daily update
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
cf5b2f1b 4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
c5aa993b 41#include "inferior.h" /* for write_pc */
5b5d99cf 42#include "filenames.h" /* for DOSish file names */
c906108c 43#include "gdb-stabs.h"
04ea0df1 44#include "gdb_obstack.h"
d75b5104 45#include "completer.h"
af5f3db6 46#include "bcache.h"
2de7ced7 47#include "hashtab.h"
dbda9972 48#include "readline/readline.h"
7e8580c1 49#include "gdb_assert.h"
fe898f56 50#include "block.h"
c906108c 51
c906108c
SS
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
57#include <time.h>
c906108c
SS
58
59#ifndef O_BINARY
60#define O_BINARY 0
61#endif
62
9a4105ab
AC
63int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
64void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
65 unsigned long section_sent,
66 unsigned long section_size,
67 unsigned long total_sent,
c2d11a7d 68 unsigned long total_size);
769d7dc4
AC
69void (*deprecated_pre_add_symbol_hook) (const char *);
70void (*deprecated_post_add_symbol_hook) (void);
9a4105ab 71void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c 72
74b7792f
AC
73static void clear_symtab_users_cleanup (void *ignore);
74
c906108c 75/* Global variables owned by this file */
c5aa993b 76int readnow_symbol_files; /* Read full symbols immediately */
c906108c 77
c906108c
SS
78/* External variables and functions referenced. */
79
a14ed312 80extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
81
82/* Functions this file defines */
83
84#if 0
a14ed312
KB
85static int simple_read_overlay_region_table (void);
86static void simple_free_overlay_region_table (void);
c906108c
SS
87#endif
88
a14ed312 89static void set_initial_language (void);
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97static void add_shared_symbol_files_command (char *, int);
c906108c 98
5b5d99cf
JB
99static void reread_separate_symbols (struct objfile *objfile);
100
a14ed312 101static void cashier_psymtab (struct partial_symtab *);
c906108c 102
a14ed312 103bfd *symfile_bfd_open (char *);
c906108c 104
0e931cf0
JB
105int get_section_index (struct objfile *, char *);
106
a14ed312 107static void find_sym_fns (struct objfile *);
c906108c 108
a14ed312 109static void decrement_reading_symtab (void *);
c906108c 110
a14ed312 111static void overlay_invalidate_all (void);
c906108c 112
a14ed312 113static int overlay_is_mapped (struct obj_section *);
c906108c 114
a14ed312 115void list_overlays_command (char *, int);
c906108c 116
a14ed312 117void map_overlay_command (char *, int);
c906108c 118
a14ed312 119void unmap_overlay_command (char *, int);
c906108c 120
a14ed312 121static void overlay_auto_command (char *, int);
c906108c 122
a14ed312 123static void overlay_manual_command (char *, int);
c906108c 124
a14ed312 125static void overlay_off_command (char *, int);
c906108c 126
a14ed312 127static void overlay_load_command (char *, int);
c906108c 128
a14ed312 129static void overlay_command (char *, int);
c906108c 130
a14ed312 131static void simple_free_overlay_table (void);
c906108c 132
a14ed312 133static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void set_ext_lang_command (char *args, int from_tty);
392a587b 142
a14ed312 143static void info_ext_lang_command (char *args, int from_tty);
392a587b 144
5b5d99cf
JB
145static char *find_separate_debug_file (struct objfile *objfile);
146
a14ed312 147static void init_filename_language_table (void);
392a587b 148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
165
b7209cb4
FF
166/* If non-zero, shared library symbols will be added automatically
167 when the inferior is created, new libraries are loaded, or when
168 attaching to the inferior. This is almost always what users will
169 want to have happen; but for very large programs, the startup time
170 will be excessive, and so if this is a problem, the user can clear
171 this flag and then add the shared library symbols as needed. Note
172 that there is a potential for confusion, since if the shared
c906108c 173 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 174 report all the functions that are actually present. */
c906108c
SS
175
176int auto_solib_add = 1;
b7209cb4
FF
177
178/* For systems that support it, a threshold size in megabytes. If
179 automatically adding a new library's symbol table to those already
180 known to the debugger would cause the total shared library symbol
181 size to exceed this threshhold, then the shlib's symbols are not
182 added. The threshold is ignored if the user explicitly asks for a
183 shlib to be added, such as when using the "sharedlibrary"
184 command. */
185
186int auto_solib_limit;
c906108c 187\f
c5aa993b 188
0fe19209
DC
189/* This compares two partial symbols by names, using strcmp_iw_ordered
190 for the comparison. */
c906108c
SS
191
192static int
0cd64fe2 193compare_psymbols (const void *s1p, const void *s2p)
c906108c 194{
0fe19209
DC
195 struct partial_symbol *const *s1 = s1p;
196 struct partial_symbol *const *s2 = s2p;
197
4725b721
PH
198 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
199 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
200}
201
202void
fba45db2 203sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
204{
205 /* Sort the global list; don't sort the static list */
206
c5aa993b
JM
207 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
208 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
209 compare_psymbols);
210}
211
c906108c
SS
212/* Make a null terminated copy of the string at PTR with SIZE characters in
213 the obstack pointed to by OBSTACKP . Returns the address of the copy.
214 Note that the string at PTR does not have to be null terminated, I.E. it
215 may be part of a larger string and we are only saving a substring. */
216
217char *
63ca651f 218obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 219{
52f0bd74 220 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
221 /* Open-coded memcpy--saves function call time. These strings are usually
222 short. FIXME: Is this really still true with a compiler that can
223 inline memcpy? */
224 {
aa1ee363
AC
225 const char *p1 = ptr;
226 char *p2 = p;
63ca651f 227 const char *end = ptr + size;
c906108c
SS
228 while (p1 != end)
229 *p2++ = *p1++;
230 }
231 p[size] = 0;
232 return p;
233}
234
235/* Concatenate strings S1, S2 and S3; return the new string. Space is found
236 in the obstack pointed to by OBSTACKP. */
237
238char *
fba45db2
KB
239obconcat (struct obstack *obstackp, const char *s1, const char *s2,
240 const char *s3)
c906108c 241{
52f0bd74
AC
242 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
243 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
244 strcpy (val, s1);
245 strcat (val, s2);
246 strcat (val, s3);
247 return val;
248}
249
250/* True if we are nested inside psymtab_to_symtab. */
251
252int currently_reading_symtab = 0;
253
254static void
fba45db2 255decrement_reading_symtab (void *dummy)
c906108c
SS
256{
257 currently_reading_symtab--;
258}
259
260/* Get the symbol table that corresponds to a partial_symtab.
261 This is fast after the first time you do it. In fact, there
262 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
263 case inline. */
264
265struct symtab *
aa1ee363 266psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
267{
268 /* If it's been looked up before, return it. */
269 if (pst->symtab)
270 return pst->symtab;
271
272 /* If it has not yet been read in, read it. */
273 if (!pst->readin)
c5aa993b 274 {
c906108c
SS
275 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
276 currently_reading_symtab++;
277 (*pst->read_symtab) (pst);
278 do_cleanups (back_to);
279 }
280
281 return pst->symtab;
282}
283
5417f6dc
RM
284/* Remember the lowest-addressed loadable section we've seen.
285 This function is called via bfd_map_over_sections.
c906108c
SS
286
287 In case of equal vmas, the section with the largest size becomes the
288 lowest-addressed loadable section.
289
290 If the vmas and sizes are equal, the last section is considered the
291 lowest-addressed loadable section. */
292
293void
4efb68b1 294find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 295{
c5aa993b 296 asection **lowest = (asection **) obj;
c906108c
SS
297
298 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
299 return;
300 if (!*lowest)
301 *lowest = sect; /* First loadable section */
302 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
303 *lowest = sect; /* A lower loadable section */
304 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
305 && (bfd_section_size (abfd, (*lowest))
306 <= bfd_section_size (abfd, sect)))
307 *lowest = sect;
308}
309
a39a16c4
MM
310/* Create a new section_addr_info, with room for NUM_SECTIONS. */
311
312struct section_addr_info *
313alloc_section_addr_info (size_t num_sections)
314{
315 struct section_addr_info *sap;
316 size_t size;
317
318 size = (sizeof (struct section_addr_info)
319 + sizeof (struct other_sections) * (num_sections - 1));
320 sap = (struct section_addr_info *) xmalloc (size);
321 memset (sap, 0, size);
322 sap->num_sections = num_sections;
323
324 return sap;
325}
62557bbc 326
7b90c3f9
JB
327
328/* Return a freshly allocated copy of ADDRS. The section names, if
329 any, are also freshly allocated copies of those in ADDRS. */
330struct section_addr_info *
331copy_section_addr_info (struct section_addr_info *addrs)
332{
333 struct section_addr_info *copy
334 = alloc_section_addr_info (addrs->num_sections);
335 int i;
336
337 copy->num_sections = addrs->num_sections;
338 for (i = 0; i < addrs->num_sections; i++)
339 {
340 copy->other[i].addr = addrs->other[i].addr;
341 if (addrs->other[i].name)
342 copy->other[i].name = xstrdup (addrs->other[i].name);
343 else
344 copy->other[i].name = NULL;
345 copy->other[i].sectindex = addrs->other[i].sectindex;
346 }
347
348 return copy;
349}
350
351
352
62557bbc
KB
353/* Build (allocate and populate) a section_addr_info struct from
354 an existing section table. */
355
356extern struct section_addr_info *
357build_section_addr_info_from_section_table (const struct section_table *start,
358 const struct section_table *end)
359{
360 struct section_addr_info *sap;
361 const struct section_table *stp;
362 int oidx;
363
a39a16c4 364 sap = alloc_section_addr_info (end - start);
62557bbc
KB
365
366 for (stp = start, oidx = 0; stp != end; stp++)
367 {
5417f6dc 368 if (bfd_get_section_flags (stp->bfd,
fbd35540 369 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 370 && oidx < end - start)
62557bbc
KB
371 {
372 sap->other[oidx].addr = stp->addr;
5417f6dc 373 sap->other[oidx].name
fbd35540 374 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
375 sap->other[oidx].sectindex = stp->the_bfd_section->index;
376 oidx++;
377 }
378 }
379
380 return sap;
381}
382
383
384/* Free all memory allocated by build_section_addr_info_from_section_table. */
385
386extern void
387free_section_addr_info (struct section_addr_info *sap)
388{
389 int idx;
390
a39a16c4 391 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 392 if (sap->other[idx].name)
b8c9b27d
KB
393 xfree (sap->other[idx].name);
394 xfree (sap);
62557bbc
KB
395}
396
397
e8289572
JB
398/* Initialize OBJFILE's sect_index_* members. */
399static void
400init_objfile_sect_indices (struct objfile *objfile)
c906108c 401{
e8289572 402 asection *sect;
c906108c 403 int i;
5417f6dc 404
b8fbeb18 405 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 406 if (sect)
b8fbeb18
EZ
407 objfile->sect_index_text = sect->index;
408
409 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 410 if (sect)
b8fbeb18
EZ
411 objfile->sect_index_data = sect->index;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 414 if (sect)
b8fbeb18
EZ
415 objfile->sect_index_bss = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 418 if (sect)
b8fbeb18
EZ
419 objfile->sect_index_rodata = sect->index;
420
bbcd32ad
FF
421 /* This is where things get really weird... We MUST have valid
422 indices for the various sect_index_* members or gdb will abort.
423 So if for example, there is no ".text" section, we have to
424 accomodate that. Except when explicitly adding symbol files at
425 some address, section_offsets contains nothing but zeros, so it
426 doesn't matter which slot in section_offsets the individual
427 sect_index_* members index into. So if they are all zero, it is
428 safe to just point all the currently uninitialized indices to the
429 first slot. */
430
431 for (i = 0; i < objfile->num_sections; i++)
432 {
433 if (ANOFFSET (objfile->section_offsets, i) != 0)
434 {
435 break;
436 }
437 }
438 if (i == objfile->num_sections)
439 {
440 if (objfile->sect_index_text == -1)
441 objfile->sect_index_text = 0;
442 if (objfile->sect_index_data == -1)
443 objfile->sect_index_data = 0;
444 if (objfile->sect_index_bss == -1)
445 objfile->sect_index_bss = 0;
446 if (objfile->sect_index_rodata == -1)
447 objfile->sect_index_rodata = 0;
448 }
b8fbeb18 449}
c906108c 450
e8289572
JB
451
452/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 453 of how to represent it for fast symbol reading. This is the default
e8289572
JB
454 version of the sym_fns.sym_offsets function for symbol readers that
455 don't need to do anything special. It allocates a section_offsets table
456 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
457
458void
459default_symfile_offsets (struct objfile *objfile,
460 struct section_addr_info *addrs)
461{
462 int i;
463
a39a16c4 464 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 465 objfile->section_offsets = (struct section_offsets *)
5417f6dc 466 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 467 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 468 memset (objfile->section_offsets, 0,
a39a16c4 469 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
470
471 /* Now calculate offsets for section that were specified by the
472 caller. */
a39a16c4 473 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
474 {
475 struct other_sections *osp ;
476
477 osp = &addrs->other[i] ;
478 if (osp->addr == 0)
479 continue;
480
481 /* Record all sections in offsets */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
485 }
486
487 /* Remember the bfd indexes for the .text, .data, .bss and
488 .rodata sections. */
489 init_objfile_sect_indices (objfile);
490}
491
492
c906108c
SS
493/* Process a symbol file, as either the main file or as a dynamically
494 loaded file.
495
96baa820
JM
496 OBJFILE is where the symbols are to be read from.
497
7e8580c1
JB
498 ADDRS is the list of section load addresses. If the user has given
499 an 'add-symbol-file' command, then this is the list of offsets and
500 addresses he or she provided as arguments to the command; or, if
501 we're handling a shared library, these are the actual addresses the
502 sections are loaded at, according to the inferior's dynamic linker
503 (as gleaned by GDB's shared library code). We convert each address
504 into an offset from the section VMA's as it appears in the object
505 file, and then call the file's sym_offsets function to convert this
506 into a format-specific offset table --- a `struct section_offsets'.
507 If ADDRS is non-zero, OFFSETS must be zero.
508
509 OFFSETS is a table of section offsets already in the right
510 format-specific representation. NUM_OFFSETS is the number of
511 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
512 assume this is the proper table the call to sym_offsets described
513 above would produce. Instead of calling sym_offsets, we just dump
514 it right into objfile->section_offsets. (When we're re-reading
515 symbols from an objfile, we don't have the original load address
516 list any more; all we have is the section offset table.) If
517 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
518
519 MAINLINE is nonzero if this is the main symbol file, or zero if
520 it's an extra symbol file such as dynamically loaded code.
