* gdb.base/relocate.exp: Test add-symbol-file with a variable
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1bac305b 4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
38017ce8 48#include <readline/readline.h>
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
c906108c 51
c906108c
SS
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include <time.h>
c906108c
SS
58
59#ifndef O_BINARY
60#define O_BINARY 0
61#endif
62
63#ifdef HPUXHPPA
64
65/* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68extern int hp_som_som_object_present;
69extern int hp_cxx_exception_support_initialized;
70#define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74#endif
75
917317f4 76int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
77void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
507f3c78
KB
82void (*pre_add_symbol_hook) (char *);
83void (*post_add_symbol_hook) (void);
84void (*target_new_objfile_hook) (struct objfile *);
c906108c 85
74b7792f
AC
86static void clear_symtab_users_cleanup (void *ignore);
87
c906108c 88/* Global variables owned by this file */
c5aa993b 89int readnow_symbol_files; /* Read full symbols immediately */
c906108c 90
c906108c
SS
91/* External variables and functions referenced. */
92
a14ed312 93extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
94
95/* Functions this file defines */
96
97#if 0
a14ed312
KB
98static int simple_read_overlay_region_table (void);
99static void simple_free_overlay_region_table (void);
c906108c
SS
100#endif
101
a14ed312 102static void set_initial_language (void);
c906108c 103
a14ed312 104static void load_command (char *, int);
c906108c 105
d7db6da9
FN
106static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
a14ed312 108static void add_symbol_file_command (char *, int);
c906108c 109
a14ed312 110static void add_shared_symbol_files_command (char *, int);
c906108c 111
5b5d99cf
JB
112static void reread_separate_symbols (struct objfile *objfile);
113
a14ed312 114static void cashier_psymtab (struct partial_symtab *);
c906108c 115
a14ed312 116bfd *symfile_bfd_open (char *);
c906108c 117
0e931cf0
JB
118int get_section_index (struct objfile *, char *);
119
a14ed312 120static void find_sym_fns (struct objfile *);
c906108c 121
a14ed312 122static void decrement_reading_symtab (void *);
c906108c 123
a14ed312 124static void overlay_invalidate_all (void);
c906108c 125
a14ed312 126static int overlay_is_mapped (struct obj_section *);
c906108c 127
a14ed312 128void list_overlays_command (char *, int);
c906108c 129
a14ed312 130void map_overlay_command (char *, int);
c906108c 131
a14ed312 132void unmap_overlay_command (char *, int);
c906108c 133
a14ed312 134static void overlay_auto_command (char *, int);
c906108c 135
a14ed312 136static void overlay_manual_command (char *, int);
c906108c 137
a14ed312 138static void overlay_off_command (char *, int);
c906108c 139
a14ed312 140static void overlay_load_command (char *, int);
c906108c 141
a14ed312 142static void overlay_command (char *, int);
c906108c 143
a14ed312 144static void simple_free_overlay_table (void);
c906108c 145
a14ed312 146static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 147
a14ed312 148static int simple_read_overlay_table (void);
c906108c 149
a14ed312 150static int simple_overlay_update_1 (struct obj_section *);
c906108c 151
a14ed312 152static void add_filename_language (char *ext, enum language lang);
392a587b 153
a14ed312 154static void set_ext_lang_command (char *args, int from_tty);
392a587b 155
a14ed312 156static void info_ext_lang_command (char *args, int from_tty);
392a587b 157
5b5d99cf
JB
158static char *find_separate_debug_file (struct objfile *objfile);
159
a14ed312 160static void init_filename_language_table (void);
392a587b 161
a14ed312 162void _initialize_symfile (void);
c906108c
SS
163
164/* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168static struct sym_fns *symtab_fns = NULL;
169
170/* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173#ifdef SYMBOL_RELOADING_DEFAULT
174int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175#else
176int symbol_reloading = 0;
177#endif
178
b7209cb4
FF
179/* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
c906108c 186 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 187 report all the functions that are actually present. */
c906108c
SS
188
189int auto_solib_add = 1;
b7209cb4
FF
190
191/* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199int auto_solib_limit;
c906108c 200\f
c5aa993b 201
c906108c
SS
202/* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206static int
0cd64fe2 207compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
208{
209 register struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
c8be8951 213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
c906108c
SS
214}
215
0fe19209
DC
216/* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
c906108c
SS
218
219static int
0cd64fe2 220compare_psymbols (const void *s1p, const void *s2p)
c906108c 221{
0fe19209
DC
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
c8be8951
DC
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
c906108c
SS
227}
228
229void
fba45db2 230sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
231{
232 /* Sort the global list; don't sort the static list */
233
c5aa993b
JM
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
236 compare_psymbols);
237}
238
c906108c
SS
239/* Make a null terminated copy of the string at PTR with SIZE characters in
240 the obstack pointed to by OBSTACKP . Returns the address of the copy.
241 Note that the string at PTR does not have to be null terminated, I.E. it
242 may be part of a larger string and we are only saving a substring. */
243
244char *
63ca651f 245obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c
SS
246{
247 register char *p = (char *) obstack_alloc (obstackp, size + 1);
248 /* Open-coded memcpy--saves function call time. These strings are usually
249 short. FIXME: Is this really still true with a compiler that can
250 inline memcpy? */
251 {
63ca651f 252 register const char *p1 = ptr;
c906108c 253 register char *p2 = p;
63ca651f 254 const char *end = ptr + size;
c906108c
SS
255 while (p1 != end)
256 *p2++ = *p1++;
257 }
258 p[size] = 0;
259 return p;
260}
261
262/* Concatenate strings S1, S2 and S3; return the new string. Space is found
263 in the obstack pointed to by OBSTACKP. */
264
265char *
fba45db2
KB
266obconcat (struct obstack *obstackp, const char *s1, const char *s2,
267 const char *s3)
c906108c
SS
268{
269 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
270 register char *val = (char *) obstack_alloc (obstackp, len);
271 strcpy (val, s1);
272 strcat (val, s2);
273 strcat (val, s3);
274 return val;
275}
276
277/* True if we are nested inside psymtab_to_symtab. */
278
279int currently_reading_symtab = 0;
280
281static void
fba45db2 282decrement_reading_symtab (void *dummy)
c906108c
SS
283{
284 currently_reading_symtab--;
285}
286
287/* Get the symbol table that corresponds to a partial_symtab.
288 This is fast after the first time you do it. In fact, there
289 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
290 case inline. */
291
292struct symtab *
fba45db2 293psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
294{
295 /* If it's been looked up before, return it. */
296 if (pst->symtab)
297 return pst->symtab;
298
299 /* If it has not yet been read in, read it. */
300 if (!pst->readin)
c5aa993b 301 {
c906108c
SS
302 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
303 currently_reading_symtab++;
304 (*pst->read_symtab) (pst);
305 do_cleanups (back_to);
306 }
307
308 return pst->symtab;
309}
310
311/* Initialize entry point information for this objfile. */
312
313void
fba45db2 314init_entry_point_info (struct objfile *objfile)
c906108c
SS
315{
316 /* Save startup file's range of PC addresses to help blockframe.c
317 decide where the bottom of the stack is. */
318
c5aa993b 319 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
320 {
321 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
322 the startup file because it contains the entry point. */
323 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
324 }
325 else
326 {
327 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 328 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 329 }
c5aa993b
JM
330 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
331 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
332 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
333 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
334 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
335 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
336}
337
338/* Get current entry point address. */
339
340CORE_ADDR
fba45db2 341entry_point_address (void)
c906108c
SS
342{
343 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
344}
345
346/* Remember the lowest-addressed loadable section we've seen.
347 This function is called via bfd_map_over_sections.
348
349 In case of equal vmas, the section with the largest size becomes the
350 lowest-addressed loadable section.
351
352 If the vmas and sizes are equal, the last section is considered the
353 lowest-addressed loadable section. */
354
355void
4efb68b1 356find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 357{
c5aa993b 358 asection **lowest = (asection **) obj;
c906108c
SS
359
360 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
361 return;
362 if (!*lowest)
363 *lowest = sect; /* First loadable section */
364 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
365 *lowest = sect; /* A lower loadable section */
366 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
367 && (bfd_section_size (abfd, (*lowest))
368 <= bfd_section_size (abfd, sect)))
369 *lowest = sect;
370}
371
a39a16c4
MM
372/* Create a new section_addr_info, with room for NUM_SECTIONS. */
373
374struct section_addr_info *
375alloc_section_addr_info (size_t num_sections)
376{
377 struct section_addr_info *sap;
378 size_t size;
379
380 size = (sizeof (struct section_addr_info)
381 + sizeof (struct other_sections) * (num_sections - 1));
382 sap = (struct section_addr_info *) xmalloc (size);
383 memset (sap, 0, size);
384 sap->num_sections = num_sections;
385
386 return sap;
387}
62557bbc
KB
388
389/* Build (allocate and populate) a section_addr_info struct from
390 an existing section table. */
391
392extern struct section_addr_info *
393build_section_addr_info_from_section_table (const struct section_table *start,
394 const struct section_table *end)
395{
396 struct section_addr_info *sap;
397 const struct section_table *stp;
398 int oidx;
399
a39a16c4 400 sap = alloc_section_addr_info (end - start);
62557bbc
KB
401
402 for (stp = start, oidx = 0; stp != end; stp++)
403 {
fbd35540
MS
404 if (bfd_get_section_flags (stp->bfd,
405 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 406 && oidx < end - start)
62557bbc
KB
407 {
408 sap->other[oidx].addr = stp->addr;
fbd35540
MS
409 sap->other[oidx].name
410 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
411 sap->other[oidx].sectindex = stp->the_bfd_section->index;
412 oidx++;
413 }
414 }
415
416 return sap;
417}
418
419
420/* Free all memory allocated by build_section_addr_info_from_section_table. */
421
422extern void
423free_section_addr_info (struct section_addr_info *sap)
424{
425 int idx;
426
a39a16c4 427 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 428 if (sap->other[idx].name)
b8c9b27d
KB
429 xfree (sap->other[idx].name);
430 xfree (sap);
62557bbc
KB
431}
432
433
e8289572
JB
434/* Initialize OBJFILE's sect_index_* members. */
435static void
436init_objfile_sect_indices (struct objfile *objfile)
c906108c 437{
e8289572 438 asection *sect;
c906108c 439 int i;
e8289572 440
b8fbeb18
EZ
441 sect = bfd_get_section_by_name (objfile->obfd, ".text");
442 if (sect)
443 objfile->sect_index_text = sect->index;
444
445 sect = bfd_get_section_by_name (objfile->obfd, ".data");
446 if (sect)
447 objfile->sect_index_data = sect->index;
448
449 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
450 if (sect)
451 objfile->sect_index_bss = sect->index;
452
453 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
454 if (sect)
455 objfile->sect_index_rodata = sect->index;
456
bbcd32ad
FF
457 /* This is where things get really weird... We MUST have valid
458 indices for the various sect_index_* members or gdb will abort.
459 So if for example, there is no ".text" section, we have to
460 accomodate that. Except when explicitly adding symbol files at
461 some address, section_offsets contains nothing but zeros, so it
462 doesn't matter which slot in section_offsets the individual
463 sect_index_* members index into. So if they are all zero, it is
464 safe to just point all the currently uninitialized indices to the
465 first slot. */
466
467 for (i = 0; i < objfile->num_sections; i++)
468 {
469 if (ANOFFSET (objfile->section_offsets, i) != 0)
470 {
471 break;
472 }
473 }
474 if (i == objfile->num_sections)
475 {
476 if (objfile->sect_index_text == -1)
477 objfile->sect_index_text = 0;
478 if (objfile->sect_index_data == -1)
479 objfile->sect_index_data = 0;
480 if (objfile->sect_index_bss == -1)
481 objfile->sect_index_bss = 0;
482 if (objfile->sect_index_rodata == -1)
483 objfile->sect_index_rodata = 0;
484 }
b8fbeb18 485}
c906108c 486
e8289572
JB
487
488/* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
494void
495default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
497{
498 int i;
499
a39a16c4 500 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 501 objfile->section_offsets = (struct section_offsets *)
a39a16c4
MM
502 obstack_alloc (&objfile->psymbol_obstack,
503 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
504 memset (objfile->section_offsets, 0,
505 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
a39a16c4 509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525 init_objfile_sect_indices (objfile);
526}
527
528
c906108c
SS
529/* Process a symbol file, as either the main file or as a dynamically
530 loaded file.
531
96baa820
JM
532 OBJFILE is where the symbols are to be read from.
533
7e8580c1
JB
534 ADDRS is the list of section load addresses. If the user has given
535 an 'add-symbol-file' command, then this is the list of offsets and
536 addresses he or she provided as arguments to the command; or, if
537 we're handling a shared library, these are the actual addresses the
538 sections are loaded at, according to the inferior's dynamic linker
539 (as gleaned by GDB's shared library code). We convert each address
540 into an offset from the section VMA's as it appears in the object
541 file, and then call the file's sym_offsets function to convert this
542 into a format-specific offset table --- a `struct section_offsets'.
543 If ADDRS is non-zero, OFFSETS must be zero.
544
545 OFFSETS is a table of section offsets already in the right
546 format-specific representation. NUM_OFFSETS is the number of
547 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
548 assume this is the proper table the call to sym_offsets described
549 above would produce. Instead of calling sym_offsets, we just dump
550 it right into objfile->section_offsets. (When we're re-reading
551 symbols from an objfile, we don't have the original load address
552 list any more; all we have is the section offset table.) If
553 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
554
555 MAINLINE is nonzero if this is the main symbol file, or zero if
556 it's an extra symbol file such as dynamically loaded code.
557
558 VERBO is nonzero if the caller has printed a verbose message about
559 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
560
561void
7e8580c1
JB
562syms_from_objfile (struct objfile *objfile,
563 struct section_addr_info *addrs,
564 struct section_offsets *offsets,
565 int num_offsets,
566 int mainline,
567 int verbo)
c906108c 568{
2acceee2
JM
569 asection *lower_sect;
570 asection *sect;
571 CORE_ADDR lower_offset;
a39a16c4 572 struct section_addr_info *local_addr = NULL;
c906108c 573 struct cleanup *old_chain;
2acceee2
JM
574 int i;
575
7e8580c1 576 gdb_assert (! (addrs && offsets));
2acceee2 577
c906108c
SS
578 init_entry_point_info (objfile);
579 find_sym_fns (objfile);
580
75245b24
MS
581 if (objfile->sf == NULL)
582 return; /* No symbols. */
583
c906108c
SS
584 /* Make sure that partially constructed symbol tables will be cleaned up
585 if an error occurs during symbol reading. */
74b7792f 586 old_chain = make_cleanup_free_objfile (objfile);
c906108c 587
a39a16c4
MM
588 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
589 list. We now establish the convention that an addr of zero means
590 no load address was specified. */
591 if (! addrs && ! offsets)
592 {
593 local_addr
594 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
595 make_cleanup (xfree, local_addr);
596 addrs = local_addr;
597 }
598
599 /* Now either addrs or offsets is non-zero. */
600
c5aa993b 601 if (mainline)
c906108c
SS
602 {
603 /* We will modify the main symbol table, make sure that all its users
c5aa993b 604 will be cleaned up if an error occurs during symbol reading. */
74b7792f 605 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
606
607 /* Since no error yet, throw away the old symbol table. */
608
609 if (symfile_objfile != NULL)
610 {
611 free_objfile (symfile_objfile);
612 symfile_objfile = NULL;
613 }
614
615 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
616 If the user wants to get rid of them, they should do "symbol-file"
617 without arguments first. Not sure this is the best behavior
618 (PR 2207). */
c906108c 619
c5aa993b 620 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
621 }
622
623 /* Convert addr into an offset rather than an absolute address.
