gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
c906108c 68
9a4105ab
AC
69int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c906108c 80/* Global variables owned by this file */
c5aa993b 81int readnow_symbol_files; /* Read full symbols immediately */
c906108c 82
c906108c
SS
83/* External variables and functions referenced. */
84
a14ed312 85extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
86
87/* Functions this file defines */
88
89#if 0
a14ed312
KB
90static int simple_read_overlay_region_table (void);
91static void simple_free_overlay_region_table (void);
c906108c
SS
92#endif
93
a14ed312 94static void load_command (char *, int);
c906108c 95
d7db6da9
FN
96static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
a14ed312 98static void add_symbol_file_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114void list_overlays_command (char *, int);
c906108c 115
a14ed312 116void map_overlay_command (char *, int);
c906108c 117
a14ed312 118void unmap_overlay_command (char *, int);
c906108c 119
a14ed312 120static void overlay_auto_command (char *, int);
c906108c 121
a14ed312 122static void overlay_manual_command (char *, int);
c906108c 123
a14ed312 124static void overlay_off_command (char *, int);
c906108c 125
a14ed312 126static void overlay_load_command (char *, int);
c906108c 127
a14ed312 128static void overlay_command (char *, int);
c906108c 129
a14ed312 130static void simple_free_overlay_table (void);
c906108c 131
e17a4113
UW
132static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
b7209cb4
FF
174/* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
c906108c 181 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 182 report all the functions that are actually present. */
c906108c
SS
183
184int auto_solib_add = 1;
b7209cb4
FF
185
186/* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194int auto_solib_limit;
c906108c 195\f
c5aa993b 196
0fe19209
DC
197/* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
c906108c
SS
199
200static int
0cd64fe2 201compare_psymbols (const void *s1p, const void *s2p)
c906108c 202{
0fe19209
DC
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
4725b721
PH
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
208}
209
210void
fba45db2 211sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
212{
213 /* Sort the global list; don't sort the static list */
214
c5aa993b
JM
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
217 compare_psymbols);
218}
219
c906108c
SS
220/* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225char *
63ca651f 226obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 227{
52f0bd74 228 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
aa1ee363
AC
233 const char *p1 = ptr;
234 char *p2 = p;
63ca651f 235 const char *end = ptr + size;
c906108c
SS
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241}
242
243/* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246char *
fba45db2
KB
247obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
c906108c 249{
52f0bd74
AC
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256}
257
258/* True if we are nested inside psymtab_to_symtab. */
259
260int currently_reading_symtab = 0;
261
262static void
fba45db2 263decrement_reading_symtab (void *dummy)
c906108c
SS
264{
265 currently_reading_symtab--;
266}
267
268/* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273struct symtab *
aa1ee363 274psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
275{
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
c5aa993b 282 {
c906108c
SS
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290}
291
5417f6dc
RM
292/* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
c906108c
SS
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301void
4efb68b1 302find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 303{
c5aa993b 304 asection **lowest = (asection **) obj;
c906108c
SS
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316}
317
a39a16c4
MM
318/* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320struct section_addr_info *
321alloc_section_addr_info (size_t num_sections)
322{
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333}
62557bbc 334
7b90c3f9
JB
335
336/* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338struct section_addr_info *
339copy_section_addr_info (struct section_addr_info *addrs)
340{
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357}
358
359
360
62557bbc
KB
361/* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364extern struct section_addr_info *
0542c86d
PA
365build_section_addr_info_from_section_table (const struct target_section *start,
366 const struct target_section *end)
62557bbc
KB
367{
368 struct section_addr_info *sap;
0542c86d 369 const struct target_section *stp;
62557bbc
KB
370 int oidx;
371
a39a16c4 372 sap = alloc_section_addr_info (end - start);
62557bbc
KB
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
5417f6dc 376 if (bfd_get_section_flags (stp->bfd,
fbd35540 377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 378 && oidx < end - start)
62557bbc
KB
379 {
380 sap->other[oidx].addr = stp->addr;
5417f6dc 381 sap->other[oidx].name
fbd35540 382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389}
390
391
392/* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394extern void
395free_section_addr_info (struct section_addr_info *sap)
396{
397 int idx;
398
a39a16c4 399 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 400 if (sap->other[idx].name)
b8c9b27d
KB
401 xfree (sap->other[idx].name);
402 xfree (sap);
62557bbc
KB
403}
404
405
e8289572
JB
406/* Initialize OBJFILE's sect_index_* members. */
407static void
408init_objfile_sect_indices (struct objfile *objfile)
c906108c 409{
e8289572 410 asection *sect;
c906108c 411 int i;
5417f6dc 412
b8fbeb18 413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 426 if (sect)
b8fbeb18
EZ
427 objfile->sect_index_rodata = sect->index;
428
bbcd32ad
FF
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
31d99776
DJ
432 accomodate that. First, check for a file with the standard
433 one or two segments. */
434
435 symfile_find_segment_sections (objfile);
436
437 /* Except when explicitly adding symbol files at some address,
438 section_offsets contains nothing but zeros, so it doesn't matter
439 which slot in section_offsets the individual sect_index_* members
440 index into. So if they are all zero, it is safe to just point
441 all the currently uninitialized indices to the first slot. But
442 beware: if this is the main executable, it may be relocated
443 later, e.g. by the remote qOffsets packet, and then this will
444 be wrong! That's why we try segments first. */
bbcd32ad
FF
445
446 for (i = 0; i < objfile->num_sections; i++)
447 {
448 if (ANOFFSET (objfile->section_offsets, i) != 0)
449 {
450 break;
451 }
452 }
453 if (i == objfile->num_sections)
454 {
455 if (objfile->sect_index_text == -1)
456 objfile->sect_index_text = 0;
457 if (objfile->sect_index_data == -1)
458 objfile->sect_index_data = 0;
459 if (objfile->sect_index_bss == -1)
460 objfile->sect_index_bss = 0;
461 if (objfile->sect_index_rodata == -1)
462 objfile->sect_index_rodata = 0;
463 }
b8fbeb18 464}
c906108c 465
c1bd25fd
DJ
466/* The arguments to place_section. */
467
468struct place_section_arg
469{
470 struct section_offsets *offsets;
471 CORE_ADDR lowest;
472};
473
474/* Find a unique offset to use for loadable section SECT if
475 the user did not provide an offset. */
476
2c0b251b 477static void
c1bd25fd
DJ
478place_section (bfd *abfd, asection *sect, void *obj)
479{
480 struct place_section_arg *arg = obj;
481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
482 int done;
3bd72c6f 483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 484
2711e456
DJ
485 /* We are only interested in allocated sections. */
486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
487 return;
488
489 /* If the user specified an offset, honor it. */
490 if (offsets[sect->index] != 0)
491 return;
492
493 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
494 start_addr = (arg->lowest + align - 1) & -align;
495
c1bd25fd
DJ
496 do {
497 asection *cur_sec;
c1bd25fd 498
c1bd25fd
DJ
499 done = 1;
500
501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
502 {
503 int indx = cur_sec->index;
504 CORE_ADDR cur_offset;
505
506 /* We don't need to compare against ourself. */
507 if (cur_sec == sect)
508 continue;
509
2711e456
DJ
510 /* We can only conflict with allocated sections. */
511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
512 continue;
513
514 /* If the section offset is 0, either the section has not been placed
515 yet, or it was the lowest section placed (in which case LOWEST
516 will be past its end). */
517 if (offsets[indx] == 0)
518 continue;
519
520 /* If this section would overlap us, then we must move up. */
521 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
523 {
524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
525 start_addr = (start_addr + align - 1) & -align;
526 done = 0;
3bd72c6f 527 break;
c1bd25fd
DJ
528 }
529
530 /* Otherwise, we appear to be OK. So far. */
531 }
532 }
533 while (!done);
534
535 offsets[sect->index] = start_addr;
536 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 537}
e8289572
JB
538
539/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 540 of how to represent it for fast symbol reading. This is the default
e8289572
JB
541 version of the sym_fns.sym_offsets function for symbol readers that
542 don't need to do anything special. It allocates a section_offsets table
543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
544
545void
546default_symfile_offsets (struct objfile *objfile,
547 struct section_addr_info *addrs)
548{
549 int i;
550
a39a16c4 551 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 552 objfile->section_offsets = (struct section_offsets *)
5417f6dc 553 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 555 memset (objfile->section_offsets, 0,
a39a16c4 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
557
558 /* Now calculate offsets for section that were specified by the
559 caller. */
a39a16c4 560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
561 {
562 struct other_sections *osp ;
563
564 osp = &addrs->other[i] ;
565 if (osp->addr == 0)
566 continue;
567
568 /* Record all sections in offsets */
569 /* The section_offsets in the objfile are here filled in using
570 the BFD index. */
571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
572 }
573
c1bd25fd
DJ
574 /* For relocatable files, all loadable sections will start at zero.
575 The zero is meaningless, so try to pick arbitrary addresses such
576 that no loadable sections overlap. This algorithm is quadratic,
577 but the number of sections in a single object file is generally
578 small. */
579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
580 {
581 struct place_section_arg arg;
2711e456
DJ
582 bfd *abfd = objfile->obfd;
583 asection *cur_sec;
584 CORE_ADDR lowest = 0;
585
586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
587 /* We do not expect this to happen; just skip this step if the
588 relocatable file has a section with an assigned VMA. */
589 if (bfd_section_vma (abfd, cur_sec) != 0)
590 break;
591
592 if (cur_sec == NULL)
593 {
594 CORE_ADDR *offsets = objfile->section_offsets->offsets;
595
596 /* Pick non-overlapping offsets for sections the user did not
597 place explicitly. */
598 arg.offsets = objfile->section_offsets;
599 arg.lowest = 0;
600 bfd_map_over_sections (objfile->obfd, place_section, &arg);
601
602 /* Correctly filling in the section offsets is not quite
603 enough. Relocatable files have two properties that
604 (most) shared objects do not:
605
606 - Their debug information will contain relocations. Some
607 shared libraries do also, but many do not, so this can not
608 be assumed.
609
610 - If there are multiple code sections they will be loaded
611 at different relative addresses in memory than they are
612 in the objfile, since all sections in the file will start
613 at address zero.
614
615 Because GDB has very limited ability to map from an
616 address in debug info to the correct code section,
617 it relies on adding SECT_OFF_TEXT to things which might be
618 code. If we clear all the section offsets, and set the
619 section VMAs instead, then symfile_relocate_debug_section
620 will return meaningful debug information pointing at the
621 correct sections.
622
623 GDB has too many different data structures for section
624 addresses - a bfd, objfile, and so_list all have section
625 tables, as does exec_ops. Some of these could probably
626 be eliminated. */
627
628 for (cur_sec = abfd->sections; cur_sec != NULL;
629 cur_sec = cur_sec->next)
630 {
631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
632 continue;
633
634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
636 offsets[cur_sec->index]);
2711e456
DJ
637 offsets[cur_sec->index] = 0;
638 }
639 }
c1bd25fd
DJ
640 }
641
e8289572
JB
642 /* Remember the bfd indexes for the .text, .data, .bss and
643 .rodata sections. */
644 init_objfile_sect_indices (objfile);
645}
646
647
31d99776
DJ
648/* Divide the file into segments, which are individual relocatable units.
649 This is the default version of the sym_fns.sym_segments function for
650 symbol readers that do not have an explicit representation of segments.
651 It assumes that object files do not have segments, and fully linked
652 files have a single segment. */
653
654struct symfile_segment_data *
655default_symfile_segments (bfd *abfd)
656{
657 int num_sections, i;
658 asection *sect;
659 struct symfile_segment_data *data;
660 CORE_ADDR low, high;
661
662 /* Relocatable files contain enough information to position each
663 loadable section independently; they should not be relocated
664 in segments. */
665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
666 return NULL;
667
668 /* Make sure there is at least one loadable section in the file. */
669 for (sect = abfd->sections; sect != NULL; sect = sect->next)
670 {
671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
672 continue;
673
674 break;
675 }
676 if (sect == NULL)
677 return NULL;
678
679 low = bfd_get_section_vma (abfd, sect);
680 high = low + bfd_get_section_size (sect);
681
682 data = XZALLOC (struct symfile_segment_data);
683 data->num_segments = 1;
684 data->segment_bases = XCALLOC (1, CORE_ADDR);
685 data->segment_sizes = XCALLOC (1, CORE_ADDR);
686
687 num_sections = bfd_count_sections (abfd);
688 data->segment_info = XCALLOC (num_sections, int);
689
690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
691 {
692 CORE_ADDR vma;
693
694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
695 continue;
696
697 vma = bfd_get_section_vma (abfd, sect);
698 if (vma < low)
699 low = vma;
700 if (vma + bfd_get_section_size (sect) > high)
701 high = vma + bfd_get_section_size (sect);
702
703 data->segment_info[i] = 1;
704 }
705
706 data->segment_bases[0] = low;
707 data->segment_sizes[0] = high - low;
708
709 return data;
710}
711
c906108c
SS
712/* Process a symbol file, as either the main file or as a dynamically
713 loaded file.
714
96baa820
JM
715 OBJFILE is where the symbols are to be read from.
716
7e8580c1
JB
717 ADDRS is the list of section load addresses. If the user has given
718 an 'add-symbol-file' command, then this is the list of offsets and
719 addresses he or she provided as arguments to the command; or, if
720 we're handling a shared library, these are the actual addresses the
721 sections are loaded at, according to the inferior's dynamic linker
722 (as gleaned by GDB's shared library code). We convert each address
723 into an offset from the section VMA's as it appears in the object
724 file, and then call the file's sym_offsets function to convert this
725 into a format-specific offset table --- a `struct section_offsets'.
726 If ADDRS is non-zero, OFFSETS must be zero.
727
728 OFFSETS is a table of section offsets already in the right
729 format-specific representation. NUM_OFFSETS is the number of
730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
731 assume this is the proper table the call to sym_offsets described
732 above would produce. Instead of calling sym_offsets, we just dump
733 it right into objfile->section_offsets. (When we're re-reading
734 symbols from an objfile, we don't have the original load address
735 list any more; all we have is the section offset table.) If
736 OFFSETS is non-zero, ADDRS must be zero.
96baa820 737
7eedccfa
PP
738 ADD_FLAGS encodes verbosity level, whether this is main symbol or
739 an extra symbol file such as dynamically loaded code, and wether
740 breakpoint reset should be deferred. */
c906108c
SS
741
742void
7e8580c1
JB
743syms_from_objfile (struct objfile *objfile,
744 struct section_addr_info *addrs,
745 struct section_offsets *offsets,
746 int num_offsets,
7eedccfa 747 int add_flags)
c906108c 748{
a39a16c4 749 struct section_addr_info *local_addr = NULL;
c906108c 750 struct cleanup *old_chain;
7eedccfa 751 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 752
7e8580c1 753 gdb_assert (! (addrs && offsets));
2acceee2 754
c906108c 755 init_entry_point_info (objfile);
31d99776 756 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 757
75245b24
MS
758 if (objfile->sf == NULL)
759 return; /* No symbols. */
760
c906108c
SS
761 /* Make sure that partially constructed symbol tables will be cleaned up
762 if an error occurs during symbol reading. */
74b7792f 763 old_chain = make_cleanup_free_objfile (objfile);
c906108c 764
a39a16c4
MM
765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
766 list. We now establish the convention that an addr of zero means
767 no load address was specified. */
768 if (! addrs && ! offsets)
769 {
5417f6dc 770 local_addr
a39a16c4
MM
771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
772 make_cleanup (xfree, local_addr);
773 addrs = local_addr;
774 }
775
776 /* Now either addrs or offsets is non-zero. */
777
c5aa993b 778 if (mainline)
c906108c
SS
779 {
780 /* We will modify the main symbol table, make sure that all its users
c5aa993b 781 will be cleaned up if an error occurs during symbol reading. */
74b7792f 782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
783
784 /* Since no error yet, throw away the old symbol table. */
785
786 if (symfile_objfile != NULL)
787 {
788 free_objfile (symfile_objfile);
adb7f338 789 gdb_assert (symfile_objfile == NULL);
c906108c
SS
790 }
791
792 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
793 If the user wants to get rid of them, they should do "symbol-file"
794 without arguments first. Not sure this is the best behavior
795 (PR 2207). */
c906108c 796
c5aa993b 797 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
798 }
799
800 /* Convert addr into an offset rather than an absolute address.
