gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
7b6bb8da 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c
SS
150
151/* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154#ifdef SYMBOL_RELOADING_DEFAULT
155int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156#else
157int symbol_reloading = 0;
158#endif
920d2a44
AC
159static void
160show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
3e43a32a
MS
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
920d2a44
AC
165 value);
166}
167
b7209cb4
FF
168/* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
c906108c 175 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 176 report all the functions that are actually present. */
c906108c
SS
177
178int auto_solib_add = 1;
c906108c 179\f
c5aa993b 180
c906108c
SS
181/* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 183 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 184 may be part of a larger string and we are only saving a substring. */
c906108c
SS
185
186char *
63ca651f 187obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 188{
52f0bd74 189 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
c378eb4e 192 inline memcpy? */
c906108c 193 {
aa1ee363
AC
194 const char *p1 = ptr;
195 char *p2 = p;
63ca651f 196 const char *end = ptr + size;
433759f7 197
c906108c
SS
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203}
204
3e43a32a
MS
205/* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
c906108c
SS
209
210char *
48cb83fd 211obconcat (struct obstack *obstackp, ...)
c906108c 212{
48cb83fd
JK
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
c906108c
SS
229}
230
0d14a781 231/* True if we are reading a symbol table. */
c906108c
SS
232
233int currently_reading_symtab = 0;
234
235static void
fba45db2 236decrement_reading_symtab (void *dummy)
c906108c
SS
237{
238 currently_reading_symtab--;
239}
240
ccefe4c4
TT
241/* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243struct cleanup *
244increment_reading_symtab (void)
c906108c 245{
ccefe4c4
TT
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
248}
249
5417f6dc
RM
250/* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
c906108c
SS
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259void
4efb68b1 260find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 261{
c5aa993b 262 asection **lowest = (asection **) obj;
c906108c 263
eb73e134 264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274}
275
a39a16c4
MM
276/* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278struct section_addr_info *
279alloc_section_addr_info (size_t num_sections)
280{
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291}
62557bbc
KB
292
293/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 294 an existing section table. */
62557bbc
KB
295
296extern struct section_addr_info *
0542c86d
PA
297build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
62557bbc
KB
299{
300 struct section_addr_info *sap;
0542c86d 301 const struct target_section *stp;
62557bbc
KB
302 int oidx;
303
a39a16c4 304 sap = alloc_section_addr_info (end - start);
62557bbc
KB
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
5417f6dc 308 if (bfd_get_section_flags (stp->bfd,
fbd35540 309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 310 && oidx < end - start)
62557bbc
KB
311 {
312 sap->other[oidx].addr = stp->addr;
5417f6dc 313 sap->other[oidx].name
fbd35540 314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321}
322
82ccf5a5 323/* Create a section_addr_info from section offsets in ABFD. */
089b4803 324
82ccf5a5
JK
325static struct section_addr_info *
326build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
327{
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
82ccf5a5
JK
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 335 {
82ccf5a5
JK
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
089b4803
TG
341 return sap;
342}
343
82ccf5a5
JK
344/* Create a section_addr_info from section offsets in OBJFILE. */
345
346struct section_addr_info *
347build_section_addr_info_from_objfile (const struct objfile *objfile)
348{
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363}
62557bbc 364
c378eb4e 365/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
366
367extern void
368free_section_addr_info (struct section_addr_info *sap)
369{
370 int idx;
371
a39a16c4 372 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 373 if (sap->other[idx].name)
b8c9b27d
KB
374 xfree (sap->other[idx].name);
375 xfree (sap);
62557bbc
KB
376}
377
378
e8289572
JB
379/* Initialize OBJFILE's sect_index_* members. */
380static void
381init_objfile_sect_indices (struct objfile *objfile)
c906108c 382{
e8289572 383 asection *sect;
c906108c 384 int i;
5417f6dc 385
b8fbeb18 386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 387 if (sect)
b8fbeb18
EZ
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 391 if (sect)
b8fbeb18
EZ
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 395 if (sect)
b8fbeb18
EZ
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 399 if (sect)
b8fbeb18
EZ
400 objfile->sect_index_rodata = sect->index;
401
bbcd32ad
FF
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
31d99776
DJ
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
bbcd32ad
FF
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
b8fbeb18 437}
c906108c 438
c1bd25fd
DJ
439/* The arguments to place_section. */
440
441struct place_section_arg
442{
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445};
446
447/* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
2c0b251b 450static void
c1bd25fd
DJ
451place_section (bfd *abfd, asection *sect, void *obj)
452{
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
3bd72c6f 456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 457
2711e456
DJ
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
467 start_addr = (arg->lowest + align - 1) & -align;
468
c1bd25fd
DJ
469 do {
470 asection *cur_sec;
c1bd25fd 471
c1bd25fd
DJ
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
c1bd25fd
DJ
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
2711e456
DJ
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
3bd72c6f 499 break;
c1bd25fd
DJ
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 509}
e8289572 510
75242ef4
JK
511/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
e8289572
JB
514
515void
75242ef4
JK
516relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
e8289572
JB
519{
520 int i;
521
75242ef4 522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 523
c378eb4e 524 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 526 {
75242ef4 527 struct other_sections *osp;
e8289572 528
75242ef4 529 osp = &addrs->other[i];
5488dafb 530 if (osp->sectindex == -1)
e8289572
JB
531 continue;
532
c378eb4e 533 /* Record all sections in offsets. */
e8289572 534 /* The section_offsets in the objfile are here filled in using
c378eb4e 535 the BFD index. */
75242ef4
JK
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538}
539
1276c759
JK
540/* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546static const char *
547addr_section_name (const char *s)
548{
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555}
556
82ccf5a5
JK
557/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560static int
561addrs_section_compar (const void *ap, const void *bp)
562{
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
1276c759 567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
568 if (retval)
569 return retval;
570
5488dafb 571 return a->sectindex - b->sectindex;
82ccf5a5
JK
572}
573
574/* Provide sorted array of pointers to sections of ADDRS. The array is
575 terminated by NULL. Caller is responsible to call xfree for it. */
576
577static struct other_sections **
578addrs_section_sort (struct section_addr_info *addrs)
579{
580 struct other_sections **array;
581 int i;
582
583 /* `+ 1' for the NULL terminator. */
584 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
585 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
586 array[i] = &addrs->other[i];
587 array[i] = NULL;
588
589 qsort (array, i, sizeof (*array), addrs_section_compar);
590
591 return array;
592}
593
75242ef4 594/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
595 also SECTINDEXes specific to ABFD there. This function can be used to
596 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
597
598void
599addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
600{
601 asection *lower_sect;
75242ef4
JK
602 CORE_ADDR lower_offset;
603 int i;
82ccf5a5
JK
604 struct cleanup *my_cleanup;
605 struct section_addr_info *abfd_addrs;
606 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
607 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
608
609 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
610 continguous sections. */
611 lower_sect = NULL;
612 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
613 if (lower_sect == NULL)
614 {
615 warning (_("no loadable sections found in added symbol-file %s"),
616 bfd_get_filename (abfd));
617 lower_offset = 0;
e8289572 618 }
75242ef4
JK
619 else
620 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
621
82ccf5a5
JK
622 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
623 in ABFD. Section names are not unique - there can be multiple sections of
624 the same name. Also the sections of the same name do not have to be
625 adjacent to each other. Some sections may be present only in one of the
626 files. Even sections present in both files do not have to be in the same
627 order.
628
629 Use stable sort by name for the sections in both files. Then linearly
630 scan both lists matching as most of the entries as possible. */
631
632 addrs_sorted = addrs_section_sort (addrs);
633 my_cleanup = make_cleanup (xfree, addrs_sorted);
634
635 abfd_addrs = build_section_addr_info_from_bfd (abfd);
636 make_cleanup_free_section_addr_info (abfd_addrs);
637 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
638 make_cleanup (xfree, abfd_addrs_sorted);
639
c378eb4e
MS
640 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
641 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
642
643 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
644 * addrs->num_sections);
645 make_cleanup (xfree, addrs_to_abfd_addrs);
646
647 while (*addrs_sorted)
648 {
1276c759 649 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
650
651 while (*abfd_addrs_sorted
1276c759
JK
652 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
653 sect_name) < 0)
82ccf5a5
JK
654 abfd_addrs_sorted++;
655
656 if (*abfd_addrs_sorted
1276c759
JK
657 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
658 sect_name) == 0)
82ccf5a5
JK
659 {
660 int index_in_addrs;
661
662 /* Make the found item directly addressable from ADDRS. */
663 index_in_addrs = *addrs_sorted - addrs->other;
664 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
665 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
666
667 /* Never use the same ABFD entry twice. */
668 abfd_addrs_sorted++;
669 }
670
671 addrs_sorted++;
672 }
673
75242ef4
JK
674 /* Calculate offsets for the loadable sections.
675 FIXME! Sections must be in order of increasing loadable section
676 so that contiguous sections can use the lower-offset!!!
677
678 Adjust offsets if the segments are not contiguous.
679 If the section is contiguous, its offset should be set to
680 the offset of the highest loadable section lower than it
681 (the loadable section directly below it in memory).
682 this_offset = lower_offset = lower_addr - lower_orig_addr */
683
684 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
685 {
82ccf5a5 686 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
687
688 if (sect)
75242ef4 689 {
c378eb4e 690 /* This is the index used by BFD. */
82ccf5a5 691 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
692
693 if (addrs->other[i].addr != 0)
75242ef4 694 {
82ccf5a5 695 addrs->other[i].addr -= sect->addr;
75242ef4 696 lower_offset = addrs->other[i].addr;
75242ef4
JK
697 }
698 else
672d9c23 699 addrs->other[i].addr = lower_offset;
75242ef4
JK
700 }
701 else
672d9c23 702 {
1276c759
JK
703 /* addr_section_name transformation is not used for SECT_NAME. */
704 const char *sect_name = addrs->other[i].name;
705
b0fcb67f
JK
706 /* This section does not exist in ABFD, which is normally
707 unexpected and we want to issue a warning.
708
4d9743af
JK
709 However, the ELF prelinker does create a few sections which are
710 marked in the main executable as loadable (they are loaded in
711 memory from the DYNAMIC segment) and yet are not present in
712 separate debug info files. This is fine, and should not cause
713 a warning. Shared libraries contain just the section
714 ".gnu.liblist" but it is not marked as loadable there. There is
715 no other way to identify them than by their name as the sections
1276c759
JK
716 created by prelink have no special flags.
717
718 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
719
720 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 721 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
722 || (strcmp (sect_name, ".bss") == 0
723 && i > 0
724 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
725 && addrs_to_abfd_addrs[i - 1] != NULL)
726 || (strcmp (sect_name, ".sbss") == 0
727 && i > 0
728 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
729 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
730 warning (_("section %s not found in %s"), sect_name,
731 bfd_get_filename (abfd));
732
672d9c23 733 addrs->other[i].addr = 0;
5488dafb 734 addrs->other[i].sectindex = -1;
672d9c23 735 }
75242ef4 736 }
82ccf5a5
JK
737
738 do_cleanups (my_cleanup);
75242ef4
JK
739}
740
741/* Parse the user's idea of an offset for dynamic linking, into our idea
742 of how to represent it for fast symbol reading. This is the default
743 version of the sym_fns.sym_offsets function for symbol readers that
744 don't need to do anything special. It allocates a section_offsets table
745 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
746
747void
748default_symfile_offsets (struct objfile *objfile,
749 struct section_addr_info *addrs)
750{
751 objfile->num_sections = bfd_count_sections (objfile->obfd);
752 objfile->section_offsets = (struct section_offsets *)
753 obstack_alloc (&objfile->objfile_obstack,
754 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
755 relative_addr_info_to_section_offsets (objfile->section_offsets,
756 objfile->num_sections, addrs);
e8289572 757
c1bd25fd
DJ
758 /* For relocatable files, all loadable sections will start at zero.
759 The zero is meaningless, so try to pick arbitrary addresses such
760 that no loadable sections overlap. This algorithm is quadratic,
761 but the number of sections in a single object file is generally
762 small. */
763 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
764 {
765 struct place_section_arg arg;
2711e456
DJ
766 bfd *abfd = objfile->obfd;
767 asection *cur_sec;
2711e456
DJ
768
769 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
770 /* We do not expect this to happen; just skip this step if the
771 relocatable file has a section with an assigned VMA. */
772 if (bfd_section_vma (abfd, cur_sec) != 0)
773 break;
774
775 if (cur_sec == NULL)
776 {
777 CORE_ADDR *offsets = objfile->section_offsets->offsets;
778
779 /* Pick non-overlapping offsets for sections the user did not
780 place explicitly. */
781 arg.offsets = objfile->section_offsets;
782 arg.lowest = 0;
783 bfd_map_over_sections (objfile->obfd, place_section, &arg);
784
785 /* Correctly filling in the section offsets is not quite
786 enough. Relocatable files have two properties that
787 (most) shared objects do not:
788
789 - Their debug information will contain relocations. Some
790 shared libraries do also, but many do not, so this can not
791 be assumed.
792
793 - If there are multiple code sections they will be loaded
794 at different relative addresses in memory than they are
795 in the objfile, since all sections in the file will start
796 at address zero.
797
798 Because GDB has very limited ability to map from an
799 address in debug info to the correct code section,
800 it relies on adding SECT_OFF_TEXT to things which might be
801 code. If we clear all the section offsets, and set the
802 section VMAs instead, then symfile_relocate_debug_section
803 will return meaningful debug information pointing at the
804 correct sections.
805
806 GDB has too many different data structures for section
807 addresses - a bfd, objfile, and so_list all have section
808 tables, as does exec_ops. Some of these could probably
809 be eliminated. */
810
811 for (cur_sec = abfd->sections; cur_sec != NULL;
812 cur_sec = cur_sec->next)
813 {
814 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
815 continue;
816
817 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
818 exec_set_section_address (bfd_get_filename (abfd),
819 cur_sec->index,
30510692 820 offsets[cur_sec->index]);
2711e456
DJ
821 offsets[cur_sec->index] = 0;
822 }
823 }
c1bd25fd
DJ
824 }
825
e8289572 826 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 827 .rodata sections. */
e8289572
JB
828 init_objfile_sect_indices (objfile);
829}
830
831
31d99776
DJ
832/* Divide the file into segments, which are individual relocatable units.