624 We find the lowest address of a loaded segment in the objfile,
53a5351d 625 and assume that <addr> is where that got loaded.
c906108c 626
53a5351d
JM
627 We no longer warn if the lowest section is not a text segment (as
628 happens for the PA64 port. */
e7cf9df1 629 if (!mainline)
c906108c 630 {
2acceee2
JM
631 /* Find lowest loadable section to be used as starting point for
632 continguous sections. FIXME!! won't work without call to find
633 .text first, but this assumes text is lowest section. */
634 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
635 if (lower_sect == NULL)
c906108c 636 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 637 &lower_sect);
2acceee2 638 if (lower_sect == NULL)
c906108c
SS
639 warning ("no loadable sections found in added symbol-file %s",
640 objfile->name);
b8fbeb18
EZ
641 else
642 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
643 warning ("Lowest section in %s is %s at %s",
644 objfile->name,
645 bfd_section_name (objfile->obfd, lower_sect),
646 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
647 if (lower_sect != NULL)
648 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
649 else
650 lower_offset = 0;
651
13de58df 652 /* Calculate offsets for the loadable sections.
2acceee2
JM
653 FIXME! Sections must be in order of increasing loadable section
654 so that contiguous sections can use the lower-offset!!!
655
13de58df
JB
656 Adjust offsets if the segments are not contiguous.
657 If the section is contiguous, its offset should be set to
2acceee2
JM
658 the offset of the highest loadable section lower than it
659 (the loadable section directly below it in memory).
660 this_offset = lower_offset = lower_addr - lower_orig_addr */
661
13de58df 662 /* Calculate offsets for sections. */
7e8580c1 663 if (addrs)
a39a16c4 664 for (i=0 ; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
665 {
666 if (addrs->other[i].addr != 0)
667 {
668 sect = bfd_get_section_by_name (objfile->obfd,
669 addrs->other[i].name);
670 if (sect)
671 {
672 addrs->other[i].addr
673 -= bfd_section_vma (objfile->obfd, sect);
674 lower_offset = addrs->other[i].addr;
675 /* This is the index used by BFD. */
676 addrs->other[i].sectindex = sect->index ;
677 }
678 else
679 {
680 warning ("section %s not found in %s",
681 addrs->other[i].name,
682 objfile->name);
683 addrs->other[i].addr = 0;
684 }
685 }
686 else
687 addrs->other[i].addr = lower_offset;
688 }
c906108c
SS
689 }
690
691 /* Initialize symbol reading routines for this objfile, allow complaints to
692 appear for this new file, and record how verbose to be, then do the
693 initial symbol reading for this file. */
694
c5aa993b 695 (*objfile->sf->sym_init) (objfile);
b9caf505 696 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 697
7e8580c1
JB
698 if (addrs)
699 (*objfile->sf->sym_offsets) (objfile, addrs);
700 else
701 {
702 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
703
704 /* Just copy in the offset table directly as given to us. */
705 objfile->num_sections = num_offsets;
706 objfile->section_offsets
707 = ((struct section_offsets *)
708 obstack_alloc (&objfile->psymbol_obstack, size));
709 memcpy (objfile->section_offsets, offsets, size);
710
711 init_objfile_sect_indices (objfile);
712 }
c906108c
SS
713
714#ifndef IBM6000_TARGET
715 /* This is a SVR4/SunOS specific hack, I think. In any event, it
716 screws RS/6000. sym_offsets should be doing this sort of thing,
717 because it knows the mapping between bfd sections and
718 section_offsets. */
719 /* This is a hack. As far as I can tell, section offsets are not
720 target dependent. They are all set to addr with a couple of
721 exceptions. The exceptions are sysvr4 shared libraries, whose
722 offsets are kept in solib structures anyway and rs6000 xcoff
723 which handles shared libraries in a completely unique way.
724
725 Section offsets are built similarly, except that they are built
726 by adding addr in all cases because there is no clear mapping
727 from section_offsets into actual sections. Note that solib.c
96baa820 728 has a different algorithm for finding section offsets.
c906108c
SS
729
730 These should probably all be collapsed into some target
731 independent form of shared library support. FIXME. */
732
2acceee2 733 if (addrs)
c906108c
SS
734 {
735 struct obj_section *s;
736
2acceee2
JM
737 /* Map section offsets in "addr" back to the object's
738 sections by comparing the section names with bfd's
739 section names. Then adjust the section address by
740 the offset. */ /* for gdb/13815 */
741
96baa820 742 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 743 {
2acceee2
JM
744 CORE_ADDR s_addr = 0;
745 int i;
746
62557bbc 747 for (i = 0;
a39a16c4 748 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 749 i++)
fbd35540
MS
750 if (strcmp (bfd_section_name (s->objfile->obfd,
751 s->the_bfd_section),
752 addrs->other[i].name) == 0)
2acceee2
JM
753 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
754
c906108c 755 s->addr -= s->offset;
2acceee2 756 s->addr += s_addr;
c906108c 757 s->endaddr -= s->offset;
2acceee2
JM
758 s->endaddr += s_addr;
759 s->offset += s_addr;
c906108c
SS
760 }
761 }
762#endif /* not IBM6000_TARGET */
763
96baa820 764 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 765
c906108c
SS
766 /* Don't allow char * to have a typename (else would get caddr_t).
767 Ditto void *. FIXME: Check whether this is now done by all the
768 symbol readers themselves (many of them now do), and if so remove
769 it from here. */
770
771 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
772 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
773
774 /* Mark the objfile has having had initial symbol read attempted. Note
775 that this does not mean we found any symbols... */
776
c5aa993b 777 objfile->flags |= OBJF_SYMS;
c906108c
SS
778
779 /* Discard cleanups as symbol reading was successful. */
780
781 discard_cleanups (old_chain);
c906108c
SS
782}
783
784/* Perform required actions after either reading in the initial
785 symbols for a new objfile, or mapping in the symbols from a reusable
786 objfile. */
c5aa993b 787
c906108c 788void
fba45db2 789new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
790{
791
792 /* If this is the main symbol file we have to clean up all users of the
793 old main symbol file. Otherwise it is sufficient to fixup all the
794 breakpoints that may have been redefined by this symbol file. */
795 if (mainline)
796 {
797 /* OK, make it the "real" symbol file. */
798 symfile_objfile = objfile;
799
800 clear_symtab_users ();
801 }
802 else
803 {
804 breakpoint_re_set ();
805 }
806
807 /* We're done reading the symbol file; finish off complaints. */
b9caf505 808 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
809}
810
811/* Process a symbol file, as either the main file or as a dynamically
812 loaded file.
813
814 NAME is the file name (which will be tilde-expanded and made
815 absolute herein) (but we don't free or modify NAME itself).
7904e09f
JB
816
817 FROM_TTY says how verbose to be.
818
819 MAINLINE specifies whether this is the main symbol file, or whether
820 it's an extra symbol file such as dynamically loaded code.
821
822 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
823 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
824 non-zero.
c906108c 825
c906108c
SS
826 Upon success, returns a pointer to the objfile that was added.
827 Upon failure, jumps back to command level (never returns). */
7904e09f
JB
828static struct objfile *
829symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
830 struct section_addr_info *addrs,
831 struct section_offsets *offsets,
832 int num_offsets,
833 int mainline, int flags)
c906108c
SS
834{
835 struct objfile *objfile;
836 struct partial_symtab *psymtab;
5b5d99cf 837 char *debugfile;
c906108c 838 bfd *abfd;
a39a16c4
MM
839 struct section_addr_info *orig_addrs;
840 struct cleanup *my_cleanups;
c906108c
SS
841
842 /* Open a bfd for the file, and give user a chance to burp if we'd be
843 interactively wiping out any existing symbols. */
844
845 abfd = symfile_bfd_open (name);
846
847 if ((have_full_symbols () || have_partial_symbols ())
848 && mainline
849 && from_tty
850 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 851 error ("Not confirmed.");
c906108c 852
2df3850c 853 objfile = allocate_objfile (abfd, flags);
c906108c 854
a39a16c4
MM
855 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
856 my_cleanups = make_cleanup (xfree, orig_addrs);
857 if (addrs)
858 *orig_addrs = *addrs;
859
c906108c
SS
860 /* If the objfile uses a mapped symbol file, and we have a psymtab for
861 it, then skip reading any symbols at this time. */
862
c5aa993b 863 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
864 {
865 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
866 initial symbol reading performed, so we can skip that part. Notify
867 the user that instead of reading the symbols, they have been mapped.
868 */
c906108c
SS
869 if (from_tty || info_verbose)
870 {
871 printf_filtered ("Mapped symbols for %s...", name);
872 wrap_here ("");
873 gdb_flush (gdb_stdout);
874 }
875 init_entry_point_info (objfile);
876 find_sym_fns (objfile);
877 }
878 else
879 {
880 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
881 symbol table file which has not had initial symbol reading
882 performed, or need to read an unmapped symbol table. */
c906108c
SS
883 if (from_tty || info_verbose)
884 {
885 if (pre_add_symbol_hook)
886 pre_add_symbol_hook (name);
887 else
888 {
889 printf_filtered ("Reading symbols from %s...", name);
890 wrap_here ("");
891 gdb_flush (gdb_stdout);
892 }
893 }
7904e09f
JB
894 syms_from_objfile (objfile, addrs, offsets, num_offsets,
895 mainline, from_tty);
c906108c
SS
896 }
897
898 /* We now have at least a partial symbol table. Check to see if the
899 user requested that all symbols be read on initial access via either
900 the gdb startup command line or on a per symbol file basis. Expand
901 all partial symbol tables for this objfile if so. */
902
2acceee2 903 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
904 {
905 if (from_tty || info_verbose)
906 {
907 printf_filtered ("expanding to full symbols...");
908 wrap_here ("");
909 gdb_flush (gdb_stdout);
910 }
911
c5aa993b 912 for (psymtab = objfile->psymtabs;
c906108c 913 psymtab != NULL;
c5aa993b 914 psymtab = psymtab->next)
c906108c
SS
915 {
916 psymtab_to_symtab (psymtab);
917 }
918 }
919
5b5d99cf
JB
920 debugfile = find_separate_debug_file (objfile);
921 if (debugfile)
922 {
5b5d99cf
JB
923 if (addrs != NULL)
924 {
925 objfile->separate_debug_objfile
a39a16c4 926 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
927 }
928 else
929 {
930 objfile->separate_debug_objfile
931 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
932 }
933 objfile->separate_debug_objfile->separate_debug_objfile_backlink
934 = objfile;
935
936 /* Put the separate debug object before the normal one, this is so that
937 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
938 put_objfile_before (objfile->separate_debug_objfile, objfile);
939
940 xfree (debugfile);
941 }
942
cb3c37b2
JB
943 if (!have_partial_symbols () && !have_full_symbols ())
944 {
945 wrap_here ("");
946 printf_filtered ("(no debugging symbols found)...");
947 wrap_here ("");
948 }
949
c906108c
SS
950 if (from_tty || info_verbose)
951 {
952 if (post_add_symbol_hook)
c5aa993b 953 post_add_symbol_hook ();
c906108c 954 else
c5aa993b
JM
955 {
956 printf_filtered ("done.\n");
c5aa993b 957 }
c906108c
SS
958 }
959
481d0f41
JB
960 /* We print some messages regardless of whether 'from_tty ||
961 info_verbose' is true, so make sure they go out at the right
962 time. */
963 gdb_flush (gdb_stdout);
964
a39a16c4
MM
965 do_cleanups (my_cleanups);
966
109f874e
MS
967 if (objfile->sf == NULL)
968 return objfile; /* No symbols. */
969
c906108c
SS
970 new_symfile_objfile (objfile, mainline, from_tty);
971
11cf8741
JM
972 if (target_new_objfile_hook)
973 target_new_objfile_hook (objfile);
c906108c
SS
974
975 return (objfile);
976}
977
7904e09f
JB
978
979/* Process a symbol file, as either the main file or as a dynamically
980 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
981 for details. */
982struct objfile *
983symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
984 int mainline, int flags)
985{
986 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
987 mainline, flags);
988}
989
990
d7db6da9
FN
991/* Call symbol_file_add() with default values and update whatever is
992 affected by the loading of a new main().
993 Used when the file is supplied in the gdb command line
994 and by some targets with special loading requirements.
995 The auxiliary function, symbol_file_add_main_1(), has the flags
996 argument for the switches that can only be specified in the symbol_file
997 command itself. */
1adeb98a
FN
998
999void
1000symbol_file_add_main (char *args, int from_tty)
1001{
d7db6da9
FN
1002 symbol_file_add_main_1 (args, from_tty, 0);
1003}
1004
1005static void
1006symbol_file_add_main_1 (char *args, int from_tty, int flags)
1007{
1008 symbol_file_add (args, from_tty, NULL, 1, flags);
1009
1010#ifdef HPUXHPPA
1011 RESET_HP_UX_GLOBALS ();
1012#endif
1013
1014 /* Getting new symbols may change our opinion about
1015 what is frameless. */
1016 reinit_frame_cache ();
1017
1018 set_initial_language ();
1adeb98a
FN
1019}
1020
1021void
1022symbol_file_clear (int from_tty)
1023{
1024 if ((have_full_symbols () || have_partial_symbols ())
1025 && from_tty
1026 && !query ("Discard symbol table from `%s'? ",
1027 symfile_objfile->name))
1028 error ("Not confirmed.");
1029 free_all_objfiles ();
1030
1031 /* solib descriptors may have handles to objfiles. Since their
1032 storage has just been released, we'd better wipe the solib
1033 descriptors as well.
