Move filename extensions into language_defn
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
438e1e42 65#include "gdb_sys_time.h"
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void info_ext_lang_command (char *args, int from_tty);
392a587b 118
31d99776
DJ
119static void symfile_find_segment_sections (struct objfile *objfile);
120
a14ed312 121void _initialize_symfile (void);
c906108c
SS
122
123/* List of all available sym_fns. On gdb startup, each object file reader
124 calls add_symtab_fns() to register information on each format it is
c378eb4e 125 prepared to read. */
c906108c 126
c256e171
DE
127typedef struct
128{
129 /* BFD flavour that we handle. */
130 enum bfd_flavour sym_flavour;
131
132 /* The "vtable" of symbol functions. */
133 const struct sym_fns *sym_fns;
134} registered_sym_fns;
00b5771c 135
c256e171
DE
136DEF_VEC_O (registered_sym_fns);
137
138static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 139
770e7fc7
DE
140/* Values for "set print symbol-loading". */
141
142const char print_symbol_loading_off[] = "off";
143const char print_symbol_loading_brief[] = "brief";
144const char print_symbol_loading_full[] = "full";
145static const char *print_symbol_loading_enums[] =
146{
147 print_symbol_loading_off,
148 print_symbol_loading_brief,
149 print_symbol_loading_full,
150 NULL
151};
152static const char *print_symbol_loading = print_symbol_loading_full;
153
b7209cb4
FF
154/* If non-zero, shared library symbols will be added automatically
155 when the inferior is created, new libraries are loaded, or when
156 attaching to the inferior. This is almost always what users will
157 want to have happen; but for very large programs, the startup time
158 will be excessive, and so if this is a problem, the user can clear
159 this flag and then add the shared library symbols as needed. Note
160 that there is a potential for confusion, since if the shared
c906108c 161 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 162 report all the functions that are actually present. */
c906108c
SS
163
164int auto_solib_add = 1;
c906108c 165\f
c5aa993b 166
770e7fc7
DE
167/* Return non-zero if symbol-loading messages should be printed.
168 FROM_TTY is the standard from_tty argument to gdb commands.
169 If EXEC is non-zero the messages are for the executable.
170 Otherwise, messages are for shared libraries.
171 If FULL is non-zero then the caller is printing a detailed message.
172 E.g., the message includes the shared library name.
173 Otherwise, the caller is printing a brief "summary" message. */
174
175int
176print_symbol_loading_p (int from_tty, int exec, int full)
177{
178 if (!from_tty && !info_verbose)
179 return 0;
180
181 if (exec)
182 {
183 /* We don't check FULL for executables, there are few such
184 messages, therefore brief == full. */
185 return print_symbol_loading != print_symbol_loading_off;
186 }
187 if (full)
188 return print_symbol_loading == print_symbol_loading_full;
189 return print_symbol_loading == print_symbol_loading_brief;
190}
191
0d14a781 192/* True if we are reading a symbol table. */
c906108c
SS
193
194int currently_reading_symtab = 0;
195
196static void
fba45db2 197decrement_reading_symtab (void *dummy)
c906108c
SS
198{
199 currently_reading_symtab--;
2cb9c859 200 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
201}
202
ccefe4c4
TT
203/* Increment currently_reading_symtab and return a cleanup that can be
204 used to decrement it. */
3b7bacac 205
ccefe4c4
TT
206struct cleanup *
207increment_reading_symtab (void)
c906108c 208{
ccefe4c4 209 ++currently_reading_symtab;
2cb9c859 210 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 211 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
212}
213
5417f6dc
RM
214/* Remember the lowest-addressed loadable section we've seen.
215 This function is called via bfd_map_over_sections.
c906108c
SS
216
217 In case of equal vmas, the section with the largest size becomes the
218 lowest-addressed loadable section.
219
220 If the vmas and sizes are equal, the last section is considered the
221 lowest-addressed loadable section. */
222
223void
4efb68b1 224find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 225{
c5aa993b 226 asection **lowest = (asection **) obj;
c906108c 227
eb73e134 228 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
229 return;
230 if (!*lowest)
231 *lowest = sect; /* First loadable section */
232 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
233 *lowest = sect; /* A lower loadable section */
234 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
235 && (bfd_section_size (abfd, (*lowest))
236 <= bfd_section_size (abfd, sect)))
237 *lowest = sect;
238}
239
d76488d8
TT
240/* Create a new section_addr_info, with room for NUM_SECTIONS. The
241 new object's 'num_sections' field is set to 0; it must be updated
242 by the caller. */
a39a16c4
MM
243
244struct section_addr_info *
245alloc_section_addr_info (size_t num_sections)
246{
247 struct section_addr_info *sap;
248 size_t size;
249
250 size = (sizeof (struct section_addr_info)
251 + sizeof (struct other_sections) * (num_sections - 1));
252 sap = (struct section_addr_info *) xmalloc (size);
253 memset (sap, 0, size);
a39a16c4
MM
254
255 return sap;
256}
62557bbc
KB
257
258/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 259 an existing section table. */
62557bbc
KB
260
261extern struct section_addr_info *
0542c86d
PA
262build_section_addr_info_from_section_table (const struct target_section *start,
263 const struct target_section *end)
62557bbc
KB
264{
265 struct section_addr_info *sap;
0542c86d 266 const struct target_section *stp;
62557bbc
KB
267 int oidx;
268
a39a16c4 269 sap = alloc_section_addr_info (end - start);
62557bbc
KB
270
271 for (stp = start, oidx = 0; stp != end; stp++)
272 {
2b2848e2
DE
273 struct bfd_section *asect = stp->the_bfd_section;
274 bfd *abfd = asect->owner;
275
276 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 277 && oidx < end - start)
62557bbc
KB
278 {
279 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
280 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
281 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
282 oidx++;
283 }
284 }
285
d76488d8
TT
286 sap->num_sections = oidx;
287
62557bbc
KB
288 return sap;
289}
290
82ccf5a5 291/* Create a section_addr_info from section offsets in ABFD. */
089b4803 292
82ccf5a5
JK
293static struct section_addr_info *
294build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
295{
296 struct section_addr_info *sap;
297 int i;
298 struct bfd_section *sec;
299
82ccf5a5
JK
300 sap = alloc_section_addr_info (bfd_count_sections (abfd));
301 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
302 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 303 {
82ccf5a5
JK
304 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
305 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 306 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
307 i++;
308 }
d76488d8
TT
309
310 sap->num_sections = i;
311
089b4803
TG
312 return sap;
313}
314
82ccf5a5
JK
315/* Create a section_addr_info from section offsets in OBJFILE. */
316
317struct section_addr_info *
318build_section_addr_info_from_objfile (const struct objfile *objfile)
319{
320 struct section_addr_info *sap;
321 int i;
322
323 /* Before reread_symbols gets rewritten it is not safe to call:
324 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
325 */
326 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 327 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
328 {
329 int sectindex = sap->other[i].sectindex;
330
331 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
332 }
333 return sap;
334}
62557bbc 335
c378eb4e 336/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
337
338extern void
339free_section_addr_info (struct section_addr_info *sap)
340{
341 int idx;
342
a39a16c4 343 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 344 xfree (sap->other[idx].name);
b8c9b27d 345 xfree (sap);
62557bbc
KB
346}
347
e8289572 348/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 349
e8289572
JB
350static void
351init_objfile_sect_indices (struct objfile *objfile)
c906108c 352{
e8289572 353 asection *sect;
c906108c 354 int i;
5417f6dc 355
b8fbeb18 356 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 357 if (sect)
b8fbeb18
EZ
358 objfile->sect_index_text = sect->index;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_data = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_bss = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_rodata = sect->index;
371
bbcd32ad
FF
372 /* This is where things get really weird... We MUST have valid
373 indices for the various sect_index_* members or gdb will abort.
374 So if for example, there is no ".text" section, we have to
31d99776
DJ
375 accomodate that. First, check for a file with the standard
376 one or two segments. */
377
378 symfile_find_segment_sections (objfile);
379
380 /* Except when explicitly adding symbol files at some address,
381 section_offsets contains nothing but zeros, so it doesn't matter
382 which slot in section_offsets the individual sect_index_* members
383 index into. So if they are all zero, it is safe to just point
384 all the currently uninitialized indices to the first slot. But
385 beware: if this is the main executable, it may be relocated
386 later, e.g. by the remote qOffsets packet, and then this will
387 be wrong! That's why we try segments first. */
bbcd32ad
FF
388
389 for (i = 0; i < objfile->num_sections; i++)
390 {
391 if (ANOFFSET (objfile->section_offsets, i) != 0)
392 {
393 break;
394 }
395 }
396 if (i == objfile->num_sections)
397 {
398 if (objfile->sect_index_text == -1)
399 objfile->sect_index_text = 0;
400 if (objfile->sect_index_data == -1)
401 objfile->sect_index_data = 0;
402 if (objfile->sect_index_bss == -1)
403 objfile->sect_index_bss = 0;
404 if (objfile->sect_index_rodata == -1)
405 objfile->sect_index_rodata = 0;
406 }
b8fbeb18 407}
c906108c 408
c1bd25fd
DJ
409/* The arguments to place_section. */
410
411struct place_section_arg
412{
413 struct section_offsets *offsets;
414 CORE_ADDR lowest;
415};
416
417/* Find a unique offset to use for loadable section SECT if
418 the user did not provide an offset. */
419
2c0b251b 420static void
c1bd25fd
DJ
421place_section (bfd *abfd, asection *sect, void *obj)
422{
19ba03f4 423 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
424 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
425 int done;
3bd72c6f 426 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 427
2711e456
DJ
428 /* We are only interested in allocated sections. */
429 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
430 return;
431
432 /* If the user specified an offset, honor it. */
65cf3563 433 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
434 return;
435
436 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
437 start_addr = (arg->lowest + align - 1) & -align;
438
c1bd25fd
DJ
439 do {
440 asection *cur_sec;
c1bd25fd 441
c1bd25fd
DJ
442 done = 1;
443
444 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
445 {
446 int indx = cur_sec->index;
c1bd25fd
DJ
447
448 /* We don't need to compare against ourself. */
449 if (cur_sec == sect)
450 continue;
451
2711e456
DJ
452 /* We can only conflict with allocated sections. */
453 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
454 continue;
455
456 /* If the section offset is 0, either the section has not been placed
457 yet, or it was the lowest section placed (in which case LOWEST
458 will be past its end). */
459 if (offsets[indx] == 0)
460 continue;
461
462 /* If this section would overlap us, then we must move up. */
463 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
464 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
465 {
466 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
467 start_addr = (start_addr + align - 1) & -align;
468 done = 0;
3bd72c6f 469 break;
c1bd25fd
DJ
470 }
471
472 /* Otherwise, we appear to be OK. So far. */
473 }
474 }
475 while (!done);
476
65cf3563 477 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 478 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 479}
e8289572 480
75242ef4
JK
481/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
482 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
483 entries. */
e8289572
JB
484
485void
75242ef4
JK
486relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
487 int num_sections,
3189cb12 488 const struct section_addr_info *addrs)
e8289572
JB
489{
490 int i;
491
75242ef4 492 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 493
c378eb4e 494 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 495 for (i = 0; i < addrs->num_sections; i++)
e8289572 496 {
3189cb12 497 const struct other_sections *osp;
e8289572 498
75242ef4 499 osp = &addrs->other[i];
5488dafb 500 if (osp->sectindex == -1)
e8289572
JB
501 continue;
502
c378eb4e 503 /* Record all sections in offsets. */
e8289572 504 /* The section_offsets in the objfile are here filled in using
c378eb4e 505 the BFD index. */
75242ef4
JK
506 section_offsets->offsets[osp->sectindex] = osp->addr;
507 }
508}
509
1276c759
JK
510/* Transform section name S for a name comparison. prelink can split section
511 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
512 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
513 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
514 (`.sbss') section has invalid (increased) virtual address. */
515
516static const char *
517addr_section_name (const char *s)
518{
519 if (strcmp (s, ".dynbss") == 0)
520 return ".bss";
521 if (strcmp (s, ".sdynbss") == 0)
522 return ".sbss";
523
524 return s;
525}
526
82ccf5a5
JK
527/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
528 their (name, sectindex) pair. sectindex makes the sort by name stable. */
529
530static int
531addrs_section_compar (const void *ap, const void *bp)
532{
533 const struct other_sections *a = *((struct other_sections **) ap);
534 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 535 int retval;
82ccf5a5 536
1276c759 537 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
538 if (retval)
539 return retval;
540
5488dafb 541 return a->sectindex - b->sectindex;
82ccf5a5
JK
542}
543
544/* Provide sorted array of pointers to sections of ADDRS. The array is
545 terminated by NULL. Caller is responsible to call xfree for it. */
546
547static struct other_sections **
548addrs_section_sort (struct section_addr_info *addrs)
549{
550 struct other_sections **array;
551 int i;
552
553 /* `+ 1' for the NULL terminator. */
8d749320 554 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 555 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
556 array[i] = &addrs->other[i];
557 array[i] = NULL;
558
559 qsort (array, i, sizeof (*array), addrs_section_compar);
560
561 return array;
562}
563
75242ef4 564/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
565 also SECTINDEXes specific to ABFD there. This function can be used to
566 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
567
568void
569addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
570{
571 asection *lower_sect;
75242ef4
JK
572 CORE_ADDR lower_offset;
573 int i;
82ccf5a5
JK
574 struct cleanup *my_cleanup;
575 struct section_addr_info *abfd_addrs;
576 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
577 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
578
579 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
580 continguous sections. */
581 lower_sect = NULL;
582 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
583 if (lower_sect == NULL)
584 {
585 warning (_("no loadable sections found in added symbol-file %s"),
586 bfd_get_filename (abfd));
587 lower_offset = 0;
e8289572 588 }
75242ef4
JK
589 else
590 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
591
82ccf5a5
JK
592 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
593 in ABFD. Section names are not unique - there can be multiple sections of
594 the same name. Also the sections of the same name do not have to be
595 adjacent to each other. Some sections may be present only in one of the
596 files. Even sections present in both files do not have to be in the same
597 order.
