename_language (ext_args, lang);
2733 }
2734 else
2735 {
c378eb4e 2736 /* Redefining a previously known filename extension. */
c906108c
SS
2737
2738 /* if (from_tty) */
2739 /* query ("Really make files of type %s '%s'?", */
2740 /* ext_args, language_str (lang)); */
2741
3fcf0b0d
TT
2742 xfree (entry->ext);
2743 entry->ext = xstrdup (ext_args);
2744 entry->lang = lang;
c906108c
SS
2745 }
2746}
2747
2748static void
fba45db2 2749info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2750{
2751 int i;
3fcf0b0d 2752 filename_language *entry;
c906108c 2753
a3f17187 2754 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2755 printf_filtered ("\n\n");
3fcf0b0d
TT
2756 for (i = 0;
2757 VEC_iterate (filename_language, filename_language_table, i, entry);
2758 ++i)
2759 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2760}
2761
c906108c 2762enum language
dd786858 2763deduce_language_from_filename (const char *filename)
c906108c
SS
2764{
2765 int i;
e6a959d6 2766 const char *cp;
c906108c
SS
2767
2768 if (filename != NULL)
2769 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2770 {
2771 filename_language *entry;
2772
2773 for (i = 0;
2774 VEC_iterate (filename_language, filename_language_table, i, entry);
2775 ++i)
2776 if (strcmp (cp, entry->ext) == 0)
2777 return entry->lang;
2778 }
c906108c
SS
2779
2780 return language_unknown;
2781}
2782\f
43f3e411
DE
2783/* Allocate and initialize a new symbol table.
2784 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2785
2786struct symtab *
43f3e411 2787allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2788{
43f3e411
DE
2789 struct objfile *objfile = cust->objfile;
2790 struct symtab *symtab
2791 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2792
19ba03f4
SM
2793 symtab->filename
2794 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2795 objfile->per_bfd->filename_cache);
c5aa993b
JM
2796 symtab->fullname = NULL;
2797 symtab->language = deduce_language_from_filename (filename);
c906108c 2798
db0fec5c
DE
2799 /* This can be very verbose with lots of headers.
2800 Only print at higher debug levels. */
2801 if (symtab_create_debug >= 2)
45cfd468
DE
2802 {
2803 /* Be a bit clever with debugging messages, and don't print objfile
2804 every time, only when it changes. */
2805 static char *last_objfile_name = NULL;
2806
2807 if (last_objfile_name == NULL
4262abfb 2808 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2809 {
2810 xfree (last_objfile_name);
4262abfb 2811 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2812 fprintf_unfiltered (gdb_stdlog,
2813 "Creating one or more symtabs for objfile %s ...\n",
2814 last_objfile_name);
2815 }
2816 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2817 "Created symtab %s for module %s.\n",
2818 host_address_to_string (symtab), filename);
45cfd468
DE
2819 }
2820
43f3e411
DE
2821 /* Add it to CUST's list of symtabs. */
2822 if (cust->filetabs == NULL)
2823 {
2824 cust->filetabs = symtab;
2825 cust->last_filetab = symtab;
2826 }
2827 else
2828 {
2829 cust->last_filetab->next = symtab;
2830 cust->last_filetab = symtab;
2831 }
2832
2833 /* Backlink to the containing compunit symtab. */
2834 symtab->compunit_symtab = cust;
2835
2836 return symtab;
2837}
2838
2839/* Allocate and initialize a new compunit.
2840 NAME is the name of the main source file, if there is one, or some
2841 descriptive text if there are no source files. */
2842
2843struct compunit_symtab *
2844allocate_compunit_symtab (struct objfile *objfile, const char *name)
2845{
2846 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2847 struct compunit_symtab);
2848 const char *saved_name;
2849
2850 cu->objfile = objfile;
2851
2852 /* The name we record here is only for display/debugging purposes.
2853 Just save the basename to avoid path issues (too long for display,
2854 relative vs absolute, etc.). */
2855 saved_name = lbasename (name);
224c3ddb
SM
2856 cu->name
2857 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2858 strlen (saved_name));
43f3e411
DE
2859
2860 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2861
2862 if (symtab_create_debug)
2863 {
2864 fprintf_unfiltered (gdb_stdlog,
2865 "Created compunit symtab %s for %s.\n",
2866 host_address_to_string (cu),
2867 cu->name);
2868 }
2869
2870 return cu;
2871}
2872
2873/* Hook CU to the objfile it comes from. */
2874
2875void
2876add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2877{
2878 cu->next = cu->objfile->compunit_symtabs;
2879 cu->objfile->compunit_symtabs = cu;
c906108c 2880}
c906108c 2881\f
c5aa993b 2882
b15cc25c
PA
2883/* Reset all data structures in gdb which may contain references to
2884 symbol table data. */
c906108c
SS
2885
2886void
b15cc25c 2887clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2888{
2889 /* Someday, we should do better than this, by only blowing away
2890 the things that really need to be blown. */
c0501be5
DJ
2891
2892 /* Clear the "current" symtab first, because it is no longer valid.
2893 breakpoint_re_set may try to access the current symtab. */
2894 clear_current_source_symtab_and_line ();
2895
c906108c 2896 clear_displays ();
1bfeeb0f 2897 clear_last_displayed_sal ();
c906108c 2898 clear_pc_function_cache ();
06d3b283 2899 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2900
2901 /* Clear globals which might have pointed into a removed objfile.
