gdb
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
9a4105ab
AC
70int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c906108c 81/* Global variables owned by this file */
c5aa993b 82int readnow_symbol_files; /* Read full symbols immediately */
c906108c 83
c906108c
SS
84/* External variables and functions referenced. */
85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
87
88/* Functions this file defines */
89
90#if 0
a14ed312
KB
91static int simple_read_overlay_region_table (void);
92static void simple_free_overlay_region_table (void);
c906108c
SS
93#endif
94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101bfd *symfile_bfd_open (char *);
c906108c 102
0e931cf0
JB
103int get_section_index (struct objfile *, char *);
104
31d99776 105static struct sym_fns *find_sym_fns (bfd *);
c906108c 106
a14ed312 107static void decrement_reading_symtab (void *);
c906108c 108
a14ed312 109static void overlay_invalidate_all (void);
c906108c 110
a14ed312 111void list_overlays_command (char *, int);
c906108c 112
a14ed312 113void map_overlay_command (char *, int);
c906108c 114
a14ed312 115void unmap_overlay_command (char *, int);
c906108c 116
a14ed312 117static void overlay_auto_command (char *, int);
c906108c 118
a14ed312 119static void overlay_manual_command (char *, int);
c906108c 120
a14ed312 121static void overlay_off_command (char *, int);
c906108c 122
a14ed312 123static void overlay_load_command (char *, int);
c906108c 124
a14ed312 125static void overlay_command (char *, int);
c906108c 126
a14ed312 127static void simple_free_overlay_table (void);
c906108c 128
e17a4113
UW
129static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
c906108c 131
a14ed312 132static int simple_read_overlay_table (void);
c906108c 133
a14ed312 134static int simple_overlay_update_1 (struct obj_section *);
c906108c 135
a14ed312 136static void add_filename_language (char *ext, enum language lang);
392a587b 137
a14ed312 138static void info_ext_lang_command (char *args, int from_tty);
392a587b 139
a14ed312 140static void init_filename_language_table (void);
392a587b 141
31d99776
DJ
142static void symfile_find_segment_sections (struct objfile *objfile);
143
a14ed312 144void _initialize_symfile (void);
c906108c
SS
145
146/* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150static struct sym_fns *symtab_fns = NULL;
151
152/* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155#ifdef SYMBOL_RELOADING_DEFAULT
156int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157#else
158int symbol_reloading = 0;
159#endif
920d2a44
AC
160static void
161show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("\
165Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167}
168
b7209cb4
FF
169/* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
c906108c 176 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 177 report all the functions that are actually present. */
c906108c
SS
178
179int auto_solib_add = 1;
b7209cb4
FF
180
181/* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189int auto_solib_limit;
c906108c 190\f
c5aa993b 191
c906108c
SS
192/* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197char *
63ca651f 198obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 199{
52f0bd74 200 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
aa1ee363
AC
205 const char *p1 = ptr;
206 char *p2 = p;
63ca651f 207 const char *end = ptr + size;
433759f7 208
c906108c
SS
209 while (p1 != end)
210 *p2++ = *p1++;
211 }
212 p[size] = 0;
213 return p;
214}
215
48cb83fd
JK
216/* Concatenate NULL terminated variable argument list of `const char *' strings;
217 return the new string. Space is found in the OBSTACKP. Argument list must
218 be terminated by a sentinel expression `(char *) NULL'. */
c906108c
SS
219
220char *
48cb83fd 221obconcat (struct obstack *obstackp, ...)
c906108c 222{
48cb83fd
JK
223 va_list ap;
224
225 va_start (ap, obstackp);
226 for (;;)
227 {
228 const char *s = va_arg (ap, const char *);
229
230 if (s == NULL)
231 break;
232
233 obstack_grow_str (obstackp, s);
234 }
235 va_end (ap);
236 obstack_1grow (obstackp, 0);
237
238 return obstack_finish (obstackp);
c906108c
SS
239}
240
ccefe4c4 241/* True if we are reading a symbol table. */
c906108c
SS
242
243int currently_reading_symtab = 0;
244
245static void
fba45db2 246decrement_reading_symtab (void *dummy)
c906108c
SS
247{
248 currently_reading_symtab--;
249}
250
ccefe4c4
TT
251/* Increment currently_reading_symtab and return a cleanup that can be
252 used to decrement it. */
253struct cleanup *
254increment_reading_symtab (void)
c906108c 255{
ccefe4c4
TT
256 ++currently_reading_symtab;
257 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
258}
259
5417f6dc
RM
260/* Remember the lowest-addressed loadable section we've seen.
261 This function is called via bfd_map_over_sections.
c906108c
SS
262
263 In case of equal vmas, the section with the largest size becomes the
264 lowest-addressed loadable section.
265
266 If the vmas and sizes are equal, the last section is considered the
267 lowest-addressed loadable section. */
268
269void
4efb68b1 270find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 271{
c5aa993b 272 asection **lowest = (asection **) obj;
c906108c 273
eb73e134 274 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
275 return;
276 if (!*lowest)
277 *lowest = sect; /* First loadable section */
278 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
279 *lowest = sect; /* A lower loadable section */
280 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
281 && (bfd_section_size (abfd, (*lowest))
282 <= bfd_section_size (abfd, sect)))
283 *lowest = sect;
284}
285
a39a16c4
MM
286/* Create a new section_addr_info, with room for NUM_SECTIONS. */
287
288struct section_addr_info *
289alloc_section_addr_info (size_t num_sections)
290{
291 struct section_addr_info *sap;
292 size_t size;
293
294 size = (sizeof (struct section_addr_info)
295 + sizeof (struct other_sections) * (num_sections - 1));
296 sap = (struct section_addr_info *) xmalloc (size);
297 memset (sap, 0, size);
298 sap->num_sections = num_sections;
299
300 return sap;
301}
62557bbc
KB
302
303/* Build (allocate and populate) a section_addr_info struct from
304 an existing section table. */
305
306extern struct section_addr_info *
0542c86d
PA
307build_section_addr_info_from_section_table (const struct target_section *start,
308 const struct target_section *end)
62557bbc
KB
309{
310 struct section_addr_info *sap;
0542c86d 311 const struct target_section *stp;
62557bbc
KB
312 int oidx;
313
a39a16c4 314 sap = alloc_section_addr_info (end - start);
62557bbc
KB
315
316 for (stp = start, oidx = 0; stp != end; stp++)
317 {
5417f6dc 318 if (bfd_get_section_flags (stp->bfd,
fbd35540 319 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 320 && oidx < end - start)
62557bbc
KB
321 {
322 sap->other[oidx].addr = stp->addr;
5417f6dc 323 sap->other[oidx].name
fbd35540 324 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
325 sap->other[oidx].sectindex = stp->the_bfd_section->index;
326 oidx++;
327 }
328 }
329
330 return sap;
331}
332
82ccf5a5 333/* Create a section_addr_info from section offsets in ABFD. */
089b4803 334
82ccf5a5
JK
335static struct section_addr_info *
336build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
337{
338 struct section_addr_info *sap;
339 int i;
340 struct bfd_section *sec;
341
82ccf5a5
JK
342 sap = alloc_section_addr_info (bfd_count_sections (abfd));
343 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
344 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 345 {
82ccf5a5
JK
346 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
347 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
348 sap->other[i].sectindex = sec->index;
349 i++;
350 }
089b4803
TG
351 return sap;
352}
353
82ccf5a5
JK
354/* Create a section_addr_info from section offsets in OBJFILE. */
355
356struct section_addr_info *
357build_section_addr_info_from_objfile (const struct objfile *objfile)
358{
359 struct section_addr_info *sap;
360 int i;
361
362 /* Before reread_symbols gets rewritten it is not safe to call:
363 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
364 */
365 sap = build_section_addr_info_from_bfd (objfile->obfd);
366 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
367 {
368 int sectindex = sap->other[i].sectindex;
369
370 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
371 }
372 return sap;
373}
62557bbc
KB
374
375/* Free all memory allocated by build_section_addr_info_from_section_table. */
376
377extern void
378free_section_addr_info (struct section_addr_info *sap)
379{
380 int idx;
381
a39a16c4 382 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 383 if (sap->other[idx].name)
b8c9b27d
KB
384 xfree (sap->other[idx].name);
385 xfree (sap);
62557bbc
KB
386}
387
388
e8289572
JB
389/* Initialize OBJFILE's sect_index_* members. */
390static void
391init_objfile_sect_indices (struct objfile *objfile)
c906108c 392{
e8289572 393 asection *sect;
c906108c 394 int i;
5417f6dc 395
b8fbeb18 396 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 397 if (sect)
b8fbeb18
EZ
398 objfile->sect_index_text = sect->index;
399
400 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 401 if (sect)
b8fbeb18
EZ
402 objfile->sect_index_data = sect->index;
403
404 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 405 if (sect)
b8fbeb18
EZ
406 objfile->sect_index_bss = sect->index;
407
408 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 409 if (sect)
b8fbeb18
EZ
410 objfile->sect_index_rodata = sect->index;
411
bbcd32ad
FF
412 /* This is where things get really weird... We MUST have valid
413 indices for the various sect_index_* members or gdb will abort.
414 So if for example, there is no ".text" section, we have to
31d99776
DJ
415 accomodate that. First, check for a file with the standard
416 one or two segments. */
417
418 symfile_find_segment_sections (objfile);
419
420 /* Except when explicitly adding symbol files at some address,
421 section_offsets contains nothing but zeros, so it doesn't matter
422 which slot in section_offsets the individual sect_index_* members
423 index into. So if they are all zero, it is safe to just point
424 all the currently uninitialized indices to the first slot. But
425 beware: if this is the main executable, it may be relocated
426 later, e.g. by the remote qOffsets packet, and then this will
427 be wrong! That's why we try segments first. */
bbcd32ad
FF
428
429 for (i = 0; i < objfile->num_sections; i++)
430 {
431 if (ANOFFSET (objfile->section_offsets, i) != 0)
432 {
433 break;
434 }
435 }
436 if (i == objfile->num_sections)
437 {
438 if (objfile->sect_index_text == -1)
439 objfile->sect_index_text = 0;
440 if (objfile->sect_index_data == -1)
441 objfile->sect_index_data = 0;
442 if (objfile->sect_index_bss == -1)
443 objfile->sect_index_bss = 0;
444 if (objfile->sect_index_rodata == -1)
445 objfile->sect_index_rodata = 0;
446 }
b8fbeb18 447}
c906108c 448
c1bd25fd
DJ
449/* The arguments to place_section. */
450
451struct place_section_arg
452{
453 struct section_offsets *offsets;
454 CORE_ADDR lowest;
455};
456
457/* Find a unique offset to use for loadable section SECT if
458 the user did not provide an offset. */
459
2c0b251b 460static void
c1bd25fd
DJ
461place_section (bfd *abfd, asection *sect, void *obj)
462{
463 struct place_section_arg *arg = obj;
464 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
465 int done;
3bd72c6f 466 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 467
2711e456
DJ
468 /* We are only interested in allocated sections. */
469 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
470 return;
471
472 /* If the user specified an offset, honor it. */
473 if (offsets[sect->index] != 0)
474 return;
475
476 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
477 start_addr = (arg->lowest + align - 1) & -align;
478
c1bd25fd
DJ
479 do {
480 asection *cur_sec;
c1bd25fd 481
c1bd25fd
DJ
482 done = 1;
483
484 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
485 {
486 int indx = cur_sec->index;
c1bd25fd
DJ
487
488 /* We don't need to compare against ourself. */
489 if (cur_sec == sect)
490 continue;
491
2711e456
DJ
492 /* We can only conflict with allocated sections. */
493 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
494 continue;
495
496 /* If the section offset is 0, either the section has not been placed
497 yet, or it was the lowest section placed (in which case LOWEST
498 will be past its end). */
499 if (offsets[indx] == 0)
500 continue;
501
502 /* If this section would overlap us, then we must move up. */
503 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
504 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
505 {
506 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
507 start_addr = (start_addr + align - 1) & -align;
508 done = 0;
3bd72c6f 509 break;
c1bd25fd
DJ
510 }
511
512 /* Otherwise, we appear to be OK. So far. */
513 }
514 }
515 while (!done);
516
517 offsets[sect->index] = start_addr;
518 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 519}
e8289572 520
75242ef4
JK
521/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
522 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
523 entries. */
e8289572
JB
524
525void
75242ef4
JK
526relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
527 int num_sections,
528 struct section_addr_info *addrs)
e8289572
JB
529{
530 int i;
531
75242ef4 532 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 533
75242ef4 534 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 535 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 536 {
75242ef4 537 struct other_sections *osp;
e8289572 538
75242ef4 539 osp = &addrs->other[i];
e8289572
JB
540 if (osp->addr == 0)
541 continue;
542
543 /* Record all sections in offsets */
544 /* The section_offsets in the objfile are here filled in using
545 the BFD index. */
75242ef4
JK
546 section_offsets->offsets[osp->sectindex] = osp->addr;
547 }
548}
549
1276c759
JK
550/* Transform section name S for a name comparison. prelink can split section
551 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
552 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
553 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
554 (`.sbss') section has invalid (increased) virtual address. */
555
556static const char *
557addr_section_name (const char *s)
558{
559 if (strcmp (s, ".dynbss") == 0)
560 return ".bss";
561 if (strcmp (s, ".sdynbss") == 0)
562 return ".sbss";
563
564 return s;
565}
566
82ccf5a5
JK
567/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
568 their (name, sectindex) pair. sectindex makes the sort by name stable. */
569
570static int
571addrs_section_compar (const void *ap, const void *bp)
572{
573 const struct other_sections *a = *((struct other_sections **) ap);
574 const struct other_sections *b = *((struct other_sections **) bp);
575 int retval, a_idx, b_idx;
576
1276c759 577 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
578 if (retval)
579 return retval;
580
581 /* SECTINDEX is undefined iff ADDR is zero. */
582 a_idx = a->addr == 0 ? 0 : a->sectindex;
583 b_idx = b->addr == 0 ? 0 : b->sectindex;
584 return a_idx - b_idx;
585}
586
587/* Provide sorted array of pointers to sections of ADDRS. The array is
588 terminated by NULL. Caller is responsible to call xfree for it. */
589
590static struct other_sections **
591addrs_section_sort (struct section_addr_info *addrs)
592{
593 struct other_sections **array;
594 int i;
595
596 /* `+ 1' for the NULL terminator. */
597 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
598 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
599 array[i] = &addrs->other[i];
600 array[i] = NULL;
601
602 qsort (array, i, sizeof (*array), addrs_section_compar);
603
604 return array;
605}
606
75242ef4 607/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
608 also SECTINDEXes specific to ABFD there. This function can be used to
609 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
610
611void
612addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
613{
614 asection *lower_sect;
75242ef4
JK
615 CORE_ADDR lower_offset;
616 int i;
82ccf5a5
JK
617 struct cleanup *my_cleanup;
618 struct section_addr_info *abfd_addrs;
619 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
620 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
621
622 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
623 continguous sections. */
624 lower_sect = NULL;
625 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
626 if (lower_sect == NULL)
627 {
628 warning (_("no loadable sections found in added symbol-file %s"),
629 bfd_get_filename (abfd));
630 lower_offset = 0;
e8289572 631 }
75242ef4
JK
632 else
633 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
634
82ccf5a5
JK
635 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
636 in ABFD. Section names are not unique - there can be multiple sections of
637 the same name. Also the sections of the same name do not have to be
638 adjacent to each other. Some sections may be present only in one of the
639 files. Even sections present in both files do not have to be in the same
640 order.