598
599 Use stable sort by name for the sections in both files. Then linearly
600 scan both lists matching as most of the entries as possible. */
601
602 addrs_sorted = addrs_section_sort (addrs);
603 my_cleanup = make_cleanup (xfree, addrs_sorted);
604
605 abfd_addrs = build_section_addr_info_from_bfd (abfd);
606 make_cleanup_free_section_addr_info (abfd_addrs);
607 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
608 make_cleanup (xfree, abfd_addrs_sorted);
609
c378eb4e
MS
610 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
611 ABFD_ADDRS_SORTED. */
82ccf5a5 612
8d749320 613 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
614 make_cleanup (xfree, addrs_to_abfd_addrs);
615
616 while (*addrs_sorted)
617 {
1276c759 618 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
619
620 while (*abfd_addrs_sorted
1276c759
JK
621 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
622 sect_name) < 0)
82ccf5a5
JK
623 abfd_addrs_sorted++;
624
625 if (*abfd_addrs_sorted
1276c759
JK
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) == 0)
82ccf5a5
JK
628 {
629 int index_in_addrs;
630
631 /* Make the found item directly addressable from ADDRS. */
632 index_in_addrs = *addrs_sorted - addrs->other;
633 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
634 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
635
636 /* Never use the same ABFD entry twice. */
637 abfd_addrs_sorted++;
638 }
639
640 addrs_sorted++;
641 }
642
75242ef4
JK
643 /* Calculate offsets for the loadable sections.
644 FIXME! Sections must be in order of increasing loadable section
645 so that contiguous sections can use the lower-offset!!!
646
647 Adjust offsets if the segments are not contiguous.
648 If the section is contiguous, its offset should be set to
649 the offset of the highest loadable section lower than it
650 (the loadable section directly below it in memory).
651 this_offset = lower_offset = lower_addr - lower_orig_addr */
652
d76488d8 653 for (i = 0; i < addrs->num_sections; i++)
75242ef4 654 {
82ccf5a5 655 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
656
657 if (sect)
75242ef4 658 {
c378eb4e 659 /* This is the index used by BFD. */
82ccf5a5 660 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
661
662 if (addrs->other[i].addr != 0)
75242ef4 663 {
82ccf5a5 664 addrs->other[i].addr -= sect->addr;
75242ef4 665 lower_offset = addrs->other[i].addr;
75242ef4
JK
666 }
667 else
672d9c23 668 addrs->other[i].addr = lower_offset;
75242ef4
JK
669 }
670 else
672d9c23 671 {
1276c759
JK
672 /* addr_section_name transformation is not used for SECT_NAME. */
673 const char *sect_name = addrs->other[i].name;
674
b0fcb67f
JK
675 /* This section does not exist in ABFD, which is normally
676 unexpected and we want to issue a warning.
677
4d9743af
JK
678 However, the ELF prelinker does create a few sections which are
679 marked in the main executable as loadable (they are loaded in
680 memory from the DYNAMIC segment) and yet are not present in
681 separate debug info files. This is fine, and should not cause
682 a warning. Shared libraries contain just the section
683 ".gnu.liblist" but it is not marked as loadable there. There is
684 no other way to identify them than by their name as the sections
1276c759
JK
685 created by prelink have no special flags.
686
687 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
688
689 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 690 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
691 || (strcmp (sect_name, ".bss") == 0
692 && i > 0
693 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
694 && addrs_to_abfd_addrs[i - 1] != NULL)
695 || (strcmp (sect_name, ".sbss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
699 warning (_("section %s not found in %s"), sect_name,
700 bfd_get_filename (abfd));
701
672d9c23 702 addrs->other[i].addr = 0;
5488dafb 703 addrs->other[i].sectindex = -1;
672d9c23 704 }
75242ef4 705 }
82ccf5a5
JK
706
707 do_cleanups (my_cleanup);
75242ef4
JK
708}
709
710/* Parse the user's idea of an offset for dynamic linking, into our idea
711 of how to represent it for fast symbol reading. This is the default
712 version of the sym_fns.sym_offsets function for symbol readers that
713 don't need to do anything special. It allocates a section_offsets table
714 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
715
716void
717default_symfile_offsets (struct objfile *objfile,
3189cb12 718 const struct section_addr_info *addrs)
75242ef4 719{
d445b2f6 720 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
721 objfile->section_offsets = (struct section_offsets *)
722 obstack_alloc (&objfile->objfile_obstack,
723 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
724 relative_addr_info_to_section_offsets (objfile->section_offsets,
725 objfile->num_sections, addrs);
e8289572 726
c1bd25fd
DJ
727 /* For relocatable files, all loadable sections will start at zero.
728 The zero is meaningless, so try to pick arbitrary addresses such
729 that no loadable sections overlap. This algorithm is quadratic,
730 but the number of sections in a single object file is generally
731 small. */
732 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
733 {
734 struct place_section_arg arg;
2711e456
DJ
735 bfd *abfd = objfile->obfd;
736 asection *cur_sec;
2711e456
DJ
737
738 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
739 /* We do not expect this to happen; just skip this step if the
740 relocatable file has a section with an assigned VMA. */
741 if (bfd_section_vma (abfd, cur_sec) != 0)
742 break;
743
744 if (cur_sec == NULL)
745 {
746 CORE_ADDR *offsets = objfile->section_offsets->offsets;
747
748 /* Pick non-overlapping offsets for sections the user did not
749 place explicitly. */
750 arg.offsets = objfile->section_offsets;
751 arg.lowest = 0;
752 bfd_map_over_sections (objfile->obfd, place_section, &arg);
753
754 /* Correctly filling in the section offsets is not quite
755 enough. Relocatable files have two properties that
756 (most) shared objects do not:
757
758 - Their debug information will contain relocations. Some
759 shared libraries do also, but many do not, so this can not
760 be assumed.
761
762 - If there are multiple code sections they will be loaded
763 at different relative addresses in memory than they are
764 in the objfile, since all sections in the file will start
765 at address zero.
766
767 Because GDB has very limited ability to map from an
768 address in debug info to the correct code section,
769 it relies on adding SECT_OFF_TEXT to things which might be
770 code. If we clear all the section offsets, and set the
771 section VMAs instead, then symfile_relocate_debug_section
772 will return meaningful debug information pointing at the
773 correct sections.
774
775 GDB has too many different data structures for section
776 addresses - a bfd, objfile, and so_list all have section
777 tables, as does exec_ops. Some of these could probably
778 be eliminated. */
779
780 for (cur_sec = abfd->sections; cur_sec != NULL;
781 cur_sec = cur_sec->next)
782 {
783 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
784 continue;
785
786 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
787 exec_set_section_address (bfd_get_filename (abfd),
788 cur_sec->index,
30510692 789 offsets[cur_sec->index]);
2711e456
DJ
790 offsets[cur_sec->index] = 0;
791 }
792 }
c1bd25fd
DJ
793 }
794
e8289572 795 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 796 .rodata sections. */
e8289572
JB
797 init_objfile_sect_indices (objfile);
798}
799
31d99776
DJ
800/* Divide the file into segments, which are individual relocatable units.
801 This is the default version of the sym_fns.sym_segments function for
802 symbol readers that do not have an explicit representation of segments.
803 It assumes that object files do not have segments, and fully linked
804 files have a single segment. */
805
806struct symfile_segment_data *
807default_symfile_segments (bfd *abfd)
808{
809 int num_sections, i;
810 asection *sect;
811 struct symfile_segment_data *data;
812 CORE_ADDR low, high;
813
814 /* Relocatable files contain enough information to position each
815 loadable section independently; they should not be relocated
816 in segments. */
817 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
818 return NULL;
819
820 /* Make sure there is at least one loadable section in the file. */
821 for (sect = abfd->sections; sect != NULL; sect = sect->next)
822 {
823 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
824 continue;
825
826 break;
827 }
828 if (sect == NULL)
829 return NULL;
830
831 low = bfd_get_section_vma (abfd, sect);
832 high = low + bfd_get_section_size (sect);
833
41bf6aca 834 data = XCNEW (struct symfile_segment_data);
31d99776 835 data->num_segments = 1;
fc270c35
TT
836 data->segment_bases = XCNEW (CORE_ADDR);
837 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
838
839 num_sections = bfd_count_sections (abfd);
fc270c35 840 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
841
842 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
843 {
844 CORE_ADDR vma;
845
846 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
847 continue;
848
849 vma = bfd_get_section_vma (abfd, sect);
850 if (vma < low)
851 low = vma;
852 if (vma + bfd_get_section_size (sect) > high)
853 high = vma + bfd_get_section_size (sect);
854
855 data->segment_info[i] = 1;
856 }
857
858 data->segment_bases[0] = low;
859 data->segment_sizes[0] = high - low;
860
861 return data;
862}
863
608e2dbb
TT
864/* This is a convenience function to call sym_read for OBJFILE and
865 possibly force the partial symbols to be read. */
866
867static void
868read_symbols (struct objfile *objfile, int add_flags)
869{
870 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 871 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
872
873 /* find_separate_debug_file_in_section should be called only if there is
874 single binary with no existing separate debug info file. */
875 if (!objfile_has_partial_symbols (objfile)
876 && objfile->separate_debug_objfile == NULL
877 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
878 {
879 bfd *abfd = find_separate_debug_file_in_section (objfile);
880 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
881
882 if (abfd != NULL)
24ba069a
JK
883 {
884 /* find_separate_debug_file_in_section uses the same filename for the
885 virtual section-as-bfd like the bfd filename containing the
886 section. Therefore use also non-canonical name form for the same
887 file containing the section. */
888 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
889 objfile);
890 }
608e2dbb
TT
891
892 do_cleanups (cleanup);
893 }
894 if ((add_flags & SYMFILE_NO_READ) == 0)
895 require_partial_symbols (objfile, 0);
896}
897
3d6e24f0
JB
898/* Initialize entry point information for this objfile. */
899
900static void
901init_entry_point_info (struct objfile *objfile)
902{
6ef55de7
TT
903 struct entry_info *ei = &objfile->per_bfd->ei;
904
905 if (ei->initialized)
906 return;
907 ei->initialized = 1;
908
3d6e24f0
JB
909 /* Save startup file's range of PC addresses to help blockframe.c
910 decide where the bottom of the stack is. */
911
912 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
913 {
914 /* Executable file -- record its entry point so we'll recognize
915 the startup file because it contains the entry point. */
6ef55de7
TT
916 ei->entry_point = bfd_get_start_address (objfile->obfd);
917 ei->entry_point_p = 1;
3d6e24f0
JB
918 }
919 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
920 && bfd_get_start_address (objfile->obfd) != 0)
921 {
922 /* Some shared libraries may have entry points set and be
923 runnable. There's no clear way to indicate this, so just check
924 for values other than zero. */
6ef55de7
TT
925 ei->entry_point = bfd_get_start_address (objfile->obfd);
926 ei->entry_point_p = 1;
3d6e24f0
JB
927 }
928 else
929 {
930 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 931 ei->entry_point_p = 0;
3d6e24f0
JB
932 }
933
6ef55de7 934 if (ei->entry_point_p)
3d6e24f0 935 {
53eddfa6 936 struct obj_section *osect;
6ef55de7 937 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 938 int found;
3d6e24f0
JB
939
940 /* Make certain that the address points at real code, and not a
941 function descriptor. */
942 entry_point
df6d5441 943 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
944 entry_point,
945 &current_target);
946
947 /* Remove any ISA markers, so that this matches entries in the
948 symbol table. */
6ef55de7 949 ei->entry_point
df6d5441 950 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
951
952 found = 0;
953 ALL_OBJFILE_OSECTIONS (objfile, osect)
954 {
955 struct bfd_section *sect = osect->the_bfd_section;
956
957 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
958 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
959 + bfd_get_section_size (sect)))
960 {
6ef55de7 961 ei->the_bfd_section_index
53eddfa6
TT
962 = gdb_bfd_section_index (objfile->obfd, sect);
963 found = 1;
964 break;
965 }
966 }
967
968 if (!found)
6ef55de7 969 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
970 }
971}
972
c906108c
SS
973/* Process a symbol file, as either the main file or as a dynamically
974 loaded file.
