Simplify REGISTRY cleanup usages
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
28e7fd62 3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
63#include "gdb_string.h"
64#include "gdb_stat.h"
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
69150c3d 90static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
00b5771c 94static const struct sym_fns *find_sym_fns (bfd *);
c906108c 95
a14ed312 96static void decrement_reading_symtab (void *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void overlay_auto_command (char *, int);
c906108c 101
a14ed312 102static void overlay_manual_command (char *, int);
c906108c 103
a14ed312 104static void overlay_off_command (char *, int);
c906108c 105
a14ed312 106static void overlay_load_command (char *, int);
c906108c 107
a14ed312 108static void overlay_command (char *, int);
c906108c 109
a14ed312 110static void simple_free_overlay_table (void);
c906108c 111
e17a4113
UW
112static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
c906108c 114
a14ed312 115static int simple_read_overlay_table (void);
c906108c 116
a14ed312 117static int simple_overlay_update_1 (struct obj_section *);
c906108c 118
a14ed312 119static void add_filename_language (char *ext, enum language lang);
392a587b 120
a14ed312 121static void info_ext_lang_command (char *args, int from_tty);
392a587b 122
a14ed312 123static void init_filename_language_table (void);
392a587b 124
31d99776
DJ
125static void symfile_find_segment_sections (struct objfile *objfile);
126
a14ed312 127void _initialize_symfile (void);
c906108c
SS
128
129/* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
c378eb4e 131 prepared to read. */
c906108c 132
c256e171
DE
133typedef struct
134{
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140} registered_sym_fns;
00b5771c 141
c256e171
DE
142DEF_VEC_O (registered_sym_fns);
143
144static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 145
b7209cb4
FF
146/* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
c906108c 153 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 154 report all the functions that are actually present. */
c906108c
SS
155
156int auto_solib_add = 1;
c906108c 157\f
c5aa993b 158
0d14a781 159/* True if we are reading a symbol table. */
c906108c
SS
160
161int currently_reading_symtab = 0;
162
163static void
fba45db2 164decrement_reading_symtab (void *dummy)
c906108c
SS
165{
166 currently_reading_symtab--;
2cb9c859 167 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
168}
169
ccefe4c4
TT
170/* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
3b7bacac 172
ccefe4c4
TT
173struct cleanup *
174increment_reading_symtab (void)
c906108c 175{
ccefe4c4 176 ++currently_reading_symtab;
2cb9c859 177 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 178 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
179}
180
5417f6dc
RM
181/* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
c906108c
SS
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190void
4efb68b1 191find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 192{
c5aa993b 193 asection **lowest = (asection **) obj;
c906108c 194
eb73e134 195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205}
206
d76488d8
TT
207/* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
a39a16c4
MM
210
211struct section_addr_info *
212alloc_section_addr_info (size_t num_sections)
213{
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
a39a16c4
MM
221
222 return sap;
223}
62557bbc
KB
224
225/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 226 an existing section table. */
62557bbc
KB
227
228extern struct section_addr_info *
0542c86d
PA
229build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
62557bbc
KB
231{
232 struct section_addr_info *sap;
0542c86d 233 const struct target_section *stp;
62557bbc
KB
234 int oidx;
235
a39a16c4 236 sap = alloc_section_addr_info (end - start);
62557bbc
KB
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
2b2848e2
DE
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 244 && oidx < end - start)
62557bbc
KB
245 {
246 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
249 oidx++;
250 }
251 }
252
d76488d8
TT
253 sap->num_sections = oidx;
254
62557bbc
KB
255 return sap;
256}
257
82ccf5a5 258/* Create a section_addr_info from section offsets in ABFD. */
089b4803 259
82ccf5a5
JK
260static struct section_addr_info *
261build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
262{
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
82ccf5a5
JK
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 270 {
82ccf5a5
JK
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
274 i++;
275 }
d76488d8
TT
276
277 sap->num_sections = i;
278
089b4803
TG
279 return sap;
280}
281
82ccf5a5
JK
282/* Create a section_addr_info from section offsets in OBJFILE. */
283
284struct section_addr_info *
285build_section_addr_info_from_objfile (const struct objfile *objfile)
286{
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 294 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301}
62557bbc 302
c378eb4e 303/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
304
305extern void
306free_section_addr_info (struct section_addr_info *sap)
307{
308 int idx;
309
a39a16c4 310 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 311 xfree (sap->other[idx].name);
b8c9b27d 312 xfree (sap);
62557bbc
KB
313}
314
e8289572 315/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 316
e8289572
JB
317static void
318init_objfile_sect_indices (struct objfile *objfile)
c906108c 319{
e8289572 320 asection *sect;
c906108c 321 int i;
5417f6dc 322
b8fbeb18 323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 332 if (sect)
b8fbeb18
EZ
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 336 if (sect)
b8fbeb18
EZ
337 objfile->sect_index_rodata = sect->index;
338
bbcd32ad
FF
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
31d99776
DJ
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
bbcd32ad
FF
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
b8fbeb18 374}
c906108c 375
c1bd25fd
DJ
376/* The arguments to place_section. */
377
378struct place_section_arg
379{
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382};
383
384/* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
2c0b251b 387static void
c1bd25fd
DJ
388place_section (bfd *abfd, asection *sect, void *obj)
389{
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
3bd72c6f 393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 394
2711e456
DJ
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
397 return;
398
399 /* If the user specified an offset, honor it. */
65cf3563 400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
404 start_addr = (arg->lowest + align - 1) & -align;
405
c1bd25fd
DJ
406 do {
407 asection *cur_sec;
c1bd25fd 408
c1bd25fd
DJ
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
c1bd25fd
DJ
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
2711e456
DJ
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
3bd72c6f 436 break;
c1bd25fd
DJ
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
65cf3563 444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 445 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 446}
e8289572 447
75242ef4
JK
448/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
e8289572
JB
451
452void
75242ef4
JK
453relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
3189cb12 455 const struct section_addr_info *addrs)
e8289572
JB
456{
457 int i;
458
75242ef4 459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 460
c378eb4e 461 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 462 for (i = 0; i < addrs->num_sections; i++)
e8289572 463 {
3189cb12 464 const struct other_sections *osp;
e8289572 465
75242ef4 466 osp = &addrs->other[i];
5488dafb 467 if (osp->sectindex == -1)
e8289572
JB
468 continue;
469
c378eb4e 470 /* Record all sections in offsets. */
e8289572 471 /* The section_offsets in the objfile are here filled in using
c378eb4e 472 the BFD index. */
75242ef4
JK
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475}
476
1276c759
JK
477/* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483static const char *
484addr_section_name (const char *s)
485{
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492}
493
82ccf5a5
JK
494/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497static int
498addrs_section_compar (const void *ap, const void *bp)
499{
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 502 int retval;
82ccf5a5 503
1276c759 504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
505 if (retval)
506 return retval;
507
5488dafb 508 return a->sectindex - b->sectindex;
82ccf5a5
JK
509}
510
511/* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514static struct other_sections **
515addrs_section_sort (struct section_addr_info *addrs)
516{
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 522 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529}
530
75242ef4 531/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
534
535void
536addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537{
538 asection *lower_sect;
75242ef4
JK
539 CORE_ADDR lower_offset;
540 int i;
82ccf5a5
JK
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
545
546 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
e8289572 555 }
75242ef4
JK
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
82ccf5a5
JK
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
c378eb4e
MS
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
1276c759 586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
587
588 while (*abfd_addrs_sorted
1276c759
JK
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
82ccf5a5
JK
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
1276c759
JK
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
82ccf5a5
JK
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
75242ef4
JK
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
d76488d8 621 for (i = 0; i < addrs->num_sections; i++)
75242ef4 622 {
82ccf5a5 623 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
624
625 if (sect)
75242ef4 626 {
c378eb4e 627 /* This is the index used by BFD. */
82ccf5a5 628 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
629
630 if (addrs->other[i].addr != 0)
75242ef4 631 {
82ccf5a5 632 addrs->other[i].addr -= sect->addr;
75242ef4 633 lower_offset = addrs->other[i].addr;
75242ef4
JK
634 }
635 else
672d9c23 636 addrs->other[i].addr = lower_offset;
75242ef4
JK
637 }
638 else
672d9c23 639 {
1276c759
JK
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
b0fcb67f
JK
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
4d9743af
JK
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
1276c759
JK
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 658 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
672d9c23 670 addrs->other[i].addr = 0;
5488dafb 671 addrs->other[i].sectindex = -1;
672d9c23 672 }
75242ef4 673 }
82ccf5a5
JK
674
675 do_cleanups (my_cleanup);
75242ef4
JK
676}
677
678/* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684void
685default_symfile_offsets (struct objfile *objfile,
3189cb12 686 const struct section_addr_info *addrs)
75242ef4 687{
d445b2f6 688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
e8289572 694
c1bd25fd
DJ
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
2711e456
DJ
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
2711e456
DJ
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
30510692 757 offsets[cur_sec->index]);
2711e456
DJ
758 offsets[cur_sec->index] = 0;
759 }
760 }
c1bd25fd
DJ
761 }
762
e8289572 763 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 764 .rodata sections. */
e8289572
JB
765 init_objfile_sect_indices (objfile);
766}
767
31d99776
DJ
768/* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774struct symfile_segment_data *
775default_symfile_segments (bfd *abfd)
776{
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
802 data = XZALLOC (struct symfile_segment_data);
803 data->num_segments = 1;
804 data->segment_bases = XCALLOC (1, CORE_ADDR);
805 data->segment_sizes = XCALLOC (1, CORE_ADDR);
806
807 num_sections = bfd_count_sections (abfd);
808 data->segment_info = XCALLOC (num_sections, int);
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830}
831
608e2dbb
TT
832/* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835static void
836read_symbols (struct objfile *objfile, int add_flags)
837{
838 (*objfile->sf->sym_read) (objfile, add_flags);
8a92335b
JK
839
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile)
843 && objfile->separate_debug_objfile == NULL
844 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
845 {
846 bfd *abfd = find_separate_debug_file_in_section (objfile);
847 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
848
849 if (abfd != NULL)
24ba069a
JK
850 {
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
856 objfile);
857 }
608e2dbb
TT
858
859 do_cleanups (cleanup);
860 }
861 if ((add_flags & SYMFILE_NO_READ) == 0)
862 require_partial_symbols (objfile, 0);
863}
864
3d6e24f0
JB
865/* Initialize entry point information for this objfile. */
866
867static void
868init_entry_point_info (struct objfile *objfile)
869{
870 /* Save startup file's range of PC addresses to help blockframe.c
871 decide where the bottom of the stack is. */
872
873 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
874 {
875 /* Executable file -- record its entry point so we'll recognize
876 the startup file because it contains the entry point. */
877 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
878 objfile->ei.entry_point_p = 1;
879 }
880 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
881 && bfd_get_start_address (objfile->obfd) != 0)
882 {
883 /* Some shared libraries may have entry points set and be
884 runnable. There's no clear way to indicate this, so just check
885 for values other than zero. */
886 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
887 objfile->ei.entry_point_p = 1;
888 }
889 else
890 {
891 /* Examination of non-executable.o files. Short-circuit this stuff. */
892 objfile->ei.entry_point_p = 0;
893 }
894
895 if (objfile->ei.entry_point_p)
896 {
897 CORE_ADDR entry_point = objfile->ei.entry_point;
898
899 /* Make certain that the address points at real code, and not a
900 function descriptor. */
901 entry_point
df6d5441 902 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
903 entry_point,
904 &current_target);
905
906 /* Remove any ISA markers, so that this matches entries in the
907 symbol table. */
908 objfile->ei.entry_point
df6d5441 909 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
3d6e24f0
JB
910 }
911}
912
c906108c
SS
913/* Process a symbol file, as either the main file or as a dynamically
914 loaded file.
915
36e4d068
JB
916 This function does not set the OBJFILE's entry-point info.
917
96baa820
JM
918 OBJFILE is where the symbols are to be read from.
919
7e8580c1
JB
920 ADDRS is the list of section load addresses. If the user has given
921 an 'add-symbol-file' command, then this is the list of offsets and
922 addresses he or she provided as arguments to the command; or, if
923 we're handling a shared library, these are the actual addresses the
924 sections are loaded at, according to the inferior's dynamic linker
925 (as gleaned by GDB's shared library code). We convert each address
926 into an offset from the section VMA's as it appears in the object
927 file, and then call the file's sym_offsets function to convert this
928 into a format-specific offset table --- a `struct section_offsets'.
96baa820 929
7eedccfa
PP
930 ADD_FLAGS encodes verbosity level, whether this is main symbol or
931 an extra symbol file such as dynamically loaded code, and wether
932 breakpoint reset should be deferred. */
c906108c 933
36e4d068
JB
934static void
935syms_from_objfile_1 (struct objfile *objfile,
936 struct section_addr_info *addrs,
36e4d068 937 int add_flags)
c906108c 938{
a39a16c4 939 struct section_addr_info *local_addr = NULL;
c906108c 940 struct cleanup *old_chain;
7eedccfa 941 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 942
8fb8eb5c 943 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 944
75245b24 945 if (objfile->sf == NULL)
36e4d068
JB
946 {
947 /* No symbols to load, but we still need to make sure
948 that the section_offsets table is allocated. */
d445b2f6 949 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 950 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
951
952 objfile->num_sections = num_sections;
953 objfile->section_offsets
954 = obstack_alloc (&objfile->objfile_obstack, size);
955 memset (objfile->section_offsets, 0, size);
956 return;
957 }
75245b24 958
c906108c
SS
959 /* Make sure that partially constructed symbol tables will be cleaned up
960 if an error occurs during symbol reading. */
74b7792f 961 old_chain = make_cleanup_free_objfile (objfile);
c906108c 962
6bf667bb
DE
963 /* If ADDRS is NULL, put together a dummy address list.