1034 */
1035#if defined(SOLIB_RESTART)
1036 SOLIB_RESTART ();
1037#endif
1038
1039 symfile_objfile = NULL;
1040 if (from_tty)
1041 printf_unfiltered ("No symbol file now.\n");
1042#ifdef HPUXHPPA
1043 RESET_HP_UX_GLOBALS ();
1044#endif
1045}
1046
5b5d99cf
JB
1047static char *
1048get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1049{
1050 asection *sect;
1051 bfd_size_type debuglink_size;
1052 unsigned long crc32;
1053 char *contents;
1054 int crc_offset;
1055 unsigned char *p;
1056
1057 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1058
1059 if (sect == NULL)
1060 return NULL;
1061
1062 debuglink_size = bfd_section_size (objfile->obfd, sect);
1063
1064 contents = xmalloc (debuglink_size);
1065 bfd_get_section_contents (objfile->obfd, sect, contents,
1066 (file_ptr)0, (bfd_size_type)debuglink_size);
1067
1068 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1069 crc_offset = strlen (contents) + 1;
1070 crc_offset = (crc_offset + 3) & ~3;
1071
1072 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1073
1074 *crc32_out = crc32;
1075 return contents;
1076}
1077
1078static int
1079separate_debug_file_exists (const char *name, unsigned long crc)
1080{
1081 unsigned long file_crc = 0;
1082 int fd;
1083 char buffer[8*1024];
1084 int count;
1085
1086 fd = open (name, O_RDONLY | O_BINARY);
1087 if (fd < 0)
1088 return 0;
1089
1090 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1091 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1092
1093 close (fd);
1094
1095 return crc == file_crc;
1096}
1097
1098static char *debug_file_directory = NULL;
1099
1100#if ! defined (DEBUG_SUBDIRECTORY)
1101#define DEBUG_SUBDIRECTORY ".debug"
1102#endif
1103
1104static char *
1105find_separate_debug_file (struct objfile *objfile)
1106{
1107 asection *sect;
1108 char *basename;
1109 char *dir;
1110 char *debugfile;
1111 char *name_copy;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 int i;
1115
1116 basename = get_debug_link_info (objfile, &crc32);
1117
1118 if (basename == NULL)
1119 return NULL;
1120
1121 dir = xstrdup (objfile->name);
1122
fe36c4f4
JB
1123 /* Strip off the final filename part, leaving the directory name,
1124 followed by a slash. Objfile names should always be absolute and
1125 tilde-expanded, so there should always be a slash in there
1126 somewhere. */
5b5d99cf
JB
1127 for (i = strlen(dir) - 1; i >= 0; i--)
1128 {
1129 if (IS_DIR_SEPARATOR (dir[i]))
1130 break;
1131 }
fe36c4f4 1132 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf
JB
1133 dir[i+1] = '\0';
1134
1135 debugfile = alloca (strlen (debug_file_directory) + 1
1136 + strlen (dir)
1137 + strlen (DEBUG_SUBDIRECTORY)
1138 + strlen ("/")
1139 + strlen (basename)
1140 + 1);
1141
1142 /* First try in the same directory as the original file. */
1143 strcpy (debugfile, dir);
1144 strcat (debugfile, basename);
1145
1146 if (separate_debug_file_exists (debugfile, crc32))
1147 {
1148 xfree (basename);
1149 xfree (dir);
1150 return xstrdup (debugfile);
1151 }
1152
1153 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1154 strcpy (debugfile, dir);
1155 strcat (debugfile, DEBUG_SUBDIRECTORY);
1156 strcat (debugfile, "/");
1157 strcat (debugfile, basename);
1158
1159 if (separate_debug_file_exists (debugfile, crc32))
1160 {
1161 xfree (basename);
1162 xfree (dir);
1163 return xstrdup (debugfile);
1164 }
1165
1166 /* Then try in the global debugfile directory. */
1167 strcpy (debugfile, debug_file_directory);
1168 strcat (debugfile, "/");
1169 strcat (debugfile, dir);
5b5d99cf
JB
1170 strcat (debugfile, basename);
1171
1172 if (separate_debug_file_exists (debugfile, crc32))
1173 {
1174 xfree (basename);
1175 xfree (dir);
1176 return xstrdup (debugfile);
1177 }
1178
1179 xfree (basename);
1180 xfree (dir);
1181 return NULL;
1182}
1183
1184
c906108c
SS
1185/* This is the symbol-file command. Read the file, analyze its
1186 symbols, and add a struct symtab to a symtab list. The syntax of
1187 the command is rather bizarre--(1) buildargv implements various
1188 quoting conventions which are undocumented and have little or
1189 nothing in common with the way things are quoted (or not quoted)
1190 elsewhere in GDB, (2) options are used, which are not generally
1191 used in GDB (perhaps "set mapped on", "set readnow on" would be
1192 better), (3) the order of options matters, which is contrary to GNU
1193 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1194/* Note: ezannoni 2000-04-17. This function used to have support for
1195 rombug (see remote-os9k.c). It consisted of a call to target_link()
1196 (target.c) to get the address of the text segment from the target,
1197 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1198
1199void
fba45db2 1200symbol_file_command (char *args, int from_tty)
c906108c
SS
1201{
1202 char **argv;
1203 char *name = NULL;
c906108c 1204 struct cleanup *cleanups;
2df3850c 1205 int flags = OBJF_USERLOADED;
c906108c
SS
1206
1207 dont_repeat ();
1208
1209 if (args == NULL)
1210 {
1adeb98a 1211 symbol_file_clear (from_tty);
c906108c
SS
1212 }
1213 else
1214 {
1215 if ((argv = buildargv (args)) == NULL)
1216 {
1217 nomem (0);
1218 }
7a292a7a 1219 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1220 while (*argv != NULL)
1221 {
1222 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
1223 flags |= OBJF_MAPPED;
1224 else
1225 if (STREQ (*argv, "-readnow"))
2acceee2 1226 flags |= OBJF_READNOW;
4da95fc4
EZ
1227 else
1228 if (**argv == '-')
1229 error ("unknown option `%s'", *argv);
c5aa993b 1230 else
c5aa993b 1231 {
4da95fc4 1232 name = *argv;
c906108c 1233
d7db6da9 1234 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1235 }
c906108c
SS
1236 argv++;
1237 }
1238
1239 if (name == NULL)
1240 {
1241 error ("no symbol file name was specified");
1242 }
c906108c
SS
1243 do_cleanups (cleanups);
1244 }
1245}
1246
1247/* Set the initial language.
1248
1249 A better solution would be to record the language in the psymtab when reading
1250 partial symbols, and then use it (if known) to set the language. This would
1251 be a win for formats that encode the language in an easily discoverable place,
1252 such as DWARF. For stabs, we can jump through hoops looking for specially
1253 named symbols or try to intuit the language from the specific type of stabs
1254 we find, but we can't do that until later when we read in full symbols.
1255 FIXME. */
1256
1257static void
fba45db2 1258set_initial_language (void)
c906108c
SS
1259{
1260 struct partial_symtab *pst;
c5aa993b 1261 enum language lang = language_unknown;
c906108c
SS
1262
1263 pst = find_main_psymtab ();
1264 if (pst != NULL)
1265 {
c5aa993b 1266 if (pst->filename != NULL)
c906108c 1267 {
c5aa993b
JM
1268 lang = deduce_language_from_filename (pst->filename);
1269 }
c906108c
SS
1270 if (lang == language_unknown)
1271 {
c5aa993b
JM
1272 /* Make C the default language */
1273 lang = language_c;
c906108c
SS
1274 }
1275 set_language (lang);
1276 expected_language = current_language; /* Don't warn the user */
1277 }
1278}
1279
1280/* Open file specified by NAME and hand it off to BFD for preliminary
1281 analysis. Result is a newly initialized bfd *, which includes a newly
1282 malloc'd` copy of NAME (tilde-expanded and made absolute).
1283 In case of trouble, error() is called. */
1284
1285bfd *
fba45db2 1286symfile_bfd_open (char *name)
c906108c
SS
1287{
1288 bfd *sym_bfd;
1289 int desc;
1290 char *absolute_name;
1291
1292
1293
1294 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1295
1296 /* Look down path for it, allocate 2nd new malloc'd copy. */
1297 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1298#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1299 if (desc < 0)
1300 {
1301 char *exename = alloca (strlen (name) + 5);
1302 strcat (strcpy (exename, name), ".exe");
1303 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1304 0, &absolute_name);
c906108c
SS
1305 }
1306#endif
1307 if (desc < 0)
1308 {
b8c9b27d 1309 make_cleanup (xfree, name);
c906108c
SS
1310 perror_with_name (name);
1311 }
b8c9b27d 1312 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1313 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1314 /* It'll be freed in free_objfile(). */
c906108c
SS
1315
1316 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1317 if (!sym_bfd)
1318 {
1319 close (desc);
b8c9b27d 1320 make_cleanup (xfree, name);
c906108c
SS
1321 error ("\"%s\": can't open to read symbols: %s.", name,
1322 bfd_errmsg (bfd_get_error ()));
1323 }
81a9a963 1324 sym_bfd->cacheable = 1;
c906108c
SS
1325
1326 if (!bfd_check_format (sym_bfd, bfd_object))
1327 {
1328 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1329 on error it does not free all the storage associated with the
1330 bfd). */
c906108c 1331 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1332 make_cleanup (xfree, name);
c906108c
SS
1333 error ("\"%s\": can't read symbols: %s.", name,
1334 bfd_errmsg (bfd_get_error ()));
1335 }
1336 return (sym_bfd);
1337}
1338
0e931cf0
JB
1339/* Return the section index for the given section name. Return -1 if
1340 the section was not found. */
1341int
1342get_section_index (struct objfile *objfile, char *section_name)
1343{
1344 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1345 if (sect)
1346 return sect->index;
1347 else
1348 return -1;
1349}
1350
c906108c
SS
1351/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1352 startup by the _initialize routine in each object file format reader,
1353 to register information about each format the the reader is prepared
1354 to handle. */
1355
1356void
fba45db2 1357add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1358{
1359 sf->next = symtab_fns;
1360 symtab_fns = sf;
1361}
1362
1363
1364/* Initialize to read symbols from the symbol file sym_bfd. It either
1365 returns or calls error(). The result is an initialized struct sym_fns
1366 in the objfile structure, that contains cached information about the
1367 symbol file. */
1368
1369static void
fba45db2 1370find_sym_fns (struct objfile *objfile)
c906108c
SS
1371{
1372 struct sym_fns *sf;
c5aa993b
JM
1373 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1374 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1375
75245b24
MS
1376 if (our_flavour == bfd_target_srec_flavour
1377 || our_flavour == bfd_target_ihex_flavour
1378 || our_flavour == bfd_target_tekhex_flavour)
1379 return; /* No symbols. */
1380
c906108c
SS
1381 /* Special kludge for apollo. See dstread.c. */
1382 if (STREQN (our_target, "apollo", 6))
c5aa993b 1383 our_flavour = (enum bfd_flavour) -2;
c906108c 1384
c5aa993b 1385 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1386 {
c5aa993b 1387 if (our_flavour == sf->sym_flavour)
c906108c 1388 {
c5aa993b 1389 objfile->sf = sf;
c906108c
SS
1390 return;
1391 }
1392 }
1393 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1394 bfd_get_target (objfile->obfd));
c906108c
SS
1395}
1396\f
1397/* This function runs the load command of our current target. */
1398
1399static void
fba45db2 1400load_command (char *arg, int from_tty)
c906108c
SS
1401{
1402 if (arg == NULL)
1403 arg = get_exec_file (1);
1404 target_load (arg, from_tty);
2889e661
JB
1405
1406 /* After re-loading the executable, we don't really know which
1407 overlays are mapped any more. */
1408 overlay_cache_invalid = 1;
c906108c
SS
1409}
1410
1411/* This version of "load" should be usable for any target. Currently
1412 it is just used for remote targets, not inftarg.c or core files,
1413 on the theory that only in that case is it useful.