801 We find the lowest address of a loaded segment in the objfile,
53a5351d 802 and assume that <addr> is where that got loaded.
c906108c 803
53a5351d
JM
804 We no longer warn if the lowest section is not a text segment (as
805 happens for the PA64 port. */
1549f619 806 if (!mainline && addrs && addrs->other[0].name)
c906108c 807 {
1549f619
EZ
808 asection *lower_sect;
809 asection *sect;
810 CORE_ADDR lower_offset;
811 int i;
812
5417f6dc 813 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
814 continguous sections. FIXME!! won't work without call to find
815 .text first, but this assumes text is lowest section. */
816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
817 if (lower_sect == NULL)
c906108c 818 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 819 &lower_sect);
2acceee2 820 if (lower_sect == NULL)
ff8e85c3
PA
821 {
822 warning (_("no loadable sections found in added symbol-file %s"),
823 objfile->name);
824 lower_offset = 0;
825 }
2acceee2 826 else
ff8e85c3 827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 828
13de58df 829 /* Calculate offsets for the loadable sections.
2acceee2
JM
830 FIXME! Sections must be in order of increasing loadable section
831 so that contiguous sections can use the lower-offset!!!
5417f6dc 832
13de58df
JB
833 Adjust offsets if the segments are not contiguous.
834 If the section is contiguous, its offset should be set to
2acceee2
JM
835 the offset of the highest loadable section lower than it
836 (the loadable section directly below it in memory).
837 this_offset = lower_offset = lower_addr - lower_orig_addr */
838
1549f619 839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
840 {
841 if (addrs->other[i].addr != 0)
842 {
843 sect = bfd_get_section_by_name (objfile->obfd,
844 addrs->other[i].name);
845 if (sect)
846 {
847 addrs->other[i].addr
848 -= bfd_section_vma (objfile->obfd, sect);
849 lower_offset = addrs->other[i].addr;
850 /* This is the index used by BFD. */
851 addrs->other[i].sectindex = sect->index ;
852 }
853 else
854 {
8a3fe4f8 855 warning (_("section %s not found in %s"),
5417f6dc 856 addrs->other[i].name,
7e8580c1
JB
857 objfile->name);
858 addrs->other[i].addr = 0;
859 }
860 }
861 else
862 addrs->other[i].addr = lower_offset;
863 }
c906108c
SS
864 }
865
866 /* Initialize symbol reading routines for this objfile, allow complaints to
867 appear for this new file, and record how verbose to be, then do the
868 initial symbol reading for this file. */
869
c5aa993b 870 (*objfile->sf->sym_init) (objfile);
7eedccfa 871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 872
7e8580c1
JB
873 if (addrs)
874 (*objfile->sf->sym_offsets) (objfile, addrs);
875 else
876 {
877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
878
879 /* Just copy in the offset table directly as given to us. */
880 objfile->num_sections = num_offsets;
881 objfile->section_offsets
882 = ((struct section_offsets *)
8b92e4d5 883 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
884 memcpy (objfile->section_offsets, offsets, size);
885
886 init_objfile_sect_indices (objfile);
887 }
c906108c 888
96baa820 889 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 890
c906108c
SS
891 /* Discard cleanups as symbol reading was successful. */
892
893 discard_cleanups (old_chain);
f7545552 894 xfree (local_addr);
c906108c
SS
895}
896
897/* Perform required actions after either reading in the initial
898 symbols for a new objfile, or mapping in the symbols from a reusable
899 objfile. */
c5aa993b 900
c906108c 901void
7eedccfa 902new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
903{
904
905 /* If this is the main symbol file we have to clean up all users of the
906 old main symbol file. Otherwise it is sufficient to fixup all the
907 breakpoints that may have been redefined by this symbol file. */
7eedccfa 908 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
909 {
910 /* OK, make it the "real" symbol file. */
911 symfile_objfile = objfile;
912
913 clear_symtab_users ();
914 }
7eedccfa 915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 916 {
69de3c6a 917 breakpoint_re_set ();
c906108c
SS
918 }
919
920 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
922}
923
924/* Process a symbol file, as either the main file or as a dynamically
925 loaded file.
926
5417f6dc
RM
927 ABFD is a BFD already open on the file, as from symfile_bfd_open.
928 This BFD will be closed on error, and is always consumed by this function.
7904e09f 929
7eedccfa
PP
930 ADD_FLAGS encodes verbosity, whether this is main symbol file or
931 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
932
933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
934 syms_from_objfile, above.
935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 936
c906108c
SS
937 Upon success, returns a pointer to the objfile that was added.
938 Upon failure, jumps back to command level (never returns). */
7eedccfa 939
7904e09f 940static struct objfile *
7eedccfa
PP
941symbol_file_add_with_addrs_or_offsets (bfd *abfd,
942 int add_flags,
7904e09f
JB
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
7eedccfa 946 int flags)
c906108c
SS
947{
948 struct objfile *objfile;
949 struct partial_symtab *psymtab;
77069918 950 char *debugfile = NULL;
7b90c3f9 951 struct section_addr_info *orig_addrs = NULL;
a39a16c4 952 struct cleanup *my_cleanups;
5417f6dc 953 const char *name = bfd_get_filename (abfd);
7eedccfa 954 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 955
5417f6dc 956 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 957
5417f6dc
RM
958 /* Give user a chance to burp if we'd be
959 interactively wiping out any existing symbols. */
c906108c
SS
960
961 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 962 && (add_flags & SYMFILE_MAINLINE)
c906108c 963 && from_tty
9e2f0ad4 964 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 965 error (_("Not confirmed."));
c906108c 966
2df3850c 967 objfile = allocate_objfile (abfd, flags);
5417f6dc 968 discard_cleanups (my_cleanups);
c906108c 969
a39a16c4 970 if (addrs)
63cd24fe 971 {
7b90c3f9
JB
972 orig_addrs = copy_section_addr_info (addrs);
973 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 974 }
a39a16c4 975
78a4a9b9
AC
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
c906108c 980 {
769d7dc4
AC
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
78a4a9b9 983 else
c906108c 984 {
55333a84
DE
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
c906108c 988 }
c906108c 989 }
78a4a9b9 990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 991 add_flags);
c906108c
SS
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
2acceee2 998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 999 {
55333a84 1000 if (from_tty || info_verbose)
c906108c 1001 {
a3f17187 1002 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
c5aa993b 1007 for (psymtab = objfile->psymtabs;
c906108c 1008 psymtab != NULL;
c5aa993b 1009 psymtab = psymtab->next)
c906108c
SS
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
77069918
JK
1015 /* If the file has its own symbol tables it has no separate debug info.
1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1018 if (objfile->psymtabs == NULL)
1019 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1020 if (debugfile)
1021 {
5b5d99cf
JB
1022 if (addrs != NULL)
1023 {
1024 objfile->separate_debug_objfile
7eedccfa 1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
5b5d99cf
JB
1026 }
1027 else
1028 {
1029 objfile->separate_debug_objfile
7eedccfa 1030 = symbol_file_add (debugfile, add_flags, NULL, flags);
5b5d99cf
JB
1031 }
1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1033 = objfile;
5417f6dc 1034
5b5d99cf
JB
1035 /* Put the separate debug object before the normal one, this is so that
1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1037 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1038
5b5d99cf
JB
1039 xfree (debugfile);
1040 }
5417f6dc 1041
55333a84 1042 if ((from_tty || info_verbose)
e361b228 1043 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1044 {
1045 wrap_here ("");
55333a84 1046 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1047 wrap_here ("");
1048 }
1049
c906108c
SS
1050 if (from_tty || info_verbose)
1051 {
769d7dc4
AC
1052 if (deprecated_post_add_symbol_hook)
1053 deprecated_post_add_symbol_hook ();
c906108c 1054 else
55333a84 1055 printf_unfiltered (_("done.\n"));
c906108c
SS
1056 }
1057
481d0f41
JB
1058 /* We print some messages regardless of whether 'from_tty ||
1059 info_verbose' is true, so make sure they go out at the right
1060 time. */
1061 gdb_flush (gdb_stdout);
1062
a39a16c4
MM
1063 do_cleanups (my_cleanups);
1064
109f874e 1065 if (objfile->sf == NULL)
8caee43b
PP
1066 {
1067 observer_notify_new_objfile (objfile);
1068 return objfile; /* No symbols. */
1069 }
109f874e 1070
7eedccfa 1071 new_symfile_objfile (objfile, add_flags);
c906108c 1072
06d3b283 1073 observer_notify_new_objfile (objfile);
c906108c 1074
ce7d4522 1075 bfd_cache_close_all ();
c906108c
SS
1076 return (objfile);
1077}
1078
7904e09f 1079
eb4556d7
JB
1080/* Process the symbol file ABFD, as either the main file or as a
1081 dynamically loaded file.
1082
1083 See symbol_file_add_with_addrs_or_offsets's comments for
1084 details. */
1085struct objfile *
7eedccfa 1086symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1087 struct section_addr_info *addrs,
7eedccfa 1088 int flags)
eb4556d7 1089{
7eedccfa
PP
1090 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1091 flags);
eb4556d7
JB
1092}
1093
1094
7904e09f
JB
1095/* Process a symbol file, as either the main file or as a dynamically
1096 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1097 for details. */
1098struct objfile *
7eedccfa
PP
1099symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1100 int flags)
7904e09f 1101{
7eedccfa
PP
1102 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1103 flags);
7904e09f
JB
1104}
1105
1106
d7db6da9
FN
1107/* Call symbol_file_add() with default values and update whatever is
1108 affected by the loading of a new main().
1109 Used when the file is supplied in the gdb command line
1110 and by some targets with special loading requirements.
1111 The auxiliary function, symbol_file_add_main_1(), has the flags
1112 argument for the switches that can only be specified in the symbol_file
1113 command itself. */
5417f6dc 1114
1adeb98a
FN
1115void
1116symbol_file_add_main (char *args, int from_tty)
1117{
d7db6da9
FN
1118 symbol_file_add_main_1 (args, from_tty, 0);
1119}
1120
1121static void
1122symbol_file_add_main_1 (char *args, int from_tty, int flags)
1123{
7eedccfa
PP
1124 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1125 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1126
d7db6da9
FN
1127 /* Getting new symbols may change our opinion about
1128 what is frameless. */
1129 reinit_frame_cache ();
1130
1131 set_initial_language ();
1adeb98a
FN
1132}
1133
1134void
1135symbol_file_clear (int from_tty)
1136{
1137 if ((have_full_symbols () || have_partial_symbols ())
1138 && from_tty
0430b0d6
AS
1139 && (symfile_objfile
1140 ? !query (_("Discard symbol table from `%s'? "),
1141 symfile_objfile->name)
1142 : !query (_("Discard symbol table? "))))
8a3fe4f8 1143 error (_("Not confirmed."));
1adeb98a 1144
d10c338d 1145 free_all_objfiles ();
1adeb98a 1146
d10c338d
DE
1147 /* solib descriptors may have handles to objfiles. Since their
1148 storage has just been released, we'd better wipe the solib
1149 descriptors as well. */
1150 no_shared_libraries (NULL, from_tty);
1151
adb7f338 1152 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1153 if (from_tty)
1154 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1155}
1156
77069918
JK
1157struct build_id
1158 {
1159 size_t size;
1160 gdb_byte data[1];
1161 };
1162
1163/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1164
1165static struct build_id *
1166build_id_bfd_get (bfd *abfd)
1167{
1168 struct build_id *retval;
1169
1170 if (!bfd_check_format (abfd, bfd_object)
1171 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1172 || elf_tdata (abfd)->build_id == NULL)
1173 return NULL;
1174
1175 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1176 retval->size = elf_tdata (abfd)->build_id_size;
1177 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1178
1179 return retval;
1180}
1181
1182/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1183
1184static int
1185build_id_verify (const char *filename, struct build_id *check)
1186{
1187 bfd *abfd;
1188 struct build_id *found = NULL;
1189 int retval = 0;
1190
1191 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1192 if (remote_filename_p (filename))
1193 abfd = remote_bfd_open (filename, gnutarget);
1194 else
1195 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1196 if (abfd == NULL)
1197 return 0;
1198
1199 found = build_id_bfd_get (abfd);
1200
1201 if (found == NULL)
1202 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1203 else if (found->size != check->size
1204 || memcmp (found->data, check->data, found->size) != 0)
1205 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1206 else
1207 retval = 1;
1208
1209 if (!bfd_close (abfd))
1210 warning (_("cannot close \"%s\": %s"), filename,
1211 bfd_errmsg (bfd_get_error ()));
bb01da77
TT
1212
1213 xfree (found);
1214
77069918
JK
1215 return retval;
1216}
1217
1218static char *
1219build_id_to_debug_filename (struct build_id *build_id)
1220{
24ddea62 1221 char *link, *debugdir, *retval = NULL;
77069918
JK
1222
1223 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
24ddea62
JK
1224 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1225 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1226
1227 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1228 cause "/.build-id/..." lookups. */
1229
1230 debugdir = debug_file_directory;
1231 do
77069918 1232 {
24ddea62
JK
1233 char *s, *debugdir_end;
1234 gdb_byte *data = build_id->data;
1235 size_t size = build_id->size;
1236
1237 while (*debugdir == DIRNAME_SEPARATOR)
1238 debugdir++;
1239
1240 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1241 if (debugdir_end == NULL)
1242 debugdir_end = &debugdir[strlen (debugdir)];
1243
1244 memcpy (link, debugdir, debugdir_end - debugdir);
1245 s = &link[debugdir_end - debugdir];
1246 s += sprintf (s, "/.build-id/");
1247 if (size > 0)
1248 {
1249 size--;
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 }
1252 if (size > 0)
1253 *s++ = '/';
1254 while (size-- > 0)
1255 s += sprintf (s, "%02x", (unsigned) *data++);
1256 strcpy (s, ".debug");
1257
1258 /* lrealpath() is expensive even for the usually non-existent files. */
1259 if (access (link, F_OK) == 0)
1260 retval = lrealpath (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 if (retval != NULL)
1269 break;
1270
1271 debugdir = debugdir_end;
77069918 1272 }
24ddea62 1273 while (*debugdir != 0);
77069918
JK
1274
1275 return retval;
1276}
1277
5b5d99cf
JB
1278static char *
1279get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1280{
1281 asection *sect;
1282 bfd_size_type debuglink_size;
1283 unsigned long crc32;
1284 char *contents;
1285 int crc_offset;
1286 unsigned char *p;
5417f6dc 1287
5b5d99cf
JB
1288 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1289
1290 if (sect == NULL)
1291 return NULL;
1292
1293 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1294
5b5d99cf
JB
1295 contents = xmalloc (debuglink_size);
1296 bfd_get_section_contents (objfile->obfd, sect, contents,
1297 (file_ptr)0, (bfd_size_type)debuglink_size);
1298
1299 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1300 crc_offset = strlen (contents) + 1;
1301 crc_offset = (crc_offset + 3) & ~3;
1302
1303 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1304
5b5d99cf
JB
1305 *crc32_out = crc32;
1306 return contents;
1307}
1308
1309static int
287ccc17 1310separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1311 struct objfile *parent_objfile)
5b5d99cf
JB
1312{
1313 unsigned long file_crc = 0;
f1838a98 1314 bfd *abfd;
777ea8f1 1315 gdb_byte buffer[8*1024];
5b5d99cf 1316 int count;
32a0e547
JK
1317 struct stat parent_stat, abfd_stat;
1318
1319 /* Find a separate debug info file as if symbols would be present in
1320 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1321 section can contain just the basename of PARENT_OBJFILE without any
1322 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1323 the separate debug infos with the same basename can exist. */
1324
1325 if (strcmp (name, parent_objfile->name) == 0)
1326 return 0;
5b5d99cf 1327
f1838a98
UW
1328 if (remote_filename_p (name))
1329 abfd = remote_bfd_open (name, gnutarget);
1330 else
1331 abfd = bfd_openr (name, gnutarget);
1332
1333 if (!abfd)
5b5d99cf
JB
1334 return 0;
1335
32a0e547
JK
1336 /* Verify symlinks were not the cause of strcmp name difference above.