975
36e4d068
JB
976 This function does not set the OBJFILE's entry-point info.
977
96baa820
JM
978 OBJFILE is where the symbols are to be read from.
979
7e8580c1
JB
980 ADDRS is the list of section load addresses. If the user has given
981 an 'add-symbol-file' command, then this is the list of offsets and
982 addresses he or she provided as arguments to the command; or, if
983 we're handling a shared library, these are the actual addresses the
984 sections are loaded at, according to the inferior's dynamic linker
985 (as gleaned by GDB's shared library code). We convert each address
986 into an offset from the section VMA's as it appears in the object
987 file, and then call the file's sym_offsets function to convert this
988 into a format-specific offset table --- a `struct section_offsets'.
96baa820 989
7eedccfa
PP
990 ADD_FLAGS encodes verbosity level, whether this is main symbol or
991 an extra symbol file such as dynamically loaded code, and wether
992 breakpoint reset should be deferred. */
c906108c 993
36e4d068
JB
994static void
995syms_from_objfile_1 (struct objfile *objfile,
996 struct section_addr_info *addrs,
36e4d068 997 int add_flags)
c906108c 998{
a39a16c4 999 struct section_addr_info *local_addr = NULL;
c906108c 1000 struct cleanup *old_chain;
7eedccfa 1001 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1002
8fb8eb5c 1003 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1004
75245b24 1005 if (objfile->sf == NULL)
36e4d068
JB
1006 {
1007 /* No symbols to load, but we still need to make sure
1008 that the section_offsets table is allocated. */
d445b2f6 1009 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1010 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1011
1012 objfile->num_sections = num_sections;
1013 objfile->section_offsets
224c3ddb
SM
1014 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1015 size);
36e4d068
JB
1016 memset (objfile->section_offsets, 0, size);
1017 return;
1018 }
75245b24 1019
c906108c
SS
1020 /* Make sure that partially constructed symbol tables will be cleaned up
1021 if an error occurs during symbol reading. */
74b7792f 1022 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1023
6bf667bb
DE
1024 /* If ADDRS is NULL, put together a dummy address list.
1025 We now establish the convention that an addr of zero means
c378eb4e 1026 no load address was specified. */
6bf667bb 1027 if (! addrs)
a39a16c4 1028 {
d445b2f6 1029 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1030 make_cleanup (xfree, local_addr);
1031 addrs = local_addr;
1032 }
1033
c5aa993b 1034 if (mainline)
c906108c
SS
1035 {
1036 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1037 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1038 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1039
1040 /* Since no error yet, throw away the old symbol table. */
1041
1042 if (symfile_objfile != NULL)
1043 {
1044 free_objfile (symfile_objfile);
adb7f338 1045 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1046 }
1047
1048 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1049 If the user wants to get rid of them, they should do "symbol-file"
1050 without arguments first. Not sure this is the best behavior
1051 (PR 2207). */
c906108c 1052
c5aa993b 1053 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1054 }
1055
1056 /* Convert addr into an offset rather than an absolute address.
1057 We find the lowest address of a loaded segment in the objfile,
53a5351d 1058 and assume that <addr> is where that got loaded.
c906108c 1059
53a5351d
JM
1060 We no longer warn if the lowest section is not a text segment (as
1061 happens for the PA64 port. */
6bf667bb 1062 if (addrs->num_sections > 0)
75242ef4 1063 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1064
1065 /* Initialize symbol reading routines for this objfile, allow complaints to
1066 appear for this new file, and record how verbose to be, then do the
c378eb4e 1067 initial symbol reading for this file. */
c906108c 1068
c5aa993b 1069 (*objfile->sf->sym_init) (objfile);
7eedccfa 1070 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1071
6bf667bb 1072 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1073
608e2dbb 1074 read_symbols (objfile, add_flags);
b11896a5 1075
c906108c
SS
1076 /* Discard cleanups as symbol reading was successful. */
1077
1078 discard_cleanups (old_chain);
f7545552 1079 xfree (local_addr);
c906108c
SS
1080}
1081
36e4d068
JB
1082/* Same as syms_from_objfile_1, but also initializes the objfile
1083 entry-point info. */
1084
6bf667bb 1085static void
36e4d068
JB
1086syms_from_objfile (struct objfile *objfile,
1087 struct section_addr_info *addrs,
36e4d068
JB
1088 int add_flags)
1089{
6bf667bb 1090 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1091 init_entry_point_info (objfile);
1092}
1093
c906108c
SS
1094/* Perform required actions after either reading in the initial
1095 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1096 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1097
e7d52ed3
DE
1098static void
1099finish_new_objfile (struct objfile *objfile, int add_flags)
c906108c 1100{
c906108c 1101 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1102 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1103 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1104 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1105 {
1106 /* OK, make it the "real" symbol file. */
1107 symfile_objfile = objfile;
1108
c1e56572 1109 clear_symtab_users (add_flags);
c906108c 1110 }
7eedccfa 1111 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1112 {
69de3c6a 1113 breakpoint_re_set ();
c906108c
SS
1114 }
1115
1116 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1117 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1118}
1119
1120/* Process a symbol file, as either the main file or as a dynamically
1121 loaded file.
1122
5417f6dc 1123 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1124 A new reference is acquired by this function.
7904e09f 1125
24ba069a
JK
1126 For NAME description see allocate_objfile's definition.
1127
7eedccfa
PP
1128 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1129 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1130
6bf667bb 1131 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1132 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1133
63524580
JK
1134 PARENT is the original objfile if ABFD is a separate debug info file.
1135 Otherwise PARENT is NULL.
1136
c906108c 1137 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1138 Upon failure, jumps back to command level (never returns). */
7eedccfa 1139
7904e09f 1140static struct objfile *
24ba069a 1141symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1142 struct section_addr_info *addrs,
1143 int flags, struct objfile *parent)
c906108c
SS
1144{
1145 struct objfile *objfile;
7eedccfa 1146 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1147 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1148 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1149 && (readnow_symbol_files
1150 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1151
9291a0cd 1152 if (readnow_symbol_files)
b11896a5
TT
1153 {
1154 flags |= OBJF_READNOW;
1155 add_flags &= ~SYMFILE_NO_READ;
1156 }
9291a0cd 1157
5417f6dc
RM
1158 /* Give user a chance to burp if we'd be
1159 interactively wiping out any existing symbols. */
c906108c
SS
1160
1161 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1162 && mainline
c906108c 1163 && from_tty
9e2f0ad4 1164 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1165 error (_("Not confirmed."));
c906108c 1166
24ba069a
JK
1167 objfile = allocate_objfile (abfd, name,
1168 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1169
63524580
JK
1170 if (parent)
1171 add_separate_debug_objfile (objfile, parent);
1172
78a4a9b9
AC
1173 /* We either created a new mapped symbol table, mapped an existing
1174 symbol table file which has not had initial symbol reading
c378eb4e 1175 performed, or need to read an unmapped symbol table. */
b11896a5 1176 if (should_print)
c906108c 1177 {
769d7dc4
AC
1178 if (deprecated_pre_add_symbol_hook)
1179 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1180 else
c906108c 1181 {
55333a84
DE
1182 printf_unfiltered (_("Reading symbols from %s..."), name);
1183 wrap_here ("");
1184 gdb_flush (gdb_stdout);
c906108c 1185 }
c906108c 1186 }
6bf667bb 1187 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1188
1189 /* We now have at least a partial symbol table. Check to see if the
1190 user requested that all symbols be read on initial access via either
1191 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1192 all partial symbol tables for this objfile if so. */
c906108c 1193
9291a0cd 1194 if ((flags & OBJF_READNOW))
c906108c 1195 {
b11896a5 1196 if (should_print)
c906108c 1197 {
a3f17187 1198 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1199 wrap_here ("");
1200 gdb_flush (gdb_stdout);
1201 }
1202
ccefe4c4
TT
1203 if (objfile->sf)
1204 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1205 }
1206
b11896a5 1207 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1208 {
1209 wrap_here ("");
55333a84 1210 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1211 wrap_here ("");
1212 }
1213
b11896a5 1214 if (should_print)
c906108c 1215 {
769d7dc4
AC
1216 if (deprecated_post_add_symbol_hook)
1217 deprecated_post_add_symbol_hook ();
c906108c 1218 else
55333a84 1219 printf_unfiltered (_("done.\n"));
c906108c
SS
1220 }
1221
481d0f41
JB
1222 /* We print some messages regardless of whether 'from_tty ||
1223 info_verbose' is true, so make sure they go out at the right
1224 time. */
1225 gdb_flush (gdb_stdout);
1226
109f874e 1227 if (objfile->sf == NULL)
8caee43b
PP
1228 {
1229 observer_notify_new_objfile (objfile);
c378eb4e 1230 return objfile; /* No symbols. */
8caee43b 1231 }
109f874e 1232
e7d52ed3 1233 finish_new_objfile (objfile, add_flags);
c906108c 1234
06d3b283 1235 observer_notify_new_objfile (objfile);
c906108c 1236
ce7d4522 1237 bfd_cache_close_all ();
c906108c
SS
1238 return (objfile);
1239}
1240
24ba069a
JK
1241/* Add BFD as a separate debug file for OBJFILE. For NAME description
1242 see allocate_objfile's definition. */
9cce227f
TG
1243
1244void
24ba069a
JK
1245symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1246 struct objfile *objfile)
9cce227f 1247{
089b4803
TG
1248 struct section_addr_info *sap;
1249 struct cleanup *my_cleanup;
1250
1251 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1252 because sections of BFD may not match sections of OBJFILE and because
1253 vma may have been modified by tools such as prelink. */
1254 sap = build_section_addr_info_from_objfile (objfile);
1255 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1256
870f88f7 1257 symbol_file_add_with_addrs
24ba069a 1258 (bfd, name, symfile_flags, sap,
9cce227f 1259 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1260 | OBJF_USERLOADED),
1261 objfile);
089b4803
TG
1262
1263 do_cleanups (my_cleanup);
9cce227f 1264}
7904e09f 1265
eb4556d7
JB
1266/* Process the symbol file ABFD, as either the main file or as a
1267 dynamically loaded file.
6bf667bb 1268 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1269
eb4556d7 1270struct objfile *
24ba069a 1271symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1272 struct section_addr_info *addrs,
63524580 1273 int flags, struct objfile *parent)
eb4556d7 1274{
24ba069a
JK
1275 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1276 parent);
eb4556d7
JB
1277}
1278
7904e09f 1279/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1280 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1281
7904e09f 1282struct objfile *
69150c3d
JK
1283symbol_file_add (const char *name, int add_flags,
1284 struct section_addr_info *addrs, int flags)
7904e09f 1285{
8ac244b4
TT
1286 bfd *bfd = symfile_bfd_open (name);
1287 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1288 struct objfile *objf;
1289
24ba069a 1290 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1291 do_cleanups (cleanup);
1292 return objf;
7904e09f
JB
1293}
1294
d7db6da9
FN
1295/* Call symbol_file_add() with default values and update whatever is
1296 affected by the loading of a new main().
1297 Used when the file is supplied in the gdb command line
1298 and by some targets with special loading requirements.