833 This is the default version of the sym_fns.sym_segments function for
834 symbol readers that do not have an explicit representation of segments.
835 It assumes that object files do not have segments, and fully linked
836 files have a single segment. */
837
838struct symfile_segment_data *
839default_symfile_segments (bfd *abfd)
840{
841 int num_sections, i;
842 asection *sect;
843 struct symfile_segment_data *data;
844 CORE_ADDR low, high;
845
846 /* Relocatable files contain enough information to position each
847 loadable section independently; they should not be relocated
848 in segments. */
849 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
850 return NULL;
851
852 /* Make sure there is at least one loadable section in the file. */
853 for (sect = abfd->sections; sect != NULL; sect = sect->next)
854 {
855 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
856 continue;
857
858 break;
859 }
860 if (sect == NULL)
861 return NULL;
862
863 low = bfd_get_section_vma (abfd, sect);
864 high = low + bfd_get_section_size (sect);
865
866 data = XZALLOC (struct symfile_segment_data);
867 data->num_segments = 1;
868 data->segment_bases = XCALLOC (1, CORE_ADDR);
869 data->segment_sizes = XCALLOC (1, CORE_ADDR);
870
871 num_sections = bfd_count_sections (abfd);
872 data->segment_info = XCALLOC (num_sections, int);
873
874 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
875 {
876 CORE_ADDR vma;
877
878 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
879 continue;
880
881 vma = bfd_get_section_vma (abfd, sect);
882 if (vma < low)
883 low = vma;
884 if (vma + bfd_get_section_size (sect) > high)
885 high = vma + bfd_get_section_size (sect);
886
887 data->segment_info[i] = 1;
888 }
889
890 data->segment_bases[0] = low;
891 data->segment_sizes[0] = high - low;
892
893 return data;
894}
895
c906108c
SS
896/* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
96baa820
JM
899 OBJFILE is where the symbols are to be read from.
900
7e8580c1
JB
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
96baa820 921
7eedccfa
PP
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
c906108c
SS
925
926void
7e8580c1
JB
927syms_from_objfile (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
7eedccfa 931 int add_flags)
c906108c 932{
a39a16c4 933 struct section_addr_info *local_addr = NULL;
c906108c 934 struct cleanup *old_chain;
7eedccfa 935 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 936
7e8580c1 937 gdb_assert (! (addrs && offsets));
2acceee2 938
c906108c 939 init_entry_point_info (objfile);
31d99776 940 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 941
75245b24 942 if (objfile->sf == NULL)
c378eb4e 943 return; /* No symbols. */
75245b24 944
c906108c
SS
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
74b7792f 947 old_chain = make_cleanup_free_objfile (objfile);
c906108c 948
a39a16c4
MM
949 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
950 list. We now establish the convention that an addr of zero means
c378eb4e 951 no load address was specified. */
a39a16c4
MM
952 if (! addrs && ! offsets)
953 {
5417f6dc 954 local_addr
a39a16c4
MM
955 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
956 make_cleanup (xfree, local_addr);
957 addrs = local_addr;
958 }
959
960 /* Now either addrs or offsets is non-zero. */
961
c5aa993b 962 if (mainline)
c906108c
SS
963 {
964 /* We will modify the main symbol table, make sure that all its users
c5aa993b 965 will be cleaned up if an error occurs during symbol reading. */
74b7792f 966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
adb7f338 973 gdb_assert (symfile_objfile == NULL);
c906108c
SS
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
c906108c 980
c5aa993b 981 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
53a5351d 986 and assume that <addr> is where that got loaded.
c906108c 987
53a5351d
JM
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
0d15807d 990 if (addrs && addrs->other[0].name)
75242ef4 991 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
c378eb4e 995 initial symbol reading for this file. */
c906108c 996
c5aa993b 997 (*objfile->sf->sym_init) (objfile);
7eedccfa 998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 999
7e8580c1
JB
1000 if (addrs)
1001 (*objfile->sf->sym_offsets) (objfile, addrs);
1002 else
1003 {
1004 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1005
1006 /* Just copy in the offset table directly as given to us. */
1007 objfile->num_sections = num_offsets;
1008 objfile->section_offsets
1009 = ((struct section_offsets *)
8b92e4d5 1010 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1011 memcpy (objfile->section_offsets, offsets, size);
1012
1013 init_objfile_sect_indices (objfile);
1014 }
c906108c 1015
f4352531 1016 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1017
b11896a5
TT
1018 if ((add_flags & SYMFILE_NO_READ) == 0)
1019 require_partial_symbols (objfile, 0);
1020
c906108c
SS
1021 /* Discard cleanups as symbol reading was successful. */
1022
1023 discard_cleanups (old_chain);
f7545552 1024 xfree (local_addr);
c906108c
SS
1025}
1026
1027/* Perform required actions after either reading in the initial
1028 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1029 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1030
c906108c 1031void
7eedccfa 1032new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1033{
c906108c 1034 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1035 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1036 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1037 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1038 {
1039 /* OK, make it the "real" symbol file. */
1040 symfile_objfile = objfile;
1041
c1e56572 1042 clear_symtab_users (add_flags);
c906108c 1043 }
7eedccfa 1044 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1045 {
69de3c6a 1046 breakpoint_re_set ();
c906108c
SS
1047 }
1048
1049 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1050 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1051}
1052
1053/* Process a symbol file, as either the main file or as a dynamically
1054 loaded file.
1055
5417f6dc
RM
1056 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1057 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1058
7eedccfa
PP
1059 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1060 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1061
1062 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1063 syms_from_objfile, above.
1064 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1065
63524580
JK
1066 PARENT is the original objfile if ABFD is a separate debug info file.
1067 Otherwise PARENT is NULL.
1068
c906108c 1069 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1070 Upon failure, jumps back to command level (never returns). */
7eedccfa 1071
7904e09f 1072static struct objfile *
7eedccfa
PP
1073symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1074 int add_flags,
7904e09f
JB
1075 struct section_addr_info *addrs,
1076 struct section_offsets *offsets,
1077 int num_offsets,
63524580 1078 int flags, struct objfile *parent)
c906108c
SS
1079{
1080 struct objfile *objfile;
a39a16c4 1081 struct cleanup *my_cleanups;
5417f6dc 1082 const char *name = bfd_get_filename (abfd);
7eedccfa 1083 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1084 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1085 const int should_print = ((from_tty || info_verbose)
1086 && (readnow_symbol_files
1087 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1088
9291a0cd 1089 if (readnow_symbol_files)
b11896a5
TT
1090 {
1091 flags |= OBJF_READNOW;
1092 add_flags &= ~SYMFILE_NO_READ;
1093 }
9291a0cd 1094
5417f6dc 1095 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1096
5417f6dc
RM
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
c906108c
SS
1099
1100 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1101 && mainline
c906108c 1102 && from_tty
9e2f0ad4 1103 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1104 error (_("Not confirmed."));
c906108c 1105
0838fb57 1106 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1107 discard_cleanups (my_cleanups);
c906108c 1108
63524580
JK
1109 if (parent)
1110 add_separate_debug_objfile (objfile, parent);
1111
78a4a9b9
AC
1112 /* We either created a new mapped symbol table, mapped an existing
1113 symbol table file which has not had initial symbol reading
c378eb4e 1114 performed, or need to read an unmapped symbol table. */
b11896a5 1115 if (should_print)
c906108c 1116 {
769d7dc4
AC
1117 if (deprecated_pre_add_symbol_hook)
1118 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1119 else
c906108c 1120 {
55333a84
DE
1121 printf_unfiltered (_("Reading symbols from %s..."), name);
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
c906108c 1124 }
c906108c 1125 }
78a4a9b9 1126 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1127 add_flags);
c906108c
SS
1128
1129 /* We now have at least a partial symbol table. Check to see if the
1130 user requested that all symbols be read on initial access via either
1131 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1132 all partial symbol tables for this objfile if so. */
c906108c 1133
9291a0cd 1134 if ((flags & OBJF_READNOW))
c906108c 1135 {
b11896a5 1136 if (should_print)
c906108c 1137 {
a3f17187 1138 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1139 wrap_here ("");
1140 gdb_flush (gdb_stdout);
1141 }
1142
ccefe4c4
TT
1143 if (objfile->sf)
1144 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1145 }
1146
b11896a5 1147 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1148 {
1149 wrap_here ("");
55333a84 1150 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1151 wrap_here ("");
1152 }
1153
b11896a5 1154 if (should_print)
c906108c 1155 {
769d7dc4
AC
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
c906108c 1158 else
55333a84 1159 printf_unfiltered (_("done.\n"));
c906108c
SS
1160 }
1161
481d0f41
JB
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1166
a39a16c4
MM
1167 do_cleanups (my_cleanups);
1168
109f874e 1169 if (objfile->sf == NULL)
8caee43b
PP
1170 {
1171 observer_notify_new_objfile (objfile);
c378eb4e 1172 return objfile; /* No symbols. */
8caee43b 1173 }
109f874e 1174
7eedccfa 1175 new_symfile_objfile (objfile, add_flags);
c906108c 1176
06d3b283 1177 observer_notify_new_objfile (objfile);
c906108c 1178
ce7d4522 1179 bfd_cache_close_all ();
c906108c
SS
1180 return (objfile);
1181}
1182
9cce227f
TG
1183/* Add BFD as a separate debug file for OBJFILE. */
1184
1185void
1186symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1187{
15d123c9 1188 struct objfile *new_objfile;
089b4803
TG
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1191
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1197
15d123c9 1198 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1199 (bfd, symfile_flags,
089b4803 1200 sap, NULL, 0,
9cce227f 1201 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1202 | OBJF_USERLOADED),
1203 objfile);
089b4803
TG
1204
1205 do_cleanups (my_cleanup);
9cce227f 1206}
7904e09f 1207
eb4556d7
JB
1208/* Process the symbol file ABFD, as either the main file or as a
1209 dynamically loaded file.
1210
1211 See symbol_file_add_with_addrs_or_offsets's comments for
1212 details. */
1213struct objfile *
7eedccfa 1214symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1215 struct section_addr_info *addrs,
63524580 1216 int flags, struct objfile *parent)
eb4556d7 1217{
7eedccfa 1218 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1219 flags, parent);
eb4556d7
JB
1220}
1221
1222
7904e09f
JB
1223/* Process a symbol file, as either the main file or as a dynamically
1224 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1225 for details. */
1226struct objfile *
7eedccfa
PP
1227symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1228 int flags)
7904e09f 1229{
7eedccfa 1230 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1231 flags, NULL);
7904e09f
JB
1232}
1233
1234
d7db6da9
FN
1235/* Call symbol_file_add() with default values and update whatever is
1236 affected by the loading of a new main().
1237 Used when the file is supplied in the gdb command line
1238 and by some targets with special loading requirements.