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1348 && abfd_stat.st_dev == parent_stat.st_dev
1349 && abfd_stat.st_ino == parent_stat.st_ino
1350 && abfd_stat.st_ino != 0)
1351 {
1352 bfd_close (abfd);
1353 return 0;
1354 }
1355
f1838a98 1356 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1357 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1358
f1838a98 1359 bfd_close (abfd);
5b5d99cf 1360
287ccc17
JK
1361 if (crc != file_crc)
1362 {
1363 warning (_("the debug information found in \"%s\""
1364 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1365 name, parent_objfile->name);
287ccc17
JK
1366 return 0;
1367 }
1368
1369 return 1;
5b5d99cf
JB
1370}
1371
aa28a74e 1372char *debug_file_directory = NULL;
920d2a44
AC
1373static void
1374show_debug_file_directory (struct ui_file *file, int from_tty,
1375 struct cmd_list_element *c, const char *value)
1376{
1377 fprintf_filtered (file, _("\
1378The directory where separate debug symbols are searched for is \"%s\".\n"),
1379 value);
1380}
5b5d99cf
JB
1381
1382#if ! defined (DEBUG_SUBDIRECTORY)
1383#define DEBUG_SUBDIRECTORY ".debug"
1384#endif
1385
1386static char *
1387find_separate_debug_file (struct objfile *objfile)
1388{
1389 asection *sect;
24ddea62 1390 char *basename, *name_copy, *debugdir;
25522fae
JK
1391 char *dir = NULL;
1392 char *debugfile = NULL;
1393 char *canon_name = NULL;
5b5d99cf
JB
1394 bfd_size_type debuglink_size;
1395 unsigned long crc32;
1396 int i;
77069918
JK
1397 struct build_id *build_id;
1398
1399 build_id = build_id_bfd_get (objfile->obfd);
1400 if (build_id != NULL)
1401 {
1402 char *build_id_name;
1403
1404 build_id_name = build_id_to_debug_filename (build_id);
bb01da77 1405 xfree (build_id);
77069918
JK
1406 /* Prevent looping on a stripped .debug file. */
1407 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1408 {
1409 warning (_("\"%s\": separate debug info file has no debug info"),
1410 build_id_name);
1411 xfree (build_id_name);
1412 }
1413 else if (build_id_name != NULL)
1414 return build_id_name;
1415 }
5b5d99cf
JB
1416
1417 basename = get_debug_link_info (objfile, &crc32);
1418
1419 if (basename == NULL)
287ccc17
JK
1420 /* There's no separate debug info, hence there's no way we could
1421 load it => no warning. */
25522fae 1422 goto cleanup_return_debugfile;
5417f6dc 1423
5b5d99cf
JB
1424 dir = xstrdup (objfile->name);
1425
fe36c4f4
JB
1426 /* Strip off the final filename part, leaving the directory name,
1427 followed by a slash. Objfile names should always be absolute and
1428 tilde-expanded, so there should always be a slash in there
1429 somewhere. */
5b5d99cf
JB
1430 for (i = strlen(dir) - 1; i >= 0; i--)
1431 {
1432 if (IS_DIR_SEPARATOR (dir[i]))
1433 break;
1434 }
fe36c4f4 1435 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1436 dir[i+1] = '\0';
5417f6dc 1437
1ffa32ee
JK
1438 /* Set I to max (strlen (canon_name), strlen (dir)). */
1439 canon_name = lrealpath (dir);
1440 i = strlen (dir);
1441 if (canon_name && strlen (canon_name) > i)
1442 i = strlen (canon_name);
1443
25522fae
JK
1444 debugfile = xmalloc (strlen (debug_file_directory) + 1
1445 + i
1446 + strlen (DEBUG_SUBDIRECTORY)
1447 + strlen ("/")
1448 + strlen (basename)
1449 + 1);
5b5d99cf
JB
1450
1451 /* First try in the same directory as the original file. */
1452 strcpy (debugfile, dir);
1453 strcat (debugfile, basename);
1454
32a0e547 1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1456 goto cleanup_return_debugfile;
5417f6dc 1457
5b5d99cf
JB
1458 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1459 strcpy (debugfile, dir);
1460 strcat (debugfile, DEBUG_SUBDIRECTORY);
1461 strcat (debugfile, "/");
1462 strcat (debugfile, basename);
1463
32a0e547 1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1465 goto cleanup_return_debugfile;
5417f6dc 1466
24ddea62
JK
1467 /* Then try in the global debugfile directories.
1468
1469 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1470 cause "/..." lookups. */
5417f6dc 1471
24ddea62
JK
1472 debugdir = debug_file_directory;
1473 do
aa28a74e 1474 {
24ddea62
JK
1475 char *debugdir_end;
1476
1477 while (*debugdir == DIRNAME_SEPARATOR)
1478 debugdir++;
1479
1480 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1481 if (debugdir_end == NULL)
1482 debugdir_end = &debugdir[strlen (debugdir)];
1483
1484 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1485 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1486 strcat (debugfile, "/");
24ddea62 1487 strcat (debugfile, dir);
aa28a74e
DJ
1488 strcat (debugfile, basename);
1489
32a0e547 1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1491 goto cleanup_return_debugfile;
24ddea62
JK
1492
1493 /* If the file is in the sysroot, try using its base path in the
1494 global debugfile directory. */
1495 if (canon_name
1496 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1497 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1498 {
1499 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1500 debugfile[debugdir_end - debugdir] = 0;
1501 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1502 strcat (debugfile, "/");
1503 strcat (debugfile, basename);
1504
32a0e547 1505 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1506 goto cleanup_return_debugfile;
1507 }
1508
1509 debugdir = debugdir_end;
aa28a74e 1510 }
24ddea62 1511 while (*debugdir != 0);
aa28a74e 1512
25522fae
JK
1513 xfree (debugfile);
1514 debugfile = NULL;
aa28a74e 1515
25522fae
JK
1516cleanup_return_debugfile:
1517 xfree (canon_name);
5b5d99cf
JB
1518 xfree (basename);
1519 xfree (dir);
25522fae 1520 return debugfile;
5b5d99cf
JB
1521}
1522
1523
c906108c
SS
1524/* This is the symbol-file command. Read the file, analyze its
1525 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1526 the command is rather bizarre:
1527
1528 1. The function buildargv implements various quoting conventions
1529 which are undocumented and have little or nothing in common with
1530 the way things are quoted (or not quoted) elsewhere in GDB.
1531
1532 2. Options are used, which are not generally used in GDB (perhaps
1533 "set mapped on", "set readnow on" would be better)
1534
1535 3. The order of options matters, which is contrary to GNU
c906108c
SS
1536 conventions (because it is confusing and inconvenient). */
1537
1538void
fba45db2 1539symbol_file_command (char *args, int from_tty)
c906108c 1540{
c906108c
SS
1541 dont_repeat ();
1542
1543 if (args == NULL)
1544 {
1adeb98a 1545 symbol_file_clear (from_tty);
c906108c
SS
1546 }
1547 else
1548 {
d1a41061 1549 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1550 int flags = OBJF_USERLOADED;
1551 struct cleanup *cleanups;
1552 char *name = NULL;
1553
7a292a7a 1554 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1555 while (*argv != NULL)
1556 {
78a4a9b9
AC
1557 if (strcmp (*argv, "-readnow") == 0)
1558 flags |= OBJF_READNOW;
1559 else if (**argv == '-')
8a3fe4f8 1560 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1561 else
1562 {
cb2f3a29 1563 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1564 name = *argv;
78a4a9b9 1565 }
cb2f3a29 1566
c906108c
SS
1567 argv++;
1568 }
1569
1570 if (name == NULL)
cb2f3a29
MK
1571 error (_("no symbol file name was specified"));
1572
c906108c
SS
1573 do_cleanups (cleanups);
1574 }
1575}
1576
1577/* Set the initial language.
1578
cb2f3a29
MK
1579 FIXME: A better solution would be to record the language in the
1580 psymtab when reading partial symbols, and then use it (if known) to
1581 set the language. This would be a win for formats that encode the
1582 language in an easily discoverable place, such as DWARF. For
1583 stabs, we can jump through hoops looking for specially named
1584 symbols or try to intuit the language from the specific type of
1585 stabs we find, but we can't do that until later when we read in
1586 full symbols. */
c906108c 1587
8b60591b 1588void
fba45db2 1589set_initial_language (void)
c906108c
SS
1590{
1591 struct partial_symtab *pst;
c5aa993b 1592 enum language lang = language_unknown;
c906108c
SS
1593
1594 pst = find_main_psymtab ();
1595 if (pst != NULL)
1596 {
c5aa993b 1597 if (pst->filename != NULL)
cb2f3a29
MK
1598 lang = deduce_language_from_filename (pst->filename);
1599
c906108c
SS
1600 if (lang == language_unknown)
1601 {
c5aa993b
JM
1602 /* Make C the default language */
1603 lang = language_c;
c906108c 1604 }
cb2f3a29 1605
c906108c 1606 set_language (lang);
cb2f3a29 1607 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1608 }
1609}
1610
cb2f3a29
MK
1611/* Open the file specified by NAME and hand it off to BFD for
1612 preliminary analysis. Return a newly initialized bfd *, which
1613 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1614 absolute). In case of trouble, error() is called. */
c906108c
SS
1615
1616bfd *
fba45db2 1617symfile_bfd_open (char *name)
c906108c
SS
1618{
1619 bfd *sym_bfd;
1620 int desc;
1621 char *absolute_name;
1622
f1838a98
UW
1623 if (remote_filename_p (name))
1624 {
1625 name = xstrdup (name);
1626 sym_bfd = remote_bfd_open (name, gnutarget);
1627 if (!sym_bfd)
1628 {
1629 make_cleanup (xfree, name);
1630 error (_("`%s': can't open to read symbols: %s."), name,
1631 bfd_errmsg (bfd_get_error ()));
1632 }
1633
1634 if (!bfd_check_format (sym_bfd, bfd_object))
1635 {
1636 bfd_close (sym_bfd);
1637 make_cleanup (xfree, name);
1638 error (_("`%s': can't read symbols: %s."), name,
1639 bfd_errmsg (bfd_get_error ()));
1640 }
1641
1642 return sym_bfd;
1643 }
1644
cb2f3a29 1645 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1646
1647 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1648 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1649 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1650#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1651 if (desc < 0)
1652 {
1653 char *exename = alloca (strlen (name) + 5);
1654 strcat (strcpy (exename, name), ".exe");
014d698b 1655 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1656 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1657 }
1658#endif
1659 if (desc < 0)
1660 {
b8c9b27d 1661 make_cleanup (xfree, name);
c906108c
SS
1662 perror_with_name (name);
1663 }
cb2f3a29
MK
1664
1665 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1666 bfd. It'll be freed in free_objfile(). */
1667 xfree (name);
1668 name = absolute_name;
c906108c 1669
9f76c2cd 1670 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1671 if (!sym_bfd)
1672 {
1673 close (desc);
b8c9b27d 1674 make_cleanup (xfree, name);
f1838a98 1675 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1676 bfd_errmsg (bfd_get_error ()));
1677 }
549c1eea 1678 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1679
1680 if (!bfd_check_format (sym_bfd, bfd_object))
1681 {
cb2f3a29
MK
1682 /* FIXME: should be checking for errors from bfd_close (for one
1683 thing, on error it does not free all the storage associated
1684 with the bfd). */
1685 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1686 make_cleanup (xfree, name);
f1838a98 1687 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1688 bfd_errmsg (bfd_get_error ()));
1689 }
cb2f3a29 1690
4f6f9936
JK
1691 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1692 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1693
cb2f3a29 1694 return sym_bfd;
c906108c
SS
1695}
1696
cb2f3a29
MK
1697/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1698 the section was not found. */
1699
0e931cf0
JB
1700int
1701get_section_index (struct objfile *objfile, char *section_name)
1702{
1703 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1704
0e931cf0
JB
1705 if (sect)
1706 return sect->index;
1707 else
1708 return -1;
1709}
1710
cb2f3a29
MK
1711/* Link SF into the global symtab_fns list. Called on startup by the
1712 _initialize routine in each object file format reader, to register
1713 information about each format the the reader is prepared to
1714 handle. */
c906108c
SS
1715
1716void
fba45db2 1717add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1718{
1719 sf->next = symtab_fns;
1720 symtab_fns = sf;
1721}
1722
cb2f3a29
MK
1723/* Initialize OBJFILE to read symbols from its associated BFD. It
1724 either returns or calls error(). The result is an initialized
1725 struct sym_fns in the objfile structure, that contains cached
1726 information about the symbol file. */
c906108c 1727
31d99776
DJ
1728static struct sym_fns *
1729find_sym_fns (bfd *abfd)
c906108c
SS
1730{
1731 struct sym_fns *sf;
31d99776 1732 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1733
75245b24
MS
1734 if (our_flavour == bfd_target_srec_flavour
1735 || our_flavour == bfd_target_ihex_flavour
1736 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1737 return NULL; /* No symbols. */
75245b24 1738
c5aa993b 1739 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1740 if (our_flavour == sf->sym_flavour)
1741 return sf;
cb2f3a29 1742
8a3fe4f8 1743 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1744 bfd_get_target (abfd));
c906108c
SS
1745}
1746\f
cb2f3a29 1747
c906108c
SS
1748/* This function runs the load command of our current target. */
1749
1750static void
fba45db2 1751load_command (char *arg, int from_tty)
c906108c 1752{
4487aabf
PA
1753 /* The user might be reloading because the binary has changed. Take
1754 this opportunity to check. */
1755 reopen_exec_file ();
1756 reread_symbols ();
1757
c906108c 1758 if (arg == NULL)
1986bccd
AS
1759 {
1760 char *parg;
1761 int count = 0;
1762
1763 parg = arg = get_exec_file (1);
1764
1765 /* Count how many \ " ' tab space there are in the name. */
1766 while ((parg = strpbrk (parg, "\\\"'\t ")))
1767 {
1768 parg++;
1769 count++;
1770 }
1771
1772 if (count)
1773 {
1774 /* We need to quote this string so buildargv can pull it apart. */
1775 char *temp = xmalloc (strlen (arg) + count + 1 );
1776 char *ptemp = temp;
1777 char *prev;
1778
1779 make_cleanup (xfree, temp);
1780
1781 prev = parg = arg;
1782 while ((parg = strpbrk (parg, "\\\"'\t ")))
1783 {
1784 strncpy (ptemp, prev, parg - prev);
1785 ptemp += parg - prev;
1786 prev = parg++;
1787 *ptemp++ = '\\';
1788 }
1789 strcpy (ptemp, prev);
1790
1791 arg = temp;
1792 }
1793 }
1794
c906108c 1795 target_load (arg, from_tty);
2889e661
JB
1796
1797 /* After re-loading the executable, we don't really know which
1798 overlays are mapped any more. */
1799 overlay_cache_invalid = 1;
c906108c
SS
1800}
1801
1802/* This version of "load" should be usable for any target. Currently
1803 it is just used for remote targets, not inftarg.c or core files,
1804 on the theory that only in that case is it useful.