641
642 Use stable sort by name for the sections in both files. Then linearly
643 scan both lists matching as most of the entries as possible. */
644
645 addrs_sorted = addrs_section_sort (addrs);
646 my_cleanup = make_cleanup (xfree, addrs_sorted);
647
648 abfd_addrs = build_section_addr_info_from_bfd (abfd);
649 make_cleanup_free_section_addr_info (abfd_addrs);
650 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
651 make_cleanup (xfree, abfd_addrs_sorted);
652
653 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
654
655 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
656 * addrs->num_sections);
657 make_cleanup (xfree, addrs_to_abfd_addrs);
658
659 while (*addrs_sorted)
660 {
1276c759 661 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
662
663 while (*abfd_addrs_sorted
1276c759
JK
664 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
665 sect_name) < 0)
82ccf5a5
JK
666 abfd_addrs_sorted++;
667
668 if (*abfd_addrs_sorted
1276c759
JK
669 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
670 sect_name) == 0)
82ccf5a5
JK
671 {
672 int index_in_addrs;
673
674 /* Make the found item directly addressable from ADDRS. */
675 index_in_addrs = *addrs_sorted - addrs->other;
676 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
677 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
678
679 /* Never use the same ABFD entry twice. */
680 abfd_addrs_sorted++;
681 }
682
683 addrs_sorted++;
684 }
685
75242ef4
JK
686 /* Calculate offsets for the loadable sections.
687 FIXME! Sections must be in order of increasing loadable section
688 so that contiguous sections can use the lower-offset!!!
689
690 Adjust offsets if the segments are not contiguous.
691 If the section is contiguous, its offset should be set to
692 the offset of the highest loadable section lower than it
693 (the loadable section directly below it in memory).
694 this_offset = lower_offset = lower_addr - lower_orig_addr */
695
696 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
697 {
82ccf5a5 698 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
699
700 if (sect)
75242ef4 701 {
672d9c23 702 /* This is the index used by BFD. */
82ccf5a5 703 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
704
705 if (addrs->other[i].addr != 0)
75242ef4 706 {
82ccf5a5 707 addrs->other[i].addr -= sect->addr;
75242ef4 708 lower_offset = addrs->other[i].addr;
75242ef4
JK
709 }
710 else
672d9c23 711 addrs->other[i].addr = lower_offset;
75242ef4
JK
712 }
713 else
672d9c23 714 {
1276c759
JK
715 /* addr_section_name transformation is not used for SECT_NAME. */
716 const char *sect_name = addrs->other[i].name;
717
b0fcb67f
JK
718 /* This section does not exist in ABFD, which is normally
719 unexpected and we want to issue a warning.
720
4d9743af
JK
721 However, the ELF prelinker does create a few sections which are
722 marked in the main executable as loadable (they are loaded in
723 memory from the DYNAMIC segment) and yet are not present in
724 separate debug info files. This is fine, and should not cause
725 a warning. Shared libraries contain just the section
726 ".gnu.liblist" but it is not marked as loadable there. There is
727 no other way to identify them than by their name as the sections
1276c759
JK
728 created by prelink have no special flags.
729
730 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
731
732 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 733 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
734 || (strcmp (sect_name, ".bss") == 0
735 && i > 0
736 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
737 && addrs_to_abfd_addrs[i - 1] != NULL)
738 || (strcmp (sect_name, ".sbss") == 0
739 && i > 0
740 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
741 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
742 warning (_("section %s not found in %s"), sect_name,
743 bfd_get_filename (abfd));
744
672d9c23
JK
745 addrs->other[i].addr = 0;
746
747 /* SECTINDEX is invalid if ADDR is zero. */
748 }
75242ef4 749 }
82ccf5a5
JK
750
751 do_cleanups (my_cleanup);
75242ef4
JK
752}
753
754/* Parse the user's idea of an offset for dynamic linking, into our idea
755 of how to represent it for fast symbol reading. This is the default
756 version of the sym_fns.sym_offsets function for symbol readers that
757 don't need to do anything special. It allocates a section_offsets table
758 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
759
760void
761default_symfile_offsets (struct objfile *objfile,
762 struct section_addr_info *addrs)
763{
764 objfile->num_sections = bfd_count_sections (objfile->obfd);
765 objfile->section_offsets = (struct section_offsets *)
766 obstack_alloc (&objfile->objfile_obstack,
767 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
768 relative_addr_info_to_section_offsets (objfile->section_offsets,
769 objfile->num_sections, addrs);
e8289572 770
c1bd25fd
DJ
771 /* For relocatable files, all loadable sections will start at zero.
772 The zero is meaningless, so try to pick arbitrary addresses such
773 that no loadable sections overlap. This algorithm is quadratic,
774 but the number of sections in a single object file is generally
775 small. */
776 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
777 {
778 struct place_section_arg arg;
2711e456
DJ
779 bfd *abfd = objfile->obfd;
780 asection *cur_sec;
2711e456
DJ
781
782 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
783 /* We do not expect this to happen; just skip this step if the
784 relocatable file has a section with an assigned VMA. */
785 if (bfd_section_vma (abfd, cur_sec) != 0)
786 break;
787
788 if (cur_sec == NULL)
789 {
790 CORE_ADDR *offsets = objfile->section_offsets->offsets;
791
792 /* Pick non-overlapping offsets for sections the user did not
793 place explicitly. */
794 arg.offsets = objfile->section_offsets;
795 arg.lowest = 0;
796 bfd_map_over_sections (objfile->obfd, place_section, &arg);
797
798 /* Correctly filling in the section offsets is not quite
799 enough. Relocatable files have two properties that
800 (most) shared objects do not:
801
802 - Their debug information will contain relocations. Some
803 shared libraries do also, but many do not, so this can not
804 be assumed.
805
806 - If there are multiple code sections they will be loaded
807 at different relative addresses in memory than they are
808 in the objfile, since all sections in the file will start
809 at address zero.
810
811 Because GDB has very limited ability to map from an
812 address in debug info to the correct code section,
813 it relies on adding SECT_OFF_TEXT to things which might be
814 code. If we clear all the section offsets, and set the
815 section VMAs instead, then symfile_relocate_debug_section
816 will return meaningful debug information pointing at the
817 correct sections.
818
819 GDB has too many different data structures for section
820 addresses - a bfd, objfile, and so_list all have section
821 tables, as does exec_ops. Some of these could probably
822 be eliminated. */
823
824 for (cur_sec = abfd->sections; cur_sec != NULL;
825 cur_sec = cur_sec->next)
826 {
827 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
828 continue;
829
830 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
831 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
832 offsets[cur_sec->index]);
2711e456
DJ
833 offsets[cur_sec->index] = 0;
834 }
835 }
c1bd25fd
DJ
836 }
837
e8289572
JB
838 /* Remember the bfd indexes for the .text, .data, .bss and
839 .rodata sections. */
840 init_objfile_sect_indices (objfile);
841}
842
843
31d99776
DJ
844/* Divide the file into segments, which are individual relocatable units.
845 This is the default version of the sym_fns.sym_segments function for
846 symbol readers that do not have an explicit representation of segments.
847 It assumes that object files do not have segments, and fully linked
848 files have a single segment. */
849
850struct symfile_segment_data *
851default_symfile_segments (bfd *abfd)
852{
853 int num_sections, i;
854 asection *sect;
855 struct symfile_segment_data *data;
856 CORE_ADDR low, high;
857
858 /* Relocatable files contain enough information to position each
859 loadable section independently; they should not be relocated
860 in segments. */
861 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
862 return NULL;
863
864 /* Make sure there is at least one loadable section in the file. */
865 for (sect = abfd->sections; sect != NULL; sect = sect->next)
866 {
867 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
868 continue;
869
870 break;
871 }
872 if (sect == NULL)
873 return NULL;
874
875 low = bfd_get_section_vma (abfd, sect);
876 high = low + bfd_get_section_size (sect);
877
878 data = XZALLOC (struct symfile_segment_data);
879 data->num_segments = 1;
880 data->segment_bases = XCALLOC (1, CORE_ADDR);
881 data->segment_sizes = XCALLOC (1, CORE_ADDR);
882
883 num_sections = bfd_count_sections (abfd);
884 data->segment_info = XCALLOC (num_sections, int);
885
886 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
887 {
888 CORE_ADDR vma;
889
890 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
891 continue;
892
893 vma = bfd_get_section_vma (abfd, sect);
894 if (vma < low)
895 low = vma;
896 if (vma + bfd_get_section_size (sect) > high)
897 high = vma + bfd_get_section_size (sect);
898
899 data->segment_info[i] = 1;
900 }
901
902 data->segment_bases[0] = low;
903 data->segment_sizes[0] = high - low;
904
905 return data;
906}
907
c906108c
SS
908/* Process a symbol file, as either the main file or as a dynamically
909 loaded file.
910
96baa820
JM
911 OBJFILE is where the symbols are to be read from.
912
7e8580c1
JB
913 ADDRS is the list of section load addresses. If the user has given
914 an 'add-symbol-file' command, then this is the list of offsets and
915 addresses he or she provided as arguments to the command; or, if
916 we're handling a shared library, these are the actual addresses the
917 sections are loaded at, according to the inferior's dynamic linker
918 (as gleaned by GDB's shared library code). We convert each address
919 into an offset from the section VMA's as it appears in the object
920 file, and then call the file's sym_offsets function to convert this
921 into a format-specific offset table --- a `struct section_offsets'.
922 If ADDRS is non-zero, OFFSETS must be zero.
923
924 OFFSETS is a table of section offsets already in the right
925 format-specific representation. NUM_OFFSETS is the number of
926 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
927 assume this is the proper table the call to sym_offsets described
928 above would produce. Instead of calling sym_offsets, we just dump
929 it right into objfile->section_offsets. (When we're re-reading
930 symbols from an objfile, we don't have the original load address
931 list any more; all we have is the section offset table.) If
932 OFFSETS is non-zero, ADDRS must be zero.
96baa820 933
7eedccfa
PP
934 ADD_FLAGS encodes verbosity level, whether this is main symbol or
935 an extra symbol file such as dynamically loaded code, and wether
936 breakpoint reset should be deferred. */
c906108c
SS
937
938void
7e8580c1
JB
939syms_from_objfile (struct objfile *objfile,
940 struct section_addr_info *addrs,
941 struct section_offsets *offsets,
942 int num_offsets,
7eedccfa 943 int add_flags)
c906108c 944{
a39a16c4 945 struct section_addr_info *local_addr = NULL;
c906108c 946 struct cleanup *old_chain;
7eedccfa 947 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 948
7e8580c1 949 gdb_assert (! (addrs && offsets));
2acceee2 950
c906108c 951 init_entry_point_info (objfile);
31d99776 952 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 953
75245b24
MS
954 if (objfile->sf == NULL)
955 return; /* No symbols. */
956
c906108c
SS
957 /* Make sure that partially constructed symbol tables will be cleaned up
958 if an error occurs during symbol reading. */
74b7792f 959 old_chain = make_cleanup_free_objfile (objfile);
c906108c 960
a39a16c4
MM
961 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
962 list. We now establish the convention that an addr of zero means
963 no load address was specified. */
964 if (! addrs && ! offsets)
965 {
5417f6dc 966 local_addr
a39a16c4
MM
967 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
968 make_cleanup (xfree, local_addr);
969 addrs = local_addr;
970 }
971
972 /* Now either addrs or offsets is non-zero. */
973
c5aa993b 974 if (mainline)
c906108c
SS
975 {
976 /* We will modify the main symbol table, make sure that all its users
c5aa993b 977 will be cleaned up if an error occurs during symbol reading. */
74b7792f 978 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
979
980 /* Since no error yet, throw away the old symbol table. */
981
982 if (symfile_objfile != NULL)
983 {
984 free_objfile (symfile_objfile);
adb7f338 985 gdb_assert (symfile_objfile == NULL);
c906108c
SS
986 }
987
988 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
989 If the user wants to get rid of them, they should do "symbol-file"
990 without arguments first. Not sure this is the best behavior
991 (PR 2207). */
c906108c 992
c5aa993b 993 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
994 }
995
996 /* Convert addr into an offset rather than an absolute address.
997 We find the lowest address of a loaded segment in the objfile,
53a5351d 998 and assume that <addr> is where that got loaded.
c906108c 999
53a5351d
JM
1000 We no longer warn if the lowest section is not a text segment (as
1001 happens for the PA64 port. */
0d15807d 1002 if (addrs && addrs->other[0].name)
75242ef4 1003 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1004
1005 /* Initialize symbol reading routines for this objfile, allow complaints to
1006 appear for this new file, and record how verbose to be, then do the
1007 initial symbol reading for this file. */
1008
c5aa993b 1009 (*objfile->sf->sym_init) (objfile);
7eedccfa 1010 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1011
7e8580c1
JB
1012 if (addrs)
1013 (*objfile->sf->sym_offsets) (objfile, addrs);
1014 else
1015 {
1016 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1017
1018 /* Just copy in the offset table directly as given to us. */
1019 objfile->num_sections = num_offsets;
1020 objfile->section_offsets
1021 = ((struct section_offsets *)
8b92e4d5 1022 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1023 memcpy (objfile->section_offsets, offsets, size);
1024
1025 init_objfile_sect_indices (objfile);
1026 }
c906108c 1027
f4352531 1028 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1029
c906108c
SS
1030 /* Discard cleanups as symbol reading was successful. */
1031
1032 discard_cleanups (old_chain);
f7545552 1033 xfree (local_addr);
c906108c
SS
1034}
1035
1036/* Perform required actions after either reading in the initial
1037 symbols for a new objfile, or mapping in the symbols from a reusable
1038 objfile. */
c5aa993b 1039
c906108c 1040void
7eedccfa 1041new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1042{
c906108c
SS
1043 /* If this is the main symbol file we have to clean up all users of the
1044 old main symbol file. Otherwise it is sufficient to fixup all the
1045 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1046 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1047 {
1048 /* OK, make it the "real" symbol file. */
1049 symfile_objfile = objfile;
1050
1051 clear_symtab_users ();
1052 }
7eedccfa 1053 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1054 {
69de3c6a 1055 breakpoint_re_set ();
c906108c
SS
1056 }
1057
1058 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1059 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1060}
1061
1062/* Process a symbol file, as either the main file or as a dynamically
1063 loaded file.
1064
5417f6dc
RM
1065 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1066 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1067
7eedccfa
PP
1068 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1069 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1070
1071 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1072 syms_from_objfile, above.