2902 FIXME: It's not clear which of these are supposed to persist
2903 between expressions and which ought to be reset each time. */
2904 expression_context_block = NULL;
2905 innermost_block = NULL;
8756216b
DP
2906
2907 /* Varobj may refer to old symbols, perform a cleanup. */
2908 varobj_invalidate ();
2909
e700d1b2
JB
2910 /* Now that the various caches have been cleared, we can re_set
2911 our breakpoints without risking it using stale data. */
2912 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2913 breakpoint_re_set ();
c906108c
SS
2914}
2915
74b7792f
AC
2916static void
2917clear_symtab_users_cleanup (void *ignore)
2918{
c1e56572 2919 clear_symtab_users (0);
74b7792f 2920}
c906108c 2921\f
c906108c
SS
2922/* OVERLAYS:
2923 The following code implements an abstraction for debugging overlay sections.
2924
2925 The target model is as follows:
2926 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2927 same VMA, each with its own unique LMA (or load address).
c906108c 2928 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2929 sections, one by one, from the load address into the VMA address.
5417f6dc 2930 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2931 sections should be considered to be mapped from the VMA to the LMA.
2932 This information is used for symbol lookup, and memory read/write.
5417f6dc 2933 For instance, if a section has been mapped then its contents
c5aa993b 2934 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2935
2936 Two levels of debugger support for overlays are available. One is
2937 "manual", in which the debugger relies on the user to tell it which
2938 overlays are currently mapped. This level of support is
2939 implemented entirely in the core debugger, and the information about
2940 whether a section is mapped is kept in the objfile->obj_section table.
2941
2942 The second level of support is "automatic", and is only available if
2943 the target-specific code provides functionality to read the target's
2944 overlay mapping table, and translate its contents for the debugger
2945 (by updating the mapped state information in the obj_section tables).
2946
2947 The interface is as follows:
c5aa993b
JM
2948 User commands:
2949 overlay map <name> -- tell gdb to consider this section mapped
2950 overlay unmap <name> -- tell gdb to consider this section unmapped
2951 overlay list -- list the sections that GDB thinks are mapped
2952 overlay read-target -- get the target's state of what's mapped
2953 overlay off/manual/auto -- set overlay debugging state
2954 Functional interface:
2955 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2956 section, return that section.
5417f6dc 2957 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2958 the pc, either in its VMA or its LMA
714835d5 2959 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2960 section_is_overlay(sect): true if section's VMA != LMA
2961 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2962 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2963 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2964 overlay_mapped_address(...): map an address from section's LMA to VMA
2965 overlay_unmapped_address(...): map an address from section's VMA to LMA
2966 symbol_overlayed_address(...): Return a "current" address for symbol:
2967 either in VMA or LMA depending on whether
c378eb4e 2968 the symbol's section is currently mapped. */
c906108c
SS
2969
2970/* Overlay debugging state: */
2971
d874f1e2 2972enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2973int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2974
c906108c 2975/* Function: section_is_overlay (SECTION)
5417f6dc 2976 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2977 SECTION is loaded at an address different from where it will "run". */
2978
2979int
714835d5 2980section_is_overlay (struct obj_section *section)
c906108c 2981{
714835d5
UW
2982 if (overlay_debugging && section)
2983 {
2984 bfd *abfd = section->objfile->obfd;
2985 asection *bfd_section = section->the_bfd_section;
f888f159 2986
714835d5
UW
2987 if (bfd_section_lma (abfd, bfd_section) != 0
2988 && bfd_section_lma (abfd, bfd_section)
2989 != bfd_section_vma (abfd, bfd_section))
2990 return 1;
2991 }
c906108c
SS
2992
2993 return 0;
2994}
2995
2996/* Function: overlay_invalidate_all (void)
2997 Invalidate the mapped state of all overlay sections (mark it as stale). */
2998
2999static void
fba45db2 3000overlay_invalidate_all (void)
c906108c 3001{
c5aa993b 3002 struct objfile *objfile;
c906108c
SS
3003 struct obj_section *sect;
3004
3005 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3006 if (section_is_overlay (sect))
3007 sect->ovly_mapped = -1;
c906108c
SS
3008}
3009
714835d5 3010/* Function: section_is_mapped (SECTION)
5417f6dc 3011 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3012
3013 Access to the ovly_mapped flag is restricted to this function, so
3014 that we can do automatic update. If the global flag
3015 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3016 overlay_invalidate_all. If the mapped state of the particular