1299 The auxiliary function, symbol_file_add_main_1(), has the flags
1300 argument for the switches that can only be specified in the symbol_file
1301 command itself. */
5417f6dc 1302
1adeb98a 1303void
69150c3d 1304symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1305{
d7db6da9
FN
1306 symbol_file_add_main_1 (args, from_tty, 0);
1307}
1308
1309static void
69150c3d 1310symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1311{
7dcd53a0
TT
1312 const int add_flags = (current_inferior ()->symfile_flags
1313 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1314
7eedccfa 1315 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1316
d7db6da9
FN
1317 /* Getting new symbols may change our opinion about
1318 what is frameless. */
1319 reinit_frame_cache ();
1320
7dcd53a0
TT
1321 if ((flags & SYMFILE_NO_READ) == 0)
1322 set_initial_language ();
1adeb98a
FN
1323}
1324
1325void
1326symbol_file_clear (int from_tty)
1327{
1328 if ((have_full_symbols () || have_partial_symbols ())
1329 && from_tty
0430b0d6
AS
1330 && (symfile_objfile
1331 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1332 objfile_name (symfile_objfile))
0430b0d6 1333 : !query (_("Discard symbol table? "))))
8a3fe4f8 1334 error (_("Not confirmed."));
1adeb98a 1335
0133421a
JK
1336 /* solib descriptors may have handles to objfiles. Wipe them before their
1337 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1338 no_shared_libraries (NULL, from_tty);
1339
0133421a
JK
1340 free_all_objfiles ();
1341
adb7f338 1342 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1343 if (from_tty)
1344 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1345}
1346
5b5d99cf 1347static int
287ccc17 1348separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1349 struct objfile *parent_objfile)
5b5d99cf 1350{
904578ed
JK
1351 unsigned long file_crc;
1352 int file_crc_p;
f1838a98 1353 bfd *abfd;
32a0e547 1354 struct stat parent_stat, abfd_stat;
904578ed 1355 int verified_as_different;
32a0e547
JK
1356
1357 /* Find a separate debug info file as if symbols would be present in
1358 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1359 section can contain just the basename of PARENT_OBJFILE without any
1360 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1361 the separate debug infos with the same basename can exist. */
32a0e547 1362
4262abfb 1363 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1364 return 0;
5b5d99cf 1365
2938e6cf 1366 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1367
1368 if (!abfd)
5b5d99cf
JB
1369 return 0;
1370
0ba1096a 1371 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1372
1373 Some operating systems, e.g. Windows, do not provide a meaningful
1374 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1375 meaningful st_dev.) Files accessed from gdbservers that do not
1376 support the vFile:fstat packet will also have st_ino set to zero.
1377 Do not indicate a duplicate library in either case. While there
1378 is no guarantee that a system that provides meaningful inode
1379 numbers will never set st_ino to zero, this is merely an
1380 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1381
1382 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1383 && abfd_stat.st_ino != 0
1384 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1385 {
904578ed
JK
1386 if (abfd_stat.st_dev == parent_stat.st_dev
1387 && abfd_stat.st_ino == parent_stat.st_ino)
1388 {
cbb099e8 1389 gdb_bfd_unref (abfd);
904578ed
JK
1390 return 0;
1391 }
1392 verified_as_different = 1;
32a0e547 1393 }
904578ed
JK
1394 else
1395 verified_as_different = 0;
32a0e547 1396
dccee2de 1397 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1398
cbb099e8 1399 gdb_bfd_unref (abfd);
5b5d99cf 1400
904578ed
JK
1401 if (!file_crc_p)
1402 return 0;
1403
287ccc17
JK
1404 if (crc != file_crc)
1405 {
dccee2de
TT
1406 unsigned long parent_crc;
1407
0a93529c
GB
1408 /* If the files could not be verified as different with
1409 bfd_stat then we need to calculate the parent's CRC
1410 to verify whether the files are different or not. */
904578ed 1411
dccee2de 1412 if (!verified_as_different)
904578ed 1413 {
dccee2de 1414 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1415 return 0;
1416 }
1417
dccee2de 1418 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1419 warning (_("the debug information found in \"%s\""
1420 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1421 name, objfile_name (parent_objfile));
904578ed 1422
287ccc17
JK
1423 return 0;
1424 }
1425
1426 return 1;
5b5d99cf
JB
1427}
1428
aa28a74e 1429char *debug_file_directory = NULL;
920d2a44
AC
1430static void
1431show_debug_file_directory (struct ui_file *file, int from_tty,
1432 struct cmd_list_element *c, const char *value)
1433{
3e43a32a
MS
1434 fprintf_filtered (file,
1435 _("The directory where separate debug "
1436 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1437 value);
1438}
5b5d99cf
JB
1439
1440#if ! defined (DEBUG_SUBDIRECTORY)
1441#define DEBUG_SUBDIRECTORY ".debug"
1442#endif
1443
1db33378
PP
1444/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1445 where the original file resides (may not be the same as
1446 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1447 looking for. CANON_DIR is the "realpath" form of DIR.
1448 DIR must contain a trailing '/'.
1449 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1450
1451static char *
1452find_separate_debug_file (const char *dir,
1453 const char *canon_dir,
1454 const char *debuglink,
1455 unsigned long crc32, struct objfile *objfile)
9cce227f 1456{
1db33378
PP
1457 char *debugdir;
1458 char *debugfile;
9cce227f 1459 int i;
e4ab2fad
JK
1460 VEC (char_ptr) *debugdir_vec;
1461 struct cleanup *back_to;
1462 int ix;
5b5d99cf 1463
1db33378 1464 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1465 i = strlen (dir);
1db33378
PP
1466 if (canon_dir != NULL && strlen (canon_dir) > i)
1467 i = strlen (canon_dir);
1ffa32ee 1468
224c3ddb
SM
1469 debugfile
1470 = (char *) xmalloc (strlen (debug_file_directory) + 1
1471 + i
1472 + strlen (DEBUG_SUBDIRECTORY)
1473 + strlen ("/")
1474 + strlen (debuglink)
1475 + 1);
5b5d99cf
JB
1476
1477 /* First try in the same directory as the original file. */
1478 strcpy (debugfile, dir);
1db33378 1479 strcat (debugfile, debuglink);
5b5d99cf 1480
32a0e547 1481 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1482 return debugfile;
5417f6dc 1483
5b5d99cf
JB
1484 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1485 strcpy (debugfile, dir);
1486 strcat (debugfile, DEBUG_SUBDIRECTORY);
1487 strcat (debugfile, "/");
1db33378 1488 strcat (debugfile, debuglink);
5b5d99cf 1489
32a0e547 1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1491 return debugfile;
5417f6dc 1492
24ddea62 1493 /* Then try in the global debugfile directories.
f888f159 1494
24ddea62
JK
1495 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1496 cause "/..." lookups. */
5417f6dc 1497
e4ab2fad
JK
1498 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1499 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1500
e4ab2fad
JK
1501 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1502 {
1503 strcpy (debugfile, debugdir);
aa28a74e 1504 strcat (debugfile, "/");
24ddea62 1505 strcat (debugfile, dir);
1db33378 1506 strcat (debugfile, debuglink);
aa28a74e 1507
32a0e547 1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1509 {
1510 do_cleanups (back_to);
1511 return debugfile;
1512 }
24ddea62
JK
1513
1514 /* If the file is in the sysroot, try using its base path in the
1515 global debugfile directory. */
1db33378
PP
1516 if (canon_dir != NULL
1517 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1518 strlen (gdb_sysroot)) == 0
1db33378 1519 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1520 {
e4ab2fad 1521 strcpy (debugfile, debugdir);
1db33378 1522 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1523 strcat (debugfile, "/");
1db33378 1524 strcat (debugfile, debuglink);
24ddea62 1525
32a0e547 1526 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1527 {
1528 do_cleanups (back_to);
1529 return debugfile;
1530 }
24ddea62 1531 }
aa28a74e 1532 }
f888f159 1533
e4ab2fad 1534 do_cleanups (back_to);
25522fae 1535 xfree (debugfile);
1db33378
PP
1536 return NULL;
1537}
1538
7edbb660 1539/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1540 If there were no directory separators in PATH, PATH will be empty
1541 string on return. */
1542
1543static void
1544terminate_after_last_dir_separator (char *path)
1545{
1546 int i;
1547
1548 /* Strip off the final filename part, leaving the directory name,
1549 followed by a slash. The directory can be relative or absolute. */
1550 for (i = strlen(path) - 1; i >= 0; i--)
1551 if (IS_DIR_SEPARATOR (path[i]))
1552 break;
1553
1554 /* If I is -1 then no directory is present there and DIR will be "". */
1555 path[i + 1] = '\0';
1556}
1557
1558/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1559 Returns pathname, or NULL. */
1560
1561char *
1562find_separate_debug_file_by_debuglink (struct objfile *objfile)
1563{
1564 char *debuglink;
1565 char *dir, *canon_dir;
1566 char *debugfile;
1567 unsigned long crc32;
1568 struct cleanup *cleanups;
1569
cc0ea93c 1570 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1571
1572 if (debuglink == NULL)
1573 {
1574 /* There's no separate debug info, hence there's no way we could
1575 load it => no warning. */
1576 return NULL;
1577 }
1578
71bdabee 1579 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1580 dir = xstrdup (objfile_name (objfile));
71bdabee 1581 make_cleanup (xfree, dir);
1db33378
PP
1582 terminate_after_last_dir_separator (dir);
1583 canon_dir = lrealpath (dir);
1584
1585 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1586 crc32, objfile);
1587 xfree (canon_dir);
1588
1589 if (debugfile == NULL)
1590 {
1db33378
PP
1591 /* For PR gdb/9538, try again with realpath (if different from the
1592 original). */
1593
1594 struct stat st_buf;
1595
4262abfb
JK
1596 if (lstat (objfile_name (objfile), &st_buf) == 0
1597 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1598 {
1599 char *symlink_dir;
1600
4262abfb 1601 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1602 if (symlink_dir != NULL)
1603 {
1604 make_cleanup (xfree, symlink_dir);
1605 terminate_after_last_dir_separator (symlink_dir);
1606 if (strcmp (dir, symlink_dir) != 0)
1607 {
1608 /* Different directory, so try using it. */
1609 debugfile = find_separate_debug_file (symlink_dir,
1610 symlink_dir,
1611 debuglink,
1612 crc32,
1613 objfile);
1614 }
1615 }
1616 }
1db33378 1617 }
aa28a74e 1618
1db33378 1619 do_cleanups (cleanups);
25522fae 1620 return debugfile;
5b5d99cf
JB
1621}
1622
c906108c
SS
1623/* This is the symbol-file command. Read the file, analyze its
1624 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1625 the command is rather bizarre:
1626
1627 1. The function buildargv implements various quoting conventions
1628 which are undocumented and have little or nothing in common with
1629 the way things are quoted (or not quoted) elsewhere in GDB.
1630
1631 2. Options are used, which are not generally used in GDB (perhaps
1632 "set mapped on", "set readnow on" would be better)
1633
1634 3. The order of options matters, which is contrary to GNU
c906108c
SS
1635 conventions (because it is confusing and inconvenient). */
1636
1637void
fba45db2 1638symbol_file_command (char *args, int from_tty)
c906108c 1639{
c906108c
SS
1640 dont_repeat ();
1641
1642 if (args == NULL)
1643 {
1adeb98a 1644 symbol_file_clear (from_tty);
c906108c
SS
1645 }
1646 else
1647 {
d1a41061 1648 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1649 int flags = OBJF_USERLOADED;
1650 struct cleanup *cleanups;
1651 char *name = NULL;
1652
7a292a7a 1653 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1654 while (*argv != NULL)
1655 {
78a4a9b9
AC
1656 if (strcmp (*argv, "-readnow") == 0)
1657 flags |= OBJF_READNOW;
1658 else if (**argv == '-')
8a3fe4f8 1659 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1660 else
1661 {
cb2f3a29 1662 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1663 name = *argv;
78a4a9b9 1664 }
cb2f3a29 1665
c906108c
SS
1666 argv++;
1667 }
1668
1669 if (name == NULL)
cb2f3a29
MK
1670 error (_("no symbol file name was specified"));
1671
c906108c
SS
1672 do_cleanups (cleanups);
1673 }
1674}
1675
1676/* Set the initial language.