521
522 VERBO is nonzero if the caller has printed a verbose message about
523 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
524
525void
7e8580c1
JB
526syms_from_objfile (struct objfile *objfile,
527 struct section_addr_info *addrs,
528 struct section_offsets *offsets,
529 int num_offsets,
530 int mainline,
531 int verbo)
c906108c 532{
a39a16c4 533 struct section_addr_info *local_addr = NULL;
c906108c 534 struct cleanup *old_chain;
2acceee2 535
7e8580c1 536 gdb_assert (! (addrs && offsets));
2acceee2 537
c906108c
SS
538 init_entry_point_info (objfile);
539 find_sym_fns (objfile);
540
75245b24
MS
541 if (objfile->sf == NULL)
542 return; /* No symbols. */
543
c906108c
SS
544 /* Make sure that partially constructed symbol tables will be cleaned up
545 if an error occurs during symbol reading. */
74b7792f 546 old_chain = make_cleanup_free_objfile (objfile);
c906108c 547
a39a16c4
MM
548 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
549 list. We now establish the convention that an addr of zero means
550 no load address was specified. */
551 if (! addrs && ! offsets)
552 {
5417f6dc 553 local_addr
a39a16c4
MM
554 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
555 make_cleanup (xfree, local_addr);
556 addrs = local_addr;
557 }
558
559 /* Now either addrs or offsets is non-zero. */
560
c5aa993b 561 if (mainline)
c906108c
SS
562 {
563 /* We will modify the main symbol table, make sure that all its users
c5aa993b 564 will be cleaned up if an error occurs during symbol reading. */
74b7792f 565 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
566
567 /* Since no error yet, throw away the old symbol table. */
568
569 if (symfile_objfile != NULL)
570 {
571 free_objfile (symfile_objfile);
572 symfile_objfile = NULL;
573 }
574
575 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
576 If the user wants to get rid of them, they should do "symbol-file"
577 without arguments first. Not sure this is the best behavior
578 (PR 2207). */
c906108c 579
c5aa993b 580 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
581 }
582
583 /* Convert addr into an offset rather than an absolute address.
584 We find the lowest address of a loaded segment in the objfile,
53a5351d 585 and assume that <addr> is where that got loaded.
c906108c 586
53a5351d
JM
587 We no longer warn if the lowest section is not a text segment (as
588 happens for the PA64 port. */
1549f619 589 if (!mainline && addrs && addrs->other[0].name)
c906108c 590 {
1549f619
EZ
591 asection *lower_sect;
592 asection *sect;
593 CORE_ADDR lower_offset;
594 int i;
595
5417f6dc 596 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
597 continguous sections. FIXME!! won't work without call to find
598 .text first, but this assumes text is lowest section. */
599 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
600 if (lower_sect == NULL)
c906108c 601 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 602 &lower_sect);
2acceee2 603 if (lower_sect == NULL)
c906108c
SS
604 warning ("no loadable sections found in added symbol-file %s",
605 objfile->name);
5417f6dc 606 else
b8fbeb18
EZ
607 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
608 warning ("Lowest section in %s is %s at %s",
609 objfile->name,
610 bfd_section_name (objfile->obfd, lower_sect),
611 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
612 if (lower_sect != NULL)
613 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
614 else
615 lower_offset = 0;
5417f6dc 616
13de58df 617 /* Calculate offsets for the loadable sections.
2acceee2
JM
618 FIXME! Sections must be in order of increasing loadable section
619 so that contiguous sections can use the lower-offset!!!
5417f6dc 620
13de58df
JB
621 Adjust offsets if the segments are not contiguous.
622 If the section is contiguous, its offset should be set to
2acceee2
JM
623 the offset of the highest loadable section lower than it
624 (the loadable section directly below it in memory).
625 this_offset = lower_offset = lower_addr - lower_orig_addr */
626
1549f619 627 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
628 {
629 if (addrs->other[i].addr != 0)
630 {
631 sect = bfd_get_section_by_name (objfile->obfd,
632 addrs->other[i].name);
633 if (sect)
634 {
635 addrs->other[i].addr
636 -= bfd_section_vma (objfile->obfd, sect);
637 lower_offset = addrs->other[i].addr;
638 /* This is the index used by BFD. */
639 addrs->other[i].sectindex = sect->index ;
640 }
641 else
642 {
643 warning ("section %s not found in %s",
5417f6dc 644 addrs->other[i].name,
7e8580c1
JB
645 objfile->name);
646 addrs->other[i].addr = 0;
647 }
648 }
649 else
650 addrs->other[i].addr = lower_offset;
651 }
c906108c
SS
652 }
653
654 /* Initialize symbol reading routines for this objfile, allow complaints to
655 appear for this new file, and record how verbose to be, then do the
656 initial symbol reading for this file. */
657
c5aa993b 658 (*objfile->sf->sym_init) (objfile);
b9caf505 659 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 660
7e8580c1
JB
661 if (addrs)
662 (*objfile->sf->sym_offsets) (objfile, addrs);
663 else
664 {
665 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
666
667 /* Just copy in the offset table directly as given to us. */
668 objfile->num_sections = num_offsets;
669 objfile->section_offsets
670 = ((struct section_offsets *)
8b92e4d5 671 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
672 memcpy (objfile->section_offsets, offsets, size);
673
674 init_objfile_sect_indices (objfile);
675 }
c906108c 676
52d16ba8 677#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
678 /* This is a SVR4/SunOS specific hack, I think. In any event, it
679 screws RS/6000. sym_offsets should be doing this sort of thing,
680 because it knows the mapping between bfd sections and
681 section_offsets. */
682 /* This is a hack. As far as I can tell, section offsets are not
683 target dependent. They are all set to addr with a couple of
684 exceptions. The exceptions are sysvr4 shared libraries, whose
685 offsets are kept in solib structures anyway and rs6000 xcoff
686 which handles shared libraries in a completely unique way.
687
688 Section offsets are built similarly, except that they are built
689 by adding addr in all cases because there is no clear mapping
690 from section_offsets into actual sections. Note that solib.c
96baa820 691 has a different algorithm for finding section offsets.
c906108c
SS
692
693 These should probably all be collapsed into some target
694 independent form of shared library support. FIXME. */
695
2acceee2 696 if (addrs)
c906108c
SS
697 {
698 struct obj_section *s;
699
5417f6dc
RM
700 /* Map section offsets in "addr" back to the object's
701 sections by comparing the section names with bfd's
2acceee2
JM
702 section names. Then adjust the section address by
703 the offset. */ /* for gdb/13815 */
5417f6dc 704
96baa820 705 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 706 {
2acceee2
JM
707 CORE_ADDR s_addr = 0;
708 int i;
709
5417f6dc 710 for (i = 0;
a39a16c4 711 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 712 i++)
5417f6dc
RM
713 if (strcmp (bfd_section_name (s->objfile->obfd,
714 s->the_bfd_section),
fbd35540 715 addrs->other[i].name) == 0)
2acceee2 716 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 717
c906108c 718 s->addr -= s->offset;
2acceee2 719 s->addr += s_addr;
c906108c 720 s->endaddr -= s->offset;
2acceee2
JM
721 s->endaddr += s_addr;
722 s->offset += s_addr;
c906108c
SS
723 }
724 }
52d16ba8 725#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 726
96baa820 727 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 728
c906108c
SS
729 /* Don't allow char * to have a typename (else would get caddr_t).
730 Ditto void *. FIXME: Check whether this is now done by all the
731 symbol readers themselves (many of them now do), and if so remove
732 it from here. */
733
734 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
735 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
736
737 /* Mark the objfile has having had initial symbol read attempted. Note
738 that this does not mean we found any symbols... */
739
c5aa993b 740 objfile->flags |= OBJF_SYMS;
c906108c
SS
741
742 /* Discard cleanups as symbol reading was successful. */
743
744 discard_cleanups (old_chain);
c906108c
SS
745}
746
747/* Perform required actions after either reading in the initial
748 symbols for a new objfile, or mapping in the symbols from a reusable
749 objfile. */
c5aa993b 750
c906108c 751void
fba45db2 752new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
753{
754
755 /* If this is the main symbol file we have to clean up all users of the
756 old main symbol file. Otherwise it is sufficient to fixup all the
757 breakpoints that may have been redefined by this symbol file. */
758 if (mainline)
759 {
760 /* OK, make it the "real" symbol file. */
761 symfile_objfile = objfile;
762
763 clear_symtab_users ();
764 }
765 else
766 {
767 breakpoint_re_set ();
768 }
769
770 /* We're done reading the symbol file; finish off complaints. */
b9caf505 771 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
772}
773
774/* Process a symbol file, as either the main file or as a dynamically
775 loaded file.
776
5417f6dc
RM
777 ABFD is a BFD already open on the file, as from symfile_bfd_open.
778 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
779
780 FROM_TTY says how verbose to be.
781
782 MAINLINE specifies whether this is the main symbol file, or whether
783 it's an extra symbol file such as dynamically loaded code.
784
785 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
786 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
787 non-zero.
c906108c 788
c906108c
SS
789 Upon success, returns a pointer to the objfile that was added.
790 Upon failure, jumps back to command level (never returns). */
7904e09f 791static struct objfile *
5417f6dc 792symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
793 struct section_addr_info *addrs,
794 struct section_offsets *offsets,
795 int num_offsets,
796 int mainline, int flags)
c906108c
SS
797{
798 struct objfile *objfile;
799 struct partial_symtab *psymtab;
5b5d99cf 800 char *debugfile;
7b90c3f9 801 struct section_addr_info *orig_addrs = NULL;
a39a16c4 802 struct cleanup *my_cleanups;
5417f6dc 803 const char *name = bfd_get_filename (abfd);
c906108c 804
5417f6dc 805 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 806
5417f6dc
RM
807 /* Give user a chance to burp if we'd be
808 interactively wiping out any existing symbols. */
c906108c
SS
809
810 if ((have_full_symbols () || have_partial_symbols ())
811 && mainline
812 && from_tty
813 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 814 error ("Not confirmed.");
c906108c 815
2df3850c 816 objfile = allocate_objfile (abfd, flags);
5417f6dc 817 discard_cleanups (my_cleanups);
c906108c 818
a39a16c4 819 if (addrs)
63cd24fe 820 {
7b90c3f9
JB
821 orig_addrs = copy_section_addr_info (addrs);
822 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 823 }
a39a16c4 824
78a4a9b9
AC
825 /* We either created a new mapped symbol table, mapped an existing
826 symbol table file which has not had initial symbol reading
827 performed, or need to read an unmapped symbol table. */
828 if (from_tty || info_verbose)
c906108c 829 {
769d7dc4
AC
830 if (deprecated_pre_add_symbol_hook)
831 deprecated_pre_add_symbol_hook (name);
78a4a9b9 832 else
c906108c 833 {
78a4a9b9 834 printf_unfiltered ("Reading symbols from %s...", name);
c906108c
SS
835 wrap_here ("");
836 gdb_flush (gdb_stdout);
837 }
c906108c 838 }
78a4a9b9
AC
839 syms_from_objfile (objfile, addrs, offsets, num_offsets,
840 mainline, from_tty);
c906108c
SS
841
842 /* We now have at least a partial symbol table. Check to see if the
843 user requested that all symbols be read on initial access via either
844 the gdb startup command line or on a per symbol file basis. Expand
845 all partial symbol tables for this objfile if so. */
846
2acceee2 847 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
848 {
849 if (from_tty || info_verbose)
850 {
46f45a4a 851 printf_unfiltered ("expanding to full symbols...");
c906108c
SS
852 wrap_here ("");
853 gdb_flush (gdb_stdout);
854 }
855
c5aa993b 856 for (psymtab = objfile->psymtabs;
c906108c 857 psymtab != NULL;
c5aa993b 858 psymtab = psymtab->next)
c906108c
SS
859 {
860 psymtab_to_symtab (psymtab);
861 }
862 }
863
5b5d99cf
JB
864 debugfile = find_separate_debug_file (objfile);
865 if (debugfile)
866 {
5b5d99cf
JB
867 if (addrs != NULL)
868 {
869 objfile->separate_debug_objfile
a39a16c4 870 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
871 }
872 else
873 {
874 objfile->separate_debug_objfile
875 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
876 }
877 objfile->separate_debug_objfile->separate_debug_objfile_backlink
878 = objfile;
5417f6dc 879
5b5d99cf
JB
880 /* Put the separate debug object before the normal one, this is so that
881 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
882 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 883
5b5d99cf
JB
884 xfree (debugfile);
885 }
5417f6dc 886
cb3c37b2
JB
887 if (!have_partial_symbols () && !have_full_symbols ())
888 {
889 wrap_here ("");
8f5ba92b
JG
890 printf_filtered ("(no debugging symbols found)");
891 if (from_tty || info_verbose)
892 printf_filtered ("...");
893 else
894 printf_filtered ("\n");
cb3c37b2
JB
895 wrap_here ("");
896 }
897
c906108c
SS
898 if (from_tty || info_verbose)
899 {
769d7dc4
AC
900 if (deprecated_post_add_symbol_hook)
901 deprecated_post_add_symbol_hook ();
c906108c 902 else
c5aa993b 903 {
46f45a4a 904 printf_unfiltered ("done.\n");
c5aa993b 905 }
c906108c
SS
906 }
907
481d0f41
JB
908 /* We print some messages regardless of whether 'from_tty ||
909 info_verbose' is true, so make sure they go out at the right
910 time. */
911 gdb_flush (gdb_stdout);
912
a39a16c4
MM
913 do_cleanups (my_cleanups);
914
109f874e
MS
915 if (objfile->sf == NULL)
916 return objfile; /* No symbols. */
917
c906108c
SS
918 new_symfile_objfile (objfile, mainline, from_tty);
919
9a4105ab
AC
920 if (deprecated_target_new_objfile_hook)
921 deprecated_target_new_objfile_hook (objfile);
c906108c 922
ce7d4522 923 bfd_cache_close_all ();
c906108c
SS
924 return (objfile);
925}
926
7904e09f 927
eb4556d7
JB
928/* Process the symbol file ABFD, as either the main file or as a
929 dynamically loaded file.
930
931 See symbol_file_add_with_addrs_or_offsets's comments for
932 details. */
933struct objfile *
934symbol_file_add_from_bfd (bfd *abfd, int from_tty,
935 struct section_addr_info *addrs,
936 int mainline, int flags)
937{
938 return symbol_file_add_with_addrs_or_offsets (abfd,
939 from_tty, addrs, 0, 0,
940 mainline, flags);
941}
942
943
7904e09f
JB
944/* Process a symbol file, as either the main file or as a dynamically
945 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
946 for details. */
947struct objfile *
948symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
949 int mainline, int flags)
950{
eb4556d7
JB
951 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
952 addrs, mainline, flags);
7904e09f
JB
953}
954
955
d7db6da9
FN
956/* Call symbol_file_add() with default values and update whatever is
957 affected by the loading of a new main().
958 Used when the file is supplied in the gdb command line
959 and by some targets with special loading requirements.
960 The auxiliary function, symbol_file_add_main_1(), has the flags
961 argument for the switches that can only be specified in the symbol_file
962 command itself. */
5417f6dc 963
1adeb98a
FN
964void
965symbol_file_add_main (char *args, int from_tty)
966{
d7db6da9
FN
967 symbol_file_add_main_1 (args, from_tty, 0);
968}
969
970static void
971symbol_file_add_main_1 (char *args, int from_tty, int flags)
972{
973 symbol_file_add (args, from_tty, NULL, 1, flags);
974
d7db6da9
FN
975 /* Getting new symbols may change our opinion about
976 what is frameless. */
977 reinit_frame_cache ();
978
979 set_initial_language ();
1adeb98a
FN
980}
981
982void
983symbol_file_clear (int from_tty)
984{
985 if ((have_full_symbols () || have_partial_symbols ())
986 && from_tty
987 && !query ("Discard symbol table from `%s'? ",
988 symfile_objfile->name))
989 error ("Not confirmed.");
990 free_all_objfiles ();
991
992 /* solib descriptors may have handles to objfiles. Since their
993 storage has just been released, we'd better wipe the solib
994 descriptors as well.