3017 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3018
714835d5
UW
3019int
3020section_is_mapped (struct obj_section *osect)
c906108c 3021{
9216df95
UW
3022 struct gdbarch *gdbarch;
3023
714835d5 3024 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3025 return 0;
3026
c5aa993b 3027 switch (overlay_debugging)
c906108c
SS
3028 {
3029 default:
d874f1e2 3030 case ovly_off:
c5aa993b 3031 return 0; /* overlay debugging off */
d874f1e2 3032 case ovly_auto: /* overlay debugging automatic */
1c772458 3033 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3034 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3035 gdbarch = get_objfile_arch (osect->objfile);
3036 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3037 {
3038 if (overlay_cache_invalid)
3039 {
3040 overlay_invalidate_all ();
3041 overlay_cache_invalid = 0;
3042 }
3043 if (osect->ovly_mapped == -1)
9216df95 3044 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3045 }
3046 /* fall thru to manual case */
d874f1e2 3047 case ovly_on: /* overlay debugging manual */
c906108c
SS
3048 return osect->ovly_mapped == 1;
3049 }
3050}
3051
c906108c
SS
3052/* Function: pc_in_unmapped_range
3053 If PC falls into the lma range of SECTION, return true, else false. */
3054
3055CORE_ADDR
714835d5 3056pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3057{
714835d5
UW
3058 if (section_is_overlay (section))
3059 {
3060 bfd *abfd = section->objfile->obfd;
3061 asection *bfd_section = section->the_bfd_section;
fbd35540 3062
714835d5
UW
3063 /* We assume the LMA is relocated by the same offset as the VMA. */
3064 bfd_vma size = bfd_get_section_size (bfd_section);
3065 CORE_ADDR offset = obj_section_offset (section);
3066
3067 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3068 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3069 return 1;
3070 }
c906108c 3071
c906108c
SS
3072 return 0;
3073}
3074
3075/* Function: pc_in_mapped_range
3076 If PC falls into the vma range of SECTION, return true, else false. */
3077
3078CORE_ADDR
714835d5 3079pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3080{
714835d5
UW
3081 if (section_is_overlay (section))
3082 {
3083 if (obj_section_addr (section) <= pc
3084 && pc < obj_section_endaddr (section))
3085 return 1;
3086 }
c906108c 3087
c906108c
SS
3088 return 0;
3089}
3090
9ec8e6a0
JB
3091/* Return true if the mapped ranges of sections A and B overlap, false
3092 otherwise. */
3b7bacac 3093
b9362cc7 3094static int
714835d5 3095sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3096{
714835d5
UW
3097 CORE_ADDR a_start = obj_section_addr (a);
3098 CORE_ADDR a_end = obj_section_endaddr (a);
3099 CORE_ADDR b_start = obj_section_addr (b);
3100 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3101
3102 return (a_start < b_end && b_start < a_end);
3103}
3104
c906108c
SS
3105/* Function: overlay_unmapped_address (PC, SECTION)
3106 Returns the address corresponding to PC in the unmapped (load) range.
3107 May be the same as PC. */
3108
3109CORE_ADDR
714835d5 3110overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3111{
714835d5
UW
3112 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3113 {
3114 bfd *abfd = section->objfile->obfd;
3115 asection *bfd_section = section->the_bfd_section;
fbd35540 3116
714835d5
UW
3117 return pc + bfd_section_lma (abfd, bfd_section)
3118 - bfd_section_vma (abfd, bfd_section);
3119 }
c906108c
SS
3120
3121 return pc;
3122}
3123
3124/* Function: overlay_mapped_address (PC, SECTION)
3125 Returns the address corresponding to PC in the mapped (runtime) range.
3126 May be the same as PC. */
3127
3128CORE_ADDR
714835d5 3129overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3130{
714835d5
UW
3131 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3132 {
3133 bfd *abfd = section->objfile->obfd;
3134 asection *bfd_section = section->the_bfd_section;
fbd35540 3135
714835d5
UW
3136 return pc + bfd_section_vma (abfd, bfd_section)
3137 - bfd_section_lma (abfd, bfd_section);
3138 }
c906108c
SS
3139
3140 return pc;
3141}
3142
5417f6dc 3143/* Function: symbol_overlayed_address
c906108c
SS
3144 Return one of two addresses (relative to the VMA or to the LMA),
3145 depending on whether the section is mapped or not. */
3146
c5aa993b 3147CORE_ADDR
714835d5 3148symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3149{
3150 if (overlay_debugging)
3151 {
c378eb4e 3152 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3153 if (section == 0)
3154 return address;
c378eb4e
MS
3155 /* If the symbol's section is not an overlay, just return its
3156 address. */
c906108c
SS
3157 if (!section_is_overlay (section))
3158 return address;
c378eb4e 3159 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3160 if (section_is_mapped (section))
3161 return address;
3162 /*
3163 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3164 * then return its LOADED address rather than its vma address!!
3165 */
3166 return overlay_unmapped_address (address, section);
3167 }
3168 return address;
3169}
3170
5417f6dc 3171/* Function: find_pc_overlay (PC)