1677
cb2f3a29
MK
1678 FIXME: A better solution would be to record the language in the
1679 psymtab when reading partial symbols, and then use it (if known) to
1680 set the language. This would be a win for formats that encode the
1681 language in an easily discoverable place, such as DWARF. For
1682 stabs, we can jump through hoops looking for specially named
1683 symbols or try to intuit the language from the specific type of
1684 stabs we find, but we can't do that until later when we read in
1685 full symbols. */
c906108c 1686
8b60591b 1687void
fba45db2 1688set_initial_language (void)
c906108c 1689{
9e6c82ad 1690 enum language lang = main_language ();
c906108c 1691
9e6c82ad 1692 if (lang == language_unknown)
01f8c46d 1693 {
bf6d8a91 1694 char *name = main_name ();
d12307c1 1695 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1696
bf6d8a91
TT
1697 if (sym != NULL)
1698 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1699 }
cb2f3a29 1700
ccefe4c4
TT
1701 if (lang == language_unknown)
1702 {
1703 /* Make C the default language */
1704 lang = language_c;
c906108c 1705 }
ccefe4c4
TT
1706
1707 set_language (lang);
1708 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1709}
1710
cb2f3a29
MK
1711/* Open the file specified by NAME and hand it off to BFD for
1712 preliminary analysis. Return a newly initialized bfd *, which
1713 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1714 absolute). In case of trouble, error() is called. */
c906108c
SS
1715
1716bfd *
97a41605 1717symfile_bfd_open (const char *name)
c906108c
SS
1718{
1719 bfd *sym_bfd;
97a41605
GB
1720 int desc = -1;
1721 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1722
97a41605 1723 if (!is_target_filename (name))
f1838a98 1724 {
97a41605 1725 char *expanded_name, *absolute_name;
f1838a98 1726
97a41605 1727 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1728
97a41605
GB
1729 /* Look down path for it, allocate 2nd new malloc'd copy. */
1730 desc = openp (getenv ("PATH"),
1731 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1732 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1733#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1734 if (desc < 0)
1735 {
0ae1c716 1736 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1737
97a41605
GB
1738 strcat (strcpy (exename, expanded_name), ".exe");
1739 desc = openp (getenv ("PATH"),
1740 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1741 exename, O_RDONLY | O_BINARY, &absolute_name);
1742 }
c906108c 1743#endif
97a41605
GB
1744 if (desc < 0)
1745 {
1746 make_cleanup (xfree, expanded_name);
1747 perror_with_name (expanded_name);
1748 }
cb2f3a29 1749
97a41605
GB
1750 xfree (expanded_name);
1751 make_cleanup (xfree, absolute_name);
1752 name = absolute_name;
1753 }
c906108c 1754
1c00ec6b 1755 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1756 if (!sym_bfd)
faab9922
JK
1757 error (_("`%s': can't open to read symbols: %s."), name,
1758 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1759
1760 if (!gdb_bfd_has_target_filename (sym_bfd))
1761 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1762
1763 if (!bfd_check_format (sym_bfd, bfd_object))
1764 {
f9a062ff 1765 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1766 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1767 bfd_errmsg (bfd_get_error ()));
1768 }
cb2f3a29 1769
faab9922
JK
1770 do_cleanups (back_to);
1771
cb2f3a29 1772 return sym_bfd;
c906108c
SS
1773}
1774
cb2f3a29
MK
1775/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1776 the section was not found. */
1777
0e931cf0
JB
1778int
1779get_section_index (struct objfile *objfile, char *section_name)
1780{
1781 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1782
0e931cf0
JB
1783 if (sect)
1784 return sect->index;
1785 else
1786 return -1;
1787}
1788
c256e171
DE
1789/* Link SF into the global symtab_fns list.
1790 FLAVOUR is the file format that SF handles.
1791 Called on startup by the _initialize routine in each object file format
1792 reader, to register information about each format the reader is prepared
1793 to handle. */
c906108c
SS
1794
1795void
c256e171 1796add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1797{
c256e171
DE
1798 registered_sym_fns fns = { flavour, sf };
1799
1800 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1801}
1802
cb2f3a29
MK
1803/* Initialize OBJFILE to read symbols from its associated BFD. It
1804 either returns or calls error(). The result is an initialized
1805 struct sym_fns in the objfile structure, that contains cached
1806 information about the symbol file. */
c906108c 1807
00b5771c 1808static const struct sym_fns *
31d99776 1809find_sym_fns (bfd *abfd)
c906108c 1810{
c256e171 1811 registered_sym_fns *rsf;
31d99776 1812 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1813 int i;
c906108c 1814
75245b24
MS
1815 if (our_flavour == bfd_target_srec_flavour
1816 || our_flavour == bfd_target_ihex_flavour
1817 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1818 return NULL; /* No symbols. */
75245b24 1819
c256e171
DE
1820 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1821 if (our_flavour == rsf->sym_flavour)
1822 return rsf->sym_fns;
cb2f3a29 1823
8a3fe4f8 1824 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1825 bfd_get_target (abfd));
c906108c
SS
1826}
1827\f
cb2f3a29 1828
c906108c
SS
1829/* This function runs the load command of our current target. */
1830
1831static void
fba45db2 1832load_command (char *arg, int from_tty)
c906108c 1833{
5b3fca71
TT
1834 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1835
e5cc9f32
JB
1836 dont_repeat ();
1837
4487aabf
PA
1838 /* The user might be reloading because the binary has changed. Take
1839 this opportunity to check. */
1840 reopen_exec_file ();
1841 reread_symbols ();
1842
c906108c 1843 if (arg == NULL)
1986bccd
AS
1844 {
1845 char *parg;
1846 int count = 0;
1847
1848 parg = arg = get_exec_file (1);
1849
1850 /* Count how many \ " ' tab space there are in the name. */
1851 while ((parg = strpbrk (parg, "\\\"'\t ")))
1852 {
1853 parg++;
1854 count++;
1855 }
1856
1857 if (count)
1858 {
1859 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1860 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1861 char *ptemp = temp;
1862 char *prev;
1863
1864 make_cleanup (xfree, temp);
1865
1866 prev = parg = arg;
1867 while ((parg = strpbrk (parg, "\\\"'\t ")))
1868 {
1869 strncpy (ptemp, prev, parg - prev);
1870 ptemp += parg - prev;
1871 prev = parg++;
1872 *ptemp++ = '\\';
1873 }
1874 strcpy (ptemp, prev);
1875
1876 arg = temp;
1877 }
1878 }
1879
c906108c 1880 target_load (arg, from_tty);
2889e661
JB
1881
1882 /* After re-loading the executable, we don't really know which
1883 overlays are mapped any more. */
1884 overlay_cache_invalid = 1;
5b3fca71
TT
1885
1886 do_cleanups (cleanup);
c906108c
SS
1887}
1888
1889/* This version of "load" should be usable for any target. Currently
1890 it is just used for remote targets, not inftarg.c or core files,
1891 on the theory that only in that case is it useful.
1892
1893 Avoiding xmodem and the like seems like a win (a) because we don't have
1894 to worry about finding it, and (b) On VMS, fork() is very slow and so
1895 we don't want to run a subprocess. On the other hand, I'm not sure how
1896 performance compares. */
917317f4 1897
917317f4
JM
1898static int validate_download = 0;
1899
e4f9b4d5
MS
1900/* Callback service function for generic_load (bfd_map_over_sections). */
1901
1902static void
1903add_section_size_callback (bfd *abfd, asection *asec, void *data)
1904{
19ba03f4 1905 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1906
2c500098 1907 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1908}
1909
1910/* Opaque data for load_section_callback. */
1911struct load_section_data {
f698ca8e 1912 CORE_ADDR load_offset;
a76d924d
DJ
1913 struct load_progress_data *progress_data;
1914 VEC(memory_write_request_s) *requests;
1915};
1916
1917/* Opaque data for load_progress. */
1918struct load_progress_data {
1919 /* Cumulative data. */
e4f9b4d5
MS
1920 unsigned long write_count;
1921 unsigned long data_count;
1922 bfd_size_type total_size;
a76d924d
DJ
1923};
1924
1925/* Opaque data for load_progress for a single section. */
1926struct load_progress_section_data {
1927 struct load_progress_data *cumulative;
cf7a04e8 1928
a76d924d 1929 /* Per-section data. */
cf7a04e8
DJ
1930 const char *section_name;
1931 ULONGEST section_sent;
1932 ULONGEST section_size;
1933 CORE_ADDR lma;
1934 gdb_byte *buffer;
e4f9b4d5
MS
1935};
1936
a76d924d 1937/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1938
1939static void
1940load_progress (ULONGEST bytes, void *untyped_arg)
1941{
19ba03f4
SM
1942 struct load_progress_section_data *args
1943 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1944 struct load_progress_data *totals;
1945
1946 if (args == NULL)
1947 /* Writing padding data. No easy way to get at the cumulative
1948 stats, so just ignore this. */
1949 return;
1950
1951 totals = args->cumulative;
1952
1953 if (bytes == 0 && args->section_sent == 0)
1954 {
1955 /* The write is just starting. Let the user know we've started
1956 this section. */
79a45e25 1957 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1958 args->section_name, hex_string (args->section_size),
f5656ead 1959 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1960 return;
1961 }
cf7a04e8
DJ
1962
1963 if (validate_download)
1964 {
1965 /* Broken memories and broken monitors manifest themselves here
1966 when bring new computers to life. This doubles already slow
1967 downloads. */
1968 /* NOTE: cagney/1999-10-18: A more efficient implementation
1969 might add a verify_memory() method to the target vector and
1970 then use that. remote.c could implement that method using
1971 the ``qCRC'' packet. */
224c3ddb 1972 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1973 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1974
1975 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1976 error (_("Download verify read failed at %s"),
f5656ead 1977 paddress (target_gdbarch (), args->lma));
cf7a04e8 1978 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1979 error (_("Download verify compare failed at %s"),
f5656ead 1980 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1981 do_cleanups (verify_cleanups);
1982 }
a76d924d 1983 totals->data_count += bytes;
cf7a04e8
DJ
1984 args->lma += bytes;
1985 args->buffer += bytes;
a76d924d 1986 totals->write_count += 1;
cf7a04e8 1987 args->section_sent += bytes;
522002f9 1988 if (check_quit_flag ()
cf7a04e8
DJ
1989 || (deprecated_ui_load_progress_hook != NULL
1990 && deprecated_ui_load_progress_hook (args->section_name,
1991 args->section_sent)))
1992 error (_("Canceled the download"));
1993
1994 if (deprecated_show_load_progress != NULL)
1995 deprecated_show_load_progress (args->section_name,
1996 args->section_sent,
1997 args->section_size,
a76d924d
DJ
1998 totals->data_count,
1999 totals->total_size);
cf7a04e8
DJ
2000}
2001
e4f9b4d5
MS
2002/* Callback service function for generic_load (bfd_map_over_sections). */
2003
2004static void
2005load_section_callback (bfd *abfd, asection *asec, void *data)
2006{
a76d924d 2007 struct memory_write_request *new_request;
19ba03f4 2008 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2009 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2010 bfd_size_type size = bfd_get_section_size (asec);
2011 gdb_byte *buffer;
cf7a04e8 2012 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2013
cf7a04e8
DJ
2014 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2015 return;
e4f9b4d5 2016
cf7a04e8
DJ
2017 if (size == 0)
2018 return;
e4f9b4d5 2019
a76d924d
DJ
2020 new_request = VEC_safe_push (memory_write_request_s,
2021 args->requests, NULL);
2022 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2023 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2024 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2025 new_request->end = new_request->begin + size; /* FIXME Should size
2026 be in instead? */
224c3ddb 2027 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2028 new_request->baton = section_data;
cf7a04e8 2029
a76d924d 2030 buffer = new_request->data;
cf7a04e8 2031
a76d924d
DJ
2032 section_data->cumulative = args->progress_data;
2033 section_data->section_name = sect_name;
2034 section_data->section_size = size;
2035 section_data->lma = new_request->begin;
2036 section_data->buffer = buffer;
cf7a04e8
DJ
2037
2038 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2039}
2040
2041/* Clean up an entire memory request vector, including load
2042 data and progress records. */
cf7a04e8 2043
a76d924d
DJ
2044static void
2045clear_memory_write_data (void *arg)
2046{
19ba03f4 2047 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2048 VEC(memory_write_request_s) *vec = *vec_p;
2049 int i;
2050 struct memory_write_request *mr;
cf7a04e8 2051
a76d924d
DJ
2052 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2053 {
2054 xfree (mr->data);
2055 xfree (mr->baton);
2056 }
2057 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2058}
2059
c906108c 2060void
9cbe5fff 2061generic_load (const char *args, int from_tty)
c906108c 2062{
c906108c 2063 bfd *loadfile_bfd;
2b71414d 2064 struct timeval start_time, end_time;
917317f4 2065 char *filename;