964 We now establish the convention that an addr of zero means
c378eb4e 965 no load address was specified. */
6bf667bb 966 if (! addrs)
a39a16c4 967 {
d445b2f6 968 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
969 make_cleanup (xfree, local_addr);
970 addrs = local_addr;
971 }
972
c5aa993b 973 if (mainline)
c906108c
SS
974 {
975 /* We will modify the main symbol table, make sure that all its users
c5aa993b 976 will be cleaned up if an error occurs during symbol reading. */
74b7792f 977 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
978
979 /* Since no error yet, throw away the old symbol table. */
980
981 if (symfile_objfile != NULL)
982 {
983 free_objfile (symfile_objfile);
adb7f338 984 gdb_assert (symfile_objfile == NULL);
c906108c
SS
985 }
986
987 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
988 If the user wants to get rid of them, they should do "symbol-file"
989 without arguments first. Not sure this is the best behavior
990 (PR 2207). */
c906108c 991
c5aa993b 992 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
993 }
994
995 /* Convert addr into an offset rather than an absolute address.
996 We find the lowest address of a loaded segment in the objfile,
53a5351d 997 and assume that <addr> is where that got loaded.
c906108c 998
53a5351d
JM
999 We no longer warn if the lowest section is not a text segment (as
1000 happens for the PA64 port. */
6bf667bb 1001 if (addrs->num_sections > 0)
75242ef4 1002 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1003
1004 /* Initialize symbol reading routines for this objfile, allow complaints to
1005 appear for this new file, and record how verbose to be, then do the
c378eb4e 1006 initial symbol reading for this file. */
c906108c 1007
c5aa993b 1008 (*objfile->sf->sym_init) (objfile);
7eedccfa 1009 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1010
6bf667bb 1011 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1012
608e2dbb 1013 read_symbols (objfile, add_flags);
b11896a5 1014
c906108c
SS
1015 /* Discard cleanups as symbol reading was successful. */
1016
1017 discard_cleanups (old_chain);
f7545552 1018 xfree (local_addr);
c906108c
SS
1019}
1020
36e4d068
JB
1021/* Same as syms_from_objfile_1, but also initializes the objfile
1022 entry-point info. */
1023
6bf667bb 1024static void
36e4d068
JB
1025syms_from_objfile (struct objfile *objfile,
1026 struct section_addr_info *addrs,
36e4d068
JB
1027 int add_flags)
1028{
6bf667bb 1029 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1030 init_entry_point_info (objfile);
1031}
1032
c906108c
SS
1033/* Perform required actions after either reading in the initial
1034 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1035 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1036
c906108c 1037void
7eedccfa 1038new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1039{
c906108c 1040 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1041 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1042 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1043 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1044 {
1045 /* OK, make it the "real" symbol file. */
1046 symfile_objfile = objfile;
1047
c1e56572 1048 clear_symtab_users (add_flags);
c906108c 1049 }
7eedccfa 1050 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1051 {
69de3c6a 1052 breakpoint_re_set ();
c906108c
SS
1053 }
1054
1055 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1056 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1057}
1058
1059/* Process a symbol file, as either the main file or as a dynamically
1060 loaded file.
1061
5417f6dc 1062 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1063 A new reference is acquired by this function.
7904e09f 1064
24ba069a
JK
1065 For NAME description see allocate_objfile's definition.
1066
7eedccfa
PP
1067 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1068 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1069
6bf667bb 1070 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1071 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1072
63524580
JK
1073 PARENT is the original objfile if ABFD is a separate debug info file.
1074 Otherwise PARENT is NULL.
1075
c906108c 1076 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1077 Upon failure, jumps back to command level (never returns). */
7eedccfa 1078
7904e09f 1079static struct objfile *
24ba069a 1080symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1081 struct section_addr_info *addrs,
1082 int flags, struct objfile *parent)
c906108c
SS
1083{
1084 struct objfile *objfile;
7eedccfa 1085 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1086 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1087 const int should_print = ((from_tty || info_verbose)
1088 && (readnow_symbol_files
1089 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1090
9291a0cd 1091 if (readnow_symbol_files)
b11896a5
TT
1092 {
1093 flags |= OBJF_READNOW;
1094 add_flags &= ~SYMFILE_NO_READ;
1095 }
9291a0cd 1096
5417f6dc
RM
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
c906108c
SS
1099
1100 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1101 && mainline
c906108c 1102 && from_tty
9e2f0ad4 1103 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1104 error (_("Not confirmed."));
c906108c 1105
24ba069a
JK
1106 objfile = allocate_objfile (abfd, name,
1107 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1108
63524580
JK
1109 if (parent)
1110 add_separate_debug_objfile (objfile, parent);
1111
78a4a9b9
AC
1112 /* We either created a new mapped symbol table, mapped an existing
1113 symbol table file which has not had initial symbol reading
c378eb4e 1114 performed, or need to read an unmapped symbol table. */
b11896a5 1115 if (should_print)
c906108c 1116 {
769d7dc4
AC
1117 if (deprecated_pre_add_symbol_hook)
1118 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1119 else
c906108c 1120 {
55333a84
DE
1121 printf_unfiltered (_("Reading symbols from %s..."), name);
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
c906108c 1124 }
c906108c 1125 }
6bf667bb 1126 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1131 all partial symbol tables for this objfile if so. */
c906108c 1132
9291a0cd 1133 if ((flags & OBJF_READNOW))
c906108c 1134 {
b11896a5 1135 if (should_print)
c906108c 1136 {
a3f17187 1137 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
ccefe4c4
TT
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1144 }
1145
b11896a5 1146 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1147 {
1148 wrap_here ("");
55333a84 1149 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1150 wrap_here ("");
1151 }
1152
b11896a5 1153 if (should_print)
c906108c 1154 {
769d7dc4
AC
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
c906108c 1157 else
55333a84 1158 printf_unfiltered (_("done.\n"));
c906108c
SS
1159 }
1160
481d0f41
JB
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
109f874e 1166 if (objfile->sf == NULL)
8caee43b
PP
1167 {
1168 observer_notify_new_objfile (objfile);
c378eb4e 1169 return objfile; /* No symbols. */
8caee43b 1170 }
109f874e 1171
7eedccfa 1172 new_symfile_objfile (objfile, add_flags);
c906108c 1173
06d3b283 1174 observer_notify_new_objfile (objfile);
c906108c 1175
ce7d4522 1176 bfd_cache_close_all ();
c906108c
SS
1177 return (objfile);
1178}
1179
24ba069a
JK
1180/* Add BFD as a separate debug file for OBJFILE. For NAME description
1181 see allocate_objfile's definition. */
9cce227f
TG
1182
1183void
24ba069a
JK
1184symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1185 struct objfile *objfile)
9cce227f 1186{
15d123c9 1187 struct objfile *new_objfile;
089b4803
TG
1188 struct section_addr_info *sap;
1189 struct cleanup *my_cleanup;
1190
1191 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1192 because sections of BFD may not match sections of OBJFILE and because
1193 vma may have been modified by tools such as prelink. */
1194 sap = build_section_addr_info_from_objfile (objfile);
1195 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1196
6bf667bb 1197 new_objfile = symbol_file_add_with_addrs
24ba069a 1198 (bfd, name, symfile_flags, sap,
9cce227f 1199 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1200 | OBJF_USERLOADED),
1201 objfile);
089b4803
TG
1202
1203 do_cleanups (my_cleanup);
9cce227f 1204}
7904e09f 1205
eb4556d7
JB
1206/* Process the symbol file ABFD, as either the main file or as a
1207 dynamically loaded file.
6bf667bb 1208 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1209
eb4556d7 1210struct objfile *
24ba069a 1211symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1212 struct section_addr_info *addrs,
63524580 1213 int flags, struct objfile *parent)
eb4556d7 1214{
24ba069a
JK
1215 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1216 parent);
eb4556d7
JB
1217}
1218
7904e09f 1219/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1220 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1221
7904e09f 1222struct objfile *
69150c3d
JK
1223symbol_file_add (const char *name, int add_flags,
1224 struct section_addr_info *addrs, int flags)
7904e09f 1225{
8ac244b4
TT
1226 bfd *bfd = symfile_bfd_open (name);
1227 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1228 struct objfile *objf;
1229
24ba069a 1230 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1231 do_cleanups (cleanup);
1232 return objf;
7904e09f
JB
1233}
1234
d7db6da9
FN
1235/* Call symbol_file_add() with default values and update whatever is
1236 affected by the loading of a new main().
1237 Used when the file is supplied in the gdb command line
1238 and by some targets with special loading requirements.
1239 The auxiliary function, symbol_file_add_main_1(), has the flags
1240 argument for the switches that can only be specified in the symbol_file
1241 command itself. */
5417f6dc 1242
1adeb98a 1243void
69150c3d 1244symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1245{
d7db6da9
FN
1246 symbol_file_add_main_1 (args, from_tty, 0);
1247}
1248
1249static void
69150c3d 1250symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1251{
7dcd53a0
TT
1252 const int add_flags = (current_inferior ()->symfile_flags
1253 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1254
7eedccfa 1255 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1256
d7db6da9
FN
1257 /* Getting new symbols may change our opinion about
1258 what is frameless. */
1259 reinit_frame_cache ();
1260
7dcd53a0
TT
1261 if ((flags & SYMFILE_NO_READ) == 0)
1262 set_initial_language ();
1adeb98a
FN
1263}
1264
1265void
1266symbol_file_clear (int from_tty)
1267{
1268 if ((have_full_symbols () || have_partial_symbols ())
1269 && from_tty
0430b0d6
AS
1270 && (symfile_objfile
1271 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1272 objfile_name (symfile_objfile))
0430b0d6 1273 : !query (_("Discard symbol table? "))))
8a3fe4f8 1274 error (_("Not confirmed."));
1adeb98a 1275
0133421a
JK
1276 /* solib descriptors may have handles to objfiles. Wipe them before their
1277 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1278 no_shared_libraries (NULL, from_tty);
1279
0133421a
JK
1280 free_all_objfiles ();
1281
adb7f338 1282 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1283 if (from_tty)
1284 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1285}
1286
5b5d99cf 1287static int
287ccc17 1288separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1289 struct objfile *parent_objfile)
5b5d99cf 1290{
904578ed
JK
1291 unsigned long file_crc;
1292 int file_crc_p;
f1838a98 1293 bfd *abfd;
32a0e547 1294 struct stat parent_stat, abfd_stat;
904578ed 1295 int verified_as_different;
32a0e547
JK
1296
1297 /* Find a separate debug info file as if symbols would be present in
1298 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1299 section can contain just the basename of PARENT_OBJFILE without any
1300 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1301 the separate debug infos with the same basename can exist. */
32a0e547 1302
4262abfb 1303 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1304 return 0;
5b5d99cf 1305
08d2cd74 1306 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1307
1308 if (!abfd)
5b5d99cf
JB
1309 return 0;
1310
0ba1096a 1311 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1312
1313 Some operating systems, e.g. Windows, do not provide a meaningful
1314 st_ino; they always set it to zero. (Windows does provide a
1315 meaningful st_dev.) Do not indicate a duplicate library in that
1316 case. While there is no guarantee that a system that provides
1317 meaningful inode numbers will never set st_ino to zero, this is
1318 merely an optimization, so we do not need to worry about false
1319 negatives. */
1320
1321 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1322 && abfd_stat.st_ino != 0
1323 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1324 {
904578ed
JK
1325 if (abfd_stat.st_dev == parent_stat.st_dev
1326 && abfd_stat.st_ino == parent_stat.st_ino)
1327 {
cbb099e8 1328 gdb_bfd_unref (abfd);
904578ed
JK
1329 return 0;
1330 }
1331 verified_as_different = 1;
32a0e547 1332 }
904578ed
JK
1333 else
1334 verified_as_different = 0;
32a0e547 1335
dccee2de 1336 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1337
cbb099e8 1338 gdb_bfd_unref (abfd);
5b5d99cf 1339
904578ed
JK
1340 if (!file_crc_p)
1341 return 0;
1342
287ccc17
JK
1343 if (crc != file_crc)
1344 {
dccee2de
TT
1345 unsigned long parent_crc;
1346
904578ed
JK
1347 /* If one (or both) the files are accessed for example the via "remote:"
1348 gdbserver way it does not support the bfd_stat operation. Verify
1349 whether those two files are not the same manually. */
1350
dccee2de 1351 if (!verified_as_different)
904578ed 1352 {
dccee2de 1353 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1354 return 0;
1355 }
1356
dccee2de 1357 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1358 warning (_("the debug information found in \"%s\""
1359 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1360 name, objfile_name (parent_objfile));
904578ed 1361
287ccc17
JK
1362 return 0;
1363 }
1364
1365 return 1;
5b5d99cf
JB
1366}
1367
aa28a74e 1368char *debug_file_directory = NULL;
920d2a44
AC
1369static void
1370show_debug_file_directory (struct ui_file *file, int from_tty,
1371 struct cmd_list_element *c, const char *value)
1372{
3e43a32a
MS
1373 fprintf_filtered (file,
1374 _("The directory where separate debug "
1375 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1376 value);
1377}
5b5d99cf
JB
1378
1379#if ! defined (DEBUG_SUBDIRECTORY)
1380#define DEBUG_SUBDIRECTORY ".debug"
1381#endif
1382
1db33378
PP
1383/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1384 where the original file resides (may not be the same as
1385 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1386 looking for. CANON_DIR is the "realpath" form of DIR.