995 */
996#if defined(SOLIB_RESTART)
997 SOLIB_RESTART ();
998#endif
999
1000 symfile_objfile = NULL;
1001 if (from_tty)
1002 printf_unfiltered ("No symbol file now.\n");
1adeb98a
FN
1003}
1004
5b5d99cf
JB
1005static char *
1006get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1007{
1008 asection *sect;
1009 bfd_size_type debuglink_size;
1010 unsigned long crc32;
1011 char *contents;
1012 int crc_offset;
1013 unsigned char *p;
5417f6dc 1014
5b5d99cf
JB
1015 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1016
1017 if (sect == NULL)
1018 return NULL;
1019
1020 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1021
5b5d99cf
JB
1022 contents = xmalloc (debuglink_size);
1023 bfd_get_section_contents (objfile->obfd, sect, contents,
1024 (file_ptr)0, (bfd_size_type)debuglink_size);
1025
1026 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1027 crc_offset = strlen (contents) + 1;
1028 crc_offset = (crc_offset + 3) & ~3;
1029
1030 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1031
5b5d99cf
JB
1032 *crc32_out = crc32;
1033 return contents;
1034}
1035
1036static int
1037separate_debug_file_exists (const char *name, unsigned long crc)
1038{
1039 unsigned long file_crc = 0;
1040 int fd;
1041 char buffer[8*1024];
1042 int count;
1043
1044 fd = open (name, O_RDONLY | O_BINARY);
1045 if (fd < 0)
1046 return 0;
1047
1048 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1049 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1050
1051 close (fd);
1052
1053 return crc == file_crc;
1054}
1055
1056static char *debug_file_directory = NULL;
1057
1058#if ! defined (DEBUG_SUBDIRECTORY)
1059#define DEBUG_SUBDIRECTORY ".debug"
1060#endif
1061
1062static char *
1063find_separate_debug_file (struct objfile *objfile)
1064{
1065 asection *sect;
1066 char *basename;
1067 char *dir;
1068 char *debugfile;
1069 char *name_copy;
1070 bfd_size_type debuglink_size;
1071 unsigned long crc32;
1072 int i;
1073
1074 basename = get_debug_link_info (objfile, &crc32);
1075
1076 if (basename == NULL)
1077 return NULL;
5417f6dc 1078
5b5d99cf
JB
1079 dir = xstrdup (objfile->name);
1080
fe36c4f4
JB
1081 /* Strip off the final filename part, leaving the directory name,
1082 followed by a slash. Objfile names should always be absolute and
1083 tilde-expanded, so there should always be a slash in there
1084 somewhere. */
5b5d99cf
JB
1085 for (i = strlen(dir) - 1; i >= 0; i--)
1086 {
1087 if (IS_DIR_SEPARATOR (dir[i]))
1088 break;
1089 }
fe36c4f4 1090 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1091 dir[i+1] = '\0';
5417f6dc 1092
5b5d99cf
JB
1093 debugfile = alloca (strlen (debug_file_directory) + 1
1094 + strlen (dir)
1095 + strlen (DEBUG_SUBDIRECTORY)
1096 + strlen ("/")
5417f6dc 1097 + strlen (basename)
5b5d99cf
JB
1098 + 1);
1099
1100 /* First try in the same directory as the original file. */
1101 strcpy (debugfile, dir);
1102 strcat (debugfile, basename);
1103
1104 if (separate_debug_file_exists (debugfile, crc32))
1105 {
1106 xfree (basename);
1107 xfree (dir);
1108 return xstrdup (debugfile);
1109 }
5417f6dc 1110
5b5d99cf
JB
1111 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1112 strcpy (debugfile, dir);
1113 strcat (debugfile, DEBUG_SUBDIRECTORY);
1114 strcat (debugfile, "/");
1115 strcat (debugfile, basename);
1116
1117 if (separate_debug_file_exists (debugfile, crc32))
1118 {
1119 xfree (basename);
1120 xfree (dir);
1121 return xstrdup (debugfile);
1122 }
5417f6dc 1123
5b5d99cf
JB
1124 /* Then try in the global debugfile directory. */
1125 strcpy (debugfile, debug_file_directory);
1126 strcat (debugfile, "/");
1127 strcat (debugfile, dir);
5b5d99cf
JB
1128 strcat (debugfile, basename);
1129
1130 if (separate_debug_file_exists (debugfile, crc32))
1131 {
1132 xfree (basename);
1133 xfree (dir);
1134 return xstrdup (debugfile);
1135 }
5417f6dc 1136
5b5d99cf
JB
1137 xfree (basename);
1138 xfree (dir);
1139 return NULL;
1140}
1141
1142
c906108c
SS
1143/* This is the symbol-file command. Read the file, analyze its
1144 symbols, and add a struct symtab to a symtab list. The syntax of
1145 the command is rather bizarre--(1) buildargv implements various
1146 quoting conventions which are undocumented and have little or
1147 nothing in common with the way things are quoted (or not quoted)
1148 elsewhere in GDB, (2) options are used, which are not generally
1149 used in GDB (perhaps "set mapped on", "set readnow on" would be
1150 better), (3) the order of options matters, which is contrary to GNU
1151 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1152/* Note: ezannoni 2000-04-17. This function used to have support for
1153 rombug (see remote-os9k.c). It consisted of a call to target_link()
1154 (target.c) to get the address of the text segment from the target,
1155 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1156
1157void
fba45db2 1158symbol_file_command (char *args, int from_tty)
c906108c
SS
1159{
1160 char **argv;
1161 char *name = NULL;
c906108c 1162 struct cleanup *cleanups;
2df3850c 1163 int flags = OBJF_USERLOADED;
c906108c
SS
1164
1165 dont_repeat ();
1166
1167 if (args == NULL)
1168 {
1adeb98a 1169 symbol_file_clear (from_tty);
c906108c
SS
1170 }
1171 else
1172 {
1173 if ((argv = buildargv (args)) == NULL)
1174 {
1175 nomem (0);
1176 }
7a292a7a 1177 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1178 while (*argv != NULL)
1179 {
78a4a9b9
AC
1180 if (strcmp (*argv, "-readnow") == 0)
1181 flags |= OBJF_READNOW;
1182 else if (**argv == '-')
1183 error ("unknown option `%s'", *argv);
1184 else
1185 {
1186 name = *argv;
5417f6dc 1187
78a4a9b9
AC
1188 symbol_file_add_main_1 (name, from_tty, flags);
1189 }
c906108c
SS
1190 argv++;
1191 }
1192
1193 if (name == NULL)
1194 {
1195 error ("no symbol file name was specified");
1196 }
c906108c
SS
1197 do_cleanups (cleanups);
1198 }
1199}
1200
1201/* Set the initial language.
1202
1203 A better solution would be to record the language in the psymtab when reading
1204 partial symbols, and then use it (if known) to set the language. This would
1205 be a win for formats that encode the language in an easily discoverable place,
1206 such as DWARF. For stabs, we can jump through hoops looking for specially
1207 named symbols or try to intuit the language from the specific type of stabs
1208 we find, but we can't do that until later when we read in full symbols.
1209 FIXME. */
1210
1211static void
fba45db2 1212set_initial_language (void)
c906108c
SS
1213{
1214 struct partial_symtab *pst;
c5aa993b 1215 enum language lang = language_unknown;
c906108c
SS
1216
1217 pst = find_main_psymtab ();
1218 if (pst != NULL)
1219 {
c5aa993b 1220 if (pst->filename != NULL)
c906108c 1221 {
c5aa993b
JM
1222 lang = deduce_language_from_filename (pst->filename);
1223 }
c906108c
SS
1224 if (lang == language_unknown)
1225 {
c5aa993b
JM
1226 /* Make C the default language */
1227 lang = language_c;
c906108c
SS
1228 }
1229 set_language (lang);
1230 expected_language = current_language; /* Don't warn the user */
1231 }
1232}
1233
1234/* Open file specified by NAME and hand it off to BFD for preliminary
1235 analysis. Result is a newly initialized bfd *, which includes a newly
1236 malloc'd` copy of NAME (tilde-expanded and made absolute).
1237 In case of trouble, error() is called. */
1238
1239bfd *
fba45db2 1240symfile_bfd_open (char *name)
c906108c
SS
1241{
1242 bfd *sym_bfd;
1243 int desc;
1244 char *absolute_name;
1245
1246
1247
1248 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1249
1250 /* Look down path for it, allocate 2nd new malloc'd copy. */
014d698b
EZ
1251 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1252 0, &absolute_name);
608506ed 1253#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1254 if (desc < 0)
1255 {
1256 char *exename = alloca (strlen (name) + 5);
1257 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1258 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1259 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1260 }
1261#endif
1262 if (desc < 0)
1263 {
b8c9b27d 1264 make_cleanup (xfree, name);
c906108c
SS
1265 perror_with_name (name);
1266 }
b8c9b27d 1267 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1268 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1269 /* It'll be freed in free_objfile(). */
c906108c
SS
1270
1271 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1272 if (!sym_bfd)
1273 {
1274 close (desc);
b8c9b27d 1275 make_cleanup (xfree, name);
c906108c
SS
1276 error ("\"%s\": can't open to read symbols: %s.", name,
1277 bfd_errmsg (bfd_get_error ()));
1278 }
549c1eea 1279 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1280
1281 if (!bfd_check_format (sym_bfd, bfd_object))
1282 {
1283 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1284 on error it does not free all the storage associated with the
1285 bfd). */
c906108c 1286 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1287 make_cleanup (xfree, name);
c906108c
SS
1288 error ("\"%s\": can't read symbols: %s.", name,
1289 bfd_errmsg (bfd_get_error ()));
1290 }
1291 return (sym_bfd);
1292}
1293
0e931cf0
JB
1294/* Return the section index for the given section name. Return -1 if
1295 the section was not found. */
1296int
1297get_section_index (struct objfile *objfile, char *section_name)
1298{
1299 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1300 if (sect)
1301 return sect->index;
1302 else
1303 return -1;
1304}
1305
c906108c
SS
1306/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1307 startup by the _initialize routine in each object file format reader,
1308 to register information about each format the the reader is prepared
1309 to handle. */
1310
1311void
fba45db2 1312add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1313{
1314 sf->next = symtab_fns;
1315 symtab_fns = sf;
1316}
1317
1318
1319/* Initialize to read symbols from the symbol file sym_bfd. It either
1320 returns or calls error(). The result is an initialized struct sym_fns
1321 in the objfile structure, that contains cached information about the
1322 symbol file. */
1323
1324static void
fba45db2 1325find_sym_fns (struct objfile *objfile)
c906108c
SS
1326{
1327 struct sym_fns *sf;
c5aa993b
JM
1328 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1329 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1330
75245b24
MS
1331 if (our_flavour == bfd_target_srec_flavour
1332 || our_flavour == bfd_target_ihex_flavour
1333 || our_flavour == bfd_target_tekhex_flavour)
1334 return; /* No symbols. */
1335
c5aa993b 1336 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1337 {
c5aa993b 1338 if (our_flavour == sf->sym_flavour)
c906108c 1339 {
c5aa993b 1340 objfile->sf = sf;
c906108c
SS
1341 return;
1342 }
1343 }
1344 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1345 bfd_get_target (objfile->obfd));
c906108c
SS
1346}
1347\f
1348/* This function runs the load command of our current target. */
1349
1350static void
fba45db2 1351load_command (char *arg, int from_tty)
c906108c
SS
1352{
1353 if (arg == NULL)
1354 arg = get_exec_file (1);
1355 target_load (arg, from_tty);
2889e661
JB
1356
1357 /* After re-loading the executable, we don't really know which
1358 overlays are mapped any more. */
1359 overlay_cache_invalid = 1;
c906108c
SS
1360}
1361
1362/* This version of "load" should be usable for any target. Currently
1363 it is just used for remote targets, not inftarg.c or core files,
1364 on the theory that only in that case is it useful.