1805
1806 Avoiding xmodem and the like seems like a win (a) because we don't have
1807 to worry about finding it, and (b) On VMS, fork() is very slow and so
1808 we don't want to run a subprocess. On the other hand, I'm not sure how
1809 performance compares. */
917317f4 1810
917317f4
JM
1811static int validate_download = 0;
1812
e4f9b4d5
MS
1813/* Callback service function for generic_load (bfd_map_over_sections). */
1814
1815static void
1816add_section_size_callback (bfd *abfd, asection *asec, void *data)
1817{
1818 bfd_size_type *sum = data;
1819
2c500098 1820 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1821}
1822
1823/* Opaque data for load_section_callback. */
1824struct load_section_data {
1825 unsigned long load_offset;
a76d924d
DJ
1826 struct load_progress_data *progress_data;
1827 VEC(memory_write_request_s) *requests;
1828};
1829
1830/* Opaque data for load_progress. */
1831struct load_progress_data {
1832 /* Cumulative data. */
e4f9b4d5
MS
1833 unsigned long write_count;
1834 unsigned long data_count;
1835 bfd_size_type total_size;
a76d924d
DJ
1836};
1837
1838/* Opaque data for load_progress for a single section. */
1839struct load_progress_section_data {
1840 struct load_progress_data *cumulative;
cf7a04e8 1841
a76d924d 1842 /* Per-section data. */
cf7a04e8
DJ
1843 const char *section_name;
1844 ULONGEST section_sent;
1845 ULONGEST section_size;
1846 CORE_ADDR lma;
1847 gdb_byte *buffer;
e4f9b4d5
MS
1848};
1849
a76d924d 1850/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1851
1852static void
1853load_progress (ULONGEST bytes, void *untyped_arg)
1854{
a76d924d
DJ
1855 struct load_progress_section_data *args = untyped_arg;
1856 struct load_progress_data *totals;
1857
1858 if (args == NULL)
1859 /* Writing padding data. No easy way to get at the cumulative
1860 stats, so just ignore this. */
1861 return;
1862
1863 totals = args->cumulative;
1864
1865 if (bytes == 0 && args->section_sent == 0)
1866 {
1867 /* The write is just starting. Let the user know we've started
1868 this section. */
5af949e3
UW
1869 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1870 args->section_name, hex_string (args->section_size),
1871 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1872 return;
1873 }
cf7a04e8
DJ
1874
1875 if (validate_download)
1876 {
1877 /* Broken memories and broken monitors manifest themselves here
1878 when bring new computers to life. This doubles already slow
1879 downloads. */
1880 /* NOTE: cagney/1999-10-18: A more efficient implementation
1881 might add a verify_memory() method to the target vector and
1882 then use that. remote.c could implement that method using
1883 the ``qCRC'' packet. */
1884 gdb_byte *check = xmalloc (bytes);
1885 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1886
1887 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1888 error (_("Download verify read failed at %s"),
1889 paddress (target_gdbarch, args->lma));
cf7a04e8 1890 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1891 error (_("Download verify compare failed at %s"),
1892 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1893 do_cleanups (verify_cleanups);
1894 }
a76d924d 1895 totals->data_count += bytes;
cf7a04e8
DJ
1896 args->lma += bytes;
1897 args->buffer += bytes;
a76d924d 1898 totals->write_count += 1;
cf7a04e8
DJ
1899 args->section_sent += bytes;
1900 if (quit_flag
1901 || (deprecated_ui_load_progress_hook != NULL
1902 && deprecated_ui_load_progress_hook (args->section_name,
1903 args->section_sent)))
1904 error (_("Canceled the download"));
1905
1906 if (deprecated_show_load_progress != NULL)
1907 deprecated_show_load_progress (args->section_name,
1908 args->section_sent,
1909 args->section_size,
a76d924d
DJ
1910 totals->data_count,
1911 totals->total_size);
cf7a04e8
DJ
1912}
1913
e4f9b4d5
MS
1914/* Callback service function for generic_load (bfd_map_over_sections). */
1915
1916static void
1917load_section_callback (bfd *abfd, asection *asec, void *data)
1918{
a76d924d 1919 struct memory_write_request *new_request;
e4f9b4d5 1920 struct load_section_data *args = data;
a76d924d 1921 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1922 bfd_size_type size = bfd_get_section_size (asec);
1923 gdb_byte *buffer;
cf7a04e8 1924 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1925
cf7a04e8
DJ
1926 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1927 return;
e4f9b4d5 1928
cf7a04e8
DJ
1929 if (size == 0)
1930 return;
e4f9b4d5 1931
a76d924d
DJ
1932 new_request = VEC_safe_push (memory_write_request_s,
1933 args->requests, NULL);
1934 memset (new_request, 0, sizeof (struct memory_write_request));
1935 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1936 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1937 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1938 new_request->data = xmalloc (size);
1939 new_request->baton = section_data;
cf7a04e8 1940
a76d924d 1941 buffer = new_request->data;
cf7a04e8 1942
a76d924d
DJ
1943 section_data->cumulative = args->progress_data;
1944 section_data->section_name = sect_name;
1945 section_data->section_size = size;
1946 section_data->lma = new_request->begin;
1947 section_data->buffer = buffer;
cf7a04e8
DJ
1948
1949 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1950}
1951
1952/* Clean up an entire memory request vector, including load
1953 data and progress records. */
cf7a04e8 1954
a76d924d
DJ
1955static void
1956clear_memory_write_data (void *arg)
1957{
1958 VEC(memory_write_request_s) **vec_p = arg;
1959 VEC(memory_write_request_s) *vec = *vec_p;
1960 int i;
1961 struct memory_write_request *mr;
cf7a04e8 1962
a76d924d
DJ
1963 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1964 {
1965 xfree (mr->data);
1966 xfree (mr->baton);
1967 }
1968 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1969}
1970
c906108c 1971void
917317f4 1972generic_load (char *args, int from_tty)
c906108c 1973{
c906108c 1974 bfd *loadfile_bfd;
2b71414d 1975 struct timeval start_time, end_time;
917317f4 1976 char *filename;
1986bccd 1977 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1978 struct load_section_data cbdata;
a76d924d
DJ
1979 struct load_progress_data total_progress;
1980
e4f9b4d5 1981 CORE_ADDR entry;
1986bccd 1982 char **argv;
e4f9b4d5 1983
a76d924d
DJ
1984 memset (&cbdata, 0, sizeof (cbdata));
1985 memset (&total_progress, 0, sizeof (total_progress));
1986 cbdata.progress_data = &total_progress;
1987
1988 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1989
d1a41061
PP
1990 if (args == NULL)
1991 error_no_arg (_("file to load"));
1986bccd 1992
d1a41061 1993 argv = gdb_buildargv (args);
1986bccd
AS
1994 make_cleanup_freeargv (argv);
1995
1996 filename = tilde_expand (argv[0]);
1997 make_cleanup (xfree, filename);
1998
1999 if (argv[1] != NULL)
917317f4
JM
2000 {
2001 char *endptr;
ba5f2f8a 2002
1986bccd
AS
2003 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2004
2005 /* If the last word was not a valid number then
2006 treat it as a file name with spaces in. */
2007 if (argv[1] == endptr)
2008 error (_("Invalid download offset:%s."), argv[1]);
2009
2010 if (argv[2] != NULL)
2011 error (_("Too many parameters."));
917317f4 2012 }
c906108c 2013
917317f4 2014 /* Open the file for loading. */
c906108c
SS
2015 loadfile_bfd = bfd_openr (filename, gnutarget);
2016 if (loadfile_bfd == NULL)
2017 {
2018 perror_with_name (filename);
2019 return;
2020 }
917317f4 2021
c906108c
SS
2022 /* FIXME: should be checking for errors from bfd_close (for one thing,
2023 on error it does not free all the storage associated with the
2024 bfd). */
5c65bbb6 2025 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2026
c5aa993b 2027 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2028 {
8a3fe4f8 2029 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2030 bfd_errmsg (bfd_get_error ()));
2031 }
c5aa993b 2032
5417f6dc 2033 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2034 (void *) &total_progress.total_size);
2035
2036 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2037
2b71414d 2038 gettimeofday (&start_time, NULL);
c906108c 2039
a76d924d
DJ
2040 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2041 load_progress) != 0)
2042 error (_("Load failed"));
c906108c 2043
2b71414d 2044 gettimeofday (&end_time, NULL);
ba5f2f8a 2045
e4f9b4d5 2046 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2047 ui_out_text (uiout, "Start address ");
5af949e3 2048 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2049 ui_out_text (uiout, ", load size ");
a76d924d 2050 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2051 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2052 /* We were doing this in remote-mips.c, I suspect it is right
2053 for other targets too. */
fb14de7b 2054 regcache_write_pc (get_current_regcache (), entry);
c906108c 2055
7ca9f392
AC
2056 /* FIXME: are we supposed to call symbol_file_add or not? According
2057 to a comment from remote-mips.c (where a call to symbol_file_add
2058 was commented out), making the call confuses GDB if more than one
2059 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2060 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2061
a76d924d
DJ
2062 print_transfer_performance (gdb_stdout, total_progress.data_count,
2063 total_progress.write_count,
2064 &start_time, &end_time);
c906108c
SS
2065
2066 do_cleanups (old_cleanups);
2067}
2068
2069/* Report how fast the transfer went. */
2070
917317f4
JM
2071/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2072 replaced by print_transfer_performance (with a very different
2073 function signature). */
2074
c906108c 2075void
fba45db2
KB
2076report_transfer_performance (unsigned long data_count, time_t start_time,
2077 time_t end_time)
c906108c 2078{
2b71414d
DJ
2079 struct timeval start, end;
2080
2081 start.tv_sec = start_time;
2082 start.tv_usec = 0;
2083 end.tv_sec = end_time;
2084 end.tv_usec = 0;
2085
2086 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2087}
2088
2089void
d9fcf2fb 2090print_transfer_performance (struct ui_file *stream,
917317f4
JM
2091 unsigned long data_count,
2092 unsigned long write_count,
2b71414d
DJ
2093 const struct timeval *start_time,
2094 const struct timeval *end_time)
917317f4 2095{
9f43d28c 2096 ULONGEST time_count;
2b71414d
DJ
2097
2098 /* Compute the elapsed time in milliseconds, as a tradeoff between
2099 accuracy and overflow. */
2100 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2101 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2102
8b93c638
JM
2103 ui_out_text (uiout, "Transfer rate: ");
2104 if (time_count > 0)
2105 {
9f43d28c
DJ
2106 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2107
2108 if (ui_out_is_mi_like_p (uiout))
2109 {
2110 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2111 ui_out_text (uiout, " bits/sec");
2112 }
2113 else if (rate < 1024)
2114 {
2115 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2116 ui_out_text (uiout, " bytes/sec");
2117 }
2118 else
2119 {
2120 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2121 ui_out_text (uiout, " KB/sec");
2122 }
8b93c638
JM
2123 }
2124 else
2125 {
ba5f2f8a 2126 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2127 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2128 }
2129 if (write_count > 0)
2130 {
2131 ui_out_text (uiout, ", ");
ba5f2f8a 2132 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2133 ui_out_text (uiout, " bytes/write");
2134 }
2135 ui_out_text (uiout, ".\n");
c906108c
SS
2136}
2137
2138/* This function allows the addition of incrementally linked object files.
2139 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2140/* Note: ezannoni 2000-04-13 This function/command used to have a
2141 special case syntax for the rombug target (Rombug is the boot
2142 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2143 rombug case, the user doesn't need to supply a text address,
2144 instead a call to target_link() (in target.c) would supply the
2145 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2146
c906108c 2147static void
fba45db2 2148add_symbol_file_command (char *args, int from_tty)
c906108c 2149{
5af949e3 2150 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2151 char *filename = NULL;
2df3850c 2152 int flags = OBJF_USERLOADED;
c906108c 2153 char *arg;
2acceee2 2154 int expecting_option = 0;
db162d44 2155 int section_index = 0;
2acceee2
JM
2156 int argcnt = 0;
2157 int sec_num = 0;
2158 int i;
db162d44
EZ
2159 int expecting_sec_name = 0;
2160 int expecting_sec_addr = 0;
5b96932b 2161 char **argv;
db162d44 2162
a39a16c4 2163 struct sect_opt
2acceee2 2164 {
2acceee2
JM
2165 char *name;
2166 char *value;
a39a16c4 2167 };
db162d44 2168
a39a16c4
MM
2169 struct section_addr_info *section_addrs;
2170 struct sect_opt *sect_opts = NULL;
2171 size_t num_sect_opts = 0;
3017564a 2172 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2173
a39a16c4 2174 num_sect_opts = 16;
5417f6dc 2175 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2176 * sizeof (struct sect_opt));
2177
c906108c
SS
2178 dont_repeat ();
2179
2180 if (args == NULL)
8a3fe4f8 2181 error (_("add-symbol-file takes a file name and an address"));
c906108c 2182
d1a41061 2183 argv = gdb_buildargv (args);
5b96932b 2184 make_cleanup_freeargv (argv);
db162d44 2185
5b96932b
AS
2186 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2187 {
2188 /* Process the argument. */
db162d44 2189 if (argcnt == 0)
c906108c 2190 {
db162d44
EZ
2191 /* The first argument is the file name. */
2192 filename = tilde_expand (arg);
3017564a 2193 make_cleanup (xfree, filename);
c906108c 2194 }
db162d44 2195 else
7a78ae4e
ND
2196 if (argcnt == 1)
2197 {
2198 /* The second argument is always the text address at which
2199 to load the program. */
2200 sect_opts[section_index].name = ".text";
2201 sect_opts[section_index].value = arg;
f414f22f 2202 if (++section_index >= num_sect_opts)
a39a16c4
MM
2203 {
2204 num_sect_opts *= 2;
5417f6dc 2205 sect_opts = ((struct sect_opt *)
a39a16c4 2206 xrealloc (sect_opts,
5417f6dc 2207 num_sect_opts
a39a16c4
MM
2208 * sizeof (struct sect_opt)));
2209 }
7a78ae4e
ND
2210 }
2211 else
2212 {
2213 /* It's an option (starting with '-') or it's an argument
2214 to an option */
2215
2216 if (*arg == '-')
2217 {
78a4a9b9
AC
2218 if (strcmp (arg, "-readnow") == 0)
2219 flags |= OBJF_READNOW;
2220 else if (strcmp (arg, "-s") == 0)
2221 {
2222 expecting_sec_name = 1;
2223 expecting_sec_addr = 1;
2224 }
7a78ae4e
ND
2225 }
2226 else
2227 {
2228 if (expecting_sec_name)
db162d44 2229 {
7a78ae4e
ND
2230 sect_opts[section_index].name = arg;
2231 expecting_sec_name = 0;
db162d44
EZ
2232 }
2233 else
7a78ae4e
ND
2234 if (expecting_sec_addr)
2235 {
2236 sect_opts[section_index].value = arg;
2237 expecting_sec_addr = 0;
f414f22f 2238 if (++section_index >= num_sect_opts)
a39a16c4
MM
2239 {
2240 num_sect_opts *= 2;
5417f6dc 2241 sect_opts = ((struct sect_opt *)
a39a16c4 2242 xrealloc (sect_opts,
5417f6dc 2243 num_sect_opts
a39a16c4
MM
2244 * sizeof (struct sect_opt)));
2245 }
7a78ae4e
ND
2246 }
2247 else
8a3fe4f8 2248 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2249 }
2250 }
c906108c 2251 }
c906108c 2252
927890d0
JB
2253 /* This command takes at least two arguments. The first one is a
2254 filename, and the second is the address where this file has been
2255 loaded. Abort now if this address hasn't been provided by the
2256 user. */
2257 if (section_index < 1)
2258 error (_("The address where %s has been loaded is missing"), filename);
2259
db162d44
EZ
2260 /* Print the prompt for the query below. And save the arguments into
2261 a sect_addr_info structure to be passed around to other
2262 functions. We have to split this up into separate print
bb599908 2263 statements because hex_string returns a local static
db162d44 2264 string. */
5417f6dc 2265
a3f17187 2266 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2267 section_addrs = alloc_section_addr_info (section_index);
2268 make_cleanup (xfree, section_addrs);
db162d44 2269 for (i = 0; i < section_index; i++)
c906108c 2270 {
db162d44
EZ
2271 CORE_ADDR addr;
2272 char *val = sect_opts[i].value;
2273 char *sec = sect_opts[i].name;
5417f6dc 2274
ae822768 2275 addr = parse_and_eval_address (val);
db162d44 2276
db162d44
EZ
2277 /* Here we store the section offsets in the order they were
2278 entered on the command line. */
a39a16c4
MM
2279 section_addrs->other[sec_num].name = sec;
2280 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2281 printf_unfiltered ("\t%s_addr = %s\n", sec,
2282 paddress (gdbarch, addr));
db162d44
EZ
2283 sec_num++;
2284
5417f6dc 2285 /* The object's sections are initialized when a
db162d44 2286 call is made to build_objfile_section_table (objfile).
5417f6dc 2287 This happens in reread_symbols.
db162d44
EZ
2288 At this point, we don't know what file type this is,
2289 so we can't determine what section names are valid. */
2acceee2 2290 }
db162d44 2291
2acceee2 2292 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2293 error (_("Not confirmed."));
c906108c 2294
7eedccfa
PP
2295 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2296 section_addrs, flags);
c906108c
SS
2297
2298 /* Getting new symbols may change our opinion about what is
2299 frameless. */
2300 reinit_frame_cache ();
db162d44 2301 do_cleanups (my_cleanups);
c906108c
SS
2302}
2303\f
70992597 2304
c906108c
SS
2305/* Re-read symbols if a symbol-file has changed. */
2306void
fba45db2 2307reread_symbols (void)
c906108c
SS
2308{
2309 struct objfile *objfile;
2310 long new_modtime;
2311 int reread_one = 0;
2312 struct stat new_statbuf;
2313 int res;
2314
2315 /* With the addition of shared libraries, this should be modified,
2316 the load time should be saved in the partial symbol tables, since
2317 different tables may come from different source files. FIXME.