1986bccd 2066 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2067 struct load_section_data cbdata;
a76d924d 2068 struct load_progress_data total_progress;
79a45e25 2069 struct ui_out *uiout = current_uiout;
a76d924d 2070
e4f9b4d5 2071 CORE_ADDR entry;
1986bccd 2072 char **argv;
e4f9b4d5 2073
a76d924d
DJ
2074 memset (&cbdata, 0, sizeof (cbdata));
2075 memset (&total_progress, 0, sizeof (total_progress));
2076 cbdata.progress_data = &total_progress;
2077
2078 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2079
d1a41061
PP
2080 if (args == NULL)
2081 error_no_arg (_("file to load"));
1986bccd 2082
d1a41061 2083 argv = gdb_buildargv (args);
1986bccd
AS
2084 make_cleanup_freeargv (argv);
2085
2086 filename = tilde_expand (argv[0]);
2087 make_cleanup (xfree, filename);
2088
2089 if (argv[1] != NULL)
917317f4 2090 {
f698ca8e 2091 const char *endptr;
ba5f2f8a 2092
f698ca8e 2093 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2094
2095 /* If the last word was not a valid number then
2096 treat it as a file name with spaces in. */
2097 if (argv[1] == endptr)
2098 error (_("Invalid download offset:%s."), argv[1]);
2099
2100 if (argv[2] != NULL)
2101 error (_("Too many parameters."));
917317f4 2102 }
c906108c 2103
c378eb4e 2104 /* Open the file for loading. */
1c00ec6b 2105 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2106 if (loadfile_bfd == NULL)
2107 {
2108 perror_with_name (filename);
2109 return;
2110 }
917317f4 2111
f9a062ff 2112 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2113
c5aa993b 2114 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2115 {
8a3fe4f8 2116 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2117 bfd_errmsg (bfd_get_error ()));
2118 }
c5aa993b 2119
5417f6dc 2120 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2121 (void *) &total_progress.total_size);
2122
2123 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2124
2b71414d 2125 gettimeofday (&start_time, NULL);
c906108c 2126
a76d924d
DJ
2127 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2128 load_progress) != 0)
2129 error (_("Load failed"));
c906108c 2130
2b71414d 2131 gettimeofday (&end_time, NULL);
ba5f2f8a 2132
e4f9b4d5 2133 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2134 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2135 ui_out_text (uiout, "Start address ");
f5656ead 2136 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2137 ui_out_text (uiout, ", load size ");
a76d924d 2138 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2139 ui_out_text (uiout, "\n");
fb14de7b 2140 regcache_write_pc (get_current_regcache (), entry);
c906108c 2141
38963c97
DJ
2142 /* Reset breakpoints, now that we have changed the load image. For
2143 instance, breakpoints may have been set (or reset, by
2144 post_create_inferior) while connected to the target but before we
2145 loaded the program. In that case, the prologue analyzer could
2146 have read instructions from the target to find the right
2147 breakpoint locations. Loading has changed the contents of that
2148 memory. */
2149
2150 breakpoint_re_set ();
2151
a76d924d
DJ
2152 print_transfer_performance (gdb_stdout, total_progress.data_count,
2153 total_progress.write_count,
2154 &start_time, &end_time);
c906108c
SS
2155
2156 do_cleanups (old_cleanups);
2157}
2158
c378eb4e 2159/* Report how fast the transfer went. */
c906108c 2160
917317f4 2161void
d9fcf2fb 2162print_transfer_performance (struct ui_file *stream,
917317f4
JM
2163 unsigned long data_count,
2164 unsigned long write_count,
2b71414d
DJ
2165 const struct timeval *start_time,
2166 const struct timeval *end_time)
917317f4 2167{
9f43d28c 2168 ULONGEST time_count;
79a45e25 2169 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2170
2171 /* Compute the elapsed time in milliseconds, as a tradeoff between
2172 accuracy and overflow. */
2173 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2174 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2175
8b93c638
JM
2176 ui_out_text (uiout, "Transfer rate: ");
2177 if (time_count > 0)
2178 {
9f43d28c
DJ
2179 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2180
2181 if (ui_out_is_mi_like_p (uiout))
2182 {
2183 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2184 ui_out_text (uiout, " bits/sec");
2185 }
2186 else if (rate < 1024)
2187 {
2188 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2189 ui_out_text (uiout, " bytes/sec");
2190 }
2191 else
2192 {
2193 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2194 ui_out_text (uiout, " KB/sec");
2195 }
8b93c638
JM
2196 }
2197 else
2198 {
ba5f2f8a 2199 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2200 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2201 }
2202 if (write_count > 0)
2203 {
2204 ui_out_text (uiout, ", ");
ba5f2f8a 2205 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2206 ui_out_text (uiout, " bytes/write");
2207 }
2208 ui_out_text (uiout, ".\n");
c906108c
SS
2209}
2210
2211/* This function allows the addition of incrementally linked object files.
2212 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2213/* Note: ezannoni 2000-04-13 This function/command used to have a
2214 special case syntax for the rombug target (Rombug is the boot
2215 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2216 rombug case, the user doesn't need to supply a text address,
2217 instead a call to target_link() (in target.c) would supply the
c378eb4e 2218 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2219
c906108c 2220static void
fba45db2 2221add_symbol_file_command (char *args, int from_tty)
c906108c 2222{
5af949e3 2223 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2224 char *filename = NULL;
d03de421 2225 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2226 char *arg;
db162d44 2227 int section_index = 0;
2acceee2
JM
2228 int argcnt = 0;
2229 int sec_num = 0;
2230 int i;
db162d44
EZ
2231 int expecting_sec_name = 0;
2232 int expecting_sec_addr = 0;
5b96932b 2233 char **argv;
76ad5e1e 2234 struct objfile *objf;
db162d44 2235
a39a16c4 2236 struct sect_opt
2acceee2 2237 {
2acceee2
JM
2238 char *name;
2239 char *value;
a39a16c4 2240 };
db162d44 2241
a39a16c4
MM
2242 struct section_addr_info *section_addrs;
2243 struct sect_opt *sect_opts = NULL;
2244 size_t num_sect_opts = 0;
3017564a 2245 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2246
a39a16c4 2247 num_sect_opts = 16;
8d749320 2248 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2249
c906108c
SS
2250 dont_repeat ();
2251
2252 if (args == NULL)
8a3fe4f8 2253 error (_("add-symbol-file takes a file name and an address"));
c906108c 2254
d1a41061 2255 argv = gdb_buildargv (args);
5b96932b 2256 make_cleanup_freeargv (argv);
db162d44 2257
5b96932b
AS
2258 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2259 {
c378eb4e 2260 /* Process the argument. */
db162d44 2261 if (argcnt == 0)
c906108c 2262 {
c378eb4e 2263 /* The first argument is the file name. */
db162d44 2264 filename = tilde_expand (arg);
3017564a 2265 make_cleanup (xfree, filename);
c906108c 2266 }
41dc8db8
MB
2267 else if (argcnt == 1)
2268 {
2269 /* The second argument is always the text address at which
2270 to load the program. */
2271 sect_opts[section_index].name = ".text";
2272 sect_opts[section_index].value = arg;
2273 if (++section_index >= num_sect_opts)
2274 {
2275 num_sect_opts *= 2;
2276 sect_opts = ((struct sect_opt *)
2277 xrealloc (sect_opts,
2278 num_sect_opts
2279 * sizeof (struct sect_opt)));
2280 }
2281 }
db162d44 2282 else
41dc8db8
MB
2283 {
2284 /* It's an option (starting with '-') or it's an argument
2285 to an option. */
41dc8db8
MB
2286 if (expecting_sec_name)
2287 {
2288 sect_opts[section_index].name = arg;
2289 expecting_sec_name = 0;
2290 }
2291 else if (expecting_sec_addr)
2292 {
2293 sect_opts[section_index].value = arg;
2294 expecting_sec_addr = 0;
2295 if (++section_index >= num_sect_opts)
2296 {
2297 num_sect_opts *= 2;
2298 sect_opts = ((struct sect_opt *)
2299 xrealloc (sect_opts,
2300 num_sect_opts
2301 * sizeof (struct sect_opt)));
2302 }
2303 }
2304 else if (strcmp (arg, "-readnow") == 0)
2305 flags |= OBJF_READNOW;
2306 else if (strcmp (arg, "-s") == 0)
2307 {
2308 expecting_sec_name = 1;
2309 expecting_sec_addr = 1;
2310 }
2311 else
2312 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2313 " [-readnow] [-s <secname> <addr>]*"));
2314 }
c906108c 2315 }
c906108c 2316
927890d0
JB
2317 /* This command takes at least two arguments. The first one is a
2318 filename, and the second is the address where this file has been
2319 loaded. Abort now if this address hasn't been provided by the
2320 user. */
2321 if (section_index < 1)
2322 error (_("The address where %s has been loaded is missing"), filename);
2323
c378eb4e 2324 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2325 a sect_addr_info structure to be passed around to other
2326 functions. We have to split this up into separate print
bb599908 2327 statements because hex_string returns a local static
c378eb4e 2328 string. */
5417f6dc 2329
a3f17187 2330 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2331 section_addrs = alloc_section_addr_info (section_index);
2332 make_cleanup (xfree, section_addrs);
db162d44 2333 for (i = 0; i < section_index; i++)
c906108c 2334 {
db162d44
EZ
2335 CORE_ADDR addr;
2336 char *val = sect_opts[i].value;
2337 char *sec = sect_opts[i].name;
5417f6dc 2338
ae822768 2339 addr = parse_and_eval_address (val);
db162d44 2340
db162d44 2341 /* Here we store the section offsets in the order they were
c378eb4e 2342 entered on the command line. */
a39a16c4
MM
2343 section_addrs->other[sec_num].name = sec;
2344 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2345 printf_unfiltered ("\t%s_addr = %s\n", sec,
2346 paddress (gdbarch, addr));
db162d44
EZ
2347 sec_num++;
2348
5417f6dc 2349 /* The object's sections are initialized when a
db162d44 2350 call is made to build_objfile_section_table (objfile).
5417f6dc 2351 This happens in reread_symbols.
db162d44
EZ
2352 At this point, we don't know what file type this is,
2353 so we can't determine what section names are valid. */
2acceee2 2354 }
d76488d8 2355 section_addrs->num_sections = sec_num;
db162d44 2356
2acceee2 2357 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2358 error (_("Not confirmed."));
c906108c 2359
76ad5e1e
NB
2360 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2361 section_addrs, flags);
2362
2363 add_target_sections_of_objfile (objf);
c906108c
SS
2364
2365 /* Getting new symbols may change our opinion about what is
2366 frameless. */
2367 reinit_frame_cache ();
db162d44 2368 do_cleanups (my_cleanups);
c906108c
SS
2369}
2370\f
70992597 2371
63644780
NB
2372/* This function removes a symbol file that was added via add-symbol-file. */
2373
2374static void
2375remove_symbol_file_command (char *args, int from_tty)
2376{
2377 char **argv;
2378 struct objfile *objf = NULL;
2379 struct cleanup *my_cleanups;
2380 struct program_space *pspace = current_program_space;
63644780
NB
2381
2382 dont_repeat ();
2383
2384 if (args == NULL)
2385 error (_("remove-symbol-file: no symbol file provided"));
2386
2387 my_cleanups = make_cleanup (null_cleanup, NULL);
2388
2389 argv = gdb_buildargv (args);
2390
2391 if (strcmp (argv[0], "-a") == 0)
2392 {
2393 /* Interpret the next argument as an address. */
2394 CORE_ADDR addr;
2395
2396 if (argv[1] == NULL)
2397 error (_("Missing address argument"));
2398
2399 if (argv[2] != NULL)
2400 error (_("Junk after %s"), argv[1]);
2401
2402 addr = parse_and_eval_address (argv[1]);
2403
2404 ALL_OBJFILES (objf)
2405 {
d03de421
PA
2406 if ((objf->flags & OBJF_USERLOADED) != 0
2407 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2408 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2409 break;
2410 }
2411 }
2412 else if (argv[0] != NULL)
2413 {
2414 /* Interpret the current argument as a file name. */
2415 char *filename;
2416
2417 if (argv[1] != NULL)
2418 error (_("Junk after %s"), argv[0]);
2419
2420 filename = tilde_expand (argv[0]);
2421 make_cleanup (xfree, filename);
2422
2423 ALL_OBJFILES (objf)
2424 {
d03de421
PA
2425 if ((objf->flags & OBJF_USERLOADED) != 0
2426 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2427 && objf->pspace == pspace
2428 && filename_cmp (filename, objfile_name (objf)) == 0)
2429 break;
2430 }
2431 }
2432
2433 if (objf == NULL)
2434 error (_("No symbol file found"));
2435
2436 if (from_tty
2437 && !query (_("Remove symbol table from file \"%s\"? "),
2438 objfile_name (objf)))
2439 error (_("Not confirmed."));
2440
2441 free_objfile (objf);
2442 clear_symtab_users (0);
2443
2444 do_cleanups (my_cleanups);
2445}
2446
4ac39b97
JK
2447typedef struct objfile *objfilep;
2448
2449DEF_VEC_P (objfilep);
2450
c906108c 2451/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2452
c906108c 2453void
fba45db2 2454reread_symbols (void)
c906108c
SS
2455{
2456 struct objfile *objfile;
2457 long new_modtime;
c906108c
SS
2458 struct stat new_statbuf;
2459 int res;
4ac39b97
JK
2460 VEC (objfilep) *new_objfiles = NULL;
2461 struct cleanup *all_cleanups;
2462
2463 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2464
2465 /* With the addition of shared libraries, this should be modified,
2466 the load time should be saved in the partial symbol tables, since
2467 different tables may come from different source files. FIXME.