1239 The auxiliary function, symbol_file_add_main_1(), has the flags
1240 argument for the switches that can only be specified in the symbol_file
1241 command itself. */
5417f6dc 1242
1adeb98a
FN
1243void
1244symbol_file_add_main (char *args, int from_tty)
1245{
d7db6da9
FN
1246 symbol_file_add_main_1 (args, from_tty, 0);
1247}
1248
1249static void
1250symbol_file_add_main_1 (char *args, int from_tty, int flags)
1251{
7eedccfa
PP
1252 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1253 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1254
d7db6da9
FN
1255 /* Getting new symbols may change our opinion about
1256 what is frameless. */
1257 reinit_frame_cache ();
1258
1259 set_initial_language ();
1adeb98a
FN
1260}
1261
1262void
1263symbol_file_clear (int from_tty)
1264{
1265 if ((have_full_symbols () || have_partial_symbols ())
1266 && from_tty
0430b0d6
AS
1267 && (symfile_objfile
1268 ? !query (_("Discard symbol table from `%s'? "),
1269 symfile_objfile->name)
1270 : !query (_("Discard symbol table? "))))
8a3fe4f8 1271 error (_("Not confirmed."));
1adeb98a 1272
0133421a
JK
1273 /* solib descriptors may have handles to objfiles. Wipe them before their
1274 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1275 no_shared_libraries (NULL, from_tty);
1276
0133421a
JK
1277 free_all_objfiles ();
1278
adb7f338 1279 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1280 if (from_tty)
1281 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1282}
1283
5b5d99cf
JB
1284static char *
1285get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1286{
1287 asection *sect;
1288 bfd_size_type debuglink_size;
1289 unsigned long crc32;
1290 char *contents;
1291 int crc_offset;
5417f6dc 1292
5b5d99cf
JB
1293 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1294
1295 if (sect == NULL)
1296 return NULL;
1297
1298 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1299
5b5d99cf
JB
1300 contents = xmalloc (debuglink_size);
1301 bfd_get_section_contents (objfile->obfd, sect, contents,
1302 (file_ptr)0, (bfd_size_type)debuglink_size);
1303
c378eb4e 1304 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1305 crc_offset = strlen (contents) + 1;
1306 crc_offset = (crc_offset + 3) & ~3;
1307
1308 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1309
5b5d99cf
JB
1310 *crc32_out = crc32;
1311 return contents;
1312}
1313
1314static int
287ccc17 1315separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1316 struct objfile *parent_objfile)
5b5d99cf
JB
1317{
1318 unsigned long file_crc = 0;
f1838a98 1319 bfd *abfd;
777ea8f1 1320 gdb_byte buffer[8*1024];
5b5d99cf 1321 int count;
32a0e547
JK
1322 struct stat parent_stat, abfd_stat;
1323
1324 /* Find a separate debug info file as if symbols would be present in
1325 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1326 section can contain just the basename of PARENT_OBJFILE without any
1327 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1328 the separate debug infos with the same basename can exist. */
32a0e547 1329
0ba1096a 1330 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1331 return 0;
5b5d99cf 1332
874f5765 1333 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1334
1335 if (!abfd)
5b5d99cf
JB
1336 return 0;
1337
0ba1096a 1338 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1339
1340 Some operating systems, e.g. Windows, do not provide a meaningful
1341 st_ino; they always set it to zero. (Windows does provide a
1342 meaningful st_dev.) Do not indicate a duplicate library in that
1343 case. While there is no guarantee that a system that provides
1344 meaningful inode numbers will never set st_ino to zero, this is
1345 merely an optimization, so we do not need to worry about false
1346 negatives. */
1347
1348 if (bfd_stat (abfd, &abfd_stat) == 0
1349 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1350 && abfd_stat.st_dev == parent_stat.st_dev
1351 && abfd_stat.st_ino == parent_stat.st_ino
1352 && abfd_stat.st_ino != 0)
1353 {
1354 bfd_close (abfd);
1355 return 0;
1356 }
1357
f1838a98 1358 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1359 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1360
f1838a98 1361 bfd_close (abfd);
5b5d99cf 1362
287ccc17
JK
1363 if (crc != file_crc)
1364 {
1365 warning (_("the debug information found in \"%s\""
1366 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1367 name, parent_objfile->name);
287ccc17
JK
1368 return 0;
1369 }
1370
1371 return 1;
5b5d99cf
JB
1372}
1373
aa28a74e 1374char *debug_file_directory = NULL;
920d2a44
AC
1375static void
1376show_debug_file_directory (struct ui_file *file, int from_tty,
1377 struct cmd_list_element *c, const char *value)
1378{
3e43a32a
MS
1379 fprintf_filtered (file,
1380 _("The directory where separate debug "
1381 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1382 value);
1383}
5b5d99cf
JB
1384
1385#if ! defined (DEBUG_SUBDIRECTORY)
1386#define DEBUG_SUBDIRECTORY ".debug"
1387#endif
1388
9cce227f
TG
1389char *
1390find_separate_debug_file_by_debuglink (struct objfile *objfile)
1391{
952a6d41 1392 char *basename, *debugdir;
9cce227f
TG
1393 char *dir = NULL;
1394 char *debugfile = NULL;
1395 char *canon_name = NULL;
9cce227f
TG
1396 unsigned long crc32;
1397 int i;
5b5d99cf
JB
1398
1399 basename = get_debug_link_info (objfile, &crc32);
1400
1401 if (basename == NULL)
287ccc17
JK
1402 /* There's no separate debug info, hence there's no way we could
1403 load it => no warning. */
25522fae 1404 goto cleanup_return_debugfile;
5417f6dc 1405
5b5d99cf
JB
1406 dir = xstrdup (objfile->name);
1407
fe36c4f4 1408 /* Strip off the final filename part, leaving the directory name,
569b05a5 1409 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1410 for (i = strlen(dir) - 1; i >= 0; i--)
1411 {
1412 if (IS_DIR_SEPARATOR (dir[i]))
1413 break;
1414 }
569b05a5 1415 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1416 dir[i+1] = '\0';
5417f6dc 1417
c378eb4e 1418 /* Set I to max (strlen (canon_name), strlen (dir)). */
1ffa32ee
JK
1419 canon_name = lrealpath (dir);
1420 i = strlen (dir);
1421 if (canon_name && strlen (canon_name) > i)
1422 i = strlen (canon_name);
1423
25522fae
JK
1424 debugfile = xmalloc (strlen (debug_file_directory) + 1
1425 + i
1426 + strlen (DEBUG_SUBDIRECTORY)
1427 + strlen ("/")
1428 + strlen (basename)
1429 + 1);
5b5d99cf
JB
1430
1431 /* First try in the same directory as the original file. */
1432 strcpy (debugfile, dir);
1433 strcat (debugfile, basename);
1434
32a0e547 1435 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1436 goto cleanup_return_debugfile;
5417f6dc 1437
5b5d99cf
JB
1438 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1439 strcpy (debugfile, dir);
1440 strcat (debugfile, DEBUG_SUBDIRECTORY);
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
32a0e547 1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1445 goto cleanup_return_debugfile;
5417f6dc 1446
24ddea62
JK
1447 /* Then try in the global debugfile directories.
1448
1449 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1450 cause "/..." lookups. */
5417f6dc 1451
24ddea62
JK
1452 debugdir = debug_file_directory;
1453 do
aa28a74e 1454 {
24ddea62
JK
1455 char *debugdir_end;
1456
1457 while (*debugdir == DIRNAME_SEPARATOR)
1458 debugdir++;
1459
1460 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1461 if (debugdir_end == NULL)
1462 debugdir_end = &debugdir[strlen (debugdir)];
1463
1464 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1465 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1466 strcat (debugfile, "/");
24ddea62 1467 strcat (debugfile, dir);
aa28a74e
DJ
1468 strcat (debugfile, basename);
1469
32a0e547 1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1471 goto cleanup_return_debugfile;
24ddea62
JK
1472
1473 /* If the file is in the sysroot, try using its base path in the
1474 global debugfile directory. */
1475 if (canon_name
0ba1096a
KT
1476 && filename_ncmp (canon_name, gdb_sysroot,
1477 strlen (gdb_sysroot)) == 0
24ddea62
JK
1478 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1479 {
1480 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1481 debugfile[debugdir_end - debugdir] = 0;
1482 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, basename);
1485
32a0e547 1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1487 goto cleanup_return_debugfile;
1488 }
1489
1490 debugdir = debugdir_end;
aa28a74e 1491 }
24ddea62 1492 while (*debugdir != 0);
aa28a74e 1493
25522fae
JK
1494 xfree (debugfile);
1495 debugfile = NULL;
aa28a74e 1496
25522fae
JK
1497cleanup_return_debugfile:
1498 xfree (canon_name);
5b5d99cf
JB
1499 xfree (basename);
1500 xfree (dir);
25522fae 1501 return debugfile;
5b5d99cf
JB
1502}
1503
1504
c906108c
SS
1505/* This is the symbol-file command. Read the file, analyze its
1506 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1507 the command is rather bizarre:
1508
1509 1. The function buildargv implements various quoting conventions
1510 which are undocumented and have little or nothing in common with
1511 the way things are quoted (or not quoted) elsewhere in GDB.
1512
1513 2. Options are used, which are not generally used in GDB (perhaps
1514 "set mapped on", "set readnow on" would be better)
1515
1516 3. The order of options matters, which is contrary to GNU
c906108c
SS
1517 conventions (because it is confusing and inconvenient). */
1518
1519void
fba45db2 1520symbol_file_command (char *args, int from_tty)
c906108c 1521{
c906108c
SS
1522 dont_repeat ();
1523
1524 if (args == NULL)
1525 {
1adeb98a 1526 symbol_file_clear (from_tty);
c906108c
SS
1527 }
1528 else
1529 {
d1a41061 1530 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1531 int flags = OBJF_USERLOADED;
1532 struct cleanup *cleanups;
1533 char *name = NULL;
1534
7a292a7a 1535 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1536 while (*argv != NULL)
1537 {
78a4a9b9
AC
1538 if (strcmp (*argv, "-readnow") == 0)
1539 flags |= OBJF_READNOW;
1540 else if (**argv == '-')
8a3fe4f8 1541 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1542 else
1543 {
cb2f3a29 1544 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1545 name = *argv;
78a4a9b9 1546 }
cb2f3a29 1547
c906108c
SS
1548 argv++;
1549 }
1550
1551 if (name == NULL)
cb2f3a29
MK
1552 error (_("no symbol file name was specified"));
1553
c906108c
SS
1554 do_cleanups (cleanups);
1555 }
1556}
1557
1558/* Set the initial language.
1559
cb2f3a29
MK
1560 FIXME: A better solution would be to record the language in the
1561 psymtab when reading partial symbols, and then use it (if known) to
1562 set the language. This would be a win for formats that encode the
1563 language in an easily discoverable place, such as DWARF. For
1564 stabs, we can jump through hoops looking for specially named
1565 symbols or try to intuit the language from the specific type of
1566 stabs we find, but we can't do that until later when we read in
1567 full symbols. */
c906108c 1568
8b60591b 1569void
fba45db2 1570set_initial_language (void)
c906108c 1571{
c5aa993b 1572 enum language lang = language_unknown;
c906108c 1573
01f8c46d
JK
1574 if (language_of_main != language_unknown)
1575 lang = language_of_main;
1576 else
1577 {
1578 const char *filename;
1579
1580 filename = find_main_filename ();
1581 if (filename != NULL)
1582 lang = deduce_language_from_filename (filename);
1583 }
cb2f3a29 1584
ccefe4c4
TT
1585 if (lang == language_unknown)
1586 {
1587 /* Make C the default language */
1588 lang = language_c;
c906108c 1589 }
ccefe4c4
TT
1590
1591 set_language (lang);
1592 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1593}
1594
874f5765
TG
1595/* If NAME is a remote name open the file using remote protocol, otherwise
1596 open it normally. */
1597
1598bfd *
1599bfd_open_maybe_remote (const char *name)
1600{
1601 if (remote_filename_p (name))
1602 return remote_bfd_open (name, gnutarget);
1603 else
1604 return bfd_openr (name, gnutarget);
1605}
1606
1607
cb2f3a29
MK
1608/* Open the file specified by NAME and hand it off to BFD for
1609 preliminary analysis. Return a newly initialized bfd *, which
1610 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1611 absolute). In case of trouble, error() is called. */
c906108c
SS
1612
1613bfd *
fba45db2 1614symfile_bfd_open (char *name)
c906108c
SS
1615{
1616 bfd *sym_bfd;
1617 int desc;
1618 char *absolute_name;
1619
f1838a98
UW
1620 if (remote_filename_p (name))
1621 {
1622 name = xstrdup (name);
1623 sym_bfd = remote_bfd_open (name, gnutarget);
1624 if (!sym_bfd)
1625 {
1626 make_cleanup (xfree, name);
1627 error (_("`%s': can't open to read symbols: %s."), name,
1628 bfd_errmsg (bfd_get_error ()));
1629 }
1630
1631 if (!bfd_check_format (sym_bfd, bfd_object))
1632 {
1633 bfd_close (sym_bfd);
1634 make_cleanup (xfree, name);
1635 error (_("`%s': can't read symbols: %s."), name,
1636 bfd_errmsg (bfd_get_error ()));
1637 }
1638
1639 return sym_bfd;
1640 }
1641
cb2f3a29 1642 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1643
1644 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1645 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1646 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1647#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1648 if (desc < 0)
1649 {
1650 char *exename = alloca (strlen (name) + 5);
433759f7 1651
c906108c 1652 strcat (strcpy (exename, name), ".exe");
014d698b 1653 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1654 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1655 }
1656#endif
1657 if (desc < 0)
1658 {
b8c9b27d 1659 make_cleanup (xfree, name);
c906108c
SS
1660 perror_with_name (name);
1661 }
cb2f3a29
MK
1662
1663 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
c378eb4e 1664 bfd. It'll be freed in free_objfile(). */
cb2f3a29
MK
1665 xfree (name);
1666 name = absolute_name;
c906108c 1667
9f76c2cd 1668 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1669 if (!sym_bfd)
1670 {
1671 close (desc);
b8c9b27d 1672 make_cleanup (xfree, name);
f1838a98 1673 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1674 bfd_errmsg (bfd_get_error ()));
1675 }
549c1eea 1676 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1677
1678 if (!bfd_check_format (sym_bfd, bfd_object))
1679 {
cb2f3a29
MK
1680 /* FIXME: should be checking for errors from bfd_close (for one
1681 thing, on error it does not free all the storage associated
1682 with the bfd). */
1683 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1684 make_cleanup (xfree, name);
f1838a98 1685 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1686 bfd_errmsg (bfd_get_error ()));
1687 }
cb2f3a29 1688
4f6f9936
JK
1689 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1690 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1691
cb2f3a29 1692 return sym_bfd;
c906108c
SS
1693}
1694
cb2f3a29
MK
1695/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1696 the section was not found. */
1697
0e931cf0
JB
1698int
1699get_section_index (struct objfile *objfile, char *section_name)
1700{
1701 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1702
0e931cf0
JB
1703 if (sect)
1704 return sect->index;
1705 else
1706 return -1;
1707}
1708
cb2f3a29
MK
1709/* Link SF into the global symtab_fns list. Called on startup by the
1710 _initialize routine in each object file format reader, to register
b021a221 1711 information about each format the reader is prepared to handle. */
c906108c
SS
1712
1713void
00b5771c 1714add_symtab_fns (const struct sym_fns *sf)
c906108c 1715{
00b5771c 1716 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1717}
1718
cb2f3a29
MK
1719/* Initialize OBJFILE to read symbols from its associated BFD. It
1720 either returns or calls error(). The result is an initialized
1721 struct sym_fns in the objfile structure, that contains cached
1722 information about the symbol file. */
c906108c 1723
00b5771c 1724static const struct sym_fns *
31d99776 1725find_sym_fns (bfd *abfd)
c906108c 1726{
00b5771c 1727 const struct sym_fns *sf;
31d99776 1728 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1729 int i;
c906108c 1730
75245b24
MS
1731 if (our_flavour == bfd_target_srec_flavour
1732 || our_flavour == bfd_target_ihex_flavour
1733 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1734 return NULL; /* No symbols. */
75245b24 1735
00b5771c 1736 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1737 if (our_flavour == sf->sym_flavour)
1738 return sf;
cb2f3a29 1739
8a3fe4f8 1740 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1741 bfd_get_target (abfd));
c906108c
SS
1742}
1743\f
cb2f3a29 1744
c906108c
SS
1745/* This function runs the load command of our current target. */
1746
1747static void
fba45db2 1748load_command (char *arg, int from_tty)
c906108c 1749{
e5cc9f32
JB
1750 dont_repeat ();
1751
4487aabf
PA
1752 /* The user might be reloading because the binary has changed. Take
1753 this opportunity to check. */
1754 reopen_exec_file ();
1755 reread_symbols ();
1756
c906108c 1757 if (arg == NULL)
1986bccd
AS
1758 {
1759 char *parg;
1760 int count = 0;
1761
1762 parg = arg = get_exec_file (1);
1763
1764 /* Count how many \ " ' tab space there are in the name. */
1765 while ((parg = strpbrk (parg, "\\\"'\t ")))
1766 {
1767 parg++;
1768 count++;
1769 }
1770
1771 if (count)
1772 {
1773 /* We need to quote this string so buildargv can pull it apart. */
1774 char *temp = xmalloc (strlen (arg) + count + 1 );
1775 char *ptemp = temp;
1776 char *prev;
1777
1778 make_cleanup (xfree, temp);
1779
1780 prev = parg = arg;
1781 while ((parg = strpbrk (parg, "\\\"'\t ")))
1782 {
1783 strncpy (ptemp, prev, parg - prev);
1784 ptemp += parg - prev;
1785 prev = parg++;
1786 *ptemp++ = '\\';
1787 }
1788 strcpy (ptemp, prev);
1789
1790 arg = temp;
1791 }
1792 }
1793
c906108c 1794 target_load (arg, from_tty);
2889e661
JB
1795
1796 /* After re-loading the executable, we don't really know which
1797 overlays are mapped any more. */
1798 overlay_cache_invalid = 1;
c906108c
SS
1799}
1800
1801/* This version of "load" should be usable for any target. Currently
1802 it is just used for remote targets, not inftarg.c or core files,
1803 on the theory that only in that case is it useful.