2318 This routine should then walk down each partial symbol table
2319 and see if the symbol table that it originates from has been changed */
2320
c5aa993b
JM
2321 for (objfile = object_files; objfile; objfile = objfile->next)
2322 {
2323 if (objfile->obfd)
2324 {
52d16ba8 2325#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2326 /* If this object is from a shared library, then you should
2327 stat on the library name, not member name. */
c906108c 2328
c5aa993b
JM
2329 if (objfile->obfd->my_archive)
2330 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2331 else
c906108c 2332#endif
c5aa993b
JM
2333 res = stat (objfile->name, &new_statbuf);
2334 if (res != 0)
c906108c 2335 {
c5aa993b 2336 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2337 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2338 objfile->name);
2339 continue;
c906108c 2340 }
c5aa993b
JM
2341 new_modtime = new_statbuf.st_mtime;
2342 if (new_modtime != objfile->mtime)
c906108c 2343 {
c5aa993b
JM
2344 struct cleanup *old_cleanups;
2345 struct section_offsets *offsets;
2346 int num_offsets;
c5aa993b
JM
2347 char *obfd_filename;
2348
a3f17187 2349 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2350 objfile->name);
2351
2352 /* There are various functions like symbol_file_add,
2353 symfile_bfd_open, syms_from_objfile, etc., which might
2354 appear to do what we want. But they have various other
2355 effects which we *don't* want. So we just do stuff
2356 ourselves. We don't worry about mapped files (for one thing,
2357 any mapped file will be out of date). */
2358
2359 /* If we get an error, blow away this objfile (not sure if
2360 that is the correct response for things like shared
2361 libraries). */
74b7792f 2362 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2363 /* We need to do this whenever any symbols go away. */
74b7792f 2364 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2365
b2de52bb
JK
2366 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2367 bfd_get_filename (exec_bfd)) == 0)
2368 {
2369 /* Reload EXEC_BFD without asking anything. */
2370
2371 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2372 }
2373
c5aa993b
JM
2374 /* Clean up any state BFD has sitting around. We don't need
2375 to close the descriptor but BFD lacks a way of closing the
2376 BFD without closing the descriptor. */
2377 obfd_filename = bfd_get_filename (objfile->obfd);
2378 if (!bfd_close (objfile->obfd))
8a3fe4f8 2379 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2380 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2381 if (remote_filename_p (obfd_filename))
2382 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2383 else
2384 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2385 if (objfile->obfd == NULL)
8a3fe4f8 2386 error (_("Can't open %s to read symbols."), objfile->name);
3db741ef
PP
2387 else
2388 objfile->obfd = gdb_bfd_ref (objfile->obfd);
c5aa993b
JM
2389 /* bfd_openr sets cacheable to true, which is what we want. */
2390 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2391 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2392 bfd_errmsg (bfd_get_error ()));
2393
2394 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2395 objfile_obstack. */
c5aa993b 2396 num_offsets = objfile->num_sections;
5417f6dc 2397 offsets = ((struct section_offsets *)
a39a16c4 2398 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2399 memcpy (offsets, objfile->section_offsets,
a39a16c4 2400 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2401
ae5a43e0
DJ
2402 /* Remove any references to this objfile in the global
2403 value lists. */
2404 preserve_values (objfile);
2405
c5aa993b
JM
2406 /* Nuke all the state that we will re-read. Much of the following
2407 code which sets things to NULL really is necessary to tell
5b2ab461
JK
2408 other parts of GDB that there is nothing currently there.
2409
2410 Try to keep the freeing order compatible with free_objfile. */
2411
2412 if (objfile->sf != NULL)
2413 {
2414 (*objfile->sf->sym_finish) (objfile);
2415 }
2416
2417 clear_objfile_data (objfile);
c5aa993b
JM
2418
2419 /* FIXME: Do we have to free a whole linked list, or is this
2420 enough? */
2421 if (objfile->global_psymbols.list)
2dc74dc1 2422 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2423 memset (&objfile->global_psymbols, 0,
2424 sizeof (objfile->global_psymbols));
2425 if (objfile->static_psymbols.list)
2dc74dc1 2426 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2427 memset (&objfile->static_psymbols, 0,
2428 sizeof (objfile->static_psymbols));
2429
2430 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2431 bcache_xfree (objfile->psymbol_cache);
2432 objfile->psymbol_cache = bcache_xmalloc ();
2433 bcache_xfree (objfile->macro_cache);
2434 objfile->macro_cache = bcache_xmalloc ();
10abe6bf
TT
2435 bcache_xfree (objfile->filename_cache);
2436 objfile->filename_cache = bcache_xmalloc ();
2de7ced7
DJ
2437 if (objfile->demangled_names_hash != NULL)
2438 {
2439 htab_delete (objfile->demangled_names_hash);
2440 objfile->demangled_names_hash = NULL;
2441 }
b99607ea 2442 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2443 objfile->sections = NULL;
2444 objfile->symtabs = NULL;
2445 objfile->psymtabs = NULL;
930123b7 2446 objfile->psymtabs_addrmap = NULL;
c5aa993b 2447 objfile->free_psymtabs = NULL;
a1b8c067 2448 objfile->cp_namespace_symtab = NULL;
c5aa993b 2449 objfile->msymbols = NULL;
0a6ddd08 2450 objfile->deprecated_sym_private = NULL;
c5aa993b 2451 objfile->minimal_symbol_count = 0;
0a83117a
MS
2452 memset (&objfile->msymbol_hash, 0,
2453 sizeof (objfile->msymbol_hash));
2454 memset (&objfile->msymbol_demangled_hash, 0,
2455 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 2456
af5f3db6
AC
2457 objfile->psymbol_cache = bcache_xmalloc ();
2458 objfile->macro_cache = bcache_xmalloc ();
10abe6bf 2459 objfile->filename_cache = bcache_xmalloc ();
1ab21617
EZ
2460 /* obstack_init also initializes the obstack so it is
2461 empty. We could use obstack_specify_allocation but
2462 gdb_obstack.h specifies the alloc/dealloc
2463 functions. */
2464 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2465 if (build_objfile_section_table (objfile))
2466 {
8a3fe4f8 2467 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2468 objfile->name, bfd_errmsg (bfd_get_error ()));
2469 }
15831452 2470 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2471
2472 /* We use the same section offsets as from last time. I'm not
2473 sure whether that is always correct for shared libraries. */
2474 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2475 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2476 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2477 memcpy (objfile->section_offsets, offsets,
a39a16c4 2478 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2479 objfile->num_sections = num_offsets;
2480
2481 /* What the hell is sym_new_init for, anyway? The concept of
2482 distinguishing between the main file and additional files
2483 in this way seems rather dubious. */
2484 if (objfile == symfile_objfile)
2485 {
2486 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2487 }
2488
2489 (*objfile->sf->sym_init) (objfile);
b9caf505 2490 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2491 /* The "mainline" parameter is a hideous hack; I think leaving it
2492 zero is OK since dbxread.c also does what it needs to do if
2493 objfile->global_psymbols.size is 0. */
96baa820 2494 (*objfile->sf->sym_read) (objfile, 0);
e361b228 2495 if (!objfile_has_symbols (objfile))
c5aa993b
JM
2496 {
2497 wrap_here ("");
a3f17187 2498 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2499 wrap_here ("");
2500 }
c5aa993b
JM
2501
2502 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2503 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2504
c5aa993b
JM
2505 /* Getting new symbols may change our opinion about what is
2506 frameless. */
c906108c 2507
c5aa993b 2508 reinit_frame_cache ();
c906108c 2509
c5aa993b
JM
2510 /* Discard cleanups as symbol reading was successful. */
2511 discard_cleanups (old_cleanups);
c906108c 2512
c5aa993b
JM
2513 /* If the mtime has changed between the time we set new_modtime
2514 and now, we *want* this to be out of date, so don't call stat
2515 again now. */
2516 objfile->mtime = new_modtime;
2517 reread_one = 1;
5b5d99cf 2518 reread_separate_symbols (objfile);
6528a9ea 2519 init_entry_point_info (objfile);
c5aa993b 2520 }
c906108c
SS
2521 }
2522 }
c906108c
SS
2523
2524 if (reread_one)
ea53e89f 2525 {
ff3536bc
UW
2526 /* Notify objfiles that we've modified objfile sections. */
2527 objfiles_changed ();
2528
ea53e89f
JB
2529 clear_symtab_users ();
2530 /* At least one objfile has changed, so we can consider that
2531 the executable we're debugging has changed too. */
781b42b0 2532 observer_notify_executable_changed ();
ea53e89f 2533 }
c906108c 2534}
5b5d99cf
JB
2535
2536
2537/* Handle separate debug info for OBJFILE, which has just been
2538 re-read:
2539 - If we had separate debug info before, but now we don't, get rid
2540 of the separated objfile.
2541 - If we didn't have separated debug info before, but now we do,
2542 read in the new separated debug info file.
2543 - If the debug link points to a different file, toss the old one
2544 and read the new one.
2545 This function does *not* handle the case where objfile is still
2546 using the same separate debug info file, but that file's timestamp
2547 has changed. That case should be handled by the loop in
2548 reread_symbols already. */
2549static void
2550reread_separate_symbols (struct objfile *objfile)
2551{
2552 char *debug_file;
2553 unsigned long crc32;
2554
2555 /* Does the updated objfile's debug info live in a
2556 separate file? */
2557 debug_file = find_separate_debug_file (objfile);
2558
2559 if (objfile->separate_debug_objfile)
2560 {
2561 /* There are two cases where we need to get rid of
2562 the old separated debug info objfile:
2563 - if the new primary objfile doesn't have
2564 separated debug info, or
2565 - if the new primary objfile has separate debug
2566 info, but it's under a different filename.
5417f6dc 2567
5b5d99cf
JB
2568 If the old and new objfiles both have separate
2569 debug info, under the same filename, then we're
2570 okay --- if the separated file's contents have
2571 changed, we will have caught that when we
2572 visited it in this function's outermost
2573 loop. */
2574 if (! debug_file
2575 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2576 free_objfile (objfile->separate_debug_objfile);
2577 }
2578
2579 /* If the new objfile has separate debug info, and we
2580 haven't loaded it already, do so now. */
2581 if (debug_file
2582 && ! objfile->separate_debug_objfile)
2583 {
2584 /* Use the same section offset table as objfile itself.
2585 Preserve the flags from objfile that make sense. */
2586 objfile->separate_debug_objfile
2587 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2588 (symfile_bfd_open (debug_file),
7eedccfa 2589 info_verbose ? SYMFILE_VERBOSE : 0,
5b5d99cf
JB
2590 0, /* No addr table. */
2591 objfile->section_offsets, objfile->num_sections,
78a4a9b9 2592 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2593 | OBJF_USERLOADED)));
2594 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2595 = objfile;
2596 }
73780b3c
MS
2597 if (debug_file)
2598 xfree (debug_file);
5b5d99cf
JB
2599}
2600
2601
c906108c
SS
2602\f
2603
c5aa993b
JM
2604
2605typedef struct
2606{
2607 char *ext;
c906108c 2608 enum language lang;
c5aa993b
JM
2609}
2610filename_language;
c906108c 2611
c5aa993b 2612static filename_language *filename_language_table;
c906108c
SS
2613static int fl_table_size, fl_table_next;
2614
2615static void
fba45db2 2616add_filename_language (char *ext, enum language lang)
c906108c
SS
2617{
2618 if (fl_table_next >= fl_table_size)
2619 {
2620 fl_table_size += 10;
5417f6dc 2621 filename_language_table =
25bf3106
PM
2622 xrealloc (filename_language_table,
2623 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2624 }
2625
4fcf66da 2626 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2627 filename_language_table[fl_table_next].lang = lang;
2628 fl_table_next++;
2629}
2630
2631static char *ext_args;
920d2a44
AC
2632static void
2633show_ext_args (struct ui_file *file, int from_tty,
2634 struct cmd_list_element *c, const char *value)
2635{
2636 fprintf_filtered (file, _("\
2637Mapping between filename extension and source language is \"%s\".\n"),
2638 value);
2639}
c906108c
SS
2640
2641static void
26c41df3 2642set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2643{
2644 int i;
2645 char *cp = ext_args;
2646 enum language lang;
2647
2648 /* First arg is filename extension, starting with '.' */
2649 if (*cp != '.')
8a3fe4f8 2650 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2651
2652 /* Find end of first arg. */
c5aa993b 2653 while (*cp && !isspace (*cp))
c906108c
SS
2654 cp++;
2655
2656 if (*cp == '\0')
8a3fe4f8 2657 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2658 ext_args);
2659
2660 /* Null-terminate first arg */
c5aa993b 2661 *cp++ = '\0';
c906108c
SS
2662
2663 /* Find beginning of second arg, which should be a source language. */
2664 while (*cp && isspace (*cp))
2665 cp++;
2666
2667 if (*cp == '\0')
8a3fe4f8 2668 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2669 ext_args);
2670
2671 /* Lookup the language from among those we know. */
2672 lang = language_enum (cp);
2673
2674 /* Now lookup the filename extension: do we already know it? */
2675 for (i = 0; i < fl_table_next; i++)
2676 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2677 break;
2678
2679 if (i >= fl_table_next)
2680 {
2681 /* new file extension */
2682 add_filename_language (ext_args, lang);
2683 }
2684 else
2685 {
2686 /* redefining a previously known filename extension */
2687
2688 /* if (from_tty) */
2689 /* query ("Really make files of type %s '%s'?", */
2690 /* ext_args, language_str (lang)); */
2691
b8c9b27d 2692 xfree (filename_language_table[i].ext);
4fcf66da 2693 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2694 filename_language_table[i].lang = lang;
2695 }
2696}
2697
2698static void
fba45db2 2699info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2700{
2701 int i;
2702
a3f17187 2703 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2704 printf_filtered ("\n\n");
2705 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2706 printf_filtered ("\t%s\t- %s\n",
2707 filename_language_table[i].ext,
c906108c
SS
2708 language_str (filename_language_table[i].lang));
2709}
2710
2711static void
fba45db2 2712init_filename_language_table (void)
c906108c
SS
2713{
2714 if (fl_table_size == 0) /* protect against repetition */
2715 {
2716 fl_table_size = 20;
2717 fl_table_next = 0;
c5aa993b 2718 filename_language_table =
c906108c 2719 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2720 add_filename_language (".c", language_c);
2721 add_filename_language (".C", language_cplus);
2722 add_filename_language (".cc", language_cplus);
2723 add_filename_language (".cp", language_cplus);
2724 add_filename_language (".cpp", language_cplus);
2725 add_filename_language (".cxx", language_cplus);
2726 add_filename_language (".c++", language_cplus);
2727 add_filename_language (".java", language_java);
c906108c 2728 add_filename_language (".class", language_java);
da2cf7e0 2729 add_filename_language (".m", language_objc);
c5aa993b
JM
2730 add_filename_language (".f", language_fortran);
2731 add_filename_language (".F", language_fortran);
2732 add_filename_language (".s", language_asm);
aa707ed0 2733 add_filename_language (".sx", language_asm);
c5aa993b 2734 add_filename_language (".S", language_asm);
c6fd39cd
PM
2735 add_filename_language (".pas", language_pascal);
2736 add_filename_language (".p", language_pascal);
2737 add_filename_language (".pp", language_pascal);
963a6417
PH
2738 add_filename_language (".adb", language_ada);
2739 add_filename_language (".ads", language_ada);
2740 add_filename_language (".a", language_ada);
2741 add_filename_language (".ada", language_ada);
c906108c
SS
2742 }
2743}
2744
2745enum language
fba45db2 2746deduce_language_from_filename (char *filename)
c906108c
SS
2747{
2748 int i;
2749 char *cp;
2750
2751 if (filename != NULL)
2752 if ((cp = strrchr (filename, '.')) != NULL)
2753 for (i = 0; i < fl_table_next; i++)
2754 if (strcmp (cp, filename_language_table[i].ext) == 0)
2755 return filename_language_table[i].lang;
2756
2757 return language_unknown;
2758}
2759\f
2760/* allocate_symtab:
2761
2762 Allocate and partly initialize a new symbol table. Return a pointer
2763 to it. error() if no space.
2764
2765 Caller must set these fields:
c5aa993b
JM
2766 LINETABLE(symtab)
2767 symtab->blockvector
2768 symtab->dirname
2769 symtab->free_code
2770 symtab->free_ptr
2771 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2772 */
2773
2774struct symtab *
fba45db2 2775allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2776{
52f0bd74 2777 struct symtab *symtab;
c906108c
SS
2778
2779 symtab = (struct symtab *)
4a146b47 2780 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2781 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2782 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2783 objfile->filename_cache);
c5aa993b
JM
2784 symtab->fullname = NULL;
2785 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2786 symtab->debugformat = "unknown";
c906108c
SS
2787
2788 /* Hook it to the objfile it comes from */
2789
c5aa993b
JM
2790 symtab->objfile = objfile;
2791 symtab->next = objfile->symtabs;
2792 objfile->symtabs = symtab;
c906108c 2793
c906108c
SS
2794 return (symtab);
2795}
2796
2797struct partial_symtab *
d85a05f0 2798allocate_psymtab (const char *filename, struct objfile *objfile)
c906108c
SS
2799{
2800 struct partial_symtab *psymtab;
2801
c5aa993b 2802 if (objfile->free_psymtabs)
c906108c 2803 {
c5aa993b
JM
2804 psymtab = objfile->free_psymtabs;
2805 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2806 }
2807 else
2808 psymtab = (struct partial_symtab *)
8b92e4d5 2809 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2810 sizeof (struct partial_symtab));
2811
2812 memset (psymtab, 0, sizeof (struct partial_symtab));
10abe6bf
TT
2813 psymtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2814 objfile->filename_cache);
c5aa993b 2815 psymtab->symtab = NULL;
c906108c
SS
2816
2817 /* Prepend it to the psymtab list for the objfile it belongs to.