1365
1366 Avoiding xmodem and the like seems like a win (a) because we don't have
1367 to worry about finding it, and (b) On VMS, fork() is very slow and so
1368 we don't want to run a subprocess. On the other hand, I'm not sure how
1369 performance compares. */
917317f4
JM
1370
1371static int download_write_size = 512;
1372static int validate_download = 0;
1373
e4f9b4d5
MS
1374/* Callback service function for generic_load (bfd_map_over_sections). */
1375
1376static void
1377add_section_size_callback (bfd *abfd, asection *asec, void *data)
1378{
1379 bfd_size_type *sum = data;
1380
2c500098 1381 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1382}
1383
1384/* Opaque data for load_section_callback. */
1385struct load_section_data {
1386 unsigned long load_offset;
1387 unsigned long write_count;
1388 unsigned long data_count;
1389 bfd_size_type total_size;
1390};
1391
1392/* Callback service function for generic_load (bfd_map_over_sections). */
1393
1394static void
1395load_section_callback (bfd *abfd, asection *asec, void *data)
1396{
1397 struct load_section_data *args = data;
1398
1399 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1400 {
2c500098 1401 bfd_size_type size = bfd_get_section_size (asec);
e4f9b4d5
MS
1402 if (size > 0)
1403 {
1404 char *buffer;
1405 struct cleanup *old_chain;
1406 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1407 bfd_size_type block_size;
1408 int err;
1409 const char *sect_name = bfd_get_section_name (abfd, asec);
1410 bfd_size_type sent;
1411
1412 if (download_write_size > 0 && size > download_write_size)
1413 block_size = download_write_size;
1414 else
1415 block_size = size;
1416
1417 buffer = xmalloc (size);
1418 old_chain = make_cleanup (xfree, buffer);
1419
1420 /* Is this really necessary? I guess it gives the user something
1421 to look at during a long download. */
e4f9b4d5
MS
1422 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1423 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1424
1425 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1426
1427 sent = 0;
1428 do
1429 {
1430 int len;
1431 bfd_size_type this_transfer = size - sent;
1432
1433 if (this_transfer >= block_size)
1434 this_transfer = block_size;
1435 len = target_write_memory_partial (lma, buffer,
1436 this_transfer, &err);
1437 if (err)
1438 break;
1439 if (validate_download)
1440 {
1441 /* Broken memories and broken monitors manifest
1442 themselves here when bring new computers to
1443 life. This doubles already slow downloads. */
1444 /* NOTE: cagney/1999-10-18: A more efficient
1445 implementation might add a verify_memory()
1446 method to the target vector and then use
1447 that. remote.c could implement that method
1448 using the ``qCRC'' packet. */
1449 char *check = xmalloc (len);
5417f6dc 1450 struct cleanup *verify_cleanups =
e4f9b4d5
MS
1451 make_cleanup (xfree, check);
1452
1453 if (target_read_memory (lma, check, len) != 0)
1454 error ("Download verify read failed at 0x%s",
1455 paddr (lma));
1456 if (memcmp (buffer, check, len) != 0)
1457 error ("Download verify compare failed at 0x%s",
1458 paddr (lma));
1459 do_cleanups (verify_cleanups);
1460 }
1461 args->data_count += len;
1462 lma += len;
1463 buffer += len;
1464 args->write_count += 1;
1465 sent += len;
1466 if (quit_flag
9a4105ab
AC
1467 || (deprecated_ui_load_progress_hook != NULL
1468 && deprecated_ui_load_progress_hook (sect_name, sent)))
e4f9b4d5
MS
1469 error ("Canceled the download");
1470
9a4105ab
AC
1471 if (deprecated_show_load_progress != NULL)
1472 deprecated_show_load_progress (sect_name, sent, size,
1473 args->data_count,
1474 args->total_size);
e4f9b4d5
MS
1475 }
1476 while (sent < size);
1477
1478 if (err != 0)
1479 error ("Memory access error while loading section %s.", sect_name);
1480
1481 do_cleanups (old_chain);
1482 }
1483 }
1484}
1485
c906108c 1486void
917317f4 1487generic_load (char *args, int from_tty)
c906108c 1488{
c906108c
SS
1489 asection *s;
1490 bfd *loadfile_bfd;
1491 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1492 char *filename;
1493 struct cleanup *old_cleanups;
1494 char *offptr;
e4f9b4d5
MS
1495 struct load_section_data cbdata;
1496 CORE_ADDR entry;
1497
1498 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1499 cbdata.write_count = 0; /* Number of writes needed. */
1500 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1501 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1502
1503 /* Parse the input argument - the user can specify a load offset as
1504 a second argument. */
1505 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1506 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1507 strcpy (filename, args);
1508 offptr = strchr (filename, ' ');
1509 if (offptr != NULL)
1510 {
1511 char *endptr;
ba5f2f8a 1512
e4f9b4d5 1513 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1514 if (offptr == endptr)
1515 error ("Invalid download offset:%s\n", offptr);
1516 *offptr = '\0';
1517 }
c906108c 1518 else
e4f9b4d5 1519 cbdata.load_offset = 0;
c906108c 1520
917317f4 1521 /* Open the file for loading. */
c906108c
SS
1522 loadfile_bfd = bfd_openr (filename, gnutarget);
1523 if (loadfile_bfd == NULL)
1524 {
1525 perror_with_name (filename);
1526 return;
1527 }
917317f4 1528
c906108c
SS
1529 /* FIXME: should be checking for errors from bfd_close (for one thing,
1530 on error it does not free all the storage associated with the
1531 bfd). */
5c65bbb6 1532 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1533
c5aa993b 1534 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1535 {
1536 error ("\"%s\" is not an object file: %s", filename,
1537 bfd_errmsg (bfd_get_error ()));
1538 }
c5aa993b 1539
5417f6dc 1540 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
e4f9b4d5 1541 (void *) &cbdata.total_size);
c2d11a7d 1542
c906108c
SS
1543 start_time = time (NULL);
1544
e4f9b4d5 1545 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1546
1547 end_time = time (NULL);
ba5f2f8a 1548
e4f9b4d5 1549 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1550 ui_out_text (uiout, "Start address ");
1551 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1552 ui_out_text (uiout, ", load size ");
1553 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1554 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1555 /* We were doing this in remote-mips.c, I suspect it is right
1556 for other targets too. */
1557 write_pc (entry);
c906108c 1558
7ca9f392
AC
1559 /* FIXME: are we supposed to call symbol_file_add or not? According
1560 to a comment from remote-mips.c (where a call to symbol_file_add
1561 was commented out), making the call confuses GDB if more than one
1562 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 1563 others don't (or didn't - perhaps they have all been deleted). */
c906108c 1564
5417f6dc 1565 print_transfer_performance (gdb_stdout, cbdata.data_count,
e4f9b4d5 1566 cbdata.write_count, end_time - start_time);
c906108c
SS
1567
1568 do_cleanups (old_cleanups);
1569}
1570
1571/* Report how fast the transfer went. */
1572
917317f4
JM
1573/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1574 replaced by print_transfer_performance (with a very different
1575 function signature). */
1576
c906108c 1577void
fba45db2
KB
1578report_transfer_performance (unsigned long data_count, time_t start_time,
1579 time_t end_time)
c906108c 1580{
5417f6dc 1581 print_transfer_performance (gdb_stdout, data_count,
ba5f2f8a 1582 end_time - start_time, 0);
917317f4
JM
1583}
1584
1585void
d9fcf2fb 1586print_transfer_performance (struct ui_file *stream,
917317f4
JM
1587 unsigned long data_count,
1588 unsigned long write_count,
1589 unsigned long time_count)
1590{
8b93c638
JM
1591 ui_out_text (uiout, "Transfer rate: ");
1592 if (time_count > 0)
1593 {
5417f6dc 1594 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1595 (data_count * 8) / time_count);
1596 ui_out_text (uiout, " bits/sec");
1597 }
1598 else
1599 {
ba5f2f8a 1600 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 1601 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
1602 }
1603 if (write_count > 0)
1604 {
1605 ui_out_text (uiout, ", ");
ba5f2f8a 1606 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1607 ui_out_text (uiout, " bytes/write");
1608 }
1609 ui_out_text (uiout, ".\n");
c906108c
SS
1610}
1611
1612/* This function allows the addition of incrementally linked object files.
1613 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1614/* Note: ezannoni 2000-04-13 This function/command used to have a
1615 special case syntax for the rombug target (Rombug is the boot
1616 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1617 rombug case, the user doesn't need to supply a text address,
1618 instead a call to target_link() (in target.c) would supply the
1619 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 1620
c906108c 1621static void
fba45db2 1622add_symbol_file_command (char *args, int from_tty)
c906108c 1623{
db162d44 1624 char *filename = NULL;
2df3850c 1625 int flags = OBJF_USERLOADED;
c906108c 1626 char *arg;
2acceee2 1627 int expecting_option = 0;
db162d44 1628 int section_index = 0;
2acceee2
JM
1629 int argcnt = 0;
1630 int sec_num = 0;
1631 int i;
db162d44
EZ
1632 int expecting_sec_name = 0;
1633 int expecting_sec_addr = 0;
1634
a39a16c4 1635 struct sect_opt
2acceee2 1636 {
2acceee2
JM
1637 char *name;
1638 char *value;
a39a16c4 1639 };
db162d44 1640
a39a16c4
MM
1641 struct section_addr_info *section_addrs;
1642 struct sect_opt *sect_opts = NULL;
1643 size_t num_sect_opts = 0;
3017564a 1644 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1645
a39a16c4 1646 num_sect_opts = 16;
5417f6dc 1647 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
1648 * sizeof (struct sect_opt));
1649
c906108c
SS
1650 dont_repeat ();
1651
1652 if (args == NULL)
db162d44 1653 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1654
1655 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1656 args = xstrdup (args);
c906108c 1657
2acceee2 1658 while (*args != '\000')
c906108c 1659 {
db162d44 1660 /* Any leading spaces? */
c5aa993b 1661 while (isspace (*args))
db162d44
EZ
1662 args++;
1663
1664 /* Point arg to the beginning of the argument. */
c906108c 1665 arg = args;
db162d44
EZ
1666
1667 /* Move args pointer over the argument. */
c5aa993b 1668 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1669 args++;
1670
1671 /* If there are more arguments, terminate arg and
1672 proceed past it. */
c906108c 1673 if (*args != '\000')
db162d44
EZ
1674 *args++ = '\000';
1675
1676 /* Now process the argument. */
1677 if (argcnt == 0)
c906108c 1678 {
db162d44
EZ
1679 /* The first argument is the file name. */
1680 filename = tilde_expand (arg);
3017564a 1681 make_cleanup (xfree, filename);
c906108c 1682 }
db162d44 1683 else
7a78ae4e
ND
1684 if (argcnt == 1)
1685 {
1686 /* The second argument is always the text address at which
1687 to load the program. */
1688 sect_opts[section_index].name = ".text";
1689 sect_opts[section_index].value = arg;
5417f6dc 1690 if (++section_index > num_sect_opts)
a39a16c4
MM
1691 {
1692 num_sect_opts *= 2;
5417f6dc 1693 sect_opts = ((struct sect_opt *)
a39a16c4 1694 xrealloc (sect_opts,
5417f6dc 1695 num_sect_opts
a39a16c4
MM
1696 * sizeof (struct sect_opt)));
1697 }
7a78ae4e
ND
1698 }
1699 else
1700 {
1701 /* It's an option (starting with '-') or it's an argument
1702 to an option */
1703
1704 if (*arg == '-')
1705 {
78a4a9b9
AC
1706 if (strcmp (arg, "-readnow") == 0)
1707 flags |= OBJF_READNOW;
1708 else if (strcmp (arg, "-s") == 0)
1709 {
1710 expecting_sec_name = 1;
1711 expecting_sec_addr = 1;
1712 }
7a78ae4e
ND
1713 }
1714 else
1715 {
1716 if (expecting_sec_name)
db162d44 1717 {
7a78ae4e
ND
1718 sect_opts[section_index].name = arg;
1719 expecting_sec_name = 0;
db162d44
EZ
1720 }
1721 else
7a78ae4e
ND
1722 if (expecting_sec_addr)
1723 {
1724 sect_opts[section_index].value = arg;
1725 expecting_sec_addr = 0;
5417f6dc 1726 if (++section_index > num_sect_opts)
a39a16c4
MM
1727 {
1728 num_sect_opts *= 2;
5417f6dc 1729 sect_opts = ((struct sect_opt *)
a39a16c4 1730 xrealloc (sect_opts,
5417f6dc 1731 num_sect_opts
a39a16c4
MM
1732 * sizeof (struct sect_opt)));
1733 }
7a78ae4e
ND
1734 }
1735 else
1736 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1737 }
1738 }
db162d44 1739 argcnt++;
c906108c 1740 }
c906108c 1741
db162d44
EZ
1742 /* Print the prompt for the query below. And save the arguments into
1743 a sect_addr_info structure to be passed around to other
1744 functions. We have to split this up into separate print
1745 statements because local_hex_string returns a local static
1746 string. */
5417f6dc 1747
46f45a4a 1748 printf_unfiltered ("add symbol table from file \"%s\" at\n", filename);
a39a16c4
MM
1749 section_addrs = alloc_section_addr_info (section_index);
1750 make_cleanup (xfree, section_addrs);
db162d44 1751 for (i = 0; i < section_index; i++)
c906108c 1752 {
db162d44
EZ
1753 CORE_ADDR addr;
1754 char *val = sect_opts[i].value;
1755 char *sec = sect_opts[i].name;
5417f6dc 1756
ae822768 1757 addr = parse_and_eval_address (val);
db162d44 1758
db162d44
EZ
1759 /* Here we store the section offsets in the order they were
1760 entered on the command line. */
a39a16c4
MM
1761 section_addrs->other[sec_num].name = sec;
1762 section_addrs->other[sec_num].addr = addr;
46f45a4a 1763 printf_unfiltered ("\t%s_addr = %s\n",
5417f6dc 1764 sec,
db162d44
EZ
1765 local_hex_string ((unsigned long)addr));
1766 sec_num++;
1767
5417f6dc 1768 /* The object's sections are initialized when a
db162d44 1769 call is made to build_objfile_section_table (objfile).
5417f6dc 1770 This happens in reread_symbols.
db162d44
EZ
1771 At this point, we don't know what file type this is,
1772 so we can't determine what section names are valid. */
2acceee2 1773 }
db162d44 1774
2acceee2 1775 if (from_tty && (!query ("%s", "")))
c906108c
SS
1776 error ("Not confirmed.");
1777
a39a16c4 1778 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
1779
1780 /* Getting new symbols may change our opinion about what is
1781 frameless. */
1782 reinit_frame_cache ();
db162d44 1783 do_cleanups (my_cleanups);
c906108c
SS
1784}
1785\f
1786static void
fba45db2 1787add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1788{
1789#ifdef ADD_SHARED_SYMBOL_FILES
1790 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1791#else
1792 error ("This command is not available in this configuration of GDB.");
c5aa993b 1793#endif
c906108c
SS
1794}
1795\f
1796/* Re-read symbols if a symbol-file has changed. */
1797void
fba45db2 1798reread_symbols (void)
c906108c
SS
1799{
1800 struct objfile *objfile;
1801 long new_modtime;
1802 int reread_one = 0;
1803 struct stat new_statbuf;
1804 int res;
1805
1806 /* With the addition of shared libraries, this should be modified,
1807 the load time should be saved in the partial symbol tables, since
1808 different tables may come from different source files. FIXME.
