Remove "noisy" parameter from clear_complaints
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
76727919 49#include "observable.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
37e136b1 67#include <algorithm>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 85int readnever_symbol_files; /* Never read full symbols. */
c906108c 86
c378eb4e 87/* Functions this file defines. */
c906108c 88
ecf45d2c 89static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 90 objfile_flags flags);
d7db6da9 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
31d99776
DJ
105static void symfile_find_segment_sections (struct objfile *objfile);
106
c906108c
SS
107/* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
c378eb4e 109 prepared to read. */
c906108c 110
905014d7 111struct registered_sym_fns
c256e171 112{
905014d7
SM
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
c256e171
DE
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
905014d7 122};
c256e171 123
905014d7 124static std::vector<registered_sym_fns> symtab_fns;
c906108c 125
770e7fc7
DE
126/* Values for "set print symbol-loading". */
127
128const char print_symbol_loading_off[] = "off";
129const char print_symbol_loading_brief[] = "brief";
130const char print_symbol_loading_full[] = "full";
131static const char *print_symbol_loading_enums[] =
132{
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137};
138static const char *print_symbol_loading = print_symbol_loading_full;
139
b7209cb4
FF
140/* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
c906108c 147 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 148 report all the functions that are actually present. */
c906108c
SS
149
150int auto_solib_add = 1;
c906108c 151\f
c5aa993b 152
770e7fc7
DE
153/* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161int
162print_symbol_loading_p (int from_tty, int exec, int full)
163{
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176}
177
0d14a781 178/* True if we are reading a symbol table. */
c906108c
SS
179
180int currently_reading_symtab = 0;
181
ccefe4c4
TT
182/* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
3b7bacac 184
c83dd867 185scoped_restore_tmpl<int>
ccefe4c4 186increment_reading_symtab (void)
c906108c 187{
c83dd867
TT
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
c906108c
SS
191}
192
5417f6dc
RM
193/* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
c906108c
SS
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202void
4efb68b1 203find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 204{
c5aa993b 205 asection **lowest = (asection **) obj;
c906108c 206
eb73e134 207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217}
218
62557bbc 219/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 220 an existing section table. */
62557bbc 221
37e136b1 222section_addr_info
0542c86d
PA
223build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
62557bbc 225{
0542c86d 226 const struct target_section *stp;
62557bbc 227
37e136b1 228 section_addr_info sap;
62557bbc 229
37e136b1 230 for (stp = start; stp != end; stp++)
62557bbc 231 {
2b2848e2
DE
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
37e136b1
TT
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
62557bbc
KB
240 }
241
242 return sap;
243}
244
82ccf5a5 245/* Create a section_addr_info from section offsets in ABFD. */
089b4803 246
37e136b1 247static section_addr_info
82ccf5a5 248build_section_addr_info_from_bfd (bfd *abfd)
089b4803 249{
089b4803
TG
250 struct bfd_section *sec;
251
37e136b1
TT
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
82ccf5a5 254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
37e136b1
TT
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
d76488d8 258
089b4803
TG
259 return sap;
260}
261
82ccf5a5
JK
262/* Create a section_addr_info from section offsets in OBJFILE. */
263
37e136b1 264section_addr_info
82ccf5a5
JK
265build_section_addr_info_from_objfile (const struct objfile *objfile)
266{
82ccf5a5
JK
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
37e136b1
TT
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
82ccf5a5 274 {
37e136b1 275 int sectindex = sap[i].sectindex;
82ccf5a5 276
37e136b1 277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
82ccf5a5
JK
278 }
279 return sap;
280}
62557bbc 281
e8289572 282/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 283
e8289572
JB
284static void
285init_objfile_sect_indices (struct objfile *objfile)
c906108c 286{
e8289572 287 asection *sect;
c906108c 288 int i;
5417f6dc 289
b8fbeb18 290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 291 if (sect)
b8fbeb18
EZ
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 295 if (sect)
b8fbeb18
EZ
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 299 if (sect)
b8fbeb18
EZ
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 303 if (sect)
b8fbeb18
EZ
304 objfile->sect_index_rodata = sect->index;
305
bbcd32ad
FF
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
31d99776
DJ
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
bbcd32ad
FF
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
b8fbeb18 341}
c906108c 342
c1bd25fd
DJ
343/* The arguments to place_section. */
344
345struct place_section_arg
346{
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349};
350
351/* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
2c0b251b 354static void
c1bd25fd
DJ
355place_section (bfd *abfd, asection *sect, void *obj)
356{
19ba03f4 357 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
3bd72c6f 360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 361
2711e456
DJ
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
364 return;
365
366 /* If the user specified an offset, honor it. */
65cf3563 367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
371 start_addr = (arg->lowest + align - 1) & -align;
372
c1bd25fd
DJ
373 do {
374 asection *cur_sec;
c1bd25fd 375
c1bd25fd
DJ
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
c1bd25fd
DJ
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
2711e456
DJ
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
3bd72c6f 403 break;
c1bd25fd
DJ
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
65cf3563 411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 412 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 413}
e8289572 414
4f7ae6f5 415/* Store section_addr_info as prepared (made relative and with SECTINDEX
75242ef4
JK
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
e8289572
JB
418
419void
75242ef4
JK
420relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
37e136b1 422 const section_addr_info &addrs)
e8289572
JB
423{
424 int i;
425
75242ef4 426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 427
c378eb4e 428 /* Now calculate offsets for section that were specified by the caller. */
37e136b1 429 for (i = 0; i < addrs.size (); i++)
e8289572 430 {
3189cb12 431 const struct other_sections *osp;
e8289572 432
37e136b1 433 osp = &addrs[i];
5488dafb 434 if (osp->sectindex == -1)
e8289572
JB
435 continue;
436
c378eb4e 437 /* Record all sections in offsets. */
e8289572 438 /* The section_offsets in the objfile are here filled in using
c378eb4e 439 the BFD index. */
75242ef4
JK
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442}
443
1276c759
JK
444/* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450static const char *
451addr_section_name (const char *s)
452{
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459}
460
37e136b1
TT
461/* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
82ccf5a5 464
37e136b1
TT
465static bool
466addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
82ccf5a5 468{
22e048c9 469 int retval;
82ccf5a5 470
37e136b1
TT
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
82ccf5a5 475
37e136b1 476 return a->sectindex < b->sectindex;
82ccf5a5
JK
477}
478
37e136b1 479/* Provide sorted array of pointers to sections of ADDRS. */
82ccf5a5 480
37e136b1
TT
481static std::vector<const struct other_sections *>
482addrs_section_sort (const section_addr_info &addrs)
82ccf5a5 483{
82ccf5a5
JK
484 int i;
485
37e136b1
TT
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
82ccf5a5 489
37e136b1 490 std::sort (array.begin (), array.end (), addrs_section_compar);
82ccf5a5
JK
491
492 return array;
493}
494
75242ef4 495/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
498
499void
37e136b1 500addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
75242ef4
JK
501{
502 asection *lower_sect;
75242ef4
JK
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
e8289572 515 }
75242ef4
JK
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
82ccf5a5
JK
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
37e136b1
TT
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
82ccf5a5 531
37e136b1
TT
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
82ccf5a5 535
c378eb4e
MS
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
82ccf5a5 538
37e136b1
TT
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
82ccf5a5 541
37e136b1
TT
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
544 for (const struct other_sections *sect : addrs_sorted)
82ccf5a5 545 {
37e136b1 546 const char *sect_name = addr_section_name (sect->name.c_str ());
82ccf5a5 547
37e136b1
TT
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 550 sect_name) < 0)
37e136b1 551 abfd_sorted_iter++;
82ccf5a5 552
37e136b1
TT
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 555 sect_name) == 0)
82ccf5a5
JK
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
37e136b1 560 index_in_addrs = sect - addrs->data ();
82ccf5a5 561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
37e136b1 562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
82ccf5a5
JK
563
564 /* Never use the same ABFD entry twice. */
37e136b1 565 abfd_sorted_iter++;
82ccf5a5 566 }
82ccf5a5
JK
567 }
568
75242ef4
JK
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
37e136b1 579 for (i = 0; i < addrs->size (); i++)
75242ef4 580 {
37e136b1 581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
582
583 if (sect)
75242ef4 584 {
c378eb4e 585 /* This is the index used by BFD. */
37e136b1 586 (*addrs)[i].sectindex = sect->sectindex;
672d9c23 587
37e136b1 588 if ((*addrs)[i].addr != 0)
75242ef4 589 {
37e136b1
TT
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
75242ef4
JK
592 }
593 else
37e136b1 594 (*addrs)[i].addr = lower_offset;
75242ef4
JK
595 }
596 else
672d9c23 597 {
1276c759 598 /* addr_section_name transformation is not used for SECT_NAME. */
37e136b1 599 const std::string &sect_name = (*addrs)[i].name;
1276c759 600
b0fcb67f
JK
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
4d9743af
JK
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
1276c759
JK
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f 614
37e136b1
TT
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
1276c759 618 && i > 0
37e136b1 619 && (*addrs)[i - 1].name == ".dynbss"
1276c759 620 && addrs_to_abfd_addrs[i - 1] != NULL)
37e136b1 621 || (sect_name == ".sbss"
1276c759 622 && i > 0
37e136b1 623 && (*addrs)[i - 1].name == ".sdynbss"
1276c759 624 && addrs_to_abfd_addrs[i - 1] != NULL)))
37e136b1 625 warning (_("section %s not found in %s"), sect_name.c_str (),
b0fcb67f
JK
626 bfd_get_filename (abfd));
627
37e136b1
TT
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
672d9c23 630 }
75242ef4
JK
631 }
632}
633
634/* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640void
641default_symfile_offsets (struct objfile *objfile,
37e136b1 642 const section_addr_info &addrs)
75242ef4 643{
d445b2f6 644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
e8289572 650
c1bd25fd
DJ
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
2711e456
DJ
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
2711e456
DJ
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
30510692 713 offsets[cur_sec->index]);
2711e456
DJ
714 offsets[cur_sec->index] = 0;
715 }
716 }
c1bd25fd
DJ
717 }
718
e8289572 719 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 720 .rodata sections. */
e8289572
JB
721 init_objfile_sect_indices (objfile);
722}
723
31d99776
DJ
724/* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730struct symfile_segment_data *
731default_symfile_segments (bfd *abfd)
732{
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
41bf6aca 758 data = XCNEW (struct symfile_segment_data);
31d99776 759 data->num_segments = 1;
fc270c35
TT
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
762
763 num_sections = bfd_count_sections (abfd);
fc270c35 764 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786}
787
608e2dbb
TT
788/* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791static void
b15cc25c 792read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
793{
794 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 795 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 802 {
192b62ce 803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
804
805 if (abfd != NULL)
24ba069a
JK
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
921222e2
TT
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
24ba069a 814 }
608e2dbb
TT
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818}
819
3d6e24f0
JB
820/* Initialize entry point information for this objfile. */
821
822static void
823init_entry_point_info (struct objfile *objfile)
824{
6ef55de7
TT
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
3d6e24f0
JB
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
6ef55de7
TT
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
3d6e24f0
JB
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
6ef55de7
TT
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
3d6e24f0
JB
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 853 ei->entry_point_p = 0;
3d6e24f0
JB
854 }
855
6ef55de7 856 if (ei->entry_point_p)
3d6e24f0 857 {
53eddfa6 858 struct obj_section *osect;
6ef55de7 859 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 860 int found;
3d6e24f0
JB
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
df6d5441 865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0 866 entry_point,
f6ac5f3d 867 target_stack);
3d6e24f0
JB
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
6ef55de7 871 ei->entry_point
df6d5441 872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
6ef55de7 883 ei->the_bfd_section_index
53eddfa6
TT
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
6ef55de7 891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
892 }
893}
894
c906108c
SS
895/* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
36e4d068
JB
898 This function does not set the OBJFILE's entry-point info.
899
96baa820
JM
900 OBJFILE is where the symbols are to be read from.
901
7e8580c1
JB
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
96baa820 911
7eedccfa
PP
912 ADD_FLAGS encodes verbosity level, whether this is main symbol or
913 an extra symbol file such as dynamically loaded code, and wether
914 breakpoint reset should be deferred. */
c906108c 915
36e4d068
JB
916static void
917syms_from_objfile_1 (struct objfile *objfile,
37e136b1 918 section_addr_info *addrs,
b15cc25c 919 symfile_add_flags add_flags)
c906108c 920{
37e136b1 921 section_addr_info local_addr;
c906108c 922 struct cleanup *old_chain;
7eedccfa 923 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 924
8fb8eb5c 925 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 926
75245b24 927 if (objfile->sf == NULL)
36e4d068
JB
928 {
929 /* No symbols to load, but we still need to make sure
930 that the section_offsets table is allocated. */
d445b2f6 931 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 932 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
933
934 objfile->num_sections = num_sections;
935 objfile->section_offsets
224c3ddb
SM
936 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
937 size);
36e4d068
JB
938 memset (objfile->section_offsets, 0, size);
939 return;
940 }
75245b24 941
c906108c
SS
942 /* Make sure that partially constructed symbol tables will be cleaned up
943 if an error occurs during symbol reading. */
ed2b3126
TT
944 old_chain = make_cleanup (null_cleanup, NULL);
945 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 946
6bf667bb
DE
947 /* If ADDRS is NULL, put together a dummy address list.
948 We now establish the convention that an addr of zero means
c378eb4e 949 no load address was specified. */
6bf667bb 950 if (! addrs)
37e136b1 951 addrs = &local_addr;
a39a16c4 952
c5aa993b 953 if (mainline)
c906108c
SS
954 {
955 /* We will modify the main symbol table, make sure that all its users
c5aa993b 956 will be cleaned up if an error occurs during symbol reading. */
74b7792f 957 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
958
959 /* Since no error yet, throw away the old symbol table. */
960
961 if (symfile_objfile != NULL)
962 {
9e86da07 963 delete symfile_objfile;
adb7f338 964 gdb_assert (symfile_objfile == NULL);
c906108c
SS
965 }
966
967 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
968 If the user wants to get rid of them, they should do "symbol-file"
969 without arguments first. Not sure this is the best behavior
970 (PR 2207). */
c906108c 971
c5aa993b 972 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
973 }
974
975 /* Convert addr into an offset rather than an absolute address.