2818 Psymtabs are searched in most recent inserted -> least recent
2819 inserted order. */
2820
c5aa993b
JM
2821 psymtab->objfile = objfile;
2822 psymtab->next = objfile->psymtabs;
2823 objfile->psymtabs = psymtab;
c906108c
SS
2824#if 0
2825 {
2826 struct partial_symtab **prev_pst;
c5aa993b
JM
2827 psymtab->objfile = objfile;
2828 psymtab->next = NULL;
2829 prev_pst = &(objfile->psymtabs);
c906108c 2830 while ((*prev_pst) != NULL)
c5aa993b 2831 prev_pst = &((*prev_pst)->next);
c906108c 2832 (*prev_pst) = psymtab;
c5aa993b 2833 }
c906108c 2834#endif
c5aa993b 2835
c906108c
SS
2836 return (psymtab);
2837}
2838
2839void
fba45db2 2840discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2841{
2842 struct partial_symtab **prev_pst;
2843
2844 /* From dbxread.c:
2845 Empty psymtabs happen as a result of header files which don't
2846 have any symbols in them. There can be a lot of them. But this
2847 check is wrong, in that a psymtab with N_SLINE entries but
2848 nothing else is not empty, but we don't realize that. Fixing
2849 that without slowing things down might be tricky. */
2850
2851 /* First, snip it out of the psymtab chain */
2852
2853 prev_pst = &(pst->objfile->psymtabs);
2854 while ((*prev_pst) != pst)
2855 prev_pst = &((*prev_pst)->next);
2856 (*prev_pst) = pst->next;
2857
2858 /* Next, put it on a free list for recycling */
2859
2860 pst->next = pst->objfile->free_psymtabs;
2861 pst->objfile->free_psymtabs = pst;
2862}
c906108c 2863\f
c5aa993b 2864
c906108c
SS
2865/* Reset all data structures in gdb which may contain references to symbol
2866 table data. */
2867
2868void
fba45db2 2869clear_symtab_users (void)
c906108c
SS
2870{
2871 /* Someday, we should do better than this, by only blowing away
2872 the things that really need to be blown. */
c0501be5
DJ
2873
2874 /* Clear the "current" symtab first, because it is no longer valid.
2875 breakpoint_re_set may try to access the current symtab. */
2876 clear_current_source_symtab_and_line ();
2877
c906108c 2878 clear_displays ();
c906108c 2879 breakpoint_re_set ();
6c95b8df 2880 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2881 clear_pc_function_cache ();
06d3b283 2882 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2883
2884 /* Clear globals which might have pointed into a removed objfile.
2885 FIXME: It's not clear which of these are supposed to persist
2886 between expressions and which ought to be reset each time. */
2887 expression_context_block = NULL;
2888 innermost_block = NULL;
8756216b
DP
2889
2890 /* Varobj may refer to old symbols, perform a cleanup. */
2891 varobj_invalidate ();
2892
c906108c
SS
2893}
2894
74b7792f
AC
2895static void
2896clear_symtab_users_cleanup (void *ignore)
2897{
2898 clear_symtab_users ();
2899}
2900
c906108c
SS
2901/* clear_symtab_users_once:
2902
2903 This function is run after symbol reading, or from a cleanup.
2904 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2905 has been blown away, but the other GDB data structures that may
c906108c
SS
2906 reference it have not yet been cleared or re-directed. (The old
2907 symtab was zapped, and the cleanup queued, in free_named_symtab()
2908 below.)
2909
2910 This function can be queued N times as a cleanup, or called
2911 directly; it will do all the work the first time, and then will be a
2912 no-op until the next time it is queued. This works by bumping a
2913 counter at queueing time. Much later when the cleanup is run, or at
2914 the end of symbol processing (in case the cleanup is discarded), if
2915 the queued count is greater than the "done-count", we do the work
2916 and set the done-count to the queued count. If the queued count is
2917 less than or equal to the done-count, we just ignore the call. This
2918 is needed because reading a single .o file will often replace many
2919 symtabs (one per .h file, for example), and we don't want to reset
2920 the breakpoints N times in the user's face.
2921
2922 The reason we both queue a cleanup, and call it directly after symbol
2923 reading, is because the cleanup protects us in case of errors, but is
2924 discarded if symbol reading is successful. */
2925
2926#if 0
2927/* FIXME: As free_named_symtabs is currently a big noop this function
2928 is no longer needed. */
a14ed312 2929static void clear_symtab_users_once (void);
c906108c
SS
2930
2931static int clear_symtab_users_queued;
2932static int clear_symtab_users_done;
2933
2934static void
fba45db2 2935clear_symtab_users_once (void)
c906108c
SS
2936{
2937 /* Enforce once-per-`do_cleanups'-semantics */
2938 if (clear_symtab_users_queued <= clear_symtab_users_done)
2939 return;
2940 clear_symtab_users_done = clear_symtab_users_queued;
2941
2942 clear_symtab_users ();
2943}
2944#endif
2945
2946/* Delete the specified psymtab, and any others that reference it. */
2947
2948static void
fba45db2 2949cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2950{
2951 struct partial_symtab *ps, *pprev = NULL;
2952 int i;
2953
2954 /* Find its previous psymtab in the chain */
c5aa993b
JM
2955 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2956 {
2957 if (ps == pst)
2958 break;
2959 pprev = ps;
2960 }
c906108c 2961
c5aa993b
JM
2962 if (ps)
2963 {
2964 /* Unhook it from the chain. */
2965 if (ps == pst->objfile->psymtabs)
2966 pst->objfile->psymtabs = ps->next;
2967 else
2968 pprev->next = ps->next;
2969
2970 /* FIXME, we can't conveniently deallocate the entries in the
2971 partial_symbol lists (global_psymbols/static_psymbols) that
2972 this psymtab points to. These just take up space until all
2973 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2974 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2975
2976 /* We need to cashier any psymtab that has this one as a dependency... */
2977 again:
2978 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2979 {
2980 for (i = 0; i < ps->number_of_dependencies; i++)
2981 {
2982 if (ps->dependencies[i] == pst)
2983 {
2984 cashier_psymtab (ps);
2985 goto again; /* Must restart, chain has been munged. */
2986 }
2987 }
c906108c 2988 }
c906108c 2989 }
c906108c
SS
2990}
2991
2992/* If a symtab or psymtab for filename NAME is found, free it along
2993 with any dependent breakpoints, displays, etc.
2994 Used when loading new versions of object modules with the "add-file"
2995 command. This is only called on the top-level symtab or psymtab's name;
2996 it is not called for subsidiary files such as .h files.
2997
2998 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2999 FIXME. The return value appears to never be used.
c906108c
SS
3000
3001 FIXME. I think this is not the best way to do this. We should
3002 work on being gentler to the environment while still cleaning up
3003 all stray pointers into the freed symtab. */
3004
3005int
fba45db2 3006free_named_symtabs (char *name)
c906108c
SS
3007{
3008#if 0
3009 /* FIXME: With the new method of each objfile having it's own
3010 psymtab list, this function needs serious rethinking. In particular,
3011 why was it ever necessary to toss psymtabs with specific compilation
3012 unit filenames, as opposed to all psymtabs from a particular symbol
3013 file? -- fnf
3014 Well, the answer is that some systems permit reloading of particular
3015 compilation units. We want to blow away any old info about these
3016 compilation units, regardless of which objfiles they arrived in. --gnu. */
3017
52f0bd74
AC
3018 struct symtab *s;
3019 struct symtab *prev;
3020 struct partial_symtab *ps;
c906108c
SS
3021 struct blockvector *bv;
3022 int blewit = 0;
3023
3024 /* We only wack things if the symbol-reload switch is set. */
3025 if (!symbol_reloading)
3026 return 0;
3027
3028 /* Some symbol formats have trouble providing file names... */
3029 if (name == 0 || *name == '\0')
3030 return 0;
3031
3032 /* Look for a psymtab with the specified name. */
3033
3034again2:
c5aa993b
JM
3035 for (ps = partial_symtab_list; ps; ps = ps->next)
3036 {
6314a349 3037 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
3038 {
3039 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
3040 goto again2; /* Must restart, chain has been munged */
3041 }
c906108c 3042 }
c906108c
SS
3043
3044 /* Look for a symtab with the specified name. */
3045
3046 for (s = symtab_list; s; s = s->next)
3047 {
6314a349 3048 if (strcmp (name, s->filename) == 0)
c906108c
SS
3049 break;
3050 prev = s;
3051 }
3052
3053 if (s)
3054 {
3055 if (s == symtab_list)
3056 symtab_list = s->next;
3057 else
3058 prev->next = s->next;
3059
3060 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3061 or not they depend on the symtab being freed. This should be
3062 changed so that only those data structures affected are deleted. */
c906108c
SS
3063
3064 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3065 This test is necessary due to a bug in "dbxread.c" that
3066 causes empty symtabs to be created for N_SO symbols that
3067 contain the pathname of the object file. (This problem
3068 has been fixed in GDB 3.9x). */
c906108c
SS
3069
3070 bv = BLOCKVECTOR (s);
3071 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3072 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3073 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3074 {
e2e0b3e5 3075 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3076 name);
c906108c
SS
3077 clear_symtab_users_queued++;
3078 make_cleanup (clear_symtab_users_once, 0);
3079 blewit = 1;
c5aa993b
JM
3080 }
3081 else
e2e0b3e5
AC
3082 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3083 name);
c906108c
SS
3084
3085 free_symtab (s);
3086 }
3087 else
3088 {
3089 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3090 even though no symtab was found, since the file might have
3091 been compiled without debugging, and hence not be associated
3092 with a symtab. In order to handle this correctly, we would need
3093 to keep a list of text address ranges for undebuggable files.
3094 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3095 ;
3096 }
3097
3098 /* FIXME, what about the minimal symbol table? */
3099 return blewit;
3100#else
3101 return (0);
3102#endif
3103}
3104\f
3105/* Allocate and partially fill a partial symtab. It will be
3106 completely filled at the end of the symbol list.
3107
d4f3574e 3108 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3109
3110struct partial_symtab *
fba45db2 3111start_psymtab_common (struct objfile *objfile,
d85a05f0
DJ
3112 struct section_offsets *section_offsets,
3113 const char *filename,
fba45db2
KB
3114 CORE_ADDR textlow, struct partial_symbol **global_syms,
3115 struct partial_symbol **static_syms)
c906108c
SS
3116{
3117 struct partial_symtab *psymtab;
3118
3119 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3120 psymtab->section_offsets = section_offsets;
3121 psymtab->textlow = textlow;
3122 psymtab->texthigh = psymtab->textlow; /* default */
3123 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3124 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3125 return (psymtab);
3126}
3127\f
2e618c13
AR
3128/* Helper function, initialises partial symbol structure and stashes
3129 it into objfile's bcache. Note that our caching mechanism will
3130 use all fields of struct partial_symbol to determine hash value of the
3131 structure. In other words, having two symbols with the same name but
3132 different domain (or address) is possible and correct. */
3133
11d31d94 3134static const struct partial_symbol *
2e618c13
AR
3135add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3136 enum address_class class,
3137 long val, /* Value as a long */
3138 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3139 enum language language, struct objfile *objfile,
3140 int *added)
3141{
69a943f0
TT
3142 /* psymbol is static so that there will be no uninitialized gaps in the
3143 structure which might contain random data, causing cache misses in
3144 bcache. */
3145 static struct partial_symbol psymbol;
3146
3147 /* However, we must ensure that the entire 'value' field has been
3148 zeroed before assigning to it, because an assignment may not
3149 write the entire field. */
3150 memset (&psymbol.ginfo.value, 0, sizeof (psymbol.ginfo.value));
2e618c13
AR
3151 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3152 if (val != 0)
3153 {
3154 SYMBOL_VALUE (&psymbol) = val;
3155 }
3156 else
3157 {
3158 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3159 }
3160 SYMBOL_SECTION (&psymbol) = 0;
3161 SYMBOL_LANGUAGE (&psymbol) = language;
3162 PSYMBOL_DOMAIN (&psymbol) = domain;
3163 PSYMBOL_CLASS (&psymbol) = class;
3164
8c2963fb 3165 SYMBOL_SET_NAMES (&psymbol, name, namelength, objfile);
2e618c13
AR
3166
3167 /* Stash the partial symbol away in the cache */
11d31d94
TT
3168 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3169 objfile->psymbol_cache, added);
2e618c13
AR
3170}
3171
3172/* Helper function, adds partial symbol to the given partial symbol
3173 list. */
3174
3175static void
3176append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3177 const struct partial_symbol *psym,
2e618c13
AR
3178 struct objfile *objfile)
3179{
3180 if (list->next >= list->list + list->size)
3181 extend_psymbol_list (list, objfile);
11d31d94 3182 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3183 OBJSTAT (objfile, n_psyms++);
3184}
3185
c906108c 3186/* Add a symbol with a long value to a psymtab.
5417f6dc 3187 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3188 Return the partial symbol that has been added. */
3189
3190/* NOTE: carlton/2003-09-11: The reason why we return the partial
3191 symbol is so that callers can get access to the symbol's demangled
3192 name, which they don't have any cheap way to determine otherwise.
3193 (Currenly, dwarf2read.c is the only file who uses that information,
3194 though it's possible that other readers might in the future.)
3195 Elena wasn't thrilled about that, and I don't blame her, but we
3196 couldn't come up with a better way to get that information. If
3197 it's needed in other situations, we could consider breaking up
3198 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3199 cache. */
3200
3201const struct partial_symbol *
176620f1 3202add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3203 enum address_class class,
2e618c13
AR
3204 struct psymbol_allocation_list *list,
3205 long val, /* Value as a long */
fba45db2
KB
3206 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3207 enum language language, struct objfile *objfile)
c906108c 3208{
11d31d94 3209 const struct partial_symbol *psym;
2de7ced7 3210
2e618c13 3211 int added;
c906108c
SS
3212
3213 /* Stash the partial symbol away in the cache */
2e618c13
AR
3214 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3215 val, coreaddr, language, objfile, &added);
c906108c 3216
2e618c13
AR
3217 /* Do not duplicate global partial symbols. */
3218 if (list == &objfile->global_psymbols
3219 && !added)
3220 return psym;
5c4e30ca 3221
2e618c13
AR
3222 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3223 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3224 return psym;
c906108c
SS
3225}
3226
c906108c
SS
3227/* Initialize storage for partial symbols. */
3228
3229void
fba45db2 3230init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3231{
3232 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3233
3234 if (objfile->global_psymbols.list)
c906108c 3235 {
2dc74dc1 3236 xfree (objfile->global_psymbols.list);
c906108c 3237 }
c5aa993b 3238 if (objfile->static_psymbols.list)
c906108c 3239 {
2dc74dc1 3240 xfree (objfile->static_psymbols.list);
c906108c 3241 }
c5aa993b 3242
c906108c
SS
3243 /* Current best guess is that approximately a twentieth
3244 of the total symbols (in a debugging file) are global or static
3245 oriented symbols */
c906108c 3246
c5aa993b
JM
3247 objfile->global_psymbols.size = total_symbols / 10;
3248 objfile->static_psymbols.size = total_symbols / 10;
3249
3250 if (objfile->global_psymbols.size > 0)
c906108c 3251 {
c5aa993b
JM
3252 objfile->global_psymbols.next =
3253 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3254 xmalloc ((objfile->global_psymbols.size
3255 * sizeof (struct partial_symbol *)));
c906108c 3256 }
c5aa993b 3257 if (objfile->static_psymbols.size > 0)
c906108c 3258 {
c5aa993b
JM
3259 objfile->static_psymbols.next =
3260 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3261 xmalloc ((objfile->static_psymbols.size
3262 * sizeof (struct partial_symbol *)));
c906108c
SS
3263 }
3264}
3265
3266/* OVERLAYS:
3267 The following code implements an abstraction for debugging overlay sections.
3268
3269 The target model is as follows:
3270 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3271 same VMA, each with its own unique LMA (or load address).
c906108c 3272 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3273 sections, one by one, from the load address into the VMA address.