1414
1415 Avoiding xmodem and the like seems like a win (a) because we don't have
1416 to worry about finding it, and (b) On VMS, fork() is very slow and so
1417 we don't want to run a subprocess. On the other hand, I'm not sure how
1418 performance compares. */
917317f4
JM
1419
1420static int download_write_size = 512;
1421static int validate_download = 0;
1422
e4f9b4d5
MS
1423/* Callback service function for generic_load (bfd_map_over_sections). */
1424
1425static void
1426add_section_size_callback (bfd *abfd, asection *asec, void *data)
1427{
1428 bfd_size_type *sum = data;
1429
1430 *sum += bfd_get_section_size_before_reloc (asec);
1431}
1432
1433/* Opaque data for load_section_callback. */
1434struct load_section_data {
1435 unsigned long load_offset;
1436 unsigned long write_count;
1437 unsigned long data_count;
1438 bfd_size_type total_size;
1439};
1440
1441/* Callback service function for generic_load (bfd_map_over_sections). */
1442
1443static void
1444load_section_callback (bfd *abfd, asection *asec, void *data)
1445{
1446 struct load_section_data *args = data;
1447
1448 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1449 {
1450 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1451 if (size > 0)
1452 {
1453 char *buffer;
1454 struct cleanup *old_chain;
1455 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1456 bfd_size_type block_size;
1457 int err;
1458 const char *sect_name = bfd_get_section_name (abfd, asec);
1459 bfd_size_type sent;
1460
1461 if (download_write_size > 0 && size > download_write_size)
1462 block_size = download_write_size;
1463 else
1464 block_size = size;
1465
1466 buffer = xmalloc (size);
1467 old_chain = make_cleanup (xfree, buffer);
1468
1469 /* Is this really necessary? I guess it gives the user something
1470 to look at during a long download. */
e4f9b4d5
MS
1471 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1472 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1473
1474 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1475
1476 sent = 0;
1477 do
1478 {
1479 int len;
1480 bfd_size_type this_transfer = size - sent;
1481
1482 if (this_transfer >= block_size)
1483 this_transfer = block_size;
1484 len = target_write_memory_partial (lma, buffer,
1485 this_transfer, &err);
1486 if (err)
1487 break;
1488 if (validate_download)
1489 {
1490 /* Broken memories and broken monitors manifest
1491 themselves here when bring new computers to
1492 life. This doubles already slow downloads. */
1493 /* NOTE: cagney/1999-10-18: A more efficient
1494 implementation might add a verify_memory()
1495 method to the target vector and then use
1496 that. remote.c could implement that method
1497 using the ``qCRC'' packet. */
1498 char *check = xmalloc (len);
1499 struct cleanup *verify_cleanups =
1500 make_cleanup (xfree, check);
1501
1502 if (target_read_memory (lma, check, len) != 0)
1503 error ("Download verify read failed at 0x%s",
1504 paddr (lma));
1505 if (memcmp (buffer, check, len) != 0)
1506 error ("Download verify compare failed at 0x%s",
1507 paddr (lma));
1508 do_cleanups (verify_cleanups);
1509 }
1510 args->data_count += len;
1511 lma += len;
1512 buffer += len;
1513 args->write_count += 1;
1514 sent += len;
1515 if (quit_flag
1516 || (ui_load_progress_hook != NULL
1517 && ui_load_progress_hook (sect_name, sent)))
1518 error ("Canceled the download");
1519
1520 if (show_load_progress != NULL)
1521 show_load_progress (sect_name, sent, size,
1522 args->data_count, args->total_size);
1523 }
1524 while (sent < size);
1525
1526 if (err != 0)
1527 error ("Memory access error while loading section %s.", sect_name);
1528
1529 do_cleanups (old_chain);
1530 }
1531 }
1532}
1533
c906108c 1534void
917317f4 1535generic_load (char *args, int from_tty)
c906108c 1536{
c906108c
SS
1537 asection *s;
1538 bfd *loadfile_bfd;
1539 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1540 char *filename;
1541 struct cleanup *old_cleanups;
1542 char *offptr;
e4f9b4d5
MS
1543 struct load_section_data cbdata;
1544 CORE_ADDR entry;
1545
1546 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1547 cbdata.write_count = 0; /* Number of writes needed. */
1548 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1549 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1550
1551 /* Parse the input argument - the user can specify a load offset as
1552 a second argument. */
1553 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1554 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1555 strcpy (filename, args);
1556 offptr = strchr (filename, ' ');
1557 if (offptr != NULL)
1558 {
1559 char *endptr;
ba5f2f8a 1560
e4f9b4d5 1561 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1562 if (offptr == endptr)
1563 error ("Invalid download offset:%s\n", offptr);
1564 *offptr = '\0';
1565 }
c906108c 1566 else
e4f9b4d5 1567 cbdata.load_offset = 0;
c906108c 1568
917317f4 1569 /* Open the file for loading. */
c906108c
SS
1570 loadfile_bfd = bfd_openr (filename, gnutarget);
1571 if (loadfile_bfd == NULL)
1572 {
1573 perror_with_name (filename);
1574 return;
1575 }
917317f4 1576
c906108c
SS
1577 /* FIXME: should be checking for errors from bfd_close (for one thing,
1578 on error it does not free all the storage associated with the
1579 bfd). */
5c65bbb6 1580 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1581
c5aa993b 1582 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1583 {
1584 error ("\"%s\" is not an object file: %s", filename,
1585 bfd_errmsg (bfd_get_error ()));
1586 }
c5aa993b 1587
e4f9b4d5
MS
1588 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1589 (void *) &cbdata.total_size);
c2d11a7d 1590
c906108c
SS
1591 start_time = time (NULL);
1592
e4f9b4d5 1593 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1594
1595 end_time = time (NULL);
ba5f2f8a 1596
e4f9b4d5 1597 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1598 ui_out_text (uiout, "Start address ");
1599 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1600 ui_out_text (uiout, ", load size ");
1601 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1602 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1603 /* We were doing this in remote-mips.c, I suspect it is right
1604 for other targets too. */
1605 write_pc (entry);
c906108c 1606
7ca9f392
AC
1607 /* FIXME: are we supposed to call symbol_file_add or not? According
1608 to a comment from remote-mips.c (where a call to symbol_file_add
1609 was commented out), making the call confuses GDB if more than one
1610 file is loaded in. Some targets do (e.g., remote-vx.c) but
1611 others don't (or didn't - perhaphs they have all been deleted). */
c906108c 1612
e4f9b4d5
MS
1613 print_transfer_performance (gdb_stdout, cbdata.data_count,
1614 cbdata.write_count, end_time - start_time);
c906108c
SS
1615
1616 do_cleanups (old_cleanups);
1617}
1618
1619/* Report how fast the transfer went. */
1620
917317f4
JM
1621/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1622 replaced by print_transfer_performance (with a very different
1623 function signature). */
1624
c906108c 1625void
fba45db2
KB
1626report_transfer_performance (unsigned long data_count, time_t start_time,
1627 time_t end_time)
c906108c 1628{
ba5f2f8a
MS
1629 print_transfer_performance (gdb_stdout, data_count,
1630 end_time - start_time, 0);
917317f4
JM
1631}
1632
1633void
d9fcf2fb 1634print_transfer_performance (struct ui_file *stream,
917317f4
JM
1635 unsigned long data_count,
1636 unsigned long write_count,
1637 unsigned long time_count)
1638{
8b93c638
JM
1639 ui_out_text (uiout, "Transfer rate: ");
1640 if (time_count > 0)
1641 {
ba5f2f8a 1642 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1643 (data_count * 8) / time_count);
1644 ui_out_text (uiout, " bits/sec");
1645 }
1646 else
1647 {
ba5f2f8a 1648 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
8b93c638
JM
1649 ui_out_text (uiout, " bits in <1 sec");
1650 }
1651 if (write_count > 0)
1652 {
1653 ui_out_text (uiout, ", ");
ba5f2f8a 1654 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1655 ui_out_text (uiout, " bytes/write");
1656 }
1657 ui_out_text (uiout, ".\n");
c906108c
SS
1658}
1659
1660/* This function allows the addition of incrementally linked object files.
1661 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1662/* Note: ezannoni 2000-04-13 This function/command used to have a
1663 special case syntax for the rombug target (Rombug is the boot
1664 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1665 rombug case, the user doesn't need to supply a text address,
1666 instead a call to target_link() (in target.c) would supply the
1667 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1668
1669/* ARGSUSED */
1670static void
fba45db2 1671add_symbol_file_command (char *args, int from_tty)
c906108c 1672{
db162d44 1673 char *filename = NULL;
2df3850c 1674 int flags = OBJF_USERLOADED;
c906108c 1675 char *arg;
2acceee2 1676 int expecting_option = 0;
db162d44 1677 int section_index = 0;
2acceee2
JM
1678 int argcnt = 0;
1679 int sec_num = 0;
1680 int i;
db162d44
EZ
1681 int expecting_sec_name = 0;
1682 int expecting_sec_addr = 0;
1683
a39a16c4 1684 struct sect_opt
2acceee2 1685 {
2acceee2
JM
1686 char *name;
1687 char *value;
a39a16c4 1688 };
db162d44 1689
a39a16c4
MM
1690 struct section_addr_info *section_addrs;
1691 struct sect_opt *sect_opts = NULL;
1692 size_t num_sect_opts = 0;
3017564a 1693 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1694
a39a16c4
MM
1695 num_sect_opts = 16;
1696 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1697 * sizeof (struct sect_opt));
1698
c906108c
SS
1699 dont_repeat ();
1700
1701 if (args == NULL)
db162d44 1702 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1703
1704 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1705 args = xstrdup (args);
c906108c 1706
2acceee2 1707 while (*args != '\000')
c906108c 1708 {
db162d44 1709 /* Any leading spaces? */
c5aa993b 1710 while (isspace (*args))
db162d44
EZ
1711 args++;
1712
1713 /* Point arg to the beginning of the argument. */
c906108c 1714 arg = args;
db162d44
EZ
1715
1716 /* Move args pointer over the argument. */
c5aa993b 1717 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1718 args++;
1719
1720 /* If there are more arguments, terminate arg and
1721 proceed past it. */
c906108c 1722 if (*args != '\000')
db162d44
EZ
1723 *args++ = '\000';
1724
1725 /* Now process the argument. */
1726 if (argcnt == 0)
c906108c 1727 {
db162d44
EZ
1728 /* The first argument is the file name. */
1729 filename = tilde_expand (arg);
3017564a 1730 make_cleanup (xfree, filename);
c906108c 1731 }
db162d44 1732 else
7a78ae4e
ND
1733 if (argcnt == 1)
1734 {
1735 /* The second argument is always the text address at which
1736 to load the program. */
1737 sect_opts[section_index].name = ".text";
1738 sect_opts[section_index].value = arg;
a39a16c4
MM
1739 if (++section_index > num_sect_opts)
1740 {
1741 num_sect_opts *= 2;
1742 sect_opts = ((struct sect_opt *)
1743 xrealloc (sect_opts,
1744 num_sect_opts
1745 * sizeof (struct sect_opt)));
1746 }
7a78ae4e
ND
1747 }
1748 else
1749 {
1750 /* It's an option (starting with '-') or it's an argument
1751 to an option */
1752
1753 if (*arg == '-')
1754 {
1755 if (strcmp (arg, "-mapped") == 0)
1756 flags |= OBJF_MAPPED;
1757 else
1758 if (strcmp (arg, "-readnow") == 0)
1759 flags |= OBJF_READNOW;
1760 else
1761 if (strcmp (arg, "-s") == 0)
1762 {
7a78ae4e
ND
1763 expecting_sec_name = 1;
1764 expecting_sec_addr = 1;
1765 }
1766 }
1767 else
1768 {
1769 if (expecting_sec_name)
db162d44 1770 {
7a78ae4e
ND
1771 sect_opts[section_index].name = arg;
1772 expecting_sec_name = 0;
db162d44
EZ
1773 }
1774 else
7a78ae4e
ND
1775 if (expecting_sec_addr)
1776 {
1777 sect_opts[section_index].value = arg;
1778 expecting_sec_addr = 0;
a39a16c4
MM
1779 if (++section_index > num_sect_opts)
1780 {
1781 num_sect_opts *= 2;
1782 sect_opts = ((struct sect_opt *)
1783 xrealloc (sect_opts,
1784 num_sect_opts
1785 * sizeof (struct sect_opt)));
1786 }
7a78ae4e
ND
1787 }
1788 else
1789 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1790 }
1791 }
db162d44 1792 argcnt++;
c906108c 1793 }
c906108c 1794
db162d44
EZ
1795 /* Print the prompt for the query below. And save the arguments into
1796 a sect_addr_info structure to be passed around to other
1797 functions. We have to split this up into separate print
1798 statements because local_hex_string returns a local static
1799 string. */
2acceee2 1800
db162d44 1801 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
a39a16c4
MM
1802 section_addrs = alloc_section_addr_info (section_index);
1803 make_cleanup (xfree, section_addrs);
db162d44 1804 for (i = 0; i < section_index; i++)
c906108c 1805 {
db162d44
EZ
1806 CORE_ADDR addr;
1807 char *val = sect_opts[i].value;
1808 char *sec = sect_opts[i].name;
1809
1810 val = sect_opts[i].value;
1811 if (val[0] == '0' && val[1] == 'x')
1812 addr = strtoul (val+2, NULL, 16);
1813 else
1814 addr = strtoul (val, NULL, 10);
1815
db162d44
EZ
1816 /* Here we store the section offsets in the order they were
1817 entered on the command line. */
a39a16c4
MM
1818 section_addrs->other[sec_num].name = sec;
1819 section_addrs->other[sec_num].addr = addr;
db162d44
EZ
1820 printf_filtered ("\t%s_addr = %s\n",
1821 sec,
1822 local_hex_string ((unsigned long)addr));
1823 sec_num++;
1824
1825 /* The object's sections are initialized when a
1826 call is made to build_objfile_section_table (objfile).
1827 This happens in reread_symbols.
1828 At this point, we don't know what file type this is,
1829 so we can't determine what section names are valid. */
2acceee2 1830 }
db162d44 1831
2acceee2 1832 if (from_tty && (!query ("%s", "")))
c906108c
SS
1833 error ("Not confirmed.");
1834
a39a16c4 1835 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1836
1837 /* Getting new symbols may change our opinion about what is
1838 frameless. */
1839 reinit_frame_cache ();
db162d44 1840 do_cleanups (my_cleanups);
c906108c
SS
1841}
1842\f
1843static void
fba45db2 1844add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1845{
1846#ifdef ADD_SHARED_SYMBOL_FILES
1847 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1848#else
1849 error ("This command is not available in this configuration of GDB.");
c5aa993b 1850#endif
c906108c
SS
1851}
1852\f
1853/* Re-read symbols if a symbol-file has changed. */
1854void
fba45db2 1855reread_symbols (void)
c906108c
SS
1856{
1857 struct objfile *objfile;
1858 long new_modtime;
1859 int reread_one = 0;
1860 struct stat new_statbuf;
1861 int res;
1862
1863 /* With the addition of shared libraries, this should be modified,
1864 the load time should be saved in the partial symbol tables, since
1865 different tables may come from different source files. FIXME.