1073 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1074
c906108c
SS
1075 Upon success, returns a pointer to the objfile that was added.
1076 Upon failure, jumps back to command level (never returns). */
7eedccfa 1077
7904e09f 1078static struct objfile *
7eedccfa
PP
1079symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1080 int add_flags,
7904e09f
JB
1081 struct section_addr_info *addrs,
1082 struct section_offsets *offsets,
1083 int num_offsets,
7eedccfa 1084 int flags)
c906108c
SS
1085{
1086 struct objfile *objfile;
a39a16c4 1087 struct cleanup *my_cleanups;
5417f6dc 1088 const char *name = bfd_get_filename (abfd);
7eedccfa 1089 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 1090
9291a0cd
TT
1091 if (readnow_symbol_files)
1092 flags |= OBJF_READNOW;
1093
5417f6dc 1094 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1095
5417f6dc
RM
1096 /* Give user a chance to burp if we'd be
1097 interactively wiping out any existing symbols. */
c906108c
SS
1098
1099 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1100 && (add_flags & SYMFILE_MAINLINE)
c906108c 1101 && from_tty
9e2f0ad4 1102 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1103 error (_("Not confirmed."));
c906108c 1104
2df3850c 1105 objfile = allocate_objfile (abfd, flags);
5417f6dc 1106 discard_cleanups (my_cleanups);
c906108c 1107
78a4a9b9
AC
1108 /* We either created a new mapped symbol table, mapped an existing
1109 symbol table file which has not had initial symbol reading
1110 performed, or need to read an unmapped symbol table. */
1111 if (from_tty || info_verbose)
c906108c 1112 {
769d7dc4
AC
1113 if (deprecated_pre_add_symbol_hook)
1114 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1115 else
c906108c 1116 {
55333a84
DE
1117 printf_unfiltered (_("Reading symbols from %s..."), name);
1118 wrap_here ("");
1119 gdb_flush (gdb_stdout);
c906108c 1120 }
c906108c 1121 }
78a4a9b9 1122 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1123 add_flags);
c906108c
SS
1124
1125 /* We now have at least a partial symbol table. Check to see if the
1126 user requested that all symbols be read on initial access via either
1127 the gdb startup command line or on a per symbol file basis. Expand
1128 all partial symbol tables for this objfile if so. */
1129
9291a0cd 1130 if ((flags & OBJF_READNOW))
c906108c 1131 {
55333a84 1132 if (from_tty || info_verbose)
c906108c 1133 {
a3f17187 1134 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1135 wrap_here ("");
1136 gdb_flush (gdb_stdout);
1137 }
1138
ccefe4c4
TT
1139 if (objfile->sf)
1140 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1141 }
1142
55333a84 1143 if ((from_tty || info_verbose)
e361b228 1144 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1145 {
1146 wrap_here ("");
55333a84 1147 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1148 wrap_here ("");
1149 }
1150
c906108c
SS
1151 if (from_tty || info_verbose)
1152 {
769d7dc4
AC
1153 if (deprecated_post_add_symbol_hook)
1154 deprecated_post_add_symbol_hook ();
c906108c 1155 else
55333a84 1156 printf_unfiltered (_("done.\n"));
c906108c
SS
1157 }
1158
481d0f41
JB
1159 /* We print some messages regardless of whether 'from_tty ||
1160 info_verbose' is true, so make sure they go out at the right
1161 time. */
1162 gdb_flush (gdb_stdout);
1163
a39a16c4
MM
1164 do_cleanups (my_cleanups);
1165
109f874e 1166 if (objfile->sf == NULL)
8caee43b
PP
1167 {
1168 observer_notify_new_objfile (objfile);
1169 return objfile; /* No symbols. */
1170 }
109f874e 1171
7eedccfa 1172 new_symfile_objfile (objfile, add_flags);
c906108c 1173
06d3b283 1174 observer_notify_new_objfile (objfile);
c906108c 1175
ce7d4522 1176 bfd_cache_close_all ();
c906108c
SS
1177 return (objfile);
1178}
1179
9cce227f
TG
1180/* Add BFD as a separate debug file for OBJFILE. */
1181
1182void
1183symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1184{
15d123c9 1185 struct objfile *new_objfile;
089b4803
TG
1186 struct section_addr_info *sap;
1187 struct cleanup *my_cleanup;
1188
1189 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1190 because sections of BFD may not match sections of OBJFILE and because
1191 vma may have been modified by tools such as prelink. */
1192 sap = build_section_addr_info_from_objfile (objfile);
1193 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1194
15d123c9 1195 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1196 (bfd, symfile_flags,
089b4803 1197 sap, NULL, 0,
9cce227f
TG
1198 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1199 | OBJF_USERLOADED));
089b4803
TG
1200
1201 do_cleanups (my_cleanup);
9cce227f 1202
15d123c9 1203 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1204}
7904e09f 1205
eb4556d7
JB
1206/* Process the symbol file ABFD, as either the main file or as a
1207 dynamically loaded file.
1208
1209 See symbol_file_add_with_addrs_or_offsets's comments for
1210 details. */
1211struct objfile *
7eedccfa 1212symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1213 struct section_addr_info *addrs,
7eedccfa 1214 int flags)
eb4556d7 1215{
7eedccfa
PP
1216 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1217 flags);
eb4556d7
JB
1218}
1219
1220
7904e09f
JB
1221/* Process a symbol file, as either the main file or as a dynamically
1222 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1223 for details. */
1224struct objfile *
7eedccfa
PP
1225symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1226 int flags)
7904e09f 1227{
7eedccfa
PP
1228 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1229 flags);
7904e09f
JB
1230}
1231
1232
d7db6da9
FN
1233/* Call symbol_file_add() with default values and update whatever is
1234 affected by the loading of a new main().
1235 Used when the file is supplied in the gdb command line
1236 and by some targets with special loading requirements.
1237 The auxiliary function, symbol_file_add_main_1(), has the flags
1238 argument for the switches that can only be specified in the symbol_file
1239 command itself. */
5417f6dc 1240
1adeb98a
FN
1241void
1242symbol_file_add_main (char *args, int from_tty)
1243{
d7db6da9
FN
1244 symbol_file_add_main_1 (args, from_tty, 0);
1245}
1246
1247static void
1248symbol_file_add_main_1 (char *args, int from_tty, int flags)
1249{
7eedccfa
PP
1250 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1251 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1252
d7db6da9
FN
1253 /* Getting new symbols may change our opinion about
1254 what is frameless. */
1255 reinit_frame_cache ();
1256
1257 set_initial_language ();
1adeb98a
FN
1258}
1259
1260void
1261symbol_file_clear (int from_tty)
1262{
1263 if ((have_full_symbols () || have_partial_symbols ())
1264 && from_tty
0430b0d6
AS
1265 && (symfile_objfile
1266 ? !query (_("Discard symbol table from `%s'? "),
1267 symfile_objfile->name)
1268 : !query (_("Discard symbol table? "))))
8a3fe4f8 1269 error (_("Not confirmed."));
1adeb98a 1270
0133421a
JK
1271 /* solib descriptors may have handles to objfiles. Wipe them before their
1272 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1273 no_shared_libraries (NULL, from_tty);
1274
0133421a
JK
1275 free_all_objfiles ();
1276
adb7f338 1277 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1278 if (from_tty)
1279 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1280}
1281
5b5d99cf
JB
1282static char *
1283get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1284{
1285 asection *sect;
1286 bfd_size_type debuglink_size;
1287 unsigned long crc32;
1288 char *contents;
1289 int crc_offset;
5417f6dc 1290
5b5d99cf
JB
1291 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1292
1293 if (sect == NULL)
1294 return NULL;
1295
1296 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1297
5b5d99cf
JB
1298 contents = xmalloc (debuglink_size);
1299 bfd_get_section_contents (objfile->obfd, sect, contents,
1300 (file_ptr)0, (bfd_size_type)debuglink_size);
1301
1302 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1303 crc_offset = strlen (contents) + 1;
1304 crc_offset = (crc_offset + 3) & ~3;
1305
1306 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1307
5b5d99cf
JB
1308 *crc32_out = crc32;
1309 return contents;
1310}
1311
1312static int
287ccc17 1313separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1314 struct objfile *parent_objfile)
5b5d99cf
JB
1315{
1316 unsigned long file_crc = 0;
f1838a98 1317 bfd *abfd;
777ea8f1 1318 gdb_byte buffer[8*1024];
5b5d99cf 1319 int count;
32a0e547
JK
1320 struct stat parent_stat, abfd_stat;
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1326 the separate debug infos with the same basename can exist. */
1327
1328 if (strcmp (name, parent_objfile->name) == 0)
1329 return 0;
5b5d99cf 1330
874f5765 1331 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1332
1333 if (!abfd)
5b5d99cf
JB
1334 return 0;
1335
32a0e547
JK
1336 /* Verify symlinks were not the cause of strcmp name difference above.
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1348 && abfd_stat.st_dev == parent_stat.st_dev
1349 && abfd_stat.st_ino == parent_stat.st_ino
1350 && abfd_stat.st_ino != 0)
1351 {
1352 bfd_close (abfd);
1353 return 0;
1354 }
1355
f1838a98 1356 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1357 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1358
f1838a98 1359 bfd_close (abfd);
5b5d99cf 1360
287ccc17
JK
1361 if (crc != file_crc)
1362 {
1363 warning (_("the debug information found in \"%s\""
1364 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1365 name, parent_objfile->name);
287ccc17
JK
1366 return 0;
1367 }
1368
1369 return 1;
5b5d99cf
JB
1370}
1371
aa28a74e 1372char *debug_file_directory = NULL;
920d2a44
AC
1373static void
1374show_debug_file_directory (struct ui_file *file, int from_tty,
1375 struct cmd_list_element *c, const char *value)
1376{
1377 fprintf_filtered (file, _("\
1378The directory where separate debug symbols are searched for is \"%s\".\n"),
1379 value);
1380}
5b5d99cf
JB
1381
1382#if ! defined (DEBUG_SUBDIRECTORY)
1383#define DEBUG_SUBDIRECTORY ".debug"
1384#endif
1385
9cce227f
TG
1386char *
1387find_separate_debug_file_by_debuglink (struct objfile *objfile)
1388{
952a6d41 1389 char *basename, *debugdir;
9cce227f
TG
1390 char *dir = NULL;
1391 char *debugfile = NULL;
1392 char *canon_name = NULL;
9cce227f
TG
1393 unsigned long crc32;
1394 int i;
5b5d99cf
JB
1395
1396 basename = get_debug_link_info (objfile, &crc32);
1397
1398 if (basename == NULL)
287ccc17
JK
1399 /* There's no separate debug info, hence there's no way we could
1400 load it => no warning. */
25522fae 1401 goto cleanup_return_debugfile;
5417f6dc 1402
5b5d99cf
JB
1403 dir = xstrdup (objfile->name);
1404
fe36c4f4 1405 /* Strip off the final filename part, leaving the directory name,
569b05a5 1406 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1407 for (i = strlen(dir) - 1; i >= 0; i--)
1408 {
1409 if (IS_DIR_SEPARATOR (dir[i]))
1410 break;
1411 }
569b05a5 1412 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1413 dir[i+1] = '\0';
5417f6dc 1414
1ffa32ee
JK
1415 /* Set I to max (strlen (canon_name), strlen (dir)). */
1416 canon_name = lrealpath (dir);
1417 i = strlen (dir);
1418 if (canon_name && strlen (canon_name) > i)
1419 i = strlen (canon_name);
1420
25522fae
JK
1421 debugfile = xmalloc (strlen (debug_file_directory) + 1
1422 + i
1423 + strlen (DEBUG_SUBDIRECTORY)
1424 + strlen ("/")
1425 + strlen (basename)
1426 + 1);
5b5d99cf
JB
1427
1428 /* First try in the same directory as the original file. */
1429 strcpy (debugfile, dir);
1430 strcat (debugfile, basename);
1431
32a0e547 1432 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1433 goto cleanup_return_debugfile;
5417f6dc 1434
5b5d99cf
JB
1435 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1436 strcpy (debugfile, dir);
1437 strcat (debugfile, DEBUG_SUBDIRECTORY);
1438 strcat (debugfile, "/");
1439 strcat (debugfile, basename);
1440
32a0e547 1441 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1442 goto cleanup_return_debugfile;
5417f6dc 1443
24ddea62
JK
1444 /* Then try in the global debugfile directories.
1445
1446 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1447 cause "/..." lookups. */
5417f6dc 1448
24ddea62
JK
1449 debugdir = debug_file_directory;
1450 do
aa28a74e 1451 {
24ddea62
JK
1452 char *debugdir_end;
1453
1454 while (*debugdir == DIRNAME_SEPARATOR)
1455 debugdir++;
1456
1457 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1458 if (debugdir_end == NULL)
1459 debugdir_end = &debugdir[strlen (debugdir)];
1460
1461 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1462 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1463 strcat (debugfile, "/");
24ddea62 1464 strcat (debugfile, dir);
aa28a74e
DJ
1465 strcat (debugfile, basename);
1466
32a0e547 1467 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1468 goto cleanup_return_debugfile;
24ddea62
JK
1469
1470 /* If the file is in the sysroot, try using its base path in the
1471 global debugfile directory. */
1472 if (canon_name
1473 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1474 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1475 {
1476 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1477 debugfile[debugdir_end - debugdir] = 0;
1478 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1479 strcat (debugfile, "/");
1480 strcat (debugfile, basename);
1481
32a0e547 1482 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1483 goto cleanup_return_debugfile;
1484 }
1485
1486 debugdir = debugdir_end;
aa28a74e 1487 }
24ddea62 1488 while (*debugdir != 0);
aa28a74e 1489
25522fae
JK
1490 xfree (debugfile);
1491 debugfile = NULL;
aa28a74e 1492
25522fae
JK
1493cleanup_return_debugfile:
1494 xfree (canon_name);
5b5d99cf
JB
1495 xfree (basename);
1496 xfree (dir);
25522fae 1497 return debugfile;
5b5d99cf
JB
1498}
1499
1500
c906108c
SS
1501/* This is the symbol-file command. Read the file, analyze its
1502 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1503 the command is rather bizarre:
1504
1505 1. The function buildargv implements various quoting conventions
1506 which are undocumented and have little or nothing in common with
1507 the way things are quoted (or not quoted) elsewhere in GDB.
1508
1509 2. Options are used, which are not generally used in GDB (perhaps
1510 "set mapped on", "set readnow on" would be better)
1511
1512 3. The order of options matters, which is contrary to GNU
c906108c
SS
1513 conventions (because it is confusing and inconvenient). */
1514
1515void
fba45db2 1516symbol_file_command (char *args, int from_tty)
c906108c 1517{
c906108c
SS
1518 dont_repeat ();
1519
1520 if (args == NULL)
1521 {
1adeb98a 1522 symbol_file_clear (from_tty);
c906108c
SS
1523 }
1524 else
1525 {
d1a41061 1526 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1527 int flags = OBJF_USERLOADED;
1528 struct cleanup *cleanups;
1529 char *name = NULL;
1530
7a292a7a 1531 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1532 while (*argv != NULL)
1533 {
78a4a9b9
AC
1534 if (strcmp (*argv, "-readnow") == 0)
1535 flags |= OBJF_READNOW;
1536 else if (**argv == '-')
8a3fe4f8 1537 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1538 else
1539 {
cb2f3a29 1540 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1541 name = *argv;
78a4a9b9 1542 }
cb2f3a29 1543
c906108c
SS
1544 argv++;
1545 }
1546
1547 if (name == NULL)
cb2f3a29
MK
1548 error (_("no symbol file name was specified"));
1549
c906108c
SS
1550 do_cleanups (cleanups);
1551 }
1552}
1553
1554/* Set the initial language.