2468 This routine should then walk down each partial symbol table
c378eb4e 2469 and see if the symbol table that it originates from has been changed. */
c906108c 2470
c5aa993b
JM
2471 for (objfile = object_files; objfile; objfile = objfile->next)
2472 {
9cce227f
TG
2473 if (objfile->obfd == NULL)
2474 continue;
2475
2476 /* Separate debug objfiles are handled in the main objfile. */
2477 if (objfile->separate_debug_objfile_backlink)
2478 continue;
2479
02aeec7b
JB
2480 /* If this object is from an archive (what you usually create with
2481 `ar', often called a `static library' on most systems, though
2482 a `shared library' on AIX is also an archive), then you should
2483 stat on the archive name, not member name. */
9cce227f
TG
2484 if (objfile->obfd->my_archive)
2485 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2486 else
4262abfb 2487 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2488 if (res != 0)
2489 {
c378eb4e 2490 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2491 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2492 objfile_name (objfile));
9cce227f
TG
2493 continue;
2494 }
2495 new_modtime = new_statbuf.st_mtime;
2496 if (new_modtime != objfile->mtime)
2497 {
2498 struct cleanup *old_cleanups;
2499 struct section_offsets *offsets;
2500 int num_offsets;
24ba069a 2501 char *original_name;
9cce227f
TG
2502
2503 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2504 objfile_name (objfile));
9cce227f
TG
2505
2506 /* There are various functions like symbol_file_add,
2507 symfile_bfd_open, syms_from_objfile, etc., which might
2508 appear to do what we want. But they have various other
2509 effects which we *don't* want. So we just do stuff
2510 ourselves. We don't worry about mapped files (for one thing,
2511 any mapped file will be out of date). */
2512
2513 /* If we get an error, blow away this objfile (not sure if
2514 that is the correct response for things like shared
2515 libraries). */
2516 old_cleanups = make_cleanup_free_objfile (objfile);
2517 /* We need to do this whenever any symbols go away. */
2518 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2519
0ba1096a
KT
2520 if (exec_bfd != NULL
2521 && filename_cmp (bfd_get_filename (objfile->obfd),
2522 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2523 {
2524 /* Reload EXEC_BFD without asking anything. */
2525
2526 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2527 }
2528
f6eeced0
JK
2529 /* Keep the calls order approx. the same as in free_objfile. */
2530
2531 /* Free the separate debug objfiles. It will be
2532 automatically recreated by sym_read. */
2533 free_objfile_separate_debug (objfile);
2534
2535 /* Remove any references to this objfile in the global
2536 value lists. */
2537 preserve_values (objfile);
2538
2539 /* Nuke all the state that we will re-read. Much of the following
2540 code which sets things to NULL really is necessary to tell
2541 other parts of GDB that there is nothing currently there.
2542
2543 Try to keep the freeing order compatible with free_objfile. */
2544
2545 if (objfile->sf != NULL)
2546 {
2547 (*objfile->sf->sym_finish) (objfile);
2548 }
2549
2550 clear_objfile_data (objfile);
2551
e1507e95 2552 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2553 {
2554 struct bfd *obfd = objfile->obfd;
d3846e71 2555 char *obfd_filename;
a4453b7e
TT
2556
2557 obfd_filename = bfd_get_filename (objfile->obfd);
2558 /* Open the new BFD before freeing the old one, so that
2559 the filename remains live. */
2938e6cf 2560 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2561 if (objfile->obfd == NULL)
2562 {
2563 /* We have to make a cleanup and error here, rather
2564 than erroring later, because once we unref OBFD,
2565 OBFD_FILENAME will be freed. */
2566 make_cleanup_bfd_unref (obfd);
2567 error (_("Can't open %s to read symbols."), obfd_filename);
2568 }
a4453b7e
TT
2569 gdb_bfd_unref (obfd);
2570 }
2571
24ba069a
JK
2572 original_name = xstrdup (objfile->original_name);
2573 make_cleanup (xfree, original_name);
2574
9cce227f
TG
2575 /* bfd_openr sets cacheable to true, which is what we want. */
2576 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2577 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2578 bfd_errmsg (bfd_get_error ()));
2579
2580 /* Save the offsets, we will nuke them with the rest of the
2581 objfile_obstack. */
2582 num_offsets = objfile->num_sections;
2583 offsets = ((struct section_offsets *)
2584 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2585 memcpy (offsets, objfile->section_offsets,
2586 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2587
9cce227f
TG
2588 /* FIXME: Do we have to free a whole linked list, or is this
2589 enough? */
2590 if (objfile->global_psymbols.list)
2591 xfree (objfile->global_psymbols.list);
2592 memset (&objfile->global_psymbols, 0,
2593 sizeof (objfile->global_psymbols));
2594 if (objfile->static_psymbols.list)
2595 xfree (objfile->static_psymbols.list);
2596 memset (&objfile->static_psymbols, 0,
2597 sizeof (objfile->static_psymbols));
2598
c378eb4e 2599 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2600 psymbol_bcache_free (objfile->psymbol_cache);
2601 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2602 obstack_free (&objfile->objfile_obstack, 0);
2603 objfile->sections = NULL;
43f3e411 2604 objfile->compunit_symtabs = NULL;
9cce227f
TG
2605 objfile->psymtabs = NULL;
2606 objfile->psymtabs_addrmap = NULL;
2607 objfile->free_psymtabs = NULL;
34eaf542 2608 objfile->template_symbols = NULL;
9cce227f 2609
9cce227f
TG
2610 /* obstack_init also initializes the obstack so it is
2611 empty. We could use obstack_specify_allocation but
d82ea6a8 2612 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2613 obstack_init (&objfile->objfile_obstack);
779bd270 2614
846060df
JB
2615 /* set_objfile_per_bfd potentially allocates the per-bfd
2616 data on the objfile's obstack (if sharing data across
2617 multiple users is not possible), so it's important to
2618 do it *after* the obstack has been initialized. */
2619 set_objfile_per_bfd (objfile);
2620
224c3ddb
SM
2621 objfile->original_name
2622 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2623 strlen (original_name));
24ba069a 2624
779bd270
DE
2625 /* Reset the sym_fns pointer. The ELF reader can change it
2626 based on whether .gdb_index is present, and we need it to
2627 start over. PR symtab/15885 */
8fb8eb5c 2628 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2629
d82ea6a8 2630 build_objfile_section_table (objfile);
9cce227f
TG
2631 terminate_minimal_symbol_table (objfile);
2632
2633 /* We use the same section offsets as from last time. I'm not
2634 sure whether that is always correct for shared libraries. */
2635 objfile->section_offsets = (struct section_offsets *)
2636 obstack_alloc (&objfile->objfile_obstack,
2637 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2638 memcpy (objfile->section_offsets, offsets,
2639 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2640 objfile->num_sections = num_offsets;
2641
2642 /* What the hell is sym_new_init for, anyway? The concept of
2643 distinguishing between the main file and additional files
2644 in this way seems rather dubious. */
2645 if (objfile == symfile_objfile)
c906108c 2646 {
9cce227f 2647 (*objfile->sf->sym_new_init) (objfile);
c906108c 2648 }
9cce227f
TG
2649
2650 (*objfile->sf->sym_init) (objfile);
2651 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2652
2653 objfile->flags &= ~OBJF_PSYMTABS_READ;
2654 read_symbols (objfile, 0);
b11896a5 2655
9cce227f 2656 if (!objfile_has_symbols (objfile))
c906108c 2657 {
9cce227f
TG
2658 wrap_here ("");
2659 printf_unfiltered (_("(no debugging symbols found)\n"));
2660 wrap_here ("");
c5aa993b 2661 }
9cce227f
TG
2662
2663 /* We're done reading the symbol file; finish off complaints. */
2664 clear_complaints (&symfile_complaints, 0, 1);
2665
2666 /* Getting new symbols may change our opinion about what is
2667 frameless. */
2668
2669 reinit_frame_cache ();
2670
2671 /* Discard cleanups as symbol reading was successful. */
2672 discard_cleanups (old_cleanups);
2673
2674 /* If the mtime has changed between the time we set new_modtime
2675 and now, we *want* this to be out of date, so don't call stat
2676 again now. */
2677 objfile->mtime = new_modtime;
9cce227f 2678 init_entry_point_info (objfile);
4ac39b97
JK
2679
2680 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2681 }
2682 }
c906108c 2683
4ac39b97 2684 if (new_objfiles)
ea53e89f 2685 {
4ac39b97
JK
2686 int ix;
2687
ff3536bc
UW
2688 /* Notify objfiles that we've modified objfile sections. */
2689 objfiles_changed ();
2690
c1e56572 2691 clear_symtab_users (0);
4ac39b97
JK
2692
2693 /* clear_objfile_data for each objfile was called before freeing it and
2694 observer_notify_new_objfile (NULL) has been called by
2695 clear_symtab_users above. Notify the new files now. */
2696 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2697 observer_notify_new_objfile (objfile);
2698
ea53e89f
JB
2699 /* At least one objfile has changed, so we can consider that
2700 the executable we're debugging has changed too. */
781b42b0 2701 observer_notify_executable_changed ();
ea53e89f 2702 }
4ac39b97
JK
2703
2704 do_cleanups (all_cleanups);
c906108c 2705}
c906108c
SS
2706\f
2707
c5aa993b
JM
2708typedef struct
2709{
2710 char *ext;
c906108c 2711 enum language lang;
3fcf0b0d
TT
2712} filename_language;
2713
2714DEF_VEC_O (filename_language);
c906108c 2715
3fcf0b0d 2716static VEC (filename_language) *filename_language_table;
c906108c 2717
56618e20
TT
2718/* See symfile.h. */
2719
2720void
2721add_filename_language (const char *ext, enum language lang)
c906108c 2722{
3fcf0b0d
TT
2723 filename_language entry;
2724
2725 entry.ext = xstrdup (ext);
2726 entry.lang = lang;
c906108c 2727
3fcf0b0d 2728 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2729}
2730
2731static char *ext_args;
920d2a44
AC
2732static void
2733show_ext_args (struct ui_file *file, int from_tty,
2734 struct cmd_list_element *c, const char *value)
2735{
3e43a32a
MS
2736 fprintf_filtered (file,
2737 _("Mapping between filename extension "
2738 "and source language is \"%s\".\n"),
920d2a44
AC
2739 value);
2740}
c906108c
SS
2741
2742static void
26c41df3 2743set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2744{
2745 int i;
2746 char *cp = ext_args;
2747 enum language lang;
3fcf0b0d 2748 filename_language *entry;
c906108c 2749
c378eb4e 2750 /* First arg is filename extension, starting with '.' */
c906108c 2751 if (*cp != '.')