976 We find the lowest address of a loaded segment in the objfile,
53a5351d 977 and assume that <addr> is where that got loaded.
c906108c 978
53a5351d
JM
979 We no longer warn if the lowest section is not a text segment (as
980 happens for the PA64 port. */
37e136b1 981 if (addrs->size () > 0)
75242ef4 982 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
983
984 /* Initialize symbol reading routines for this objfile, allow complaints to
985 appear for this new file, and record how verbose to be, then do the
c378eb4e 986 initial symbol reading for this file. */
c906108c 987
c5aa993b 988 (*objfile->sf->sym_init) (objfile);
4e9668d0 989 clear_complaints (&symfile_complaints, 1);
c906108c 990
37e136b1 991 (*objfile->sf->sym_offsets) (objfile, *addrs);
c906108c 992
608e2dbb 993 read_symbols (objfile, add_flags);
b11896a5 994
c906108c
SS
995 /* Discard cleanups as symbol reading was successful. */
996
ed2b3126 997 objfile_holder.release ();
c906108c 998 discard_cleanups (old_chain);
c906108c
SS
999}
1000
36e4d068
JB
1001/* Same as syms_from_objfile_1, but also initializes the objfile
1002 entry-point info. */
1003
6bf667bb 1004static void
36e4d068 1005syms_from_objfile (struct objfile *objfile,
37e136b1 1006 section_addr_info *addrs,
b15cc25c 1007 symfile_add_flags add_flags)
36e4d068 1008{
6bf667bb 1009 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1010 init_entry_point_info (objfile);
1011}
1012
c906108c
SS
1013/* Perform required actions after either reading in the initial
1014 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1015 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1016
e7d52ed3 1017static void
b15cc25c 1018finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1019{
c906108c 1020 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1021 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1022 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1023 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1024 {
1025 /* OK, make it the "real" symbol file. */
1026 symfile_objfile = objfile;
1027
c1e56572 1028 clear_symtab_users (add_flags);
c906108c 1029 }
7eedccfa 1030 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1031 {
69de3c6a 1032 breakpoint_re_set ();
c906108c
SS
1033 }
1034
1035 /* We're done reading the symbol file; finish off complaints. */
4e9668d0 1036 clear_complaints (&symfile_complaints, 0);
c906108c
SS
1037}
1038
1039/* Process a symbol file, as either the main file or as a dynamically
1040 loaded file.
1041
5417f6dc 1042 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1043 A new reference is acquired by this function.
7904e09f 1044
9e86da07 1045 For NAME description see the objfile constructor.
24ba069a 1046
7eedccfa
PP
1047 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1048 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1049
6bf667bb 1050 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1051 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1052
63524580
JK
1053 PARENT is the original objfile if ABFD is a separate debug info file.
1054 Otherwise PARENT is NULL.
1055
c906108c 1056 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1057 Upon failure, jumps back to command level (never returns). */
7eedccfa 1058
7904e09f 1059static struct objfile *
b15cc25c
PA
1060symbol_file_add_with_addrs (bfd *abfd, const char *name,
1061 symfile_add_flags add_flags,
37e136b1 1062 section_addr_info *addrs,
b15cc25c 1063 objfile_flags flags, struct objfile *parent)
c906108c
SS
1064{
1065 struct objfile *objfile;
7eedccfa 1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1067 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1068 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1071
9291a0cd 1072 if (readnow_symbol_files)
b11896a5
TT
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
97cbe998
SDJ
1077 else if (readnever_symbol_files
1078 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1079 {
1080 flags |= OBJF_READNEVER;
1081 add_flags |= SYMFILE_NO_READ;
1082 }
921222e2
TT
1083 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1084 flags |= OBJF_NOT_FILENAME;
9291a0cd 1085
5417f6dc
RM
1086 /* Give user a chance to burp if we'd be
1087 interactively wiping out any existing symbols. */
c906108c
SS
1088
1089 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1090 && mainline
c906108c 1091 && from_tty
9e2f0ad4 1092 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1093 error (_("Not confirmed."));
c906108c 1094
b15cc25c
PA
1095 if (mainline)
1096 flags |= OBJF_MAINLINE;
9e86da07 1097 objfile = new struct objfile (abfd, name, flags);
c906108c 1098
63524580
JK
1099 if (parent)
1100 add_separate_debug_objfile (objfile, parent);
1101
78a4a9b9
AC
1102 /* We either created a new mapped symbol table, mapped an existing
1103 symbol table file which has not had initial symbol reading
c378eb4e 1104 performed, or need to read an unmapped symbol table. */
b11896a5 1105 if (should_print)
c906108c 1106 {
769d7dc4
AC
1107 if (deprecated_pre_add_symbol_hook)
1108 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1109 else
c906108c 1110 {
55333a84
DE
1111 printf_unfiltered (_("Reading symbols from %s..."), name);
1112 wrap_here ("");
1113 gdb_flush (gdb_stdout);
c906108c 1114 }
c906108c 1115 }
6bf667bb 1116 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1117
1118 /* We now have at least a partial symbol table. Check to see if the
1119 user requested that all symbols be read on initial access via either
1120 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1121 all partial symbol tables for this objfile if so. */
c906108c 1122
9291a0cd 1123 if ((flags & OBJF_READNOW))
c906108c 1124 {
b11896a5 1125 if (should_print)
c906108c 1126 {
a3f17187 1127 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1128 wrap_here ("");
1129 gdb_flush (gdb_stdout);
1130 }
1131
ccefe4c4
TT
1132 if (objfile->sf)
1133 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1134 }
1135
b11896a5 1136 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1137 {
1138 wrap_here ("");
55333a84 1139 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1140 wrap_here ("");
1141 }
1142
b11896a5 1143 if (should_print)
c906108c 1144 {
769d7dc4
AC
1145 if (deprecated_post_add_symbol_hook)
1146 deprecated_post_add_symbol_hook ();
c906108c 1147 else
55333a84 1148 printf_unfiltered (_("done.\n"));
c906108c
SS
1149 }
1150
481d0f41
JB
1151 /* We print some messages regardless of whether 'from_tty ||
1152 info_verbose' is true, so make sure they go out at the right
1153 time. */
1154 gdb_flush (gdb_stdout);
1155
109f874e 1156 if (objfile->sf == NULL)
8caee43b 1157 {
76727919 1158 gdb::observers::new_objfile.notify (objfile);
c378eb4e 1159 return objfile; /* No symbols. */
8caee43b 1160 }
109f874e 1161
e7d52ed3 1162 finish_new_objfile (objfile, add_flags);
c906108c 1163
76727919 1164 gdb::observers::new_objfile.notify (objfile);
c906108c 1165
ce7d4522 1166 bfd_cache_close_all ();
c906108c
SS
1167 return (objfile);
1168}
1169
24ba069a 1170/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1171 see the objfile constructor. */
9cce227f
TG
1172
1173void
b15cc25c
PA
1174symbol_file_add_separate (bfd *bfd, const char *name,
1175 symfile_add_flags symfile_flags,
24ba069a 1176 struct objfile *objfile)
9cce227f 1177{
089b4803
TG
1178 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1179 because sections of BFD may not match sections of OBJFILE and because
1180 vma may have been modified by tools such as prelink. */
37e136b1 1181 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
9cce227f 1182
870f88f7 1183 symbol_file_add_with_addrs
37e136b1 1184 (bfd, name, symfile_flags, &sap,
9cce227f 1185 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1186 | OBJF_USERLOADED),
1187 objfile);
9cce227f 1188}
7904e09f 1189
eb4556d7
JB
1190/* Process the symbol file ABFD, as either the main file or as a
1191 dynamically loaded file.
6bf667bb 1192 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1193
eb4556d7 1194struct objfile *
b15cc25c
PA
1195symbol_file_add_from_bfd (bfd *abfd, const char *name,
1196 symfile_add_flags add_flags,
37e136b1 1197 section_addr_info *addrs,
b15cc25c 1198 objfile_flags flags, struct objfile *parent)
eb4556d7 1199{
24ba069a
JK
1200 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1201 parent);
eb4556d7
JB
1202}
1203
7904e09f 1204/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1205 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1206
7904e09f 1207struct objfile *
b15cc25c 1208symbol_file_add (const char *name, symfile_add_flags add_flags,
37e136b1 1209 section_addr_info *addrs, objfile_flags flags)
7904e09f 1210{
192b62ce 1211 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1212
192b62ce
TT
1213 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1214 flags, NULL);
7904e09f
JB
1215}
1216
d7db6da9
FN
1217/* Call symbol_file_add() with default values and update whatever is
1218 affected by the loading of a new main().
1219 Used when the file is supplied in the gdb command line
1220 and by some targets with special loading requirements.
1221 The auxiliary function, symbol_file_add_main_1(), has the flags
1222 argument for the switches that can only be specified in the symbol_file
1223 command itself. */
5417f6dc 1224
1adeb98a 1225void
ecf45d2c 1226symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1227{
ecf45d2c 1228 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1229}
1230
1231static void
ecf45d2c
SL
1232symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1233 objfile_flags flags)
d7db6da9 1234{
ecf45d2c 1235 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1236
7eedccfa 1237 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1238
d7db6da9
FN
1239 /* Getting new symbols may change our opinion about
1240 what is frameless. */
1241 reinit_frame_cache ();
1242
b15cc25c 1243 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1244 set_initial_language ();
1adeb98a
FN
1245}
1246
1247void
1248symbol_file_clear (int from_tty)
1249{
1250 if ((have_full_symbols () || have_partial_symbols ())
1251 && from_tty
0430b0d6
AS
1252 && (symfile_objfile
1253 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1254 objfile_name (symfile_objfile))
0430b0d6 1255 : !query (_("Discard symbol table? "))))
8a3fe4f8 1256 error (_("Not confirmed."));
1adeb98a 1257
0133421a
JK
1258 /* solib descriptors may have handles to objfiles. Wipe them before their
1259 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1260 no_shared_libraries (NULL, from_tty);
1261
0133421a
JK
1262 free_all_objfiles ();
1263
adb7f338 1264 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1265 if (from_tty)
1266 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1267}
1268
c4dcb155
SM
1269/* See symfile.h. */
1270
1271int separate_debug_file_debug = 0;
1272
5b5d99cf 1273static int
a8dbfd58 1274separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1275 struct objfile *parent_objfile)
5b5d99cf 1276{
904578ed
JK
1277 unsigned long file_crc;
1278 int file_crc_p;
32a0e547 1279 struct stat parent_stat, abfd_stat;
904578ed 1280 int verified_as_different;
32a0e547
JK
1281
1282 /* Find a separate debug info file as if symbols would be present in
1283 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1284 section can contain just the basename of PARENT_OBJFILE without any
1285 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1286 the separate debug infos with the same basename can exist. */
32a0e547 1287
a8dbfd58 1288 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1289 return 0;
5b5d99cf 1290
c4dcb155 1291 if (separate_debug_file_debug)
a8dbfd58 1292 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
c4dcb155 1293
a8dbfd58 1294 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1295
192b62ce 1296 if (abfd == NULL)
5b5d99cf
JB
1297 return 0;
1298
0ba1096a 1299 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1300
1301 Some operating systems, e.g. Windows, do not provide a meaningful
1302 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1303 meaningful st_dev.) Files accessed from gdbservers that do not
1304 support the vFile:fstat packet will also have st_ino set to zero.
1305 Do not indicate a duplicate library in either case. While there
1306 is no guarantee that a system that provides meaningful inode
1307 numbers will never set st_ino to zero, this is merely an
1308 optimization, so we do not need to worry about false negatives. */
32a0e547 1309
192b62ce 1310 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1311 && abfd_stat.st_ino != 0
1312 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1313 {
904578ed
JK
1314 if (abfd_stat.st_dev == parent_stat.st_dev
1315 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1316 return 0;
904578ed 1317 verified_as_different = 1;
32a0e547 1318 }
904578ed
JK
1319 else
1320 verified_as_different = 0;
32a0e547 1321
192b62ce 1322 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1323
904578ed
JK
1324 if (!file_crc_p)
1325 return 0;
1326
287ccc17
JK
1327 if (crc != file_crc)
1328 {
dccee2de
TT
1329 unsigned long parent_crc;
1330
0a93529c
GB
1331 /* If the files could not be verified as different with
1332 bfd_stat then we need to calculate the parent's CRC
1333 to verify whether the files are different or not. */
904578ed 1334
dccee2de 1335 if (!verified_as_different)
904578ed 1336 {
dccee2de 1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1338 return 0;
1339 }
1340
dccee2de 1341 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1342 warning (_("the debug information found in \"%s\""
1343 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1344 name.c_str (), objfile_name (parent_objfile));
904578ed 1345
287ccc17
JK
1346 return 0;
1347 }
1348
1349 return 1;
5b5d99cf
JB
1350}
1351
aa28a74e 1352char *debug_file_directory = NULL;
920d2a44
AC
1353static void
1354show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356{
3e43a32a
MS
1357 fprintf_filtered (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1360 value);
1361}
5b5d99cf
JB
1362
1363#if ! defined (DEBUG_SUBDIRECTORY)
1364#define DEBUG_SUBDIRECTORY ".debug"
1365#endif
1366
1db33378
PP
1367/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
a8dbfd58
SM
1372 Returns the path of the file with separate debug info, or an empty
1373 string. */
1db33378 1374
a8dbfd58 1375static std::string
1db33378
PP
1376find_separate_debug_file (const char *dir,
1377 const char *canon_dir,
1378 const char *debuglink,
1379 unsigned long crc32, struct objfile *objfile)
9cce227f 1380{
c4dcb155
SM
1381 if (separate_debug_file_debug)
1382 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1383 "%s\n"), objfile_name (objfile));
1384
5b5d99cf 1385 /* First try in the same directory as the original file. */
a8dbfd58
SM
1386 std::string debugfile = dir;
1387 debugfile += debuglink;
5b5d99cf 1388
32a0e547 1389 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1390 return debugfile;
5417f6dc 1391
5b5d99cf 1392 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1393 debugfile = dir;
1394 debugfile += DEBUG_SUBDIRECTORY;
1395 debugfile += "/";
1396 debugfile += debuglink;
5b5d99cf 1397
32a0e547 1398 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1399 return debugfile;
5417f6dc 1400
24ddea62 1401 /* Then try in the global debugfile directories.