1809 This routine should then walk down each partial symbol table
1810 and see if the symbol table that it originates from has been changed */
1811
c5aa993b
JM
1812 for (objfile = object_files; objfile; objfile = objfile->next)
1813 {
1814 if (objfile->obfd)
1815 {
52d16ba8 1816#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
1817 /* If this object is from a shared library, then you should
1818 stat on the library name, not member name. */
c906108c 1819
c5aa993b
JM
1820 if (objfile->obfd->my_archive)
1821 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1822 else
c906108c 1823#endif
c5aa993b
JM
1824 res = stat (objfile->name, &new_statbuf);
1825 if (res != 0)
c906108c 1826 {
c5aa993b 1827 /* FIXME, should use print_sys_errmsg but it's not filtered. */
46f45a4a 1828 printf_unfiltered ("`%s' has disappeared; keeping its symbols.\n",
c5aa993b
JM
1829 objfile->name);
1830 continue;
c906108c 1831 }
c5aa993b
JM
1832 new_modtime = new_statbuf.st_mtime;
1833 if (new_modtime != objfile->mtime)
c906108c 1834 {
c5aa993b
JM
1835 struct cleanup *old_cleanups;
1836 struct section_offsets *offsets;
1837 int num_offsets;
c5aa993b
JM
1838 char *obfd_filename;
1839
46f45a4a 1840 printf_unfiltered ("`%s' has changed; re-reading symbols.\n",
c5aa993b
JM
1841 objfile->name);
1842
1843 /* There are various functions like symbol_file_add,
1844 symfile_bfd_open, syms_from_objfile, etc., which might
1845 appear to do what we want. But they have various other
1846 effects which we *don't* want. So we just do stuff
1847 ourselves. We don't worry about mapped files (for one thing,
1848 any mapped file will be out of date). */
1849
1850 /* If we get an error, blow away this objfile (not sure if
1851 that is the correct response for things like shared
1852 libraries). */
74b7792f 1853 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1854 /* We need to do this whenever any symbols go away. */
74b7792f 1855 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1856
1857 /* Clean up any state BFD has sitting around. We don't need
1858 to close the descriptor but BFD lacks a way of closing the
1859 BFD without closing the descriptor. */
1860 obfd_filename = bfd_get_filename (objfile->obfd);
1861 if (!bfd_close (objfile->obfd))
1862 error ("Can't close BFD for %s: %s", objfile->name,
1863 bfd_errmsg (bfd_get_error ()));
1864 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1865 if (objfile->obfd == NULL)
1866 error ("Can't open %s to read symbols.", objfile->name);
1867 /* bfd_openr sets cacheable to true, which is what we want. */
1868 if (!bfd_check_format (objfile->obfd, bfd_object))
1869 error ("Can't read symbols from %s: %s.", objfile->name,
1870 bfd_errmsg (bfd_get_error ()));
1871
1872 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 1873 objfile_obstack. */
c5aa993b 1874 num_offsets = objfile->num_sections;
5417f6dc 1875 offsets = ((struct section_offsets *)
a39a16c4 1876 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 1877 memcpy (offsets, objfile->section_offsets,
a39a16c4 1878 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
1879
1880 /* Nuke all the state that we will re-read. Much of the following
1881 code which sets things to NULL really is necessary to tell
1882 other parts of GDB that there is nothing currently there. */
1883
1884 /* FIXME: Do we have to free a whole linked list, or is this
1885 enough? */
1886 if (objfile->global_psymbols.list)
2dc74dc1 1887 xfree (objfile->global_psymbols.list);
c5aa993b
JM
1888 memset (&objfile->global_psymbols, 0,
1889 sizeof (objfile->global_psymbols));
1890 if (objfile->static_psymbols.list)
2dc74dc1 1891 xfree (objfile->static_psymbols.list);
c5aa993b
JM
1892 memset (&objfile->static_psymbols, 0,
1893 sizeof (objfile->static_psymbols));
1894
1895 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1896 bcache_xfree (objfile->psymbol_cache);
1897 objfile->psymbol_cache = bcache_xmalloc ();
1898 bcache_xfree (objfile->macro_cache);
1899 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
1900 if (objfile->demangled_names_hash != NULL)
1901 {
1902 htab_delete (objfile->demangled_names_hash);
1903 objfile->demangled_names_hash = NULL;
1904 }
b99607ea 1905 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
1906 objfile->sections = NULL;
1907 objfile->symtabs = NULL;
1908 objfile->psymtabs = NULL;
1909 objfile->free_psymtabs = NULL;
a1b8c067 1910 objfile->cp_namespace_symtab = NULL;
c5aa993b 1911 objfile->msymbols = NULL;
29239a8f 1912 objfile->sym_private = NULL;
c5aa993b 1913 objfile->minimal_symbol_count = 0;
0a83117a
MS
1914 memset (&objfile->msymbol_hash, 0,
1915 sizeof (objfile->msymbol_hash));
1916 memset (&objfile->msymbol_demangled_hash, 0,
1917 sizeof (objfile->msymbol_demangled_hash));
c5aa993b 1918 objfile->fundamental_types = NULL;
7b097ae3 1919 clear_objfile_data (objfile);
c5aa993b
JM
1920 if (objfile->sf != NULL)
1921 {
1922 (*objfile->sf->sym_finish) (objfile);
1923 }
1924
1925 /* We never make this a mapped file. */
1926 objfile->md = NULL;
af5f3db6
AC
1927 objfile->psymbol_cache = bcache_xmalloc ();
1928 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
1929 /* obstack_init also initializes the obstack so it is
1930 empty. We could use obstack_specify_allocation but
1931 gdb_obstack.h specifies the alloc/dealloc
1932 functions. */
1933 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
1934 if (build_objfile_section_table (objfile))
1935 {
1936 error ("Can't find the file sections in `%s': %s",
1937 objfile->name, bfd_errmsg (bfd_get_error ()));
1938 }
15831452 1939 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
1940
1941 /* We use the same section offsets as from last time. I'm not
1942 sure whether that is always correct for shared libraries. */
1943 objfile->section_offsets = (struct section_offsets *)
5417f6dc 1944 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 1945 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 1946 memcpy (objfile->section_offsets, offsets,
a39a16c4 1947 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
1948 objfile->num_sections = num_offsets;
1949
1950 /* What the hell is sym_new_init for, anyway? The concept of
1951 distinguishing between the main file and additional files
1952 in this way seems rather dubious. */
1953 if (objfile == symfile_objfile)
1954 {
1955 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
1956 }
1957
1958 (*objfile->sf->sym_init) (objfile);
b9caf505 1959 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
1960 /* The "mainline" parameter is a hideous hack; I think leaving it
1961 zero is OK since dbxread.c also does what it needs to do if
1962 objfile->global_psymbols.size is 0. */
96baa820 1963 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1964 if (!have_partial_symbols () && !have_full_symbols ())
1965 {
1966 wrap_here ("");
46f45a4a 1967 printf_unfiltered ("(no debugging symbols found)\n");
c5aa993b
JM
1968 wrap_here ("");
1969 }
1970 objfile->flags |= OBJF_SYMS;
1971
1972 /* We're done reading the symbol file; finish off complaints. */
b9caf505 1973 clear_complaints (&symfile_complaints, 0, 1);
c906108c 1974
c5aa993b
JM
1975 /* Getting new symbols may change our opinion about what is
1976 frameless. */
c906108c 1977
c5aa993b 1978 reinit_frame_cache ();
c906108c 1979
c5aa993b
JM
1980 /* Discard cleanups as symbol reading was successful. */
1981 discard_cleanups (old_cleanups);
c906108c 1982
c5aa993b
JM
1983 /* If the mtime has changed between the time we set new_modtime
1984 and now, we *want* this to be out of date, so don't call stat
1985 again now. */
1986 objfile->mtime = new_modtime;
1987 reread_one = 1;
5b5d99cf 1988 reread_separate_symbols (objfile);
c5aa993b 1989 }
c906108c
SS
1990 }
1991 }
c906108c
SS
1992
1993 if (reread_one)
1994 clear_symtab_users ();
1995}
5b5d99cf
JB
1996
1997
1998/* Handle separate debug info for OBJFILE, which has just been
1999 re-read:
2000 - If we had separate debug info before, but now we don't, get rid
2001 of the separated objfile.
2002 - If we didn't have separated debug info before, but now we do,
2003 read in the new separated debug info file.
2004 - If the debug link points to a different file, toss the old one
2005 and read the new one.
2006 This function does *not* handle the case where objfile is still
2007 using the same separate debug info file, but that file's timestamp
2008 has changed. That case should be handled by the loop in
2009 reread_symbols already. */
2010static void
2011reread_separate_symbols (struct objfile *objfile)
2012{
2013 char *debug_file;
2014 unsigned long crc32;
2015
2016 /* Does the updated objfile's debug info live in a
2017 separate file? */
2018 debug_file = find_separate_debug_file (objfile);
2019
2020 if (objfile->separate_debug_objfile)
2021 {
2022 /* There are two cases where we need to get rid of
2023 the old separated debug info objfile:
2024 - if the new primary objfile doesn't have
2025 separated debug info, or
2026 - if the new primary objfile has separate debug
2027 info, but it's under a different filename.
5417f6dc 2028
5b5d99cf
JB
2029 If the old and new objfiles both have separate
2030 debug info, under the same filename, then we're
2031 okay --- if the separated file's contents have
2032 changed, we will have caught that when we
2033 visited it in this function's outermost
2034 loop. */
2035 if (! debug_file
2036 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2037 free_objfile (objfile->separate_debug_objfile);
2038 }
2039
2040 /* If the new objfile has separate debug info, and we
2041 haven't loaded it already, do so now. */
2042 if (debug_file
2043 && ! objfile->separate_debug_objfile)
2044 {
2045 /* Use the same section offset table as objfile itself.
2046 Preserve the flags from objfile that make sense. */
2047 objfile->separate_debug_objfile
2048 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2049 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2050 info_verbose, /* from_tty: Don't override the default. */
2051 0, /* No addr table. */
2052 objfile->section_offsets, objfile->num_sections,
2053 0, /* Not mainline. See comments about this above. */
78a4a9b9 2054 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2055 | OBJF_USERLOADED)));
2056 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2057 = objfile;
2058 }
2059}
2060
2061
c906108c
SS
2062\f
2063
c5aa993b
JM
2064
2065typedef struct
2066{
2067 char *ext;
c906108c 2068 enum language lang;
c5aa993b
JM
2069}
2070filename_language;
c906108c 2071
c5aa993b 2072static filename_language *filename_language_table;
c906108c
SS
2073static int fl_table_size, fl_table_next;
2074
2075static void
fba45db2 2076add_filename_language (char *ext, enum language lang)
c906108c
SS
2077{
2078 if (fl_table_next >= fl_table_size)
2079 {
2080 fl_table_size += 10;
5417f6dc 2081 filename_language_table =
25bf3106
PM
2082 xrealloc (filename_language_table,
2083 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2084 }
2085
4fcf66da 2086 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2087 filename_language_table[fl_table_next].lang = lang;
2088 fl_table_next++;
2089}
2090
2091static char *ext_args;
2092
2093static void
fba45db2 2094set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2095{
2096 int i;
2097 char *cp = ext_args;
2098 enum language lang;
2099
2100 /* First arg is filename extension, starting with '.' */
2101 if (*cp != '.')
2102 error ("'%s': Filename extension must begin with '.'", ext_args);
2103
2104 /* Find end of first arg. */
c5aa993b 2105 while (*cp && !isspace (*cp))
c906108c
SS
2106 cp++;
2107
2108 if (*cp == '\0')
2109 error ("'%s': two arguments required -- filename extension and language",
2110 ext_args);
2111
2112 /* Null-terminate first arg */
c5aa993b 2113 *cp++ = '\0';
c906108c
SS
2114
2115 /* Find beginning of second arg, which should be a source language. */
2116 while (*cp && isspace (*cp))
2117 cp++;
2118
2119 if (*cp == '\0')
2120 error ("'%s': two arguments required -- filename extension and language",
2121 ext_args);
2122
2123 /* Lookup the language from among those we know. */
2124 lang = language_enum (cp);
2125
2126 /* Now lookup the filename extension: do we already know it? */
2127 for (i = 0; i < fl_table_next; i++)
2128 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2129 break;
2130
2131 if (i >= fl_table_next)
2132 {
2133 /* new file extension */
2134 add_filename_language (ext_args, lang);
2135 }
2136 else
2137 {
2138 /* redefining a previously known filename extension */
2139
2140 /* if (from_tty) */
2141 /* query ("Really make files of type %s '%s'?", */
2142 /* ext_args, language_str (lang)); */
2143
b8c9b27d 2144 xfree (filename_language_table[i].ext);
4fcf66da 2145 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2146 filename_language_table[i].lang = lang;
2147 }
2148}
2149
2150static void
fba45db2 2151info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2152{
2153 int i;
2154
2155 printf_filtered ("Filename extensions and the languages they represent:");
2156 printf_filtered ("\n\n");
2157 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2158 printf_filtered ("\t%s\t- %s\n",
2159 filename_language_table[i].ext,
c906108c
SS
2160 language_str (filename_language_table[i].lang));
2161}
2162
2163static void
fba45db2 2164init_filename_language_table (void)
c906108c
SS
2165{
2166 if (fl_table_size == 0) /* protect against repetition */
2167 {
2168 fl_table_size = 20;
2169 fl_table_next = 0;
c5aa993b 2170 filename_language_table =
c906108c 2171 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2172 add_filename_language (".c", language_c);
2173 add_filename_language (".C", language_cplus);
2174 add_filename_language (".cc", language_cplus);
2175 add_filename_language (".cp", language_cplus);
2176 add_filename_language (".cpp", language_cplus);
2177 add_filename_language (".cxx", language_cplus);
2178 add_filename_language (".c++", language_cplus);
2179 add_filename_language (".java", language_java);
c906108c 2180 add_filename_language (".class", language_java);
da2cf7e0 2181 add_filename_language (".m", language_objc);
c5aa993b
JM
2182 add_filename_language (".f", language_fortran);
2183 add_filename_language (".F", language_fortran);
2184 add_filename_language (".s", language_asm);
2185 add_filename_language (".S", language_asm);
c6fd39cd
PM
2186 add_filename_language (".pas", language_pascal);
2187 add_filename_language (".p", language_pascal);
2188 add_filename_language (".pp", language_pascal);
c906108c
SS
2189 }
2190}
2191
2192enum language
fba45db2 2193deduce_language_from_filename (char *filename)
c906108c
SS
2194{
2195 int i;
2196 char *cp;
2197
2198 if (filename != NULL)
2199 if ((cp = strrchr (filename, '.')) != NULL)
2200 for (i = 0; i < fl_table_next; i++)
2201 if (strcmp (cp, filename_language_table[i].ext) == 0)
2202 return filename_language_table[i].lang;
2203
2204 return language_unknown;
2205}
2206\f
2207/* allocate_symtab:
2208
2209 Allocate and partly initialize a new symbol table. Return a pointer
2210 to it. error() if no space.
2211
2212 Caller must set these fields:
c5aa993b
JM
2213 LINETABLE(symtab)
2214 symtab->blockvector
2215 symtab->dirname
2216 symtab->free_code
2217 symtab->free_ptr
2218 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2219 */
2220
2221struct symtab *
fba45db2 2222allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2223{
52f0bd74 2224 struct symtab *symtab;
c906108c
SS
2225
2226 symtab = (struct symtab *)
4a146b47 2227 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2228 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2229 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2230 &objfile->objfile_obstack);
c5aa993b
JM
2231 symtab->fullname = NULL;
2232 symtab->language = deduce_language_from_filename (filename);
2233 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2234 &objfile->objfile_obstack);
c906108c
SS
2235
2236 /* Hook it to the objfile it comes from */
2237
c5aa993b
JM
2238 symtab->objfile = objfile;
2239 symtab->next = objfile->symtabs;
2240 objfile->symtabs = symtab;
c906108c
SS
2241
2242 /* FIXME: This should go away. It is only defined for the Z8000,
2243 and the Z8000 definition of this macro doesn't have anything to
2244 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2245 here for convenience. */
2246#ifdef INIT_EXTRA_SYMTAB_INFO
2247 INIT_EXTRA_SYMTAB_INFO (symtab);
2248#endif
2249
2250 return (symtab);
2251}
2252
2253struct partial_symtab *
fba45db2 2254allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2255{
2256 struct partial_symtab *psymtab;
2257
c5aa993b 2258 if (objfile->free_psymtabs)
c906108c 2259 {
c5aa993b
JM
2260 psymtab = objfile->free_psymtabs;
2261 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2262 }
2263 else
2264 psymtab = (struct partial_symtab *)
8b92e4d5 2265 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2266 sizeof (struct partial_symtab));
2267
2268 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2269 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2270 &objfile->objfile_obstack);
c5aa993b 2271 psymtab->symtab = NULL;
c906108c
SS
2272
2273 /* Prepend it to the psymtab list for the objfile it belongs to.