c906108c
SS
3172 Return the best-match overlay section for PC:
3173 If PC matches a mapped overlay section's VMA, return that section.
3174 Else if PC matches an unmapped section's VMA, return that section.
3175 Else if PC matches an unmapped section's LMA, return that section. */
3176
714835d5 3177struct obj_section *
fba45db2 3178find_pc_overlay (CORE_ADDR pc)
c906108c 3179{
c5aa993b 3180 struct objfile *objfile;
c906108c
SS
3181 struct obj_section *osect, *best_match = NULL;
3182
3183 if (overlay_debugging)
b631e59b
KT
3184 {
3185 ALL_OBJSECTIONS (objfile, osect)
3186 if (section_is_overlay (osect))
c5aa993b 3187 {
b631e59b
KT
3188 if (pc_in_mapped_range (pc, osect))
3189 {
3190 if (section_is_mapped (osect))
3191 return osect;
3192 else
3193 best_match = osect;
3194 }
3195 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3196 best_match = osect;
3197 }
b631e59b 3198 }
714835d5 3199 return best_match;
c906108c
SS
3200}
3201
3202/* Function: find_pc_mapped_section (PC)
5417f6dc 3203 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3204 currently marked as MAPPED, return that section. Else return NULL. */
3205
714835d5 3206struct obj_section *
fba45db2 3207find_pc_mapped_section (CORE_ADDR pc)
c906108c 3208{
c5aa993b 3209 struct objfile *objfile;
c906108c
SS
3210 struct obj_section *osect;
3211
3212 if (overlay_debugging)
b631e59b
KT
3213 {
3214 ALL_OBJSECTIONS (objfile, osect)
3215 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3216 return osect;
3217 }
c906108c
SS
3218
3219 return NULL;
3220}
3221
3222/* Function: list_overlays_command
c378eb4e 3223 Print a list of mapped sections and their PC ranges. */
c906108c 3224
5d3055ad 3225static void
2cf311eb 3226list_overlays_command (const char *args, int from_tty)
c906108c 3227{
c5aa993b
JM
3228 int nmapped = 0;
3229 struct objfile *objfile;
c906108c
SS
3230 struct obj_section *osect;
3231
3232 if (overlay_debugging)
b631e59b
KT
3233 {
3234 ALL_OBJSECTIONS (objfile, osect)
714835d5 3235 if (section_is_mapped (osect))
b631e59b
KT
3236 {
3237 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3238 const char *name;
3239 bfd_vma lma, vma;
3240 int size;
3241
3242 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3243 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3244 size = bfd_get_section_size (osect->the_bfd_section);
3245 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3246
3247 printf_filtered ("Section %s, loaded at ", name);
3248 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3249 puts_filtered (" - ");
3250 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3251 printf_filtered (", mapped at ");
3252 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3253 puts_filtered (" - ");
3254 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3255 puts_filtered ("\n");
3256
3257 nmapped++;
3258 }
3259 }
c906108c 3260 if (nmapped == 0)
a3f17187 3261 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3262}
3263
3264/* Function: map_overlay_command
3265 Mark the named section as mapped (ie. residing at its VMA address). */
3266
5d3055ad 3267static void
2cf311eb 3268map_overlay_command (const char *args, int from_tty)
c906108c 3269{
c5aa993b
JM
3270 struct objfile *objfile, *objfile2;
3271 struct obj_section *sec, *sec2;
c906108c
SS
3272
3273 if (!overlay_debugging)
3e43a32a
MS
3274 error (_("Overlay debugging not enabled. Use "
3275 "either the 'overlay auto' or\n"
3276 "the 'overlay manual' command."));
c906108c
SS
3277
3278 if (args == 0 || *args == 0)
8a3fe4f8 3279 error (_("Argument required: name of an overlay section"));
c906108c 3280
c378eb4e 3281 /* First, find a section matching the user supplied argument. */
c906108c
SS
3282 ALL_OBJSECTIONS (objfile, sec)
3283 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3284 {
c378eb4e 3285 /* Now, check to see if the section is an overlay. */
714835d5 3286 if (!section_is_overlay (sec))
c5aa993b
JM
3287 continue; /* not an overlay section */
3288
c378eb4e 3289 /* Mark the overlay as "mapped". */
c5aa993b
JM
3290 sec->ovly_mapped = 1;
3291
3292 /* Next, make a pass and unmap any sections that are
3293 overlapped by this new section: */
3294 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3295 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3296 {
3297 if (info_verbose)
a3f17187 3298 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3299 bfd_section_name (objfile->obfd,
3300 sec2->the_bfd_section));
c378eb4e 3301 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3302 }
3303 return;
3304 }
8a3fe4f8 3305 error (_("No overlay section called %s"), args);
c906108c
SS
3306}
3307
3308/* Function: unmap_overlay_command
5417f6dc 3309 Mark the overlay section as unmapped
c906108c
SS
3310 (ie. resident in its LMA address range, rather than the VMA range). */
3311
5d3055ad 3312static void
2cf311eb 3313unmap_overlay_command (const char *args, int from_tty)
c906108c 3314{
c5aa993b 3315 struct objfile *objfile;
7a270e0c 3316 struct obj_section *sec = NULL;
c906108c
SS
3317
3318 if (!overlay_debugging)
3e43a32a
MS
3319 error (_("Overlay debugging not enabled. "
3320 "Use either the 'overlay auto' or\n"
3321 "the 'overlay manual' command."));
c906108c
SS
3322
3323 if (args == 0 || *args == 0)
8a3fe4f8 3324 error (_("Argument required: name of an overlay section"));
c906108c 3325
c378eb4e 3326 /* First, find a section matching the user supplied argument. */
c906108c
SS
3327 ALL_OBJSECTIONS (objfile, sec)
3328 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3329 {
3330 if (!sec->ovly_mapped)
8a3fe4f8 3331 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3332 sec->ovly_mapped = 0;
3333 return;
3334 }
8a3fe4f8 3335 error (_("No overlay section called %s"), args);
c906108c
SS
3336}
3337
3338/* Function: overlay_auto_command
3339 A utility command to turn on overlay debugging.
c378eb4e 3340 Possibly this should be done via a set/show command. */
c906108c
SS
3341
3342static void
2cf311eb 3343overlay_auto_command (const char *args, int from_tty)
c906108c 3344{
d874f1e2 3345 overlay_debugging = ovly_auto;
1900040c 3346 enable_overlay_breakpoints ();
c906108c 3347 if (info_verbose)