5417f6dc 3274 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3275 sections should be considered to be mapped from the VMA to the LMA.
3276 This information is used for symbol lookup, and memory read/write.
5417f6dc 3277 For instance, if a section has been mapped then its contents
c5aa993b 3278 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3279
3280 Two levels of debugger support for overlays are available. One is
3281 "manual", in which the debugger relies on the user to tell it which
3282 overlays are currently mapped. This level of support is
3283 implemented entirely in the core debugger, and the information about
3284 whether a section is mapped is kept in the objfile->obj_section table.
3285
3286 The second level of support is "automatic", and is only available if
3287 the target-specific code provides functionality to read the target's
3288 overlay mapping table, and translate its contents for the debugger
3289 (by updating the mapped state information in the obj_section tables).
3290
3291 The interface is as follows:
c5aa993b
JM
3292 User commands:
3293 overlay map <name> -- tell gdb to consider this section mapped
3294 overlay unmap <name> -- tell gdb to consider this section unmapped
3295 overlay list -- list the sections that GDB thinks are mapped
3296 overlay read-target -- get the target's state of what's mapped
3297 overlay off/manual/auto -- set overlay debugging state
3298 Functional interface:
3299 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3300 section, return that section.
5417f6dc 3301 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3302 the pc, either in its VMA or its LMA
714835d5 3303 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3304 section_is_overlay(sect): true if section's VMA != LMA
3305 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3306 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3307 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3308 overlay_mapped_address(...): map an address from section's LMA to VMA
3309 overlay_unmapped_address(...): map an address from section's VMA to LMA
3310 symbol_overlayed_address(...): Return a "current" address for symbol:
3311 either in VMA or LMA depending on whether
3312 the symbol's section is currently mapped
c906108c
SS
3313 */
3314
3315/* Overlay debugging state: */
3316
d874f1e2 3317enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3318int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3319
c906108c 3320/* Function: section_is_overlay (SECTION)
5417f6dc 3321 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3322 SECTION is loaded at an address different from where it will "run". */
3323
3324int
714835d5 3325section_is_overlay (struct obj_section *section)
c906108c 3326{
714835d5
UW
3327 if (overlay_debugging && section)
3328 {
3329 bfd *abfd = section->objfile->obfd;
3330 asection *bfd_section = section->the_bfd_section;
3331
3332 if (bfd_section_lma (abfd, bfd_section) != 0
3333 && bfd_section_lma (abfd, bfd_section)
3334 != bfd_section_vma (abfd, bfd_section))
3335 return 1;
3336 }
c906108c
SS
3337
3338 return 0;
3339}
3340
3341/* Function: overlay_invalidate_all (void)
3342 Invalidate the mapped state of all overlay sections (mark it as stale). */
3343
3344static void
fba45db2 3345overlay_invalidate_all (void)
c906108c 3346{
c5aa993b 3347 struct objfile *objfile;
c906108c
SS
3348 struct obj_section *sect;
3349
3350 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3351 if (section_is_overlay (sect))
3352 sect->ovly_mapped = -1;
c906108c
SS
3353}
3354
714835d5 3355/* Function: section_is_mapped (SECTION)
5417f6dc 3356 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3357
3358 Access to the ovly_mapped flag is restricted to this function, so
3359 that we can do automatic update. If the global flag
3360 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3361 overlay_invalidate_all. If the mapped state of the particular
3362 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3363
714835d5
UW
3364int
3365section_is_mapped (struct obj_section *osect)
c906108c 3366{
9216df95
UW
3367 struct gdbarch *gdbarch;
3368
714835d5 3369 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3370 return 0;
3371
c5aa993b 3372 switch (overlay_debugging)
c906108c
SS
3373 {
3374 default:
d874f1e2 3375 case ovly_off:
c5aa993b 3376 return 0; /* overlay debugging off */
d874f1e2 3377 case ovly_auto: /* overlay debugging automatic */
1c772458 3378 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3379 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
3380 gdbarch = get_objfile_arch (osect->objfile);
3381 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3382 {
3383 if (overlay_cache_invalid)
3384 {
3385 overlay_invalidate_all ();
3386 overlay_cache_invalid = 0;
3387 }
3388 if (osect->ovly_mapped == -1)
9216df95 3389 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3390 }
3391 /* fall thru to manual case */
d874f1e2 3392 case ovly_on: /* overlay debugging manual */
c906108c
SS
3393 return osect->ovly_mapped == 1;
3394 }
3395}
3396
c906108c
SS
3397/* Function: pc_in_unmapped_range
3398 If PC falls into the lma range of SECTION, return true, else false. */
3399
3400CORE_ADDR
714835d5 3401pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3402{
714835d5
UW
3403 if (section_is_overlay (section))
3404 {
3405 bfd *abfd = section->objfile->obfd;
3406 asection *bfd_section = section->the_bfd_section;
fbd35540 3407
714835d5
UW
3408 /* We assume the LMA is relocated by the same offset as the VMA. */
3409 bfd_vma size = bfd_get_section_size (bfd_section);
3410 CORE_ADDR offset = obj_section_offset (section);
3411
3412 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3413 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3414 return 1;
3415 }
c906108c 3416
c906108c
SS
3417 return 0;
3418}
3419
3420/* Function: pc_in_mapped_range
3421 If PC falls into the vma range of SECTION, return true, else false. */
3422
3423CORE_ADDR
714835d5 3424pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3425{
714835d5
UW
3426 if (section_is_overlay (section))
3427 {
3428 if (obj_section_addr (section) <= pc
3429 && pc < obj_section_endaddr (section))
3430 return 1;
3431 }
c906108c 3432
c906108c
SS
3433 return 0;
3434}
3435
9ec8e6a0
JB
3436
3437/* Return true if the mapped ranges of sections A and B overlap, false
3438 otherwise. */
b9362cc7 3439static int
714835d5 3440sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3441{
714835d5
UW
3442 CORE_ADDR a_start = obj_section_addr (a);
3443 CORE_ADDR a_end = obj_section_endaddr (a);
3444 CORE_ADDR b_start = obj_section_addr (b);
3445 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3446
3447 return (a_start < b_end && b_start < a_end);
3448}
3449
c906108c
SS
3450/* Function: overlay_unmapped_address (PC, SECTION)
3451 Returns the address corresponding to PC in the unmapped (load) range.
3452 May be the same as PC. */
3453
3454CORE_ADDR
714835d5 3455overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3456{
714835d5
UW
3457 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3458 {
3459 bfd *abfd = section->objfile->obfd;
3460 asection *bfd_section = section->the_bfd_section;
fbd35540 3461
714835d5
UW
3462 return pc + bfd_section_lma (abfd, bfd_section)
3463 - bfd_section_vma (abfd, bfd_section);
3464 }
c906108c
SS
3465
3466 return pc;
3467}
3468
3469/* Function: overlay_mapped_address (PC, SECTION)
3470 Returns the address corresponding to PC in the mapped (runtime) range.
3471 May be the same as PC. */
3472
3473CORE_ADDR
714835d5 3474overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3475{
714835d5
UW
3476 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3477 {
3478 bfd *abfd = section->objfile->obfd;
3479 asection *bfd_section = section->the_bfd_section;
fbd35540 3480
714835d5
UW
3481 return pc + bfd_section_vma (abfd, bfd_section)
3482 - bfd_section_lma (abfd, bfd_section);
3483 }
c906108c
SS
3484
3485 return pc;
3486}
3487
3488
5417f6dc 3489/* Function: symbol_overlayed_address
c906108c
SS
3490 Return one of two addresses (relative to the VMA or to the LMA),
3491 depending on whether the section is mapped or not. */
3492
c5aa993b 3493CORE_ADDR
714835d5 3494symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3495{
3496 if (overlay_debugging)
3497 {
3498 /* If the symbol has no section, just return its regular address. */
3499 if (section == 0)
3500 return address;
3501 /* If the symbol's section is not an overlay, just return its address */
3502 if (!section_is_overlay (section))
3503 return address;
3504 /* If the symbol's section is mapped, just return its address */
3505 if (section_is_mapped (section))
3506 return address;
3507 /*
3508 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3509 * then return its LOADED address rather than its vma address!!
3510 */
3511 return overlay_unmapped_address (address, section);
3512 }
3513 return address;
3514}
3515
5417f6dc 3516/* Function: find_pc_overlay (PC)
c906108c
SS
3517 Return the best-match overlay section for PC:
3518 If PC matches a mapped overlay section's VMA, return that section.
3519 Else if PC matches an unmapped section's VMA, return that section.
3520 Else if PC matches an unmapped section's LMA, return that section. */
3521
714835d5 3522struct obj_section *
fba45db2 3523find_pc_overlay (CORE_ADDR pc)
c906108c 3524{
c5aa993b 3525 struct objfile *objfile;
c906108c
SS
3526 struct obj_section *osect, *best_match = NULL;
3527
3528 if (overlay_debugging)
3529 ALL_OBJSECTIONS (objfile, osect)
714835d5 3530 if (section_is_overlay (osect))
c5aa993b 3531 {
714835d5 3532 if (pc_in_mapped_range (pc, osect))
c5aa993b 3533 {
714835d5
UW
3534 if (section_is_mapped (osect))
3535 return osect;
c5aa993b
JM
3536 else
3537 best_match = osect;
3538 }
714835d5 3539 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3540 best_match = osect;
3541 }
714835d5 3542 return best_match;
c906108c
SS
3543}
3544
3545/* Function: find_pc_mapped_section (PC)
5417f6dc 3546 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3547 currently marked as MAPPED, return that section. Else return NULL. */
3548
714835d5 3549struct obj_section *
fba45db2 3550find_pc_mapped_section (CORE_ADDR pc)
c906108c 3551{
c5aa993b 3552 struct objfile *objfile;
c906108c
SS
3553 struct obj_section *osect;
3554
3555 if (overlay_debugging)
3556 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3557 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3558 return osect;
c906108c
SS
3559
3560 return NULL;
3561}
3562
3563/* Function: list_overlays_command
3564 Print a list of mapped sections and their PC ranges */
3565
3566void
fba45db2 3567list_overlays_command (char *args, int from_tty)
c906108c 3568{
c5aa993b
JM
3569 int nmapped = 0;
3570 struct objfile *objfile;
c906108c
SS
3571 struct obj_section *osect;
3572
3573 if (overlay_debugging)
3574 ALL_OBJSECTIONS (objfile, osect)
714835d5 3575 if (section_is_mapped (osect))
c5aa993b 3576 {
5af949e3 3577 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3578 const char *name;
3579 bfd_vma lma, vma;
3580 int size;
3581
3582 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3583 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3584 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3585 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3586
3587 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3588 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3589 puts_filtered (" - ");
5af949e3 3590 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3591 printf_filtered (", mapped at ");
5af949e3 3592 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3593 puts_filtered (" - ");
5af949e3 3594 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3595 puts_filtered ("\n");
3596
3597 nmapped++;
3598 }
c906108c 3599 if (nmapped == 0)
a3f17187 3600 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3601}
3602
3603/* Function: map_overlay_command
3604 Mark the named section as mapped (ie. residing at its VMA address). */
3605
3606void
fba45db2 3607map_overlay_command (char *args, int from_tty)
c906108c 3608{
c5aa993b
JM
3609 struct objfile *objfile, *objfile2;
3610 struct obj_section *sec, *sec2;
c906108c
SS
3611
3612 if (!overlay_debugging)
8a3fe4f8 3613 error (_("\
515ad16c 3614Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3615the 'overlay manual' command."));
c906108c
SS
3616
3617 if (args == 0 || *args == 0)
8a3fe4f8 3618 error (_("Argument required: name of an overlay section"));
c906108c
SS
3619
3620 /* First, find a section matching the user supplied argument */
3621 ALL_OBJSECTIONS (objfile, sec)
3622 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3623 {
3624 /* Now, check to see if the section is an overlay. */
714835d5 3625 if (!section_is_overlay (sec))
c5aa993b
JM
3626 continue; /* not an overlay section */
3627
3628 /* Mark the overlay as "mapped" */
3629 sec->ovly_mapped = 1;
3630
3631 /* Next, make a pass and unmap any sections that are
3632 overlapped by this new section: */
3633 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3634 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3635 {
3636 if (info_verbose)
a3f17187 3637 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3638 bfd_section_name (objfile->obfd,
3639 sec2->the_bfd_section));
3640 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3641 }
3642 return;
3643 }
8a3fe4f8 3644 error (_("No overlay section called %s"), args);
c906108c
SS
3645}
3646
3647/* Function: unmap_overlay_command
5417f6dc 3648 Mark the overlay section as unmapped
c906108c
SS
3649 (ie. resident in its LMA address range, rather than the VMA range). */
3650
3651void
fba45db2 3652unmap_overlay_command (char *args, int from_tty)
c906108c 3653{
c5aa993b 3654 struct objfile *objfile;
c906108c
SS
3655 struct obj_section *sec;
3656
3657 if (!overlay_debugging)
8a3fe4f8 3658 error (_("\
515ad16c 3659Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3660the 'overlay manual' command."));
c906108c
SS
3661
3662 if (args == 0 || *args == 0)
8a3fe4f8 3663 error (_("Argument required: name of an overlay section"));
c906108c
SS
3664
3665 /* First, find a section matching the user supplied argument */
3666 ALL_OBJSECTIONS (objfile, sec)
3667 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3668 {
3669 if (!sec->ovly_mapped)
8a3fe4f8 3670 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3671 sec->ovly_mapped = 0;
3672 return;
3673 }
8a3fe4f8 3674 error (_("No overlay section called %s"), args);
c906108c
SS
3675}
3676
3677/* Function: overlay_auto_command
3678 A utility command to turn on overlay debugging.
3679 Possibly this should be done via a set/show command. */
3680
3681static void
fba45db2 3682overlay_auto_command (char *args, int from_tty)
c906108c 3683{
d874f1e2 3684 overlay_debugging = ovly_auto;
1900040c 3685 enable_overlay_breakpoints ();
c906108c 3686 if (info_verbose)
a3f17187 3687 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3688}
3689
3690/* Function: overlay_manual_command
3691 A utility command to turn on overlay debugging.
3692 Possibly this should be done via a set/show command. */
3693
3694static void
fba45db2 3695overlay_manual_command (char *args, int from_tty)
c906108c 3696{
d874f1e2 3697 overlay_debugging = ovly_on;
1900040c 3698 disable_overlay_breakpoints ();
c906108c 3699 if (info_verbose)
a3f17187 3700 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3701}
3702
3703/* Function: overlay_off_command
3704 A utility command to turn on overlay debugging.
3705 Possibly this should be done via a set/show command. */
3706
3707static void
fba45db2 3708overlay_off_command (char *args, int from_tty)
c906108c 3709{
d874f1e2 3710 overlay_debugging = ovly_off;
1900040c 3711 disable_overlay_breakpoints ();
c906108c 3712 if (info_verbose)
a3f17187 3713 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3714}
3715
3716static void
fba45db2 3717overlay_load_command (char *args, int from_tty)
c906108c 3718{
e17c207e
UW
3719 struct gdbarch *gdbarch = get_current_arch ();
3720
3721 if (gdbarch_overlay_update_p (gdbarch))
3722 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3723 else
8a3fe4f8 3724 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3725}
3726
3727/* Function: overlay_command
3728 A place-holder for a mis-typed command */
3729
3730/* Command list chain containing all defined "overlay" subcommands. */
3731struct cmd_list_element *overlaylist;
3732
3733static void
fba45db2 3734overlay_command (char *args, int from_tty)
c906108c 3735{
c5aa993b 3736 printf_unfiltered
c906108c
SS
3737 ("\"overlay\" must be followed by the name of an overlay command.\n");
3738 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3739}
3740
3741
3742/* Target Overlays for the "Simplest" overlay manager:
3743
5417f6dc
RM
3744 This is GDB's default target overlay layer. It works with the
3745 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3746 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3747 so targets that use a different runtime overlay manager can
c906108c
SS
3748 substitute their own overlay_update function and take over the
3749 function pointer.
3750
3751 The overlay_update function pokes around in the target's data structures
3752 to see what overlays are mapped, and updates GDB's overlay mapping with
3753 this information.