1387 DIR must contain a trailing '/'.
1388 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1389
1390static char *
1391find_separate_debug_file (const char *dir,
1392 const char *canon_dir,
1393 const char *debuglink,
1394 unsigned long crc32, struct objfile *objfile)
9cce227f 1395{
1db33378
PP
1396 char *debugdir;
1397 char *debugfile;
9cce227f 1398 int i;
e4ab2fad
JK
1399 VEC (char_ptr) *debugdir_vec;
1400 struct cleanup *back_to;
1401 int ix;
5b5d99cf 1402
1db33378 1403 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1404 i = strlen (dir);
1db33378
PP
1405 if (canon_dir != NULL && strlen (canon_dir) > i)
1406 i = strlen (canon_dir);
1ffa32ee 1407
25522fae
JK
1408 debugfile = xmalloc (strlen (debug_file_directory) + 1
1409 + i
1410 + strlen (DEBUG_SUBDIRECTORY)
1411 + strlen ("/")
1db33378 1412 + strlen (debuglink)
25522fae 1413 + 1);
5b5d99cf
JB
1414
1415 /* First try in the same directory as the original file. */
1416 strcpy (debugfile, dir);
1db33378 1417 strcat (debugfile, debuglink);
5b5d99cf 1418
32a0e547 1419 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1420 return debugfile;
5417f6dc 1421
5b5d99cf
JB
1422 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1423 strcpy (debugfile, dir);
1424 strcat (debugfile, DEBUG_SUBDIRECTORY);
1425 strcat (debugfile, "/");
1db33378 1426 strcat (debugfile, debuglink);
5b5d99cf 1427
32a0e547 1428 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1429 return debugfile;
5417f6dc 1430
24ddea62 1431 /* Then try in the global debugfile directories.
f888f159 1432
24ddea62
JK
1433 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1434 cause "/..." lookups. */
5417f6dc 1435
e4ab2fad
JK
1436 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1437 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1438
e4ab2fad
JK
1439 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1440 {
1441 strcpy (debugfile, debugdir);
aa28a74e 1442 strcat (debugfile, "/");
24ddea62 1443 strcat (debugfile, dir);
1db33378 1444 strcat (debugfile, debuglink);
aa28a74e 1445
32a0e547 1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1447 {
1448 do_cleanups (back_to);
1449 return debugfile;
1450 }
24ddea62
JK
1451
1452 /* If the file is in the sysroot, try using its base path in the
1453 global debugfile directory. */
1db33378
PP
1454 if (canon_dir != NULL
1455 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1456 strlen (gdb_sysroot)) == 0
1db33378 1457 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1458 {
e4ab2fad 1459 strcpy (debugfile, debugdir);
1db33378 1460 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1461 strcat (debugfile, "/");
1db33378 1462 strcat (debugfile, debuglink);
24ddea62 1463
32a0e547 1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1465 {
1466 do_cleanups (back_to);
1467 return debugfile;
1468 }
24ddea62 1469 }
aa28a74e 1470 }
f888f159 1471
e4ab2fad 1472 do_cleanups (back_to);
25522fae 1473 xfree (debugfile);
1db33378
PP
1474 return NULL;
1475}
1476
7edbb660 1477/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1478 If there were no directory separators in PATH, PATH will be empty
1479 string on return. */
1480
1481static void
1482terminate_after_last_dir_separator (char *path)
1483{
1484 int i;
1485
1486 /* Strip off the final filename part, leaving the directory name,
1487 followed by a slash. The directory can be relative or absolute. */
1488 for (i = strlen(path) - 1; i >= 0; i--)
1489 if (IS_DIR_SEPARATOR (path[i]))
1490 break;
1491
1492 /* If I is -1 then no directory is present there and DIR will be "". */
1493 path[i + 1] = '\0';
1494}
1495
1496/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1497 Returns pathname, or NULL. */
1498
1499char *
1500find_separate_debug_file_by_debuglink (struct objfile *objfile)
1501{
1502 char *debuglink;
1503 char *dir, *canon_dir;
1504 char *debugfile;
1505 unsigned long crc32;
1506 struct cleanup *cleanups;
1507
cc0ea93c 1508 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1509
1510 if (debuglink == NULL)
1511 {
1512 /* There's no separate debug info, hence there's no way we could
1513 load it => no warning. */
1514 return NULL;
1515 }
1516
71bdabee 1517 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1518 dir = xstrdup (objfile_name (objfile));
71bdabee 1519 make_cleanup (xfree, dir);
1db33378
PP
1520 terminate_after_last_dir_separator (dir);
1521 canon_dir = lrealpath (dir);
1522
1523 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1524 crc32, objfile);
1525 xfree (canon_dir);
1526
1527 if (debugfile == NULL)
1528 {
1529#ifdef HAVE_LSTAT
1530 /* For PR gdb/9538, try again with realpath (if different from the
1531 original). */
1532
1533 struct stat st_buf;
1534
4262abfb
JK
1535 if (lstat (objfile_name (objfile), &st_buf) == 0
1536 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1537 {
1538 char *symlink_dir;
1539
4262abfb 1540 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1541 if (symlink_dir != NULL)
1542 {
1543 make_cleanup (xfree, symlink_dir);
1544 terminate_after_last_dir_separator (symlink_dir);
1545 if (strcmp (dir, symlink_dir) != 0)
1546 {
1547 /* Different directory, so try using it. */
1548 debugfile = find_separate_debug_file (symlink_dir,
1549 symlink_dir,
1550 debuglink,
1551 crc32,
1552 objfile);
1553 }
1554 }
1555 }
1556#endif /* HAVE_LSTAT */
1557 }
aa28a74e 1558
1db33378 1559 do_cleanups (cleanups);
25522fae 1560 return debugfile;
5b5d99cf
JB
1561}
1562
c906108c
SS
1563/* This is the symbol-file command. Read the file, analyze its
1564 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1565 the command is rather bizarre:
1566
1567 1. The function buildargv implements various quoting conventions
1568 which are undocumented and have little or nothing in common with
1569 the way things are quoted (or not quoted) elsewhere in GDB.
1570
1571 2. Options are used, which are not generally used in GDB (perhaps
1572 "set mapped on", "set readnow on" would be better)
1573
1574 3. The order of options matters, which is contrary to GNU
c906108c
SS
1575 conventions (because it is confusing and inconvenient). */
1576
1577void
fba45db2 1578symbol_file_command (char *args, int from_tty)
c906108c 1579{
c906108c
SS
1580 dont_repeat ();
1581
1582 if (args == NULL)
1583 {
1adeb98a 1584 symbol_file_clear (from_tty);
c906108c
SS
1585 }
1586 else
1587 {
d1a41061 1588 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1589 int flags = OBJF_USERLOADED;
1590 struct cleanup *cleanups;
1591 char *name = NULL;
1592
7a292a7a 1593 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1594 while (*argv != NULL)
1595 {
78a4a9b9
AC
1596 if (strcmp (*argv, "-readnow") == 0)
1597 flags |= OBJF_READNOW;
1598 else if (**argv == '-')
8a3fe4f8 1599 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1600 else
1601 {
cb2f3a29 1602 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1603 name = *argv;
78a4a9b9 1604 }
cb2f3a29 1605
c906108c
SS
1606 argv++;
1607 }
1608
1609 if (name == NULL)
cb2f3a29
MK
1610 error (_("no symbol file name was specified"));
1611
c906108c
SS
1612 do_cleanups (cleanups);
1613 }
1614}
1615
1616/* Set the initial language.
1617
cb2f3a29
MK
1618 FIXME: A better solution would be to record the language in the
1619 psymtab when reading partial symbols, and then use it (if known) to
1620 set the language. This would be a win for formats that encode the
1621 language in an easily discoverable place, such as DWARF. For
1622 stabs, we can jump through hoops looking for specially named
1623 symbols or try to intuit the language from the specific type of
1624 stabs we find, but we can't do that until later when we read in
1625 full symbols. */
c906108c 1626
8b60591b 1627void
fba45db2 1628set_initial_language (void)
c906108c 1629{
c5aa993b 1630 enum language lang = language_unknown;
c906108c 1631
01f8c46d
JK
1632 if (language_of_main != language_unknown)
1633 lang = language_of_main;
1634 else
1635 {
bf6d8a91
TT
1636 char *name = main_name ();
1637 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1638
bf6d8a91
TT
1639 if (sym != NULL)
1640 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1641 }
cb2f3a29 1642
ccefe4c4
TT
1643 if (lang == language_unknown)
1644 {
1645 /* Make C the default language */
1646 lang = language_c;
c906108c 1647 }
ccefe4c4
TT
1648
1649 set_language (lang);
1650 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1651}
1652
874f5765 1653/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1654 open it normally. Returns a new reference to the BFD. On error,
1655 returns NULL with the BFD error set. */
874f5765
TG
1656
1657bfd *
08d2cd74 1658gdb_bfd_open_maybe_remote (const char *name)
874f5765 1659{
520b0001
TT
1660 bfd *result;
1661
874f5765 1662 if (remote_filename_p (name))
520b0001 1663 result = remote_bfd_open (name, gnutarget);
874f5765 1664 else
1c00ec6b 1665 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1666
520b0001 1667 return result;
874f5765
TG
1668}
1669
cb2f3a29
MK
1670/* Open the file specified by NAME and hand it off to BFD for
1671 preliminary analysis. Return a newly initialized bfd *, which
1672 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1673 absolute). In case of trouble, error() is called. */
c906108c
SS
1674
1675bfd *
69150c3d 1676symfile_bfd_open (const char *cname)
c906108c
SS
1677{
1678 bfd *sym_bfd;
1679 int desc;
69150c3d 1680 char *name, *absolute_name;
faab9922 1681 struct cleanup *back_to;
c906108c 1682
69150c3d 1683 if (remote_filename_p (cname))
f1838a98 1684 {
69150c3d 1685 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1686 if (!sym_bfd)
69150c3d 1687 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1688 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1689
1690 if (!bfd_check_format (sym_bfd, bfd_object))
1691 {
f9a062ff 1692 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1693 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1694 bfd_errmsg (bfd_get_error ()));
1695 }
1696
1697 return sym_bfd;
1698 }
1699
69150c3d 1700 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1701
1702 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1703 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1704 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1705#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1706 if (desc < 0)
1707 {
1708 char *exename = alloca (strlen (name) + 5);
433759f7 1709
c906108c 1710 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1711 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1713 }
1714#endif
1715 if (desc < 0)
1716 {
b8c9b27d 1717 make_cleanup (xfree, name);
c906108c
SS
1718 perror_with_name (name);
1719 }
cb2f3a29 1720
cb2f3a29
MK
1721 xfree (name);
1722 name = absolute_name;
faab9922 1723 back_to = make_cleanup (xfree, name);
c906108c 1724
1c00ec6b 1725 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1726 if (!sym_bfd)
faab9922
JK
1727 error (_("`%s': can't open to read symbols: %s."), name,
1728 bfd_errmsg (bfd_get_error ()));
549c1eea 1729 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1730
1731 if (!bfd_check_format (sym_bfd, bfd_object))
1732 {
f9a062ff 1733 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1734 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1735 bfd_errmsg (bfd_get_error ()));
1736 }
cb2f3a29 1737
faab9922
JK
1738 do_cleanups (back_to);
1739
cb2f3a29 1740 return sym_bfd;
c906108c
SS
1741}
1742
cb2f3a29
MK
1743/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1744 the section was not found. */
1745
0e931cf0
JB
1746int
1747get_section_index (struct objfile *objfile, char *section_name)
1748{
1749 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1750
0e931cf0
JB
1751 if (sect)
1752 return sect->index;
1753 else
1754 return -1;
1755}
1756
c256e171
DE
1757/* Link SF into the global symtab_fns list.
1758 FLAVOUR is the file format that SF handles.
1759 Called on startup by the _initialize routine in each object file format
1760 reader, to register information about each format the reader is prepared
1761 to handle. */
c906108c
SS
1762
1763void
c256e171 1764add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1765{
c256e171
DE
1766 registered_sym_fns fns = { flavour, sf };
1767
1768 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1769}
1770
cb2f3a29
MK
1771/* Initialize OBJFILE to read symbols from its associated BFD. It
1772 either returns or calls error(). The result is an initialized
1773 struct sym_fns in the objfile structure, that contains cached
1774 information about the symbol file. */
c906108c 1775
00b5771c 1776static const struct sym_fns *
31d99776 1777find_sym_fns (bfd *abfd)
c906108c 1778{
c256e171 1779 registered_sym_fns *rsf;
31d99776 1780 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1781 int i;
c906108c 1782
75245b24
MS
1783 if (our_flavour == bfd_target_srec_flavour
1784 || our_flavour == bfd_target_ihex_flavour
1785 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1786 return NULL; /* No symbols. */
75245b24 1787
c256e171
DE
1788 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1789 if (our_flavour == rsf->sym_flavour)
1790 return rsf->sym_fns;
cb2f3a29 1791
8a3fe4f8 1792 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1793 bfd_get_target (abfd));
c906108c
SS
1794}
1795\f
cb2f3a29 1796
c906108c
SS
1797/* This function runs the load command of our current target. */
1798
1799static void
fba45db2 1800load_command (char *arg, int from_tty)
c906108c 1801{
5b3fca71
TT
1802 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1803
e5cc9f32
JB
1804 dont_repeat ();
1805
4487aabf
PA
1806 /* The user might be reloading because the binary has changed. Take
1807 this opportunity to check. */
1808 reopen_exec_file ();
1809 reread_symbols ();
1810
c906108c 1811 if (arg == NULL)
1986bccd
AS
1812 {
1813 char *parg;
1814 int count = 0;
1815
1816 parg = arg = get_exec_file (1);
1817
1818 /* Count how many \ " ' tab space there are in the name. */
1819 while ((parg = strpbrk (parg, "\\\"'\t ")))
1820 {
1821 parg++;
1822 count++;
1823 }
1824
1825 if (count)
1826 {
1827 /* We need to quote this string so buildargv can pull it apart. */
1828 char *temp = xmalloc (strlen (arg) + count + 1 );
1829 char *ptemp = temp;
1830 char *prev;
1831
1832 make_cleanup (xfree, temp);
1833
1834 prev = parg = arg;
1835 while ((parg = strpbrk (parg, "\\\"'\t ")))
1836 {
1837 strncpy (ptemp, prev, parg - prev);
1838 ptemp += parg - prev;
1839 prev = parg++;
1840 *ptemp++ = '\\';
1841 }
1842 strcpy (ptemp, prev);
1843
1844 arg = temp;
1845 }
1846 }
1847
c906108c 1848 target_load (arg, from_tty);
2889e661
JB
1849
1850 /* After re-loading the executable, we don't really know which
1851 overlays are mapped any more. */
1852 overlay_cache_invalid = 1;
5b3fca71
TT
1853
1854 do_cleanups (cleanup);
c906108c
SS
1855}
1856
1857/* This version of "load" should be usable for any target. Currently
1858 it is just used for remote targets, not inftarg.c or core files,
1859 on the theory that only in that case is it useful.