1866 This routine should then walk down each partial symbol table
1867 and see if the symbol table that it originates from has been changed */
1868
c5aa993b
JM
1869 for (objfile = object_files; objfile; objfile = objfile->next)
1870 {
1871 if (objfile->obfd)
1872 {
c906108c 1873#ifdef IBM6000_TARGET
c5aa993b
JM
1874 /* If this object is from a shared library, then you should
1875 stat on the library name, not member name. */
c906108c 1876
c5aa993b
JM
1877 if (objfile->obfd->my_archive)
1878 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1879 else
c906108c 1880#endif
c5aa993b
JM
1881 res = stat (objfile->name, &new_statbuf);
1882 if (res != 0)
c906108c 1883 {
c5aa993b
JM
1884 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1885 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1886 objfile->name);
1887 continue;
c906108c 1888 }
c5aa993b
JM
1889 new_modtime = new_statbuf.st_mtime;
1890 if (new_modtime != objfile->mtime)
c906108c 1891 {
c5aa993b
JM
1892 struct cleanup *old_cleanups;
1893 struct section_offsets *offsets;
1894 int num_offsets;
c5aa993b
JM
1895 char *obfd_filename;
1896
1897 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1898 objfile->name);
1899
1900 /* There are various functions like symbol_file_add,
1901 symfile_bfd_open, syms_from_objfile, etc., which might
1902 appear to do what we want. But they have various other
1903 effects which we *don't* want. So we just do stuff
1904 ourselves. We don't worry about mapped files (for one thing,
1905 any mapped file will be out of date). */
1906
1907 /* If we get an error, blow away this objfile (not sure if
1908 that is the correct response for things like shared
1909 libraries). */
74b7792f 1910 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1911 /* We need to do this whenever any symbols go away. */
74b7792f 1912 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1913
1914 /* Clean up any state BFD has sitting around. We don't need
1915 to close the descriptor but BFD lacks a way of closing the
1916 BFD without closing the descriptor. */
1917 obfd_filename = bfd_get_filename (objfile->obfd);
1918 if (!bfd_close (objfile->obfd))
1919 error ("Can't close BFD for %s: %s", objfile->name,
1920 bfd_errmsg (bfd_get_error ()));
1921 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1922 if (objfile->obfd == NULL)
1923 error ("Can't open %s to read symbols.", objfile->name);
1924 /* bfd_openr sets cacheable to true, which is what we want. */
1925 if (!bfd_check_format (objfile->obfd, bfd_object))
1926 error ("Can't read symbols from %s: %s.", objfile->name,
1927 bfd_errmsg (bfd_get_error ()));
1928
1929 /* Save the offsets, we will nuke them with the rest of the
1930 psymbol_obstack. */
1931 num_offsets = objfile->num_sections;
a39a16c4
MM
1932 offsets = ((struct section_offsets *)
1933 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1934 memcpy (offsets, objfile->section_offsets,
1935 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
1936
1937 /* Nuke all the state that we will re-read. Much of the following
1938 code which sets things to NULL really is necessary to tell
1939 other parts of GDB that there is nothing currently there. */
1940
1941 /* FIXME: Do we have to free a whole linked list, or is this
1942 enough? */
1943 if (objfile->global_psymbols.list)
aac7f4ea 1944 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1945 memset (&objfile->global_psymbols, 0,
1946 sizeof (objfile->global_psymbols));
1947 if (objfile->static_psymbols.list)
aac7f4ea 1948 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1949 memset (&objfile->static_psymbols, 0,
1950 sizeof (objfile->static_psymbols));
1951
1952 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1953 bcache_xfree (objfile->psymbol_cache);
1954 objfile->psymbol_cache = bcache_xmalloc ();
1955 bcache_xfree (objfile->macro_cache);
1956 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
1957 if (objfile->demangled_names_hash != NULL)
1958 {
1959 htab_delete (objfile->demangled_names_hash);
1960 objfile->demangled_names_hash = NULL;
1961 }
c5aa993b
JM
1962 obstack_free (&objfile->psymbol_obstack, 0);
1963 obstack_free (&objfile->symbol_obstack, 0);
1964 obstack_free (&objfile->type_obstack, 0);
1965 objfile->sections = NULL;
1966 objfile->symtabs = NULL;
1967 objfile->psymtabs = NULL;
1968 objfile->free_psymtabs = NULL;
1969 objfile->msymbols = NULL;
29239a8f 1970 objfile->sym_private = NULL;
c5aa993b 1971 objfile->minimal_symbol_count = 0;
0a83117a
MS
1972 memset (&objfile->msymbol_hash, 0,
1973 sizeof (objfile->msymbol_hash));
1974 memset (&objfile->msymbol_demangled_hash, 0,
1975 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1976 objfile->fundamental_types = NULL;
1977 if (objfile->sf != NULL)
1978 {
1979 (*objfile->sf->sym_finish) (objfile);
1980 }
1981
1982 /* We never make this a mapped file. */
1983 objfile->md = NULL;
1984 /* obstack_specify_allocation also initializes the obstack so
1985 it is empty. */
af5f3db6
AC
1986 objfile->psymbol_cache = bcache_xmalloc ();
1987 objfile->macro_cache = bcache_xmalloc ();
c5aa993b 1988 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1989 xmalloc, xfree);
c5aa993b 1990 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1991 xmalloc, xfree);
c5aa993b 1992 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1993 xmalloc, xfree);
c5aa993b
JM
1994 if (build_objfile_section_table (objfile))
1995 {
1996 error ("Can't find the file sections in `%s': %s",
1997 objfile->name, bfd_errmsg (bfd_get_error ()));
1998 }
15831452 1999 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2000
2001 /* We use the same section offsets as from last time. I'm not
2002 sure whether that is always correct for shared libraries. */
2003 objfile->section_offsets = (struct section_offsets *)
a39a16c4
MM
2004 obstack_alloc (&objfile->psymbol_obstack,
2005 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2006 memcpy (objfile->section_offsets, offsets,
2007 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2008 objfile->num_sections = num_offsets;
2009
2010 /* What the hell is sym_new_init for, anyway? The concept of
2011 distinguishing between the main file and additional files
2012 in this way seems rather dubious. */
2013 if (objfile == symfile_objfile)
2014 {
2015 (*objfile->sf->sym_new_init) (objfile);
c906108c 2016#ifdef HPUXHPPA
c5aa993b 2017 RESET_HP_UX_GLOBALS ();
c906108c 2018#endif
c5aa993b
JM
2019 }
2020
2021 (*objfile->sf->sym_init) (objfile);
b9caf505 2022 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2023 /* The "mainline" parameter is a hideous hack; I think leaving it
2024 zero is OK since dbxread.c also does what it needs to do if
2025 objfile->global_psymbols.size is 0. */
96baa820 2026 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2027 if (!have_partial_symbols () && !have_full_symbols ())
2028 {
2029 wrap_here ("");
2030 printf_filtered ("(no debugging symbols found)\n");
2031 wrap_here ("");
2032 }
2033 objfile->flags |= OBJF_SYMS;
2034
2035 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2036 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2037
c5aa993b
JM
2038 /* Getting new symbols may change our opinion about what is
2039 frameless. */
c906108c 2040
c5aa993b 2041 reinit_frame_cache ();
c906108c 2042
c5aa993b
JM
2043 /* Discard cleanups as symbol reading was successful. */
2044 discard_cleanups (old_cleanups);
c906108c 2045
c5aa993b
JM
2046 /* If the mtime has changed between the time we set new_modtime
2047 and now, we *want* this to be out of date, so don't call stat
2048 again now. */
2049 objfile->mtime = new_modtime;
2050 reread_one = 1;
5b5d99cf 2051 reread_separate_symbols (objfile);
c5aa993b 2052 }
c906108c
SS
2053 }
2054 }
c906108c
SS
2055
2056 if (reread_one)
2057 clear_symtab_users ();
2058}
5b5d99cf
JB
2059
2060
2061/* Handle separate debug info for OBJFILE, which has just been
2062 re-read:
2063 - If we had separate debug info before, but now we don't, get rid
2064 of the separated objfile.
2065 - If we didn't have separated debug info before, but now we do,
2066 read in the new separated debug info file.
2067 - If the debug link points to a different file, toss the old one
2068 and read the new one.
2069 This function does *not* handle the case where objfile is still
2070 using the same separate debug info file, but that file's timestamp
2071 has changed. That case should be handled by the loop in
2072 reread_symbols already. */
2073static void
2074reread_separate_symbols (struct objfile *objfile)
2075{
2076 char *debug_file;
2077 unsigned long crc32;
2078
2079 /* Does the updated objfile's debug info live in a
2080 separate file? */
2081 debug_file = find_separate_debug_file (objfile);
2082
2083 if (objfile->separate_debug_objfile)
2084 {
2085 /* There are two cases where we need to get rid of
2086 the old separated debug info objfile:
2087 - if the new primary objfile doesn't have
2088 separated debug info, or
2089 - if the new primary objfile has separate debug
2090 info, but it's under a different filename.
2091
2092 If the old and new objfiles both have separate
2093 debug info, under the same filename, then we're
2094 okay --- if the separated file's contents have
2095 changed, we will have caught that when we
2096 visited it in this function's outermost
2097 loop. */
2098 if (! debug_file
2099 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2100 free_objfile (objfile->separate_debug_objfile);
2101 }
2102
2103 /* If the new objfile has separate debug info, and we
2104 haven't loaded it already, do so now. */
2105 if (debug_file
2106 && ! objfile->separate_debug_objfile)
2107 {
2108 /* Use the same section offset table as objfile itself.
2109 Preserve the flags from objfile that make sense. */
2110 objfile->separate_debug_objfile
2111 = (symbol_file_add_with_addrs_or_offsets
2112 (debug_file,
2113 info_verbose, /* from_tty: Don't override the default. */
2114 0, /* No addr table. */
2115 objfile->section_offsets, objfile->num_sections,
2116 0, /* Not mainline. See comments about this above. */
2117 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2118 | OBJF_SHARED | OBJF_READNOW
2119 | OBJF_USERLOADED)));
2120 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2121 = objfile;
2122 }
2123}
2124
2125
c906108c
SS
2126\f
2127
c5aa993b
JM
2128
2129typedef struct
2130{
2131 char *ext;
c906108c 2132 enum language lang;
c5aa993b
JM
2133}
2134filename_language;
c906108c 2135
c5aa993b 2136static filename_language *filename_language_table;
c906108c
SS
2137static int fl_table_size, fl_table_next;
2138
2139static void
fba45db2 2140add_filename_language (char *ext, enum language lang)
c906108c
SS
2141{
2142 if (fl_table_next >= fl_table_size)
2143 {
2144 fl_table_size += 10;
25bf3106
PM
2145 filename_language_table =
2146 xrealloc (filename_language_table,
2147 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2148 }
2149
4fcf66da 2150 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2151 filename_language_table[fl_table_next].lang = lang;
2152 fl_table_next++;
2153}
2154
2155static char *ext_args;
2156
2157static void
fba45db2 2158set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2159{
2160 int i;
2161 char *cp = ext_args;
2162 enum language lang;
2163
2164 /* First arg is filename extension, starting with '.' */
2165 if (*cp != '.')
2166 error ("'%s': Filename extension must begin with '.'", ext_args);
2167
2168 /* Find end of first arg. */
c5aa993b 2169 while (*cp && !isspace (*cp))
c906108c
SS
2170 cp++;
2171
2172 if (*cp == '\0')
2173 error ("'%s': two arguments required -- filename extension and language",
2174 ext_args);
2175
2176 /* Null-terminate first arg */
c5aa993b 2177 *cp++ = '\0';
c906108c
SS
2178
2179 /* Find beginning of second arg, which should be a source language. */
2180 while (*cp && isspace (*cp))
2181 cp++;
2182
2183 if (*cp == '\0')
2184 error ("'%s': two arguments required -- filename extension and language",
2185 ext_args);
2186
2187 /* Lookup the language from among those we know. */
2188 lang = language_enum (cp);
2189
2190 /* Now lookup the filename extension: do we already know it? */
2191 for (i = 0; i < fl_table_next; i++)
2192 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2193 break;
2194
2195 if (i >= fl_table_next)
2196 {
2197 /* new file extension */
2198 add_filename_language (ext_args, lang);
2199 }
2200 else
2201 {
2202 /* redefining a previously known filename extension */
2203
2204 /* if (from_tty) */
2205 /* query ("Really make files of type %s '%s'?", */
2206 /* ext_args, language_str (lang)); */
2207
b8c9b27d 2208 xfree (filename_language_table[i].ext);
4fcf66da 2209 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2210 filename_language_table[i].lang = lang;
2211 }
2212}
2213
2214static void
fba45db2 2215info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2216{
2217 int i;
2218
2219 printf_filtered ("Filename extensions and the languages they represent:");
2220 printf_filtered ("\n\n");
2221 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2222 printf_filtered ("\t%s\t- %s\n",
2223 filename_language_table[i].ext,
c906108c
SS
2224 language_str (filename_language_table[i].lang));
2225}
2226
2227static void
fba45db2 2228init_filename_language_table (void)
c906108c
SS
2229{
2230 if (fl_table_size == 0) /* protect against repetition */
2231 {
2232 fl_table_size = 20;
2233 fl_table_next = 0;
c5aa993b 2234 filename_language_table =
c906108c 2235 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2236 add_filename_language (".c", language_c);
2237 add_filename_language (".C", language_cplus);
2238 add_filename_language (".cc", language_cplus);
2239 add_filename_language (".cp", language_cplus);
2240 add_filename_language (".cpp", language_cplus);
2241 add_filename_language (".cxx", language_cplus);
2242 add_filename_language (".c++", language_cplus);
2243 add_filename_language (".java", language_java);
c906108c 2244 add_filename_language (".class", language_java);
da2cf7e0 2245 add_filename_language (".m", language_objc);
c5aa993b
JM
2246 add_filename_language (".f", language_fortran);
2247 add_filename_language (".F", language_fortran);
2248 add_filename_language (".s", language_asm);
2249 add_filename_language (".S", language_asm);
c6fd39cd
PM
2250 add_filename_language (".pas", language_pascal);
2251 add_filename_language (".p", language_pascal);
2252 add_filename_language (".pp", language_pascal);
c906108c
SS
2253 }
2254}
2255
2256enum language
fba45db2 2257deduce_language_from_filename (char *filename)
c906108c
SS
2258{
2259 int i;
2260 char *cp;
2261
2262 if (filename != NULL)
2263 if ((cp = strrchr (filename, '.')) != NULL)
2264 for (i = 0; i < fl_table_next; i++)
2265 if (strcmp (cp, filename_language_table[i].ext) == 0)
2266 return filename_language_table[i].lang;
2267
2268 return language_unknown;
2269}
2270\f
2271/* allocate_symtab:
2272
2273 Allocate and partly initialize a new symbol table. Return a pointer
2274 to it. error() if no space.
2275
2276 Caller must set these fields:
c5aa993b
JM
2277 LINETABLE(symtab)
2278 symtab->blockvector
2279 symtab->dirname
2280 symtab->free_code
2281 symtab->free_ptr
2282 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2283 */
2284
2285struct symtab *
fba45db2 2286allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
2287{
2288 register struct symtab *symtab;
2289
2290 symtab = (struct symtab *)
c5aa993b 2291 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 2292 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
2293 symtab->filename = obsavestring (filename, strlen (filename),
2294 &objfile->symbol_obstack);
2295 symtab->fullname = NULL;
2296 symtab->language = deduce_language_from_filename (filename);
2297 symtab->debugformat = obsavestring ("unknown", 7,
2298 &objfile->symbol_obstack);
c906108c
SS
2299
2300 /* Hook it to the objfile it comes from */
2301
c5aa993b
JM
2302 symtab->objfile = objfile;
2303 symtab->next = objfile->symtabs;
2304 objfile->symtabs = symtab;
c906108c
SS
2305
2306 /* FIXME: This should go away. It is only defined for the Z8000,
2307 and the Z8000 definition of this macro doesn't have anything to
2308 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2309 here for convenience. */
2310#ifdef INIT_EXTRA_SYMTAB_INFO
2311 INIT_EXTRA_SYMTAB_INFO (symtab);
2312#endif
2313
2314 return (symtab);
2315}
2316
2317struct partial_symtab *
fba45db2 2318allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2319{
2320 struct partial_symtab *psymtab;
2321
c5aa993b 2322 if (objfile->free_psymtabs)
c906108c 2323 {
c5aa993b
JM
2324 psymtab = objfile->free_psymtabs;
2325 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2326 }
2327 else
2328 psymtab = (struct partial_symtab *)
c5aa993b 2329 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
2330 sizeof (struct partial_symtab));
2331
2332 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
2333 psymtab->filename = obsavestring (filename, strlen (filename),
2334 &objfile->psymbol_obstack);
2335 psymtab->symtab = NULL;
c906108c
SS
2336
2337 /* Prepend it to the psymtab list for the objfile it belongs to.