1804
1805 Avoiding xmodem and the like seems like a win (a) because we don't have
1806 to worry about finding it, and (b) On VMS, fork() is very slow and so
1807 we don't want to run a subprocess. On the other hand, I'm not sure how
1808 performance compares. */
917317f4 1809
917317f4
JM
1810static int validate_download = 0;
1811
e4f9b4d5
MS
1812/* Callback service function for generic_load (bfd_map_over_sections). */
1813
1814static void
1815add_section_size_callback (bfd *abfd, asection *asec, void *data)
1816{
1817 bfd_size_type *sum = data;
1818
2c500098 1819 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1820}
1821
1822/* Opaque data for load_section_callback. */
1823struct load_section_data {
1824 unsigned long load_offset;
a76d924d
DJ
1825 struct load_progress_data *progress_data;
1826 VEC(memory_write_request_s) *requests;
1827};
1828
1829/* Opaque data for load_progress. */
1830struct load_progress_data {
1831 /* Cumulative data. */
e4f9b4d5
MS
1832 unsigned long write_count;
1833 unsigned long data_count;
1834 bfd_size_type total_size;
a76d924d
DJ
1835};
1836
1837/* Opaque data for load_progress for a single section. */
1838struct load_progress_section_data {
1839 struct load_progress_data *cumulative;
cf7a04e8 1840
a76d924d 1841 /* Per-section data. */
cf7a04e8
DJ
1842 const char *section_name;
1843 ULONGEST section_sent;
1844 ULONGEST section_size;
1845 CORE_ADDR lma;
1846 gdb_byte *buffer;
e4f9b4d5
MS
1847};
1848
a76d924d 1849/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1850
1851static void
1852load_progress (ULONGEST bytes, void *untyped_arg)
1853{
a76d924d
DJ
1854 struct load_progress_section_data *args = untyped_arg;
1855 struct load_progress_data *totals;
1856
1857 if (args == NULL)
1858 /* Writing padding data. No easy way to get at the cumulative
1859 stats, so just ignore this. */
1860 return;
1861
1862 totals = args->cumulative;
1863
1864 if (bytes == 0 && args->section_sent == 0)
1865 {
1866 /* The write is just starting. Let the user know we've started
1867 this section. */
79a45e25 1868 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1869 args->section_name, hex_string (args->section_size),
1870 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1871 return;
1872 }
cf7a04e8
DJ
1873
1874 if (validate_download)
1875 {
1876 /* Broken memories and broken monitors manifest themselves here
1877 when bring new computers to life. This doubles already slow
1878 downloads. */
1879 /* NOTE: cagney/1999-10-18: A more efficient implementation
1880 might add a verify_memory() method to the target vector and
1881 then use that. remote.c could implement that method using
1882 the ``qCRC'' packet. */
1883 gdb_byte *check = xmalloc (bytes);
1884 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1885
1886 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1887 error (_("Download verify read failed at %s"),
1888 paddress (target_gdbarch, args->lma));
cf7a04e8 1889 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1890 error (_("Download verify compare failed at %s"),
1891 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1892 do_cleanups (verify_cleanups);
1893 }
a76d924d 1894 totals->data_count += bytes;
cf7a04e8
DJ
1895 args->lma += bytes;
1896 args->buffer += bytes;
a76d924d 1897 totals->write_count += 1;
cf7a04e8
DJ
1898 args->section_sent += bytes;
1899 if (quit_flag
1900 || (deprecated_ui_load_progress_hook != NULL
1901 && deprecated_ui_load_progress_hook (args->section_name,
1902 args->section_sent)))
1903 error (_("Canceled the download"));
1904
1905 if (deprecated_show_load_progress != NULL)
1906 deprecated_show_load_progress (args->section_name,
1907 args->section_sent,
1908 args->section_size,
a76d924d
DJ
1909 totals->data_count,
1910 totals->total_size);
cf7a04e8
DJ
1911}
1912
e4f9b4d5
MS
1913/* Callback service function for generic_load (bfd_map_over_sections). */
1914
1915static void
1916load_section_callback (bfd *abfd, asection *asec, void *data)
1917{
a76d924d 1918 struct memory_write_request *new_request;
e4f9b4d5 1919 struct load_section_data *args = data;
a76d924d 1920 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1921 bfd_size_type size = bfd_get_section_size (asec);
1922 gdb_byte *buffer;
cf7a04e8 1923 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1924
cf7a04e8
DJ
1925 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1926 return;
e4f9b4d5 1927
cf7a04e8
DJ
1928 if (size == 0)
1929 return;
e4f9b4d5 1930
a76d924d
DJ
1931 new_request = VEC_safe_push (memory_write_request_s,
1932 args->requests, NULL);
1933 memset (new_request, 0, sizeof (struct memory_write_request));
1934 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1935 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1936 new_request->end = new_request->begin + size; /* FIXME Should size
1937 be in instead? */
a76d924d
DJ
1938 new_request->data = xmalloc (size);
1939 new_request->baton = section_data;
cf7a04e8 1940
a76d924d 1941 buffer = new_request->data;
cf7a04e8 1942
a76d924d
DJ
1943 section_data->cumulative = args->progress_data;
1944 section_data->section_name = sect_name;
1945 section_data->section_size = size;
1946 section_data->lma = new_request->begin;
1947 section_data->buffer = buffer;
cf7a04e8
DJ
1948
1949 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1950}
1951
1952/* Clean up an entire memory request vector, including load
1953 data and progress records. */
cf7a04e8 1954
a76d924d
DJ
1955static void
1956clear_memory_write_data (void *arg)
1957{
1958 VEC(memory_write_request_s) **vec_p = arg;
1959 VEC(memory_write_request_s) *vec = *vec_p;
1960 int i;
1961 struct memory_write_request *mr;
cf7a04e8 1962
a76d924d
DJ
1963 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1964 {
1965 xfree (mr->data);
1966 xfree (mr->baton);
1967 }
1968 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1969}
1970
c906108c 1971void
917317f4 1972generic_load (char *args, int from_tty)
c906108c 1973{
c906108c 1974 bfd *loadfile_bfd;
2b71414d 1975 struct timeval start_time, end_time;
917317f4 1976 char *filename;
1986bccd 1977 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1978 struct load_section_data cbdata;
a76d924d 1979 struct load_progress_data total_progress;
79a45e25 1980 struct ui_out *uiout = current_uiout;
a76d924d 1981
e4f9b4d5 1982 CORE_ADDR entry;
1986bccd 1983 char **argv;
e4f9b4d5 1984
a76d924d
DJ
1985 memset (&cbdata, 0, sizeof (cbdata));
1986 memset (&total_progress, 0, sizeof (total_progress));
1987 cbdata.progress_data = &total_progress;
1988
1989 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1990
d1a41061
PP
1991 if (args == NULL)
1992 error_no_arg (_("file to load"));
1986bccd 1993
d1a41061 1994 argv = gdb_buildargv (args);
1986bccd
AS
1995 make_cleanup_freeargv (argv);
1996
1997 filename = tilde_expand (argv[0]);
1998 make_cleanup (xfree, filename);
1999
2000 if (argv[1] != NULL)
917317f4
JM
2001 {
2002 char *endptr;
ba5f2f8a 2003
1986bccd
AS
2004 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2005
2006 /* If the last word was not a valid number then
2007 treat it as a file name with spaces in. */
2008 if (argv[1] == endptr)
2009 error (_("Invalid download offset:%s."), argv[1]);
2010
2011 if (argv[2] != NULL)
2012 error (_("Too many parameters."));
917317f4 2013 }
c906108c 2014
c378eb4e 2015 /* Open the file for loading. */
c906108c
SS
2016 loadfile_bfd = bfd_openr (filename, gnutarget);
2017 if (loadfile_bfd == NULL)
2018 {
2019 perror_with_name (filename);
2020 return;
2021 }
917317f4 2022
c906108c
SS
2023 /* FIXME: should be checking for errors from bfd_close (for one thing,
2024 on error it does not free all the storage associated with the
2025 bfd). */
5c65bbb6 2026 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2027
c5aa993b 2028 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2029 {
8a3fe4f8 2030 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2031 bfd_errmsg (bfd_get_error ()));
2032 }
c5aa993b 2033
5417f6dc 2034 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2035 (void *) &total_progress.total_size);
2036
2037 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2038
2b71414d 2039 gettimeofday (&start_time, NULL);
c906108c 2040
a76d924d
DJ
2041 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2042 load_progress) != 0)
2043 error (_("Load failed"));
c906108c 2044
2b71414d 2045 gettimeofday (&end_time, NULL);
ba5f2f8a 2046
e4f9b4d5 2047 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2048 ui_out_text (uiout, "Start address ");
5af949e3 2049 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2050 ui_out_text (uiout, ", load size ");
a76d924d 2051 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2052 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2053 /* We were doing this in remote-mips.c, I suspect it is right
2054 for other targets too. */
fb14de7b 2055 regcache_write_pc (get_current_regcache (), entry);
c906108c 2056
38963c97
DJ
2057 /* Reset breakpoints, now that we have changed the load image. For
2058 instance, breakpoints may have been set (or reset, by
2059 post_create_inferior) while connected to the target but before we
2060 loaded the program. In that case, the prologue analyzer could
2061 have read instructions from the target to find the right
2062 breakpoint locations. Loading has changed the contents of that
2063 memory. */
2064
2065 breakpoint_re_set ();
2066
7ca9f392
AC
2067 /* FIXME: are we supposed to call symbol_file_add or not? According
2068 to a comment from remote-mips.c (where a call to symbol_file_add
2069 was commented out), making the call confuses GDB if more than one
2070 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2071 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2072
a76d924d
DJ
2073 print_transfer_performance (gdb_stdout, total_progress.data_count,
2074 total_progress.write_count,
2075 &start_time, &end_time);
c906108c
SS
2076
2077 do_cleanups (old_cleanups);
2078}
2079
c378eb4e 2080/* Report how fast the transfer went. */
c906108c 2081
917317f4
JM
2082/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2083 replaced by print_transfer_performance (with a very different
c378eb4e 2084 function signature). */
917317f4 2085
c906108c 2086void
fba45db2
KB
2087report_transfer_performance (unsigned long data_count, time_t start_time,
2088 time_t end_time)
c906108c 2089{
2b71414d
DJ
2090 struct timeval start, end;
2091
2092 start.tv_sec = start_time;
2093 start.tv_usec = 0;
2094 end.tv_sec = end_time;
2095 end.tv_usec = 0;
2096
2097 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2098}
2099
2100void
d9fcf2fb 2101print_transfer_performance (struct ui_file *stream,
917317f4
JM
2102 unsigned long data_count,
2103 unsigned long write_count,
2b71414d
DJ
2104 const struct timeval *start_time,
2105 const struct timeval *end_time)
917317f4 2106{
9f43d28c 2107 ULONGEST time_count;
79a45e25 2108 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2109
2110 /* Compute the elapsed time in milliseconds, as a tradeoff between
2111 accuracy and overflow. */
2112 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2113 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2114
8b93c638
JM
2115 ui_out_text (uiout, "Transfer rate: ");
2116 if (time_count > 0)
2117 {
9f43d28c
DJ
2118 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2119
2120 if (ui_out_is_mi_like_p (uiout))
2121 {
2122 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2123 ui_out_text (uiout, " bits/sec");
2124 }
2125 else if (rate < 1024)
2126 {
2127 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2128 ui_out_text (uiout, " bytes/sec");
2129 }
2130 else
2131 {
2132 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2133 ui_out_text (uiout, " KB/sec");
2134 }
8b93c638
JM
2135 }
2136 else
2137 {
ba5f2f8a 2138 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2139 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2140 }
2141 if (write_count > 0)
2142 {
2143 ui_out_text (uiout, ", ");
ba5f2f8a 2144 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2145 ui_out_text (uiout, " bytes/write");
2146 }
2147 ui_out_text (uiout, ".\n");
c906108c
SS
2148}
2149
2150/* This function allows the addition of incrementally linked object files.