2274 Psymtabs are searched in most recent inserted -> least recent
2275 inserted order. */
2276
c5aa993b
JM
2277 psymtab->objfile = objfile;
2278 psymtab->next = objfile->psymtabs;
2279 objfile->psymtabs = psymtab;
c906108c
SS
2280#if 0
2281 {
2282 struct partial_symtab **prev_pst;
c5aa993b
JM
2283 psymtab->objfile = objfile;
2284 psymtab->next = NULL;
2285 prev_pst = &(objfile->psymtabs);
c906108c 2286 while ((*prev_pst) != NULL)
c5aa993b 2287 prev_pst = &((*prev_pst)->next);
c906108c 2288 (*prev_pst) = psymtab;
c5aa993b 2289 }
c906108c 2290#endif
c5aa993b 2291
c906108c
SS
2292 return (psymtab);
2293}
2294
2295void
fba45db2 2296discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2297{
2298 struct partial_symtab **prev_pst;
2299
2300 /* From dbxread.c:
2301 Empty psymtabs happen as a result of header files which don't
2302 have any symbols in them. There can be a lot of them. But this
2303 check is wrong, in that a psymtab with N_SLINE entries but
2304 nothing else is not empty, but we don't realize that. Fixing
2305 that without slowing things down might be tricky. */
2306
2307 /* First, snip it out of the psymtab chain */
2308
2309 prev_pst = &(pst->objfile->psymtabs);
2310 while ((*prev_pst) != pst)
2311 prev_pst = &((*prev_pst)->next);
2312 (*prev_pst) = pst->next;
2313
2314 /* Next, put it on a free list for recycling */
2315
2316 pst->next = pst->objfile->free_psymtabs;
2317 pst->objfile->free_psymtabs = pst;
2318}
c906108c 2319\f
c5aa993b 2320
c906108c
SS
2321/* Reset all data structures in gdb which may contain references to symbol
2322 table data. */
2323
2324void
fba45db2 2325clear_symtab_users (void)
c906108c
SS
2326{
2327 /* Someday, we should do better than this, by only blowing away
2328 the things that really need to be blown. */
2329 clear_value_history ();
2330 clear_displays ();
2331 clear_internalvars ();
2332 breakpoint_re_set ();
2333 set_default_breakpoint (0, 0, 0, 0);
0378c332 2334 clear_current_source_symtab_and_line ();
c906108c 2335 clear_pc_function_cache ();
9a4105ab
AC
2336 if (deprecated_target_new_objfile_hook)
2337 deprecated_target_new_objfile_hook (NULL);
c906108c
SS
2338}
2339
74b7792f
AC
2340static void
2341clear_symtab_users_cleanup (void *ignore)
2342{
2343 clear_symtab_users ();
2344}
2345
c906108c
SS
2346/* clear_symtab_users_once:
2347
2348 This function is run after symbol reading, or from a cleanup.
2349 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2350 has been blown away, but the other GDB data structures that may
c906108c
SS
2351 reference it have not yet been cleared or re-directed. (The old
2352 symtab was zapped, and the cleanup queued, in free_named_symtab()
2353 below.)
2354
2355 This function can be queued N times as a cleanup, or called
2356 directly; it will do all the work the first time, and then will be a
2357 no-op until the next time it is queued. This works by bumping a
2358 counter at queueing time. Much later when the cleanup is run, or at
2359 the end of symbol processing (in case the cleanup is discarded), if
2360 the queued count is greater than the "done-count", we do the work
2361 and set the done-count to the queued count. If the queued count is
2362 less than or equal to the done-count, we just ignore the call. This
2363 is needed because reading a single .o file will often replace many
2364 symtabs (one per .h file, for example), and we don't want to reset
2365 the breakpoints N times in the user's face.
2366
2367 The reason we both queue a cleanup, and call it directly after symbol
2368 reading, is because the cleanup protects us in case of errors, but is
2369 discarded if symbol reading is successful. */
2370
2371#if 0
2372/* FIXME: As free_named_symtabs is currently a big noop this function
2373 is no longer needed. */
a14ed312 2374static void clear_symtab_users_once (void);
c906108c
SS
2375
2376static int clear_symtab_users_queued;
2377static int clear_symtab_users_done;
2378
2379static void
fba45db2 2380clear_symtab_users_once (void)
c906108c
SS
2381{
2382 /* Enforce once-per-`do_cleanups'-semantics */
2383 if (clear_symtab_users_queued <= clear_symtab_users_done)
2384 return;
2385 clear_symtab_users_done = clear_symtab_users_queued;
2386
2387 clear_symtab_users ();
2388}
2389#endif
2390
2391/* Delete the specified psymtab, and any others that reference it. */
2392
2393static void
fba45db2 2394cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2395{
2396 struct partial_symtab *ps, *pprev = NULL;
2397 int i;
2398
2399 /* Find its previous psymtab in the chain */
c5aa993b
JM
2400 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2401 {
2402 if (ps == pst)
2403 break;
2404 pprev = ps;
2405 }
c906108c 2406
c5aa993b
JM
2407 if (ps)
2408 {
2409 /* Unhook it from the chain. */
2410 if (ps == pst->objfile->psymtabs)
2411 pst->objfile->psymtabs = ps->next;
2412 else
2413 pprev->next = ps->next;
2414
2415 /* FIXME, we can't conveniently deallocate the entries in the
2416 partial_symbol lists (global_psymbols/static_psymbols) that
2417 this psymtab points to. These just take up space until all
2418 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2419 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2420
2421 /* We need to cashier any psymtab that has this one as a dependency... */
2422 again:
2423 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2424 {
2425 for (i = 0; i < ps->number_of_dependencies; i++)
2426 {
2427 if (ps->dependencies[i] == pst)
2428 {
2429 cashier_psymtab (ps);
2430 goto again; /* Must restart, chain has been munged. */
2431 }
2432 }
c906108c 2433 }
c906108c 2434 }
c906108c
SS
2435}
2436
2437/* If a symtab or psymtab for filename NAME is found, free it along
2438 with any dependent breakpoints, displays, etc.
2439 Used when loading new versions of object modules with the "add-file"
2440 command. This is only called on the top-level symtab or psymtab's name;
2441 it is not called for subsidiary files such as .h files.
2442
2443 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2444 FIXME. The return value appears to never be used.
c906108c
SS
2445
2446 FIXME. I think this is not the best way to do this. We should
2447 work on being gentler to the environment while still cleaning up
2448 all stray pointers into the freed symtab. */
2449
2450int
fba45db2 2451free_named_symtabs (char *name)
c906108c
SS
2452{
2453#if 0
2454 /* FIXME: With the new method of each objfile having it's own
2455 psymtab list, this function needs serious rethinking. In particular,
2456 why was it ever necessary to toss psymtabs with specific compilation
2457 unit filenames, as opposed to all psymtabs from a particular symbol
2458 file? -- fnf
2459 Well, the answer is that some systems permit reloading of particular
2460 compilation units. We want to blow away any old info about these
2461 compilation units, regardless of which objfiles they arrived in. --gnu. */
2462
52f0bd74
AC
2463 struct symtab *s;
2464 struct symtab *prev;
2465 struct partial_symtab *ps;
c906108c
SS
2466 struct blockvector *bv;
2467 int blewit = 0;
2468
2469 /* We only wack things if the symbol-reload switch is set. */
2470 if (!symbol_reloading)
2471 return 0;
2472
2473 /* Some symbol formats have trouble providing file names... */
2474 if (name == 0 || *name == '\0')
2475 return 0;
2476
2477 /* Look for a psymtab with the specified name. */
2478
2479again2:
c5aa993b
JM
2480 for (ps = partial_symtab_list; ps; ps = ps->next)
2481 {
6314a349 2482 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2483 {
2484 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2485 goto again2; /* Must restart, chain has been munged */
2486 }
c906108c 2487 }
c906108c
SS
2488
2489 /* Look for a symtab with the specified name. */
2490
2491 for (s = symtab_list; s; s = s->next)
2492 {
6314a349 2493 if (strcmp (name, s->filename) == 0)
c906108c
SS
2494 break;
2495 prev = s;
2496 }
2497
2498 if (s)
2499 {
2500 if (s == symtab_list)
2501 symtab_list = s->next;
2502 else
2503 prev->next = s->next;
2504
2505 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2506 or not they depend on the symtab being freed. This should be
2507 changed so that only those data structures affected are deleted. */
c906108c
SS
2508
2509 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2510 This test is necessary due to a bug in "dbxread.c" that
2511 causes empty symtabs to be created for N_SO symbols that
2512 contain the pathname of the object file. (This problem
2513 has been fixed in GDB 3.9x). */
c906108c
SS
2514
2515 bv = BLOCKVECTOR (s);
2516 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2517 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2518 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2519 {
b9caf505
AC
2520 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2521 name);
c906108c
SS
2522 clear_symtab_users_queued++;
2523 make_cleanup (clear_symtab_users_once, 0);
2524 blewit = 1;
c5aa993b
JM
2525 }
2526 else
2527 {
b9caf505
AC
2528 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2529 name);
c906108c
SS
2530 }
2531
2532 free_symtab (s);
2533 }
2534 else
2535 {
2536 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2537 even though no symtab was found, since the file might have
2538 been compiled without debugging, and hence not be associated
2539 with a symtab. In order to handle this correctly, we would need
2540 to keep a list of text address ranges for undebuggable files.
2541 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2542 ;
2543 }
2544
2545 /* FIXME, what about the minimal symbol table? */
2546 return blewit;
2547#else
2548 return (0);
2549#endif
2550}
2551\f
2552/* Allocate and partially fill a partial symtab. It will be
2553 completely filled at the end of the symbol list.
2554
d4f3574e 2555 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2556
2557struct partial_symtab *
fba45db2
KB
2558start_psymtab_common (struct objfile *objfile,
2559 struct section_offsets *section_offsets, char *filename,
2560 CORE_ADDR textlow, struct partial_symbol **global_syms,
2561 struct partial_symbol **static_syms)
c906108c
SS
2562{
2563 struct partial_symtab *psymtab;
2564
2565 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2566 psymtab->section_offsets = section_offsets;
2567 psymtab->textlow = textlow;
2568 psymtab->texthigh = psymtab->textlow; /* default */
2569 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2570 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2571 return (psymtab);
2572}
2573\f
2574/* Add a symbol with a long value to a psymtab.
5417f6dc 2575 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
2576 Return the partial symbol that has been added. */
2577
2578/* NOTE: carlton/2003-09-11: The reason why we return the partial
2579 symbol is so that callers can get access to the symbol's demangled
2580 name, which they don't have any cheap way to determine otherwise.
2581 (Currenly, dwarf2read.c is the only file who uses that information,
2582 though it's possible that other readers might in the future.)
2583 Elena wasn't thrilled about that, and I don't blame her, but we
2584 couldn't come up with a better way to get that information. If
2585 it's needed in other situations, we could consider breaking up
2586 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2587 cache. */
2588
2589const struct partial_symbol *
176620f1 2590add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
2591 enum address_class class,
2592 struct psymbol_allocation_list *list, long val, /* Value as a long */
2593 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2594 enum language language, struct objfile *objfile)
c906108c 2595{
52f0bd74 2596 struct partial_symbol *psym;
c906108c
SS
2597 char *buf = alloca (namelength + 1);
2598 /* psymbol is static so that there will be no uninitialized gaps in the
2599 structure which might contain random data, causing cache misses in
2600 bcache. */
2601 static struct partial_symbol psymbol;
2602
2603 /* Create local copy of the partial symbol */
2604 memcpy (buf, name, namelength);
2605 buf[namelength] = '\0';
c906108c
SS
2606 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2607 if (val != 0)
2608 {
2609 SYMBOL_VALUE (&psymbol) = val;
2610 }
2611 else
2612 {
2613 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2614 }
2615 SYMBOL_SECTION (&psymbol) = 0;
2616 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2617 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 2618 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
2619
2620 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
2621
2622 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2623 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2624 objfile->psymbol_cache);
c906108c
SS
2625
2626 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2627 if (list->next >= list->list + list->size)
2628 {
2629 extend_psymbol_list (list, objfile);
2630 }
2631 *list->next++ = psym;
2632 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
2633
2634 return psym;
c906108c
SS
2635}
2636
2637/* Add a symbol with a long value to a psymtab. This differs from
2638 * add_psymbol_to_list above in taking both a mangled and a demangled
2639 * name. */
2640
2641void
fba45db2 2642add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
176620f1 2643 int dem_namelength, domain_enum domain,
fba45db2
KB
2644 enum address_class class,
2645 struct psymbol_allocation_list *list, long val, /* Value as a long */
2646 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2647 enum language language,
2648 struct objfile *objfile)
c906108c 2649{
52f0bd74 2650 struct partial_symbol *psym;
c906108c
SS
2651 char *buf = alloca (namelength + 1);
2652 /* psymbol is static so that there will be no uninitialized gaps in the
2653 structure which might contain random data, causing cache misses in
2654 bcache. */
2655 static struct partial_symbol psymbol;
2656
2657 /* Create local copy of the partial symbol */
2658
2659 memcpy (buf, name, namelength);
2660 buf[namelength] = '\0';
3a16a68c
AC
2661 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2662 objfile->psymbol_cache);
c906108c
SS
2663
2664 buf = alloca (dem_namelength + 1);
2665 memcpy (buf, dem_name, dem_namelength);
2666 buf[dem_namelength] = '\0';
c5aa993b 2667
c906108c
SS
2668 switch (language)
2669 {
c5aa993b
JM
2670 case language_c:
2671 case language_cplus:
2672 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
3a16a68c 2673 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2674 break;
c906108c
SS
2675 /* FIXME What should be done for the default case? Ignoring for now. */
2676 }
2677
2678 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2679 if (val != 0)
2680 {
2681 SYMBOL_VALUE (&psymbol) = val;
2682 }
2683 else
2684 {
2685 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2686 }
2687 SYMBOL_SECTION (&psymbol) = 0;
2688 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 2689 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c
SS
2690 PSYMBOL_CLASS (&psymbol) = class;
2691 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2692
2693 /* Stash the partial symbol away in the cache */
3a16a68c
AC
2694 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2695 objfile->psymbol_cache);
c906108c
SS
2696
2697 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2698 if (list->next >= list->list + list->size)
2699 {
2700 extend_psymbol_list (list, objfile);
2701 }
2702 *list->next++ = psym;
2703 OBJSTAT (objfile, n_psyms++);
2704}
2705
2706/* Initialize storage for partial symbols. */
2707
2708void
fba45db2 2709init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2710{
2711 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2712
2713 if (objfile->global_psymbols.list)
c906108c 2714 {
2dc74dc1 2715 xfree (objfile->global_psymbols.list);
c906108c 2716 }
c5aa993b 2717 if (objfile->static_psymbols.list)
c906108c 2718 {
2dc74dc1 2719 xfree (objfile->static_psymbols.list);
c906108c 2720 }
c5aa993b 2721
c906108c
SS
2722 /* Current best guess is that approximately a twentieth
2723 of the total symbols (in a debugging file) are global or static
2724 oriented symbols */
c906108c 2725
c5aa993b
JM
2726 objfile->global_psymbols.size = total_symbols / 10;
2727 objfile->static_psymbols.size = total_symbols / 10;
2728
2729 if (objfile->global_psymbols.size > 0)
c906108c 2730 {
c5aa993b
JM
2731 objfile->global_psymbols.next =
2732 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
2733 xmalloc ((objfile->global_psymbols.size
2734 * sizeof (struct partial_symbol *)));
c906108c 2735 }
c5aa993b 2736 if (objfile->static_psymbols.size > 0)
c906108c 2737 {
c5aa993b
JM
2738 objfile->static_psymbols.next =
2739 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
2740 xmalloc ((objfile->static_psymbols.size
2741 * sizeof (struct partial_symbol *)));
c906108c
SS
2742 }
2743}
2744
2745/* OVERLAYS:
2746 The following code implements an abstraction for debugging overlay sections.
2747
2748 The target model is as follows:
2749 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2750 same VMA, each with its own unique LMA (or load address).
c906108c 2751 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2752 sections, one by one, from the load address into the VMA address.