f888f159 1402
24ddea62
JK
1403 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1404 cause "/..." lookups. */
5417f6dc 1405
e80aaf61
SM
1406 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1407 = dirnames_to_char_ptr_vec (debug_file_directory);
24ddea62 1408
e80aaf61 1409 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1410 {
a8dbfd58
SM
1411 debugfile = debugdir.get ();
1412 debugfile += "/";
1413 debugfile += dir;
1414 debugfile += debuglink;
aa28a74e 1415
32a0e547 1416 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1417 return debugfile;
24ddea62
JK
1418
1419 /* If the file is in the sysroot, try using its base path in the
1420 global debugfile directory. */
1db33378
PP
1421 if (canon_dir != NULL
1422 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1423 strlen (gdb_sysroot)) == 0
1db33378 1424 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1425 {
a8dbfd58
SM
1426 debugfile = debugdir.get ();
1427 debugfile += (canon_dir + strlen (gdb_sysroot));
1428 debugfile += "/";
1429 debugfile += debuglink;
24ddea62 1430
32a0e547 1431 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1432 return debugfile;
24ddea62 1433 }
aa28a74e 1434 }
f888f159 1435
a8dbfd58 1436 return std::string ();
1db33378
PP
1437}
1438
7edbb660 1439/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1440 If there were no directory separators in PATH, PATH will be empty
1441 string on return. */
1442
1443static void
1444terminate_after_last_dir_separator (char *path)
1445{
1446 int i;
1447
1448 /* Strip off the final filename part, leaving the directory name,
1449 followed by a slash. The directory can be relative or absolute. */
1450 for (i = strlen(path) - 1; i >= 0; i--)
1451 if (IS_DIR_SEPARATOR (path[i]))
1452 break;
1453
1454 /* If I is -1 then no directory is present there and DIR will be "". */
1455 path[i + 1] = '\0';
1456}
1457
1458/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1459 Returns pathname, or an empty string. */
1db33378 1460
a8dbfd58 1461std::string
1db33378
PP
1462find_separate_debug_file_by_debuglink (struct objfile *objfile)
1463{
1db33378 1464 unsigned long crc32;
1db33378 1465
5eae7aea
TT
1466 gdb::unique_xmalloc_ptr<char> debuglink
1467 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1468
1469 if (debuglink == NULL)
1470 {
1471 /* There's no separate debug info, hence there's no way we could
1472 load it => no warning. */
a8dbfd58 1473 return std::string ();
1db33378
PP
1474 }
1475
5eae7aea
TT
1476 std::string dir = objfile_name (objfile);
1477 terminate_after_last_dir_separator (&dir[0]);
1478 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1479
a8dbfd58
SM
1480 std::string debugfile
1481 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1482 debuglink.get (), crc32, objfile);
1db33378 1483
a8dbfd58 1484 if (debugfile.empty ())
1db33378 1485 {
1db33378
PP
1486 /* For PR gdb/9538, try again with realpath (if different from the
1487 original). */
1488
1489 struct stat st_buf;
1490
4262abfb
JK
1491 if (lstat (objfile_name (objfile), &st_buf) == 0
1492 && S_ISLNK (st_buf.st_mode))
1db33378 1493 {
5eae7aea
TT
1494 gdb::unique_xmalloc_ptr<char> symlink_dir
1495 (lrealpath (objfile_name (objfile)));
1db33378
PP
1496 if (symlink_dir != NULL)
1497 {
5eae7aea
TT
1498 terminate_after_last_dir_separator (symlink_dir.get ());
1499 if (dir != symlink_dir.get ())
1db33378
PP
1500 {
1501 /* Different directory, so try using it. */
5eae7aea
TT
1502 debugfile = find_separate_debug_file (symlink_dir.get (),
1503 symlink_dir.get (),
1504 debuglink.get (),
1db33378
PP
1505 crc32,
1506 objfile);
1507 }
1508 }
1509 }
1db33378 1510 }
aa28a74e 1511
25522fae 1512 return debugfile;
5b5d99cf
JB
1513}
1514
97cbe998
SDJ
1515/* Make sure that OBJF_{READNOW,READNEVER} are not set
1516 simultaneously. */
1517
1518static void
1519validate_readnow_readnever (objfile_flags flags)
1520{
1521 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1522 error (_("-readnow and -readnever cannot be used simultaneously"));
1523}
1524
c906108c
SS
1525/* This is the symbol-file command. Read the file, analyze its
1526 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1527 the command is rather bizarre:
1528
1529 1. The function buildargv implements various quoting conventions
1530 which are undocumented and have little or nothing in common with
1531 the way things are quoted (or not quoted) elsewhere in GDB.
1532
1533 2. Options are used, which are not generally used in GDB (perhaps
1534 "set mapped on", "set readnow on" would be better)
1535
1536 3. The order of options matters, which is contrary to GNU
c906108c
SS
1537 conventions (because it is confusing and inconvenient). */
1538
1539void
1d8b34a7 1540symbol_file_command (const char *args, int from_tty)
c906108c 1541{
c906108c
SS
1542 dont_repeat ();
1543
1544 if (args == NULL)
1545 {
1adeb98a 1546 symbol_file_clear (from_tty);
c906108c
SS
1547 }
1548 else
1549 {
b15cc25c 1550 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1551 symfile_add_flags add_flags = 0;
cb2f3a29 1552 char *name = NULL;
40fc416f
SDJ
1553 bool stop_processing_options = false;
1554 int idx;
1555 char *arg;
cb2f3a29 1556
ecf45d2c
SL
1557 if (from_tty)
1558 add_flags |= SYMFILE_VERBOSE;
1559
773a1edc 1560 gdb_argv built_argv (args);
40fc416f 1561 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1562 {
40fc416f 1563 if (stop_processing_options || *arg != '-')
7f0f8ac8 1564 {
40fc416f
SDJ
1565 if (name == NULL)
1566 name = arg;
1567 else
1568 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1569 }
40fc416f
SDJ
1570 else if (strcmp (arg, "-readnow") == 0)
1571 flags |= OBJF_READNOW;
97cbe998
SDJ
1572 else if (strcmp (arg, "-readnever") == 0)
1573 flags |= OBJF_READNEVER;
40fc416f
SDJ
1574 else if (strcmp (arg, "--") == 0)
1575 stop_processing_options = true;
1576 else
1577 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1578 }
1579
1580 if (name == NULL)
cb2f3a29 1581 error (_("no symbol file name was specified"));
40fc416f 1582
97cbe998
SDJ
1583 validate_readnow_readnever (flags);
1584
40fc416f 1585 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1586 }
1587}
1588
1589/* Set the initial language.
1590
cb2f3a29
MK
1591 FIXME: A better solution would be to record the language in the
1592 psymtab when reading partial symbols, and then use it (if known) to
1593 set the language. This would be a win for formats that encode the
1594 language in an easily discoverable place, such as DWARF. For
1595 stabs, we can jump through hoops looking for specially named
1596 symbols or try to intuit the language from the specific type of
1597 stabs we find, but we can't do that until later when we read in
1598 full symbols. */
c906108c 1599
8b60591b 1600void
fba45db2 1601set_initial_language (void)
c906108c 1602{
9e6c82ad 1603 enum language lang = main_language ();
c906108c 1604
9e6c82ad 1605 if (lang == language_unknown)
01f8c46d 1606 {
bf6d8a91 1607 char *name = main_name ();
d12307c1 1608 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1609
bf6d8a91
TT
1610 if (sym != NULL)
1611 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1612 }
cb2f3a29 1613
ccefe4c4
TT
1614 if (lang == language_unknown)
1615 {
1616 /* Make C the default language */
1617 lang = language_c;
c906108c 1618 }
ccefe4c4
TT
1619
1620 set_language (lang);
1621 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1622}
1623
cb2f3a29
MK
1624/* Open the file specified by NAME and hand it off to BFD for
1625 preliminary analysis. Return a newly initialized bfd *, which
1626 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1627 absolute). In case of trouble, error() is called. */
c906108c 1628
192b62ce 1629gdb_bfd_ref_ptr
97a41605 1630symfile_bfd_open (const char *name)
c906108c 1631{
97a41605 1632 int desc = -1;
c906108c 1633
e0cc99a6 1634 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1635 if (!is_target_filename (name))
f1838a98 1636 {
ee0c3293 1637 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1638
97a41605
GB
1639 /* Look down path for it, allocate 2nd new malloc'd copy. */
1640 desc = openp (getenv ("PATH"),
1641 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1642 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1643#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1644 if (desc < 0)
1645 {
ee0c3293 1646 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1647
ee0c3293 1648 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1649 desc = openp (getenv ("PATH"),
1650 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1651 exename, O_RDONLY | O_BINARY, &absolute_name);
1652 }
c906108c 1653#endif
97a41605 1654 if (desc < 0)
ee0c3293 1655 perror_with_name (expanded_name.get ());
cb2f3a29 1656
e0cc99a6 1657 name = absolute_name.get ();
97a41605 1658 }
c906108c 1659
192b62ce
TT
1660 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1661 if (sym_bfd == NULL)
faab9922
JK
1662 error (_("`%s': can't open to read symbols: %s."), name,
1663 bfd_errmsg (bfd_get_error ()));
97a41605 1664
192b62ce
TT
1665 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1666 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1667
192b62ce
TT
1668 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1669 error (_("`%s': can't read symbols: %s."), name,
1670 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1671
1672 return sym_bfd;
c906108c
SS
1673}
1674
cb2f3a29
MK
1675/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1676 the section was not found. */
1677
0e931cf0 1678int
a121b7c1 1679get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1680{
1681 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1682
0e931cf0
JB
1683 if (sect)
1684 return sect->index;
1685 else
1686 return -1;
1687}
1688
c256e171
DE
1689/* Link SF into the global symtab_fns list.
1690 FLAVOUR is the file format that SF handles.
1691 Called on startup by the _initialize routine in each object file format
1692 reader, to register information about each format the reader is prepared
1693 to handle. */
c906108c
SS
1694
1695void
c256e171 1696add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1697{
905014d7 1698 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1699}
1700
cb2f3a29
MK
1701/* Initialize OBJFILE to read symbols from its associated BFD. It
1702 either returns or calls error(). The result is an initialized
1703 struct sym_fns in the objfile structure, that contains cached
1704 information about the symbol file. */
c906108c 1705
00b5771c 1706static const struct sym_fns *
31d99776 1707find_sym_fns (bfd *abfd)
c906108c 1708{
31d99776 1709 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1710
75245b24
MS
1711 if (our_flavour == bfd_target_srec_flavour
1712 || our_flavour == bfd_target_ihex_flavour
1713 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1714 return NULL; /* No symbols. */
75245b24 1715
905014d7
SM
1716 for (const registered_sym_fns &rsf : symtab_fns)
1717 if (our_flavour == rsf.sym_flavour)
1718 return rsf.sym_fns;
cb2f3a29 1719
8a3fe4f8 1720 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1721 bfd_get_target (abfd));
c906108c
SS
1722}
1723\f
cb2f3a29 1724
c906108c
SS
1725/* This function runs the load command of our current target. */
1726
1727static void
5fed81ff 1728load_command (const char *arg, int from_tty)
c906108c 1729{
e5cc9f32
JB
1730 dont_repeat ();
1731
4487aabf
PA
1732 /* The user might be reloading because the binary has changed. Take
1733 this opportunity to check. */
1734 reopen_exec_file ();
1735 reread_symbols ();
1736
b577b6af 1737 std::string temp;
c906108c 1738 if (arg == NULL)
1986bccd 1739 {
b577b6af 1740 const char *parg, *prev;
1986bccd 1741
b577b6af 1742 arg = get_exec_file (1);
1986bccd 1743
b577b6af
TT
1744 /* We may need to quote this string so buildargv can pull it
1745 apart. */
1746 prev = parg = arg;
1986bccd
AS
1747 while ((parg = strpbrk (parg, "\\\"'\t ")))
1748 {
b577b6af
TT
1749 temp.append (prev, parg - prev);
1750 prev = parg++;
1751 temp.push_back ('\\');
1986bccd 1752 }
b577b6af
TT
1753 /* If we have not copied anything yet, then we didn't see a
1754 character to quote, and we can just leave ARG unchanged. */
1755 if (!temp.empty ())
1986bccd 1756 {
b577b6af
TT
1757 temp.append (prev);
1758 arg = temp.c_str ();
1986bccd
AS
1759 }
1760 }
1761
c906108c 1762 target_load (arg, from_tty);
2889e661
JB
1763
1764 /* After re-loading the executable, we don't really know which
1765 overlays are mapped any more. */
1766 overlay_cache_invalid = 1;
c906108c
SS
1767}
1768
1769/* This version of "load" should be usable for any target. Currently
1770 it is just used for remote targets, not inftarg.c or core files,
1771 on the theory that only in that case is it useful.