1860
1861 Avoiding xmodem and the like seems like a win (a) because we don't have
1862 to worry about finding it, and (b) On VMS, fork() is very slow and so
1863 we don't want to run a subprocess. On the other hand, I'm not sure how
1864 performance compares. */
917317f4 1865
917317f4
JM
1866static int validate_download = 0;
1867
e4f9b4d5
MS
1868/* Callback service function for generic_load (bfd_map_over_sections). */
1869
1870static void
1871add_section_size_callback (bfd *abfd, asection *asec, void *data)
1872{
1873 bfd_size_type *sum = data;
1874
2c500098 1875 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1876}
1877
1878/* Opaque data for load_section_callback. */
1879struct load_section_data {
f698ca8e 1880 CORE_ADDR load_offset;
a76d924d
DJ
1881 struct load_progress_data *progress_data;
1882 VEC(memory_write_request_s) *requests;
1883};
1884
1885/* Opaque data for load_progress. */
1886struct load_progress_data {
1887 /* Cumulative data. */
e4f9b4d5
MS
1888 unsigned long write_count;
1889 unsigned long data_count;
1890 bfd_size_type total_size;
a76d924d
DJ
1891};
1892
1893/* Opaque data for load_progress for a single section. */
1894struct load_progress_section_data {
1895 struct load_progress_data *cumulative;
cf7a04e8 1896
a76d924d 1897 /* Per-section data. */
cf7a04e8
DJ
1898 const char *section_name;
1899 ULONGEST section_sent;
1900 ULONGEST section_size;
1901 CORE_ADDR lma;
1902 gdb_byte *buffer;
e4f9b4d5
MS
1903};
1904
a76d924d 1905/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1906
1907static void
1908load_progress (ULONGEST bytes, void *untyped_arg)
1909{
a76d924d
DJ
1910 struct load_progress_section_data *args = untyped_arg;
1911 struct load_progress_data *totals;
1912
1913 if (args == NULL)
1914 /* Writing padding data. No easy way to get at the cumulative
1915 stats, so just ignore this. */
1916 return;
1917
1918 totals = args->cumulative;
1919
1920 if (bytes == 0 && args->section_sent == 0)
1921 {
1922 /* The write is just starting. Let the user know we've started
1923 this section. */
79a45e25 1924 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1925 args->section_name, hex_string (args->section_size),
f5656ead 1926 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1927 return;
1928 }
cf7a04e8
DJ
1929
1930 if (validate_download)
1931 {
1932 /* Broken memories and broken monitors manifest themselves here
1933 when bring new computers to life. This doubles already slow
1934 downloads. */
1935 /* NOTE: cagney/1999-10-18: A more efficient implementation
1936 might add a verify_memory() method to the target vector and
1937 then use that. remote.c could implement that method using
1938 the ``qCRC'' packet. */
1939 gdb_byte *check = xmalloc (bytes);
1940 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1941
1942 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1943 error (_("Download verify read failed at %s"),
f5656ead 1944 paddress (target_gdbarch (), args->lma));
cf7a04e8 1945 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1946 error (_("Download verify compare failed at %s"),
f5656ead 1947 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1948 do_cleanups (verify_cleanups);
1949 }
a76d924d 1950 totals->data_count += bytes;
cf7a04e8
DJ
1951 args->lma += bytes;
1952 args->buffer += bytes;
a76d924d 1953 totals->write_count += 1;
cf7a04e8 1954 args->section_sent += bytes;
522002f9 1955 if (check_quit_flag ()
cf7a04e8
DJ
1956 || (deprecated_ui_load_progress_hook != NULL
1957 && deprecated_ui_load_progress_hook (args->section_name,
1958 args->section_sent)))
1959 error (_("Canceled the download"));
1960
1961 if (deprecated_show_load_progress != NULL)
1962 deprecated_show_load_progress (args->section_name,
1963 args->section_sent,
1964 args->section_size,
a76d924d
DJ
1965 totals->data_count,
1966 totals->total_size);
cf7a04e8
DJ
1967}
1968
e4f9b4d5
MS
1969/* Callback service function for generic_load (bfd_map_over_sections). */
1970
1971static void
1972load_section_callback (bfd *abfd, asection *asec, void *data)
1973{
a76d924d 1974 struct memory_write_request *new_request;
e4f9b4d5 1975 struct load_section_data *args = data;
a76d924d 1976 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1977 bfd_size_type size = bfd_get_section_size (asec);
1978 gdb_byte *buffer;
cf7a04e8 1979 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1980
cf7a04e8
DJ
1981 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1982 return;
e4f9b4d5 1983
cf7a04e8
DJ
1984 if (size == 0)
1985 return;
e4f9b4d5 1986
a76d924d
DJ
1987 new_request = VEC_safe_push (memory_write_request_s,
1988 args->requests, NULL);
1989 memset (new_request, 0, sizeof (struct memory_write_request));
1990 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1991 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1992 new_request->end = new_request->begin + size; /* FIXME Should size
1993 be in instead? */
a76d924d
DJ
1994 new_request->data = xmalloc (size);
1995 new_request->baton = section_data;
cf7a04e8 1996
a76d924d 1997 buffer = new_request->data;
cf7a04e8 1998
a76d924d
DJ
1999 section_data->cumulative = args->progress_data;
2000 section_data->section_name = sect_name;
2001 section_data->section_size = size;
2002 section_data->lma = new_request->begin;
2003 section_data->buffer = buffer;
cf7a04e8
DJ
2004
2005 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2006}
2007
2008/* Clean up an entire memory request vector, including load
2009 data and progress records. */
cf7a04e8 2010
a76d924d
DJ
2011static void
2012clear_memory_write_data (void *arg)
2013{
2014 VEC(memory_write_request_s) **vec_p = arg;
2015 VEC(memory_write_request_s) *vec = *vec_p;
2016 int i;
2017 struct memory_write_request *mr;
cf7a04e8 2018
a76d924d
DJ
2019 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2020 {
2021 xfree (mr->data);
2022 xfree (mr->baton);
2023 }
2024 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2025}
2026
c906108c 2027void
917317f4 2028generic_load (char *args, int from_tty)
c906108c 2029{
c906108c 2030 bfd *loadfile_bfd;
2b71414d 2031 struct timeval start_time, end_time;
917317f4 2032 char *filename;
1986bccd 2033 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2034 struct load_section_data cbdata;
a76d924d 2035 struct load_progress_data total_progress;
79a45e25 2036 struct ui_out *uiout = current_uiout;
a76d924d 2037
e4f9b4d5 2038 CORE_ADDR entry;
1986bccd 2039 char **argv;
e4f9b4d5 2040
a76d924d
DJ
2041 memset (&cbdata, 0, sizeof (cbdata));
2042 memset (&total_progress, 0, sizeof (total_progress));
2043 cbdata.progress_data = &total_progress;
2044
2045 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2046
d1a41061
PP
2047 if (args == NULL)
2048 error_no_arg (_("file to load"));
1986bccd 2049
d1a41061 2050 argv = gdb_buildargv (args);
1986bccd
AS
2051 make_cleanup_freeargv (argv);
2052
2053 filename = tilde_expand (argv[0]);
2054 make_cleanup (xfree, filename);
2055
2056 if (argv[1] != NULL)
917317f4 2057 {
f698ca8e 2058 const char *endptr;
ba5f2f8a 2059
f698ca8e 2060 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2061
2062 /* If the last word was not a valid number then
2063 treat it as a file name with spaces in. */
2064 if (argv[1] == endptr)
2065 error (_("Invalid download offset:%s."), argv[1]);
2066
2067 if (argv[2] != NULL)
2068 error (_("Too many parameters."));
917317f4 2069 }
c906108c 2070
c378eb4e 2071 /* Open the file for loading. */
1c00ec6b 2072 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2073 if (loadfile_bfd == NULL)
2074 {
2075 perror_with_name (filename);
2076 return;
2077 }
917317f4 2078
f9a062ff 2079 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2080
c5aa993b 2081 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2082 {
8a3fe4f8 2083 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2084 bfd_errmsg (bfd_get_error ()));
2085 }
c5aa993b 2086
5417f6dc 2087 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2088 (void *) &total_progress.total_size);
2089
2090 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2091
2b71414d 2092 gettimeofday (&start_time, NULL);
c906108c 2093
a76d924d
DJ
2094 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2095 load_progress) != 0)
2096 error (_("Load failed"));
c906108c 2097
2b71414d 2098 gettimeofday (&end_time, NULL);
ba5f2f8a 2099
e4f9b4d5 2100 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2101 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2102 ui_out_text (uiout, "Start address ");
f5656ead 2103 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2104 ui_out_text (uiout, ", load size ");
a76d924d 2105 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2106 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2107 /* We were doing this in remote-mips.c, I suspect it is right
2108 for other targets too. */
fb14de7b 2109 regcache_write_pc (get_current_regcache (), entry);
c906108c 2110
38963c97
DJ
2111 /* Reset breakpoints, now that we have changed the load image. For
2112 instance, breakpoints may have been set (or reset, by
2113 post_create_inferior) while connected to the target but before we
2114 loaded the program. In that case, the prologue analyzer could
2115 have read instructions from the target to find the right
2116 breakpoint locations. Loading has changed the contents of that
2117 memory. */
2118
2119 breakpoint_re_set ();
2120
7ca9f392
AC
2121 /* FIXME: are we supposed to call symbol_file_add or not? According
2122 to a comment from remote-mips.c (where a call to symbol_file_add
2123 was commented out), making the call confuses GDB if more than one
2124 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2125 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2126
a76d924d
DJ
2127 print_transfer_performance (gdb_stdout, total_progress.data_count,
2128 total_progress.write_count,
2129 &start_time, &end_time);
c906108c
SS
2130
2131 do_cleanups (old_cleanups);
2132}
2133
c378eb4e 2134/* Report how fast the transfer went. */
c906108c 2135
917317f4 2136void
d9fcf2fb 2137print_transfer_performance (struct ui_file *stream,
917317f4
JM
2138 unsigned long data_count,
2139 unsigned long write_count,
2b71414d
DJ
2140 const struct timeval *start_time,
2141 const struct timeval *end_time)
917317f4 2142{
9f43d28c 2143 ULONGEST time_count;
79a45e25 2144 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2145
2146 /* Compute the elapsed time in milliseconds, as a tradeoff between
2147 accuracy and overflow. */
2148 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2149 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2150
8b93c638
JM
2151 ui_out_text (uiout, "Transfer rate: ");
2152 if (time_count > 0)
2153 {
9f43d28c
DJ
2154 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2155
2156 if (ui_out_is_mi_like_p (uiout))
2157 {
2158 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2159 ui_out_text (uiout, " bits/sec");
2160 }
2161 else if (rate < 1024)
2162 {
2163 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2164 ui_out_text (uiout, " bytes/sec");
2165 }
2166 else
2167 {
2168 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2169 ui_out_text (uiout, " KB/sec");
2170 }
8b93c638
JM
2171 }
2172 else
2173 {
ba5f2f8a 2174 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2175 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2176 }
2177 if (write_count > 0)
2178 {
2179 ui_out_text (uiout, ", ");
ba5f2f8a 2180 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2181 ui_out_text (uiout, " bytes/write");
2182 }
2183 ui_out_text (uiout, ".\n");
c906108c
SS
2184}
2185
2186/* This function allows the addition of incrementally linked object files.