5417f6dc 2753 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2754 sections should be considered to be mapped from the VMA to the LMA.
2755 This information is used for symbol lookup, and memory read/write.
5417f6dc 2756 For instance, if a section has been mapped then its contents
c5aa993b 2757 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2758
2759 Two levels of debugger support for overlays are available. One is
2760 "manual", in which the debugger relies on the user to tell it which
2761 overlays are currently mapped. This level of support is
2762 implemented entirely in the core debugger, and the information about
2763 whether a section is mapped is kept in the objfile->obj_section table.
2764
2765 The second level of support is "automatic", and is only available if
2766 the target-specific code provides functionality to read the target's
2767 overlay mapping table, and translate its contents for the debugger
2768 (by updating the mapped state information in the obj_section tables).
2769
2770 The interface is as follows:
c5aa993b
JM
2771 User commands:
2772 overlay map <name> -- tell gdb to consider this section mapped
2773 overlay unmap <name> -- tell gdb to consider this section unmapped
2774 overlay list -- list the sections that GDB thinks are mapped
2775 overlay read-target -- get the target's state of what's mapped
2776 overlay off/manual/auto -- set overlay debugging state
2777 Functional interface:
2778 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2779 section, return that section.
5417f6dc 2780 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
2781 the pc, either in its VMA or its LMA
2782 overlay_is_mapped(sect): true if overlay is marked as mapped
2783 section_is_overlay(sect): true if section's VMA != LMA
2784 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2785 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2786 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2787 overlay_mapped_address(...): map an address from section's LMA to VMA
2788 overlay_unmapped_address(...): map an address from section's VMA to LMA
2789 symbol_overlayed_address(...): Return a "current" address for symbol:
2790 either in VMA or LMA depending on whether
2791 the symbol's section is currently mapped
c906108c
SS
2792 */
2793
2794/* Overlay debugging state: */
2795
d874f1e2 2796enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2797int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2798
2799/* Target vector for refreshing overlay mapped state */
a14ed312 2800static void simple_overlay_update (struct obj_section *);
507f3c78 2801void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2802
2803/* Function: section_is_overlay (SECTION)
5417f6dc 2804 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2805 SECTION is loaded at an address different from where it will "run". */
2806
2807int
fba45db2 2808section_is_overlay (asection *section)
c906108c 2809{
fbd35540
MS
2810 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2811
c906108c
SS
2812 if (overlay_debugging)
2813 if (section && section->lma != 0 &&
2814 section->vma != section->lma)
2815 return 1;
2816
2817 return 0;
2818}
2819
2820/* Function: overlay_invalidate_all (void)
2821 Invalidate the mapped state of all overlay sections (mark it as stale). */
2822
2823static void
fba45db2 2824overlay_invalidate_all (void)
c906108c 2825{
c5aa993b 2826 struct objfile *objfile;
c906108c
SS
2827 struct obj_section *sect;
2828
2829 ALL_OBJSECTIONS (objfile, sect)
2830 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2831 sect->ovly_mapped = -1;
c906108c
SS
2832}
2833
2834/* Function: overlay_is_mapped (SECTION)
5417f6dc 2835 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2836 Private: public access is thru function section_is_mapped.
2837
2838 Access to the ovly_mapped flag is restricted to this function, so
2839 that we can do automatic update. If the global flag
2840 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2841 overlay_invalidate_all. If the mapped state of the particular
2842 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2843
c5aa993b 2844static int
fba45db2 2845overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2846{
2847 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2848 return 0;
2849
c5aa993b 2850 switch (overlay_debugging)
c906108c
SS
2851 {
2852 default:
d874f1e2 2853 case ovly_off:
c5aa993b 2854 return 0; /* overlay debugging off */
d874f1e2 2855 case ovly_auto: /* overlay debugging automatic */
5417f6dc 2856 /* Unles there is a target_overlay_update function,
c5aa993b 2857 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2858 if (target_overlay_update)
2859 {
2860 if (overlay_cache_invalid)
2861 {
2862 overlay_invalidate_all ();
2863 overlay_cache_invalid = 0;
2864 }
2865 if (osect->ovly_mapped == -1)
2866 (*target_overlay_update) (osect);
2867 }
2868 /* fall thru to manual case */
d874f1e2 2869 case ovly_on: /* overlay debugging manual */
c906108c
SS
2870 return osect->ovly_mapped == 1;
2871 }
2872}
2873
2874/* Function: section_is_mapped
2875 Returns true if section is an overlay, and is currently mapped. */
2876
2877int
fba45db2 2878section_is_mapped (asection *section)
c906108c 2879{
c5aa993b 2880 struct objfile *objfile;
c906108c
SS
2881 struct obj_section *osect;
2882
2883 if (overlay_debugging)
2884 if (section && section_is_overlay (section))
2885 ALL_OBJSECTIONS (objfile, osect)
2886 if (osect->the_bfd_section == section)
c5aa993b 2887 return overlay_is_mapped (osect);
c906108c
SS
2888
2889 return 0;
2890}
2891
2892/* Function: pc_in_unmapped_range
2893 If PC falls into the lma range of SECTION, return true, else false. */
2894
2895CORE_ADDR
fba45db2 2896pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2897{
fbd35540
MS
2898 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2899
c906108c
SS
2900 int size;
2901
2902 if (overlay_debugging)
2903 if (section && section_is_overlay (section))
2904 {
2c500098 2905 size = bfd_get_section_size (section);
c906108c
SS
2906 if (section->lma <= pc && pc < section->lma + size)
2907 return 1;
2908 }
2909 return 0;
2910}
2911
2912/* Function: pc_in_mapped_range
2913 If PC falls into the vma range of SECTION, return true, else false. */
2914
2915CORE_ADDR
fba45db2 2916pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2917{
fbd35540
MS
2918 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2919
c906108c
SS
2920 int size;
2921
2922 if (overlay_debugging)
2923 if (section && section_is_overlay (section))
2924 {
2c500098 2925 size = bfd_get_section_size (section);
c906108c
SS
2926 if (section->vma <= pc && pc < section->vma + size)
2927 return 1;
2928 }
2929 return 0;
2930}
2931
9ec8e6a0
JB
2932
2933/* Return true if the mapped ranges of sections A and B overlap, false
2934 otherwise. */
b9362cc7 2935static int
9ec8e6a0
JB
2936sections_overlap (asection *a, asection *b)
2937{
fbd35540
MS
2938 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2939
9ec8e6a0 2940 CORE_ADDR a_start = a->vma;
2c500098 2941 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 2942 CORE_ADDR b_start = b->vma;
2c500098 2943 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
2944
2945 return (a_start < b_end && b_start < a_end);
2946}
2947
c906108c
SS
2948/* Function: overlay_unmapped_address (PC, SECTION)
2949 Returns the address corresponding to PC in the unmapped (load) range.
2950 May be the same as PC. */
2951
2952CORE_ADDR
fba45db2 2953overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 2954{
fbd35540
MS
2955 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2956
c906108c
SS
2957 if (overlay_debugging)
2958 if (section && section_is_overlay (section) &&
2959 pc_in_mapped_range (pc, section))
2960 return pc + section->lma - section->vma;
2961
2962 return pc;
2963}
2964
2965/* Function: overlay_mapped_address (PC, SECTION)
2966 Returns the address corresponding to PC in the mapped (runtime) range.
2967 May be the same as PC. */
2968
2969CORE_ADDR
fba45db2 2970overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 2971{
fbd35540
MS
2972 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2973
c906108c
SS
2974 if (overlay_debugging)
2975 if (section && section_is_overlay (section) &&
2976 pc_in_unmapped_range (pc, section))
2977 return pc + section->vma - section->lma;
2978
2979 return pc;
2980}
2981
2982
5417f6dc 2983/* Function: symbol_overlayed_address
c906108c
SS
2984 Return one of two addresses (relative to the VMA or to the LMA),
2985 depending on whether the section is mapped or not. */
2986
c5aa993b 2987CORE_ADDR
fba45db2 2988symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2989{
2990 if (overlay_debugging)
2991 {
2992 /* If the symbol has no section, just return its regular address. */
2993 if (section == 0)
2994 return address;
2995 /* If the symbol's section is not an overlay, just return its address */
2996 if (!section_is_overlay (section))
2997 return address;
2998 /* If the symbol's section is mapped, just return its address */
2999 if (section_is_mapped (section))
3000 return address;
3001 /*
3002 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3003 * then return its LOADED address rather than its vma address!!
3004 */
3005 return overlay_unmapped_address (address, section);
3006 }
3007 return address;
3008}
3009
5417f6dc 3010/* Function: find_pc_overlay (PC)
c906108c
SS
3011 Return the best-match overlay section for PC:
3012 If PC matches a mapped overlay section's VMA, return that section.
3013 Else if PC matches an unmapped section's VMA, return that section.
3014 Else if PC matches an unmapped section's LMA, return that section. */
3015
3016asection *
fba45db2 3017find_pc_overlay (CORE_ADDR pc)
c906108c 3018{
c5aa993b 3019 struct objfile *objfile;
c906108c
SS
3020 struct obj_section *osect, *best_match = NULL;
3021
3022 if (overlay_debugging)
3023 ALL_OBJSECTIONS (objfile, osect)
3024 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3025 {
3026 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3027 {
3028 if (overlay_is_mapped (osect))
3029 return osect->the_bfd_section;
3030 else
3031 best_match = osect;
3032 }
3033 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3034 best_match = osect;
3035 }
c906108c
SS
3036 return best_match ? best_match->the_bfd_section : NULL;
3037}
3038
3039/* Function: find_pc_mapped_section (PC)
5417f6dc 3040 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3041 currently marked as MAPPED, return that section. Else return NULL. */
3042
3043asection *
fba45db2 3044find_pc_mapped_section (CORE_ADDR pc)
c906108c 3045{
c5aa993b 3046 struct objfile *objfile;
c906108c
SS
3047 struct obj_section *osect;
3048
3049 if (overlay_debugging)
3050 ALL_OBJSECTIONS (objfile, osect)
3051 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3052 overlay_is_mapped (osect))
c5aa993b 3053 return osect->the_bfd_section;
c906108c
SS
3054
3055 return NULL;
3056}
3057
3058/* Function: list_overlays_command
3059 Print a list of mapped sections and their PC ranges */
3060
3061void
fba45db2 3062list_overlays_command (char *args, int from_tty)
c906108c 3063{
c5aa993b
JM
3064 int nmapped = 0;
3065 struct objfile *objfile;
c906108c
SS
3066 struct obj_section *osect;
3067
3068 if (overlay_debugging)
3069 ALL_OBJSECTIONS (objfile, osect)
3070 if (overlay_is_mapped (osect))
c5aa993b
JM
3071 {
3072 const char *name;
3073 bfd_vma lma, vma;
3074 int size;
3075
3076 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3077 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3078 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3079 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3080
3081 printf_filtered ("Section %s, loaded at ", name);
3082 print_address_numeric (lma, 1, gdb_stdout);
3083 puts_filtered (" - ");
3084 print_address_numeric (lma + size, 1, gdb_stdout);
3085 printf_filtered (", mapped at ");
3086 print_address_numeric (vma, 1, gdb_stdout);
3087 puts_filtered (" - ");
3088 print_address_numeric (vma + size, 1, gdb_stdout);
3089 puts_filtered ("\n");
3090
3091 nmapped++;
3092 }
c906108c
SS
3093 if (nmapped == 0)
3094 printf_filtered ("No sections are mapped.\n");
3095}
3096
3097/* Function: map_overlay_command
3098 Mark the named section as mapped (ie. residing at its VMA address). */
3099
3100void
fba45db2 3101map_overlay_command (char *args, int from_tty)
c906108c 3102{
c5aa993b
JM
3103 struct objfile *objfile, *objfile2;
3104 struct obj_section *sec, *sec2;
3105 asection *bfdsec;
c906108c
SS
3106
3107 if (!overlay_debugging)
515ad16c
EZ
3108 error ("\
3109Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3110the 'overlay manual' command.");
c906108c
SS
3111
3112 if (args == 0 || *args == 0)
3113 error ("Argument required: name of an overlay section");
3114
3115 /* First, find a section matching the user supplied argument */
3116 ALL_OBJSECTIONS (objfile, sec)
3117 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3118 {
3119 /* Now, check to see if the section is an overlay. */
3120 bfdsec = sec->the_bfd_section;
3121 if (!section_is_overlay (bfdsec))
3122 continue; /* not an overlay section */
3123
3124 /* Mark the overlay as "mapped" */
3125 sec->ovly_mapped = 1;
3126
3127 /* Next, make a pass and unmap any sections that are
3128 overlapped by this new section: */
3129 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3130 if (sec2->ovly_mapped
3131 && sec != sec2
3132 && sec->the_bfd_section != sec2->the_bfd_section
3133 && sections_overlap (sec->the_bfd_section,
3134 sec2->the_bfd_section))
c5aa993b
JM
3135 {
3136 if (info_verbose)
46f45a4a 3137 printf_unfiltered ("Note: section %s unmapped by overlap\n",
c5aa993b
JM
3138 bfd_section_name (objfile->obfd,
3139 sec2->the_bfd_section));
3140 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3141 }
3142 return;
3143 }
c906108c
SS
3144 error ("No overlay section called %s", args);
3145}
3146
3147/* Function: unmap_overlay_command
5417f6dc 3148 Mark the overlay section as unmapped
c906108c
SS
3149 (ie. resident in its LMA address range, rather than the VMA range). */
3150
3151void
fba45db2 3152unmap_overlay_command (char *args, int from_tty)
c906108c 3153{
c5aa993b 3154 struct objfile *objfile;
c906108c
SS
3155 struct obj_section *sec;
3156
3157 if (!overlay_debugging)
515ad16c
EZ
3158 error ("\
3159Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3160the 'overlay manual' command.");
c906108c
SS
3161
3162 if (args == 0 || *args == 0)
3163 error ("Argument required: name of an overlay section");
3164
3165 /* First, find a section matching the user supplied argument */
3166 ALL_OBJSECTIONS (objfile, sec)
3167 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3168 {
3169 if (!sec->ovly_mapped)
3170 error ("Section %s is not mapped", args);
3171 sec->ovly_mapped = 0;
3172 return;
3173 }
c906108c
SS
3174 error ("No overlay section called %s", args);
3175}
3176
3177/* Function: overlay_auto_command
3178 A utility command to turn on overlay debugging.
3179 Possibly this should be done via a set/show command. */
3180
3181static void
fba45db2 3182overlay_auto_command (char *args, int from_tty)
c906108c 3183{
d874f1e2 3184 overlay_debugging = ovly_auto;
1900040c 3185 enable_overlay_breakpoints ();
c906108c 3186 if (info_verbose)
46f45a4a 3187 printf_unfiltered ("Automatic overlay debugging enabled.");
c906108c
SS
3188}
3189
3190/* Function: overlay_manual_command
3191 A utility command to turn on overlay debugging.
3192 Possibly this should be done via a set/show command. */
3193
3194static void
fba45db2 3195overlay_manual_command (char *args, int from_tty)
c906108c 3196{
d874f1e2 3197 overlay_debugging = ovly_on;
1900040c 3198 disable_overlay_breakpoints ();
c906108c 3199 if (info_verbose)
46f45a4a 3200 printf_unfiltered ("Overlay debugging enabled.");
c906108c
SS
3201}
3202
3203/* Function: overlay_off_command
3204 A utility command to turn on overlay debugging.
3205 Possibly this should be done via a set/show command. */
3206
3207static void
fba45db2 3208overlay_off_command (char *args, int from_tty)
c906108c 3209{
d874f1e2 3210 overlay_debugging = ovly_off;
1900040c 3211 disable_overlay_breakpoints ();
c906108c 3212 if (info_verbose)
46f45a4a 3213 printf_unfiltered ("Overlay debugging disabled.");
c906108c
SS
3214}
3215
3216static void
fba45db2 3217overlay_load_command (char *args, int from_tty)
c906108c
SS
3218{
3219 if (target_overlay_update)
3220 (*target_overlay_update) (NULL);
3221 else
3222 error ("This target does not know how to read its overlay state.");
3223}
3224
3225/* Function: overlay_command
3226 A place-holder for a mis-typed command */
3227
3228/* Command list chain containing all defined "overlay" subcommands. */
3229struct cmd_list_element *overlaylist;
3230
3231static void
fba45db2 3232overlay_command (char *args, int from_tty)
c906108c 3233{
c5aa993b 3234 printf_unfiltered
c906108c
SS
3235 ("\"overlay\" must be followed by the name of an overlay command.\n");
3236 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3237}
3238
3239
3240/* Target Overlays for the "Simplest" overlay manager:
3241
5417f6dc
RM
3242 This is GDB's default target overlay layer. It works with the
3243 minimal overlay manager supplied as an example by Cygnus. The
3244 entry point is via a function pointer "target_overlay_update",
3245 so targets that use a different runtime overlay manager can
c906108c
SS
3246 substitute their own overlay_update function and take over the
3247 function pointer.