1772
1773 Avoiding xmodem and the like seems like a win (a) because we don't have
1774 to worry about finding it, and (b) On VMS, fork() is very slow and so
1775 we don't want to run a subprocess. On the other hand, I'm not sure how
1776 performance compares. */
917317f4 1777
917317f4
JM
1778static int validate_download = 0;
1779
e4f9b4d5
MS
1780/* Callback service function for generic_load (bfd_map_over_sections). */
1781
1782static void
1783add_section_size_callback (bfd *abfd, asection *asec, void *data)
1784{
19ba03f4 1785 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1786
2c500098 1787 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1788}
1789
a76d924d 1790/* Opaque data for load_progress. */
55089490
TT
1791struct load_progress_data
1792{
a76d924d 1793 /* Cumulative data. */
55089490
TT
1794 unsigned long write_count = 0;
1795 unsigned long data_count = 0;
1796 bfd_size_type total_size = 0;
a76d924d
DJ
1797};
1798
1799/* Opaque data for load_progress for a single section. */
55089490
TT
1800struct load_progress_section_data
1801{
1802 load_progress_section_data (load_progress_data *cumulative_,
1803 const char *section_name_, ULONGEST section_size_,
1804 CORE_ADDR lma_, gdb_byte *buffer_)
1805 : cumulative (cumulative_), section_name (section_name_),
1806 section_size (section_size_), lma (lma_), buffer (buffer_)
1807 {}
1808
a76d924d 1809 struct load_progress_data *cumulative;
cf7a04e8 1810
a76d924d 1811 /* Per-section data. */
cf7a04e8 1812 const char *section_name;
55089490 1813 ULONGEST section_sent = 0;
cf7a04e8
DJ
1814 ULONGEST section_size;
1815 CORE_ADDR lma;
1816 gdb_byte *buffer;
e4f9b4d5
MS
1817};
1818
55089490
TT
1819/* Opaque data for load_section_callback. */
1820struct load_section_data
1821{
1822 load_section_data (load_progress_data *progress_data_)
1823 : progress_data (progress_data_)
1824 {}
1825
1826 ~load_section_data ()
1827 {
1828 for (auto &&request : requests)
1829 {
1830 xfree (request.data);
1831 delete ((load_progress_section_data *) request.baton);
1832 }
1833 }
1834
1835 CORE_ADDR load_offset = 0;
1836 struct load_progress_data *progress_data;
1837 std::vector<struct memory_write_request> requests;
1838};
1839
a76d924d 1840/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1841
1842static void
1843load_progress (ULONGEST bytes, void *untyped_arg)
1844{
19ba03f4
SM
1845 struct load_progress_section_data *args
1846 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1847 struct load_progress_data *totals;
1848
1849 if (args == NULL)
1850 /* Writing padding data. No easy way to get at the cumulative
1851 stats, so just ignore this. */
1852 return;
1853
1854 totals = args->cumulative;
1855
1856 if (bytes == 0 && args->section_sent == 0)
1857 {
1858 /* The write is just starting. Let the user know we've started
1859 this section. */
112e8700
SM
1860 current_uiout->message ("Loading section %s, size %s lma %s\n",
1861 args->section_name,
1862 hex_string (args->section_size),
1863 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1864 return;
1865 }
cf7a04e8
DJ
1866
1867 if (validate_download)
1868 {
1869 /* Broken memories and broken monitors manifest themselves here
1870 when bring new computers to life. This doubles already slow
1871 downloads. */
1872 /* NOTE: cagney/1999-10-18: A more efficient implementation
1873 might add a verify_memory() method to the target vector and
1874 then use that. remote.c could implement that method using
1875 the ``qCRC'' packet. */
0efef640 1876 gdb::byte_vector check (bytes);
cf7a04e8 1877
0efef640 1878 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1879 error (_("Download verify read failed at %s"),
f5656ead 1880 paddress (target_gdbarch (), args->lma));
0efef640 1881 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1882 error (_("Download verify compare failed at %s"),
f5656ead 1883 paddress (target_gdbarch (), args->lma));
cf7a04e8 1884 }
a76d924d 1885 totals->data_count += bytes;
cf7a04e8
DJ
1886 args->lma += bytes;
1887 args->buffer += bytes;
a76d924d 1888 totals->write_count += 1;
cf7a04e8 1889 args->section_sent += bytes;
522002f9 1890 if (check_quit_flag ()
cf7a04e8
DJ
1891 || (deprecated_ui_load_progress_hook != NULL
1892 && deprecated_ui_load_progress_hook (args->section_name,
1893 args->section_sent)))
1894 error (_("Canceled the download"));
1895
1896 if (deprecated_show_load_progress != NULL)
1897 deprecated_show_load_progress (args->section_name,
1898 args->section_sent,
1899 args->section_size,
a76d924d
DJ
1900 totals->data_count,
1901 totals->total_size);
cf7a04e8
DJ
1902}
1903
e4f9b4d5
MS
1904/* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906static void
1907load_section_callback (bfd *abfd, asection *asec, void *data)
1908{
19ba03f4 1909 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1910 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1911 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1912
cf7a04e8
DJ
1913 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1914 return;
e4f9b4d5 1915
cf7a04e8
DJ
1916 if (size == 0)
1917 return;
e4f9b4d5 1918
55089490
TT
1919 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1920 ULONGEST end = begin + size;
1921 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 1922 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 1923
55089490
TT
1924 load_progress_section_data *section_data
1925 = new load_progress_section_data (args->progress_data, sect_name, size,
1926 begin, buffer);
cf7a04e8 1927
55089490 1928 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
1929}
1930
dcb07cfa
PA
1931static void print_transfer_performance (struct ui_file *stream,
1932 unsigned long data_count,
1933 unsigned long write_count,
1934 std::chrono::steady_clock::duration d);
1935
c906108c 1936void
9cbe5fff 1937generic_load (const char *args, int from_tty)
c906108c 1938{
a76d924d 1939 struct load_progress_data total_progress;
55089490 1940 struct load_section_data cbdata (&total_progress);
79a45e25 1941 struct ui_out *uiout = current_uiout;
a76d924d 1942
d1a41061
PP
1943 if (args == NULL)
1944 error_no_arg (_("file to load"));
1986bccd 1945
773a1edc 1946 gdb_argv argv (args);
1986bccd 1947
ee0c3293 1948 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
1949
1950 if (argv[1] != NULL)
917317f4 1951 {
f698ca8e 1952 const char *endptr;
ba5f2f8a 1953
f698ca8e 1954 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
1955
1956 /* If the last word was not a valid number then
1957 treat it as a file name with spaces in. */
1958 if (argv[1] == endptr)
1959 error (_("Invalid download offset:%s."), argv[1]);
1960
1961 if (argv[2] != NULL)
1962 error (_("Too many parameters."));
917317f4 1963 }
c906108c 1964
c378eb4e 1965 /* Open the file for loading. */
ee0c3293 1966 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 1967 if (loadfile_bfd == NULL)
ee0c3293 1968 perror_with_name (filename.get ());
917317f4 1969
192b62ce 1970 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 1971 {
ee0c3293 1972 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
1973 bfd_errmsg (bfd_get_error ()));
1974 }
c5aa993b 1975
192b62ce 1976 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
1977 (void *) &total_progress.total_size);
1978
192b62ce 1979 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 1980
dcb07cfa
PA
1981 using namespace std::chrono;
1982
1983 steady_clock::time_point start_time = steady_clock::now ();
c906108c 1984
a76d924d
DJ
1985 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1986 load_progress) != 0)
1987 error (_("Load failed"));
c906108c 1988
dcb07cfa 1989 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 1990
55089490 1991 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 1992 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
1993 uiout->text ("Start address ");
1994 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
1995 uiout->text (", load size ");
1996 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
1997 uiout->text ("\n");
fb14de7b 1998 regcache_write_pc (get_current_regcache (), entry);
c906108c 1999
38963c97
DJ
2000 /* Reset breakpoints, now that we have changed the load image. For
2001 instance, breakpoints may have been set (or reset, by
2002 post_create_inferior) while connected to the target but before we
2003 loaded the program. In that case, the prologue analyzer could
2004 have read instructions from the target to find the right
2005 breakpoint locations. Loading has changed the contents of that
2006 memory. */
2007
2008 breakpoint_re_set ();
2009
a76d924d
DJ
2010 print_transfer_performance (gdb_stdout, total_progress.data_count,
2011 total_progress.write_count,
dcb07cfa 2012 end_time - start_time);
c906108c
SS
2013}
2014
dcb07cfa
PA
2015/* Report on STREAM the performance of a memory transfer operation,
2016 such as 'load'. DATA_COUNT is the number of bytes transferred.
2017 WRITE_COUNT is the number of separate write operations, or 0, if
2018 that information is not available. TIME is how long the operation
2019 lasted. */
c906108c 2020
dcb07cfa 2021static void
d9fcf2fb 2022print_transfer_performance (struct ui_file *stream,
917317f4
JM
2023 unsigned long data_count,
2024 unsigned long write_count,
dcb07cfa 2025 std::chrono::steady_clock::duration time)
917317f4 2026{
dcb07cfa 2027 using namespace std::chrono;
79a45e25 2028 struct ui_out *uiout = current_uiout;
2b71414d 2029
dcb07cfa 2030 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2031
112e8700 2032 uiout->text ("Transfer rate: ");
dcb07cfa 2033 if (ms.count () > 0)
8b93c638 2034 {
dcb07cfa 2035 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2036
112e8700 2037 if (uiout->is_mi_like_p ())
9f43d28c 2038 {
112e8700
SM
2039 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2040 uiout->text (" bits/sec");
9f43d28c
DJ
2041 }
2042 else if (rate < 1024)
2043 {
112e8700
SM
2044 uiout->field_fmt ("transfer-rate", "%lu", rate);
2045 uiout->text (" bytes/sec");
9f43d28c
DJ
2046 }
2047 else
2048 {
112e8700
SM
2049 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2050 uiout->text (" KB/sec");
9f43d28c 2051 }
8b93c638
JM
2052 }
2053 else
2054 {
112e8700
SM
2055 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2056 uiout->text (" bits in <1 sec");
8b93c638
JM
2057 }
2058 if (write_count > 0)
2059 {
112e8700
SM
2060 uiout->text (", ");
2061 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2062 uiout->text (" bytes/write");
8b93c638 2063 }
112e8700 2064 uiout->text (".\n");
c906108c
SS
2065}
2066
2067/* This function allows the addition of incrementally linked object files.
2068 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2069/* Note: ezannoni 2000-04-13 This function/command used to have a
2070 special case syntax for the rombug target (Rombug is the boot
2071 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2072 rombug case, the user doesn't need to supply a text address,
2073 instead a call to target_link() (in target.c) would supply the
c378eb4e 2074 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2075
c906108c 2076static void
2cf311eb 2077add_symbol_file_command (const char *args, int from_tty)
c906108c 2078{
5af949e3 2079 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2080 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2081 char *arg;
2acceee2 2082 int argcnt = 0;
76ad5e1e 2083 struct objfile *objf;
b15cc25c
PA
2084 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2085 symfile_add_flags add_flags = 0;
2086
2087 if (from_tty)
2088 add_flags |= SYMFILE_VERBOSE;
db162d44 2089
a39a16c4 2090 struct sect_opt
2acceee2 2091 {
a121b7c1
PA
2092 const char *name;
2093 const char *value;
a39a16c4 2094 };
db162d44 2095
40fc416f
SDJ
2096 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2097 bool stop_processing_options = false;
c5aa993b 2098
c906108c
SS
2099 dont_repeat ();
2100
2101 if (args == NULL)
8a3fe4f8 2102 error (_("add-symbol-file takes a file name and an address"));
c906108c 2103
40fc416f 2104 bool seen_addr = false;
773a1edc 2105 gdb_argv argv (args);
db162d44 2106
5b96932b
AS
2107 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2108 {
40fc416f 2109 if (stop_processing_options || *arg != '-')
41dc8db8 2110 {
40fc416f 2111 if (filename == NULL)
41dc8db8 2112 {
40fc416f
SDJ
2113 /* First non-option argument is always the filename. */
2114 filename.reset (tilde_expand (arg));
41dc8db8 2115 }
40fc416f 2116 else if (!seen_addr)
41dc8db8 2117 {
40fc416f
SDJ
2118 /* The second non-option argument is always the text
2119 address at which to load the program. */
2120 sect_opts[0].value = arg;
2121 seen_addr = true;
41dc8db8
MB
2122 }
2123 else
02ca603a 2124 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2125 }
40fc416f
SDJ
2126 else if (strcmp (arg, "-readnow") == 0)
2127 flags |= OBJF_READNOW;
97cbe998
SDJ
2128 else if (strcmp (arg, "-readnever") == 0)
2129 flags |= OBJF_READNEVER;
40fc416f
SDJ
2130 else if (strcmp (arg, "-s") == 0)
2131 {
2132 if (argv[argcnt + 1] == NULL)
2133 error (_("Missing section name after \"-s\""));
2134 else if (argv[argcnt + 2] == NULL)
2135 error (_("Missing section address after \"-s\""));
2136
2137 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2138
2139 sect_opts.push_back (sect);
2140 argcnt += 2;
2141 }
2142 else if (strcmp (arg, "--") == 0)
2143 stop_processing_options = true;
2144 else
2145 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2146 }
c906108c 2147
40fc416f
SDJ
2148 if (filename == NULL)
2149 error (_("You must provide a filename to be loaded."));
2150
97cbe998
SDJ
2151 validate_readnow_readnever (flags);
2152
927890d0
JB
2153 /* This command takes at least two arguments. The first one is a
2154 filename, and the second is the address where this file has been
2155 loaded. Abort now if this address hasn't been provided by the
2156 user. */
40fc416f 2157 if (!seen_addr)
ee0c3293
TT
2158 error (_("The address where %s has been loaded is missing"),
2159 filename.get ());
927890d0 2160
c378eb4e 2161 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2162 a sect_addr_info structure to be passed around to other
2163 functions. We have to split this up into separate print
bb599908 2164 statements because hex_string returns a local static
c378eb4e 2165 string. */
5417f6dc 2166
ee0c3293
TT
2167 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2168 filename.get ());
37e136b1 2169 section_addr_info section_addrs;
f978cb06 2170 for (sect_opt &sect : sect_opts)
c906108c 2171 {
db162d44 2172 CORE_ADDR addr;
f978cb06
TT
2173 const char *val = sect.value;
2174 const char *sec = sect.name;
5417f6dc 2175
ae822768 2176 addr = parse_and_eval_address (val);
db162d44 2177
db162d44 2178 /* Here we store the section offsets in the order they were
c378eb4e 2179 entered on the command line. */
37e136b1 2180 section_addrs.emplace_back (addr, sec, 0);
5af949e3
UW
2181 printf_unfiltered ("\t%s_addr = %s\n", sec,
2182 paddress (gdbarch, addr));
db162d44 2183
5417f6dc 2184 /* The object's sections are initialized when a
db162d44 2185 call is made to build_objfile_section_table (objfile).