2187 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2188/* Note: ezannoni 2000-04-13 This function/command used to have a
2189 special case syntax for the rombug target (Rombug is the boot
2190 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2191 rombug case, the user doesn't need to supply a text address,
2192 instead a call to target_link() (in target.c) would supply the
c378eb4e 2193 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2194
c906108c 2195static void
fba45db2 2196add_symbol_file_command (char *args, int from_tty)
c906108c 2197{
5af949e3 2198 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2199 char *filename = NULL;
2df3850c 2200 int flags = OBJF_USERLOADED;
c906108c 2201 char *arg;
db162d44 2202 int section_index = 0;
2acceee2
JM
2203 int argcnt = 0;
2204 int sec_num = 0;
2205 int i;
db162d44
EZ
2206 int expecting_sec_name = 0;
2207 int expecting_sec_addr = 0;
5b96932b 2208 char **argv;
db162d44 2209
a39a16c4 2210 struct sect_opt
2acceee2 2211 {
2acceee2
JM
2212 char *name;
2213 char *value;
a39a16c4 2214 };
db162d44 2215
a39a16c4
MM
2216 struct section_addr_info *section_addrs;
2217 struct sect_opt *sect_opts = NULL;
2218 size_t num_sect_opts = 0;
3017564a 2219 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2220
a39a16c4 2221 num_sect_opts = 16;
5417f6dc 2222 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2223 * sizeof (struct sect_opt));
2224
c906108c
SS
2225 dont_repeat ();
2226
2227 if (args == NULL)
8a3fe4f8 2228 error (_("add-symbol-file takes a file name and an address"));
c906108c 2229
d1a41061 2230 argv = gdb_buildargv (args);
5b96932b 2231 make_cleanup_freeargv (argv);
db162d44 2232
5b96932b
AS
2233 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2234 {
c378eb4e 2235 /* Process the argument. */
db162d44 2236 if (argcnt == 0)
c906108c 2237 {
c378eb4e 2238 /* The first argument is the file name. */
db162d44 2239 filename = tilde_expand (arg);
3017564a 2240 make_cleanup (xfree, filename);
c906108c 2241 }
41dc8db8
MB
2242 else if (argcnt == 1)
2243 {
2244 /* The second argument is always the text address at which
2245 to load the program. */
2246 sect_opts[section_index].name = ".text";
2247 sect_opts[section_index].value = arg;
2248 if (++section_index >= num_sect_opts)
2249 {
2250 num_sect_opts *= 2;
2251 sect_opts = ((struct sect_opt *)
2252 xrealloc (sect_opts,
2253 num_sect_opts
2254 * sizeof (struct sect_opt)));
2255 }
2256 }
db162d44 2257 else
41dc8db8
MB
2258 {
2259 /* It's an option (starting with '-') or it's an argument
2260 to an option. */
41dc8db8
MB
2261 if (expecting_sec_name)
2262 {
2263 sect_opts[section_index].name = arg;
2264 expecting_sec_name = 0;
2265 }
2266 else if (expecting_sec_addr)
2267 {
2268 sect_opts[section_index].value = arg;
2269 expecting_sec_addr = 0;
2270 if (++section_index >= num_sect_opts)
2271 {
2272 num_sect_opts *= 2;
2273 sect_opts = ((struct sect_opt *)
2274 xrealloc (sect_opts,
2275 num_sect_opts
2276 * sizeof (struct sect_opt)));
2277 }
2278 }
2279 else if (strcmp (arg, "-readnow") == 0)
2280 flags |= OBJF_READNOW;
2281 else if (strcmp (arg, "-s") == 0)
2282 {
2283 expecting_sec_name = 1;
2284 expecting_sec_addr = 1;
2285 }
2286 else
2287 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2288 " [-readnow] [-s <secname> <addr>]*"));
2289 }
c906108c 2290 }
c906108c 2291
927890d0
JB
2292 /* This command takes at least two arguments. The first one is a
2293 filename, and the second is the address where this file has been
2294 loaded. Abort now if this address hasn't been provided by the
2295 user. */
2296 if (section_index < 1)
2297 error (_("The address where %s has been loaded is missing"), filename);
2298
c378eb4e 2299 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2300 a sect_addr_info structure to be passed around to other
2301 functions. We have to split this up into separate print
bb599908 2302 statements because hex_string returns a local static
c378eb4e 2303 string. */
5417f6dc 2304
a3f17187 2305 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2306 section_addrs = alloc_section_addr_info (section_index);
2307 make_cleanup (xfree, section_addrs);
db162d44 2308 for (i = 0; i < section_index; i++)
c906108c 2309 {
db162d44
EZ
2310 CORE_ADDR addr;
2311 char *val = sect_opts[i].value;
2312 char *sec = sect_opts[i].name;
5417f6dc 2313
ae822768 2314 addr = parse_and_eval_address (val);
db162d44 2315
db162d44 2316 /* Here we store the section offsets in the order they were
c378eb4e 2317 entered on the command line. */
a39a16c4
MM
2318 section_addrs->other[sec_num].name = sec;
2319 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2320 printf_unfiltered ("\t%s_addr = %s\n", sec,
2321 paddress (gdbarch, addr));
db162d44
EZ
2322 sec_num++;
2323
5417f6dc 2324 /* The object's sections are initialized when a
db162d44 2325 call is made to build_objfile_section_table (objfile).
5417f6dc 2326 This happens in reread_symbols.
db162d44
EZ
2327 At this point, we don't know what file type this is,
2328 so we can't determine what section names are valid. */
2acceee2 2329 }
d76488d8 2330 section_addrs->num_sections = sec_num;
db162d44 2331
2acceee2 2332 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2333 error (_("Not confirmed."));
c906108c 2334
7eedccfa
PP
2335 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2336 section_addrs, flags);
c906108c
SS
2337
2338 /* Getting new symbols may change our opinion about what is
2339 frameless. */
2340 reinit_frame_cache ();
db162d44 2341 do_cleanups (my_cleanups);
c906108c
SS
2342}
2343\f
70992597 2344
4ac39b97
JK
2345typedef struct objfile *objfilep;
2346
2347DEF_VEC_P (objfilep);
2348
c906108c 2349/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2350
c906108c 2351void
fba45db2 2352reread_symbols (void)
c906108c
SS
2353{
2354 struct objfile *objfile;
2355 long new_modtime;
c906108c
SS
2356 struct stat new_statbuf;
2357 int res;
4ac39b97
JK
2358 VEC (objfilep) *new_objfiles = NULL;
2359 struct cleanup *all_cleanups;
2360
2361 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2362
2363 /* With the addition of shared libraries, this should be modified,
2364 the load time should be saved in the partial symbol tables, since
2365 different tables may come from different source files. FIXME.
2366 This routine should then walk down each partial symbol table
c378eb4e 2367 and see if the symbol table that it originates from has been changed. */
c906108c 2368
c5aa993b
JM
2369 for (objfile = object_files; objfile; objfile = objfile->next)
2370 {
9cce227f
TG
2371 if (objfile->obfd == NULL)
2372 continue;
2373
2374 /* Separate debug objfiles are handled in the main objfile. */
2375 if (objfile->separate_debug_objfile_backlink)
2376 continue;
2377
02aeec7b
JB
2378 /* If this object is from an archive (what you usually create with
2379 `ar', often called a `static library' on most systems, though
2380 a `shared library' on AIX is also an archive), then you should
2381 stat on the archive name, not member name. */
9cce227f
TG
2382 if (objfile->obfd->my_archive)
2383 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2384 else
4262abfb 2385 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2386 if (res != 0)
2387 {
c378eb4e 2388 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2389 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2390 objfile_name (objfile));
9cce227f
TG
2391 continue;
2392 }
2393 new_modtime = new_statbuf.st_mtime;
2394 if (new_modtime != objfile->mtime)
2395 {
2396 struct cleanup *old_cleanups;
2397 struct section_offsets *offsets;
2398 int num_offsets;
24ba069a 2399 char *original_name;
9cce227f
TG
2400
2401 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2402 objfile_name (objfile));
9cce227f
TG
2403
2404 /* There are various functions like symbol_file_add,
2405 symfile_bfd_open, syms_from_objfile, etc., which might
2406 appear to do what we want. But they have various other
2407 effects which we *don't* want. So we just do stuff
2408 ourselves. We don't worry about mapped files (for one thing,
2409 any mapped file will be out of date). */
2410
2411 /* If we get an error, blow away this objfile (not sure if
2412 that is the correct response for things like shared
2413 libraries). */
2414 old_cleanups = make_cleanup_free_objfile (objfile);
2415 /* We need to do this whenever any symbols go away. */
2416 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2417
0ba1096a
KT
2418 if (exec_bfd != NULL
2419 && filename_cmp (bfd_get_filename (objfile->obfd),
2420 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2421 {
2422 /* Reload EXEC_BFD without asking anything. */
2423
2424 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2425 }
2426
f6eeced0
JK
2427 /* Keep the calls order approx. the same as in free_objfile. */
2428
2429 /* Free the separate debug objfiles. It will be
2430 automatically recreated by sym_read. */
2431 free_objfile_separate_debug (objfile);
2432
2433 /* Remove any references to this objfile in the global
2434 value lists. */
2435 preserve_values (objfile);
2436
2437 /* Nuke all the state that we will re-read. Much of the following
2438 code which sets things to NULL really is necessary to tell
2439 other parts of GDB that there is nothing currently there.
2440
2441 Try to keep the freeing order compatible with free_objfile. */
2442
2443 if (objfile->sf != NULL)
2444 {
2445 (*objfile->sf->sym_finish) (objfile);
2446 }
2447
2448 clear_objfile_data (objfile);
2449
e1507e95 2450 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2451 {
2452 struct bfd *obfd = objfile->obfd;
d3846e71 2453 char *obfd_filename;
a4453b7e
TT
2454
2455 obfd_filename = bfd_get_filename (objfile->obfd);
2456 /* Open the new BFD before freeing the old one, so that
2457 the filename remains live. */
08d2cd74 2458 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2459 if (objfile->obfd == NULL)
2460 {
2461 /* We have to make a cleanup and error here, rather
2462 than erroring later, because once we unref OBFD,
2463 OBFD_FILENAME will be freed. */
2464 make_cleanup_bfd_unref (obfd);
2465 error (_("Can't open %s to read symbols."), obfd_filename);
2466 }
a4453b7e
TT
2467 gdb_bfd_unref (obfd);
2468 }
2469
24ba069a
JK
2470 original_name = xstrdup (objfile->original_name);
2471 make_cleanup (xfree, original_name);
2472
9cce227f
TG
2473 /* bfd_openr sets cacheable to true, which is what we want. */
2474 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2475 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2476 bfd_errmsg (bfd_get_error ()));
2477
2478 /* Save the offsets, we will nuke them with the rest of the
2479 objfile_obstack. */
2480 num_offsets = objfile->num_sections;
2481 offsets = ((struct section_offsets *)
2482 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2483 memcpy (offsets, objfile->section_offsets,
2484 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2485
9cce227f
TG
2486 /* FIXME: Do we have to free a whole linked list, or is this
2487 enough? */
2488 if (objfile->global_psymbols.list)
2489 xfree (objfile->global_psymbols.list);
2490 memset (&objfile->global_psymbols, 0,
2491 sizeof (objfile->global_psymbols));
2492 if (objfile->static_psymbols.list)
2493 xfree (objfile->static_psymbols.list);
2494 memset (&objfile->static_psymbols, 0,
2495 sizeof (objfile->static_psymbols));
2496
c378eb4e 2497 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2498 psymbol_bcache_free (objfile->psymbol_cache);
2499 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2500 obstack_free (&objfile->objfile_obstack, 0);
2501 objfile->sections = NULL;
2502 objfile->symtabs = NULL;
2503 objfile->psymtabs = NULL;
2504 objfile->psymtabs_addrmap = NULL;
2505 objfile->free_psymtabs = NULL;
34eaf542 2506 objfile->template_symbols = NULL;
9cce227f 2507 objfile->msymbols = NULL;
9cce227f
TG
2508 objfile->minimal_symbol_count = 0;
2509 memset (&objfile->msymbol_hash, 0,
2510 sizeof (objfile->msymbol_hash));
2511 memset (&objfile->msymbol_demangled_hash, 0,
2512 sizeof (objfile->msymbol_demangled_hash));
2513
706e3705
TT
2514 set_objfile_per_bfd (objfile);
2515
9cce227f
TG
2516 /* obstack_init also initializes the obstack so it is
2517 empty. We could use obstack_specify_allocation but
d82ea6a8 2518 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2519 obstack_init (&objfile->objfile_obstack);
779bd270 2520
24ba069a
JK
2521 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2522 original_name,
2523 strlen (original_name));
2524
779bd270
DE
2525 /* Reset the sym_fns pointer. The ELF reader can change it
2526 based on whether .gdb_index is present, and we need it to
2527 start over. PR symtab/15885 */
8fb8eb5c 2528 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2529
d82ea6a8 2530 build_objfile_section_table (objfile);
9cce227f
TG
2531 terminate_minimal_symbol_table (objfile);
2532
2533 /* We use the same section offsets as from last time. I'm not
2534 sure whether that is always correct for shared libraries. */
2535 objfile->section_offsets = (struct section_offsets *)
2536 obstack_alloc (&objfile->objfile_obstack,
2537 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2538 memcpy (objfile->section_offsets, offsets,
2539 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2540 objfile->num_sections = num_offsets;
2541
2542 /* What the hell is sym_new_init for, anyway? The concept of
2543 distinguishing between the main file and additional files
2544 in this way seems rather dubious. */
2545 if (objfile == symfile_objfile)
c906108c 2546 {
9cce227f 2547 (*objfile->sf->sym_new_init) (objfile);
c906108c 2548 }
9cce227f
TG
2549
2550 (*objfile->sf->sym_init) (objfile);
2551 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2552
2553 objfile->flags &= ~OBJF_PSYMTABS_READ;
2554 read_symbols (objfile, 0);
b11896a5 2555
9cce227f 2556 if (!objfile_has_symbols (objfile))
c906108c 2557 {
9cce227f
TG
2558 wrap_here ("");
2559 printf_unfiltered (_("(no debugging symbols found)\n"));
2560 wrap_here ("");
c5aa993b 2561 }
9cce227f
TG
2562
2563 /* We're done reading the symbol file; finish off complaints. */
2564 clear_complaints (&symfile_complaints, 0, 1);
2565
2566 /* Getting new symbols may change our opinion about what is
2567 frameless. */
2568
2569 reinit_frame_cache ();
2570
2571 /* Discard cleanups as symbol reading was successful. */
2572 discard_cleanups (old_cleanups);
2573
2574 /* If the mtime has changed between the time we set new_modtime
2575 and now, we *want* this to be out of date, so don't call stat
2576 again now. */
2577 objfile->mtime = new_modtime;
9cce227f 2578 init_entry_point_info (objfile);
4ac39b97
JK
2579
2580 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2581 }
2582 }
c906108c 2583
4ac39b97 2584 if (new_objfiles)
ea53e89f 2585 {
4ac39b97
JK
2586 int ix;
2587
ff3536bc
UW
2588 /* Notify objfiles that we've modified objfile sections. */
2589 objfiles_changed ();
2590
c1e56572 2591 clear_symtab_users (0);
4ac39b97
JK
2592
2593 /* clear_objfile_data for each objfile was called before freeing it and
2594 observer_notify_new_objfile (NULL) has been called by
2595 clear_symtab_users above. Notify the new files now. */
2596 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2597 observer_notify_new_objfile (objfile);
2598
ea53e89f
JB
2599 /* At least one objfile has changed, so we can consider that
2600 the executable we're debugging has changed too. */
781b42b0 2601 observer_notify_executable_changed ();
ea53e89f 2602 }
4ac39b97
JK
2603
2604 do_cleanups (all_cleanups);
c906108c 2605}
c906108c
SS
2606\f
2607
c5aa993b
JM
2608typedef struct
2609{
2610 char *ext;
c906108c 2611 enum language lang;
c5aa993b
JM
2612}
2613filename_language;
c906108c 2614
c5aa993b 2615static filename_language *filename_language_table;
c906108c
SS
2616static int fl_table_size, fl_table_next;
2617
2618static void
fba45db2 2619add_filename_language (char *ext, enum language lang)
c906108c
SS
2620{
2621 if (fl_table_next >= fl_table_size)
2622 {
2623 fl_table_size += 10;
5417f6dc 2624 filename_language_table =
25bf3106
PM
2625 xrealloc (filename_language_table,
2626 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2627 }
2628
4fcf66da 2629 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2630 filename_language_table[fl_table_next].lang = lang;
2631 fl_table_next++;
2632}
2633
2634static char *ext_args;
920d2a44
AC
2635static void
2636show_ext_args (struct ui_file *file, int from_tty,
2637 struct cmd_list_element *c, const char *value)
2638{
3e43a32a
MS
2639 fprintf_filtered (file,
2640 _("Mapping between filename extension "
2641 "and source language is \"%s\".\n"),
920d2a44
AC
2642 value);
2643}
c906108c
SS
2644
2645static void
26c41df3 2646set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2647{
2648 int i;
2649 char *cp = ext_args;
2650 enum language lang;
2651
c378eb4e 2652 /* First arg is filename extension, starting with '.' */
c906108c 2653 if (*cp != '.')