3248
3249 The overlay_update function pokes around in the target's data structures
3250 to see what overlays are mapped, and updates GDB's overlay mapping with
3251 this information.
3252
3253 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3254 unsigned _novlys; /# number of overlay sections #/
3255 unsigned _ovly_table[_novlys][4] = {
3256 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3257 {..., ..., ..., ...},
3258 }
3259 unsigned _novly_regions; /# number of overlay regions #/
3260 unsigned _ovly_region_table[_novly_regions][3] = {
3261 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3262 {..., ..., ...},
3263 }
c906108c
SS
3264 These functions will attempt to update GDB's mappedness state in the
3265 symbol section table, based on the target's mappedness state.
3266
3267 To do this, we keep a cached copy of the target's _ovly_table, and
3268 attempt to detect when the cached copy is invalidated. The main
3269 entry point is "simple_overlay_update(SECT), which looks up SECT in
3270 the cached table and re-reads only the entry for that section from
3271 the target (whenever possible).
3272 */
3273
3274/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3275static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3276#if 0
c5aa993b 3277static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3278#endif
c5aa993b 3279static unsigned cache_novlys = 0;
c906108c 3280#if 0
c5aa993b 3281static unsigned cache_novly_regions = 0;
c906108c
SS
3282#endif
3283static CORE_ADDR cache_ovly_table_base = 0;
3284#if 0
3285static CORE_ADDR cache_ovly_region_table_base = 0;
3286#endif
c5aa993b
JM
3287enum ovly_index
3288 {
3289 VMA, SIZE, LMA, MAPPED
3290 };
c906108c
SS
3291#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3292
3293/* Throw away the cached copy of _ovly_table */
3294static void
fba45db2 3295simple_free_overlay_table (void)
c906108c
SS
3296{
3297 if (cache_ovly_table)
b8c9b27d 3298 xfree (cache_ovly_table);
c5aa993b 3299 cache_novlys = 0;
c906108c
SS
3300 cache_ovly_table = NULL;
3301 cache_ovly_table_base = 0;
3302}
3303
3304#if 0
3305/* Throw away the cached copy of _ovly_region_table */
3306static void
fba45db2 3307simple_free_overlay_region_table (void)
c906108c
SS
3308{
3309 if (cache_ovly_region_table)
b8c9b27d 3310 xfree (cache_ovly_region_table);
c5aa993b 3311 cache_novly_regions = 0;
c906108c
SS
3312 cache_ovly_region_table = NULL;
3313 cache_ovly_region_table_base = 0;
3314}
3315#endif
3316
3317/* Read an array of ints from the target into a local buffer.
3318 Convert to host order. int LEN is number of ints */
3319static void
fba45db2 3320read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3321{
34c0bd93 3322 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3323 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3324 int i;
c906108c
SS
3325
3326 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3327 for (i = 0; i < len; i++)
c5aa993b 3328 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3329 TARGET_LONG_BYTES);
3330}
3331
3332/* Find and grab a copy of the target _ovly_table
3333 (and _novlys, which is needed for the table's size) */
c5aa993b 3334static int
fba45db2 3335simple_read_overlay_table (void)
c906108c 3336{
0d43edd1 3337 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3338
3339 simple_free_overlay_table ();
9b27852e 3340 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3341 if (! novlys_msym)
c906108c 3342 {
0d43edd1
JB
3343 error ("Error reading inferior's overlay table: "
3344 "couldn't find `_novlys' variable\n"
3345 "in inferior. Use `overlay manual' mode.");
3346 return 0;
c906108c 3347 }
0d43edd1 3348
9b27852e 3349 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3350 if (! ovly_table_msym)
3351 {
3352 error ("Error reading inferior's overlay table: couldn't find "
3353 "`_ovly_table' array\n"
3354 "in inferior. Use `overlay manual' mode.");
3355 return 0;
3356 }
3357
3358 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3359 cache_ovly_table
3360 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3361 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3362 read_target_long_array (cache_ovly_table_base,
3363 (int *) cache_ovly_table,
3364 cache_novlys * 4);
3365
c5aa993b 3366 return 1; /* SUCCESS */
c906108c
SS
3367}
3368
3369#if 0
3370/* Find and grab a copy of the target _ovly_region_table
3371 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3372static int
fba45db2 3373simple_read_overlay_region_table (void)
c906108c
SS
3374{
3375 struct minimal_symbol *msym;
3376
3377 simple_free_overlay_region_table ();
9b27852e 3378 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3379 if (msym != NULL)
3380 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3381 else
3382 return 0; /* failure */
c906108c
SS
3383 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3384 if (cache_ovly_region_table != NULL)
3385 {
9b27852e 3386 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3387 if (msym != NULL)
3388 {
3389 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3390 read_target_long_array (cache_ovly_region_table_base,
3391 (int *) cache_ovly_region_table,
c906108c
SS
3392 cache_novly_regions * 3);
3393 }
c5aa993b
JM
3394 else
3395 return 0; /* failure */
c906108c 3396 }
c5aa993b
JM
3397 else
3398 return 0; /* failure */
3399 return 1; /* SUCCESS */
c906108c
SS
3400}
3401#endif
3402
5417f6dc 3403/* Function: simple_overlay_update_1
c906108c
SS
3404 A helper function for simple_overlay_update. Assuming a cached copy
3405 of _ovly_table exists, look through it to find an entry whose vma,
3406 lma and size match those of OSECT. Re-read the entry and make sure
3407 it still matches OSECT (else the table may no longer be valid).
3408 Set OSECT's mapped state to match the entry. Return: 1 for
3409 success, 0 for failure. */
3410
3411static int
fba45db2 3412simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3413{
3414 int i, size;
fbd35540
MS
3415 bfd *obfd = osect->objfile->obfd;
3416 asection *bsect = osect->the_bfd_section;
c906108c 3417
2c500098 3418 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3419 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3420 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3421 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3422 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3423 {
3424 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3425 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3426 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3427 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3428 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3429 {
3430 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3431 return 1;
3432 }
fbd35540 3433 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3434 return 0;
3435 }
3436 return 0;
3437}
3438
3439/* Function: simple_overlay_update
5417f6dc
RM
3440 If OSECT is NULL, then update all sections' mapped state
3441 (after re-reading the entire target _ovly_table).
3442 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3443 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3444 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3445 re-read the entire cache, and go ahead and update all sections. */
3446
3447static void
fba45db2 3448simple_overlay_update (struct obj_section *osect)
c906108c 3449{
c5aa993b 3450 struct objfile *objfile;
c906108c
SS
3451
3452 /* Were we given an osect to look up? NULL means do all of them. */
3453 if (osect)
3454 /* Have we got a cached copy of the target's overlay table? */
3455 if (cache_ovly_table != NULL)
3456 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3457 if (cache_ovly_table_base ==
9b27852e 3458 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3459 /* Then go ahead and try to look up this single section in the cache */
3460 if (simple_overlay_update_1 (osect))
3461 /* Found it! We're done. */
3462 return;
3463
3464 /* Cached table no good: need to read the entire table anew.
3465 Or else we want all the sections, in which case it's actually
3466 more efficient to read the whole table in one block anyway. */
3467
0d43edd1
JB
3468 if (! simple_read_overlay_table ())
3469 return;
3470
c906108c
SS
3471 /* Now may as well update all sections, even if only one was requested. */
3472 ALL_OBJSECTIONS (objfile, osect)
3473 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3474 {
3475 int i, size;
fbd35540
MS
3476 bfd *obfd = osect->objfile->obfd;
3477 asection *bsect = osect->the_bfd_section;
c5aa993b 3478
2c500098 3479 size = bfd_get_section_size (bsect);
c5aa993b 3480 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3481 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3482 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3483 /* && cache_ovly_table[i][SIZE] == size */ )
3484 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3485 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3486 break; /* finished with inner for loop: break out */
3487 }
3488 }
c906108c
SS
3489}
3490
086df311
DJ
3491/* Set the output sections and output offsets for section SECTP in
3492 ABFD. The relocation code in BFD will read these offsets, so we
3493 need to be sure they're initialized. We map each section to itself,
3494 with no offset; this means that SECTP->vma will be honored. */
3495
3496static void
3497symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3498{
3499 sectp->output_section = sectp;
3500 sectp->output_offset = 0;
3501}
3502
3503/* Relocate the contents of a debug section SECTP in ABFD. The
3504 contents are stored in BUF if it is non-NULL, or returned in a
3505 malloc'd buffer otherwise.
3506
3507 For some platforms and debug info formats, shared libraries contain
3508 relocations against the debug sections (particularly for DWARF-2;
3509 one affected platform is PowerPC GNU/Linux, although it depends on
3510 the version of the linker in use). Also, ELF object files naturally
3511 have unresolved relocations for their debug sections. We need to apply
3512 the relocations in order to get the locations of symbols correct. */
3513
3514bfd_byte *
3515symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3516{
3517 /* We're only interested in debugging sections with relocation
3518 information. */
3519 if ((sectp->flags & SEC_RELOC) == 0)
3520 return NULL;
3521 if ((sectp->flags & SEC_DEBUGGING) == 0)
3522 return NULL;
3523
3524 /* We will handle section offsets properly elsewhere, so relocate as if
3525 all sections begin at 0. */
3526 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3527
97606a13 3528 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3529}
c906108c
SS
3530
3531void
fba45db2 3532_initialize_symfile (void)
c906108c
SS
3533{
3534 struct cmd_list_element *c;
c5aa993b 3535
c906108c 3536 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3537 "Load symbol table from executable file FILE.\n\
c906108c
SS
3538The `file' command can also load symbol tables, as well as setting the file\n\
3539to execute.", &cmdlist);
5ba2abeb 3540 set_cmd_completer (c, filename_completer);
c906108c
SS
3541
3542 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3543 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3544Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3545ADDR is the starting address of the file's text.\n\
db162d44
EZ
3546The optional arguments are section-name section-address pairs and\n\
3547should be specified if the data and bss segments are not contiguous\n\
d4654627 3548with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3549 &cmdlist);
5ba2abeb 3550 set_cmd_completer (c, filename_completer);
c906108c
SS
3551
3552 c = add_cmd ("add-shared-symbol-files", class_files,
3553 add_shared_symbol_files_command,
3554 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3555 &cmdlist);
c906108c
SS
3556 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3557 &cmdlist);
3558
3559 c = add_cmd ("load", class_files, load_command,
c5aa993b 3560 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3561for access from GDB.", &cmdlist);
5ba2abeb 3562 set_cmd_completer (c, filename_completer);
c906108c 3563
cb1a6d5f 3564 deprecated_add_show_from_set
c906108c 3565 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3566 (char *) &symbol_reloading,
3567 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3568 &setlist),
3569 &showlist);
3570
c5aa993b
JM
3571 add_prefix_cmd ("overlay", class_support, overlay_command,
3572 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3573 "overlay ", 0, &cmdlist);
3574
3575 add_com_alias ("ovly", "overlay", class_alias, 1);
3576 add_com_alias ("ov", "overlay", class_alias, 1);
3577
c5aa993b 3578 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3579 "Assert that an overlay section is mapped.", &overlaylist);
3580
c5aa993b 3581 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3582 "Assert that an overlay section is unmapped.", &overlaylist);
3583
c5aa993b 3584 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3585 "List mappings of overlay sections.", &overlaylist);
3586
c5aa993b 3587 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3588 "Enable overlay debugging.", &overlaylist);
c5aa993b 3589 add_cmd ("off", class_support, overlay_off_command,
c906108c 3590 "Disable overlay debugging.", &overlaylist);
c5aa993b 3591 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3592 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3593 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3594 "Read the overlay mapping state from the target.", &overlaylist);
3595
3596 /* Filename extension to source language lookup table: */
3597 init_filename_language_table ();
3598 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3599 (char *) &ext_args,
c906108c
SS
3600 "Set mapping between filename extension and source language.\n\
3601Usage: set extension-language .foo bar",
c5aa993b 3602 &setlist);
9f60d481 3603 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3604
c5aa993b 3605 add_info ("extensions", info_ext_lang_command,
c906108c 3606 "All filename extensions associated with a source language.");
917317f4 3607
cb1a6d5f 3608 deprecated_add_show_from_set
917317f4
JM
3609 (add_set_cmd ("download-write-size", class_obscure,
3610 var_integer, (char *) &download_write_size,
3611 "Set the write size used when downloading a program.\n"
3612 "Only used when downloading a program onto a remote\n"
3613 "target. Specify zero, or a negative value, to disable\n"
3614 "blocked writes. The actual size of each transfer is also\n"
3615 "limited by the size of the target packet and the memory\n"
3616 "cache.\n",
3617 &setlist),
3618 &showlist);
5b5d99cf
JB
3619
3620 debug_file_directory = xstrdup (DEBUGDIR);
3621 c = (add_set_cmd
3622 ("debug-file-directory", class_support, var_string,
3623 (char *) &debug_file_directory,
3624 "Set the directory where separate debug symbols are searched for.\n"
3625 "Separate debug symbols are first searched for in the same\n"
5417f6dc 3626 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
5b5d99cf
JB
3627 "' subdirectory,\n"
3628 "and lastly at the path of the directory of the binary with\n"
3629 "the global debug-file directory prepended\n",
3630 &setlist));
cb1a6d5f 3631 deprecated_add_show_from_set (c, &showlist);
5b5d99cf 3632 set_cmd_completer (c, filename_completer);
c906108c 3633}
This page took 0.693182 seconds and 4 git commands to generate.