2338 Psymtabs are searched in most recent inserted -> least recent
2339 inserted order. */
2340
c5aa993b
JM
2341 psymtab->objfile = objfile;
2342 psymtab->next = objfile->psymtabs;
2343 objfile->psymtabs = psymtab;
c906108c
SS
2344#if 0
2345 {
2346 struct partial_symtab **prev_pst;
c5aa993b
JM
2347 psymtab->objfile = objfile;
2348 psymtab->next = NULL;
2349 prev_pst = &(objfile->psymtabs);
c906108c 2350 while ((*prev_pst) != NULL)
c5aa993b 2351 prev_pst = &((*prev_pst)->next);
c906108c 2352 (*prev_pst) = psymtab;
c5aa993b 2353 }
c906108c 2354#endif
c5aa993b 2355
c906108c
SS
2356 return (psymtab);
2357}
2358
2359void
fba45db2 2360discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2361{
2362 struct partial_symtab **prev_pst;
2363
2364 /* From dbxread.c:
2365 Empty psymtabs happen as a result of header files which don't
2366 have any symbols in them. There can be a lot of them. But this
2367 check is wrong, in that a psymtab with N_SLINE entries but
2368 nothing else is not empty, but we don't realize that. Fixing
2369 that without slowing things down might be tricky. */
2370
2371 /* First, snip it out of the psymtab chain */
2372
2373 prev_pst = &(pst->objfile->psymtabs);
2374 while ((*prev_pst) != pst)
2375 prev_pst = &((*prev_pst)->next);
2376 (*prev_pst) = pst->next;
2377
2378 /* Next, put it on a free list for recycling */
2379
2380 pst->next = pst->objfile->free_psymtabs;
2381 pst->objfile->free_psymtabs = pst;
2382}
c906108c 2383\f
c5aa993b 2384
c906108c
SS
2385/* Reset all data structures in gdb which may contain references to symbol
2386 table data. */
2387
2388void
fba45db2 2389clear_symtab_users (void)
c906108c
SS
2390{
2391 /* Someday, we should do better than this, by only blowing away
2392 the things that really need to be blown. */
2393 clear_value_history ();
2394 clear_displays ();
2395 clear_internalvars ();
2396 breakpoint_re_set ();
2397 set_default_breakpoint (0, 0, 0, 0);
0378c332 2398 clear_current_source_symtab_and_line ();
c906108c 2399 clear_pc_function_cache ();
11cf8741
JM
2400 if (target_new_objfile_hook)
2401 target_new_objfile_hook (NULL);
c906108c
SS
2402}
2403
74b7792f
AC
2404static void
2405clear_symtab_users_cleanup (void *ignore)
2406{
2407 clear_symtab_users ();
2408}
2409
c906108c
SS
2410/* clear_symtab_users_once:
2411
2412 This function is run after symbol reading, or from a cleanup.
2413 If an old symbol table was obsoleted, the old symbol table
2414 has been blown away, but the other GDB data structures that may
2415 reference it have not yet been cleared or re-directed. (The old
2416 symtab was zapped, and the cleanup queued, in free_named_symtab()
2417 below.)
2418
2419 This function can be queued N times as a cleanup, or called
2420 directly; it will do all the work the first time, and then will be a
2421 no-op until the next time it is queued. This works by bumping a
2422 counter at queueing time. Much later when the cleanup is run, or at
2423 the end of symbol processing (in case the cleanup is discarded), if
2424 the queued count is greater than the "done-count", we do the work
2425 and set the done-count to the queued count. If the queued count is
2426 less than or equal to the done-count, we just ignore the call. This
2427 is needed because reading a single .o file will often replace many
2428 symtabs (one per .h file, for example), and we don't want to reset
2429 the breakpoints N times in the user's face.
2430
2431 The reason we both queue a cleanup, and call it directly after symbol
2432 reading, is because the cleanup protects us in case of errors, but is
2433 discarded if symbol reading is successful. */
2434
2435#if 0
2436/* FIXME: As free_named_symtabs is currently a big noop this function
2437 is no longer needed. */
a14ed312 2438static void clear_symtab_users_once (void);
c906108c
SS
2439
2440static int clear_symtab_users_queued;
2441static int clear_symtab_users_done;
2442
2443static void
fba45db2 2444clear_symtab_users_once (void)
c906108c
SS
2445{
2446 /* Enforce once-per-`do_cleanups'-semantics */
2447 if (clear_symtab_users_queued <= clear_symtab_users_done)
2448 return;
2449 clear_symtab_users_done = clear_symtab_users_queued;
2450
2451 clear_symtab_users ();
2452}
2453#endif
2454
2455/* Delete the specified psymtab, and any others that reference it. */
2456
2457static void
fba45db2 2458cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2459{
2460 struct partial_symtab *ps, *pprev = NULL;
2461 int i;
2462
2463 /* Find its previous psymtab in the chain */
c5aa993b
JM
2464 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2465 {
2466 if (ps == pst)
2467 break;
2468 pprev = ps;
2469 }
c906108c 2470
c5aa993b
JM
2471 if (ps)
2472 {
2473 /* Unhook it from the chain. */
2474 if (ps == pst->objfile->psymtabs)
2475 pst->objfile->psymtabs = ps->next;
2476 else
2477 pprev->next = ps->next;
2478
2479 /* FIXME, we can't conveniently deallocate the entries in the
2480 partial_symbol lists (global_psymbols/static_psymbols) that
2481 this psymtab points to. These just take up space until all
2482 the psymtabs are reclaimed. Ditto the dependencies list and
2483 filename, which are all in the psymbol_obstack. */
2484
2485 /* We need to cashier any psymtab that has this one as a dependency... */
2486 again:
2487 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2488 {
2489 for (i = 0; i < ps->number_of_dependencies; i++)
2490 {
2491 if (ps->dependencies[i] == pst)
2492 {
2493 cashier_psymtab (ps);
2494 goto again; /* Must restart, chain has been munged. */
2495 }
2496 }
c906108c 2497 }
c906108c 2498 }
c906108c
SS
2499}
2500
2501/* If a symtab or psymtab for filename NAME is found, free it along
2502 with any dependent breakpoints, displays, etc.
2503 Used when loading new versions of object modules with the "add-file"
2504 command. This is only called on the top-level symtab or psymtab's name;
2505 it is not called for subsidiary files such as .h files.
2506
2507 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2508 FIXME. The return value appears to never be used.
c906108c
SS
2509
2510 FIXME. I think this is not the best way to do this. We should
2511 work on being gentler to the environment while still cleaning up
2512 all stray pointers into the freed symtab. */
2513
2514int
fba45db2 2515free_named_symtabs (char *name)
c906108c
SS
2516{
2517#if 0
2518 /* FIXME: With the new method of each objfile having it's own
2519 psymtab list, this function needs serious rethinking. In particular,
2520 why was it ever necessary to toss psymtabs with specific compilation
2521 unit filenames, as opposed to all psymtabs from a particular symbol
2522 file? -- fnf
2523 Well, the answer is that some systems permit reloading of particular
2524 compilation units. We want to blow away any old info about these
2525 compilation units, regardless of which objfiles they arrived in. --gnu. */
2526
2527 register struct symtab *s;
2528 register struct symtab *prev;
2529 register struct partial_symtab *ps;
2530 struct blockvector *bv;
2531 int blewit = 0;
2532
2533 /* We only wack things if the symbol-reload switch is set. */
2534 if (!symbol_reloading)
2535 return 0;
2536
2537 /* Some symbol formats have trouble providing file names... */
2538 if (name == 0 || *name == '\0')
2539 return 0;
2540
2541 /* Look for a psymtab with the specified name. */
2542
2543again2:
c5aa993b
JM
2544 for (ps = partial_symtab_list; ps; ps = ps->next)
2545 {
2546 if (STREQ (name, ps->filename))
2547 {
2548 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2549 goto again2; /* Must restart, chain has been munged */
2550 }
c906108c 2551 }
c906108c
SS
2552
2553 /* Look for a symtab with the specified name. */
2554
2555 for (s = symtab_list; s; s = s->next)
2556 {
2557 if (STREQ (name, s->filename))
2558 break;
2559 prev = s;
2560 }
2561
2562 if (s)
2563 {
2564 if (s == symtab_list)
2565 symtab_list = s->next;
2566 else
2567 prev->next = s->next;
2568
2569 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2570 or not they depend on the symtab being freed. This should be
2571 changed so that only those data structures affected are deleted. */
c906108c
SS
2572
2573 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2574 This test is necessary due to a bug in "dbxread.c" that
2575 causes empty symtabs to be created for N_SO symbols that
2576 contain the pathname of the object file. (This problem
2577 has been fixed in GDB 3.9x). */
c906108c
SS
2578
2579 bv = BLOCKVECTOR (s);
2580 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2581 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2582 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2583 {
b9caf505
AC
2584 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2585 name);
c906108c
SS
2586 clear_symtab_users_queued++;
2587 make_cleanup (clear_symtab_users_once, 0);
2588 blewit = 1;
c5aa993b
JM
2589 }
2590 else
2591 {
b9caf505
AC
2592 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2593 name);
c906108c
SS
2594 }
2595
2596 free_symtab (s);
2597 }
2598 else
2599 {
2600 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2601 even though no symtab was found, since the file might have
2602 been compiled without debugging, and hence not be associated
2603 with a symtab. In order to handle this correctly, we would need
2604 to keep a list of text address ranges for undebuggable files.
2605 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2606 ;
2607 }
2608
2609 /* FIXME, what about the minimal symbol table? */
2610 return blewit;
2611#else
2612 return (0);
2613#endif
2614}
2615\f
2616/* Allocate and partially fill a partial symtab. It will be
2617 completely filled at the end of the symbol list.
2618
d4f3574e 2619 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2620
2621struct partial_symtab *
fba45db2
KB
2622start_psymtab_common (struct objfile *objfile,
2623 struct section_offsets *section_offsets, char *filename,
2624 CORE_ADDR textlow, struct partial_symbol **global_syms,
2625 struct partial_symbol **static_syms)
c906108c
SS
2626{
2627 struct partial_symtab *psymtab;
2628
2629 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2630 psymtab->section_offsets = section_offsets;
2631 psymtab->textlow = textlow;
2632 psymtab->texthigh = psymtab->textlow; /* default */
2633 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2634 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2635 return (psymtab);
2636}
2637\f
2638/* Add a symbol with a long value to a psymtab.
2639 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2640
2641void
176620f1 2642add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2643 enum address_class class,
2644 struct psymbol_allocation_list *list, long val, /* Value as a long */
2645 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2646 enum language language, struct objfile *objfile)
c906108c
SS
2647{
2648 register struct partial_symbol *psym;
2649 char *buf = alloca (namelength + 1);
2650 /* psymbol is static so that there will be no uninitialized gaps in the
2651 structure which might contain random data, causing cache misses in
2652 bcache. */
2653 static struct partial_symbol psymbol;
2654
2655 /* Create local copy of the partial symbol */
2656 memcpy (buf, name, namelength);
2657 buf[namelength] = '\0';
c906108c
SS
2658 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2659 if (val != 0)
2660 {
2661 SYMBOL_VALUE (&psymbol) = val;
2662 }
2663 else
2664 {
2665 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2666 }
2667 SYMBOL_SECTION (&psymbol) = 0;
2668 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2669 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2670 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2671
2672 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2673
2674 /* Stash the partial symbol away in the cache */
af5f3db6 2675 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2676
2677 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2678 if (list->next >= list->list + list->size)
2679 {
2680 extend_psymbol_list (list, objfile);
2681 }
2682 *list->next++ = psym;
2683 OBJSTAT (objfile, n_psyms++);
2684}
2685
2686/* Add a symbol with a long value to a psymtab. This differs from
2687 * add_psymbol_to_list above in taking both a mangled and a demangled
2688 * name. */
2689
2690void
fba45db2 2691add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2692 int dem_namelength, domain_enum domain,
fba45db2
KB
2693 enum address_class class,
2694 struct psymbol_allocation_list *list, long val, /* Value as a long */
2695 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2696 enum language language,
2697 struct objfile *objfile)
c906108c
SS
2698{
2699 register struct partial_symbol *psym;
2700 char *buf = alloca (namelength + 1);
2701 /* psymbol is static so that there will be no uninitialized gaps in the
2702 structure which might contain random data, causing cache misses in
2703 bcache. */
2704 static struct partial_symbol psymbol;
2705
2706 /* Create local copy of the partial symbol */
2707
2708 memcpy (buf, name, namelength);
2709 buf[namelength] = '\0';
22abf04a 2710 DEPRECATED_SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2711
2712 buf = alloca (dem_namelength + 1);
2713 memcpy (buf, dem_name, dem_namelength);
2714 buf[dem_namelength] = '\0';
c5aa993b 2715
c906108c
SS
2716 switch (language)
2717 {
c5aa993b
JM
2718 case language_c:
2719 case language_cplus:
2720 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
af5f3db6 2721 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2722 break;
c906108c
SS
2723 /* FIXME What should be done for the default case? Ignoring for now. */
2724 }
2725
2726 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2727 if (val != 0)
2728 {
2729 SYMBOL_VALUE (&psymbol) = val;
2730 }
2731 else
2732 {
2733 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2734 }
2735 SYMBOL_SECTION (&psymbol) = 0;
2736 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2737 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2738 PSYMBOL_CLASS (&psymbol) = class;
2739 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2740
2741 /* Stash the partial symbol away in the cache */
af5f3db6 2742 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2743
2744 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2745 if (list->next >= list->list + list->size)
2746 {
2747 extend_psymbol_list (list, objfile);
2748 }
2749 *list->next++ = psym;
2750 OBJSTAT (objfile, n_psyms++);
2751}
2752
2753/* Initialize storage for partial symbols. */
2754
2755void
fba45db2 2756init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2757{
2758 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2759
2760 if (objfile->global_psymbols.list)
c906108c 2761 {
4efb68b1 2762 xmfree (objfile->md, objfile->global_psymbols.list);
c906108c 2763 }
c5aa993b 2764 if (objfile->static_psymbols.list)
c906108c 2765 {
4efb68b1 2766 xmfree (objfile->md, objfile->static_psymbols.list);
c906108c 2767 }
c5aa993b 2768
c906108c
SS
2769 /* Current best guess is that approximately a twentieth
2770 of the total symbols (in a debugging file) are global or static
2771 oriented symbols */
c906108c 2772
c5aa993b
JM
2773 objfile->global_psymbols.size = total_symbols / 10;
2774 objfile->static_psymbols.size = total_symbols / 10;
2775
2776 if (objfile->global_psymbols.size > 0)
c906108c 2777 {
c5aa993b
JM
2778 objfile->global_psymbols.next =
2779 objfile->global_psymbols.list = (struct partial_symbol **)
2780 xmmalloc (objfile->md, (objfile->global_psymbols.size
2781 * sizeof (struct partial_symbol *)));
c906108c 2782 }
c5aa993b 2783 if (objfile->static_psymbols.size > 0)
c906108c 2784 {
c5aa993b
JM
2785 objfile->static_psymbols.next =
2786 objfile->static_psymbols.list = (struct partial_symbol **)
2787 xmmalloc (objfile->md, (objfile->static_psymbols.size
2788 * sizeof (struct partial_symbol *)));
c906108c
SS
2789 }
2790}
2791
2792/* OVERLAYS:
2793 The following code implements an abstraction for debugging overlay sections.
2794
2795 The target model is as follows:
2796 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2797 same VMA, each with its own unique LMA (or load address).
c906108c 2798 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2799 sections, one by one, from the load address into the VMA address.
c906108c 2800 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2801 sections should be considered to be mapped from the VMA to the LMA.