a3f17187 3348 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3349}
3350
3351/* Function: overlay_manual_command
3352 A utility command to turn on overlay debugging.
c378eb4e 3353 Possibly this should be done via a set/show command. */
c906108c
SS
3354
3355static void
2cf311eb 3356overlay_manual_command (const char *args, int from_tty)
c906108c 3357{
d874f1e2 3358 overlay_debugging = ovly_on;
1900040c 3359 disable_overlay_breakpoints ();
c906108c 3360 if (info_verbose)
a3f17187 3361 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3362}
3363
3364/* Function: overlay_off_command
3365 A utility command to turn on overlay debugging.
c378eb4e 3366 Possibly this should be done via a set/show command. */
c906108c
SS
3367
3368static void
2cf311eb 3369overlay_off_command (const char *args, int from_tty)
c906108c 3370{
d874f1e2 3371 overlay_debugging = ovly_off;
1900040c 3372 disable_overlay_breakpoints ();
c906108c 3373 if (info_verbose)
a3f17187 3374 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3375}
3376
3377static void
2cf311eb 3378overlay_load_command (const char *args, int from_tty)
c906108c 3379{
e17c207e
UW
3380 struct gdbarch *gdbarch = get_current_arch ();
3381
3382 if (gdbarch_overlay_update_p (gdbarch))
3383 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3384 else
8a3fe4f8 3385 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3386}
3387
3388/* Function: overlay_command
c378eb4e 3389 A place-holder for a mis-typed command. */
c906108c 3390
c378eb4e 3391/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3392static struct cmd_list_element *overlaylist;
c906108c
SS
3393
3394static void
fba45db2 3395overlay_command (char *args, int from_tty)
c906108c 3396{
c5aa993b 3397 printf_unfiltered
c906108c 3398 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3399 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3400}
3401
c906108c
SS
3402/* Target Overlays for the "Simplest" overlay manager:
3403
5417f6dc
RM
3404 This is GDB's default target overlay layer. It works with the
3405 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3406 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3407 so targets that use a different runtime overlay manager can
c906108c
SS
3408 substitute their own overlay_update function and take over the
3409 function pointer.
3410
3411 The overlay_update function pokes around in the target's data structures
3412 to see what overlays are mapped, and updates GDB's overlay mapping with
3413 this information.
3414
3415 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3416 unsigned _novlys; /# number of overlay sections #/
3417 unsigned _ovly_table[_novlys][4] = {
438e1e42 3418 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3419 {..., ..., ..., ...},
3420 }
3421 unsigned _novly_regions; /# number of overlay regions #/
3422 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3423 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3424 {..., ..., ...},
3425 }
c906108c
SS
3426 These functions will attempt to update GDB's mappedness state in the
3427 symbol section table, based on the target's mappedness state.
3428
3429 To do this, we keep a cached copy of the target's _ovly_table, and
3430 attempt to detect when the cached copy is invalidated. The main
3431 entry point is "simple_overlay_update(SECT), which looks up SECT in
3432 the cached table and re-reads only the entry for that section from
c378eb4e 3433 the target (whenever possible). */
c906108c
SS
3434
3435/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3436static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3437static unsigned cache_novlys = 0;
c906108c 3438static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3439enum ovly_index
3440 {
438e1e42 3441 VMA, OSIZE, LMA, MAPPED
c5aa993b 3442 };
c906108c 3443
c378eb4e 3444/* Throw away the cached copy of _ovly_table. */
3b7bacac 3445
c906108c 3446static void
fba45db2 3447simple_free_overlay_table (void)
c906108c
SS
3448{
3449 if (cache_ovly_table)
b8c9b27d 3450 xfree (cache_ovly_table);
c5aa993b 3451 cache_novlys = 0;
c906108c
SS
3452 cache_ovly_table = NULL;
3453 cache_ovly_table_base = 0;
3454}
3455
9216df95 3456/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3457 Convert to host order. int LEN is number of ints. */
3b7bacac 3458
c906108c 3459static void
9216df95 3460read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3461 int len, int size, enum bfd_endian byte_order)
c906108c 3462{
c378eb4e 3463 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3464 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3465 int i;
c906108c 3466
9216df95 3467 read_memory (memaddr, buf, len * size);
c906108c 3468 for (i = 0; i < len; i++)
e17a4113 3469 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3470}
3471
3472/* Find and grab a copy of the target _ovly_table
c378eb4e 3473 (and _novlys, which is needed for the table's size). */
3b7bacac 3474
c5aa993b 3475static int
fba45db2 3476simple_read_overlay_table (void)
c906108c 3477{
3b7344d5 3478 struct bound_minimal_symbol novlys_msym;
7c7b6655 3479 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3480 struct gdbarch *gdbarch;
3481 int word_size;
e17a4113 3482 enum bfd_endian byte_order;
c906108c
SS
3483
3484 simple_free_overlay_table ();
9b27852e 3485 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3486 if (! novlys_msym.minsym)
c906108c 3487 {
8a3fe4f8 3488 error (_("Error reading inferior's overlay table: "
0d43edd1 3489 "couldn't find `_novlys' variable\n"
8a3fe4f8 3490 "in inferior. Use `overlay manual' mode."));
0d43edd1 3491 return 0;
c906108c 3492 }
0d43edd1 3493
7c7b6655
TT
3494 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3495 if (! ovly_table_msym.minsym)
0d43edd1 3496 {
8a3fe4f8 3497 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3498 "`_ovly_table' array\n"
8a3fe4f8 3499 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3500 return 0;
3501 }
3502
7c7b6655 3503 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3504 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3505 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3506
77e371c0
TT
3507 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3508 4, byte_order);
0d43edd1 3509 cache_ovly_table
224c3ddb 3510 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3511 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3512 read_target_long_array (cache_ovly_table_base,
777ea8f1 3513 (unsigned int *) cache_ovly_table,
e17a4113 3514 cache_novlys * 4, word_size, byte_order);
0d43edd1 3515
c5aa993b 3516 return 1; /* SUCCESS */
c906108c
SS
3517}
3518
5417f6dc 3519/* Function: simple_overlay_update_1
c906108c
SS
3520 A helper function for simple_overlay_update. Assuming a cached copy
3521 of _ovly_table exists, look through it to find an entry whose vma,
3522 lma and size match those of OSECT. Re-read the entry and make sure
3523 it still matches OSECT (else the table may no longer be valid).