5417f6dc 2186 This happens in reread_symbols.
db162d44
EZ
2187 At this point, we don't know what file type this is,
2188 so we can't determine what section names are valid. */
2acceee2 2189 }
db162d44 2190
2acceee2 2191 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2192 error (_("Not confirmed."));
c906108c 2193
37e136b1
TT
2194 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2195 flags);
76ad5e1e
NB
2196
2197 add_target_sections_of_objfile (objf);
c906108c
SS
2198
2199 /* Getting new symbols may change our opinion about what is
2200 frameless. */
2201 reinit_frame_cache ();
2202}
2203\f
70992597 2204
63644780
NB
2205/* This function removes a symbol file that was added via add-symbol-file. */
2206
2207static void
2cf311eb 2208remove_symbol_file_command (const char *args, int from_tty)
63644780 2209{
63644780 2210 struct objfile *objf = NULL;
63644780 2211 struct program_space *pspace = current_program_space;
63644780
NB
2212
2213 dont_repeat ();
2214
2215 if (args == NULL)
2216 error (_("remove-symbol-file: no symbol file provided"));
2217
773a1edc 2218 gdb_argv argv (args);
63644780
NB
2219
2220 if (strcmp (argv[0], "-a") == 0)
2221 {
2222 /* Interpret the next argument as an address. */
2223 CORE_ADDR addr;
2224
2225 if (argv[1] == NULL)
2226 error (_("Missing address argument"));
2227
2228 if (argv[2] != NULL)
2229 error (_("Junk after %s"), argv[1]);
2230
2231 addr = parse_and_eval_address (argv[1]);
2232
2233 ALL_OBJFILES (objf)
2234 {
d03de421
PA
2235 if ((objf->flags & OBJF_USERLOADED) != 0
2236 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2237 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2238 break;
2239 }
2240 }
2241 else if (argv[0] != NULL)
2242 {
2243 /* Interpret the current argument as a file name. */
63644780
NB
2244
2245 if (argv[1] != NULL)
2246 error (_("Junk after %s"), argv[0]);
2247
ee0c3293 2248 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2249
2250 ALL_OBJFILES (objf)
2251 {
d03de421
PA
2252 if ((objf->flags & OBJF_USERLOADED) != 0
2253 && (objf->flags & OBJF_SHARED) != 0
63644780 2254 && objf->pspace == pspace
ee0c3293 2255 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2256 break;
2257 }
2258 }
2259
2260 if (objf == NULL)
2261 error (_("No symbol file found"));
2262
2263 if (from_tty
2264 && !query (_("Remove symbol table from file \"%s\"? "),
2265 objfile_name (objf)))
2266 error (_("Not confirmed."));
2267
9e86da07 2268 delete objf;
63644780 2269 clear_symtab_users (0);
63644780
NB
2270}
2271
c906108c 2272/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2273
c906108c 2274void
fba45db2 2275reread_symbols (void)
c906108c
SS
2276{
2277 struct objfile *objfile;
2278 long new_modtime;
c906108c
SS
2279 struct stat new_statbuf;
2280 int res;
4c404b8b 2281 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2282
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
c378eb4e 2287 and see if the symbol table that it originates from has been changed. */
c906108c 2288
c5aa993b
JM
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2290 {
9cce227f
TG
2291 if (objfile->obfd == NULL)
2292 continue;
2293
2294 /* Separate debug objfiles are handled in the main objfile. */
2295 if (objfile->separate_debug_objfile_backlink)
2296 continue;
2297
02aeec7b
JB
2298 /* If this object is from an archive (what you usually create with
2299 `ar', often called a `static library' on most systems, though
2300 a `shared library' on AIX is also an archive), then you should
2301 stat on the archive name, not member name. */
9cce227f
TG
2302 if (objfile->obfd->my_archive)
2303 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2304 else
4262abfb 2305 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2306 if (res != 0)
2307 {
c378eb4e 2308 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2309 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2310 objfile_name (objfile));
9cce227f
TG
2311 continue;
2312 }
2313 new_modtime = new_statbuf.st_mtime;
2314 if (new_modtime != objfile->mtime)
2315 {
2316 struct cleanup *old_cleanups;
2317 struct section_offsets *offsets;
2318 int num_offsets;
9cce227f
TG
2319
2320 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2321 objfile_name (objfile));
9cce227f
TG
2322
2323 /* There are various functions like symbol_file_add,
2324 symfile_bfd_open, syms_from_objfile, etc., which might
2325 appear to do what we want. But they have various other
2326 effects which we *don't* want. So we just do stuff
2327 ourselves. We don't worry about mapped files (for one thing,
2328 any mapped file will be out of date). */
2329
2330 /* If we get an error, blow away this objfile (not sure if
2331 that is the correct response for things like shared
2332 libraries). */
ed2b3126
TT
2333 std::unique_ptr<struct objfile> objfile_holder (objfile);
2334
9cce227f 2335 /* We need to do this whenever any symbols go away. */
ed2b3126 2336 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2337
0ba1096a
KT
2338 if (exec_bfd != NULL
2339 && filename_cmp (bfd_get_filename (objfile->obfd),
2340 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2341 {
2342 /* Reload EXEC_BFD without asking anything. */
2343
2344 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2345 }
2346
f6eeced0
JK
2347 /* Keep the calls order approx. the same as in free_objfile. */
2348
2349 /* Free the separate debug objfiles. It will be
2350 automatically recreated by sym_read. */
2351 free_objfile_separate_debug (objfile);
2352
2353 /* Remove any references to this objfile in the global
2354 value lists. */
2355 preserve_values (objfile);
2356
2357 /* Nuke all the state that we will re-read. Much of the following
2358 code which sets things to NULL really is necessary to tell
2359 other parts of GDB that there is nothing currently there.
2360
2361 Try to keep the freeing order compatible with free_objfile. */
2362
2363 if (objfile->sf != NULL)
2364 {
2365 (*objfile->sf->sym_finish) (objfile);
2366 }
2367
2368 clear_objfile_data (objfile);
2369
e1507e95 2370 /* Clean up any state BFD has sitting around. */
a4453b7e 2371 {
192b62ce 2372 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2373 char *obfd_filename;
a4453b7e
TT
2374
2375 obfd_filename = bfd_get_filename (objfile->obfd);
2376 /* Open the new BFD before freeing the old one, so that
2377 the filename remains live. */
192b62ce
TT
2378 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2379 objfile->obfd = temp.release ();
e1507e95 2380 if (objfile->obfd == NULL)
192b62ce 2381 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2382 }
2383
c0c9f665 2384 std::string original_name = objfile->original_name;
24ba069a 2385
9cce227f
TG
2386 /* bfd_openr sets cacheable to true, which is what we want. */
2387 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2388 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2389 bfd_errmsg (bfd_get_error ()));
2390
2391 /* Save the offsets, we will nuke them with the rest of the
2392 objfile_obstack. */
2393 num_offsets = objfile->num_sections;
2394 offsets = ((struct section_offsets *)
2395 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2396 memcpy (offsets, objfile->section_offsets,
2397 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2398
9cce227f
TG
2399 /* FIXME: Do we have to free a whole linked list, or is this
2400 enough? */
af5bf4ad
SM
2401 objfile->global_psymbols.clear ();
2402 objfile->static_psymbols.clear ();
9cce227f 2403
c378eb4e 2404 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2405 psymbol_bcache_free (objfile->psymbol_cache);
2406 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2407
2408 /* NB: after this call to obstack_free, objfiles_changed
2409 will need to be called (see discussion below). */
9cce227f
TG
2410 obstack_free (&objfile->objfile_obstack, 0);
2411 objfile->sections = NULL;
43f3e411 2412 objfile->compunit_symtabs = NULL;
9cce227f
TG
2413 objfile->psymtabs = NULL;
2414 objfile->psymtabs_addrmap = NULL;
2415 objfile->free_psymtabs = NULL;
34eaf542 2416 objfile->template_symbols = NULL;
9cce227f 2417
9cce227f
TG
2418 /* obstack_init also initializes the obstack so it is
2419 empty. We could use obstack_specify_allocation but
d82ea6a8 2420 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2421 obstack_init (&objfile->objfile_obstack);
779bd270 2422
846060df
JB
2423 /* set_objfile_per_bfd potentially allocates the per-bfd
2424 data on the objfile's obstack (if sharing data across
2425 multiple users is not possible), so it's important to
2426 do it *after* the obstack has been initialized. */
2427 set_objfile_per_bfd (objfile);
2428
224c3ddb 2429 objfile->original_name
c0c9f665
TT
2430 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2431 original_name.c_str (),
2432 original_name.size ());
24ba069a 2433
779bd270
DE
2434 /* Reset the sym_fns pointer. The ELF reader can change it
2435 based on whether .gdb_index is present, and we need it to
2436 start over. PR symtab/15885 */
8fb8eb5c 2437 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2438
d82ea6a8 2439 build_objfile_section_table (objfile);
9cce227f
TG
2440 terminate_minimal_symbol_table (objfile);
2441
2442 /* We use the same section offsets as from last time. I'm not
2443 sure whether that is always correct for shared libraries. */
2444 objfile->section_offsets = (struct section_offsets *)
2445 obstack_alloc (&objfile->objfile_obstack,
2446 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2447 memcpy (objfile->section_offsets, offsets,
2448 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2449 objfile->num_sections = num_offsets;
2450
2451 /* What the hell is sym_new_init for, anyway? The concept of
2452 distinguishing between the main file and additional files
2453 in this way seems rather dubious. */
2454 if (objfile == symfile_objfile)
c906108c 2455 {
9cce227f 2456 (*objfile->sf->sym_new_init) (objfile);
c906108c 2457 }
9cce227f
TG
2458
2459 (*objfile->sf->sym_init) (objfile);
4e9668d0 2460 clear_complaints (&symfile_complaints, 1);
608e2dbb
TT
2461
2462 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2463
2464 /* We are about to read new symbols and potentially also
2465 DWARF information. Some targets may want to pass addresses
2466 read from DWARF DIE's through an adjustment function before
2467 saving them, like MIPS, which may call into
2468 "find_pc_section". When called, that function will make
2469 use of per-objfile program space data.
2470
2471 Since we discarded our section information above, we have
2472 dangling pointers in the per-objfile program space data
2473 structure. Force GDB to update the section mapping
2474 information by letting it know the objfile has changed,
2475 making the dangling pointers point to correct data
2476 again. */
2477
2478 objfiles_changed ();
2479
608e2dbb 2480 read_symbols (objfile, 0);
b11896a5 2481
9cce227f 2482 if (!objfile_has_symbols (objfile))
c906108c 2483 {
9cce227f
TG
2484 wrap_here ("");
2485 printf_unfiltered (_("(no debugging symbols found)\n"));
2486 wrap_here ("");
c5aa993b 2487 }
9cce227f
TG
2488
2489 /* We're done reading the symbol file; finish off complaints. */
4e9668d0 2490 clear_complaints (&symfile_complaints, 0);
9cce227f
TG
2491
2492 /* Getting new symbols may change our opinion about what is
2493 frameless. */
2494
2495 reinit_frame_cache ();
2496
2497 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2498 objfile_holder.release ();
9cce227f
TG
2499 discard_cleanups (old_cleanups);
2500
2501 /* If the mtime has changed between the time we set new_modtime
2502 and now, we *want* this to be out of date, so don't call stat
2503 again now. */
2504 objfile->mtime = new_modtime;
9cce227f 2505 init_entry_point_info (objfile);
4ac39b97 2506
4c404b8b 2507 new_objfiles.push_back (objfile);
c906108c
SS
2508 }
2509 }
c906108c 2510
4c404b8b 2511 if (!new_objfiles.empty ())
ea53e89f 2512 {
c1e56572 2513 clear_symtab_users (0);
4ac39b97
JK
2514
2515 /* clear_objfile_data for each objfile was called before freeing it and
76727919 2516 gdb::observers::new_objfile.notify (NULL) has been called by
4ac39b97 2517 clear_symtab_users above. Notify the new files now. */
4c404b8b 2518 for (auto iter : new_objfiles)
76727919 2519 gdb::observers::new_objfile.notify (objfile);
4ac39b97 2520
ea53e89f
JB
2521 /* At least one objfile has changed, so we can consider that
2522 the executable we're debugging has changed too. */
76727919 2523 gdb::observers::executable_changed.notify ();
ea53e89f 2524 }
c906108c 2525}
c906108c
SS
2526\f
2527
593e3209 2528struct filename_language
c5aa993b 2529{
593e3209
SM
2530 filename_language (const std::string &ext_, enum language lang_)
2531 : ext (ext_), lang (lang_)
2532 {}
3fcf0b0d 2533
593e3209
SM
2534 std::string ext;
2535 enum language lang;
2536};
c906108c 2537
593e3209 2538static std::vector<filename_language> filename_language_table;
c906108c 2539
56618e20
TT
2540/* See symfile.h. */
2541
2542void
2543add_filename_language (const char *ext, enum language lang)
c906108c 2544{
593e3209 2545 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2546}
2547
2548static char *ext_args;
920d2a44
AC
2549static void
2550show_ext_args (struct ui_file *file, int from_tty,
2551 struct cmd_list_element *c, const char *value)
2552{
3e43a32a
MS
2553 fprintf_filtered (file,
2554 _("Mapping between filename extension "
2555 "and source language is \"%s\".\n"),
920d2a44
AC
2556 value);
2557}
c906108c
SS
2558
2559static void
eb4c3f4a
TT
2560set_ext_lang_command (const char *args,
2561 int from_tty, struct cmd_list_element *e)
c906108c 2562{
c906108c
SS
2563 char *cp = ext_args;
2564 enum language lang;
2565
c378eb4e 2566 /* First arg is filename extension, starting with '.' */
c906108c 2567 if (*cp != '.')
8a3fe4f8 2568 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2569
2570 /* Find end of first arg. */
c5aa993b 2571 while (*cp && !isspace (*cp))
c906108c
SS
2572 cp++;
2573
2574 if (*cp == '\0')
3e43a32a
MS
2575 error (_("'%s': two arguments required -- "
2576 "filename extension and language"),
c906108c
SS
2577 ext_args);
2578
c378eb4e 2579 /* Null-terminate first arg. */
c5aa993b 2580 *cp++ = '\0';
c906108c
SS
2581
2582 /* Find beginning of second arg, which should be a source language. */
529480d0 2583 cp = skip_spaces (cp);
c906108c
SS
2584
2585 if (*cp == '\0')
3e43a32a
MS
2586 error (_("'%s': two arguments required -- "
2587 "filename extension and language"),
c906108c
SS
2588 ext_args);
2589
2590 /* Lookup the language from among those we know. */
2591 lang = language_enum (cp);
2592
593e3209 2593 auto it = filename_language_table.begin ();
c906108c 2594 /* Now lookup the filename extension: do we already know it? */
593e3209 2595 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2596 {
593e3209 2597 if (it->ext == ext_args)
3fcf0b0d
TT
2598 break;
2599 }
c906108c 2600
593e3209 2601 if (it == filename_language_table.end ())
c906108c 2602 {
c378eb4e 2603 /* New file extension. */
c906108c
SS
2604 add_filename_language (ext_args, lang);
2605 }
2606 else
2607 {
c378eb4e 2608 /* Redefining a previously known filename extension. */
c906108c
SS
2609
2610 /* if (from_tty) */
2611 /* query ("Really make files of type %s '%s'?", */
2612 /* ext_args, language_str (lang)); */
2613
593e3209 2614 it->lang = lang;
c906108c
SS
2615 }
2616}
2617
2618static void
1d12d88f 2619info_ext_lang_command (const char *args, int from_tty)
c906108c 2620{
a3f17187 2621 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2622 printf_filtered ("\n\n");
593e3209
SM
2623 for (const filename_language &entry : filename_language_table)
2624 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2625 language_str (entry.lang));
c906108c
SS
2626}
2627
c906108c 2628enum language
dd786858 2629deduce_language_from_filename (const char *filename)
c906108c 2630{
e6a959d6 2631 const char *cp;
c906108c
SS
2632
2633 if (filename != NULL)
2634 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2635 {
593e3209
SM
2636 for (const filename_language &entry : filename_language_table)
2637 if (entry.ext == cp)
2638 return entry.lang;
3fcf0b0d 2639 }
c906108c
SS
2640
2641 return language_unknown;
2642}
2643\f
43f3e411
DE
2644/* Allocate and initialize a new symbol table.