2802 This information is used for symbol lookup, and memory read/write.
2803 For instance, if a section has been mapped then its contents
2804 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2805
2806 Two levels of debugger support for overlays are available. One is
2807 "manual", in which the debugger relies on the user to tell it which
2808 overlays are currently mapped. This level of support is
2809 implemented entirely in the core debugger, and the information about
2810 whether a section is mapped is kept in the objfile->obj_section table.
2811
2812 The second level of support is "automatic", and is only available if
2813 the target-specific code provides functionality to read the target's
2814 overlay mapping table, and translate its contents for the debugger
2815 (by updating the mapped state information in the obj_section tables).
2816
2817 The interface is as follows:
c5aa993b
JM
2818 User commands:
2819 overlay map <name> -- tell gdb to consider this section mapped
2820 overlay unmap <name> -- tell gdb to consider this section unmapped
2821 overlay list -- list the sections that GDB thinks are mapped
2822 overlay read-target -- get the target's state of what's mapped
2823 overlay off/manual/auto -- set overlay debugging state
2824 Functional interface:
2825 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2826 section, return that section.
2827 find_pc_overlay(pc): find any overlay section that contains
2828 the pc, either in its VMA or its LMA
2829 overlay_is_mapped(sect): true if overlay is marked as mapped
2830 section_is_overlay(sect): true if section's VMA != LMA
2831 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2832 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2833 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2834 overlay_mapped_address(...): map an address from section's LMA to VMA
2835 overlay_unmapped_address(...): map an address from section's VMA to LMA
2836 symbol_overlayed_address(...): Return a "current" address for symbol:
2837 either in VMA or LMA depending on whether
2838 the symbol's section is currently mapped
c906108c
SS
2839 */
2840
2841/* Overlay debugging state: */
2842
d874f1e2 2843enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2844int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2845
2846/* Target vector for refreshing overlay mapped state */
a14ed312 2847static void simple_overlay_update (struct obj_section *);
507f3c78 2848void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2849
2850/* Function: section_is_overlay (SECTION)
2851 Returns true if SECTION has VMA not equal to LMA, ie.
2852 SECTION is loaded at an address different from where it will "run". */
2853
2854int
fba45db2 2855section_is_overlay (asection *section)
c906108c 2856{
fbd35540
MS
2857 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2858
c906108c
SS
2859 if (overlay_debugging)
2860 if (section && section->lma != 0 &&
2861 section->vma != section->lma)
2862 return 1;
2863
2864 return 0;
2865}
2866
2867/* Function: overlay_invalidate_all (void)
2868 Invalidate the mapped state of all overlay sections (mark it as stale). */
2869
2870static void
fba45db2 2871overlay_invalidate_all (void)
c906108c 2872{
c5aa993b 2873 struct objfile *objfile;
c906108c
SS
2874 struct obj_section *sect;
2875
2876 ALL_OBJSECTIONS (objfile, sect)
2877 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2878 sect->ovly_mapped = -1;
c906108c
SS
2879}
2880
2881/* Function: overlay_is_mapped (SECTION)
2882 Returns true if section is an overlay, and is currently mapped.
2883 Private: public access is thru function section_is_mapped.
2884
2885 Access to the ovly_mapped flag is restricted to this function, so
2886 that we can do automatic update. If the global flag
2887 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2888 overlay_invalidate_all. If the mapped state of the particular
2889 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2890
c5aa993b 2891static int
fba45db2 2892overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2893{
2894 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2895 return 0;
2896
c5aa993b 2897 switch (overlay_debugging)
c906108c
SS
2898 {
2899 default:
d874f1e2 2900 case ovly_off:
c5aa993b 2901 return 0; /* overlay debugging off */
d874f1e2 2902 case ovly_auto: /* overlay debugging automatic */
c906108c 2903 /* Unles there is a target_overlay_update function,
c5aa993b 2904 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2905 if (target_overlay_update)
2906 {
2907 if (overlay_cache_invalid)
2908 {
2909 overlay_invalidate_all ();
2910 overlay_cache_invalid = 0;
2911 }
2912 if (osect->ovly_mapped == -1)
2913 (*target_overlay_update) (osect);
2914 }
2915 /* fall thru to manual case */
d874f1e2 2916 case ovly_on: /* overlay debugging manual */
c906108c
SS
2917 return osect->ovly_mapped == 1;
2918 }
2919}
2920
2921/* Function: section_is_mapped
2922 Returns true if section is an overlay, and is currently mapped. */
2923
2924int
fba45db2 2925section_is_mapped (asection *section)
c906108c 2926{
c5aa993b 2927 struct objfile *objfile;
c906108c
SS
2928 struct obj_section *osect;
2929
2930 if (overlay_debugging)
2931 if (section && section_is_overlay (section))
2932 ALL_OBJSECTIONS (objfile, osect)
2933 if (osect->the_bfd_section == section)
c5aa993b 2934 return overlay_is_mapped (osect);
c906108c
SS
2935
2936 return 0;
2937}
2938
2939/* Function: pc_in_unmapped_range
2940 If PC falls into the lma range of SECTION, return true, else false. */
2941
2942CORE_ADDR
fba45db2 2943pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2944{
fbd35540
MS
2945 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2946
c906108c
SS
2947 int size;
2948
2949 if (overlay_debugging)
2950 if (section && section_is_overlay (section))
2951 {
2952 size = bfd_get_section_size_before_reloc (section);
2953 if (section->lma <= pc && pc < section->lma + size)
2954 return 1;
2955 }
2956 return 0;
2957}
2958
2959/* Function: pc_in_mapped_range
2960 If PC falls into the vma range of SECTION, return true, else false. */
2961
2962CORE_ADDR
fba45db2 2963pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2964{
fbd35540
MS
2965 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2966
c906108c
SS
2967 int size;
2968
2969 if (overlay_debugging)
2970 if (section && section_is_overlay (section))
2971 {
2972 size = bfd_get_section_size_before_reloc (section);
2973 if (section->vma <= pc && pc < section->vma + size)
2974 return 1;
2975 }
2976 return 0;
2977}
2978
9ec8e6a0
JB
2979
2980/* Return true if the mapped ranges of sections A and B overlap, false
2981 otherwise. */
b9362cc7 2982static int
9ec8e6a0
JB
2983sections_overlap (asection *a, asection *b)
2984{
fbd35540
MS
2985 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2986
9ec8e6a0
JB
2987 CORE_ADDR a_start = a->vma;
2988 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2989 CORE_ADDR b_start = b->vma;
2990 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2991
2992 return (a_start < b_end && b_start < a_end);
2993}
2994
c906108c
SS
2995/* Function: overlay_unmapped_address (PC, SECTION)
2996 Returns the address corresponding to PC in the unmapped (load) range.
2997 May be the same as PC. */
2998
2999CORE_ADDR
fba45db2 3000overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3001{
fbd35540
MS
3002 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3003
c906108c
SS
3004 if (overlay_debugging)
3005 if (section && section_is_overlay (section) &&
3006 pc_in_mapped_range (pc, section))
3007 return pc + section->lma - section->vma;
3008
3009 return pc;
3010}
3011
3012/* Function: overlay_mapped_address (PC, SECTION)
3013 Returns the address corresponding to PC in the mapped (runtime) range.
3014 May be the same as PC. */
3015
3016CORE_ADDR
fba45db2 3017overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3018{
fbd35540
MS
3019 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3020
c906108c
SS
3021 if (overlay_debugging)
3022 if (section && section_is_overlay (section) &&
3023 pc_in_unmapped_range (pc, section))
3024 return pc + section->vma - section->lma;
3025
3026 return pc;
3027}
3028
3029
3030/* Function: symbol_overlayed_address
3031 Return one of two addresses (relative to the VMA or to the LMA),
3032 depending on whether the section is mapped or not. */
3033
c5aa993b 3034CORE_ADDR
fba45db2 3035symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3036{
3037 if (overlay_debugging)
3038 {
3039 /* If the symbol has no section, just return its regular address. */
3040 if (section == 0)
3041 return address;
3042 /* If the symbol's section is not an overlay, just return its address */
3043 if (!section_is_overlay (section))
3044 return address;
3045 /* If the symbol's section is mapped, just return its address */
3046 if (section_is_mapped (section))
3047 return address;
3048 /*
3049 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3050 * then return its LOADED address rather than its vma address!!
3051 */
3052 return overlay_unmapped_address (address, section);
3053 }
3054 return address;
3055}
3056
3057/* Function: find_pc_overlay (PC)
3058 Return the best-match overlay section for PC:
3059 If PC matches a mapped overlay section's VMA, return that section.
3060 Else if PC matches an unmapped section's VMA, return that section.
3061 Else if PC matches an unmapped section's LMA, return that section. */
3062
3063asection *
fba45db2 3064find_pc_overlay (CORE_ADDR pc)
c906108c 3065{
c5aa993b 3066 struct objfile *objfile;
c906108c
SS
3067 struct obj_section *osect, *best_match = NULL;
3068
3069 if (overlay_debugging)
3070 ALL_OBJSECTIONS (objfile, osect)
3071 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3072 {
3073 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3074 {
3075 if (overlay_is_mapped (osect))
3076 return osect->the_bfd_section;
3077 else
3078 best_match = osect;
3079 }
3080 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3081 best_match = osect;
3082 }
c906108c
SS
3083 return best_match ? best_match->the_bfd_section : NULL;
3084}
3085
3086/* Function: find_pc_mapped_section (PC)
3087 If PC falls into the VMA address range of an overlay section that is
3088 currently marked as MAPPED, return that section. Else return NULL. */
3089
3090asection *
fba45db2 3091find_pc_mapped_section (CORE_ADDR pc)
c906108c 3092{
c5aa993b 3093 struct objfile *objfile;
c906108c
SS
3094 struct obj_section *osect;
3095
3096 if (overlay_debugging)
3097 ALL_OBJSECTIONS (objfile, osect)
3098 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3099 overlay_is_mapped (osect))
c5aa993b 3100 return osect->the_bfd_section;
c906108c
SS
3101
3102 return NULL;
3103}
3104
3105/* Function: list_overlays_command
3106 Print a list of mapped sections and their PC ranges */
3107
3108void
fba45db2 3109list_overlays_command (char *args, int from_tty)
c906108c 3110{
c5aa993b
JM
3111 int nmapped = 0;
3112 struct objfile *objfile;
c906108c
SS
3113 struct obj_section *osect;
3114
3115 if (overlay_debugging)
3116 ALL_OBJSECTIONS (objfile, osect)
3117 if (overlay_is_mapped (osect))
c5aa993b
JM
3118 {
3119 const char *name;
3120 bfd_vma lma, vma;
3121 int size;
3122
3123 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3124 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3125 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3126 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3127
3128 printf_filtered ("Section %s, loaded at ", name);
3129 print_address_numeric (lma, 1, gdb_stdout);
3130 puts_filtered (" - ");
3131 print_address_numeric (lma + size, 1, gdb_stdout);
3132 printf_filtered (", mapped at ");
3133 print_address_numeric (vma, 1, gdb_stdout);
3134 puts_filtered (" - ");
3135 print_address_numeric (vma + size, 1, gdb_stdout);
3136 puts_filtered ("\n");
3137
3138 nmapped++;
3139 }
c906108c
SS
3140 if (nmapped == 0)
3141 printf_filtered ("No sections are mapped.\n");
3142}
3143
3144/* Function: map_overlay_command
3145 Mark the named section as mapped (ie. residing at its VMA address). */
3146
3147void
fba45db2 3148map_overlay_command (char *args, int from_tty)
c906108c 3149{
c5aa993b
JM
3150 struct objfile *objfile, *objfile2;
3151 struct obj_section *sec, *sec2;
3152 asection *bfdsec;
c906108c
SS
3153
3154 if (!overlay_debugging)
515ad16c
EZ
3155 error ("\
3156Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3157the 'overlay manual' command.");
c906108c
SS
3158
3159 if (args == 0 || *args == 0)
3160 error ("Argument required: name of an overlay section");
3161
3162 /* First, find a section matching the user supplied argument */
3163 ALL_OBJSECTIONS (objfile, sec)
3164 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3165 {
3166 /* Now, check to see if the section is an overlay. */
3167 bfdsec = sec->the_bfd_section;
3168 if (!section_is_overlay (bfdsec))
3169 continue; /* not an overlay section */
3170
3171 /* Mark the overlay as "mapped" */
3172 sec->ovly_mapped = 1;
3173
3174 /* Next, make a pass and unmap any sections that are
3175 overlapped by this new section: */
3176 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3177 if (sec2->ovly_mapped
3178 && sec != sec2
3179 && sec->the_bfd_section != sec2->the_bfd_section
3180 && sections_overlap (sec->the_bfd_section,
3181 sec2->the_bfd_section))
c5aa993b
JM
3182 {
3183 if (info_verbose)
3184 printf_filtered ("Note: section %s unmapped by overlap\n",
3185 bfd_section_name (objfile->obfd,
3186 sec2->the_bfd_section));
3187 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3188 }
3189 return;
3190 }
c906108c
SS
3191 error ("No overlay section called %s", args);
3192}
3193
3194/* Function: unmap_overlay_command
3195 Mark the overlay section as unmapped
3196 (ie. resident in its LMA address range, rather than the VMA range). */
3197
3198void
fba45db2 3199unmap_overlay_command (char *args, int from_tty)
c906108c 3200{
c5aa993b 3201 struct objfile *objfile;
c906108c
SS
3202 struct obj_section *sec;
3203
3204 if (!overlay_debugging)
515ad16c
EZ
3205 error ("\
3206Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3207the 'overlay manual' command.");
c906108c
SS
3208
3209 if (args == 0 || *args == 0)
3210 error ("Argument required: name of an overlay section");
3211
3212 /* First, find a section matching the user supplied argument */
3213 ALL_OBJSECTIONS (objfile, sec)
3214 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3215 {
3216 if (!sec->ovly_mapped)
3217 error ("Section %s is not mapped", args);
3218 sec->ovly_mapped = 0;
3219 return;
3220 }
c906108c
SS
3221 error ("No overlay section called %s", args);
3222}
3223
3224/* Function: overlay_auto_command
3225 A utility command to turn on overlay debugging.
3226 Possibly this should be done via a set/show command. */
3227
3228static void
fba45db2 3229overlay_auto_command (char *args, int from_tty)
c906108c 3230{
d874f1e2 3231 overlay_debugging = ovly_auto;
1900040c 3232 enable_overlay_breakpoints ();
c906108c
SS
3233 if (info_verbose)
3234 printf_filtered ("Automatic overlay debugging enabled.");
3235}
3236
3237/* Function: overlay_manual_command
3238 A utility command to turn on overlay debugging.
3239 Possibly this should be done via a set/show command. */
3240
3241static void
fba45db2 3242overlay_manual_command (char *args, int from_tty)
c906108c 3243{
d874f1e2 3244 overlay_debugging = ovly_on;
1900040c 3245 disable_overlay_breakpoints ();
c906108c
SS
3246 if (info_verbose)
3247 printf_filtered ("Overlay debugging enabled.");
3248}
3249
3250/* Function: overlay_off_command
3251 A utility command to turn on overlay debugging.
3252 Possibly this should be done via a set/show command. */
3253
3254static void
fba45db2 3255overlay_off_command (char *args, int from_tty)
c906108c 3256{
d874f1e2 3257 overlay_debugging = ovly_off;
1900040c 3258 disable_overlay_breakpoints ();
c906108c
SS
3259 if (info_verbose)
3260 printf_filtered ("Overlay debugging disabled.");
3261}
3262
3263static void
fba45db2 3264overlay_load_command (char *args, int from_tty)
c906108c
SS
3265{
3266 if (target_overlay_update)
3267 (*target_overlay_update) (NULL);
3268 else
3269 error ("This target does not know how to read its overlay state.");
3270}
3271
3272/* Function: overlay_command
3273 A place-holder for a mis-typed command */
3274
3275/* Command list chain containing all defined "overlay" subcommands. */
3276struct cmd_list_element *overlaylist;
3277
3278static void
fba45db2 3279overlay_command (char *args, int from_tty)
c906108c 3280{
c5aa993b 3281 printf_unfiltered
c906108c
SS
3282 ("\"overlay\" must be followed by the name of an overlay command.\n");
3283 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3284}
3285
3286
3287/* Target Overlays for the "Simplest" overlay manager:
3288
3289 This is GDB's default target overlay layer. It works with the
3290 minimal overlay manager supplied as an example by Cygnus. The
3291 entry point is via a function pointer "target_overlay_update",
3292 so targets that use a different runtime overlay manager can
3293 substitute their own overlay_update function and take over the
3294 function pointer.