3524 Set OSECT's mapped state to match the entry. Return: 1 for
3525 success, 0 for failure. */
3526
3527static int
fba45db2 3528simple_overlay_update_1 (struct obj_section *osect)
c906108c 3529{
764c99c1 3530 int i;
fbd35540
MS
3531 bfd *obfd = osect->objfile->obfd;
3532 asection *bsect = osect->the_bfd_section;
9216df95
UW
3533 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3534 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3536
c906108c 3537 for (i = 0; i < cache_novlys; i++)
fbd35540 3538 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3539 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3540 {
9216df95
UW
3541 read_target_long_array (cache_ovly_table_base + i * word_size,
3542 (unsigned int *) cache_ovly_table[i],
e17a4113 3543 4, word_size, byte_order);
fbd35540 3544 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3545 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3546 {
3547 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3548 return 1;
3549 }
c378eb4e 3550 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3551 return 0;
3552 }
3553 return 0;
3554}
3555
3556/* Function: simple_overlay_update
5417f6dc
RM
3557 If OSECT is NULL, then update all sections' mapped state
3558 (after re-reading the entire target _ovly_table).
3559 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3560 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3561 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3562 re-read the entire cache, and go ahead and update all sections. */
3563
1c772458 3564void
fba45db2 3565simple_overlay_update (struct obj_section *osect)
c906108c 3566{
c5aa993b 3567 struct objfile *objfile;
c906108c 3568
c378eb4e 3569 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3570 if (osect)
c378eb4e 3571 /* Have we got a cached copy of the target's overlay table? */
c906108c 3572 if (cache_ovly_table != NULL)
9cc89665
MS
3573 {
3574 /* Does its cached location match what's currently in the
3575 symtab? */
3b7344d5 3576 struct bound_minimal_symbol minsym
9cc89665
MS
3577 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3578
3b7344d5 3579 if (minsym.minsym == NULL)
9cc89665
MS
3580 error (_("Error reading inferior's overlay table: couldn't "
3581 "find `_ovly_table' array\n"
3582 "in inferior. Use `overlay manual' mode."));
3583
77e371c0 3584 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3585 /* Then go ahead and try to look up this single section in
3586 the cache. */
3587 if (simple_overlay_update_1 (osect))
3588 /* Found it! We're done. */
3589 return;
3590 }
c906108c
SS
3591
3592 /* Cached table no good: need to read the entire table anew.
3593 Or else we want all the sections, in which case it's actually
3594 more efficient to read the whole table in one block anyway. */
3595
0d43edd1
JB
3596 if (! simple_read_overlay_table ())
3597 return;
3598
c378eb4e 3599 /* Now may as well update all sections, even if only one was requested. */
c906108c 3600 ALL_OBJSECTIONS (objfile, osect)
714835d5 3601 if (section_is_overlay (osect))
c5aa993b 3602 {
764c99c1 3603 int i;
fbd35540
MS
3604 bfd *obfd = osect->objfile->obfd;
3605 asection *bsect = osect->the_bfd_section;
c5aa993b 3606
c5aa993b 3607 for (i = 0; i < cache_novlys; i++)
fbd35540 3608 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3609 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3610 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3611 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3612 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3613 }
3614 }
c906108c
SS
3615}
3616
086df311
DJ
3617/* Set the output sections and output offsets for section SECTP in
3618 ABFD. The relocation code in BFD will read these offsets, so we
3619 need to be sure they're initialized. We map each section to itself,
3620 with no offset; this means that SECTP->vma will be honored. */
3621
3622static void
3623symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3624{
3625 sectp->output_section = sectp;
3626 sectp->output_offset = 0;
3627}
3628
ac8035ab
TG
3629/* Default implementation for sym_relocate. */
3630
ac8035ab
TG
3631bfd_byte *
3632default_symfile_relocate (struct objfile *objfile, asection *sectp,
3633 bfd_byte *buf)
3634{
3019eac3
DE
3635 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3636 DWO file. */
3637 bfd *abfd = sectp->owner;
ac8035ab
TG
3638
3639 /* We're only interested in sections with relocation
3640 information. */
3641 if ((sectp->flags & SEC_RELOC) == 0)
3642 return NULL;
3643
3644 /* We will handle section offsets properly elsewhere, so relocate as if
3645 all sections begin at 0. */
3646 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3647
3648 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3649}
3650
086df311
DJ
3651/* Relocate the contents of a debug section SECTP in ABFD. The
3652 contents are stored in BUF if it is non-NULL, or returned in a
3653 malloc'd buffer otherwise.