3754
3755 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3756 unsigned _novlys; /# number of overlay sections #/
3757 unsigned _ovly_table[_novlys][4] = {
3758 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3759 {..., ..., ..., ...},
3760 }
3761 unsigned _novly_regions; /# number of overlay regions #/
3762 unsigned _ovly_region_table[_novly_regions][3] = {
3763 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3764 {..., ..., ...},
3765 }
c906108c
SS
3766 These functions will attempt to update GDB's mappedness state in the
3767 symbol section table, based on the target's mappedness state.
3768
3769 To do this, we keep a cached copy of the target's _ovly_table, and
3770 attempt to detect when the cached copy is invalidated. The main
3771 entry point is "simple_overlay_update(SECT), which looks up SECT in
3772 the cached table and re-reads only the entry for that section from
3773 the target (whenever possible).
3774 */
3775
3776/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3777static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3778#if 0
c5aa993b 3779static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3780#endif
c5aa993b 3781static unsigned cache_novlys = 0;
c906108c 3782#if 0
c5aa993b 3783static unsigned cache_novly_regions = 0;
c906108c
SS
3784#endif
3785static CORE_ADDR cache_ovly_table_base = 0;
3786#if 0
3787static CORE_ADDR cache_ovly_region_table_base = 0;
3788#endif
c5aa993b
JM
3789enum ovly_index
3790 {
3791 VMA, SIZE, LMA, MAPPED
3792 };
c906108c
SS
3793
3794/* Throw away the cached copy of _ovly_table */
3795static void
fba45db2 3796simple_free_overlay_table (void)
c906108c
SS
3797{
3798 if (cache_ovly_table)
b8c9b27d 3799 xfree (cache_ovly_table);
c5aa993b 3800 cache_novlys = 0;
c906108c
SS
3801 cache_ovly_table = NULL;
3802 cache_ovly_table_base = 0;
3803}
3804
3805#if 0
3806/* Throw away the cached copy of _ovly_region_table */
3807static void
fba45db2 3808simple_free_overlay_region_table (void)
c906108c
SS
3809{
3810 if (cache_ovly_region_table)
b8c9b27d 3811 xfree (cache_ovly_region_table);
c5aa993b 3812 cache_novly_regions = 0;
c906108c
SS
3813 cache_ovly_region_table = NULL;
3814 cache_ovly_region_table_base = 0;
3815}
3816#endif
3817
9216df95 3818/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3819 Convert to host order. int LEN is number of ints */
3820static void
9216df95 3821read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3822 int len, int size, enum bfd_endian byte_order)
c906108c 3823{
34c0bd93 3824 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3825 gdb_byte *buf = alloca (len * size);
c5aa993b 3826 int i;
c906108c 3827
9216df95 3828 read_memory (memaddr, buf, len * size);
c906108c 3829 for (i = 0; i < len; i++)
e17a4113 3830 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3831}
3832
3833/* Find and grab a copy of the target _ovly_table
3834 (and _novlys, which is needed for the table's size) */
c5aa993b 3835static int
fba45db2 3836simple_read_overlay_table (void)
c906108c 3837{
0d43edd1 3838 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3839 struct gdbarch *gdbarch;
3840 int word_size;
e17a4113 3841 enum bfd_endian byte_order;
c906108c
SS
3842
3843 simple_free_overlay_table ();
9b27852e 3844 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3845 if (! novlys_msym)
c906108c 3846 {
8a3fe4f8 3847 error (_("Error reading inferior's overlay table: "
0d43edd1 3848 "couldn't find `_novlys' variable\n"
8a3fe4f8 3849 "in inferior. Use `overlay manual' mode."));
0d43edd1 3850 return 0;
c906108c 3851 }
0d43edd1 3852
9b27852e 3853 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3854 if (! ovly_table_msym)
3855 {
8a3fe4f8 3856 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3857 "`_ovly_table' array\n"
8a3fe4f8 3858 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3859 return 0;
3860 }
3861
9216df95
UW
3862 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3863 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3864 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3865
e17a4113
UW
3866 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3867 4, byte_order);
0d43edd1
JB
3868 cache_ovly_table
3869 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3870 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3871 read_target_long_array (cache_ovly_table_base,
777ea8f1 3872 (unsigned int *) cache_ovly_table,
e17a4113 3873 cache_novlys * 4, word_size, byte_order);
0d43edd1 3874
c5aa993b 3875 return 1; /* SUCCESS */
c906108c
SS
3876}
3877
3878#if 0
3879/* Find and grab a copy of the target _ovly_region_table
3880 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3881static int
fba45db2 3882simple_read_overlay_region_table (void)
c906108c
SS
3883{
3884 struct minimal_symbol *msym;
e17a4113
UW
3885 struct gdbarch *gdbarch;
3886 int word_size;
3887 enum bfd_endian byte_order;
c906108c
SS
3888
3889 simple_free_overlay_region_table ();
9b27852e 3890 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3891 if (msym == NULL)
c5aa993b 3892 return 0; /* failure */
e17a4113
UW
3893
3894 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3895 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3896 byte_order = gdbarch_byte_order (gdbarch);
3897
3898 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3899 4, byte_order);
3900
c906108c
SS
3901 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3902 if (cache_ovly_region_table != NULL)
3903 {
9b27852e 3904 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3905 if (msym != NULL)
3906 {
3907 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3908 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3909 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3910 cache_novly_regions * 3,
3911 word_size, byte_order);
c906108c 3912 }
c5aa993b
JM
3913 else
3914 return 0; /* failure */
c906108c 3915 }
c5aa993b
JM
3916 else
3917 return 0; /* failure */
3918 return 1; /* SUCCESS */
c906108c
SS
3919}
3920#endif
3921
5417f6dc 3922/* Function: simple_overlay_update_1
c906108c
SS
3923 A helper function for simple_overlay_update. Assuming a cached copy
3924 of _ovly_table exists, look through it to find an entry whose vma,
3925 lma and size match those of OSECT. Re-read the entry and make sure
3926 it still matches OSECT (else the table may no longer be valid).
3927 Set OSECT's mapped state to match the entry. Return: 1 for
3928 success, 0 for failure. */
3929
3930static int
fba45db2 3931simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3932{
3933 int i, size;
fbd35540
MS
3934 bfd *obfd = osect->objfile->obfd;
3935 asection *bsect = osect->the_bfd_section;
9216df95
UW
3936 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3937 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3939
2c500098 3940 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3941 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3942 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3943 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3944 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3945 {
9216df95
UW
3946 read_target_long_array (cache_ovly_table_base + i * word_size,
3947 (unsigned int *) cache_ovly_table[i],
e17a4113 3948 4, word_size, byte_order);
fbd35540
MS
3949 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3950 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3951 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3952 {
3953 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3954 return 1;
3955 }
fbd35540 3956 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3957 return 0;
3958 }
3959 return 0;
3960}
3961
3962/* Function: simple_overlay_update
5417f6dc
RM
3963 If OSECT is NULL, then update all sections' mapped state
3964 (after re-reading the entire target _ovly_table).
3965 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3966 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3967 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3968 re-read the entire cache, and go ahead and update all sections. */
3969
1c772458 3970void
fba45db2 3971simple_overlay_update (struct obj_section *osect)
c906108c 3972{
c5aa993b 3973 struct objfile *objfile;
c906108c
SS
3974
3975 /* Were we given an osect to look up? NULL means do all of them. */
3976 if (osect)
3977 /* Have we got a cached copy of the target's overlay table? */
3978 if (cache_ovly_table != NULL)
3979 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3980 if (cache_ovly_table_base ==
9b27852e 3981 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3982 /* Then go ahead and try to look up this single section in the cache */
3983 if (simple_overlay_update_1 (osect))
3984 /* Found it! We're done. */
3985 return;
3986
3987 /* Cached table no good: need to read the entire table anew.
3988 Or else we want all the sections, in which case it's actually
3989 more efficient to read the whole table in one block anyway. */
3990
0d43edd1
JB
3991 if (! simple_read_overlay_table ())
3992 return;
3993
c906108c
SS
3994 /* Now may as well update all sections, even if only one was requested. */
3995 ALL_OBJSECTIONS (objfile, osect)
714835d5 3996 if (section_is_overlay (osect))
c5aa993b
JM
3997 {
3998 int i, size;
fbd35540
MS
3999 bfd *obfd = osect->objfile->obfd;
4000 asection *bsect = osect->the_bfd_section;
c5aa993b 4001
2c500098 4002 size = bfd_get_section_size (bsect);
c5aa993b 4003 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
4004 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
4005 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
4006 /* && cache_ovly_table[i][SIZE] == size */ )
4007 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
4008 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
4009 break; /* finished with inner for loop: break out */
4010 }
4011 }
c906108c
SS
4012}
4013
086df311
DJ
4014/* Set the output sections and output offsets for section SECTP in
4015 ABFD. The relocation code in BFD will read these offsets, so we
4016 need to be sure they're initialized. We map each section to itself,
4017 with no offset; this means that SECTP->vma will be honored. */
4018
4019static void
4020symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
4021{
4022 sectp->output_section = sectp;
4023 sectp->output_offset = 0;
4024}
4025
4026/* Relocate the contents of a debug section SECTP in ABFD. The
4027 contents are stored in BUF if it is non-NULL, or returned in a
4028 malloc'd buffer otherwise.
4029
4030 For some platforms and debug info formats, shared libraries contain
4031 relocations against the debug sections (particularly for DWARF-2;
4032 one affected platform is PowerPC GNU/Linux, although it depends on
4033 the version of the linker in use). Also, ELF object files naturally
4034 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
4035 the relocations in order to get the locations of symbols correct.
4036 Another example that may require relocation processing, is the
4037 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
4038 debug section. */
086df311
DJ
4039
4040bfd_byte *
4041symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
4042{
065a2c74 4043 /* We're only interested in sections with relocation
086df311
DJ
4044 information. */
4045 if ((sectp->flags & SEC_RELOC) == 0)
4046 return NULL;
086df311
DJ
4047
4048 /* We will handle section offsets properly elsewhere, so relocate as if
4049 all sections begin at 0. */
4050 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4051
97606a13 4052 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 4053}
c906108c 4054
31d99776
DJ
4055struct symfile_segment_data *
4056get_symfile_segment_data (bfd *abfd)
4057{
4058 struct sym_fns *sf = find_sym_fns (abfd);
4059
4060 if (sf == NULL)
4061 return NULL;
4062
4063 return sf->sym_segments (abfd);
4064}
4065
4066void
4067free_symfile_segment_data (struct symfile_segment_data *data)
4068{
4069 xfree (data->segment_bases);
4070 xfree (data->segment_sizes);
4071 xfree (data->segment_info);
4072 xfree (data);
4073}
4074
28c32713
JB
4075
4076/* Given:
4077 - DATA, containing segment addresses from the object file ABFD, and
4078 the mapping from ABFD's sections onto the segments that own them,
4079 and
4080 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4081 segment addresses reported by the target,
4082 store the appropriate offsets for each section in OFFSETS.
4083
4084 If there are fewer entries in SEGMENT_BASES than there are segments
4085 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4086
8d385431
DJ
4087 If there are more entries, then ignore the extra. The target may
4088 not be able to distinguish between an empty data segment and a
4089 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4090int
4091symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4092 struct section_offsets *offsets,
4093 int num_segment_bases,
4094 const CORE_ADDR *segment_bases)
4095{
4096 int i;
4097 asection *sect;
4098
28c32713
JB
4099 /* It doesn't make sense to call this function unless you have some
4100 segment base addresses. */
4101 gdb_assert (segment_bases > 0);
4102
31d99776
DJ
4103 /* If we do not have segment mappings for the object file, we
4104 can not relocate it by segments. */
4105 gdb_assert (data != NULL);
4106 gdb_assert (data->num_segments > 0);
4107
31d99776
DJ
4108 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4109 {
31d99776
DJ
4110 int which = data->segment_info[i];
4111
28c32713
JB
4112 gdb_assert (0 <= which && which <= data->num_segments);
4113
4114 /* Don't bother computing offsets for sections that aren't
4115 loaded as part of any segment. */
4116 if (! which)
4117 continue;
4118
4119 /* Use the last SEGMENT_BASES entry as the address of any extra
4120 segments mentioned in DATA->segment_info. */
31d99776 4121 if (which > num_segment_bases)
28c32713 4122 which = num_segment_bases;
31d99776 4123
28c32713
JB
4124 offsets->offsets[i] = (segment_bases[which - 1]
4125 - data->segment_bases[which - 1]);
31d99776
DJ
4126 }
4127
4128 return 1;
4129}
4130
4131static void
4132symfile_find_segment_sections (struct objfile *objfile)
4133{
4134 bfd *abfd = objfile->obfd;
4135 int i;
4136 asection *sect;
4137 struct symfile_segment_data *data;
4138
4139 data = get_symfile_segment_data (objfile->obfd);
4140 if (data == NULL)
4141 return;
4142
4143 if (data->num_segments != 1 && data->num_segments != 2)
4144 {
4145 free_symfile_segment_data (data);
4146 return;
4147 }
4148
4149 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4150 {
4151 CORE_ADDR vma;
4152 int which = data->segment_info[i];
4153
4154 if (which == 1)
4155 {
4156 if (objfile->sect_index_text == -1)
4157 objfile->sect_index_text = sect->index;
4158
4159 if (objfile->sect_index_rodata == -1)
4160 objfile->sect_index_rodata = sect->index;
4161 }
4162 else if (which == 2)
4163 {
4164 if (objfile->sect_index_data == -1)
4165 objfile->sect_index_data = sect->index;
4166
4167 if (objfile->sect_index_bss == -1)
4168 objfile->sect_index_bss = sect->index;
4169 }
4170 }
4171
4172 free_symfile_segment_data (data);
4173}
4174
c906108c 4175void
fba45db2 4176_initialize_symfile (void)
c906108c
SS
4177{
4178 struct cmd_list_element *c;
c5aa993b 4179
1a966eab
AC
4180 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4181Load symbol table from executable file FILE.\n\
c906108c 4182The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4183to execute."), &cmdlist);
5ba2abeb 4184 set_cmd_completer (c, filename_completer);
c906108c 4185
1a966eab 4186 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4187Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4188Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4189ADDR is the starting address of the file's text.\n\
db162d44
EZ
4190The optional arguments are section-name section-address pairs and\n\
4191should be specified if the data and bss segments are not contiguous\n\
1a966eab 4192with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4193 &cmdlist);
5ba2abeb 4194 set_cmd_completer (c, filename_completer);
c906108c 4195
1a966eab
AC
4196 c = add_cmd ("load", class_files, load_command, _("\
4197Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4198for access from GDB.\n\
4199A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4200 set_cmd_completer (c, filename_completer);
c906108c 4201
5bf193a2
AC
4202 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4203 &symbol_reloading, _("\
4204Set dynamic symbol table reloading multiple times in one run."), _("\
4205Show dynamic symbol table reloading multiple times in one run."), NULL,
4206 NULL,
920d2a44 4207 show_symbol_reloading,
5bf193a2 4208 &setlist, &showlist);
c906108c 4209
c5aa993b 4210 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4211 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4212 "overlay ", 0, &cmdlist);
4213
4214 add_com_alias ("ovly", "overlay", class_alias, 1);
4215 add_com_alias ("ov", "overlay", class_alias, 1);
4216
c5aa993b 4217 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4218 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4219
c5aa993b 4220 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4221 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4222
c5aa993b 4223 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4224 _("List mappings of overlay sections."), &overlaylist);
c906108c 4225
c5aa993b 4226 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4227 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4228 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4229 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4230 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4231 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4232 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4233 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4234
4235 /* Filename extension to source language lookup table: */
4236 init_filename_language_table ();
26c41df3
AC
4237 add_setshow_string_noescape_cmd ("extension-language", class_files,
4238 &ext_args, _("\
4239Set mapping between filename extension and source language."), _("\
4240Show mapping between filename extension and source language."), _("\
4241Usage: set extension-language .foo bar"),
4242 set_ext_lang_command,
920d2a44 4243 show_ext_args,
26c41df3 4244 &setlist, &showlist);
c906108c 4245
c5aa993b 4246 add_info ("extensions", info_ext_lang_command,
1bedd215 4247 _("All filename extensions associated with a source language."));
917317f4 4248
525226b5
AC
4249 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4250 &debug_file_directory, _("\
24ddea62
JK
4251Set the directories where separate debug symbols are searched for."), _("\
4252Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4253Separate debug symbols are first searched for in the same\n\
4254directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4255and lastly at the path of the directory of the binary with\n\
24ddea62 4256each global debug-file-directory component prepended."),
525226b5 4257 NULL,
920d2a44 4258 show_debug_file_directory,
525226b5 4259 &setlist, &showlist);
c906108c 4260}
This page took 1.411898 seconds and 4 git commands to generate.