1555
cb2f3a29
MK
1556 FIXME: A better solution would be to record the language in the
1557 psymtab when reading partial symbols, and then use it (if known) to
1558 set the language. This would be a win for formats that encode the
1559 language in an easily discoverable place, such as DWARF. For
1560 stabs, we can jump through hoops looking for specially named
1561 symbols or try to intuit the language from the specific type of
1562 stabs we find, but we can't do that until later when we read in
1563 full symbols. */
c906108c 1564
8b60591b 1565void
fba45db2 1566set_initial_language (void)
c906108c 1567{
dd786858 1568 const char *filename;
c5aa993b 1569 enum language lang = language_unknown;
c906108c 1570
ccefe4c4
TT
1571 filename = find_main_filename ();
1572 if (filename != NULL)
1573 lang = deduce_language_from_filename (filename);
cb2f3a29 1574
ccefe4c4
TT
1575 if (lang == language_unknown)
1576 {
1577 /* Make C the default language */
1578 lang = language_c;
c906108c 1579 }
ccefe4c4
TT
1580
1581 set_language (lang);
1582 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1583}
1584
874f5765
TG
1585/* If NAME is a remote name open the file using remote protocol, otherwise
1586 open it normally. */
1587
1588bfd *
1589bfd_open_maybe_remote (const char *name)
1590{
1591 if (remote_filename_p (name))
1592 return remote_bfd_open (name, gnutarget);
1593 else
1594 return bfd_openr (name, gnutarget);
1595}
1596
1597
cb2f3a29
MK
1598/* Open the file specified by NAME and hand it off to BFD for
1599 preliminary analysis. Return a newly initialized bfd *, which
1600 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1601 absolute). In case of trouble, error() is called. */
c906108c
SS
1602
1603bfd *
fba45db2 1604symfile_bfd_open (char *name)
c906108c
SS
1605{
1606 bfd *sym_bfd;
1607 int desc;
1608 char *absolute_name;
1609
f1838a98
UW
1610 if (remote_filename_p (name))
1611 {
1612 name = xstrdup (name);
1613 sym_bfd = remote_bfd_open (name, gnutarget);
1614 if (!sym_bfd)
1615 {
1616 make_cleanup (xfree, name);
1617 error (_("`%s': can't open to read symbols: %s."), name,
1618 bfd_errmsg (bfd_get_error ()));
1619 }
1620
1621 if (!bfd_check_format (sym_bfd, bfd_object))
1622 {
1623 bfd_close (sym_bfd);
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628
1629 return sym_bfd;
1630 }
1631
cb2f3a29 1632 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1633
1634 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1635 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1636 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1637#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1638 if (desc < 0)
1639 {
1640 char *exename = alloca (strlen (name) + 5);
433759f7 1641
c906108c 1642 strcat (strcpy (exename, name), ".exe");
014d698b 1643 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1644 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1645 }
1646#endif
1647 if (desc < 0)
1648 {
b8c9b27d 1649 make_cleanup (xfree, name);
c906108c
SS
1650 perror_with_name (name);
1651 }
cb2f3a29
MK
1652
1653 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1654 bfd. It'll be freed in free_objfile(). */
1655 xfree (name);
1656 name = absolute_name;
c906108c 1657
9f76c2cd 1658 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1659 if (!sym_bfd)
1660 {
1661 close (desc);
b8c9b27d 1662 make_cleanup (xfree, name);
f1838a98 1663 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1664 bfd_errmsg (bfd_get_error ()));
1665 }
549c1eea 1666 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1667
1668 if (!bfd_check_format (sym_bfd, bfd_object))
1669 {
cb2f3a29
MK
1670 /* FIXME: should be checking for errors from bfd_close (for one
1671 thing, on error it does not free all the storage associated
1672 with the bfd). */
1673 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1674 make_cleanup (xfree, name);
f1838a98 1675 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1676 bfd_errmsg (bfd_get_error ()));
1677 }
cb2f3a29 1678
4f6f9936
JK
1679 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1680 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1681
cb2f3a29 1682 return sym_bfd;
c906108c
SS
1683}
1684
cb2f3a29
MK
1685/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1686 the section was not found. */
1687
0e931cf0
JB
1688int
1689get_section_index (struct objfile *objfile, char *section_name)
1690{
1691 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1692
0e931cf0
JB
1693 if (sect)
1694 return sect->index;
1695 else
1696 return -1;
1697}
1698
cb2f3a29
MK
1699/* Link SF into the global symtab_fns list. Called on startup by the
1700 _initialize routine in each object file format reader, to register
1701 information about each format the the reader is prepared to
1702 handle. */
c906108c
SS
1703
1704void
fba45db2 1705add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1706{
1707 sf->next = symtab_fns;
1708 symtab_fns = sf;
1709}
1710
cb2f3a29
MK
1711/* Initialize OBJFILE to read symbols from its associated BFD. It
1712 either returns or calls error(). The result is an initialized
1713 struct sym_fns in the objfile structure, that contains cached
1714 information about the symbol file. */
c906108c 1715
31d99776
DJ
1716static struct sym_fns *
1717find_sym_fns (bfd *abfd)
c906108c
SS
1718{
1719 struct sym_fns *sf;
31d99776 1720 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1721
75245b24
MS
1722 if (our_flavour == bfd_target_srec_flavour
1723 || our_flavour == bfd_target_ihex_flavour
1724 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1725 return NULL; /* No symbols. */
75245b24 1726
c5aa993b 1727 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1728 if (our_flavour == sf->sym_flavour)
1729 return sf;
cb2f3a29 1730
8a3fe4f8 1731 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1732 bfd_get_target (abfd));
c906108c
SS
1733}
1734\f
cb2f3a29 1735
c906108c
SS
1736/* This function runs the load command of our current target. */
1737
1738static void
fba45db2 1739load_command (char *arg, int from_tty)
c906108c 1740{
4487aabf
PA
1741 /* The user might be reloading because the binary has changed. Take
1742 this opportunity to check. */
1743 reopen_exec_file ();
1744 reread_symbols ();
1745
c906108c 1746 if (arg == NULL)
1986bccd
AS
1747 {
1748 char *parg;
1749 int count = 0;
1750
1751 parg = arg = get_exec_file (1);
1752
1753 /* Count how many \ " ' tab space there are in the name. */
1754 while ((parg = strpbrk (parg, "\\\"'\t ")))
1755 {
1756 parg++;
1757 count++;
1758 }
1759
1760 if (count)
1761 {
1762 /* We need to quote this string so buildargv can pull it apart. */
1763 char *temp = xmalloc (strlen (arg) + count + 1 );
1764 char *ptemp = temp;
1765 char *prev;
1766
1767 make_cleanup (xfree, temp);
1768
1769 prev = parg = arg;
1770 while ((parg = strpbrk (parg, "\\\"'\t ")))
1771 {
1772 strncpy (ptemp, prev, parg - prev);
1773 ptemp += parg - prev;
1774 prev = parg++;
1775 *ptemp++ = '\\';
1776 }
1777 strcpy (ptemp, prev);
1778
1779 arg = temp;
1780 }
1781 }
1782
c906108c 1783 target_load (arg, from_tty);
2889e661
JB
1784
1785 /* After re-loading the executable, we don't really know which
1786 overlays are mapped any more. */
1787 overlay_cache_invalid = 1;
c906108c
SS
1788}
1789
1790/* This version of "load" should be usable for any target. Currently
1791 it is just used for remote targets, not inftarg.c or core files,
1792 on the theory that only in that case is it useful.
1793
1794 Avoiding xmodem and the like seems like a win (a) because we don't have
1795 to worry about finding it, and (b) On VMS, fork() is very slow and so
1796 we don't want to run a subprocess. On the other hand, I'm not sure how
1797 performance compares. */
917317f4 1798
917317f4
JM
1799static int validate_download = 0;
1800
e4f9b4d5
MS
1801/* Callback service function for generic_load (bfd_map_over_sections). */
1802
1803static void
1804add_section_size_callback (bfd *abfd, asection *asec, void *data)
1805{
1806 bfd_size_type *sum = data;
1807
2c500098 1808 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1809}
1810
1811/* Opaque data for load_section_callback. */
1812struct load_section_data {
1813 unsigned long load_offset;
a76d924d
DJ
1814 struct load_progress_data *progress_data;
1815 VEC(memory_write_request_s) *requests;
1816};
1817
1818/* Opaque data for load_progress. */
1819struct load_progress_data {
1820 /* Cumulative data. */
e4f9b4d5
MS
1821 unsigned long write_count;
1822 unsigned long data_count;
1823 bfd_size_type total_size;
a76d924d
DJ
1824};
1825
1826/* Opaque data for load_progress for a single section. */
1827struct load_progress_section_data {
1828 struct load_progress_data *cumulative;
cf7a04e8 1829
a76d924d 1830 /* Per-section data. */
cf7a04e8
DJ
1831 const char *section_name;
1832 ULONGEST section_sent;
1833 ULONGEST section_size;
1834 CORE_ADDR lma;
1835 gdb_byte *buffer;
e4f9b4d5
MS
1836};
1837
a76d924d 1838/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1839
1840static void
1841load_progress (ULONGEST bytes, void *untyped_arg)
1842{
a76d924d
DJ
1843 struct load_progress_section_data *args = untyped_arg;
1844 struct load_progress_data *totals;
1845
1846 if (args == NULL)
1847 /* Writing padding data. No easy way to get at the cumulative
1848 stats, so just ignore this. */
1849 return;
1850
1851 totals = args->cumulative;
1852
1853 if (bytes == 0 && args->section_sent == 0)
1854 {
1855 /* The write is just starting. Let the user know we've started
1856 this section. */
5af949e3
UW
1857 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1858 args->section_name, hex_string (args->section_size),
1859 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1860 return;
1861 }
cf7a04e8
DJ
1862
1863 if (validate_download)
1864 {
1865 /* Broken memories and broken monitors manifest themselves here
1866 when bring new computers to life. This doubles already slow
1867 downloads. */
1868 /* NOTE: cagney/1999-10-18: A more efficient implementation
1869 might add a verify_memory() method to the target vector and
1870 then use that. remote.c could implement that method using
1871 the ``qCRC'' packet. */
1872 gdb_byte *check = xmalloc (bytes);
1873 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1874
1875 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1876 error (_("Download verify read failed at %s"),
1877 paddress (target_gdbarch, args->lma));
cf7a04e8 1878 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1879 error (_("Download verify compare failed at %s"),
1880 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1881 do_cleanups (verify_cleanups);
1882 }
a76d924d 1883 totals->data_count += bytes;
cf7a04e8
DJ
1884 args->lma += bytes;
1885 args->buffer += bytes;
a76d924d 1886 totals->write_count += 1;
cf7a04e8
DJ
1887 args->section_sent += bytes;
1888 if (quit_flag
1889 || (deprecated_ui_load_progress_hook != NULL
1890 && deprecated_ui_load_progress_hook (args->section_name,
1891 args->section_sent)))
1892 error (_("Canceled the download"));
1893
1894 if (deprecated_show_load_progress != NULL)
1895 deprecated_show_load_progress (args->section_name,
1896 args->section_sent,
1897 args->section_size,
a76d924d
DJ
1898 totals->data_count,
1899 totals->total_size);
cf7a04e8
DJ
1900}
1901
e4f9b4d5
MS
1902/* Callback service function for generic_load (bfd_map_over_sections). */
1903
1904static void
1905load_section_callback (bfd *abfd, asection *asec, void *data)
1906{
a76d924d 1907 struct memory_write_request *new_request;
e4f9b4d5 1908 struct load_section_data *args = data;
a76d924d 1909 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1910 bfd_size_type size = bfd_get_section_size (asec);
1911 gdb_byte *buffer;
cf7a04e8 1912 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1913
cf7a04e8
DJ
1914 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1915 return;
e4f9b4d5 1916
cf7a04e8
DJ
1917 if (size == 0)
1918 return;
e4f9b4d5 1919
a76d924d
DJ
1920 new_request = VEC_safe_push (memory_write_request_s,
1921 args->requests, NULL);
1922 memset (new_request, 0, sizeof (struct memory_write_request));
1923 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1924 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1925 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1926 new_request->data = xmalloc (size);
1927 new_request->baton = section_data;
cf7a04e8 1928
a76d924d 1929 buffer = new_request->data;
cf7a04e8 1930
a76d924d
DJ
1931 section_data->cumulative = args->progress_data;
1932 section_data->section_name = sect_name;
1933 section_data->section_size = size;
1934 section_data->lma = new_request->begin;
1935 section_data->buffer = buffer;
cf7a04e8
DJ
1936
1937 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1938}
1939
1940/* Clean up an entire memory request vector, including load
1941 data and progress records. */
cf7a04e8 1942
a76d924d
DJ
1943static void
1944clear_memory_write_data (void *arg)
1945{
1946 VEC(memory_write_request_s) **vec_p = arg;
1947 VEC(memory_write_request_s) *vec = *vec_p;
1948 int i;
1949 struct memory_write_request *mr;
cf7a04e8 1950
a76d924d
DJ
1951 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1952 {
1953 xfree (mr->data);
1954 xfree (mr->baton);
1955 }
1956 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1957}
1958
c906108c 1959void
917317f4 1960generic_load (char *args, int from_tty)
c906108c 1961{
c906108c 1962 bfd *loadfile_bfd;
2b71414d 1963 struct timeval start_time, end_time;
917317f4 1964 char *filename;
1986bccd 1965 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1966 struct load_section_data cbdata;
a76d924d
DJ
1967 struct load_progress_data total_progress;
1968
e4f9b4d5 1969 CORE_ADDR entry;
1986bccd 1970 char **argv;
e4f9b4d5 1971
a76d924d
DJ
1972 memset (&cbdata, 0, sizeof (cbdata));
1973 memset (&total_progress, 0, sizeof (total_progress));
1974 cbdata.progress_data = &total_progress;
1975
1976 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1977
d1a41061
PP
1978 if (args == NULL)
1979 error_no_arg (_("file to load"));
1986bccd 1980
d1a41061 1981 argv = gdb_buildargv (args);
1986bccd
AS
1982 make_cleanup_freeargv (argv);
1983
1984 filename = tilde_expand (argv[0]);
1985 make_cleanup (xfree, filename);
1986
1987 if (argv[1] != NULL)
917317f4
JM
1988 {
1989 char *endptr;
ba5f2f8a 1990
1986bccd
AS
1991 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1992
1993 /* If the last word was not a valid number then
1994 treat it as a file name with spaces in. */
1995 if (argv[1] == endptr)
1996 error (_("Invalid download offset:%s."), argv[1]);
1997
1998 if (argv[2] != NULL)
1999 error (_("Too many parameters."));
917317f4 2000 }
c906108c 2001
917317f4 2002 /* Open the file for loading. */
c906108c
SS
2003 loadfile_bfd = bfd_openr (filename, gnutarget);
2004 if (loadfile_bfd == NULL)
2005 {
2006 perror_with_name (filename);
2007 return;
2008 }
917317f4 2009
c906108c
SS
2010 /* FIXME: should be checking for errors from bfd_close (for one thing,
2011 on error it does not free all the storage associated with the
2012 bfd). */
5c65bbb6 2013 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2014
c5aa993b 2015 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2016 {
8a3fe4f8 2017 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2018 bfd_errmsg (bfd_get_error ()));
2019 }
c5aa993b 2020
5417f6dc 2021 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2022 (void *) &total_progress.total_size);
2023
2024 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2025
2b71414d 2026 gettimeofday (&start_time, NULL);
c906108c 2027
a76d924d
DJ
2028 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2029 load_progress) != 0)
2030 error (_("Load failed"));
c906108c 2031
2b71414d 2032 gettimeofday (&end_time, NULL);
ba5f2f8a 2033
e4f9b4d5 2034 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2035 ui_out_text (uiout, "Start address ");
5af949e3 2036 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2037 ui_out_text (uiout, ", load size ");
a76d924d 2038 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2039 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2040 /* We were doing this in remote-mips.c, I suspect it is right
2041 for other targets too. */
fb14de7b 2042 regcache_write_pc (get_current_regcache (), entry);
c906108c 2043
38963c97
DJ
2044 /* Reset breakpoints, now that we have changed the load image. For
2045 instance, breakpoints may have been set (or reset, by
2046 post_create_inferior) while connected to the target but before we
2047 loaded the program. In that case, the prologue analyzer could
2048 have read instructions from the target to find the right
2049 breakpoint locations. Loading has changed the contents of that
2050 memory. */
2051
2052 breakpoint_re_set ();
2053
7ca9f392
AC
2054 /* FIXME: are we supposed to call symbol_file_add or not? According
2055 to a comment from remote-mips.c (where a call to symbol_file_add
2056 was commented out), making the call confuses GDB if more than one
2057 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2058 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2059
a76d924d
DJ
2060 print_transfer_performance (gdb_stdout, total_progress.data_count,
2061 total_progress.write_count,
2062 &start_time, &end_time);
c906108c
SS
2063
2064 do_cleanups (old_cleanups);
2065}
2066
2067/* Report how fast the transfer went. */
2068
917317f4
JM
2069/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2070 replaced by print_transfer_performance (with a very different
2071 function signature). */
2072
c906108c 2073void
fba45db2
KB
2074report_transfer_performance (unsigned long data_count, time_t start_time,
2075 time_t end_time)
c906108c 2076{
2b71414d
DJ
2077 struct timeval start, end;
2078
2079 start.tv_sec = start_time;
2080 start.tv_usec = 0;
2081 end.tv_sec = end_time;
2082 end.tv_usec = 0;
2083
2084 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2085}
2086
2087void
d9fcf2fb 2088print_transfer_performance (struct ui_file *stream,
917317f4
JM
2089 unsigned long data_count,
2090 unsigned long write_count,
2b71414d
DJ
2091 const struct timeval *start_time,
2092 const struct timeval *end_time)
917317f4 2093{
9f43d28c 2094 ULONGEST time_count;
2b71414d
DJ
2095
2096 /* Compute the elapsed time in milliseconds, as a tradeoff between
2097 accuracy and overflow. */
2098 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2099 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2100
8b93c638
JM
2101 ui_out_text (uiout, "Transfer rate: ");
2102 if (time_count > 0)
2103 {
9f43d28c
DJ
2104 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2105
2106 if (ui_out_is_mi_like_p (uiout))
2107 {
2108 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2109 ui_out_text (uiout, " bits/sec");
2110 }
2111 else if (rate < 1024)
2112 {
2113 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2114 ui_out_text (uiout, " bytes/sec");
2115 }
2116 else
2117 {
2118 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2119 ui_out_text (uiout, " KB/sec");
2120 }
8b93c638
JM
2121 }
2122 else
2123 {
ba5f2f8a 2124 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2125 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2126 }
2127 if (write_count > 0)
2128 {
2129 ui_out_text (uiout, ", ");
ba5f2f8a 2130 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2131 ui_out_text (uiout, " bytes/write");
2132 }
2133 ui_out_text (uiout, ".\n");
c906108c
SS
2134}
2135
2136/* This function allows the addition of incrementally linked object files.