3654
3655 For some platforms and debug info formats, shared libraries contain
3656 relocations against the debug sections (particularly for DWARF-2;
3657 one affected platform is PowerPC GNU/Linux, although it depends on
3658 the version of the linker in use). Also, ELF object files naturally
3659 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3660 the relocations in order to get the locations of symbols correct.
3661 Another example that may require relocation processing, is the
3662 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3663 debug section. */
086df311
DJ
3664
3665bfd_byte *
ac8035ab
TG
3666symfile_relocate_debug_section (struct objfile *objfile,
3667 asection *sectp, bfd_byte *buf)
086df311 3668{
ac8035ab 3669 gdb_assert (objfile->sf->sym_relocate);
086df311 3670
ac8035ab 3671 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3672}
c906108c 3673
31d99776
DJ
3674struct symfile_segment_data *
3675get_symfile_segment_data (bfd *abfd)
3676{
00b5771c 3677 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3678
3679 if (sf == NULL)
3680 return NULL;
3681
3682 return sf->sym_segments (abfd);
3683}
3684
3685void
3686free_symfile_segment_data (struct symfile_segment_data *data)
3687{
3688 xfree (data->segment_bases);
3689 xfree (data->segment_sizes);
3690 xfree (data->segment_info);
3691 xfree (data);
3692}
3693
28c32713
JB
3694/* Given:
3695 - DATA, containing segment addresses from the object file ABFD, and
3696 the mapping from ABFD's sections onto the segments that own them,
3697 and
3698 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3699 segment addresses reported by the target,
3700 store the appropriate offsets for each section in OFFSETS.
3701
3702 If there are fewer entries in SEGMENT_BASES than there are segments
3703 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3704
8d385431
DJ
3705 If there are more entries, then ignore the extra. The target may
3706 not be able to distinguish between an empty data segment and a
3707 missing data segment; a missing text segment is less plausible. */
3b7bacac 3708
31d99776 3709int
3189cb12
DE
3710symfile_map_offsets_to_segments (bfd *abfd,
3711 const struct symfile_segment_data *data,
31d99776
DJ
3712 struct section_offsets *offsets,
3713 int num_segment_bases,
3714 const CORE_ADDR *segment_bases)
3715{
3716 int i;
3717 asection *sect;
3718
28c32713
JB
3719 /* It doesn't make sense to call this function unless you have some
3720 segment base addresses. */
202b96c1 3721 gdb_assert (num_segment_bases > 0);
28c32713 3722
31d99776
DJ
3723 /* If we do not have segment mappings for the object file, we
3724 can not relocate it by segments. */
3725 gdb_assert (data != NULL);
3726 gdb_assert (data->num_segments > 0);
3727
31d99776
DJ
3728 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3729 {
31d99776
DJ
3730 int which = data->segment_info[i];
3731
28c32713
JB
3732 gdb_assert (0 <= which && which <= data->num_segments);
3733
3734 /* Don't bother computing offsets for sections that aren't
3735 loaded as part of any segment. */
3736 if (! which)
3737 continue;
3738
3739 /* Use the last SEGMENT_BASES entry as the address of any extra
3740 segments mentioned in DATA->segment_info. */
31d99776 3741 if (which > num_segment_bases)
28c32713 3742 which = num_segment_bases;
31d99776 3743
28c32713
JB
3744 offsets->offsets[i] = (segment_bases[which - 1]
3745 - data->segment_bases[which - 1]);
31d99776
DJ
3746 }
3747
3748 return 1;
3749}
3750
3751static void
3752symfile_find_segment_sections (struct objfile *objfile)
3753{
3754 bfd *abfd = objfile->obfd;
3755 int i;
3756 asection *sect;
3757 struct symfile_segment_data *data;
3758
3759 data = get_symfile_segment_data (objfile->obfd);
3760 if (data == NULL)
3761 return;
3762
3763 if (data->num_segments != 1 && data->num_segments != 2)
3764 {
3765 free_symfile_segment_data (data);
3766 return;
3767 }
3768
3769 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3770 {
31d99776
DJ
3771 int which = data->segment_info[i];
3772
3773 if (which == 1)
3774 {
3775 if (objfile->sect_index_text == -1)
3776 objfile->sect_index_text = sect->index;
3777
3778 if (objfile->sect_index_rodata == -1)
3779 objfile->sect_index_rodata = sect->index;
3780 }
3781 else if (which == 2)
3782 {
3783 if (objfile->sect_index_data == -1)
3784 objfile->sect_index_data = sect->index;
3785
3786 if (objfile->sect_index_bss == -1)
3787 objfile->sect_index_bss = sect->index;
3788 }
3789 }
3790
3791 free_symfile_segment_data (data);
3792}
3793
76ad5e1e
NB
3794/* Listen for free_objfile events. */
3795
3796static void
3797symfile_free_objfile (struct objfile *objfile)
3798{
c33b2f12
MM
3799 /* Remove the target sections owned by this objfile. */
3800 if (objfile != NULL)
76ad5e1e
NB
3801 remove_target_sections ((void *) objfile);
3802}
3803
540c2971
DE
3804/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3805 Expand all symtabs that match the specified criteria.