2645 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2646
2647struct symtab *
43f3e411 2648allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2649{
43f3e411
DE
2650 struct objfile *objfile = cust->objfile;
2651 struct symtab *symtab
2652 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2653
19ba03f4
SM
2654 symtab->filename
2655 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2656 objfile->per_bfd->filename_cache);
c5aa993b
JM
2657 symtab->fullname = NULL;
2658 symtab->language = deduce_language_from_filename (filename);
c906108c 2659
db0fec5c
DE
2660 /* This can be very verbose with lots of headers.
2661 Only print at higher debug levels. */
2662 if (symtab_create_debug >= 2)
45cfd468
DE
2663 {
2664 /* Be a bit clever with debugging messages, and don't print objfile
2665 every time, only when it changes. */
2666 static char *last_objfile_name = NULL;
2667
2668 if (last_objfile_name == NULL
4262abfb 2669 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2670 {
2671 xfree (last_objfile_name);
4262abfb 2672 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2673 fprintf_unfiltered (gdb_stdlog,
2674 "Creating one or more symtabs for objfile %s ...\n",
2675 last_objfile_name);
2676 }
2677 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2678 "Created symtab %s for module %s.\n",
2679 host_address_to_string (symtab), filename);
45cfd468
DE
2680 }
2681
43f3e411
DE
2682 /* Add it to CUST's list of symtabs. */
2683 if (cust->filetabs == NULL)
2684 {
2685 cust->filetabs = symtab;
2686 cust->last_filetab = symtab;
2687 }
2688 else
2689 {
2690 cust->last_filetab->next = symtab;
2691 cust->last_filetab = symtab;
2692 }
2693
2694 /* Backlink to the containing compunit symtab. */
2695 symtab->compunit_symtab = cust;
2696
2697 return symtab;
2698}
2699
2700/* Allocate and initialize a new compunit.
2701 NAME is the name of the main source file, if there is one, or some
2702 descriptive text if there are no source files. */
2703
2704struct compunit_symtab *
2705allocate_compunit_symtab (struct objfile *objfile, const char *name)
2706{
2707 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2708 struct compunit_symtab);
2709 const char *saved_name;
2710
2711 cu->objfile = objfile;
2712
2713 /* The name we record here is only for display/debugging purposes.
2714 Just save the basename to avoid path issues (too long for display,
2715 relative vs absolute, etc.). */
2716 saved_name = lbasename (name);
224c3ddb
SM
2717 cu->name
2718 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2719 strlen (saved_name));
43f3e411
DE
2720
2721 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2722
2723 if (symtab_create_debug)
2724 {
2725 fprintf_unfiltered (gdb_stdlog,
2726 "Created compunit symtab %s for %s.\n",
2727 host_address_to_string (cu),
2728 cu->name);
2729 }
2730
2731 return cu;
2732}
2733
2734/* Hook CU to the objfile it comes from. */
2735
2736void
2737add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2738{
2739 cu->next = cu->objfile->compunit_symtabs;
2740 cu->objfile->compunit_symtabs = cu;
c906108c 2741}
c906108c 2742\f
c5aa993b 2743
b15cc25c
PA
2744/* Reset all data structures in gdb which may contain references to
2745 symbol table data. */
c906108c
SS
2746
2747void
b15cc25c 2748clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2749{
2750 /* Someday, we should do better than this, by only blowing away
2751 the things that really need to be blown. */
c0501be5
DJ
2752
2753 /* Clear the "current" symtab first, because it is no longer valid.
2754 breakpoint_re_set may try to access the current symtab. */
2755 clear_current_source_symtab_and_line ();
2756
c906108c 2757 clear_displays ();
1bfeeb0f 2758 clear_last_displayed_sal ();
c906108c 2759 clear_pc_function_cache ();
76727919 2760 gdb::observers::new_objfile.notify (NULL);
9bdcbae7
DJ
2761
2762 /* Clear globals which might have pointed into a removed objfile.
2763 FIXME: It's not clear which of these are supposed to persist
2764 between expressions and which ought to be reset each time. */
2765 expression_context_block = NULL;
aee1fcdf 2766 innermost_block.reset ();
8756216b
DP
2767
2768 /* Varobj may refer to old symbols, perform a cleanup. */
2769 varobj_invalidate ();
2770
e700d1b2
JB
2771 /* Now that the various caches have been cleared, we can re_set
2772 our breakpoints without risking it using stale data. */
2773 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2774 breakpoint_re_set ();
c906108c
SS
2775}
2776
74b7792f
AC
2777static void
2778clear_symtab_users_cleanup (void *ignore)
2779{
c1e56572 2780 clear_symtab_users (0);
74b7792f 2781}
c906108c 2782\f
c906108c
SS
2783/* OVERLAYS:
2784 The following code implements an abstraction for debugging overlay sections.
2785
2786 The target model is as follows:
2787 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2788 same VMA, each with its own unique LMA (or load address).
c906108c 2789 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2790 sections, one by one, from the load address into the VMA address.
5417f6dc 2791 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2792 sections should be considered to be mapped from the VMA to the LMA.
2793 This information is used for symbol lookup, and memory read/write.
5417f6dc 2794 For instance, if a section has been mapped then its contents
c5aa993b 2795 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2796
2797 Two levels of debugger support for overlays are available. One is
2798 "manual", in which the debugger relies on the user to tell it which
2799 overlays are currently mapped. This level of support is
2800 implemented entirely in the core debugger, and the information about
2801 whether a section is mapped is kept in the objfile->obj_section table.
2802
2803 The second level of support is "automatic", and is only available if
2804 the target-specific code provides functionality to read the target's
2805 overlay mapping table, and translate its contents for the debugger
2806 (by updating the mapped state information in the obj_section tables).
2807
2808 The interface is as follows:
c5aa993b
JM
2809 User commands:
2810 overlay map <name> -- tell gdb to consider this section mapped
2811 overlay unmap <name> -- tell gdb to consider this section unmapped
2812 overlay list -- list the sections that GDB thinks are mapped
2813 overlay read-target -- get the target's state of what's mapped
2814 overlay off/manual/auto -- set overlay debugging state
2815 Functional interface:
2816 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2817 section, return that section.
5417f6dc 2818 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2819 the pc, either in its VMA or its LMA
714835d5 2820 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2821 section_is_overlay(sect): true if section's VMA != LMA
2822 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2823 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2824 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2825 overlay_mapped_address(...): map an address from section's LMA to VMA
2826 overlay_unmapped_address(...): map an address from section's VMA to LMA
2827 symbol_overlayed_address(...): Return a "current" address for symbol:
2828 either in VMA or LMA depending on whether
c378eb4e 2829 the symbol's section is currently mapped. */
c906108c
SS
2830
2831/* Overlay debugging state: */
2832
d874f1e2 2833enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2834int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2835
c906108c 2836/* Function: section_is_overlay (SECTION)
5417f6dc 2837 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2838 SECTION is loaded at an address different from where it will "run". */
2839
2840int
714835d5 2841section_is_overlay (struct obj_section *section)
c906108c 2842{
714835d5
UW
2843 if (overlay_debugging && section)
2844 {
714835d5 2845 asection *bfd_section = section->the_bfd_section;
f888f159 2846
714835d5
UW
2847 if (bfd_section_lma (abfd, bfd_section) != 0
2848 && bfd_section_lma (abfd, bfd_section)
2849 != bfd_section_vma (abfd, bfd_section))
2850 return 1;
2851 }
c906108c
SS
2852
2853 return 0;
2854}
2855
2856/* Function: overlay_invalidate_all (void)
2857 Invalidate the mapped state of all overlay sections (mark it as stale). */
2858
2859static void
fba45db2 2860overlay_invalidate_all (void)
c906108c 2861{
c5aa993b 2862 struct objfile *objfile;
c906108c
SS
2863 struct obj_section *sect;
2864
2865 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2866 if (section_is_overlay (sect))
2867 sect->ovly_mapped = -1;
c906108c
SS
2868}
2869
714835d5 2870/* Function: section_is_mapped (SECTION)
5417f6dc 2871 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2872
2873 Access to the ovly_mapped flag is restricted to this function, so
2874 that we can do automatic update. If the global flag
2875 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2876 overlay_invalidate_all. If the mapped state of the particular
2877 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2878
714835d5
UW
2879int
2880section_is_mapped (struct obj_section *osect)
c906108c 2881{
9216df95
UW
2882 struct gdbarch *gdbarch;
2883
714835d5 2884 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2885 return 0;
2886
c5aa993b 2887 switch (overlay_debugging)
c906108c
SS
2888 {
2889 default:
d874f1e2 2890 case ovly_off:
c5aa993b 2891 return 0; /* overlay debugging off */
d874f1e2 2892 case ovly_auto: /* overlay debugging automatic */
1c772458 2893 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2894 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2895 gdbarch = get_objfile_arch (osect->objfile);
2896 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2897 {
2898 if (overlay_cache_invalid)
2899 {
2900 overlay_invalidate_all ();
2901 overlay_cache_invalid = 0;
2902 }
2903 if (osect->ovly_mapped == -1)
9216df95 2904 gdbarch_overlay_update (gdbarch, osect);
c906108c 2905 }
86a73007 2906 /* fall thru */
d874f1e2 2907 case ovly_on: /* overlay debugging manual */
c906108c
SS
2908 return osect->ovly_mapped == 1;
2909 }
2910}
2911
c906108c
SS
2912/* Function: pc_in_unmapped_range
2913 If PC falls into the lma range of SECTION, return true, else false. */
2914
2915CORE_ADDR
714835d5 2916pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2917{
714835d5
UW
2918 if (section_is_overlay (section))
2919 {
2920 bfd *abfd = section->objfile->obfd;
2921 asection *bfd_section = section->the_bfd_section;
fbd35540 2922
714835d5
UW
2923 /* We assume the LMA is relocated by the same offset as the VMA. */
2924 bfd_vma size = bfd_get_section_size (bfd_section);
2925 CORE_ADDR offset = obj_section_offset (section);
2926
2927 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2928 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2929 return 1;
2930 }
c906108c 2931
c906108c
SS
2932 return 0;
2933}
2934
2935/* Function: pc_in_mapped_range
2936 If PC falls into the vma range of SECTION, return true, else false. */
2937
2938CORE_ADDR
714835d5 2939pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2940{
714835d5
UW
2941 if (section_is_overlay (section))
2942 {
2943 if (obj_section_addr (section) <= pc
2944 && pc < obj_section_endaddr (section))
2945 return 1;
2946 }
c906108c 2947
c906108c
SS
2948 return 0;
2949}
2950
9ec8e6a0
JB
2951/* Return true if the mapped ranges of sections A and B overlap, false
2952 otherwise. */
3b7bacac 2953
b9362cc7 2954static int
714835d5 2955sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2956{
714835d5
UW
2957 CORE_ADDR a_start = obj_section_addr (a);
2958 CORE_ADDR a_end = obj_section_endaddr (a);
2959 CORE_ADDR b_start = obj_section_addr (b);
2960 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2961
2962 return (a_start < b_end && b_start < a_end);
2963}
2964
c906108c
SS
2965/* Function: overlay_unmapped_address (PC, SECTION)
2966 Returns the address corresponding to PC in the unmapped (load) range.
2967 May be the same as PC. */
2968
2969CORE_ADDR
714835d5 2970overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2971{
714835d5
UW
2972 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2973 {
714835d5 2974 asection *bfd_section = section->the_bfd_section;
fbd35540 2975
714835d5
UW
2976 return pc + bfd_section_lma (abfd, bfd_section)
2977 - bfd_section_vma (abfd, bfd_section);
2978 }
c906108c
SS
2979
2980 return pc;
2981}
2982
2983/* Function: overlay_mapped_address (PC, SECTION)
2984 Returns the address corresponding to PC in the mapped (runtime) range.
2985 May be the same as PC. */
2986
2987CORE_ADDR
714835d5 2988overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2989{
714835d5
UW
2990 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2991 {
714835d5 2992 asection *bfd_section = section->the_bfd_section;
fbd35540 2993
714835d5
UW
2994 return pc + bfd_section_vma (abfd, bfd_section)
2995 - bfd_section_lma (abfd, bfd_section);
2996 }
c906108c
SS
2997
2998 return pc;
2999}
3000
5417f6dc 3001/* Function: symbol_overlayed_address
c906108c
SS
3002 Return one of two addresses (relative to the VMA or to the LMA),
3003 depending on whether the section is mapped or not. */
3004
c5aa993b 3005CORE_ADDR
714835d5 3006symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3007{
3008 if (overlay_debugging)
3009 {
c378eb4e 3010 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3011 if (section == 0)
3012 return address;
c378eb4e
MS
3013 /* If the symbol's section is not an overlay, just return its
3014 address. */
c906108c
SS
3015 if (!section_is_overlay (section))
3016 return address;
c378eb4e 3017 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3018 if (section_is_mapped (section))
3019 return address;
3020 /*
3021 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3022 * then return its LOADED address rather than its vma address!!