2137 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2138/* Note: ezannoni 2000-04-13 This function/command used to have a
2139 special case syntax for the rombug target (Rombug is the boot
2140 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2141 rombug case, the user doesn't need to supply a text address,
2142 instead a call to target_link() (in target.c) would supply the
2143 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2144
c906108c 2145static void
fba45db2 2146add_symbol_file_command (char *args, int from_tty)
c906108c 2147{
5af949e3 2148 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2149 char *filename = NULL;
2df3850c 2150 int flags = OBJF_USERLOADED;
c906108c 2151 char *arg;
db162d44 2152 int section_index = 0;
2acceee2
JM
2153 int argcnt = 0;
2154 int sec_num = 0;
2155 int i;
db162d44
EZ
2156 int expecting_sec_name = 0;
2157 int expecting_sec_addr = 0;
5b96932b 2158 char **argv;
db162d44 2159
a39a16c4 2160 struct sect_opt
2acceee2 2161 {
2acceee2
JM
2162 char *name;
2163 char *value;
a39a16c4 2164 };
db162d44 2165
a39a16c4
MM
2166 struct section_addr_info *section_addrs;
2167 struct sect_opt *sect_opts = NULL;
2168 size_t num_sect_opts = 0;
3017564a 2169 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2170
a39a16c4 2171 num_sect_opts = 16;
5417f6dc 2172 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2173 * sizeof (struct sect_opt));
2174
c906108c
SS
2175 dont_repeat ();
2176
2177 if (args == NULL)
8a3fe4f8 2178 error (_("add-symbol-file takes a file name and an address"));
c906108c 2179
d1a41061 2180 argv = gdb_buildargv (args);
5b96932b 2181 make_cleanup_freeargv (argv);
db162d44 2182
5b96932b
AS
2183 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2184 {
2185 /* Process the argument. */
db162d44 2186 if (argcnt == 0)
c906108c 2187 {
db162d44
EZ
2188 /* The first argument is the file name. */
2189 filename = tilde_expand (arg);
3017564a 2190 make_cleanup (xfree, filename);
c906108c 2191 }
db162d44 2192 else
7a78ae4e
ND
2193 if (argcnt == 1)
2194 {
2195 /* The second argument is always the text address at which
2196 to load the program. */
2197 sect_opts[section_index].name = ".text";
2198 sect_opts[section_index].value = arg;
f414f22f 2199 if (++section_index >= num_sect_opts)
a39a16c4
MM
2200 {
2201 num_sect_opts *= 2;
5417f6dc 2202 sect_opts = ((struct sect_opt *)
a39a16c4 2203 xrealloc (sect_opts,
5417f6dc 2204 num_sect_opts
a39a16c4
MM
2205 * sizeof (struct sect_opt)));
2206 }
7a78ae4e
ND
2207 }
2208 else
2209 {
2210 /* It's an option (starting with '-') or it's an argument
2211 to an option */
2212
2213 if (*arg == '-')
2214 {
78a4a9b9
AC
2215 if (strcmp (arg, "-readnow") == 0)
2216 flags |= OBJF_READNOW;
2217 else if (strcmp (arg, "-s") == 0)
2218 {
2219 expecting_sec_name = 1;
2220 expecting_sec_addr = 1;
2221 }
7a78ae4e
ND
2222 }
2223 else
2224 {
2225 if (expecting_sec_name)
db162d44 2226 {
7a78ae4e
ND
2227 sect_opts[section_index].name = arg;
2228 expecting_sec_name = 0;
db162d44
EZ
2229 }
2230 else
7a78ae4e
ND
2231 if (expecting_sec_addr)
2232 {
2233 sect_opts[section_index].value = arg;
2234 expecting_sec_addr = 0;
f414f22f 2235 if (++section_index >= num_sect_opts)
a39a16c4
MM
2236 {
2237 num_sect_opts *= 2;
5417f6dc 2238 sect_opts = ((struct sect_opt *)
a39a16c4 2239 xrealloc (sect_opts,
5417f6dc 2240 num_sect_opts
a39a16c4
MM
2241 * sizeof (struct sect_opt)));
2242 }
7a78ae4e
ND
2243 }
2244 else
8a3fe4f8 2245 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2246 }
2247 }
c906108c 2248 }
c906108c 2249
927890d0
JB
2250 /* This command takes at least two arguments. The first one is a
2251 filename, and the second is the address where this file has been
2252 loaded. Abort now if this address hasn't been provided by the
2253 user. */
2254 if (section_index < 1)
2255 error (_("The address where %s has been loaded is missing"), filename);
2256
db162d44
EZ
2257 /* Print the prompt for the query below. And save the arguments into
2258 a sect_addr_info structure to be passed around to other
2259 functions. We have to split this up into separate print
bb599908 2260 statements because hex_string returns a local static
db162d44 2261 string. */
5417f6dc 2262
a3f17187 2263 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2264 section_addrs = alloc_section_addr_info (section_index);
2265 make_cleanup (xfree, section_addrs);
db162d44 2266 for (i = 0; i < section_index; i++)
c906108c 2267 {
db162d44
EZ
2268 CORE_ADDR addr;
2269 char *val = sect_opts[i].value;
2270 char *sec = sect_opts[i].name;
5417f6dc 2271
ae822768 2272 addr = parse_and_eval_address (val);
db162d44 2273
db162d44
EZ
2274 /* Here we store the section offsets in the order they were
2275 entered on the command line. */
a39a16c4
MM
2276 section_addrs->other[sec_num].name = sec;
2277 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2278 printf_unfiltered ("\t%s_addr = %s\n", sec,
2279 paddress (gdbarch, addr));
db162d44
EZ
2280 sec_num++;
2281
5417f6dc 2282 /* The object's sections are initialized when a
db162d44 2283 call is made to build_objfile_section_table (objfile).
5417f6dc 2284 This happens in reread_symbols.
db162d44
EZ
2285 At this point, we don't know what file type this is,
2286 so we can't determine what section names are valid. */
2acceee2 2287 }
db162d44 2288
2acceee2 2289 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2290 error (_("Not confirmed."));
c906108c 2291
7eedccfa
PP
2292 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2293 section_addrs, flags);
c906108c
SS
2294
2295 /* Getting new symbols may change our opinion about what is
2296 frameless. */
2297 reinit_frame_cache ();
db162d44 2298 do_cleanups (my_cleanups);
c906108c
SS
2299}
2300\f
70992597 2301
c906108c
SS
2302/* Re-read symbols if a symbol-file has changed. */
2303void
fba45db2 2304reread_symbols (void)
c906108c
SS
2305{
2306 struct objfile *objfile;
2307 long new_modtime;
2308 int reread_one = 0;
2309 struct stat new_statbuf;
2310 int res;
2311
2312 /* With the addition of shared libraries, this should be modified,
2313 the load time should be saved in the partial symbol tables, since
2314 different tables may come from different source files. FIXME.
2315 This routine should then walk down each partial symbol table
2316 and see if the symbol table that it originates from has been changed */
2317
c5aa993b
JM
2318 for (objfile = object_files; objfile; objfile = objfile->next)
2319 {
9cce227f
TG
2320 /* solib-sunos.c creates one objfile with obfd. */
2321 if (objfile->obfd == NULL)
2322 continue;
2323
2324 /* Separate debug objfiles are handled in the main objfile. */
2325 if (objfile->separate_debug_objfile_backlink)
2326 continue;
2327
02aeec7b
JB
2328 /* If this object is from an archive (what you usually create with
2329 `ar', often called a `static library' on most systems, though
2330 a `shared library' on AIX is also an archive), then you should
2331 stat on the archive name, not member name. */
9cce227f
TG
2332 if (objfile->obfd->my_archive)
2333 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2334 else
9cce227f
TG
2335 res = stat (objfile->name, &new_statbuf);
2336 if (res != 0)
2337 {
2338 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2339 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2340 objfile->name);
2341 continue;
2342 }
2343 new_modtime = new_statbuf.st_mtime;
2344 if (new_modtime != objfile->mtime)
2345 {
2346 struct cleanup *old_cleanups;
2347 struct section_offsets *offsets;
2348 int num_offsets;
2349 char *obfd_filename;
2350
2351 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2352 objfile->name);
2353
2354 /* There are various functions like symbol_file_add,
2355 symfile_bfd_open, syms_from_objfile, etc., which might
2356 appear to do what we want. But they have various other
2357 effects which we *don't* want. So we just do stuff
2358 ourselves. We don't worry about mapped files (for one thing,
2359 any mapped file will be out of date). */
2360
2361 /* If we get an error, blow away this objfile (not sure if
2362 that is the correct response for things like shared
2363 libraries). */
2364 old_cleanups = make_cleanup_free_objfile (objfile);
2365 /* We need to do this whenever any symbols go away. */
2366 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2367
2368 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2369 bfd_get_filename (exec_bfd)) == 0)
2370 {
2371 /* Reload EXEC_BFD without asking anything. */
2372
2373 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2374 }
2375
2376 /* Clean up any state BFD has sitting around. We don't need
2377 to close the descriptor but BFD lacks a way of closing the
2378 BFD without closing the descriptor. */
2379 obfd_filename = bfd_get_filename (objfile->obfd);
2380 if (!bfd_close (objfile->obfd))
2381 error (_("Can't close BFD for %s: %s"), objfile->name,
2382 bfd_errmsg (bfd_get_error ()));
874f5765 2383 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2384 if (objfile->obfd == NULL)
2385 error (_("Can't open %s to read symbols."), objfile->name);
2386 else
2387 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2388 /* bfd_openr sets cacheable to true, which is what we want. */
2389 if (!bfd_check_format (objfile->obfd, bfd_object))
2390 error (_("Can't read symbols from %s: %s."), objfile->name,
2391 bfd_errmsg (bfd_get_error ()));
2392
2393 /* Save the offsets, we will nuke them with the rest of the
2394 objfile_obstack. */
2395 num_offsets = objfile->num_sections;
2396 offsets = ((struct section_offsets *)
2397 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2398 memcpy (offsets, objfile->section_offsets,
2399 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2400
2401 /* Remove any references to this objfile in the global
2402 value lists. */
2403 preserve_values (objfile);
2404
2405 /* Nuke all the state that we will re-read. Much of the following
2406 code which sets things to NULL really is necessary to tell
2407 other parts of GDB that there is nothing currently there.