3806 See quick_symbol_functions.expand_symtabs_matching for details. */
3807
3808void
14bc53a8
PA
3809expand_symtabs_matching
3810 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3811 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3812 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3813 enum search_domain kind)
540c2971
DE
3814{
3815 struct objfile *objfile;
3816
3817 ALL_OBJFILES (objfile)
3818 {
3819 if (objfile->sf)
bb4142cf 3820 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3821 symbol_matcher,
14bc53a8 3822 expansion_notify, kind);
540c2971
DE
3823 }
3824}
3825
3826/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3827 Map function FUN over every file.
3828 See quick_symbol_functions.map_symbol_filenames for details. */
3829
3830void
bb4142cf
DE
3831map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3832 int need_fullname)
540c2971
DE
3833{
3834 struct objfile *objfile;
3835
3836 ALL_OBJFILES (objfile)
3837 {
3838 if (objfile->sf)
3839 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3840 need_fullname);
3841 }
3842}
3843
c906108c 3844void
fba45db2 3845_initialize_symfile (void)
c906108c
SS
3846{
3847 struct cmd_list_element *c;
c5aa993b 3848
76ad5e1e
NB
3849 observer_attach_free_objfile (symfile_free_objfile);
3850
1a966eab
AC
3851 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3852Load symbol table from executable file FILE.\n\
c906108c 3853The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3854to execute."), &cmdlist);
5ba2abeb 3855 set_cmd_completer (c, filename_completer);
c906108c 3856
1a966eab 3857 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3858Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3859Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3860 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3861The optional arguments are section-name section-address pairs and\n\
3862should be specified if the data and bss segments are not contiguous\n\
1a966eab 3863with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3864 &cmdlist);
5ba2abeb 3865 set_cmd_completer (c, filename_completer);
c906108c 3866
63644780
NB
3867 c = add_cmd ("remove-symbol-file", class_files,
3868 remove_symbol_file_command, _("\
3869Remove a symbol file added via the add-symbol-file command.\n\
3870Usage: remove-symbol-file FILENAME\n\
3871 remove-symbol-file -a ADDRESS\n\
3872The file to remove can be identified by its filename or by an address\n\
3873that lies within the boundaries of this symbol file in memory."),
3874 &cmdlist);
3875
1a966eab
AC
3876 c = add_cmd ("load", class_files, load_command, _("\
3877Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3878for access from GDB.\n\
5cf30ebf
LM
3879An optional load OFFSET may also be given as a literal address.\n\
3880When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3881on its own.\n\
3882Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3883 set_cmd_completer (c, filename_completer);
c906108c 3884
c5aa993b 3885 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3886 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3887 "overlay ", 0, &cmdlist);
3888
3889 add_com_alias ("ovly", "overlay", class_alias, 1);
3890 add_com_alias ("ov", "overlay", class_alias, 1);
3891
c5aa993b 3892 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3893 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3894
c5aa993b 3895 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3896 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3897
c5aa993b 3898 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3899 _("List mappings of overlay sections."), &overlaylist);
c906108c 3900
c5aa993b 3901 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3902 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3903 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3904 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3905 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3906 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3907 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3908 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3909
3910 /* Filename extension to source language lookup table: */
26c41df3
AC
3911 add_setshow_string_noescape_cmd ("extension-language", class_files,
3912 &ext_args, _("\
3913Set mapping between filename extension and source language."), _("\
3914Show mapping between filename extension and source language."), _("\
3915Usage: set extension-language .foo bar"),
3916 set_ext_lang_command,
920d2a44 3917 show_ext_args,
26c41df3 3918 &setlist, &showlist);
c906108c 3919
c5aa993b 3920 add_info ("extensions", info_ext_lang_command,
1bedd215 3921 _("All filename extensions associated with a source language."));
917317f4 3922
525226b5
AC
3923 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3924 &debug_file_directory, _("\
24ddea62
JK
3925Set the directories where separate debug symbols are searched for."), _("\
3926Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3927Separate debug symbols are first searched for in the same\n\
3928directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3929and lastly at the path of the directory of the binary with\n\
24ddea62 3930each global debug-file-directory component prepended."),
525226b5 3931 NULL,
920d2a44 3932 show_debug_file_directory,
525226b5 3933 &setlist, &showlist);
770e7fc7
DE
3934
3935 add_setshow_enum_cmd ("symbol-loading", no_class,
3936 print_symbol_loading_enums, &print_symbol_loading,
3937 _("\
3938Set printing of symbol loading messages."), _("\
3939Show printing of symbol loading messages."), _("\
3940off == turn all messages off\n\
3941brief == print messages for the executable,\n\
3942 and brief messages for shared libraries\n\
3943full == print messages for the executable,\n\
3944 and messages for each shared library."),
3945 NULL,
3946 NULL,
3947 &setprintlist, &showprintlist);
c4dcb155
SM
3948
3949 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3950 &separate_debug_file_debug, _("\
3951Set printing of separate debug info file search debug."), _("\
3952Show printing of separate debug info file search debug."), _("\
3953When on, GDB prints the searched locations while looking for separate debug \
3954info files."), NULL, NULL, &setdebuglist, &showdebuglist);
c906108c 3955}
This page took 2.216377 seconds and 4 git commands to generate.