8a3fe4f8 2654 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2655
2656 /* Find end of first arg. */
c5aa993b 2657 while (*cp && !isspace (*cp))
c906108c
SS
2658 cp++;
2659
2660 if (*cp == '\0')
3e43a32a
MS
2661 error (_("'%s': two arguments required -- "
2662 "filename extension and language"),
c906108c
SS
2663 ext_args);
2664
c378eb4e 2665 /* Null-terminate first arg. */
c5aa993b 2666 *cp++ = '\0';
c906108c
SS
2667
2668 /* Find beginning of second arg, which should be a source language. */
529480d0 2669 cp = skip_spaces (cp);
c906108c
SS
2670
2671 if (*cp == '\0')
3e43a32a
MS
2672 error (_("'%s': two arguments required -- "
2673 "filename extension and language"),
c906108c
SS
2674 ext_args);
2675
2676 /* Lookup the language from among those we know. */
2677 lang = language_enum (cp);
2678
2679 /* Now lookup the filename extension: do we already know it? */
2680 for (i = 0; i < fl_table_next; i++)
2681 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2682 break;
2683
2684 if (i >= fl_table_next)
2685 {
c378eb4e 2686 /* New file extension. */
c906108c
SS
2687 add_filename_language (ext_args, lang);
2688 }
2689 else
2690 {
c378eb4e 2691 /* Redefining a previously known filename extension. */
c906108c
SS
2692
2693 /* if (from_tty) */
2694 /* query ("Really make files of type %s '%s'?", */
2695 /* ext_args, language_str (lang)); */
2696
b8c9b27d 2697 xfree (filename_language_table[i].ext);
4fcf66da 2698 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2699 filename_language_table[i].lang = lang;
2700 }
2701}
2702
2703static void
fba45db2 2704info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2705{
2706 int i;
2707
a3f17187 2708 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2709 printf_filtered ("\n\n");
2710 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2711 printf_filtered ("\t%s\t- %s\n",
2712 filename_language_table[i].ext,
c906108c
SS
2713 language_str (filename_language_table[i].lang));
2714}
2715
2716static void
fba45db2 2717init_filename_language_table (void)
c906108c 2718{
c378eb4e 2719 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2720 {
2721 fl_table_size = 20;
2722 fl_table_next = 0;
c5aa993b 2723 filename_language_table =
c906108c 2724 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2725 add_filename_language (".c", language_c);
6aecb9c2 2726 add_filename_language (".d", language_d);
c5aa993b
JM
2727 add_filename_language (".C", language_cplus);
2728 add_filename_language (".cc", language_cplus);
2729 add_filename_language (".cp", language_cplus);
2730 add_filename_language (".cpp", language_cplus);
2731 add_filename_language (".cxx", language_cplus);
2732 add_filename_language (".c++", language_cplus);
2733 add_filename_language (".java", language_java);
c906108c 2734 add_filename_language (".class", language_java);
da2cf7e0 2735 add_filename_language (".m", language_objc);
c5aa993b
JM
2736 add_filename_language (".f", language_fortran);
2737 add_filename_language (".F", language_fortran);
fd5700c7
JK
2738 add_filename_language (".for", language_fortran);
2739 add_filename_language (".FOR", language_fortran);
2740 add_filename_language (".ftn", language_fortran);
2741 add_filename_language (".FTN", language_fortran);
2742 add_filename_language (".fpp", language_fortran);
2743 add_filename_language (".FPP", language_fortran);
2744 add_filename_language (".f90", language_fortran);
2745 add_filename_language (".F90", language_fortran);
2746 add_filename_language (".f95", language_fortran);
2747 add_filename_language (".F95", language_fortran);
2748 add_filename_language (".f03", language_fortran);
2749 add_filename_language (".F03", language_fortran);
2750 add_filename_language (".f08", language_fortran);
2751 add_filename_language (".F08", language_fortran);
c5aa993b 2752 add_filename_language (".s", language_asm);
aa707ed0 2753 add_filename_language (".sx", language_asm);
c5aa993b 2754 add_filename_language (".S", language_asm);
c6fd39cd
PM
2755 add_filename_language (".pas", language_pascal);
2756 add_filename_language (".p", language_pascal);
2757 add_filename_language (".pp", language_pascal);
963a6417
PH
2758 add_filename_language (".adb", language_ada);
2759 add_filename_language (".ads", language_ada);
2760 add_filename_language (".a", language_ada);
2761 add_filename_language (".ada", language_ada);
dde59185 2762 add_filename_language (".dg", language_ada);
c906108c
SS
2763 }
2764}
2765
2766enum language
dd786858 2767deduce_language_from_filename (const char *filename)
c906108c
SS
2768{
2769 int i;
2770 char *cp;
2771
2772 if (filename != NULL)
2773 if ((cp = strrchr (filename, '.')) != NULL)
2774 for (i = 0; i < fl_table_next; i++)
2775 if (strcmp (cp, filename_language_table[i].ext) == 0)
2776 return filename_language_table[i].lang;
2777
2778 return language_unknown;
2779}
2780\f
2781/* allocate_symtab:
2782
2783 Allocate and partly initialize a new symbol table. Return a pointer
2784 to it. error() if no space.
2785
2786 Caller must set these fields:
c5aa993b
JM
2787 LINETABLE(symtab)
2788 symtab->blockvector
2789 symtab->dirname
2790 symtab->free_code
2791 symtab->free_ptr
c906108c
SS
2792 */
2793
2794struct symtab *
72b9f47f 2795allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2796{
52f0bd74 2797 struct symtab *symtab;
c906108c
SS
2798
2799 symtab = (struct symtab *)
4a146b47 2800 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2801 memset (symtab, 0, sizeof (*symtab));
10abe6bf 2802 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
706e3705 2803 objfile->per_bfd->filename_cache);
c5aa993b
JM
2804 symtab->fullname = NULL;
2805 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2806 symtab->debugformat = "unknown";
c906108c 2807
c378eb4e 2808 /* Hook it to the objfile it comes from. */
c906108c 2809
c5aa993b
JM
2810 symtab->objfile = objfile;
2811 symtab->next = objfile->symtabs;
2812 objfile->symtabs = symtab;
c906108c 2813
45cfd468
DE
2814 if (symtab_create_debug)
2815 {
2816 /* Be a bit clever with debugging messages, and don't print objfile
2817 every time, only when it changes. */
2818 static char *last_objfile_name = NULL;
2819
2820 if (last_objfile_name == NULL
4262abfb 2821 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2822 {
2823 xfree (last_objfile_name);
4262abfb 2824 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2825 fprintf_unfiltered (gdb_stdlog,
2826 "Creating one or more symtabs for objfile %s ...\n",
2827 last_objfile_name);
2828 }
2829 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2830 "Created symtab %s for module %s.\n",
2831 host_address_to_string (symtab), filename);
45cfd468
DE
2832 }
2833
c906108c
SS
2834 return (symtab);
2835}
c906108c 2836\f
c5aa993b 2837
c906108c 2838/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2839 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2840
2841void
c1e56572 2842clear_symtab_users (int add_flags)
c906108c
SS
2843{
2844 /* Someday, we should do better than this, by only blowing away
2845 the things that really need to be blown. */
c0501be5
DJ
2846
2847 /* Clear the "current" symtab first, because it is no longer valid.
2848 breakpoint_re_set may try to access the current symtab. */
2849 clear_current_source_symtab_and_line ();
2850
c906108c 2851 clear_displays ();
c1e56572
JK
2852 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2853 breakpoint_re_set ();
1bfeeb0f 2854 clear_last_displayed_sal ();
c906108c 2855 clear_pc_function_cache ();
06d3b283 2856 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2857
2858 /* Clear globals which might have pointed into a removed objfile.
2859 FIXME: It's not clear which of these are supposed to persist
2860 between expressions and which ought to be reset each time. */
2861 expression_context_block = NULL;
2862 innermost_block = NULL;
8756216b
DP
2863
2864 /* Varobj may refer to old symbols, perform a cleanup. */
2865 varobj_invalidate ();
2866
c906108c
SS
2867}
2868
74b7792f
AC
2869static void
2870clear_symtab_users_cleanup (void *ignore)
2871{
c1e56572 2872 clear_symtab_users (0);
74b7792f 2873}
c906108c 2874\f
c906108c
SS
2875/* OVERLAYS:
2876 The following code implements an abstraction for debugging overlay sections.
2877
2878 The target model is as follows:
2879 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2880 same VMA, each with its own unique LMA (or load address).
c906108c 2881 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2882 sections, one by one, from the load address into the VMA address.
5417f6dc 2883 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2884 sections should be considered to be mapped from the VMA to the LMA.
2885 This information is used for symbol lookup, and memory read/write.
5417f6dc 2886 For instance, if a section has been mapped then its contents
c5aa993b 2887 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2888
2889 Two levels of debugger support for overlays are available. One is
2890 "manual", in which the debugger relies on the user to tell it which
2891 overlays are currently mapped. This level of support is
2892 implemented entirely in the core debugger, and the information about
2893 whether a section is mapped is kept in the objfile->obj_section table.
2894
2895 The second level of support is "automatic", and is only available if
2896 the target-specific code provides functionality to read the target's
2897 overlay mapping table, and translate its contents for the debugger
2898 (by updating the mapped state information in the obj_section tables).
2899
2900 The interface is as follows:
c5aa993b
JM
2901 User commands:
2902 overlay map <name> -- tell gdb to consider this section mapped
2903 overlay unmap <name> -- tell gdb to consider this section unmapped
2904 overlay list -- list the sections that GDB thinks are mapped
2905 overlay read-target -- get the target's state of what's mapped
2906 overlay off/manual/auto -- set overlay debugging state
2907 Functional interface:
2908 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2909 section, return that section.
5417f6dc 2910 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2911 the pc, either in its VMA or its LMA
714835d5 2912 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2913 section_is_overlay(sect): true if section's VMA != LMA
2914 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2915 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2916 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2917 overlay_mapped_address(...): map an address from section's LMA to VMA
2918 overlay_unmapped_address(...): map an address from section's VMA to LMA
2919 symbol_overlayed_address(...): Return a "current" address for symbol:
2920 either in VMA or LMA depending on whether
c378eb4e 2921 the symbol's section is currently mapped. */
c906108c
SS
2922
2923/* Overlay debugging state: */
2924
d874f1e2 2925enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2926int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2927
c906108c 2928/* Function: section_is_overlay (SECTION)
5417f6dc 2929 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2930 SECTION is loaded at an address different from where it will "run". */
2931
2932int
714835d5 2933section_is_overlay (struct obj_section *section)
c906108c 2934{
714835d5
UW
2935 if (overlay_debugging && section)
2936 {
2937 bfd *abfd = section->objfile->obfd;
2938 asection *bfd_section = section->the_bfd_section;
f888f159 2939
714835d5
UW
2940 if (bfd_section_lma (abfd, bfd_section) != 0
2941 && bfd_section_lma (abfd, bfd_section)
2942 != bfd_section_vma (abfd, bfd_section))
2943 return 1;
2944 }
c906108c
SS
2945
2946 return 0;
2947}
2948
2949/* Function: overlay_invalidate_all (void)
2950 Invalidate the mapped state of all overlay sections (mark it as stale). */
2951
2952static void
fba45db2 2953overlay_invalidate_all (void)
c906108c 2954{
c5aa993b 2955 struct objfile *objfile;
c906108c
SS
2956 struct obj_section *sect;
2957
2958 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2959 if (section_is_overlay (sect))
2960 sect->ovly_mapped = -1;
c906108c
SS
2961}
2962
714835d5 2963/* Function: section_is_mapped (SECTION)
5417f6dc 2964 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2965
2966 Access to the ovly_mapped flag is restricted to this function, so
2967 that we can do automatic update. If the global flag
2968 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2969 overlay_invalidate_all. If the mapped state of the particular
2970 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2971
714835d5
UW
2972int
2973section_is_mapped (struct obj_section *osect)
c906108c 2974{
9216df95
UW
2975 struct gdbarch *gdbarch;
2976
714835d5 2977 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2978 return 0;
2979
c5aa993b 2980 switch (overlay_debugging)
c906108c
SS
2981 {
2982 default:
d874f1e2 2983 case ovly_off:
c5aa993b 2984 return 0; /* overlay debugging off */
d874f1e2 2985 case ovly_auto: /* overlay debugging automatic */
1c772458 2986 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2987 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2988 gdbarch = get_objfile_arch (osect->objfile);
2989 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2990 {
2991 if (overlay_cache_invalid)
2992 {
2993 overlay_invalidate_all ();
2994 overlay_cache_invalid = 0;
2995 }
2996 if (osect->ovly_mapped == -1)
9216df95 2997 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2998 }
2999 /* fall thru to manual case */
d874f1e2 3000 case ovly_on: /* overlay debugging manual */
c906108c
SS
3001 return osect->ovly_mapped == 1;
3002 }
3003}
3004
c906108c
SS
3005/* Function: pc_in_unmapped_range
3006 If PC falls into the lma range of SECTION, return true, else false. */
3007
3008CORE_ADDR
714835d5 3009pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3010{
714835d5
UW
3011 if (section_is_overlay (section))
3012 {
3013 bfd *abfd = section->objfile->obfd;
3014 asection *bfd_section = section->the_bfd_section;
fbd35540 3015
714835d5
UW
3016 /* We assume the LMA is relocated by the same offset as the VMA. */
3017 bfd_vma size = bfd_get_section_size (bfd_section);
3018 CORE_ADDR offset = obj_section_offset (section);
3019
3020 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3021 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3022 return 1;
3023 }
c906108c 3024
c906108c
SS
3025 return 0;
3026}
3027
3028/* Function: pc_in_mapped_range
3029 If PC falls into the vma range of SECTION, return true, else false. */
3030
3031CORE_ADDR
714835d5 3032pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3033{
714835d5
UW
3034 if (section_is_overlay (section))
3035 {
3036 if (obj_section_addr (section) <= pc
3037 && pc < obj_section_endaddr (section))
3038 return 1;
3039 }
c906108c 3040
c906108c
SS
3041 return 0;
3042}
3043
9ec8e6a0
JB
3044/* Return true if the mapped ranges of sections A and B overlap, false
3045 otherwise. */
3b7bacac 3046
b9362cc7 3047static int
714835d5 3048sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3049{
714835d5
UW
3050 CORE_ADDR a_start = obj_section_addr (a);
3051 CORE_ADDR a_end = obj_section_endaddr (a);
3052 CORE_ADDR b_start = obj_section_addr (b);
3053 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3054
3055 return (a_start < b_end && b_start < a_end);
3056}
3057
c906108c
SS
3058/* Function: overlay_unmapped_address (PC, SECTION)