3023 */
3024 return overlay_unmapped_address (address, section);
3025 }
3026 return address;
3027}
3028
5417f6dc 3029/* Function: find_pc_overlay (PC)
c906108c
SS
3030 Return the best-match overlay section for PC:
3031 If PC matches a mapped overlay section's VMA, return that section.
3032 Else if PC matches an unmapped section's VMA, return that section.
3033 Else if PC matches an unmapped section's LMA, return that section. */
3034
714835d5 3035struct obj_section *
fba45db2 3036find_pc_overlay (CORE_ADDR pc)
c906108c 3037{
c5aa993b 3038 struct objfile *objfile;
c906108c
SS
3039 struct obj_section *osect, *best_match = NULL;
3040
3041 if (overlay_debugging)
b631e59b
KT
3042 {
3043 ALL_OBJSECTIONS (objfile, osect)
3044 if (section_is_overlay (osect))
c5aa993b 3045 {
b631e59b
KT
3046 if (pc_in_mapped_range (pc, osect))
3047 {
3048 if (section_is_mapped (osect))
3049 return osect;
3050 else
3051 best_match = osect;
3052 }
3053 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3054 best_match = osect;
3055 }
b631e59b 3056 }
714835d5 3057 return best_match;
c906108c
SS
3058}
3059
3060/* Function: find_pc_mapped_section (PC)
5417f6dc 3061 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3062 currently marked as MAPPED, return that section. Else return NULL. */
3063
714835d5 3064struct obj_section *
fba45db2 3065find_pc_mapped_section (CORE_ADDR pc)
c906108c 3066{
c5aa993b 3067 struct objfile *objfile;
c906108c
SS
3068 struct obj_section *osect;
3069
3070 if (overlay_debugging)
b631e59b
KT
3071 {
3072 ALL_OBJSECTIONS (objfile, osect)
3073 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3074 return osect;
3075 }
c906108c
SS
3076
3077 return NULL;
3078}
3079
3080/* Function: list_overlays_command
c378eb4e 3081 Print a list of mapped sections and their PC ranges. */
c906108c 3082
5d3055ad 3083static void
2cf311eb 3084list_overlays_command (const char *args, int from_tty)
c906108c 3085{
c5aa993b
JM
3086 int nmapped = 0;
3087 struct objfile *objfile;
c906108c
SS
3088 struct obj_section *osect;
3089
3090 if (overlay_debugging)
b631e59b
KT
3091 {
3092 ALL_OBJSECTIONS (objfile, osect)
714835d5 3093 if (section_is_mapped (osect))
b631e59b
KT
3094 {
3095 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3096 const char *name;
3097 bfd_vma lma, vma;
3098 int size;
3099
3100 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3101 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3102 size = bfd_get_section_size (osect->the_bfd_section);
3103 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3104
3105 printf_filtered ("Section %s, loaded at ", name);
3106 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3107 puts_filtered (" - ");
3108 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3109 printf_filtered (", mapped at ");
3110 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3111 puts_filtered (" - ");
3112 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3113 puts_filtered ("\n");
3114
3115 nmapped++;
3116 }
3117 }
c906108c 3118 if (nmapped == 0)
a3f17187 3119 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3120}
3121
3122/* Function: map_overlay_command
3123 Mark the named section as mapped (ie. residing at its VMA address). */
3124
5d3055ad 3125static void
2cf311eb 3126map_overlay_command (const char *args, int from_tty)
c906108c 3127{
c5aa993b
JM
3128 struct objfile *objfile, *objfile2;
3129 struct obj_section *sec, *sec2;
c906108c
SS
3130
3131 if (!overlay_debugging)
3e43a32a
MS
3132 error (_("Overlay debugging not enabled. Use "
3133 "either the 'overlay auto' or\n"
3134 "the 'overlay manual' command."));
c906108c
SS
3135
3136 if (args == 0 || *args == 0)
8a3fe4f8 3137 error (_("Argument required: name of an overlay section"));
c906108c 3138
c378eb4e 3139 /* First, find a section matching the user supplied argument. */
c906108c
SS
3140 ALL_OBJSECTIONS (objfile, sec)
3141 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3142 {
c378eb4e 3143 /* Now, check to see if the section is an overlay. */
714835d5 3144 if (!section_is_overlay (sec))
c5aa993b
JM
3145 continue; /* not an overlay section */
3146
c378eb4e 3147 /* Mark the overlay as "mapped". */
c5aa993b
JM
3148 sec->ovly_mapped = 1;
3149
3150 /* Next, make a pass and unmap any sections that are
3151 overlapped by this new section: */
3152 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3153 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3154 {
3155 if (info_verbose)
a3f17187 3156 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3157 bfd_section_name (objfile->obfd,
3158 sec2->the_bfd_section));
c378eb4e 3159 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3160 }
3161 return;
3162 }
8a3fe4f8 3163 error (_("No overlay section called %s"), args);
c906108c
SS
3164}
3165
3166/* Function: unmap_overlay_command
5417f6dc 3167 Mark the overlay section as unmapped
c906108c
SS
3168 (ie. resident in its LMA address range, rather than the VMA range). */
3169
5d3055ad 3170static void
2cf311eb 3171unmap_overlay_command (const char *args, int from_tty)
c906108c 3172{
c5aa993b 3173 struct objfile *objfile;
7a270e0c 3174 struct obj_section *sec = NULL;
c906108c
SS
3175
3176 if (!overlay_debugging)
3e43a32a
MS
3177 error (_("Overlay debugging not enabled. "
3178 "Use either the 'overlay auto' or\n"
3179 "the 'overlay manual' command."));
c906108c
SS
3180
3181 if (args == 0 || *args == 0)
8a3fe4f8 3182 error (_("Argument required: name of an overlay section"));
c906108c 3183
c378eb4e 3184 /* First, find a section matching the user supplied argument. */
c906108c
SS
3185 ALL_OBJSECTIONS (objfile, sec)
3186 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3187 {
3188 if (!sec->ovly_mapped)
8a3fe4f8 3189 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3190 sec->ovly_mapped = 0;
3191 return;
3192 }
8a3fe4f8 3193 error (_("No overlay section called %s"), args);
c906108c
SS
3194}
3195
3196/* Function: overlay_auto_command
3197 A utility command to turn on overlay debugging.
c378eb4e 3198 Possibly this should be done via a set/show command. */
c906108c
SS
3199
3200static void
2cf311eb 3201overlay_auto_command (const char *args, int from_tty)
c906108c 3202{
d874f1e2 3203 overlay_debugging = ovly_auto;
1900040c 3204 enable_overlay_breakpoints ();
c906108c 3205 if (info_verbose)
a3f17187 3206 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3207}
3208
3209/* Function: overlay_manual_command
3210 A utility command to turn on overlay debugging.
c378eb4e 3211 Possibly this should be done via a set/show command. */
c906108c
SS
3212
3213static void
2cf311eb 3214overlay_manual_command (const char *args, int from_tty)
c906108c 3215{
d874f1e2 3216 overlay_debugging = ovly_on;
1900040c 3217 disable_overlay_breakpoints ();
c906108c 3218 if (info_verbose)
a3f17187 3219 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3220}
3221
3222/* Function: overlay_off_command
3223 A utility command to turn on overlay debugging.
c378eb4e 3224 Possibly this should be done via a set/show command. */
c906108c
SS
3225
3226static void
2cf311eb 3227overlay_off_command (const char *args, int from_tty)
c906108c 3228{
d874f1e2 3229 overlay_debugging = ovly_off;
1900040c 3230 disable_overlay_breakpoints ();
c906108c 3231 if (info_verbose)
a3f17187 3232 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3233}
3234
3235static void
2cf311eb 3236overlay_load_command (const char *args, int from_tty)
c906108c 3237{
e17c207e
UW
3238 struct gdbarch *gdbarch = get_current_arch ();
3239
3240 if (gdbarch_overlay_update_p (gdbarch))
3241 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3242 else
8a3fe4f8 3243 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3244}
3245
3246/* Function: overlay_command
c378eb4e 3247 A place-holder for a mis-typed command. */
c906108c 3248
c378eb4e 3249/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3250static struct cmd_list_element *overlaylist;
c906108c
SS
3251
3252static void
981a3fb3 3253overlay_command (const char *args, int from_tty)
c906108c 3254{
c5aa993b 3255 printf_unfiltered
c906108c 3256 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3257 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3258}
3259
c906108c
SS
3260/* Target Overlays for the "Simplest" overlay manager:
3261
5417f6dc
RM
3262 This is GDB's default target overlay layer. It works with the
3263 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3264 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3265 so targets that use a different runtime overlay manager can
c906108c
SS
3266 substitute their own overlay_update function and take over the
3267 function pointer.
3268
3269 The overlay_update function pokes around in the target's data structures
3270 to see what overlays are mapped, and updates GDB's overlay mapping with
3271 this information.
3272
3273 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3274 unsigned _novlys; /# number of overlay sections #/
3275 unsigned _ovly_table[_novlys][4] = {
438e1e42 3276 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3277 {..., ..., ..., ...},
3278 }
3279 unsigned _novly_regions; /# number of overlay regions #/
3280 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3281 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3282 {..., ..., ...},
3283 }
c906108c
SS
3284 These functions will attempt to update GDB's mappedness state in the
3285 symbol section table, based on the target's mappedness state.
3286
3287 To do this, we keep a cached copy of the target's _ovly_table, and
3288 attempt to detect when the cached copy is invalidated. The main
3289 entry point is "simple_overlay_update(SECT), which looks up SECT in
3290 the cached table and re-reads only the entry for that section from
c378eb4e 3291 the target (whenever possible). */
c906108c
SS
3292
3293/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3294static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3295static unsigned cache_novlys = 0;
c906108c 3296static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3297enum ovly_index
3298 {
438e1e42 3299 VMA, OSIZE, LMA, MAPPED
c5aa993b 3300 };
c906108c 3301
c378eb4e 3302/* Throw away the cached copy of _ovly_table. */
3b7bacac 3303
c906108c 3304static void
fba45db2 3305simple_free_overlay_table (void)
c906108c
SS
3306{
3307 if (cache_ovly_table)
b8c9b27d 3308 xfree (cache_ovly_table);
c5aa993b 3309 cache_novlys = 0;
c906108c
SS
3310 cache_ovly_table = NULL;
3311 cache_ovly_table_base = 0;
3312}
3313
9216df95 3314/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3315 Convert to host order. int LEN is number of ints. */
3b7bacac 3316
c906108c 3317static void
9216df95 3318read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3319 int len, int size, enum bfd_endian byte_order)
c906108c 3320{
c378eb4e 3321 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3322 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3323 int i;
c906108c 3324
9216df95 3325 read_memory (memaddr, buf, len * size);
c906108c 3326 for (i = 0; i < len; i++)
e17a4113 3327 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3328}
3329
3330/* Find and grab a copy of the target _ovly_table
c378eb4e 3331 (and _novlys, which is needed for the table's size). */
3b7bacac 3332
c5aa993b 3333static int
fba45db2 3334simple_read_overlay_table (void)
c906108c 3335{
3b7344d5 3336 struct bound_minimal_symbol novlys_msym;
7c7b6655 3337 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3338 struct gdbarch *gdbarch;
3339 int word_size;
e17a4113 3340 enum bfd_endian byte_order;
c906108c
SS
3341
3342 simple_free_overlay_table ();
9b27852e 3343 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3344 if (! novlys_msym.minsym)
c906108c 3345 {
8a3fe4f8 3346 error (_("Error reading inferior's overlay table: "
0d43edd1 3347 "couldn't find `_novlys' variable\n"
8a3fe4f8 3348 "in inferior. Use `overlay manual' mode."));
0d43edd1 3349 return 0;
c906108c 3350 }
0d43edd1 3351
7c7b6655
TT
3352 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3353 if (! ovly_table_msym.minsym)
0d43edd1 3354 {
8a3fe4f8 3355 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3356 "`_ovly_table' array\n"
8a3fe4f8 3357 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3358 return 0;
3359 }
3360
7c7b6655 3361 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3362 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3363 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3364
77e371c0
TT
3365 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3366 4, byte_order);
0d43edd1 3367 cache_ovly_table
224c3ddb 3368 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3369 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3370 read_target_long_array (cache_ovly_table_base,
777ea8f1 3371 (unsigned int *) cache_ovly_table,
e17a4113 3372 cache_novlys * 4, word_size, byte_order);
0d43edd1 3373
c5aa993b 3374 return 1; /* SUCCESS */
c906108c
SS
3375}
3376
5417f6dc 3377/* Function: simple_overlay_update_1
c906108c
SS
3378 A helper function for simple_overlay_update. Assuming a cached copy
3379 of _ovly_table exists, look through it to find an entry whose vma,
3380 lma and size match those of OSECT. Re-read the entry and make sure
3381 it still matches OSECT (else the table may no longer be valid).
3382 Set OSECT's mapped state to match the entry. Return: 1 for
3383 success, 0 for failure. */
3384
3385static int
fba45db2 3386simple_overlay_update_1 (struct obj_section *osect)
c906108c 3387{
764c99c1 3388 int i;
fbd35540 3389 asection *bsect = osect->the_bfd_section;
9216df95
UW
3390 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3391 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3392 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3393
c906108c 3394 for (i = 0; i < cache_novlys; i++)
fbd35540 3395 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3396 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3397 {
9216df95
UW
3398 read_target_long_array (cache_ovly_table_base + i * word_size,
3399 (unsigned int *) cache_ovly_table[i],
e17a4113 3400 4, word_size, byte_order);
fbd35540 3401 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3402 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3403 {
3404 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3405 return 1;
3406 }
c378eb4e 3407 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3408 return 0;
3409 }
3410 return 0;
3411}
3412
3413/* Function: simple_overlay_update
5417f6dc
RM
3414 If OSECT is NULL, then update all sections' mapped state
3415 (after re-reading the entire target _ovly_table).
3416 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3417 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3418 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3419 re-read the entire cache, and go ahead and update all sections. */
3420
1c772458 3421void
fba45db2 3422simple_overlay_update (struct obj_section *osect)
c906108c 3423{
c5aa993b 3424 struct objfile *objfile;
c906108c 3425
c378eb4e 3426 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3427 if (osect)
c378eb4e 3428 /* Have we got a cached copy of the target's overlay table? */
c906108c 3429 if (cache_ovly_table != NULL)
9cc89665
MS
3430 {
3431 /* Does its cached location match what's currently in the
3432 symtab? */
3b7344d5 3433 struct bound_minimal_symbol minsym
9cc89665
MS
3434 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3435
3b7344d5 3436 if (minsym.minsym == NULL)
9cc89665
MS
3437 error (_("Error reading inferior's overlay table: couldn't "
3438 "find `_ovly_table' array\n"
3439 "in inferior. Use `overlay manual' mode."));
3440
77e371c0 3441 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3442 /* Then go ahead and try to look up this single section in
3443 the cache. */
3444 if (simple_overlay_update_1 (osect))
3445 /* Found it! We're done. */
3446 return;
3447 }
c906108c
SS
3448
3449 /* Cached table no good: need to read the entire table anew.