2408
2409 Try to keep the freeing order compatible with free_objfile. */
2410
2411 if (objfile->sf != NULL)
2412 {
2413 (*objfile->sf->sym_finish) (objfile);
2414 }
2415
2416 clear_objfile_data (objfile);
2417
15d123c9 2418 /* Free the separate debug objfiles. It will be
9cce227f 2419 automatically recreated by sym_read. */
15d123c9 2420 free_objfile_separate_debug (objfile);
9cce227f
TG
2421
2422 /* FIXME: Do we have to free a whole linked list, or is this
2423 enough? */
2424 if (objfile->global_psymbols.list)
2425 xfree (objfile->global_psymbols.list);
2426 memset (&objfile->global_psymbols, 0,
2427 sizeof (objfile->global_psymbols));
2428 if (objfile->static_psymbols.list)
2429 xfree (objfile->static_psymbols.list);
2430 memset (&objfile->static_psymbols, 0,
2431 sizeof (objfile->static_psymbols));
2432
2433 /* Free the obstacks for non-reusable objfiles */
710e1a31
SW
2434 psymbol_bcache_free (objfile->psymbol_cache);
2435 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2436 bcache_xfree (objfile->macro_cache);
cbd70537 2437 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2438 bcache_xfree (objfile->filename_cache);
cbd70537 2439 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2440 if (objfile->demangled_names_hash != NULL)
2441 {
2442 htab_delete (objfile->demangled_names_hash);
2443 objfile->demangled_names_hash = NULL;
2444 }
2445 obstack_free (&objfile->objfile_obstack, 0);
2446 objfile->sections = NULL;
2447 objfile->symtabs = NULL;
2448 objfile->psymtabs = NULL;
2449 objfile->psymtabs_addrmap = NULL;
2450 objfile->free_psymtabs = NULL;
2451 objfile->cp_namespace_symtab = NULL;
34eaf542 2452 objfile->template_symbols = NULL;
9cce227f
TG
2453 objfile->msymbols = NULL;
2454 objfile->deprecated_sym_private = NULL;
2455 objfile->minimal_symbol_count = 0;
2456 memset (&objfile->msymbol_hash, 0,
2457 sizeof (objfile->msymbol_hash));
2458 memset (&objfile->msymbol_demangled_hash, 0,
2459 sizeof (objfile->msymbol_demangled_hash));
2460
710e1a31 2461 objfile->psymbol_cache = psymbol_bcache_init ();
cbd70537
SW
2462 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2463 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
9cce227f
TG
2464 /* obstack_init also initializes the obstack so it is
2465 empty. We could use obstack_specify_allocation but
2466 gdb_obstack.h specifies the alloc/dealloc
2467 functions. */
2468 obstack_init (&objfile->objfile_obstack);
2469 if (build_objfile_section_table (objfile))
2470 {
2471 error (_("Can't find the file sections in `%s': %s"),
2472 objfile->name, bfd_errmsg (bfd_get_error ()));
2473 }
2474 terminate_minimal_symbol_table (objfile);
2475
2476 /* We use the same section offsets as from last time. I'm not
2477 sure whether that is always correct for shared libraries. */
2478 objfile->section_offsets = (struct section_offsets *)
2479 obstack_alloc (&objfile->objfile_obstack,
2480 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2481 memcpy (objfile->section_offsets, offsets,
2482 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2483 objfile->num_sections = num_offsets;
2484
2485 /* What the hell is sym_new_init for, anyway? The concept of
2486 distinguishing between the main file and additional files
2487 in this way seems rather dubious. */
2488 if (objfile == symfile_objfile)
c906108c 2489 {
9cce227f 2490 (*objfile->sf->sym_new_init) (objfile);
c906108c 2491 }
9cce227f
TG
2492
2493 (*objfile->sf->sym_init) (objfile);
2494 clear_complaints (&symfile_complaints, 1, 1);
2495 /* Do not set flags as this is safe and we don't want to be
2496 verbose. */
2497 (*objfile->sf->sym_read) (objfile, 0);
2498 if (!objfile_has_symbols (objfile))
c906108c 2499 {
9cce227f
TG
2500 wrap_here ("");
2501 printf_unfiltered (_("(no debugging symbols found)\n"));
2502 wrap_here ("");
c5aa993b 2503 }
9cce227f
TG
2504
2505 /* We're done reading the symbol file; finish off complaints. */
2506 clear_complaints (&symfile_complaints, 0, 1);
2507
2508 /* Getting new symbols may change our opinion about what is
2509 frameless. */
2510
2511 reinit_frame_cache ();
2512
2513 /* Discard cleanups as symbol reading was successful. */
2514 discard_cleanups (old_cleanups);
2515
2516 /* If the mtime has changed between the time we set new_modtime
2517 and now, we *want* this to be out of date, so don't call stat
2518 again now. */
2519 objfile->mtime = new_modtime;
2520 reread_one = 1;
2521 init_entry_point_info (objfile);
c906108c
SS
2522 }
2523 }
c906108c
SS
2524
2525 if (reread_one)
ea53e89f 2526 {
ff3536bc
UW
2527 /* Notify objfiles that we've modified objfile sections. */
2528 objfiles_changed ();
2529
ea53e89f
JB
2530 clear_symtab_users ();
2531 /* At least one objfile has changed, so we can consider that
2532 the executable we're debugging has changed too. */
781b42b0 2533 observer_notify_executable_changed ();
ea53e89f 2534 }
c906108c 2535}
c906108c
SS
2536\f
2537
c5aa993b
JM
2538
2539typedef struct
2540{
2541 char *ext;
c906108c 2542 enum language lang;
c5aa993b
JM
2543}
2544filename_language;
c906108c 2545
c5aa993b 2546static filename_language *filename_language_table;
c906108c
SS
2547static int fl_table_size, fl_table_next;
2548
2549static void
fba45db2 2550add_filename_language (char *ext, enum language lang)
c906108c
SS
2551{
2552 if (fl_table_next >= fl_table_size)
2553 {
2554 fl_table_size += 10;
5417f6dc 2555 filename_language_table =
25bf3106
PM
2556 xrealloc (filename_language_table,
2557 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2558 }
2559
4fcf66da 2560 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2561 filename_language_table[fl_table_next].lang = lang;
2562 fl_table_next++;
2563}
2564
2565static char *ext_args;
920d2a44
AC
2566static void
2567show_ext_args (struct ui_file *file, int from_tty,
2568 struct cmd_list_element *c, const char *value)
2569{
2570 fprintf_filtered (file, _("\
2571Mapping between filename extension and source language is \"%s\".\n"),
2572 value);
2573}
c906108c
SS
2574
2575static void
26c41df3 2576set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2577{
2578 int i;
2579 char *cp = ext_args;
2580 enum language lang;
2581
2582 /* First arg is filename extension, starting with '.' */
2583 if (*cp != '.')
8a3fe4f8 2584 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2585
2586 /* Find end of first arg. */
c5aa993b 2587 while (*cp && !isspace (*cp))
c906108c
SS
2588 cp++;
2589
2590 if (*cp == '\0')
8a3fe4f8 2591 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2592 ext_args);
2593
2594 /* Null-terminate first arg */
c5aa993b 2595 *cp++ = '\0';
c906108c
SS
2596
2597 /* Find beginning of second arg, which should be a source language. */
2598 while (*cp && isspace (*cp))
2599 cp++;
2600
2601 if (*cp == '\0')
8a3fe4f8 2602 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2603 ext_args);
2604
2605 /* Lookup the language from among those we know. */
2606 lang = language_enum (cp);
2607
2608 /* Now lookup the filename extension: do we already know it? */
2609 for (i = 0; i < fl_table_next; i++)
2610 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2611 break;
2612
2613 if (i >= fl_table_next)
2614 {
2615 /* new file extension */
2616 add_filename_language (ext_args, lang);
2617 }
2618 else
2619 {
2620 /* redefining a previously known filename extension */
2621
2622 /* if (from_tty) */
2623 /* query ("Really make files of type %s '%s'?", */
2624 /* ext_args, language_str (lang)); */
2625
b8c9b27d 2626 xfree (filename_language_table[i].ext);
4fcf66da 2627 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2628 filename_language_table[i].lang = lang;
2629 }
2630}
2631
2632static void
fba45db2 2633info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2634{
2635 int i;
2636
a3f17187 2637 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2638 printf_filtered ("\n\n");
2639 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2640 printf_filtered ("\t%s\t- %s\n",
2641 filename_language_table[i].ext,
c906108c
SS
2642 language_str (filename_language_table[i].lang));
2643}
2644
2645static void
fba45db2 2646init_filename_language_table (void)
c906108c
SS
2647{
2648 if (fl_table_size == 0) /* protect against repetition */
2649 {
2650 fl_table_size = 20;
2651 fl_table_next = 0;
c5aa993b 2652 filename_language_table =
c906108c 2653 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2654 add_filename_language (".c", language_c);
6aecb9c2 2655 add_filename_language (".d", language_d);
c5aa993b
JM
2656 add_filename_language (".C", language_cplus);
2657 add_filename_language (".cc", language_cplus);
2658 add_filename_language (".cp", language_cplus);
2659 add_filename_language (".cpp", language_cplus);
2660 add_filename_language (".cxx", language_cplus);
2661 add_filename_language (".c++", language_cplus);
2662 add_filename_language (".java", language_java);
c906108c 2663 add_filename_language (".class", language_java);
da2cf7e0 2664 add_filename_language (".m", language_objc);
c5aa993b
JM
2665 add_filename_language (".f", language_fortran);
2666 add_filename_language (".F", language_fortran);
fd5700c7
JK
2667 add_filename_language (".for", language_fortran);
2668 add_filename_language (".FOR", language_fortran);
2669 add_filename_language (".ftn", language_fortran);
2670 add_filename_language (".FTN", language_fortran);
2671 add_filename_language (".fpp", language_fortran);
2672 add_filename_language (".FPP", language_fortran);
2673 add_filename_language (".f90", language_fortran);
2674 add_filename_language (".F90", language_fortran);
2675 add_filename_language (".f95", language_fortran);
2676 add_filename_language (".F95", language_fortran);
2677 add_filename_language (".f03", language_fortran);
2678 add_filename_language (".F03", language_fortran);
2679 add_filename_language (".f08", language_fortran);
2680 add_filename_language (".F08", language_fortran);
c5aa993b 2681 add_filename_language (".s", language_asm);
aa707ed0 2682 add_filename_language (".sx", language_asm);
c5aa993b 2683 add_filename_language (".S", language_asm);
c6fd39cd
PM
2684 add_filename_language (".pas", language_pascal);
2685 add_filename_language (".p", language_pascal);
2686 add_filename_language (".pp", language_pascal);
963a6417
PH
2687 add_filename_language (".adb", language_ada);
2688 add_filename_language (".ads", language_ada);
2689 add_filename_language (".a", language_ada);
2690 add_filename_language (".ada", language_ada);
dde59185 2691 add_filename_language (".dg", language_ada);
c906108c
SS
2692 }
2693}
2694
2695enum language
dd786858 2696deduce_language_from_filename (const char *filename)
c906108c
SS
2697{
2698 int i;
2699 char *cp;
2700
2701 if (filename != NULL)
2702 if ((cp = strrchr (filename, '.')) != NULL)
2703 for (i = 0; i < fl_table_next; i++)
2704 if (strcmp (cp, filename_language_table[i].ext) == 0)
2705 return filename_language_table[i].lang;
2706
2707 return language_unknown;
2708}
2709\f
2710/* allocate_symtab:
2711
2712 Allocate and partly initialize a new symbol table. Return a pointer
2713 to it. error() if no space.
2714
2715 Caller must set these fields:
c5aa993b
JM
2716 LINETABLE(symtab)
2717 symtab->blockvector
2718 symtab->dirname
2719 symtab->free_code
2720 symtab->free_ptr
c906108c
SS
2721 */
2722
2723struct symtab *
fba45db2 2724allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2725{
52f0bd74 2726 struct symtab *symtab;
c906108c
SS
2727
2728 symtab = (struct symtab *)
4a146b47 2729 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2730 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2731 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2732 objfile->filename_cache);
c5aa993b
JM
2733 symtab->fullname = NULL;
2734 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2735 symtab->debugformat = "unknown";
c906108c
SS
2736
2737 /* Hook it to the objfile it comes from */
2738
c5aa993b
JM
2739 symtab->objfile = objfile;
2740 symtab->next = objfile->symtabs;
2741 objfile->symtabs = symtab;
c906108c 2742
c906108c
SS
2743 return (symtab);
2744}
c906108c 2745\f
c5aa993b 2746
c906108c
SS
2747/* Reset all data structures in gdb which may contain references to symbol
2748 table data. */
2749
2750void
fba45db2 2751clear_symtab_users (void)
c906108c
SS
2752{
2753 /* Someday, we should do better than this, by only blowing away
2754 the things that really need to be blown. */
c0501be5
DJ
2755
2756 /* Clear the "current" symtab first, because it is no longer valid.
2757 breakpoint_re_set may try to access the current symtab. */
2758 clear_current_source_symtab_and_line ();
2759
c906108c 2760 clear_displays ();
c906108c 2761 breakpoint_re_set ();
6c95b8df 2762 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2763 clear_pc_function_cache ();
06d3b283 2764 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2765
2766 /* Clear globals which might have pointed into a removed objfile.
2767 FIXME: It's not clear which of these are supposed to persist
2768 between expressions and which ought to be reset each time. */
2769 expression_context_block = NULL;
2770 innermost_block = NULL;
8756216b
DP
2771
2772 /* Varobj may refer to old symbols, perform a cleanup. */
2773 varobj_invalidate ();
2774
c906108c
SS
2775}
2776
74b7792f
AC
2777static void
2778clear_symtab_users_cleanup (void *ignore)
2779{
2780 clear_symtab_users ();
2781}
c906108c 2782\f
c906108c
SS
2783/* OVERLAYS:
2784 The following code implements an abstraction for debugging overlay sections.
2785
2786 The target model is as follows:
2787 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2788 same VMA, each with its own unique LMA (or load address).
c906108c 2789 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2790 sections, one by one, from the load address into the VMA address.
5417f6dc 2791 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2792 sections should be considered to be mapped from the VMA to the LMA.
2793 This information is used for symbol lookup, and memory read/write.
5417f6dc 2794 For instance, if a section has been mapped then its contents
c5aa993b 2795 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2796
2797 Two levels of debugger support for overlays are available. One is
2798 "manual", in which the debugger relies on the user to tell it which
2799 overlays are currently mapped. This level of support is
2800 implemented entirely in the core debugger, and the information about
2801 whether a section is mapped is kept in the objfile->obj_section table.
2802
2803 The second level of support is "automatic", and is only available if
2804 the target-specific code provides functionality to read the target's
2805 overlay mapping table, and translate its contents for the debugger
2806 (by updating the mapped state information in the obj_section tables).
2807
2808 The interface is as follows:
c5aa993b
JM
2809 User commands:
2810 overlay map <name> -- tell gdb to consider this section mapped
2811 overlay unmap <name> -- tell gdb to consider this section unmapped
2812 overlay list -- list the sections that GDB thinks are mapped
2813 overlay read-target -- get the target's state of what's mapped
2814 overlay off/manual/auto -- set overlay debugging state
2815 Functional interface:
2816 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2817 section, return that section.