2151 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2152/* Note: ezannoni 2000-04-13 This function/command used to have a
2153 special case syntax for the rombug target (Rombug is the boot
2154 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2155 rombug case, the user doesn't need to supply a text address,
2156 instead a call to target_link() (in target.c) would supply the
c378eb4e 2157 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2158
c906108c 2159static void
fba45db2 2160add_symbol_file_command (char *args, int from_tty)
c906108c 2161{
5af949e3 2162 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2163 char *filename = NULL;
2df3850c 2164 int flags = OBJF_USERLOADED;
c906108c 2165 char *arg;
db162d44 2166 int section_index = 0;
2acceee2
JM
2167 int argcnt = 0;
2168 int sec_num = 0;
2169 int i;
db162d44
EZ
2170 int expecting_sec_name = 0;
2171 int expecting_sec_addr = 0;
5b96932b 2172 char **argv;
db162d44 2173
a39a16c4 2174 struct sect_opt
2acceee2 2175 {
2acceee2
JM
2176 char *name;
2177 char *value;
a39a16c4 2178 };
db162d44 2179
a39a16c4
MM
2180 struct section_addr_info *section_addrs;
2181 struct sect_opt *sect_opts = NULL;
2182 size_t num_sect_opts = 0;
3017564a 2183 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2184
a39a16c4 2185 num_sect_opts = 16;
5417f6dc 2186 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2187 * sizeof (struct sect_opt));
2188
c906108c
SS
2189 dont_repeat ();
2190
2191 if (args == NULL)
8a3fe4f8 2192 error (_("add-symbol-file takes a file name and an address"));
c906108c 2193
d1a41061 2194 argv = gdb_buildargv (args);
5b96932b 2195 make_cleanup_freeargv (argv);
db162d44 2196
5b96932b
AS
2197 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2198 {
c378eb4e 2199 /* Process the argument. */
db162d44 2200 if (argcnt == 0)
c906108c 2201 {
c378eb4e 2202 /* The first argument is the file name. */
db162d44 2203 filename = tilde_expand (arg);
3017564a 2204 make_cleanup (xfree, filename);
c906108c 2205 }
db162d44 2206 else
7a78ae4e
ND
2207 if (argcnt == 1)
2208 {
2209 /* The second argument is always the text address at which
c378eb4e 2210 to load the program. */
7a78ae4e
ND
2211 sect_opts[section_index].name = ".text";
2212 sect_opts[section_index].value = arg;
f414f22f 2213 if (++section_index >= num_sect_opts)
a39a16c4
MM
2214 {
2215 num_sect_opts *= 2;
5417f6dc 2216 sect_opts = ((struct sect_opt *)
a39a16c4 2217 xrealloc (sect_opts,
5417f6dc 2218 num_sect_opts
a39a16c4
MM
2219 * sizeof (struct sect_opt)));
2220 }
7a78ae4e
ND
2221 }
2222 else
2223 {
2224 /* It's an option (starting with '-') or it's an argument
c378eb4e 2225 to an option. */
7a78ae4e
ND
2226
2227 if (*arg == '-')
2228 {
78a4a9b9
AC
2229 if (strcmp (arg, "-readnow") == 0)
2230 flags |= OBJF_READNOW;
2231 else if (strcmp (arg, "-s") == 0)
2232 {
2233 expecting_sec_name = 1;
2234 expecting_sec_addr = 1;
2235 }
7a78ae4e
ND
2236 }
2237 else
2238 {
2239 if (expecting_sec_name)
db162d44 2240 {
7a78ae4e
ND
2241 sect_opts[section_index].name = arg;
2242 expecting_sec_name = 0;
db162d44
EZ
2243 }
2244 else
7a78ae4e
ND
2245 if (expecting_sec_addr)
2246 {
2247 sect_opts[section_index].value = arg;
2248 expecting_sec_addr = 0;
f414f22f 2249 if (++section_index >= num_sect_opts)
a39a16c4
MM
2250 {
2251 num_sect_opts *= 2;
5417f6dc 2252 sect_opts = ((struct sect_opt *)
a39a16c4 2253 xrealloc (sect_opts,
5417f6dc 2254 num_sect_opts
a39a16c4
MM
2255 * sizeof (struct sect_opt)));
2256 }
7a78ae4e
ND
2257 }
2258 else
3e43a32a 2259 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2260 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2261 }
2262 }
c906108c 2263 }
c906108c 2264
927890d0
JB
2265 /* This command takes at least two arguments. The first one is a
2266 filename, and the second is the address where this file has been
2267 loaded. Abort now if this address hasn't been provided by the
2268 user. */
2269 if (section_index < 1)
2270 error (_("The address where %s has been loaded is missing"), filename);
2271
c378eb4e 2272 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2273 a sect_addr_info structure to be passed around to other
2274 functions. We have to split this up into separate print
bb599908 2275 statements because hex_string returns a local static
c378eb4e 2276 string. */
5417f6dc 2277
a3f17187 2278 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2279 section_addrs = alloc_section_addr_info (section_index);
2280 make_cleanup (xfree, section_addrs);
db162d44 2281 for (i = 0; i < section_index; i++)
c906108c 2282 {
db162d44
EZ
2283 CORE_ADDR addr;
2284 char *val = sect_opts[i].value;
2285 char *sec = sect_opts[i].name;
5417f6dc 2286
ae822768 2287 addr = parse_and_eval_address (val);
db162d44 2288
db162d44 2289 /* Here we store the section offsets in the order they were
c378eb4e 2290 entered on the command line. */
a39a16c4
MM
2291 section_addrs->other[sec_num].name = sec;
2292 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2293 printf_unfiltered ("\t%s_addr = %s\n", sec,
2294 paddress (gdbarch, addr));
db162d44
EZ
2295 sec_num++;
2296
5417f6dc 2297 /* The object's sections are initialized when a
db162d44 2298 call is made to build_objfile_section_table (objfile).
5417f6dc 2299 This happens in reread_symbols.
db162d44
EZ
2300 At this point, we don't know what file type this is,
2301 so we can't determine what section names are valid. */
2acceee2 2302 }
db162d44 2303
2acceee2 2304 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2305 error (_("Not confirmed."));
c906108c 2306
7eedccfa
PP
2307 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2308 section_addrs, flags);
c906108c
SS
2309
2310 /* Getting new symbols may change our opinion about what is
2311 frameless. */
2312 reinit_frame_cache ();
db162d44 2313 do_cleanups (my_cleanups);
c906108c
SS
2314}
2315\f
70992597 2316
c906108c
SS
2317/* Re-read symbols if a symbol-file has changed. */
2318void
fba45db2 2319reread_symbols (void)
c906108c
SS
2320{
2321 struct objfile *objfile;
2322 long new_modtime;
2323 int reread_one = 0;
2324 struct stat new_statbuf;
2325 int res;
2326
2327 /* With the addition of shared libraries, this should be modified,
2328 the load time should be saved in the partial symbol tables, since
2329 different tables may come from different source files. FIXME.
2330 This routine should then walk down each partial symbol table
c378eb4e 2331 and see if the symbol table that it originates from has been changed. */
c906108c 2332
c5aa993b
JM
2333 for (objfile = object_files; objfile; objfile = objfile->next)
2334 {
9cce227f
TG
2335 /* solib-sunos.c creates one objfile with obfd. */
2336 if (objfile->obfd == NULL)
2337 continue;
2338
2339 /* Separate debug objfiles are handled in the main objfile. */
2340 if (objfile->separate_debug_objfile_backlink)
2341 continue;
2342
02aeec7b
JB
2343 /* If this object is from an archive (what you usually create with
2344 `ar', often called a `static library' on most systems, though
2345 a `shared library' on AIX is also an archive), then you should
2346 stat on the archive name, not member name. */
9cce227f
TG
2347 if (objfile->obfd->my_archive)
2348 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2349 else
9cce227f
TG
2350 res = stat (objfile->name, &new_statbuf);
2351 if (res != 0)
2352 {
c378eb4e 2353 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2354 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2355 objfile->name);
2356 continue;
2357 }
2358 new_modtime = new_statbuf.st_mtime;
2359 if (new_modtime != objfile->mtime)
2360 {
2361 struct cleanup *old_cleanups;
2362 struct section_offsets *offsets;
2363 int num_offsets;
2364 char *obfd_filename;
2365
2366 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2367 objfile->name);
2368
2369 /* There are various functions like symbol_file_add,
2370 symfile_bfd_open, syms_from_objfile, etc., which might
2371 appear to do what we want. But they have various other
2372 effects which we *don't* want. So we just do stuff
2373 ourselves. We don't worry about mapped files (for one thing,
2374 any mapped file will be out of date). */
2375
2376 /* If we get an error, blow away this objfile (not sure if
2377 that is the correct response for things like shared
2378 libraries). */
2379 old_cleanups = make_cleanup_free_objfile (objfile);
2380 /* We need to do this whenever any symbols go away. */
2381 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2382
0ba1096a
KT
2383 if (exec_bfd != NULL
2384 && filename_cmp (bfd_get_filename (objfile->obfd),
2385 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2386 {
2387 /* Reload EXEC_BFD without asking anything. */
2388
2389 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2390 }
2391
2392 /* Clean up any state BFD has sitting around. We don't need
2393 to close the descriptor but BFD lacks a way of closing the
2394 BFD without closing the descriptor. */
2395 obfd_filename = bfd_get_filename (objfile->obfd);
2396 if (!bfd_close (objfile->obfd))
2397 error (_("Can't close BFD for %s: %s"), objfile->name,
2398 bfd_errmsg (bfd_get_error ()));
874f5765 2399 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2400 if (objfile->obfd == NULL)
2401 error (_("Can't open %s to read symbols."), objfile->name);
2402 else
2403 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2404 /* bfd_openr sets cacheable to true, which is what we want. */
2405 if (!bfd_check_format (objfile->obfd, bfd_object))
2406 error (_("Can't read symbols from %s: %s."), objfile->name,
2407 bfd_errmsg (bfd_get_error ()));
2408
2409 /* Save the offsets, we will nuke them with the rest of the
2410 objfile_obstack. */
2411 num_offsets = objfile->num_sections;
2412 offsets = ((struct section_offsets *)
2413 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2414 memcpy (offsets, objfile->section_offsets,
2415 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2416
2417 /* Remove any references to this objfile in the global
2418 value lists. */
2419 preserve_values (objfile);
2420
2421 /* Nuke all the state that we will re-read. Much of the following
2422 code which sets things to NULL really is necessary to tell
2423 other parts of GDB that there is nothing currently there.
2424
2425 Try to keep the freeing order compatible with free_objfile. */
2426
2427 if (objfile->sf != NULL)
2428 {
2429 (*objfile->sf->sym_finish) (objfile);
2430 }
2431
2432 clear_objfile_data (objfile);
2433
15d123c9 2434 /* Free the separate debug objfiles. It will be
9cce227f 2435 automatically recreated by sym_read. */
15d123c9 2436 free_objfile_separate_debug (objfile);
9cce227f
TG
2437
2438 /* FIXME: Do we have to free a whole linked list, or is this
2439 enough? */
2440 if (objfile->global_psymbols.list)
2441 xfree (objfile->global_psymbols.list);
2442 memset (&objfile->global_psymbols, 0,
2443 sizeof (objfile->global_psymbols));
2444 if (objfile->static_psymbols.list)
2445 xfree (objfile->static_psymbols.list);
2446 memset (&objfile->static_psymbols, 0,
2447 sizeof (objfile->static_psymbols));
2448
c378eb4e 2449 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2450 psymbol_bcache_free (objfile->psymbol_cache);
2451 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2452 bcache_xfree (objfile->macro_cache);
cbd70537 2453 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2454 bcache_xfree (objfile->filename_cache);
cbd70537 2455 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2456 if (objfile->demangled_names_hash != NULL)
2457 {
2458 htab_delete (objfile->demangled_names_hash);
2459 objfile->demangled_names_hash = NULL;
2460 }
2461 obstack_free (&objfile->objfile_obstack, 0);
2462 objfile->sections = NULL;
2463 objfile->symtabs = NULL;
2464 objfile->psymtabs = NULL;
2465 objfile->psymtabs_addrmap = NULL;
2466 objfile->free_psymtabs = NULL;
34eaf542 2467 objfile->template_symbols = NULL;
9cce227f
TG
2468 objfile->msymbols = NULL;
2469 objfile->deprecated_sym_private = NULL;
2470 objfile->minimal_symbol_count = 0;
2471 memset (&objfile->msymbol_hash, 0,
2472 sizeof (objfile->msymbol_hash));
2473 memset (&objfile->msymbol_demangled_hash, 0,
2474 sizeof (objfile->msymbol_demangled_hash));
2475
9cce227f
TG
2476 /* obstack_init also initializes the obstack so it is
2477 empty. We could use obstack_specify_allocation but
2478 gdb_obstack.h specifies the alloc/dealloc
2479 functions. */
2480 obstack_init (&objfile->objfile_obstack);
2481 if (build_objfile_section_table (objfile))
2482 {
2483 error (_("Can't find the file sections in `%s': %s"),
2484 objfile->name, bfd_errmsg (bfd_get_error ()));
2485 }
2486 terminate_minimal_symbol_table (objfile);
2487
2488 /* We use the same section offsets as from last time. I'm not
2489 sure whether that is always correct for shared libraries. */
2490 objfile->section_offsets = (struct section_offsets *)
2491 obstack_alloc (&objfile->objfile_obstack,
2492 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2493 memcpy (objfile->section_offsets, offsets,
2494 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2495 objfile->num_sections = num_offsets;
2496
2497 /* What the hell is sym_new_init for, anyway? The concept of
2498 distinguishing between the main file and additional files
2499 in this way seems rather dubious. */
2500 if (objfile == symfile_objfile)
c906108c 2501 {
9cce227f 2502 (*objfile->sf->sym_new_init) (objfile);
c906108c 2503 }
9cce227f
TG
2504
2505 (*objfile->sf->sym_init) (objfile);
2506 clear_complaints (&symfile_complaints, 1, 1);
2507 /* Do not set flags as this is safe and we don't want to be
2508 verbose. */
2509 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2510 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2511 {
2512 objfile->flags &= ~OBJF_PSYMTABS_READ;
2513 require_partial_symbols (objfile, 0);
2514 }
2515
9cce227f 2516 if (!objfile_has_symbols (objfile))
c906108c 2517 {
9cce227f
TG
2518 wrap_here ("");
2519 printf_unfiltered (_("(no debugging symbols found)\n"));
2520 wrap_here ("");
c5aa993b 2521 }
9cce227f
TG
2522
2523 /* We're done reading the symbol file; finish off complaints. */
2524 clear_complaints (&symfile_complaints, 0, 1);
2525
2526 /* Getting new symbols may change our opinion about what is
2527 frameless. */
2528
2529 reinit_frame_cache ();
2530
2531 /* Discard cleanups as symbol reading was successful. */
2532 discard_cleanups (old_cleanups);
2533
2534 /* If the mtime has changed between the time we set new_modtime
2535 and now, we *want* this to be out of date, so don't call stat
2536 again now. */
2537 objfile->mtime = new_modtime;
2538 reread_one = 1;
2539 init_entry_point_info (objfile);
c906108c
SS
2540 }
2541 }
c906108c
SS
2542
2543 if (reread_one)
ea53e89f 2544 {
ff3536bc
UW
2545 /* Notify objfiles that we've modified objfile sections. */
2546 objfiles_changed ();
2547
c1e56572 2548 clear_symtab_users (0);
ea53e89f
JB
2549 /* At least one objfile has changed, so we can consider that
2550 the executable we're debugging has changed too. */
781b42b0 2551 observer_notify_executable_changed ();
ea53e89f 2552 }
c906108c 2553}
c906108c
SS
2554\f
2555
c5aa993b
JM
2556
2557typedef struct
2558{
2559 char *ext;
c906108c 2560 enum language lang;
c5aa993b
JM
2561}
2562filename_language;
c906108c 2563
c5aa993b 2564static filename_language *filename_language_table;
c906108c
SS
2565static int fl_table_size, fl_table_next;
2566
2567static void
fba45db2 2568add_filename_language (char *ext, enum language lang)
c906108c
SS
2569{
2570 if (fl_table_next >= fl_table_size)
2571 {
2572 fl_table_size += 10;
5417f6dc 2573 filename_language_table =
25bf3106
PM
2574 xrealloc (filename_language_table,
2575 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2576 }
2577
4fcf66da 2578 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2579 filename_language_table[fl_table_next].lang = lang;
2580 fl_table_next++;
2581}
2582
2583static char *ext_args;
920d2a44
AC
2584static void
2585show_ext_args (struct ui_file *file, int from_tty,
2586 struct cmd_list_element *c, const char *value)
2587{
3e43a32a
MS
2588 fprintf_filtered (file,
2589 _("Mapping between filename extension "
2590 "and source language is \"%s\".\n"),
920d2a44
AC
2591 value);
2592}
c906108c
SS
2593
2594static void
26c41df3 2595set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2596{
2597 int i;
2598 char *cp = ext_args;
2599 enum language lang;
2600
c378eb4e 2601 /* First arg is filename extension, starting with '.' */
c906108c 2602 if (*cp != '.')