3059 Returns the address corresponding to PC in the unmapped (load) range.
3060 May be the same as PC. */
3061
3062CORE_ADDR
714835d5 3063overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3064{
714835d5
UW
3065 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3066 {
3067 bfd *abfd = section->objfile->obfd;
3068 asection *bfd_section = section->the_bfd_section;
fbd35540 3069
714835d5
UW
3070 return pc + bfd_section_lma (abfd, bfd_section)
3071 - bfd_section_vma (abfd, bfd_section);
3072 }
c906108c
SS
3073
3074 return pc;
3075}
3076
3077/* Function: overlay_mapped_address (PC, SECTION)
3078 Returns the address corresponding to PC in the mapped (runtime) range.
3079 May be the same as PC. */
3080
3081CORE_ADDR
714835d5 3082overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3083{
714835d5
UW
3084 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3085 {
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
fbd35540 3088
714835d5
UW
3089 return pc + bfd_section_vma (abfd, bfd_section)
3090 - bfd_section_lma (abfd, bfd_section);
3091 }
c906108c
SS
3092
3093 return pc;
3094}
3095
5417f6dc 3096/* Function: symbol_overlayed_address
c906108c
SS
3097 Return one of two addresses (relative to the VMA or to the LMA),
3098 depending on whether the section is mapped or not. */
3099
c5aa993b 3100CORE_ADDR
714835d5 3101symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3102{
3103 if (overlay_debugging)
3104 {
c378eb4e 3105 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3106 if (section == 0)
3107 return address;
c378eb4e
MS
3108 /* If the symbol's section is not an overlay, just return its
3109 address. */
c906108c
SS
3110 if (!section_is_overlay (section))
3111 return address;
c378eb4e 3112 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3113 if (section_is_mapped (section))
3114 return address;
3115 /*
3116 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3117 * then return its LOADED address rather than its vma address!!
3118 */
3119 return overlay_unmapped_address (address, section);
3120 }
3121 return address;
3122}
3123
5417f6dc 3124/* Function: find_pc_overlay (PC)
c906108c
SS
3125 Return the best-match overlay section for PC:
3126 If PC matches a mapped overlay section's VMA, return that section.
3127 Else if PC matches an unmapped section's VMA, return that section.
3128 Else if PC matches an unmapped section's LMA, return that section. */
3129
714835d5 3130struct obj_section *
fba45db2 3131find_pc_overlay (CORE_ADDR pc)
c906108c 3132{
c5aa993b 3133 struct objfile *objfile;
c906108c
SS
3134 struct obj_section *osect, *best_match = NULL;
3135
3136 if (overlay_debugging)
3137 ALL_OBJSECTIONS (objfile, osect)
714835d5 3138 if (section_is_overlay (osect))
c5aa993b 3139 {
714835d5 3140 if (pc_in_mapped_range (pc, osect))
c5aa993b 3141 {
714835d5
UW
3142 if (section_is_mapped (osect))
3143 return osect;
c5aa993b
JM
3144 else
3145 best_match = osect;
3146 }
714835d5 3147 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3148 best_match = osect;
3149 }
714835d5 3150 return best_match;
c906108c
SS
3151}
3152
3153/* Function: find_pc_mapped_section (PC)
5417f6dc 3154 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3155 currently marked as MAPPED, return that section. Else return NULL. */
3156
714835d5 3157struct obj_section *
fba45db2 3158find_pc_mapped_section (CORE_ADDR pc)
c906108c 3159{
c5aa993b 3160 struct objfile *objfile;
c906108c
SS
3161 struct obj_section *osect;
3162
3163 if (overlay_debugging)
3164 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3165 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3166 return osect;
c906108c
SS
3167
3168 return NULL;
3169}
3170
3171/* Function: list_overlays_command
c378eb4e 3172 Print a list of mapped sections and their PC ranges. */
c906108c 3173
5d3055ad 3174static void
fba45db2 3175list_overlays_command (char *args, int from_tty)
c906108c 3176{
c5aa993b
JM
3177 int nmapped = 0;
3178 struct objfile *objfile;
c906108c
SS
3179 struct obj_section *osect;
3180
3181 if (overlay_debugging)
3182 ALL_OBJSECTIONS (objfile, osect)
714835d5 3183 if (section_is_mapped (osect))
c5aa993b 3184 {
5af949e3 3185 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3186 const char *name;
3187 bfd_vma lma, vma;
3188 int size;
3189
3190 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3191 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3192 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3193 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3194
3195 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3196 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3197 puts_filtered (" - ");
5af949e3 3198 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3199 printf_filtered (", mapped at ");
5af949e3 3200 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3201 puts_filtered (" - ");
5af949e3 3202 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3203 puts_filtered ("\n");
3204
3205 nmapped++;
3206 }
c906108c 3207 if (nmapped == 0)
a3f17187 3208 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3209}
3210
3211/* Function: map_overlay_command
3212 Mark the named section as mapped (ie. residing at its VMA address). */
3213
5d3055ad 3214static void
fba45db2 3215map_overlay_command (char *args, int from_tty)
c906108c 3216{
c5aa993b
JM
3217 struct objfile *objfile, *objfile2;
3218 struct obj_section *sec, *sec2;
c906108c
SS
3219
3220 if (!overlay_debugging)
3e43a32a
MS
3221 error (_("Overlay debugging not enabled. Use "
3222 "either the 'overlay auto' or\n"
3223 "the 'overlay manual' command."));
c906108c
SS
3224
3225 if (args == 0 || *args == 0)
8a3fe4f8 3226 error (_("Argument required: name of an overlay section"));
c906108c 3227
c378eb4e 3228 /* First, find a section matching the user supplied argument. */
c906108c
SS
3229 ALL_OBJSECTIONS (objfile, sec)
3230 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3231 {
c378eb4e 3232 /* Now, check to see if the section is an overlay. */
714835d5 3233 if (!section_is_overlay (sec))
c5aa993b
JM
3234 continue; /* not an overlay section */
3235
c378eb4e 3236 /* Mark the overlay as "mapped". */
c5aa993b
JM
3237 sec->ovly_mapped = 1;
3238
3239 /* Next, make a pass and unmap any sections that are
3240 overlapped by this new section: */
3241 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3242 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3243 {
3244 if (info_verbose)
a3f17187 3245 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3246 bfd_section_name (objfile->obfd,
3247 sec2->the_bfd_section));
c378eb4e 3248 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3249 }
3250 return;
3251 }
8a3fe4f8 3252 error (_("No overlay section called %s"), args);
c906108c
SS
3253}
3254
3255/* Function: unmap_overlay_command
5417f6dc 3256 Mark the overlay section as unmapped
c906108c
SS
3257 (ie. resident in its LMA address range, rather than the VMA range). */
3258
5d3055ad 3259static void
fba45db2 3260unmap_overlay_command (char *args, int from_tty)
c906108c 3261{
c5aa993b 3262 struct objfile *objfile;
c906108c
SS
3263 struct obj_section *sec;
3264
3265 if (!overlay_debugging)
3e43a32a
MS
3266 error (_("Overlay debugging not enabled. "
3267 "Use either the 'overlay auto' or\n"
3268 "the 'overlay manual' command."));
c906108c
SS
3269
3270 if (args == 0 || *args == 0)
8a3fe4f8 3271 error (_("Argument required: name of an overlay section"));
c906108c 3272
c378eb4e 3273 /* First, find a section matching the user supplied argument. */
c906108c
SS
3274 ALL_OBJSECTIONS (objfile, sec)
3275 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3276 {
3277 if (!sec->ovly_mapped)
8a3fe4f8 3278 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3279 sec->ovly_mapped = 0;
3280 return;
3281 }
8a3fe4f8 3282 error (_("No overlay section called %s"), args);
c906108c
SS
3283}
3284
3285/* Function: overlay_auto_command
3286 A utility command to turn on overlay debugging.
c378eb4e 3287 Possibly this should be done via a set/show command. */
c906108c
SS
3288
3289static void
fba45db2 3290overlay_auto_command (char *args, int from_tty)
c906108c 3291{
d874f1e2 3292 overlay_debugging = ovly_auto;
1900040c 3293 enable_overlay_breakpoints ();
c906108c 3294 if (info_verbose)
a3f17187 3295 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3296}
3297
3298/* Function: overlay_manual_command
3299 A utility command to turn on overlay debugging.
c378eb4e 3300 Possibly this should be done via a set/show command. */
c906108c
SS
3301
3302static void
fba45db2 3303overlay_manual_command (char *args, int from_tty)
c906108c 3304{
d874f1e2 3305 overlay_debugging = ovly_on;
1900040c 3306 disable_overlay_breakpoints ();
c906108c 3307 if (info_verbose)
a3f17187 3308 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3309}
3310
3311/* Function: overlay_off_command
3312 A utility command to turn on overlay debugging.
c378eb4e 3313 Possibly this should be done via a set/show command. */
c906108c
SS
3314
3315static void
fba45db2 3316overlay_off_command (char *args, int from_tty)
c906108c 3317{
d874f1e2 3318 overlay_debugging = ovly_off;
1900040c 3319 disable_overlay_breakpoints ();
c906108c 3320 if (info_verbose)
a3f17187 3321 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3322}
3323
3324static void
fba45db2 3325overlay_load_command (char *args, int from_tty)
c906108c 3326{
e17c207e
UW
3327 struct gdbarch *gdbarch = get_current_arch ();
3328
3329 if (gdbarch_overlay_update_p (gdbarch))
3330 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3331 else
8a3fe4f8 3332 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3333}
3334
3335/* Function: overlay_command
c378eb4e 3336 A place-holder for a mis-typed command. */
c906108c 3337
c378eb4e 3338/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3339static struct cmd_list_element *overlaylist;
c906108c
SS
3340
3341static void
fba45db2 3342overlay_command (char *args, int from_tty)
c906108c 3343{
c5aa993b 3344 printf_unfiltered
c906108c
SS
3345 ("\"overlay\" must be followed by the name of an overlay command.\n");
3346 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3347}
3348
c906108c
SS
3349/* Target Overlays for the "Simplest" overlay manager:
3350
5417f6dc
RM
3351 This is GDB's default target overlay layer. It works with the
3352 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3353 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3354 so targets that use a different runtime overlay manager can
c906108c
SS
3355 substitute their own overlay_update function and take over the
3356 function pointer.
3357
3358 The overlay_update function pokes around in the target's data structures
3359 to see what overlays are mapped, and updates GDB's overlay mapping with
3360 this information.
3361
3362 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3363 unsigned _novlys; /# number of overlay sections #/
3364 unsigned _ovly_table[_novlys][4] = {
3365 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3366 {..., ..., ..., ...},
3367 }
3368 unsigned _novly_regions; /# number of overlay regions #/
3369 unsigned _ovly_region_table[_novly_regions][3] = {
3370 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3371 {..., ..., ...},
3372 }
c906108c
SS
3373 These functions will attempt to update GDB's mappedness state in the
3374 symbol section table, based on the target's mappedness state.