5417f6dc 2818 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2819 the pc, either in its VMA or its LMA
714835d5 2820 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2821 section_is_overlay(sect): true if section's VMA != LMA
2822 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2823 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2824 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2825 overlay_mapped_address(...): map an address from section's LMA to VMA
2826 overlay_unmapped_address(...): map an address from section's VMA to LMA
2827 symbol_overlayed_address(...): Return a "current" address for symbol:
2828 either in VMA or LMA depending on whether
2829 the symbol's section is currently mapped
c906108c
SS
2830 */
2831
2832/* Overlay debugging state: */
2833
d874f1e2 2834enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2835int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2836
c906108c 2837/* Function: section_is_overlay (SECTION)
5417f6dc 2838 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2839 SECTION is loaded at an address different from where it will "run". */
2840
2841int
714835d5 2842section_is_overlay (struct obj_section *section)
c906108c 2843{
714835d5
UW
2844 if (overlay_debugging && section)
2845 {
2846 bfd *abfd = section->objfile->obfd;
2847 asection *bfd_section = section->the_bfd_section;
2848
2849 if (bfd_section_lma (abfd, bfd_section) != 0
2850 && bfd_section_lma (abfd, bfd_section)
2851 != bfd_section_vma (abfd, bfd_section))
2852 return 1;
2853 }
c906108c
SS
2854
2855 return 0;
2856}
2857
2858/* Function: overlay_invalidate_all (void)
2859 Invalidate the mapped state of all overlay sections (mark it as stale). */
2860
2861static void
fba45db2 2862overlay_invalidate_all (void)
c906108c 2863{
c5aa993b 2864 struct objfile *objfile;
c906108c
SS
2865 struct obj_section *sect;
2866
2867 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2868 if (section_is_overlay (sect))
2869 sect->ovly_mapped = -1;
c906108c
SS
2870}
2871
714835d5 2872/* Function: section_is_mapped (SECTION)
5417f6dc 2873 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2874
2875 Access to the ovly_mapped flag is restricted to this function, so
2876 that we can do automatic update. If the global flag
2877 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2878 overlay_invalidate_all. If the mapped state of the particular
2879 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2880
714835d5
UW
2881int
2882section_is_mapped (struct obj_section *osect)
c906108c 2883{
9216df95
UW
2884 struct gdbarch *gdbarch;
2885
714835d5 2886 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2887 return 0;
2888
c5aa993b 2889 switch (overlay_debugging)
c906108c
SS
2890 {
2891 default:
d874f1e2 2892 case ovly_off:
c5aa993b 2893 return 0; /* overlay debugging off */
d874f1e2 2894 case ovly_auto: /* overlay debugging automatic */
1c772458 2895 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2896 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2897 gdbarch = get_objfile_arch (osect->objfile);
2898 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2899 {
2900 if (overlay_cache_invalid)
2901 {
2902 overlay_invalidate_all ();
2903 overlay_cache_invalid = 0;
2904 }
2905 if (osect->ovly_mapped == -1)
9216df95 2906 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2907 }
2908 /* fall thru to manual case */
d874f1e2 2909 case ovly_on: /* overlay debugging manual */
c906108c
SS
2910 return osect->ovly_mapped == 1;
2911 }
2912}
2913
c906108c
SS
2914/* Function: pc_in_unmapped_range
2915 If PC falls into the lma range of SECTION, return true, else false. */
2916
2917CORE_ADDR
714835d5 2918pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2919{
714835d5
UW
2920 if (section_is_overlay (section))
2921 {
2922 bfd *abfd = section->objfile->obfd;
2923 asection *bfd_section = section->the_bfd_section;
fbd35540 2924
714835d5
UW
2925 /* We assume the LMA is relocated by the same offset as the VMA. */
2926 bfd_vma size = bfd_get_section_size (bfd_section);
2927 CORE_ADDR offset = obj_section_offset (section);
2928
2929 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2930 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2931 return 1;
2932 }
c906108c 2933
c906108c
SS
2934 return 0;
2935}
2936
2937/* Function: pc_in_mapped_range
2938 If PC falls into the vma range of SECTION, return true, else false. */
2939
2940CORE_ADDR
714835d5 2941pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2942{
714835d5
UW
2943 if (section_is_overlay (section))
2944 {
2945 if (obj_section_addr (section) <= pc
2946 && pc < obj_section_endaddr (section))
2947 return 1;
2948 }
c906108c 2949
c906108c
SS
2950 return 0;
2951}
2952
9ec8e6a0
JB
2953
2954/* Return true if the mapped ranges of sections A and B overlap, false
2955 otherwise. */
b9362cc7 2956static int
714835d5 2957sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2958{
714835d5
UW
2959 CORE_ADDR a_start = obj_section_addr (a);
2960 CORE_ADDR a_end = obj_section_endaddr (a);
2961 CORE_ADDR b_start = obj_section_addr (b);
2962 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2963
2964 return (a_start < b_end && b_start < a_end);
2965}
2966
c906108c
SS
2967/* Function: overlay_unmapped_address (PC, SECTION)
2968 Returns the address corresponding to PC in the unmapped (load) range.
2969 May be the same as PC. */
2970
2971CORE_ADDR
714835d5 2972overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2973{
714835d5
UW
2974 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2975 {
2976 bfd *abfd = section->objfile->obfd;
2977 asection *bfd_section = section->the_bfd_section;
fbd35540 2978
714835d5
UW
2979 return pc + bfd_section_lma (abfd, bfd_section)
2980 - bfd_section_vma (abfd, bfd_section);
2981 }
c906108c
SS
2982
2983 return pc;
2984}
2985
2986/* Function: overlay_mapped_address (PC, SECTION)
2987 Returns the address corresponding to PC in the mapped (runtime) range.
2988 May be the same as PC. */
2989
2990CORE_ADDR
714835d5 2991overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2992{
714835d5
UW
2993 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2994 {
2995 bfd *abfd = section->objfile->obfd;
2996 asection *bfd_section = section->the_bfd_section;
fbd35540 2997
714835d5
UW
2998 return pc + bfd_section_vma (abfd, bfd_section)
2999 - bfd_section_lma (abfd, bfd_section);
3000 }
c906108c
SS
3001
3002 return pc;
3003}
3004
3005
5417f6dc 3006/* Function: symbol_overlayed_address
c906108c
SS
3007 Return one of two addresses (relative to the VMA or to the LMA),
3008 depending on whether the section is mapped or not. */
3009
c5aa993b 3010CORE_ADDR
714835d5 3011symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3012{
3013 if (overlay_debugging)
3014 {
3015 /* If the symbol has no section, just return its regular address. */
3016 if (section == 0)
3017 return address;
3018 /* If the symbol's section is not an overlay, just return its address */
3019 if (!section_is_overlay (section))
3020 return address;
3021 /* If the symbol's section is mapped, just return its address */
3022 if (section_is_mapped (section))
3023 return address;
3024 /*
3025 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3026 * then return its LOADED address rather than its vma address!!
3027 */
3028 return overlay_unmapped_address (address, section);
3029 }
3030 return address;
3031}
3032
5417f6dc 3033/* Function: find_pc_overlay (PC)
c906108c
SS
3034 Return the best-match overlay section for PC:
3035 If PC matches a mapped overlay section's VMA, return that section.
3036 Else if PC matches an unmapped section's VMA, return that section.
3037 Else if PC matches an unmapped section's LMA, return that section. */
3038
714835d5 3039struct obj_section *
fba45db2 3040find_pc_overlay (CORE_ADDR pc)
c906108c 3041{
c5aa993b 3042 struct objfile *objfile;
c906108c
SS
3043 struct obj_section *osect, *best_match = NULL;
3044
3045 if (overlay_debugging)
3046 ALL_OBJSECTIONS (objfile, osect)
714835d5 3047 if (section_is_overlay (osect))
c5aa993b 3048 {
714835d5 3049 if (pc_in_mapped_range (pc, osect))
c5aa993b 3050 {
714835d5
UW
3051 if (section_is_mapped (osect))
3052 return osect;
c5aa993b
JM
3053 else
3054 best_match = osect;
3055 }
714835d5 3056 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3057 best_match = osect;
3058 }
714835d5 3059 return best_match;
c906108c
SS
3060}
3061
3062/* Function: find_pc_mapped_section (PC)
5417f6dc 3063 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3064 currently marked as MAPPED, return that section. Else return NULL. */
3065
714835d5 3066struct obj_section *
fba45db2 3067find_pc_mapped_section (CORE_ADDR pc)
c906108c 3068{
c5aa993b 3069 struct objfile *objfile;
c906108c
SS
3070 struct obj_section *osect;
3071
3072 if (overlay_debugging)
3073 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3074 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3075 return osect;
c906108c
SS
3076
3077 return NULL;
3078}
3079
3080/* Function: list_overlays_command
3081 Print a list of mapped sections and their PC ranges */
3082
3083void
fba45db2 3084list_overlays_command (char *args, int from_tty)
c906108c 3085{
c5aa993b
JM
3086 int nmapped = 0;
3087 struct objfile *objfile;
c906108c
SS
3088 struct obj_section *osect;
3089
3090 if (overlay_debugging)
3091 ALL_OBJSECTIONS (objfile, osect)
714835d5 3092 if (section_is_mapped (osect))
c5aa993b 3093 {
5af949e3 3094 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3095 const char *name;
3096 bfd_vma lma, vma;
3097 int size;
3098
3099 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3100 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3101 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3102 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3103
3104 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3105 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3106 puts_filtered (" - ");
5af949e3 3107 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3108 printf_filtered (", mapped at ");
5af949e3 3109 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3110 puts_filtered (" - ");
5af949e3 3111 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3112 puts_filtered ("\n");
3113
3114 nmapped++;
3115 }
c906108c 3116 if (nmapped == 0)
a3f17187 3117 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3118}
3119
3120/* Function: map_overlay_command
3121 Mark the named section as mapped (ie. residing at its VMA address). */
3122
3123void
fba45db2 3124map_overlay_command (char *args, int from_tty)
c906108c 3125{
c5aa993b
JM
3126 struct objfile *objfile, *objfile2;
3127 struct obj_section *sec, *sec2;
c906108c
SS
3128
3129 if (!overlay_debugging)
8a3fe4f8 3130 error (_("\
515ad16c 3131Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3132the 'overlay manual' command."));
c906108c
SS
3133
3134 if (args == 0 || *args == 0)
8a3fe4f8 3135 error (_("Argument required: name of an overlay section"));
c906108c
SS
3136
3137 /* First, find a section matching the user supplied argument */
3138 ALL_OBJSECTIONS (objfile, sec)
3139 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3140 {
3141 /* Now, check to see if the section is an overlay. */
714835d5 3142 if (!section_is_overlay (sec))
c5aa993b
JM
3143 continue; /* not an overlay section */
3144
3145 /* Mark the overlay as "mapped" */
3146 sec->ovly_mapped = 1;
3147
3148 /* Next, make a pass and unmap any sections that are
3149 overlapped by this new section: */
3150 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3151 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3152 {
3153 if (info_verbose)
a3f17187 3154 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3155 bfd_section_name (objfile->obfd,
3156 sec2->the_bfd_section));
3157 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3158 }
3159 return;
3160 }
8a3fe4f8 3161 error (_("No overlay section called %s"), args);
c906108c
SS
3162}
3163
3164/* Function: unmap_overlay_command
5417f6dc 3165 Mark the overlay section as unmapped
c906108c
SS
3166 (ie. resident in its LMA address range, rather than the VMA range). */
3167
3168void
fba45db2 3169unmap_overlay_command (char *args, int from_tty)
c906108c 3170{
c5aa993b 3171 struct objfile *objfile;
c906108c
SS
3172 struct obj_section *sec;
3173
3174 if (!overlay_debugging)
8a3fe4f8 3175 error (_("\
515ad16c 3176Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3177the 'overlay manual' command."));
c906108c
SS
3178
3179 if (args == 0 || *args == 0)
8a3fe4f8 3180 error (_("Argument required: name of an overlay section"));
c906108c
SS
3181
3182 /* First, find a section matching the user supplied argument */
3183 ALL_OBJSECTIONS (objfile, sec)
3184 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3185 {
3186 if (!sec->ovly_mapped)
8a3fe4f8 3187 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3188 sec->ovly_mapped = 0;
3189 return;
3190 }
8a3fe4f8 3191 error (_("No overlay section called %s"), args);
c906108c
SS
3192}
3193
3194/* Function: overlay_auto_command
3195 A utility command to turn on overlay debugging.
3196 Possibly this should be done via a set/show command. */
3197
3198static void
fba45db2 3199overlay_auto_command (char *args, int from_tty)
c906108c 3200{
d874f1e2 3201 overlay_debugging = ovly_auto;
1900040c 3202 enable_overlay_breakpoints ();
c906108c 3203 if (info_verbose)
a3f17187 3204 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3205}
3206
3207/* Function: overlay_manual_command
3208 A utility command to turn on overlay debugging.
3209 Possibly this should be done via a set/show command. */
3210
3211static void
fba45db2 3212overlay_manual_command (char *args, int from_tty)
c906108c 3213{
d874f1e2 3214 overlay_debugging = ovly_on;
1900040c 3215 disable_overlay_breakpoints ();
c906108c 3216 if (info_verbose)
a3f17187 3217 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3218}
3219
3220/* Function: overlay_off_command
3221 A utility command to turn on overlay debugging.
3222 Possibly this should be done via a set/show command. */
3223
3224static void
fba45db2 3225overlay_off_command (char *args, int from_tty)
c906108c 3226{
d874f1e2 3227 overlay_debugging = ovly_off;
1900040c 3228 disable_overlay_breakpoints ();
c906108c 3229 if (info_verbose)
a3f17187 3230 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3231}
3232
3233static void
fba45db2 3234overlay_load_command (char *args, int from_tty)
c906108c 3235{
e17c207e
UW
3236 struct gdbarch *gdbarch = get_current_arch ();
3237
3238 if (gdbarch_overlay_update_p (gdbarch))
3239 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3240 else
8a3fe4f8 3241 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3242}
3243
3244/* Function: overlay_command
3245 A place-holder for a mis-typed command */
3246
3247/* Command list chain containing all defined "overlay" subcommands. */
3248struct cmd_list_element *overlaylist;
3249
3250static void
fba45db2 3251overlay_command (char *args, int from_tty)
c906108c 3252{
c5aa993b 3253 printf_unfiltered
c906108c
SS
3254 ("\"overlay\" must be followed by the name of an overlay command.\n");
3255 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3256}
3257
3258
3259/* Target Overlays for the "Simplest" overlay manager:
3260
5417f6dc
RM
3261 This is GDB's default target overlay layer. It works with the
3262 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3263 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3264 so targets that use a different runtime overlay manager can
c906108c
SS
3265 substitute their own overlay_update function and take over the
3266 function pointer.
3267
3268 The overlay_update function pokes around in the target's data structures
3269 to see what overlays are mapped, and updates GDB's overlay mapping with
3270 this information.
3271
3272 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3273 unsigned _novlys; /# number of overlay sections #/
3274 unsigned _ovly_table[_novlys][4] = {
3275 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3276 {..., ..., ..., ...},
3277 }
3278 unsigned _novly_regions; /# number of overlay regions #/
3279 unsigned _ovly_region_table[_novly_regions][3] = {
3280 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3281 {..., ..., ...},
3282 }
c906108c
SS
3283 These functions will attempt to update GDB's mappedness state in the
3284 symbol section table, based on the target's mappedness state.
3285
3286 To do this, we keep a cached copy of the target's _ovly_table, and
3287 attempt to detect when the cached copy is invalidated. The main
3288 entry point is "simple_overlay_update(SECT), which looks up SECT in
3289 the cached table and re-reads only the entry for that section from
3290 the target (whenever possible).