8a3fe4f8 2603 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2604
2605 /* Find end of first arg. */
c5aa993b 2606 while (*cp && !isspace (*cp))
c906108c
SS
2607 cp++;
2608
2609 if (*cp == '\0')
3e43a32a
MS
2610 error (_("'%s': two arguments required -- "
2611 "filename extension and language"),
c906108c
SS
2612 ext_args);
2613
c378eb4e 2614 /* Null-terminate first arg. */
c5aa993b 2615 *cp++ = '\0';
c906108c
SS
2616
2617 /* Find beginning of second arg, which should be a source language. */
2618 while (*cp && isspace (*cp))
2619 cp++;
2620
2621 if (*cp == '\0')
3e43a32a
MS
2622 error (_("'%s': two arguments required -- "
2623 "filename extension and language"),
c906108c
SS
2624 ext_args);
2625
2626 /* Lookup the language from among those we know. */
2627 lang = language_enum (cp);
2628
2629 /* Now lookup the filename extension: do we already know it? */
2630 for (i = 0; i < fl_table_next; i++)
2631 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2632 break;
2633
2634 if (i >= fl_table_next)
2635 {
c378eb4e 2636 /* New file extension. */
c906108c
SS
2637 add_filename_language (ext_args, lang);
2638 }
2639 else
2640 {
c378eb4e 2641 /* Redefining a previously known filename extension. */
c906108c
SS
2642
2643 /* if (from_tty) */
2644 /* query ("Really make files of type %s '%s'?", */
2645 /* ext_args, language_str (lang)); */
2646
b8c9b27d 2647 xfree (filename_language_table[i].ext);
4fcf66da 2648 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2649 filename_language_table[i].lang = lang;
2650 }
2651}
2652
2653static void
fba45db2 2654info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2655{
2656 int i;
2657
a3f17187 2658 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2659 printf_filtered ("\n\n");
2660 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2661 printf_filtered ("\t%s\t- %s\n",
2662 filename_language_table[i].ext,
c906108c
SS
2663 language_str (filename_language_table[i].lang));
2664}
2665
2666static void
fba45db2 2667init_filename_language_table (void)
c906108c 2668{
c378eb4e 2669 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2670 {
2671 fl_table_size = 20;
2672 fl_table_next = 0;
c5aa993b 2673 filename_language_table =
c906108c 2674 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2675 add_filename_language (".c", language_c);
6aecb9c2 2676 add_filename_language (".d", language_d);
c5aa993b
JM
2677 add_filename_language (".C", language_cplus);
2678 add_filename_language (".cc", language_cplus);
2679 add_filename_language (".cp", language_cplus);
2680 add_filename_language (".cpp", language_cplus);
2681 add_filename_language (".cxx", language_cplus);
2682 add_filename_language (".c++", language_cplus);
2683 add_filename_language (".java", language_java);
c906108c 2684 add_filename_language (".class", language_java);
da2cf7e0 2685 add_filename_language (".m", language_objc);
c5aa993b
JM
2686 add_filename_language (".f", language_fortran);
2687 add_filename_language (".F", language_fortran);
fd5700c7
JK
2688 add_filename_language (".for", language_fortran);
2689 add_filename_language (".FOR", language_fortran);
2690 add_filename_language (".ftn", language_fortran);
2691 add_filename_language (".FTN", language_fortran);
2692 add_filename_language (".fpp", language_fortran);
2693 add_filename_language (".FPP", language_fortran);
2694 add_filename_language (".f90", language_fortran);
2695 add_filename_language (".F90", language_fortran);
2696 add_filename_language (".f95", language_fortran);
2697 add_filename_language (".F95", language_fortran);
2698 add_filename_language (".f03", language_fortran);
2699 add_filename_language (".F03", language_fortran);
2700 add_filename_language (".f08", language_fortran);
2701 add_filename_language (".F08", language_fortran);
c5aa993b 2702 add_filename_language (".s", language_asm);
aa707ed0 2703 add_filename_language (".sx", language_asm);
c5aa993b 2704 add_filename_language (".S", language_asm);
c6fd39cd
PM
2705 add_filename_language (".pas", language_pascal);
2706 add_filename_language (".p", language_pascal);
2707 add_filename_language (".pp", language_pascal);
963a6417
PH
2708 add_filename_language (".adb", language_ada);
2709 add_filename_language (".ads", language_ada);
2710 add_filename_language (".a", language_ada);
2711 add_filename_language (".ada", language_ada);
dde59185 2712 add_filename_language (".dg", language_ada);
c906108c
SS
2713 }
2714}
2715
2716enum language
dd786858 2717deduce_language_from_filename (const char *filename)
c906108c
SS
2718{
2719 int i;
2720 char *cp;
2721
2722 if (filename != NULL)
2723 if ((cp = strrchr (filename, '.')) != NULL)
2724 for (i = 0; i < fl_table_next; i++)
2725 if (strcmp (cp, filename_language_table[i].ext) == 0)
2726 return filename_language_table[i].lang;
2727
2728 return language_unknown;
2729}
2730\f
2731/* allocate_symtab:
2732
2733 Allocate and partly initialize a new symbol table. Return a pointer
2734 to it. error() if no space.
2735
2736 Caller must set these fields:
c5aa993b
JM
2737 LINETABLE(symtab)
2738 symtab->blockvector
2739 symtab->dirname
2740 symtab->free_code
2741 symtab->free_ptr
c906108c
SS
2742 */
2743
2744struct symtab *
72b9f47f 2745allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2746{
52f0bd74 2747 struct symtab *symtab;
c906108c
SS
2748
2749 symtab = (struct symtab *)
4a146b47 2750 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2751 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2752 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2753 objfile->filename_cache);
c5aa993b
JM
2754 symtab->fullname = NULL;
2755 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2756 symtab->debugformat = "unknown";
c906108c 2757
c378eb4e 2758 /* Hook it to the objfile it comes from. */
c906108c 2759
c5aa993b
JM
2760 symtab->objfile = objfile;
2761 symtab->next = objfile->symtabs;
2762 objfile->symtabs = symtab;
c906108c 2763
c906108c
SS
2764 return (symtab);
2765}
c906108c 2766\f
c5aa993b 2767
c906108c 2768/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2769 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2770
2771void
c1e56572 2772clear_symtab_users (int add_flags)
c906108c
SS
2773{
2774 /* Someday, we should do better than this, by only blowing away
2775 the things that really need to be blown. */
c0501be5
DJ
2776
2777 /* Clear the "current" symtab first, because it is no longer valid.
2778 breakpoint_re_set may try to access the current symtab. */
2779 clear_current_source_symtab_and_line ();
2780
c906108c 2781 clear_displays ();
c1e56572
JK
2782 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2783 breakpoint_re_set ();
6c95b8df 2784 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2785 clear_pc_function_cache ();
06d3b283 2786 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2787
2788 /* Clear globals which might have pointed into a removed objfile.
2789 FIXME: It's not clear which of these are supposed to persist
2790 between expressions and which ought to be reset each time. */
2791 expression_context_block = NULL;
2792 innermost_block = NULL;
8756216b
DP
2793
2794 /* Varobj may refer to old symbols, perform a cleanup. */
2795 varobj_invalidate ();
2796
c906108c
SS
2797}
2798
74b7792f
AC
2799static void
2800clear_symtab_users_cleanup (void *ignore)
2801{
c1e56572 2802 clear_symtab_users (0);
74b7792f 2803}
c906108c 2804\f
c906108c
SS
2805/* OVERLAYS:
2806 The following code implements an abstraction for debugging overlay sections.
2807
2808 The target model is as follows:
2809 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2810 same VMA, each with its own unique LMA (or load address).
c906108c 2811 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2812 sections, one by one, from the load address into the VMA address.
5417f6dc 2813 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2814 sections should be considered to be mapped from the VMA to the LMA.
2815 This information is used for symbol lookup, and memory read/write.
5417f6dc 2816 For instance, if a section has been mapped then its contents
c5aa993b 2817 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2818
2819 Two levels of debugger support for overlays are available. One is
2820 "manual", in which the debugger relies on the user to tell it which
2821 overlays are currently mapped. This level of support is
2822 implemented entirely in the core debugger, and the information about
2823 whether a section is mapped is kept in the objfile->obj_section table.
2824
2825 The second level of support is "automatic", and is only available if
2826 the target-specific code provides functionality to read the target's
2827 overlay mapping table, and translate its contents for the debugger
2828 (by updating the mapped state information in the obj_section tables).
2829
2830 The interface is as follows:
c5aa993b
JM
2831 User commands:
2832 overlay map <name> -- tell gdb to consider this section mapped
2833 overlay unmap <name> -- tell gdb to consider this section unmapped
2834 overlay list -- list the sections that GDB thinks are mapped
2835 overlay read-target -- get the target's state of what's mapped
2836 overlay off/manual/auto -- set overlay debugging state
2837 Functional interface:
2838 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2839 section, return that section.
5417f6dc 2840 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2841 the pc, either in its VMA or its LMA
714835d5 2842 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2843 section_is_overlay(sect): true if section's VMA != LMA
2844 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2845 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2846 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2847 overlay_mapped_address(...): map an address from section's LMA to VMA
2848 overlay_unmapped_address(...): map an address from section's VMA to LMA
2849 symbol_overlayed_address(...): Return a "current" address for symbol:
2850 either in VMA or LMA depending on whether
c378eb4e 2851 the symbol's section is currently mapped. */
c906108c
SS
2852
2853/* Overlay debugging state: */
2854
d874f1e2 2855enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2856int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2857
c906108c 2858/* Function: section_is_overlay (SECTION)
5417f6dc 2859 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2860 SECTION is loaded at an address different from where it will "run". */
2861
2862int
714835d5 2863section_is_overlay (struct obj_section *section)
c906108c 2864{
714835d5
UW
2865 if (overlay_debugging && section)
2866 {
2867 bfd *abfd = section->objfile->obfd;
2868 asection *bfd_section = section->the_bfd_section;
2869
2870 if (bfd_section_lma (abfd, bfd_section) != 0
2871 && bfd_section_lma (abfd, bfd_section)
2872 != bfd_section_vma (abfd, bfd_section))
2873 return 1;
2874 }
c906108c
SS
2875
2876 return 0;
2877}
2878
2879/* Function: overlay_invalidate_all (void)
2880 Invalidate the mapped state of all overlay sections (mark it as stale). */
2881
2882static void
fba45db2 2883overlay_invalidate_all (void)
c906108c 2884{
c5aa993b 2885 struct objfile *objfile;
c906108c
SS
2886 struct obj_section *sect;
2887
2888 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2889 if (section_is_overlay (sect))
2890 sect->ovly_mapped = -1;
c906108c
SS
2891}
2892
714835d5 2893/* Function: section_is_mapped (SECTION)
5417f6dc 2894 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2895
2896 Access to the ovly_mapped flag is restricted to this function, so
2897 that we can do automatic update. If the global flag
2898 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2899 overlay_invalidate_all. If the mapped state of the particular
2900 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2901
714835d5
UW
2902int
2903section_is_mapped (struct obj_section *osect)
c906108c 2904{
9216df95
UW
2905 struct gdbarch *gdbarch;
2906
714835d5 2907 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2908 return 0;
2909
c5aa993b 2910 switch (overlay_debugging)
c906108c
SS
2911 {
2912 default:
d874f1e2 2913 case ovly_off:
c5aa993b 2914 return 0; /* overlay debugging off */
d874f1e2 2915 case ovly_auto: /* overlay debugging automatic */
1c772458 2916 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2917 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2918 gdbarch = get_objfile_arch (osect->objfile);
2919 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2920 {
2921 if (overlay_cache_invalid)
2922 {
2923 overlay_invalidate_all ();
2924 overlay_cache_invalid = 0;
2925 }
2926 if (osect->ovly_mapped == -1)
9216df95 2927 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2928 }
2929 /* fall thru to manual case */
d874f1e2 2930 case ovly_on: /* overlay debugging manual */
c906108c
SS
2931 return osect->ovly_mapped == 1;
2932 }
2933}
2934
c906108c
SS
2935/* Function: pc_in_unmapped_range
2936 If PC falls into the lma range of SECTION, return true, else false. */
2937
2938CORE_ADDR
714835d5 2939pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2940{
714835d5
UW
2941 if (section_is_overlay (section))
2942 {
2943 bfd *abfd = section->objfile->obfd;
2944 asection *bfd_section = section->the_bfd_section;
fbd35540 2945
714835d5
UW
2946 /* We assume the LMA is relocated by the same offset as the VMA. */
2947 bfd_vma size = bfd_get_section_size (bfd_section);
2948 CORE_ADDR offset = obj_section_offset (section);
2949
2950 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2951 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2952 return 1;
2953 }
c906108c 2954
c906108c
SS
2955 return 0;
2956}
2957
2958/* Function: pc_in_mapped_range
2959 If PC falls into the vma range of SECTION, return true, else false. */
2960
2961CORE_ADDR
714835d5 2962pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2963{
714835d5
UW
2964 if (section_is_overlay (section))
2965 {
2966 if (obj_section_addr (section) <= pc
2967 && pc < obj_section_endaddr (section))
2968 return 1;
2969 }
c906108c 2970
c906108c
SS
2971 return 0;
2972}
2973
9ec8e6a0
JB
2974
2975/* Return true if the mapped ranges of sections A and B overlap, false
2976 otherwise. */
b9362cc7 2977static int
714835d5 2978sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2979{
714835d5
UW
2980 CORE_ADDR a_start = obj_section_addr (a);
2981 CORE_ADDR a_end = obj_section_endaddr (a);
2982 CORE_ADDR b_start = obj_section_addr (b);
2983 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2984
2985 return (a_start < b_end && b_start < a_end);
2986}
2987
c906108c
SS
2988/* Function: overlay_unmapped_address (PC, SECTION)