3450 Or else we want all the sections, in which case it's actually
3451 more efficient to read the whole table in one block anyway. */
3452
0d43edd1
JB
3453 if (! simple_read_overlay_table ())
3454 return;
3455
c378eb4e 3456 /* Now may as well update all sections, even if only one was requested. */
c906108c 3457 ALL_OBJSECTIONS (objfile, osect)
714835d5 3458 if (section_is_overlay (osect))
c5aa993b 3459 {
764c99c1 3460 int i;
fbd35540 3461 asection *bsect = osect->the_bfd_section;
c5aa993b 3462
c5aa993b 3463 for (i = 0; i < cache_novlys; i++)
fbd35540 3464 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3465 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3466 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3467 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3468 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3469 }
3470 }
c906108c
SS
3471}
3472
086df311
DJ
3473/* Set the output sections and output offsets for section SECTP in
3474 ABFD. The relocation code in BFD will read these offsets, so we
3475 need to be sure they're initialized. We map each section to itself,
3476 with no offset; this means that SECTP->vma will be honored. */
3477
3478static void
3479symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3480{
3481 sectp->output_section = sectp;
3482 sectp->output_offset = 0;
3483}
3484
ac8035ab
TG
3485/* Default implementation for sym_relocate. */
3486
ac8035ab
TG
3487bfd_byte *
3488default_symfile_relocate (struct objfile *objfile, asection *sectp,
3489 bfd_byte *buf)
3490{
3019eac3
DE
3491 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3492 DWO file. */
3493 bfd *abfd = sectp->owner;
ac8035ab
TG
3494
3495 /* We're only interested in sections with relocation
3496 information. */
3497 if ((sectp->flags & SEC_RELOC) == 0)
3498 return NULL;
3499
3500 /* We will handle section offsets properly elsewhere, so relocate as if
3501 all sections begin at 0. */
3502 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3503
3504 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3505}
3506
086df311
DJ
3507/* Relocate the contents of a debug section SECTP in ABFD. The
3508 contents are stored in BUF if it is non-NULL, or returned in a
3509 malloc'd buffer otherwise.
3510
3511 For some platforms and debug info formats, shared libraries contain
3512 relocations against the debug sections (particularly for DWARF-2;
3513 one affected platform is PowerPC GNU/Linux, although it depends on
3514 the version of the linker in use). Also, ELF object files naturally
3515 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3516 the relocations in order to get the locations of symbols correct.
3517 Another example that may require relocation processing, is the
3518 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3519 debug section. */
086df311
DJ
3520
3521bfd_byte *
ac8035ab
TG
3522symfile_relocate_debug_section (struct objfile *objfile,
3523 asection *sectp, bfd_byte *buf)
086df311 3524{
ac8035ab 3525 gdb_assert (objfile->sf->sym_relocate);
086df311 3526
ac8035ab 3527 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3528}
c906108c 3529
31d99776
DJ
3530struct symfile_segment_data *
3531get_symfile_segment_data (bfd *abfd)
3532{
00b5771c 3533 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3534
3535 if (sf == NULL)
3536 return NULL;
3537
3538 return sf->sym_segments (abfd);
3539}
3540
3541void
3542free_symfile_segment_data (struct symfile_segment_data *data)
3543{
3544 xfree (data->segment_bases);
3545 xfree (data->segment_sizes);
3546 xfree (data->segment_info);
3547 xfree (data);
3548}
3549
28c32713
JB
3550/* Given:
3551 - DATA, containing segment addresses from the object file ABFD, and
3552 the mapping from ABFD's sections onto the segments that own them,
3553 and
3554 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3555 segment addresses reported by the target,
3556 store the appropriate offsets for each section in OFFSETS.
3557
3558 If there are fewer entries in SEGMENT_BASES than there are segments
3559 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3560
8d385431
DJ
3561 If there are more entries, then ignore the extra. The target may
3562 not be able to distinguish between an empty data segment and a
3563 missing data segment; a missing text segment is less plausible. */
3b7bacac 3564
31d99776 3565int
3189cb12
DE
3566symfile_map_offsets_to_segments (bfd *abfd,
3567 const struct symfile_segment_data *data,
31d99776
DJ
3568 struct section_offsets *offsets,
3569 int num_segment_bases,
3570 const CORE_ADDR *segment_bases)
3571{
3572 int i;
3573 asection *sect;
3574
28c32713
JB
3575 /* It doesn't make sense to call this function unless you have some
3576 segment base addresses. */
202b96c1 3577 gdb_assert (num_segment_bases > 0);
28c32713 3578
31d99776
DJ
3579 /* If we do not have segment mappings for the object file, we
3580 can not relocate it by segments. */
3581 gdb_assert (data != NULL);
3582 gdb_assert (data->num_segments > 0);
3583
31d99776
DJ
3584 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3585 {
31d99776
DJ
3586 int which = data->segment_info[i];
3587
28c32713
JB
3588 gdb_assert (0 <= which && which <= data->num_segments);
3589
3590 /* Don't bother computing offsets for sections that aren't
3591 loaded as part of any segment. */
3592 if (! which)
3593 continue;
3594
3595 /* Use the last SEGMENT_BASES entry as the address of any extra
3596 segments mentioned in DATA->segment_info. */
31d99776 3597 if (which > num_segment_bases)
28c32713 3598 which = num_segment_bases;
31d99776 3599
28c32713
JB
3600 offsets->offsets[i] = (segment_bases[which - 1]
3601 - data->segment_bases[which - 1]);
31d99776
DJ
3602 }
3603
3604 return 1;
3605}
3606
3607static void
3608symfile_find_segment_sections (struct objfile *objfile)
3609{
3610 bfd *abfd = objfile->obfd;
3611 int i;
3612 asection *sect;
3613 struct symfile_segment_data *data;
3614
3615 data = get_symfile_segment_data (objfile->obfd);
3616 if (data == NULL)
3617 return;
3618
3619 if (data->num_segments != 1 && data->num_segments != 2)
3620 {
3621 free_symfile_segment_data (data);
3622 return;
3623 }
3624
3625 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3626 {
31d99776
DJ
3627 int which = data->segment_info[i];
3628
3629 if (which == 1)
3630 {
3631 if (objfile->sect_index_text == -1)
3632 objfile->sect_index_text = sect->index;
3633
3634 if (objfile->sect_index_rodata == -1)
3635 objfile->sect_index_rodata = sect->index;
3636 }
3637 else if (which == 2)
3638 {
3639 if (objfile->sect_index_data == -1)
3640 objfile->sect_index_data = sect->index;
3641
3642 if (objfile->sect_index_bss == -1)
3643 objfile->sect_index_bss = sect->index;
3644 }
3645 }
3646
3647 free_symfile_segment_data (data);
3648}
3649
76ad5e1e
NB
3650/* Listen for free_objfile events. */
3651
3652static void
3653symfile_free_objfile (struct objfile *objfile)
3654{
c33b2f12
MM
3655 /* Remove the target sections owned by this objfile. */
3656 if (objfile != NULL)
76ad5e1e
NB
3657 remove_target_sections ((void *) objfile);
3658}
3659
540c2971
DE
3660/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3661 Expand all symtabs that match the specified criteria.
3662 See quick_symbol_functions.expand_symtabs_matching for details. */
3663
3664void
14bc53a8
PA
3665expand_symtabs_matching
3666 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3667 const lookup_name_info &lookup_name,
14bc53a8
PA
3668 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3669 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3670 enum search_domain kind)
540c2971
DE
3671{
3672 struct objfile *objfile;
3673
3674 ALL_OBJFILES (objfile)
3675 {
3676 if (objfile->sf)
bb4142cf 3677 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3678 lookup_name,
276d885b 3679 symbol_matcher,
14bc53a8 3680 expansion_notify, kind);
540c2971
DE
3681 }
3682}
3683
3684/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3685 Map function FUN over every file.
3686 See quick_symbol_functions.map_symbol_filenames for details. */
3687
3688void
bb4142cf
DE
3689map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3690 int need_fullname)
540c2971
DE
3691{
3692 struct objfile *objfile;
3693
3694 ALL_OBJFILES (objfile)
3695 {
3696 if (objfile->sf)
3697 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3698 need_fullname);
3699 }
3700}
3701
32fa66eb
SM
3702#if GDB_SELF_TEST
3703
3704namespace selftests {
3705namespace filename_language {
3706
32fa66eb
SM
3707static void test_filename_language ()
3708{
3709 /* This test messes up the filename_language_table global. */
593e3209 3710 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3711
3712 /* Test deducing an unknown extension. */
3713 language lang = deduce_language_from_filename ("myfile.blah");
3714 SELF_CHECK (lang == language_unknown);
3715
3716 /* Test deducing a known extension. */
3717 lang = deduce_language_from_filename ("myfile.c");
3718 SELF_CHECK (lang == language_c);
3719
3720 /* Test adding a new extension using the internal API. */
3721 add_filename_language (".blah", language_pascal);
3722 lang = deduce_language_from_filename ("myfile.blah");
3723 SELF_CHECK (lang == language_pascal);
3724}
3725
3726static void
3727test_set_ext_lang_command ()
3728{
3729 /* This test messes up the filename_language_table global. */
593e3209 3730 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3731
3732 /* Confirm that the .hello extension is not known. */
3733 language lang = deduce_language_from_filename ("cake.hello");
3734 SELF_CHECK (lang == language_unknown);
3735
3736 /* Test adding a new extension using the CLI command. */
3737 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3738 ext_args = args_holder.get ();
3739 set_ext_lang_command (NULL, 1, NULL);
3740
3741 lang = deduce_language_from_filename ("cake.hello");
3742 SELF_CHECK (lang == language_rust);
3743
3744 /* Test overriding an existing extension using the CLI command. */
593e3209 3745 int size_before = filename_language_table.size ();
32fa66eb
SM
3746 args_holder.reset (xstrdup (".hello pascal"));
3747 ext_args = args_holder.get ();
3748 set_ext_lang_command (NULL, 1, NULL);
593e3209 3749 int size_after = filename_language_table.size ();
32fa66eb
SM
3750
3751 lang = deduce_language_from_filename ("cake.hello");
3752 SELF_CHECK (lang == language_pascal);
3753 SELF_CHECK (size_before == size_after);
3754}
3755
3756} /* namespace filename_language */
3757} /* namespace selftests */
3758
3759#endif /* GDB_SELF_TEST */
3760
c906108c 3761void
fba45db2 3762_initialize_symfile (void)
c906108c
SS
3763{
3764 struct cmd_list_element *c;
c5aa993b 3765
76727919 3766 gdb::observers::free_objfile.attach (symfile_free_objfile);
76ad5e1e 3767
97cbe998 3768#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3769 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3770immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3771faster.\n\
3772The '-readnever' option will prevent GDB from reading the symbol file's\n\
3773symbolic debug information."
8ca2f0b9 3774
1a966eab
AC
3775 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3776Load symbol table from executable file FILE.\n\
97cbe998 3777Usage: symbol-file [-readnow | -readnever] FILE\n\
c906108c 3778The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3779to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3780 set_cmd_completer (c, filename_completer);
c906108c 3781
1a966eab 3782 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3783Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
97cbe998
SDJ
3784Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3785-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3786ADDR is the starting address of the file's text.\n\
3787Each '-s' argument provides a section name and address, and\n\
db162d44 3788should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3789with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
97cbe998 3790READNOW_READNEVER_HELP),
c906108c 3791 &cmdlist);
5ba2abeb 3792 set_cmd_completer (c, filename_completer);
c906108c 3793
63644780
NB
3794 c = add_cmd ("remove-symbol-file", class_files,
3795 remove_symbol_file_command, _("\
3796Remove a symbol file added via the add-symbol-file command.\n\
3797Usage: remove-symbol-file FILENAME\n\
3798 remove-symbol-file -a ADDRESS\n\
3799The file to remove can be identified by its filename or by an address\n\
3800that lies within the boundaries of this symbol file in memory."),
3801 &cmdlist);
3802
1a966eab
AC
3803 c = add_cmd ("load", class_files, load_command, _("\
3804Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3805for access from GDB.\n\
8ca2f0b9 3806Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3807An optional load OFFSET may also be given as a literal address.\n\
3808When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3809on its own."), &cmdlist);
5ba2abeb 3810 set_cmd_completer (c, filename_completer);
c906108c 3811
c5aa993b 3812 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3813 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3814 "overlay ", 0, &cmdlist);
3815
3816 add_com_alias ("ovly", "overlay", class_alias, 1);
3817 add_com_alias ("ov", "overlay", class_alias, 1);
3818
c5aa993b 3819 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3820 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3821
c5aa993b 3822 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3823 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3824
c5aa993b 3825 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3826 _("List mappings of overlay sections."), &overlaylist);
c906108c 3827
c5aa993b 3828 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3829 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3830 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3831 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3832 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3833 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3834 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3835 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3836
3837 /* Filename extension to source language lookup table: */
26c41df3
AC
3838 add_setshow_string_noescape_cmd ("extension-language", class_files,
3839 &ext_args, _("\
3840Set mapping between filename extension and source language."), _("\
3841Show mapping between filename extension and source language."), _("\
3842Usage: set extension-language .foo bar"),
3843 set_ext_lang_command,
920d2a44 3844 show_ext_args,
26c41df3 3845 &setlist, &showlist);
c906108c 3846
c5aa993b 3847 add_info ("extensions", info_ext_lang_command,
1bedd215 3848 _("All filename extensions associated with a source language."));
917317f4 3849
525226b5
AC
3850 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3851 &debug_file_directory, _("\
24ddea62
JK
3852Set the directories where separate debug symbols are searched for."), _("\
3853Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3854Separate debug symbols are first searched for in the same\n\
3855directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3856and lastly at the path of the directory of the binary with\n\
24ddea62 3857each global debug-file-directory component prepended."),
525226b5 3858 NULL,
920d2a44 3859 show_debug_file_directory,
525226b5 3860 &setlist, &showlist);
770e7fc7
DE
3861
3862 add_setshow_enum_cmd ("symbol-loading", no_class,
3863 print_symbol_loading_enums, &print_symbol_loading,
3864 _("\
3865Set printing of symbol loading messages."), _("\
3866Show printing of symbol loading messages."), _("\
3867off == turn all messages off\n\
3868brief == print messages for the executable,\n\
3869 and brief messages for shared libraries\n\
3870full == print messages for the executable,\n\
3871 and messages for each shared library."),
3872 NULL,
3873 NULL,
3874 &setprintlist, &showprintlist);
c4dcb155
SM
3875
3876 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3877 &separate_debug_file_debug, _("\
3878Set printing of separate debug info file search debug."), _("\
3879Show printing of separate debug info file search debug."), _("\
3880When on, GDB prints the searched locations while looking for separate debug \
3881info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3882
3883#if GDB_SELF_TEST
3884 selftests::register_test
3885 ("filename_language", selftests::filename_language::test_filename_language);
3886 selftests::register_test
3887 ("set_ext_lang_command",
3888 selftests::filename_language::test_set_ext_lang_command);
3889#endif
c906108c 3890}
This page took 2.997387 seconds and 4 git commands to generate.