3291 */
3292
3293/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3294static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3295#if 0
c5aa993b 3296static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3297#endif
c5aa993b 3298static unsigned cache_novlys = 0;
c906108c 3299#if 0
c5aa993b 3300static unsigned cache_novly_regions = 0;
c906108c
SS
3301#endif
3302static CORE_ADDR cache_ovly_table_base = 0;
3303#if 0
3304static CORE_ADDR cache_ovly_region_table_base = 0;
3305#endif
c5aa993b
JM
3306enum ovly_index
3307 {
3308 VMA, SIZE, LMA, MAPPED
3309 };
c906108c
SS
3310
3311/* Throw away the cached copy of _ovly_table */
3312static void
fba45db2 3313simple_free_overlay_table (void)
c906108c
SS
3314{
3315 if (cache_ovly_table)
b8c9b27d 3316 xfree (cache_ovly_table);
c5aa993b 3317 cache_novlys = 0;
c906108c
SS
3318 cache_ovly_table = NULL;
3319 cache_ovly_table_base = 0;
3320}
3321
3322#if 0
3323/* Throw away the cached copy of _ovly_region_table */
3324static void
fba45db2 3325simple_free_overlay_region_table (void)
c906108c
SS
3326{
3327 if (cache_ovly_region_table)
b8c9b27d 3328 xfree (cache_ovly_region_table);
c5aa993b 3329 cache_novly_regions = 0;
c906108c
SS
3330 cache_ovly_region_table = NULL;
3331 cache_ovly_region_table_base = 0;
3332}
3333#endif
3334
9216df95 3335/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3336 Convert to host order. int LEN is number of ints */
3337static void
9216df95 3338read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3339 int len, int size, enum bfd_endian byte_order)
c906108c 3340{
34c0bd93 3341 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3342 gdb_byte *buf = alloca (len * size);
c5aa993b 3343 int i;
c906108c 3344
9216df95 3345 read_memory (memaddr, buf, len * size);
c906108c 3346 for (i = 0; i < len; i++)
e17a4113 3347 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3348}
3349
3350/* Find and grab a copy of the target _ovly_table
3351 (and _novlys, which is needed for the table's size) */
c5aa993b 3352static int
fba45db2 3353simple_read_overlay_table (void)
c906108c 3354{
0d43edd1 3355 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3356 struct gdbarch *gdbarch;
3357 int word_size;
e17a4113 3358 enum bfd_endian byte_order;
c906108c
SS
3359
3360 simple_free_overlay_table ();
9b27852e 3361 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3362 if (! novlys_msym)
c906108c 3363 {
8a3fe4f8 3364 error (_("Error reading inferior's overlay table: "
0d43edd1 3365 "couldn't find `_novlys' variable\n"
8a3fe4f8 3366 "in inferior. Use `overlay manual' mode."));
0d43edd1 3367 return 0;
c906108c 3368 }
0d43edd1 3369
9b27852e 3370 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3371 if (! ovly_table_msym)
3372 {
8a3fe4f8 3373 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3374 "`_ovly_table' array\n"
8a3fe4f8 3375 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3376 return 0;
3377 }
3378
9216df95
UW
3379 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3380 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3381 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3382
e17a4113
UW
3383 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3384 4, byte_order);
0d43edd1
JB
3385 cache_ovly_table
3386 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3387 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3388 read_target_long_array (cache_ovly_table_base,
777ea8f1 3389 (unsigned int *) cache_ovly_table,
e17a4113 3390 cache_novlys * 4, word_size, byte_order);
0d43edd1 3391
c5aa993b 3392 return 1; /* SUCCESS */
c906108c
SS
3393}
3394
3395#if 0
3396/* Find and grab a copy of the target _ovly_region_table
3397 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3398static int
fba45db2 3399simple_read_overlay_region_table (void)
c906108c
SS
3400{
3401 struct minimal_symbol *msym;
e17a4113
UW
3402 struct gdbarch *gdbarch;
3403 int word_size;
3404 enum bfd_endian byte_order;
c906108c
SS
3405
3406 simple_free_overlay_region_table ();
9b27852e 3407 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3408 if (msym == NULL)
c5aa993b 3409 return 0; /* failure */
e17a4113
UW
3410
3411 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3412 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3413 byte_order = gdbarch_byte_order (gdbarch);
3414
3415 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3416 4, byte_order);
3417
c906108c
SS
3418 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3419 if (cache_ovly_region_table != NULL)
3420 {
9b27852e 3421 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3422 if (msym != NULL)
3423 {
3424 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3425 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3426 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3427 cache_novly_regions * 3,
3428 word_size, byte_order);
c906108c 3429 }
c5aa993b
JM
3430 else
3431 return 0; /* failure */
c906108c 3432 }
c5aa993b
JM
3433 else
3434 return 0; /* failure */
3435 return 1; /* SUCCESS */
c906108c
SS
3436}
3437#endif
3438
5417f6dc 3439/* Function: simple_overlay_update_1
c906108c
SS
3440 A helper function for simple_overlay_update. Assuming a cached copy
3441 of _ovly_table exists, look through it to find an entry whose vma,
3442 lma and size match those of OSECT. Re-read the entry and make sure
3443 it still matches OSECT (else the table may no longer be valid).
3444 Set OSECT's mapped state to match the entry. Return: 1 for
3445 success, 0 for failure. */
3446
3447static int
fba45db2 3448simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3449{
3450 int i, size;
fbd35540
MS
3451 bfd *obfd = osect->objfile->obfd;
3452 asection *bsect = osect->the_bfd_section;
9216df95
UW
3453 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3454 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3456
2c500098 3457 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3458 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3459 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3460 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3461 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3462 {
9216df95
UW
3463 read_target_long_array (cache_ovly_table_base + i * word_size,
3464 (unsigned int *) cache_ovly_table[i],
e17a4113 3465 4, word_size, byte_order);
fbd35540
MS
3466 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3467 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3468 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3469 {
3470 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3471 return 1;
3472 }
fbd35540 3473 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3474 return 0;
3475 }
3476 return 0;
3477}
3478
3479/* Function: simple_overlay_update
5417f6dc
RM
3480 If OSECT is NULL, then update all sections' mapped state
3481 (after re-reading the entire target _ovly_table).
3482 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3483 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3484 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3485 re-read the entire cache, and go ahead and update all sections. */
3486
1c772458 3487void
fba45db2 3488simple_overlay_update (struct obj_section *osect)
c906108c 3489{
c5aa993b 3490 struct objfile *objfile;
c906108c
SS
3491
3492 /* Were we given an osect to look up? NULL means do all of them. */
3493 if (osect)
3494 /* Have we got a cached copy of the target's overlay table? */
3495 if (cache_ovly_table != NULL)
3496 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3497 if (cache_ovly_table_base ==
9b27852e 3498 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3499 /* Then go ahead and try to look up this single section in the cache */
3500 if (simple_overlay_update_1 (osect))
3501 /* Found it! We're done. */
3502 return;
3503
3504 /* Cached table no good: need to read the entire table anew.
3505 Or else we want all the sections, in which case it's actually
3506 more efficient to read the whole table in one block anyway. */
3507
0d43edd1
JB
3508 if (! simple_read_overlay_table ())
3509 return;
3510
c906108c
SS
3511 /* Now may as well update all sections, even if only one was requested. */
3512 ALL_OBJSECTIONS (objfile, osect)
714835d5 3513 if (section_is_overlay (osect))
c5aa993b
JM
3514 {
3515 int i, size;
fbd35540
MS
3516 bfd *obfd = osect->objfile->obfd;
3517 asection *bsect = osect->the_bfd_section;
c5aa993b 3518
2c500098 3519 size = bfd_get_section_size (bsect);
c5aa993b 3520 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3521 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3522 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3523 /* && cache_ovly_table[i][SIZE] == size */ )
3524 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3525 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3526 break; /* finished with inner for loop: break out */
3527 }
3528 }
c906108c
SS
3529}
3530
086df311
DJ
3531/* Set the output sections and output offsets for section SECTP in
3532 ABFD. The relocation code in BFD will read these offsets, so we
3533 need to be sure they're initialized. We map each section to itself,
3534 with no offset; this means that SECTP->vma will be honored. */
3535
3536static void
3537symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3538{
3539 sectp->output_section = sectp;
3540 sectp->output_offset = 0;
3541}
3542
ac8035ab
TG
3543/* Default implementation for sym_relocate. */
3544
3545
3546bfd_byte *
3547default_symfile_relocate (struct objfile *objfile, asection *sectp,
3548 bfd_byte *buf)
3549{
3550 bfd *abfd = objfile->obfd;
3551
3552 /* We're only interested in sections with relocation
3553 information. */
3554 if ((sectp->flags & SEC_RELOC) == 0)
3555 return NULL;
3556
3557 /* We will handle section offsets properly elsewhere, so relocate as if
3558 all sections begin at 0. */
3559 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3560
3561 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3562}
3563
086df311
DJ
3564/* Relocate the contents of a debug section SECTP in ABFD. The
3565 contents are stored in BUF if it is non-NULL, or returned in a
3566 malloc'd buffer otherwise.
3567
3568 For some platforms and debug info formats, shared libraries contain
3569 relocations against the debug sections (particularly for DWARF-2;
3570 one affected platform is PowerPC GNU/Linux, although it depends on
3571 the version of the linker in use). Also, ELF object files naturally
3572 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3573 the relocations in order to get the locations of symbols correct.
3574 Another example that may require relocation processing, is the
3575 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3576 debug section. */
086df311
DJ
3577
3578bfd_byte *
ac8035ab
TG
3579symfile_relocate_debug_section (struct objfile *objfile,
3580 asection *sectp, bfd_byte *buf)
086df311 3581{
ac8035ab 3582 gdb_assert (objfile->sf->sym_relocate);
086df311 3583
ac8035ab 3584 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3585}
c906108c 3586
31d99776
DJ
3587struct symfile_segment_data *
3588get_symfile_segment_data (bfd *abfd)
3589{
3590 struct sym_fns *sf = find_sym_fns (abfd);
3591
3592 if (sf == NULL)
3593 return NULL;
3594
3595 return sf->sym_segments (abfd);
3596}
3597
3598void
3599free_symfile_segment_data (struct symfile_segment_data *data)
3600{
3601 xfree (data->segment_bases);
3602 xfree (data->segment_sizes);
3603 xfree (data->segment_info);
3604 xfree (data);
3605}
3606
28c32713
JB
3607
3608/* Given:
3609 - DATA, containing segment addresses from the object file ABFD, and
3610 the mapping from ABFD's sections onto the segments that own them,
3611 and
3612 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3613 segment addresses reported by the target,
3614 store the appropriate offsets for each section in OFFSETS.
3615
3616 If there are fewer entries in SEGMENT_BASES than there are segments
3617 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3618
8d385431
DJ
3619 If there are more entries, then ignore the extra. The target may
3620 not be able to distinguish between an empty data segment and a
3621 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3622int
3623symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3624 struct section_offsets *offsets,
3625 int num_segment_bases,
3626 const CORE_ADDR *segment_bases)
3627{
3628 int i;
3629 asection *sect;
3630
28c32713
JB
3631 /* It doesn't make sense to call this function unless you have some
3632 segment base addresses. */
202b96c1 3633 gdb_assert (num_segment_bases > 0);
28c32713 3634
31d99776
DJ
3635 /* If we do not have segment mappings for the object file, we
3636 can not relocate it by segments. */
3637 gdb_assert (data != NULL);
3638 gdb_assert (data->num_segments > 0);
3639
31d99776
DJ
3640 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3641 {
31d99776
DJ
3642 int which = data->segment_info[i];
3643
28c32713
JB
3644 gdb_assert (0 <= which && which <= data->num_segments);
3645
3646 /* Don't bother computing offsets for sections that aren't
3647 loaded as part of any segment. */
3648 if (! which)
3649 continue;
3650
3651 /* Use the last SEGMENT_BASES entry as the address of any extra
3652 segments mentioned in DATA->segment_info. */
31d99776 3653 if (which > num_segment_bases)
28c32713 3654 which = num_segment_bases;
31d99776 3655
28c32713
JB
3656 offsets->offsets[i] = (segment_bases[which - 1]
3657 - data->segment_bases[which - 1]);
31d99776
DJ
3658 }
3659
3660 return 1;
3661}
3662
3663static void
3664symfile_find_segment_sections (struct objfile *objfile)
3665{
3666 bfd *abfd = objfile->obfd;
3667 int i;
3668 asection *sect;
3669 struct symfile_segment_data *data;
3670
3671 data = get_symfile_segment_data (objfile->obfd);
3672 if (data == NULL)
3673 return;
3674
3675 if (data->num_segments != 1 && data->num_segments != 2)
3676 {
3677 free_symfile_segment_data (data);
3678 return;
3679 }
3680
3681 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3682 {
31d99776
DJ
3683 int which = data->segment_info[i];
3684
3685 if (which == 1)
3686 {
3687 if (objfile->sect_index_text == -1)
3688 objfile->sect_index_text = sect->index;
3689
3690 if (objfile->sect_index_rodata == -1)
3691 objfile->sect_index_rodata = sect->index;
3692 }
3693 else if (which == 2)
3694 {
3695 if (objfile->sect_index_data == -1)
3696 objfile->sect_index_data = sect->index;
3697
3698 if (objfile->sect_index_bss == -1)
3699 objfile->sect_index_bss = sect->index;
3700 }
3701 }
3702
3703 free_symfile_segment_data (data);
3704}
3705
c906108c 3706void
fba45db2 3707_initialize_symfile (void)
c906108c
SS
3708{
3709 struct cmd_list_element *c;
c5aa993b 3710
1a966eab
AC
3711 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3712Load symbol table from executable file FILE.\n\
c906108c 3713The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3714to execute."), &cmdlist);
5ba2abeb 3715 set_cmd_completer (c, filename_completer);
c906108c 3716
1a966eab 3717 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3718Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3719Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3720ADDR is the starting address of the file's text.\n\
db162d44
EZ
3721The optional arguments are section-name section-address pairs and\n\
3722should be specified if the data and bss segments are not contiguous\n\
1a966eab 3723with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3724 &cmdlist);
5ba2abeb 3725 set_cmd_completer (c, filename_completer);
c906108c 3726
1a966eab
AC
3727 c = add_cmd ("load", class_files, load_command, _("\
3728Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3729for access from GDB.\n\
3730A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3731 set_cmd_completer (c, filename_completer);
c906108c 3732
5bf193a2
AC
3733 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3734 &symbol_reloading, _("\
3735Set dynamic symbol table reloading multiple times in one run."), _("\
3736Show dynamic symbol table reloading multiple times in one run."), NULL,
3737 NULL,
920d2a44 3738 show_symbol_reloading,
5bf193a2 3739 &setlist, &showlist);
c906108c 3740
c5aa993b 3741 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3742 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3743 "overlay ", 0, &cmdlist);
3744
3745 add_com_alias ("ovly", "overlay", class_alias, 1);
3746 add_com_alias ("ov", "overlay", class_alias, 1);
3747
c5aa993b 3748 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3749 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3750
c5aa993b 3751 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3752 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3753
c5aa993b 3754 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3755 _("List mappings of overlay sections."), &overlaylist);
c906108c 3756
c5aa993b 3757 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3758 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3759 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3760 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3761 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3762 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3763 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3764 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3765
3766 /* Filename extension to source language lookup table: */
3767 init_filename_language_table ();
26c41df3
AC
3768 add_setshow_string_noescape_cmd ("extension-language", class_files,
3769 &ext_args, _("\
3770Set mapping between filename extension and source language."), _("\
3771Show mapping between filename extension and source language."), _("\
3772Usage: set extension-language .foo bar"),
3773 set_ext_lang_command,
920d2a44 3774 show_ext_args,
26c41df3 3775 &setlist, &showlist);
c906108c 3776
c5aa993b 3777 add_info ("extensions", info_ext_lang_command,
1bedd215 3778 _("All filename extensions associated with a source language."));
917317f4 3779
525226b5
AC
3780 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3781 &debug_file_directory, _("\
24ddea62
JK
3782Set the directories where separate debug symbols are searched for."), _("\
3783Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3784Separate debug symbols are first searched for in the same\n\
3785directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3786and lastly at the path of the directory of the binary with\n\
24ddea62 3787each global debug-file-directory component prepended."),
525226b5 3788 NULL,
920d2a44 3789 show_debug_file_directory,
525226b5 3790 &setlist, &showlist);
c906108c 3791}
This page took 1.278614 seconds and 4 git commands to generate.