2989 Returns the address corresponding to PC in the unmapped (load) range.
2990 May be the same as PC. */
2991
2992CORE_ADDR
714835d5 2993overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2994{
714835d5
UW
2995 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2996 {
2997 bfd *abfd = section->objfile->obfd;
2998 asection *bfd_section = section->the_bfd_section;
fbd35540 2999
714835d5
UW
3000 return pc + bfd_section_lma (abfd, bfd_section)
3001 - bfd_section_vma (abfd, bfd_section);
3002 }
c906108c
SS
3003
3004 return pc;
3005}
3006
3007/* Function: overlay_mapped_address (PC, SECTION)
3008 Returns the address corresponding to PC in the mapped (runtime) range.
3009 May be the same as PC. */
3010
3011CORE_ADDR
714835d5 3012overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3013{
714835d5
UW
3014 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3015 {
3016 bfd *abfd = section->objfile->obfd;
3017 asection *bfd_section = section->the_bfd_section;
fbd35540 3018
714835d5
UW
3019 return pc + bfd_section_vma (abfd, bfd_section)
3020 - bfd_section_lma (abfd, bfd_section);
3021 }
c906108c
SS
3022
3023 return pc;
3024}
3025
3026
5417f6dc 3027/* Function: symbol_overlayed_address
c906108c
SS
3028 Return one of two addresses (relative to the VMA or to the LMA),
3029 depending on whether the section is mapped or not. */
3030
c5aa993b 3031CORE_ADDR
714835d5 3032symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3033{
3034 if (overlay_debugging)
3035 {
c378eb4e 3036 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3037 if (section == 0)
3038 return address;
c378eb4e
MS
3039 /* If the symbol's section is not an overlay, just return its
3040 address. */
c906108c
SS
3041 if (!section_is_overlay (section))
3042 return address;
c378eb4e 3043 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3044 if (section_is_mapped (section))
3045 return address;
3046 /*
3047 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3048 * then return its LOADED address rather than its vma address!!
3049 */
3050 return overlay_unmapped_address (address, section);
3051 }
3052 return address;
3053}
3054
5417f6dc 3055/* Function: find_pc_overlay (PC)
c906108c
SS
3056 Return the best-match overlay section for PC:
3057 If PC matches a mapped overlay section's VMA, return that section.
3058 Else if PC matches an unmapped section's VMA, return that section.
3059 Else if PC matches an unmapped section's LMA, return that section. */
3060
714835d5 3061struct obj_section *
fba45db2 3062find_pc_overlay (CORE_ADDR pc)
c906108c 3063{
c5aa993b 3064 struct objfile *objfile;
c906108c
SS
3065 struct obj_section *osect, *best_match = NULL;
3066
3067 if (overlay_debugging)
3068 ALL_OBJSECTIONS (objfile, osect)
714835d5 3069 if (section_is_overlay (osect))
c5aa993b 3070 {
714835d5 3071 if (pc_in_mapped_range (pc, osect))
c5aa993b 3072 {
714835d5
UW
3073 if (section_is_mapped (osect))
3074 return osect;
c5aa993b
JM
3075 else
3076 best_match = osect;
3077 }
714835d5 3078 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3079 best_match = osect;
3080 }
714835d5 3081 return best_match;
c906108c
SS
3082}
3083
3084/* Function: find_pc_mapped_section (PC)
5417f6dc 3085 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3086 currently marked as MAPPED, return that section. Else return NULL. */
3087
714835d5 3088struct obj_section *
fba45db2 3089find_pc_mapped_section (CORE_ADDR pc)
c906108c 3090{
c5aa993b 3091 struct objfile *objfile;
c906108c
SS
3092 struct obj_section *osect;
3093
3094 if (overlay_debugging)
3095 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3096 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3097 return osect;
c906108c
SS
3098
3099 return NULL;
3100}
3101
3102/* Function: list_overlays_command
c378eb4e 3103 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3104
3105void
fba45db2 3106list_overlays_command (char *args, int from_tty)
c906108c 3107{
c5aa993b
JM
3108 int nmapped = 0;
3109 struct objfile *objfile;
c906108c
SS
3110 struct obj_section *osect;
3111
3112 if (overlay_debugging)
3113 ALL_OBJSECTIONS (objfile, osect)
714835d5 3114 if (section_is_mapped (osect))
c5aa993b 3115 {
5af949e3 3116 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3117 const char *name;
3118 bfd_vma lma, vma;
3119 int size;
3120
3121 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3122 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3123 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3124 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3125
3126 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3127 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3128 puts_filtered (" - ");
5af949e3 3129 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3130 printf_filtered (", mapped at ");
5af949e3 3131 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3132 puts_filtered (" - ");
5af949e3 3133 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3134 puts_filtered ("\n");
3135
3136 nmapped++;
3137 }
c906108c 3138 if (nmapped == 0)
a3f17187 3139 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3140}
3141
3142/* Function: map_overlay_command
3143 Mark the named section as mapped (ie. residing at its VMA address). */
3144
3145void
fba45db2 3146map_overlay_command (char *args, int from_tty)
c906108c 3147{
c5aa993b
JM
3148 struct objfile *objfile, *objfile2;
3149 struct obj_section *sec, *sec2;
c906108c
SS
3150
3151 if (!overlay_debugging)
3e43a32a
MS
3152 error (_("Overlay debugging not enabled. Use "
3153 "either the 'overlay auto' or\n"
3154 "the 'overlay manual' command."));
c906108c
SS
3155
3156 if (args == 0 || *args == 0)
8a3fe4f8 3157 error (_("Argument required: name of an overlay section"));
c906108c 3158
c378eb4e 3159 /* First, find a section matching the user supplied argument. */
c906108c
SS
3160 ALL_OBJSECTIONS (objfile, sec)
3161 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3162 {
c378eb4e 3163 /* Now, check to see if the section is an overlay. */
714835d5 3164 if (!section_is_overlay (sec))
c5aa993b
JM
3165 continue; /* not an overlay section */
3166
c378eb4e 3167 /* Mark the overlay as "mapped". */
c5aa993b
JM
3168 sec->ovly_mapped = 1;
3169
3170 /* Next, make a pass and unmap any sections that are
3171 overlapped by this new section: */
3172 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3173 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3174 {
3175 if (info_verbose)
a3f17187 3176 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3177 bfd_section_name (objfile->obfd,
3178 sec2->the_bfd_section));
c378eb4e 3179 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3180 }
3181 return;
3182 }
8a3fe4f8 3183 error (_("No overlay section called %s"), args);
c906108c
SS
3184}
3185
3186/* Function: unmap_overlay_command
5417f6dc 3187 Mark the overlay section as unmapped
c906108c
SS
3188 (ie. resident in its LMA address range, rather than the VMA range). */
3189
3190void
fba45db2 3191unmap_overlay_command (char *args, int from_tty)
c906108c 3192{
c5aa993b 3193 struct objfile *objfile;
c906108c
SS
3194 struct obj_section *sec;
3195
3196 if (!overlay_debugging)
3e43a32a
MS
3197 error (_("Overlay debugging not enabled. "
3198 "Use either the 'overlay auto' or\n"
3199 "the 'overlay manual' command."));
c906108c
SS
3200
3201 if (args == 0 || *args == 0)
8a3fe4f8 3202 error (_("Argument required: name of an overlay section"));
c906108c 3203
c378eb4e 3204 /* First, find a section matching the user supplied argument. */
c906108c
SS
3205 ALL_OBJSECTIONS (objfile, sec)
3206 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3207 {
3208 if (!sec->ovly_mapped)
8a3fe4f8 3209 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3210 sec->ovly_mapped = 0;
3211 return;
3212 }
8a3fe4f8 3213 error (_("No overlay section called %s"), args);
c906108c
SS
3214}
3215
3216/* Function: overlay_auto_command
3217 A utility command to turn on overlay debugging.
c378eb4e 3218 Possibly this should be done via a set/show command. */
c906108c
SS
3219
3220static void
fba45db2 3221overlay_auto_command (char *args, int from_tty)
c906108c 3222{
d874f1e2 3223 overlay_debugging = ovly_auto;
1900040c 3224 enable_overlay_breakpoints ();
c906108c 3225 if (info_verbose)
a3f17187 3226 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3227}
3228
3229/* Function: overlay_manual_command
3230 A utility command to turn on overlay debugging.
c378eb4e 3231 Possibly this should be done via a set/show command. */
c906108c
SS
3232
3233static void
fba45db2 3234overlay_manual_command (char *args, int from_tty)
c906108c 3235{
d874f1e2 3236 overlay_debugging = ovly_on;
1900040c 3237 disable_overlay_breakpoints ();
c906108c 3238 if (info_verbose)
a3f17187 3239 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3240}
3241
3242/* Function: overlay_off_command
3243 A utility command to turn on overlay debugging.
c378eb4e 3244 Possibly this should be done via a set/show command. */
c906108c
SS
3245
3246static void
fba45db2 3247overlay_off_command (char *args, int from_tty)
c906108c 3248{
d874f1e2 3249 overlay_debugging = ovly_off;
1900040c 3250 disable_overlay_breakpoints ();
c906108c 3251 if (info_verbose)
a3f17187 3252 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3253}
3254
3255static void
fba45db2 3256overlay_load_command (char *args, int from_tty)
c906108c 3257{
e17c207e
UW
3258 struct gdbarch *gdbarch = get_current_arch ();
3259
3260 if (gdbarch_overlay_update_p (gdbarch))
3261 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3262 else
8a3fe4f8 3263 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3264}
3265
3266/* Function: overlay_command
c378eb4e 3267 A place-holder for a mis-typed command. */
c906108c 3268
c378eb4e 3269/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3270struct cmd_list_element *overlaylist;
3271
3272static void
fba45db2 3273overlay_command (char *args, int from_tty)
c906108c 3274{
c5aa993b 3275 printf_unfiltered
c906108c
SS
3276 ("\"overlay\" must be followed by the name of an overlay command.\n");
3277 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3278}
3279
3280
3281/* Target Overlays for the "Simplest" overlay manager:
3282
5417f6dc
RM
3283 This is GDB's default target overlay layer. It works with the
3284 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3285 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3286 so targets that use a different runtime overlay manager can
c906108c
SS
3287 substitute their own overlay_update function and take over the
3288 function pointer.
3289
3290 The overlay_update function pokes around in the target's data structures
3291 to see what overlays are mapped, and updates GDB's overlay mapping with
3292 this information.
3293
3294 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3295 unsigned _novlys; /# number of overlay sections #/
3296 unsigned _ovly_table[_novlys][4] = {
3297 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3298 {..., ..., ..., ...},
3299 }
3300 unsigned _novly_regions; /# number of overlay regions #/
3301 unsigned _ovly_region_table[_novly_regions][3] = {
3302 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3303 {..., ..., ...},
3304 }
c906108c
SS
3305 These functions will attempt to update GDB's mappedness state in the
3306 symbol section table, based on the target's mappedness state.