3375
3376 To do this, we keep a cached copy of the target's _ovly_table, and
3377 attempt to detect when the cached copy is invalidated. The main
3378 entry point is "simple_overlay_update(SECT), which looks up SECT in
3379 the cached table and re-reads only the entry for that section from
c378eb4e 3380 the target (whenever possible). */
c906108c
SS
3381
3382/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3383static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3384static unsigned cache_novlys = 0;
c906108c 3385static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3386enum ovly_index
3387 {
3388 VMA, SIZE, LMA, MAPPED
3389 };
c906108c 3390
c378eb4e 3391/* Throw away the cached copy of _ovly_table. */
3b7bacac 3392
c906108c 3393static void
fba45db2 3394simple_free_overlay_table (void)
c906108c
SS
3395{
3396 if (cache_ovly_table)
b8c9b27d 3397 xfree (cache_ovly_table);
c5aa993b 3398 cache_novlys = 0;
c906108c
SS
3399 cache_ovly_table = NULL;
3400 cache_ovly_table_base = 0;
3401}
3402
9216df95 3403/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3404 Convert to host order. int LEN is number of ints. */
3b7bacac 3405
c906108c 3406static void
9216df95 3407read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3408 int len, int size, enum bfd_endian byte_order)
c906108c 3409{
c378eb4e 3410 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3411 gdb_byte *buf = alloca (len * size);
c5aa993b 3412 int i;
c906108c 3413
9216df95 3414 read_memory (memaddr, buf, len * size);
c906108c 3415 for (i = 0; i < len; i++)
e17a4113 3416 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3417}
3418
3419/* Find and grab a copy of the target _ovly_table
c378eb4e 3420 (and _novlys, which is needed for the table's size). */
3b7bacac 3421
c5aa993b 3422static int
fba45db2 3423simple_read_overlay_table (void)
c906108c 3424{
7c7b6655
TT
3425 struct minimal_symbol *novlys_msym;
3426 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3427 struct gdbarch *gdbarch;
3428 int word_size;
e17a4113 3429 enum bfd_endian byte_order;
c906108c
SS
3430
3431 simple_free_overlay_table ();
9b27852e 3432 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3433 if (! novlys_msym)
c906108c 3434 {
8a3fe4f8 3435 error (_("Error reading inferior's overlay table: "
0d43edd1 3436 "couldn't find `_novlys' variable\n"
8a3fe4f8 3437 "in inferior. Use `overlay manual' mode."));
0d43edd1 3438 return 0;
c906108c 3439 }
0d43edd1 3440
7c7b6655
TT
3441 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3442 if (! ovly_table_msym.minsym)
0d43edd1 3443 {
8a3fe4f8 3444 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3445 "`_ovly_table' array\n"
8a3fe4f8 3446 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3447 return 0;
3448 }
3449
7c7b6655 3450 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3451 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3452 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3453
e17a4113
UW
3454 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3455 4, byte_order);
0d43edd1
JB
3456 cache_ovly_table
3457 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
7c7b6655 3458 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
0d43edd1 3459 read_target_long_array (cache_ovly_table_base,
777ea8f1 3460 (unsigned int *) cache_ovly_table,
e17a4113 3461 cache_novlys * 4, word_size, byte_order);
0d43edd1 3462
c5aa993b 3463 return 1; /* SUCCESS */
c906108c
SS
3464}
3465
5417f6dc 3466/* Function: simple_overlay_update_1
c906108c
SS
3467 A helper function for simple_overlay_update. Assuming a cached copy
3468 of _ovly_table exists, look through it to find an entry whose vma,
3469 lma and size match those of OSECT. Re-read the entry and make sure
3470 it still matches OSECT (else the table may no longer be valid).
3471 Set OSECT's mapped state to match the entry. Return: 1 for
3472 success, 0 for failure. */
3473
3474static int
fba45db2 3475simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3476{
3477 int i, size;
fbd35540
MS
3478 bfd *obfd = osect->objfile->obfd;
3479 asection *bsect = osect->the_bfd_section;
9216df95
UW
3480 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3481 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3483
2c500098 3484 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3485 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3489 {
9216df95
UW
3490 read_target_long_array (cache_ovly_table_base + i * word_size,
3491 (unsigned int *) cache_ovly_table[i],
e17a4113 3492 4, word_size, byte_order);
fbd35540
MS
3493 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3494 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3495 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3496 {
3497 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3498 return 1;
3499 }
c378eb4e 3500 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3501 return 0;
3502 }
3503 return 0;
3504}
3505
3506/* Function: simple_overlay_update
5417f6dc
RM
3507 If OSECT is NULL, then update all sections' mapped state
3508 (after re-reading the entire target _ovly_table).
3509 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3510 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3511 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3512 re-read the entire cache, and go ahead and update all sections. */
3513
1c772458 3514void
fba45db2 3515simple_overlay_update (struct obj_section *osect)
c906108c 3516{
c5aa993b 3517 struct objfile *objfile;
c906108c 3518
c378eb4e 3519 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3520 if (osect)
c378eb4e 3521 /* Have we got a cached copy of the target's overlay table? */
c906108c 3522 if (cache_ovly_table != NULL)
9cc89665
MS
3523 {
3524 /* Does its cached location match what's currently in the
3525 symtab? */
3526 struct minimal_symbol *minsym
3527 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3528
3529 if (minsym == NULL)
3530 error (_("Error reading inferior's overlay table: couldn't "
3531 "find `_ovly_table' array\n"
3532 "in inferior. Use `overlay manual' mode."));
3533
3534 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3535 /* Then go ahead and try to look up this single section in
3536 the cache. */
3537 if (simple_overlay_update_1 (osect))
3538 /* Found it! We're done. */
3539 return;
3540 }
c906108c
SS
3541
3542 /* Cached table no good: need to read the entire table anew.
3543 Or else we want all the sections, in which case it's actually
3544 more efficient to read the whole table in one block anyway. */
3545
0d43edd1
JB
3546 if (! simple_read_overlay_table ())
3547 return;
3548
c378eb4e 3549 /* Now may as well update all sections, even if only one was requested. */
c906108c 3550 ALL_OBJSECTIONS (objfile, osect)
714835d5 3551 if (section_is_overlay (osect))
c5aa993b
JM
3552 {
3553 int i, size;
fbd35540
MS
3554 bfd *obfd = osect->objfile->obfd;
3555 asection *bsect = osect->the_bfd_section;
c5aa993b 3556
2c500098 3557 size = bfd_get_section_size (bsect);
c5aa993b 3558 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3559 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3560 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3561 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3562 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3563 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3564 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3565 }
3566 }
c906108c
SS
3567}
3568
086df311
DJ
3569/* Set the output sections and output offsets for section SECTP in
3570 ABFD. The relocation code in BFD will read these offsets, so we
3571 need to be sure they're initialized. We map each section to itself,
3572 with no offset; this means that SECTP->vma will be honored. */
3573
3574static void
3575symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3576{
3577 sectp->output_section = sectp;
3578 sectp->output_offset = 0;
3579}
3580
ac8035ab
TG
3581/* Default implementation for sym_relocate. */
3582
ac8035ab
TG
3583bfd_byte *
3584default_symfile_relocate (struct objfile *objfile, asection *sectp,
3585 bfd_byte *buf)
3586{
3019eac3
DE
3587 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3588 DWO file. */
3589 bfd *abfd = sectp->owner;
ac8035ab
TG
3590
3591 /* We're only interested in sections with relocation
3592 information. */
3593 if ((sectp->flags & SEC_RELOC) == 0)
3594 return NULL;
3595
3596 /* We will handle section offsets properly elsewhere, so relocate as if
3597 all sections begin at 0. */
3598 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3599
3600 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3601}
3602
086df311
DJ
3603/* Relocate the contents of a debug section SECTP in ABFD. The
3604 contents are stored in BUF if it is non-NULL, or returned in a
3605 malloc'd buffer otherwise.
3606
3607 For some platforms and debug info formats, shared libraries contain
3608 relocations against the debug sections (particularly for DWARF-2;
3609 one affected platform is PowerPC GNU/Linux, although it depends on
3610 the version of the linker in use). Also, ELF object files naturally
3611 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3612 the relocations in order to get the locations of symbols correct.
3613 Another example that may require relocation processing, is the
3614 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3615 debug section. */
086df311
DJ
3616
3617bfd_byte *
ac8035ab
TG
3618symfile_relocate_debug_section (struct objfile *objfile,
3619 asection *sectp, bfd_byte *buf)
086df311 3620{
ac8035ab 3621 gdb_assert (objfile->sf->sym_relocate);
086df311 3622
ac8035ab 3623 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3624}
c906108c 3625
31d99776
DJ
3626struct symfile_segment_data *
3627get_symfile_segment_data (bfd *abfd)
3628{
00b5771c 3629 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3630
3631 if (sf == NULL)
3632 return NULL;
3633
3634 return sf->sym_segments (abfd);
3635}
3636
3637void
3638free_symfile_segment_data (struct symfile_segment_data *data)
3639{
3640 xfree (data->segment_bases);
3641 xfree (data->segment_sizes);
3642 xfree (data->segment_info);
3643 xfree (data);
3644}
3645
28c32713
JB
3646/* Given:
3647 - DATA, containing segment addresses from the object file ABFD, and
3648 the mapping from ABFD's sections onto the segments that own them,
3649 and
3650 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3651 segment addresses reported by the target,
3652 store the appropriate offsets for each section in OFFSETS.
3653
3654 If there are fewer entries in SEGMENT_BASES than there are segments
3655 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3656
8d385431
DJ
3657 If there are more entries, then ignore the extra. The target may
3658 not be able to distinguish between an empty data segment and a
3659 missing data segment; a missing text segment is less plausible. */
3b7bacac 3660
31d99776 3661int
3189cb12
DE
3662symfile_map_offsets_to_segments (bfd *abfd,
3663 const struct symfile_segment_data *data,
31d99776
DJ
3664 struct section_offsets *offsets,
3665 int num_segment_bases,
3666 const CORE_ADDR *segment_bases)
3667{
3668 int i;
3669 asection *sect;
3670
28c32713
JB
3671 /* It doesn't make sense to call this function unless you have some
3672 segment base addresses. */
202b96c1 3673 gdb_assert (num_segment_bases > 0);
28c32713 3674
31d99776
DJ
3675 /* If we do not have segment mappings for the object file, we
3676 can not relocate it by segments. */
3677 gdb_assert (data != NULL);
3678 gdb_assert (data->num_segments > 0);
3679
31d99776
DJ
3680 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3681 {
31d99776
DJ
3682 int which = data->segment_info[i];
3683
28c32713
JB
3684 gdb_assert (0 <= which && which <= data->num_segments);
3685
3686 /* Don't bother computing offsets for sections that aren't
3687 loaded as part of any segment. */
3688 if (! which)
3689 continue;
3690
3691 /* Use the last SEGMENT_BASES entry as the address of any extra
3692 segments mentioned in DATA->segment_info. */
31d99776 3693 if (which > num_segment_bases)
28c32713 3694 which = num_segment_bases;
31d99776 3695
28c32713
JB
3696 offsets->offsets[i] = (segment_bases[which - 1]
3697 - data->segment_bases[which - 1]);
31d99776
DJ
3698 }
3699
3700 return 1;
3701}
3702
3703static void
3704symfile_find_segment_sections (struct objfile *objfile)
3705{
3706 bfd *abfd = objfile->obfd;
3707 int i;
3708 asection *sect;
3709 struct symfile_segment_data *data;
3710
3711 data = get_symfile_segment_data (objfile->obfd);
3712 if (data == NULL)
3713 return;
3714
3715 if (data->num_segments != 1 && data->num_segments != 2)
3716 {
3717 free_symfile_segment_data (data);
3718 return;
3719 }
3720
3721 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3722 {
31d99776
DJ
3723 int which = data->segment_info[i];
3724
3725 if (which == 1)
3726 {
3727 if (objfile->sect_index_text == -1)
3728 objfile->sect_index_text = sect->index;
3729
3730 if (objfile->sect_index_rodata == -1)
3731 objfile->sect_index_rodata = sect->index;
3732 }
3733 else if (which == 2)
3734 {
3735 if (objfile->sect_index_data == -1)
3736 objfile->sect_index_data = sect->index;
3737
3738 if (objfile->sect_index_bss == -1)
3739 objfile->sect_index_bss = sect->index;
3740 }
3741 }
3742
3743 free_symfile_segment_data (data);
3744}
3745
c906108c 3746void
fba45db2 3747_initialize_symfile (void)
c906108c
SS
3748{
3749 struct cmd_list_element *c;
c5aa993b 3750
1a966eab
AC
3751 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3752Load symbol table from executable file FILE.\n\
c906108c 3753The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3754to execute."), &cmdlist);
5ba2abeb 3755 set_cmd_completer (c, filename_completer);
c906108c 3756
1a966eab 3757 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3758Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3759Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3760 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3761The optional arguments are section-name section-address pairs and\n\
3762should be specified if the data and bss segments are not contiguous\n\
1a966eab 3763with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3764 &cmdlist);
5ba2abeb 3765 set_cmd_completer (c, filename_completer);
c906108c 3766
1a966eab
AC
3767 c = add_cmd ("load", class_files, load_command, _("\
3768Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3769for access from GDB.\n\
3770A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3771 set_cmd_completer (c, filename_completer);
c906108c 3772
c5aa993b 3773 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3774 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3775 "overlay ", 0, &cmdlist);
3776
3777 add_com_alias ("ovly", "overlay", class_alias, 1);
3778 add_com_alias ("ov", "overlay", class_alias, 1);
3779
c5aa993b 3780 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3781 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3782
c5aa993b 3783 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3784 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3785
c5aa993b 3786 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3787 _("List mappings of overlay sections."), &overlaylist);
c906108c 3788
c5aa993b 3789 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3790 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3791 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3792 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3793 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3794 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3795 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3796 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3797
3798 /* Filename extension to source language lookup table: */
3799 init_filename_language_table ();
26c41df3
AC
3800 add_setshow_string_noescape_cmd ("extension-language", class_files,
3801 &ext_args, _("\
3802Set mapping between filename extension and source language."), _("\
3803Show mapping between filename extension and source language."), _("\
3804Usage: set extension-language .foo bar"),
3805 set_ext_lang_command,
920d2a44 3806 show_ext_args,
26c41df3 3807 &setlist, &showlist);
c906108c 3808
c5aa993b 3809 add_info ("extensions", info_ext_lang_command,
1bedd215 3810 _("All filename extensions associated with a source language."));
917317f4 3811
525226b5
AC
3812 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3813 &debug_file_directory, _("\
24ddea62
JK
3814Set the directories where separate debug symbols are searched for."), _("\
3815Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3816Separate debug symbols are first searched for in the same\n\
3817directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3818and lastly at the path of the directory of the binary with\n\
24ddea62 3819each global debug-file-directory component prepended."),
525226b5 3820 NULL,
920d2a44 3821 show_debug_file_directory,
525226b5 3822 &setlist, &showlist);
c906108c 3823}
This page took 1.67857 seconds and 4 git commands to generate.