3295
3296 The overlay_update function pokes around in the target's data structures
3297 to see what overlays are mapped, and updates GDB's overlay mapping with
3298 this information.
3299
3300 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3301 unsigned _novlys; /# number of overlay sections #/
3302 unsigned _ovly_table[_novlys][4] = {
3303 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3304 {..., ..., ..., ...},
3305 }
3306 unsigned _novly_regions; /# number of overlay regions #/
3307 unsigned _ovly_region_table[_novly_regions][3] = {
3308 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3309 {..., ..., ...},
3310 }
c906108c
SS
3311 These functions will attempt to update GDB's mappedness state in the
3312 symbol section table, based on the target's mappedness state.
3313
3314 To do this, we keep a cached copy of the target's _ovly_table, and
3315 attempt to detect when the cached copy is invalidated. The main
3316 entry point is "simple_overlay_update(SECT), which looks up SECT in
3317 the cached table and re-reads only the entry for that section from
3318 the target (whenever possible).
3319 */
3320
3321/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3322static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3323#if 0
c5aa993b 3324static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3325#endif
c5aa993b 3326static unsigned cache_novlys = 0;
c906108c 3327#if 0
c5aa993b 3328static unsigned cache_novly_regions = 0;
c906108c
SS
3329#endif
3330static CORE_ADDR cache_ovly_table_base = 0;
3331#if 0
3332static CORE_ADDR cache_ovly_region_table_base = 0;
3333#endif
c5aa993b
JM
3334enum ovly_index
3335 {
3336 VMA, SIZE, LMA, MAPPED
3337 };
c906108c
SS
3338#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3339
3340/* Throw away the cached copy of _ovly_table */
3341static void
fba45db2 3342simple_free_overlay_table (void)
c906108c
SS
3343{
3344 if (cache_ovly_table)
b8c9b27d 3345 xfree (cache_ovly_table);
c5aa993b 3346 cache_novlys = 0;
c906108c
SS
3347 cache_ovly_table = NULL;
3348 cache_ovly_table_base = 0;
3349}
3350
3351#if 0
3352/* Throw away the cached copy of _ovly_region_table */
3353static void
fba45db2 3354simple_free_overlay_region_table (void)
c906108c
SS
3355{
3356 if (cache_ovly_region_table)
b8c9b27d 3357 xfree (cache_ovly_region_table);
c5aa993b 3358 cache_novly_regions = 0;
c906108c
SS
3359 cache_ovly_region_table = NULL;
3360 cache_ovly_region_table_base = 0;
3361}
3362#endif
3363
3364/* Read an array of ints from the target into a local buffer.
3365 Convert to host order. int LEN is number of ints */
3366static void
fba45db2 3367read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3368{
34c0bd93 3369 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3370 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3371 int i;
c906108c
SS
3372
3373 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3374 for (i = 0; i < len; i++)
c5aa993b 3375 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3376 TARGET_LONG_BYTES);
3377}
3378
3379/* Find and grab a copy of the target _ovly_table
3380 (and _novlys, which is needed for the table's size) */
c5aa993b 3381static int
fba45db2 3382simple_read_overlay_table (void)
c906108c 3383{
0d43edd1 3384 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3385
3386 simple_free_overlay_table ();
9b27852e 3387 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3388 if (! novlys_msym)
c906108c 3389 {
0d43edd1
JB
3390 error ("Error reading inferior's overlay table: "
3391 "couldn't find `_novlys' variable\n"
3392 "in inferior. Use `overlay manual' mode.");
3393 return 0;
c906108c 3394 }
0d43edd1 3395
9b27852e 3396 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3397 if (! ovly_table_msym)
3398 {
3399 error ("Error reading inferior's overlay table: couldn't find "
3400 "`_ovly_table' array\n"
3401 "in inferior. Use `overlay manual' mode.");
3402 return 0;
3403 }
3404
3405 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3406 cache_ovly_table
3407 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3408 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3409 read_target_long_array (cache_ovly_table_base,
3410 (int *) cache_ovly_table,
3411 cache_novlys * 4);
3412
c5aa993b 3413 return 1; /* SUCCESS */
c906108c
SS
3414}
3415
3416#if 0
3417/* Find and grab a copy of the target _ovly_region_table
3418 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3419static int
fba45db2 3420simple_read_overlay_region_table (void)
c906108c
SS
3421{
3422 struct minimal_symbol *msym;
3423
3424 simple_free_overlay_region_table ();
9b27852e 3425 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3426 if (msym != NULL)
3427 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3428 else
3429 return 0; /* failure */
c906108c
SS
3430 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3431 if (cache_ovly_region_table != NULL)
3432 {
9b27852e 3433 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3434 if (msym != NULL)
3435 {
3436 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3437 read_target_long_array (cache_ovly_region_table_base,
3438 (int *) cache_ovly_region_table,
c906108c
SS
3439 cache_novly_regions * 3);
3440 }
c5aa993b
JM
3441 else
3442 return 0; /* failure */
c906108c 3443 }
c5aa993b
JM
3444 else
3445 return 0; /* failure */
3446 return 1; /* SUCCESS */
c906108c
SS
3447}
3448#endif
3449
3450/* Function: simple_overlay_update_1
3451 A helper function for simple_overlay_update. Assuming a cached copy
3452 of _ovly_table exists, look through it to find an entry whose vma,
3453 lma and size match those of OSECT. Re-read the entry and make sure
3454 it still matches OSECT (else the table may no longer be valid).
3455 Set OSECT's mapped state to match the entry. Return: 1 for
3456 success, 0 for failure. */
3457
3458static int
fba45db2 3459simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3460{
3461 int i, size;
fbd35540
MS
3462 bfd *obfd = osect->objfile->obfd;
3463 asection *bsect = osect->the_bfd_section;
c906108c
SS
3464
3465 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3466 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3467 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3468 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3469 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3470 {
3471 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3472 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3473 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3474 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3475 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3476 {
3477 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3478 return 1;
3479 }
fbd35540 3480 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3481 return 0;
3482 }
3483 return 0;
3484}
3485
3486/* Function: simple_overlay_update
3487 If OSECT is NULL, then update all sections' mapped state
3488 (after re-reading the entire target _ovly_table).
3489 If OSECT is non-NULL, then try to find a matching entry in the
3490 cached ovly_table and update only OSECT's mapped state.
3491 If a cached entry can't be found or the cache isn't valid, then
3492 re-read the entire cache, and go ahead and update all sections. */
3493
3494static void
fba45db2 3495simple_overlay_update (struct obj_section *osect)
c906108c 3496{
c5aa993b 3497 struct objfile *objfile;
c906108c
SS
3498
3499 /* Were we given an osect to look up? NULL means do all of them. */
3500 if (osect)
3501 /* Have we got a cached copy of the target's overlay table? */
3502 if (cache_ovly_table != NULL)
3503 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3504 if (cache_ovly_table_base ==
9b27852e 3505 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3506 /* Then go ahead and try to look up this single section in the cache */
3507 if (simple_overlay_update_1 (osect))
3508 /* Found it! We're done. */
3509 return;
3510
3511 /* Cached table no good: need to read the entire table anew.
3512 Or else we want all the sections, in which case it's actually
3513 more efficient to read the whole table in one block anyway. */
3514
0d43edd1
JB
3515 if (! simple_read_overlay_table ())
3516 return;
3517
c906108c
SS
3518 /* Now may as well update all sections, even if only one was requested. */
3519 ALL_OBJSECTIONS (objfile, osect)
3520 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3521 {
3522 int i, size;
fbd35540
MS
3523 bfd *obfd = osect->objfile->obfd;
3524 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3525
3526 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3527 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3528 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3529 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3530 /* && cache_ovly_table[i][SIZE] == size */ )
3531 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3532 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3533 break; /* finished with inner for loop: break out */
3534 }
3535 }
c906108c
SS
3536}
3537
086df311
DJ
3538/* Set the output sections and output offsets for section SECTP in
3539 ABFD. The relocation code in BFD will read these offsets, so we
3540 need to be sure they're initialized. We map each section to itself,
3541 with no offset; this means that SECTP->vma will be honored. */
3542
3543static void
3544symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3545{
3546 sectp->output_section = sectp;
3547 sectp->output_offset = 0;
3548}
3549
3550/* Relocate the contents of a debug section SECTP in ABFD. The
3551 contents are stored in BUF if it is non-NULL, or returned in a
3552 malloc'd buffer otherwise.
3553
3554 For some platforms and debug info formats, shared libraries contain
3555 relocations against the debug sections (particularly for DWARF-2;
3556 one affected platform is PowerPC GNU/Linux, although it depends on
3557 the version of the linker in use). Also, ELF object files naturally
3558 have unresolved relocations for their debug sections. We need to apply
3559 the relocations in order to get the locations of symbols correct. */
3560
3561bfd_byte *
3562symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3563{
3564 /* We're only interested in debugging sections with relocation
3565 information. */
3566 if ((sectp->flags & SEC_RELOC) == 0)
3567 return NULL;
3568 if ((sectp->flags & SEC_DEBUGGING) == 0)
3569 return NULL;
3570
3571 /* We will handle section offsets properly elsewhere, so relocate as if
3572 all sections begin at 0. */
3573 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3574
97606a13 3575 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3576}
c906108c
SS
3577
3578void
fba45db2 3579_initialize_symfile (void)
c906108c
SS
3580{
3581 struct cmd_list_element *c;
c5aa993b 3582
c906108c 3583 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3584 "Load symbol table from executable file FILE.\n\
c906108c
SS
3585The `file' command can also load symbol tables, as well as setting the file\n\
3586to execute.", &cmdlist);
5ba2abeb 3587 set_cmd_completer (c, filename_completer);
c906108c
SS
3588
3589 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3590 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3591Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3592ADDR is the starting address of the file's text.\n\
db162d44
EZ
3593The optional arguments are section-name section-address pairs and\n\
3594should be specified if the data and bss segments are not contiguous\n\
d4654627 3595with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3596 &cmdlist);
5ba2abeb 3597 set_cmd_completer (c, filename_completer);
c906108c
SS
3598
3599 c = add_cmd ("add-shared-symbol-files", class_files,
3600 add_shared_symbol_files_command,
3601 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3602 &cmdlist);
c906108c
SS
3603 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3604 &cmdlist);
3605
3606 c = add_cmd ("load", class_files, load_command,
c5aa993b 3607 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3608for access from GDB.", &cmdlist);
5ba2abeb 3609 set_cmd_completer (c, filename_completer);
c906108c
SS
3610
3611 add_show_from_set
3612 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3613 (char *) &symbol_reloading,
3614 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3615 &setlist),
3616 &showlist);
3617
c5aa993b
JM
3618 add_prefix_cmd ("overlay", class_support, overlay_command,
3619 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3620 "overlay ", 0, &cmdlist);
3621
3622 add_com_alias ("ovly", "overlay", class_alias, 1);
3623 add_com_alias ("ov", "overlay", class_alias, 1);
3624
c5aa993b 3625 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3626 "Assert that an overlay section is mapped.", &overlaylist);
3627
c5aa993b 3628 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3629 "Assert that an overlay section is unmapped.", &overlaylist);
3630
c5aa993b 3631 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3632 "List mappings of overlay sections.", &overlaylist);
3633
c5aa993b 3634 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3635 "Enable overlay debugging.", &overlaylist);
c5aa993b 3636 add_cmd ("off", class_support, overlay_off_command,
c906108c 3637 "Disable overlay debugging.", &overlaylist);
c5aa993b 3638 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3639 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3640 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3641 "Read the overlay mapping state from the target.", &overlaylist);
3642
3643 /* Filename extension to source language lookup table: */
3644 init_filename_language_table ();
3645 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3646 (char *) &ext_args,
c906108c
SS
3647 "Set mapping between filename extension and source language.\n\
3648Usage: set extension-language .foo bar",
c5aa993b 3649 &setlist);
9f60d481 3650 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3651
c5aa993b 3652 add_info ("extensions", info_ext_lang_command,
c906108c 3653 "All filename extensions associated with a source language.");
917317f4
JM
3654
3655 add_show_from_set
3656 (add_set_cmd ("download-write-size", class_obscure,
3657 var_integer, (char *) &download_write_size,
3658 "Set the write size used when downloading a program.\n"
3659 "Only used when downloading a program onto a remote\n"
3660 "target. Specify zero, or a negative value, to disable\n"
3661 "blocked writes. The actual size of each transfer is also\n"
3662 "limited by the size of the target packet and the memory\n"
3663 "cache.\n",
3664 &setlist),
3665 &showlist);
5b5d99cf
JB
3666
3667 debug_file_directory = xstrdup (DEBUGDIR);
3668 c = (add_set_cmd
3669 ("debug-file-directory", class_support, var_string,
3670 (char *) &debug_file_directory,
3671 "Set the directory where separate debug symbols are searched for.\n"
3672 "Separate debug symbols are first searched for in the same\n"
3673 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3674 "' subdirectory,\n"
3675 "and lastly at the path of the directory of the binary with\n"
3676 "the global debug-file directory prepended\n",
3677 &setlist));
3678 add_show_from_set (c, &showlist);
3679 set_cmd_completer (c, filename_completer);
c906108c 3680}
This page took 0.524707 seconds and 4 git commands to generate.