3307
3308 To do this, we keep a cached copy of the target's _ovly_table, and
3309 attempt to detect when the cached copy is invalidated. The main
3310 entry point is "simple_overlay_update(SECT), which looks up SECT in
3311 the cached table and re-reads only the entry for that section from
c378eb4e 3312 the target (whenever possible). */
c906108c
SS
3313
3314/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3315static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3316static unsigned cache_novlys = 0;
c906108c 3317static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3318enum ovly_index
3319 {
3320 VMA, SIZE, LMA, MAPPED
3321 };
c906108c 3322
c378eb4e 3323/* Throw away the cached copy of _ovly_table. */
c906108c 3324static void
fba45db2 3325simple_free_overlay_table (void)
c906108c
SS
3326{
3327 if (cache_ovly_table)
b8c9b27d 3328 xfree (cache_ovly_table);
c5aa993b 3329 cache_novlys = 0;
c906108c
SS
3330 cache_ovly_table = NULL;
3331 cache_ovly_table_base = 0;
3332}
3333
9216df95 3334/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3335 Convert to host order. int LEN is number of ints. */
c906108c 3336static void
9216df95 3337read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3338 int len, int size, enum bfd_endian byte_order)
c906108c 3339{
c378eb4e 3340 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3341 gdb_byte *buf = alloca (len * size);
c5aa993b 3342 int i;
c906108c 3343
9216df95 3344 read_memory (memaddr, buf, len * size);
c906108c 3345 for (i = 0; i < len; i++)
e17a4113 3346 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3347}
3348
3349/* Find and grab a copy of the target _ovly_table
c378eb4e 3350 (and _novlys, which is needed for the table's size). */
c5aa993b 3351static int
fba45db2 3352simple_read_overlay_table (void)
c906108c 3353{
0d43edd1 3354 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3355 struct gdbarch *gdbarch;
3356 int word_size;
e17a4113 3357 enum bfd_endian byte_order;
c906108c
SS
3358
3359 simple_free_overlay_table ();
9b27852e 3360 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3361 if (! novlys_msym)
c906108c 3362 {
8a3fe4f8 3363 error (_("Error reading inferior's overlay table: "
0d43edd1 3364 "couldn't find `_novlys' variable\n"
8a3fe4f8 3365 "in inferior. Use `overlay manual' mode."));
0d43edd1 3366 return 0;
c906108c 3367 }
0d43edd1 3368
9b27852e 3369 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3370 if (! ovly_table_msym)
3371 {
8a3fe4f8 3372 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3373 "`_ovly_table' array\n"
8a3fe4f8 3374 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3375 return 0;
3376 }
3377
9216df95
UW
3378 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3379 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3380 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3381
e17a4113
UW
3382 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3383 4, byte_order);
0d43edd1
JB
3384 cache_ovly_table
3385 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3386 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3387 read_target_long_array (cache_ovly_table_base,
777ea8f1 3388 (unsigned int *) cache_ovly_table,
e17a4113 3389 cache_novlys * 4, word_size, byte_order);
0d43edd1 3390
c5aa993b 3391 return 1; /* SUCCESS */
c906108c
SS
3392}
3393
5417f6dc 3394/* Function: simple_overlay_update_1
c906108c
SS
3395 A helper function for simple_overlay_update. Assuming a cached copy
3396 of _ovly_table exists, look through it to find an entry whose vma,
3397 lma and size match those of OSECT. Re-read the entry and make sure
3398 it still matches OSECT (else the table may no longer be valid).
3399 Set OSECT's mapped state to match the entry. Return: 1 for
3400 success, 0 for failure. */
3401
3402static int
fba45db2 3403simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3404{
3405 int i, size;
fbd35540
MS
3406 bfd *obfd = osect->objfile->obfd;
3407 asection *bsect = osect->the_bfd_section;
9216df95
UW
3408 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3409 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3410 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3411
2c500098 3412 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3413 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3414 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3415 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3416 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3417 {
9216df95
UW
3418 read_target_long_array (cache_ovly_table_base + i * word_size,
3419 (unsigned int *) cache_ovly_table[i],
e17a4113 3420 4, word_size, byte_order);
fbd35540
MS
3421 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3422 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3423 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3424 {
3425 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3426 return 1;
3427 }
c378eb4e 3428 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3429 return 0;
3430 }
3431 return 0;
3432}
3433
3434/* Function: simple_overlay_update
5417f6dc
RM
3435 If OSECT is NULL, then update all sections' mapped state
3436 (after re-reading the entire target _ovly_table).
3437 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3438 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3439 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3440 re-read the entire cache, and go ahead and update all sections. */
3441
1c772458 3442void
fba45db2 3443simple_overlay_update (struct obj_section *osect)
c906108c 3444{
c5aa993b 3445 struct objfile *objfile;
c906108c 3446
c378eb4e 3447 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3448 if (osect)
c378eb4e 3449 /* Have we got a cached copy of the target's overlay table? */
c906108c 3450 if (cache_ovly_table != NULL)
9cc89665
MS
3451 {
3452 /* Does its cached location match what's currently in the
3453 symtab? */
3454 struct minimal_symbol *minsym
3455 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3456
3457 if (minsym == NULL)
3458 error (_("Error reading inferior's overlay table: couldn't "
3459 "find `_ovly_table' array\n"
3460 "in inferior. Use `overlay manual' mode."));
3461
3462 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3463 /* Then go ahead and try to look up this single section in
3464 the cache. */
3465 if (simple_overlay_update_1 (osect))
3466 /* Found it! We're done. */
3467 return;
3468 }
c906108c
SS
3469
3470 /* Cached table no good: need to read the entire table anew.
3471 Or else we want all the sections, in which case it's actually
3472 more efficient to read the whole table in one block anyway. */
3473
0d43edd1
JB
3474 if (! simple_read_overlay_table ())
3475 return;
3476
c378eb4e 3477 /* Now may as well update all sections, even if only one was requested. */
c906108c 3478 ALL_OBJSECTIONS (objfile, osect)
714835d5 3479 if (section_is_overlay (osect))
c5aa993b
JM
3480 {
3481 int i, size;
fbd35540
MS
3482 bfd *obfd = osect->objfile->obfd;
3483 asection *bsect = osect->the_bfd_section;
c5aa993b 3484
2c500098 3485 size = bfd_get_section_size (bsect);
c5aa993b 3486 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3487 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3488 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3489 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3490 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3491 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3492 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3493 }
3494 }
c906108c
SS
3495}
3496
086df311
DJ
3497/* Set the output sections and output offsets for section SECTP in
3498 ABFD. The relocation code in BFD will read these offsets, so we
3499 need to be sure they're initialized. We map each section to itself,
3500 with no offset; this means that SECTP->vma will be honored. */
3501
3502static void
3503symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3504{
3505 sectp->output_section = sectp;
3506 sectp->output_offset = 0;
3507}
3508
ac8035ab
TG
3509/* Default implementation for sym_relocate. */
3510
3511
3512bfd_byte *
3513default_symfile_relocate (struct objfile *objfile, asection *sectp,
3514 bfd_byte *buf)
3515{
3516 bfd *abfd = objfile->obfd;
3517
3518 /* We're only interested in sections with relocation
3519 information. */
3520 if ((sectp->flags & SEC_RELOC) == 0)
3521 return NULL;
3522
3523 /* We will handle section offsets properly elsewhere, so relocate as if
3524 all sections begin at 0. */
3525 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3526
3527 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3528}
3529
086df311
DJ
3530/* Relocate the contents of a debug section SECTP in ABFD. The
3531 contents are stored in BUF if it is non-NULL, or returned in a
3532 malloc'd buffer otherwise.
3533
3534 For some platforms and debug info formats, shared libraries contain
3535 relocations against the debug sections (particularly for DWARF-2;
3536 one affected platform is PowerPC GNU/Linux, although it depends on
3537 the version of the linker in use). Also, ELF object files naturally
3538 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3539 the relocations in order to get the locations of symbols correct.
3540 Another example that may require relocation processing, is the
3541 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3542 debug section. */
086df311
DJ
3543
3544bfd_byte *
ac8035ab
TG
3545symfile_relocate_debug_section (struct objfile *objfile,
3546 asection *sectp, bfd_byte *buf)
086df311 3547{
ac8035ab 3548 gdb_assert (objfile->sf->sym_relocate);
086df311 3549
ac8035ab 3550 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3551}
c906108c 3552
31d99776
DJ
3553struct symfile_segment_data *
3554get_symfile_segment_data (bfd *abfd)
3555{
00b5771c 3556 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3557
3558 if (sf == NULL)
3559 return NULL;
3560
3561 return sf->sym_segments (abfd);
3562}
3563
3564void
3565free_symfile_segment_data (struct symfile_segment_data *data)
3566{
3567 xfree (data->segment_bases);
3568 xfree (data->segment_sizes);
3569 xfree (data->segment_info);
3570 xfree (data);
3571}
3572
28c32713
JB
3573
3574/* Given:
3575 - DATA, containing segment addresses from the object file ABFD, and
3576 the mapping from ABFD's sections onto the segments that own them,
3577 and
3578 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3579 segment addresses reported by the target,
3580 store the appropriate offsets for each section in OFFSETS.
3581
3582 If there are fewer entries in SEGMENT_BASES than there are segments
3583 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3584
8d385431
DJ
3585 If there are more entries, then ignore the extra. The target may
3586 not be able to distinguish between an empty data segment and a
3587 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3588int
3589symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3590 struct section_offsets *offsets,
3591 int num_segment_bases,
3592 const CORE_ADDR *segment_bases)
3593{
3594 int i;
3595 asection *sect;
3596
28c32713
JB
3597 /* It doesn't make sense to call this function unless you have some
3598 segment base addresses. */
202b96c1 3599 gdb_assert (num_segment_bases > 0);
28c32713 3600
31d99776
DJ
3601 /* If we do not have segment mappings for the object file, we
3602 can not relocate it by segments. */
3603 gdb_assert (data != NULL);
3604 gdb_assert (data->num_segments > 0);
3605
31d99776
DJ
3606 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3607 {
31d99776
DJ
3608 int which = data->segment_info[i];
3609
28c32713
JB
3610 gdb_assert (0 <= which && which <= data->num_segments);
3611
3612 /* Don't bother computing offsets for sections that aren't
3613 loaded as part of any segment. */
3614 if (! which)
3615 continue;
3616
3617 /* Use the last SEGMENT_BASES entry as the address of any extra
3618 segments mentioned in DATA->segment_info. */
31d99776 3619 if (which > num_segment_bases)
28c32713 3620 which = num_segment_bases;
31d99776 3621
28c32713
JB
3622 offsets->offsets[i] = (segment_bases[which - 1]
3623 - data->segment_bases[which - 1]);
31d99776
DJ
3624 }
3625
3626 return 1;
3627}
3628
3629static void
3630symfile_find_segment_sections (struct objfile *objfile)
3631{
3632 bfd *abfd = objfile->obfd;
3633 int i;
3634 asection *sect;
3635 struct symfile_segment_data *data;
3636
3637 data = get_symfile_segment_data (objfile->obfd);
3638 if (data == NULL)
3639 return;
3640
3641 if (data->num_segments != 1 && data->num_segments != 2)
3642 {
3643 free_symfile_segment_data (data);
3644 return;
3645 }
3646
3647 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3648 {
31d99776
DJ
3649 int which = data->segment_info[i];
3650
3651 if (which == 1)
3652 {
3653 if (objfile->sect_index_text == -1)
3654 objfile->sect_index_text = sect->index;
3655
3656 if (objfile->sect_index_rodata == -1)
3657 objfile->sect_index_rodata = sect->index;
3658 }
3659 else if (which == 2)
3660 {
3661 if (objfile->sect_index_data == -1)
3662 objfile->sect_index_data = sect->index;
3663
3664 if (objfile->sect_index_bss == -1)
3665 objfile->sect_index_bss = sect->index;
3666 }
3667 }
3668
3669 free_symfile_segment_data (data);
3670}
3671
c906108c 3672void
fba45db2 3673_initialize_symfile (void)
c906108c
SS
3674{
3675 struct cmd_list_element *c;
c5aa993b 3676
1a966eab
AC
3677 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3678Load symbol table from executable file FILE.\n\
c906108c 3679The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3680to execute."), &cmdlist);
5ba2abeb 3681 set_cmd_completer (c, filename_completer);
c906108c 3682
1a966eab 3683 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3684Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3685Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3686 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3687The optional arguments are section-name section-address pairs and\n\
3688should be specified if the data and bss segments are not contiguous\n\
1a966eab 3689with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3690 &cmdlist);
5ba2abeb 3691 set_cmd_completer (c, filename_completer);
c906108c 3692
1a966eab
AC
3693 c = add_cmd ("load", class_files, load_command, _("\
3694Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3695for access from GDB.\n\
3696A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3697 set_cmd_completer (c, filename_completer);
c906108c 3698
5bf193a2
AC
3699 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3700 &symbol_reloading, _("\
3701Set dynamic symbol table reloading multiple times in one run."), _("\
3702Show dynamic symbol table reloading multiple times in one run."), NULL,
3703 NULL,
920d2a44 3704 show_symbol_reloading,
5bf193a2 3705 &setlist, &showlist);
c906108c 3706
c5aa993b 3707 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3708 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3709 "overlay ", 0, &cmdlist);
3710
3711 add_com_alias ("ovly", "overlay", class_alias, 1);
3712 add_com_alias ("ov", "overlay", class_alias, 1);
3713
c5aa993b 3714 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3715 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3716
c5aa993b 3717 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3718 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3719
c5aa993b 3720 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3721 _("List mappings of overlay sections."), &overlaylist);
c906108c 3722
c5aa993b 3723 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3724 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3725 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3726 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3727 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3728 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3729 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3730 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3731
3732 /* Filename extension to source language lookup table: */
3733 init_filename_language_table ();
26c41df3
AC
3734 add_setshow_string_noescape_cmd ("extension-language", class_files,
3735 &ext_args, _("\
3736Set mapping between filename extension and source language."), _("\
3737Show mapping between filename extension and source language."), _("\
3738Usage: set extension-language .foo bar"),
3739 set_ext_lang_command,
920d2a44 3740 show_ext_args,
26c41df3 3741 &setlist, &showlist);
c906108c 3742
c5aa993b 3743 add_info ("extensions", info_ext_lang_command,
1bedd215 3744 _("All filename extensions associated with a source language."));
917317f4 3745
525226b5
AC
3746 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3747 &debug_file_directory, _("\
24ddea62
JK
3748Set the directories where separate debug symbols are searched for."), _("\
3749Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3750Separate debug symbols are first searched for in the same\n\
3751directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3752and lastly at the path of the directory of the binary with\n\
24ddea62 3753each global debug-file-directory component prepended."),
525226b5 3754 NULL,
920d2a44 3755 show_debug_file_directory,
525226b5 3756 &setlist, &showlist);
c906108c 3757}
This page took 1.449554 seconds and 4 git commands to generate.