8a3fe4f8 2752 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2753
2754 /* Find end of first arg. */
c5aa993b 2755 while (*cp && !isspace (*cp))
c906108c
SS
2756 cp++;
2757
2758 if (*cp == '\0')
3e43a32a
MS
2759 error (_("'%s': two arguments required -- "
2760 "filename extension and language"),
c906108c
SS
2761 ext_args);
2762
c378eb4e 2763 /* Null-terminate first arg. */
c5aa993b 2764 *cp++ = '\0';
c906108c
SS
2765
2766 /* Find beginning of second arg, which should be a source language. */
529480d0 2767 cp = skip_spaces (cp);
c906108c
SS
2768
2769 if (*cp == '\0')
3e43a32a
MS
2770 error (_("'%s': two arguments required -- "
2771 "filename extension and language"),
c906108c
SS
2772 ext_args);
2773
2774 /* Lookup the language from among those we know. */
2775 lang = language_enum (cp);
2776
2777 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2778 for (i = 0;
2779 VEC_iterate (filename_language, filename_language_table, i, entry);
2780 ++i)
2781 {
2782 if (0 == strcmp (ext_args, entry->ext))
2783 break;
2784 }
c906108c 2785
3fcf0b0d 2786 if (entry == NULL)
c906108c 2787 {
c378eb4e 2788 /* New file extension. */
c906108c
SS
2789 add_filename_language (ext_args, lang);
2790 }
2791 else
2792 {
c378eb4e 2793 /* Redefining a previously known filename extension. */
c906108c
SS
2794
2795 /* if (from_tty) */
2796 /* query ("Really make files of type %s '%s'?", */
2797 /* ext_args, language_str (lang)); */
2798
3fcf0b0d
TT
2799 xfree (entry->ext);
2800 entry->ext = xstrdup (ext_args);
2801 entry->lang = lang;
c906108c
SS
2802 }
2803}
2804
2805static void
fba45db2 2806info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2807{
2808 int i;
3fcf0b0d 2809 filename_language *entry;
c906108c 2810
a3f17187 2811 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2812 printf_filtered ("\n\n");
3fcf0b0d
TT
2813 for (i = 0;
2814 VEC_iterate (filename_language, filename_language_table, i, entry);
2815 ++i)
2816 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2817}
2818
c906108c 2819enum language
dd786858 2820deduce_language_from_filename (const char *filename)
c906108c
SS
2821{
2822 int i;
e6a959d6 2823 const char *cp;
c906108c
SS
2824
2825 if (filename != NULL)
2826 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2827 {
2828 filename_language *entry;
2829
2830 for (i = 0;
2831 VEC_iterate (filename_language, filename_language_table, i, entry);
2832 ++i)
2833 if (strcmp (cp, entry->ext) == 0)
2834 return entry->lang;
2835 }
c906108c
SS
2836
2837 return language_unknown;
2838}
2839\f
43f3e411
DE
2840/* Allocate and initialize a new symbol table.
2841 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2842
2843struct symtab *
43f3e411 2844allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2845{
43f3e411
DE
2846 struct objfile *objfile = cust->objfile;
2847 struct symtab *symtab
2848 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2849
19ba03f4
SM
2850 symtab->filename
2851 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2852 objfile->per_bfd->filename_cache);
c5aa993b
JM
2853 symtab->fullname = NULL;
2854 symtab->language = deduce_language_from_filename (filename);
c906108c 2855
db0fec5c
DE
2856 /* This can be very verbose with lots of headers.
2857 Only print at higher debug levels. */
2858 if (symtab_create_debug >= 2)
45cfd468
DE
2859 {
2860 /* Be a bit clever with debugging messages, and don't print objfile
2861 every time, only when it changes. */
2862 static char *last_objfile_name = NULL;
2863
2864 if (last_objfile_name == NULL
4262abfb 2865 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2866 {
2867 xfree (last_objfile_name);
4262abfb 2868 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2869 fprintf_unfiltered (gdb_stdlog,
2870 "Creating one or more symtabs for objfile %s ...\n",
2871 last_objfile_name);
2872 }
2873 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2874 "Created symtab %s for module %s.\n",
2875 host_address_to_string (symtab), filename);
45cfd468
DE
2876 }
2877
43f3e411
DE
2878 /* Add it to CUST's list of symtabs. */
2879 if (cust->filetabs == NULL)
2880 {
2881 cust->filetabs = symtab;
2882 cust->last_filetab = symtab;
2883 }
2884 else
2885 {
2886 cust->last_filetab->next = symtab;
2887 cust->last_filetab = symtab;
2888 }
2889
2890 /* Backlink to the containing compunit symtab. */
2891 symtab->compunit_symtab = cust;
2892
2893 return symtab;
2894}
2895
2896/* Allocate and initialize a new compunit.
2897 NAME is the name of the main source file, if there is one, or some
2898 descriptive text if there are no source files. */
2899
2900struct compunit_symtab *
2901allocate_compunit_symtab (struct objfile *objfile, const char *name)
2902{
2903 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2904 struct compunit_symtab);
2905 const char *saved_name;
2906
2907 cu->objfile = objfile;
2908
2909 /* The name we record here is only for display/debugging purposes.
2910 Just save the basename to avoid path issues (too long for display,
2911 relative vs absolute, etc.). */
2912 saved_name = lbasename (name);
224c3ddb
SM
2913 cu->name
2914 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2915 strlen (saved_name));
43f3e411
DE
2916
2917 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2918
2919 if (symtab_create_debug)
2920 {
2921 fprintf_unfiltered (gdb_stdlog,
2922 "Created compunit symtab %s for %s.\n",
2923 host_address_to_string (cu),
2924 cu->name);
2925 }
2926
2927 return cu;
2928}
2929
2930/* Hook CU to the objfile it comes from. */
2931
2932void
2933add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2934{
2935 cu->next = cu->objfile->compunit_symtabs;
2936 cu->objfile->compunit_symtabs = cu;
c906108c 2937}
c906108c 2938\f
c5aa993b 2939
c906108c 2940/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2941 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2942
2943void
c1e56572 2944clear_symtab_users (int add_flags)
c906108c
SS
2945{
2946 /* Someday, we should do better than this, by only blowing away
2947 the things that really need to be blown. */
c0501be5
DJ
2948
2949 /* Clear the "current" symtab first, because it is no longer valid.
2950 breakpoint_re_set may try to access the current symtab. */
2951 clear_current_source_symtab_and_line ();
2952
c906108c 2953 clear_displays ();
1bfeeb0f 2954 clear_last_displayed_sal ();
c906108c 2955 clear_pc_function_cache ();
06d3b283 2956 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2957
2958 /* Clear globals which might have pointed into a removed objfile.
2959 FIXME: It's not clear which of these are supposed to persist
2960 between expressions and which ought to be reset each time. */
2961 expression_context_block = NULL;
2962 innermost_block = NULL;
8756216b
DP
2963
2964 /* Varobj may refer to old symbols, perform a cleanup. */
2965 varobj_invalidate ();
2966
e700d1b2
JB
2967 /* Now that the various caches have been cleared, we can re_set
2968 our breakpoints without risking it using stale data. */
2969 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2970 breakpoint_re_set ();
c906108c
SS
2971}
2972
74b7792f
AC
2973static void
2974clear_symtab_users_cleanup (void *ignore)
2975{
c1e56572 2976 clear_symtab_users (0);
74b7792f 2977}
c906108c 2978\f
c906108c
SS
2979/* OVERLAYS:
2980 The following code implements an abstraction for debugging overlay sections.
2981
2982 The target model is as follows:
2983 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2984 same VMA, each with its own unique LMA (or load address).
c906108c 2985 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2986 sections, one by one, from the load address into the VMA address.
5417f6dc 2987 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2988 sections should be considered to be mapped from the VMA to the LMA.
2989 This information is used for symbol lookup, and memory read/write.
5417f6dc 2990 For instance, if a section has been mapped then its contents
c5aa993b 2991 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2992
2993 Two levels of debugger support for overlays are available. One is
2994 "manual", in which the debugger relies on the user to tell it which
2995 overlays are currently mapped. This level of support is
2996 implemented entirely in the core debugger, and the information about
2997 whether a section is mapped is kept in the objfile->obj_section table.
2998
2999 The second level of support is "automatic", and is only available if
3000 the target-specific code provides functionality to read the target's
3001 overlay mapping table, and translate its contents for the debugger
3002 (by updating the mapped state information in the obj_section tables).
3003
3004 The interface is as follows:
c5aa993b
JM
3005 User commands:
3006 overlay map <name> -- tell gdb to consider this section mapped
3007 overlay unmap <name> -- tell gdb to consider this section unmapped
3008 overlay list -- list the sections that GDB thinks are mapped
3009 overlay read-target -- get the target's state of what's mapped
3010 overlay off/manual/auto -- set overlay debugging state
3011 Functional interface:
3012 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3013 section, return that section.
5417f6dc 3014 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3015 the pc, either in its VMA or its LMA
714835d5 3016 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3017 section_is_overlay(sect): true if section's VMA != LMA
3018 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3019 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3020 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3021 overlay_mapped_address(...): map an address from section's LMA to VMA
3022 overlay_unmapped_address(...): map an address from section's VMA to LMA
3023 symbol_overlayed_address(...): Return a "current" address for symbol:
3024 either in VMA or LMA depending on whether
c378eb4e 3025 the symbol's section is currently mapped. */
c906108c
SS
3026
3027/* Overlay debugging state: */
3028
d874f1e2 3029enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3030int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3031
c906108c 3032/* Function: section_is_overlay (SECTION)
5417f6dc 3033 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3034 SECTION is loaded at an address different from where it will "run". */
3035
3036int
714835d5 3037section_is_overlay (struct obj_section *section)
c906108c 3038{
714835d5
UW
3039 if (overlay_debugging && section)
3040 {
3041 bfd *abfd = section->objfile->obfd;
3042 asection *bfd_section = section->the_bfd_section;
f888f159 3043
714835d5
UW
3044 if (bfd_section_lma (abfd, bfd_section) != 0
3045 && bfd_section_lma (abfd, bfd_section)
3046 != bfd_section_vma (abfd, bfd_section))
3047 return 1;
3048 }
c906108c
SS
3049
3050 return 0;
3051}
3052
3053/* Function: overlay_invalidate_all (void)
3054 Invalidate the mapped state of all overlay sections (mark it as stale). */
3055
3056static void
fba45db2 3057overlay_invalidate_all (void)
c906108c 3058{
c5aa993b 3059 struct objfile *objfile;
c906108c
SS
3060 struct obj_section *sect;
3061
3062 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3063 if (section_is_overlay (sect))
3064 sect->ovly_mapped = -1;
c906108c
SS
3065}
3066
714835d5 3067/* Function: section_is_mapped (SECTION)
5417f6dc 3068 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3069
3070 Access to the ovly_mapped flag is restricted to this function, so
3071 that we can do automatic update. If the global flag
3072 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3073 overlay_invalidate_all. If the mapped state of the particular
3074 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3075
714835d5
UW
3076int
3077section_is_mapped (struct obj_section *osect)
c906108c 3078{
9216df95
UW
3079 struct gdbarch *gdbarch;
3080
714835d5 3081 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3082 return 0;
3083
c5aa993b 3084 switch (overlay_debugging)
c906108c
SS
3085 {
3086 default:
d874f1e2 3087 case ovly_off:
c5aa993b 3088 return 0; /* overlay debugging off */
d874f1e2 3089 case ovly_auto: /* overlay debugging automatic */
1c772458 3090 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3091 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3092 gdbarch = get_objfile_arch (osect->objfile);
3093 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3094 {
3095 if (overlay_cache_invalid)
3096 {
3097 overlay_invalidate_all ();
3098 overlay_cache_invalid = 0;
3099 }
3100 if (osect->ovly_mapped == -1)
9216df95 3101 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3102 }
3103 /* fall thru to manual case */
d874f1e2 3104 case ovly_on: /* overlay debugging manual */
c906108c
SS
3105 return osect->ovly_mapped == 1;
3106 }
3107}
3108
c906108c
SS
3109/* Function: pc_in_unmapped_range
3110 If PC falls into the lma range of SECTION, return true, else false. */
3111
3112CORE_ADDR
714835d5 3113pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3114{
714835d5
UW
3115 if (section_is_overlay (section))
3116 {
3117 bfd *abfd = section->objfile->obfd;
3118 asection *bfd_section = section->the_bfd_section;
fbd35540 3119
714835d5
UW
3120 /* We assume the LMA is relocated by the same offset as the VMA. */
3121 bfd_vma size = bfd_get_section_size (bfd_section);
3122 CORE_ADDR offset = obj_section_offset (section);
3123
3124 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3125 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3126 return 1;
3127 }
c906108c 3128
c906108c
SS
3129 return 0;
3130}
3131
3132/* Function: pc_in_mapped_range
3133 If PC falls into the vma range of SECTION, return true, else false. */
3134
3135CORE_ADDR
714835d5 3136pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3137{
714835d5
UW
3138 if (section_is_overlay (section))
3139 {
3140 if (obj_section_addr (section) <= pc
3141 && pc < obj_section_endaddr (section))
3142 return 1;
3143 }
c906108c 3144
c906108c
SS
3145 return 0;
3146}
3147
9ec8e6a0
JB
3148/* Return true if the mapped ranges of sections A and B overlap, false
3149 otherwise. */
3b7bacac 3150
b9362cc7 3151static int
714835d5 3152sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3153{
714835d5
UW
3154 CORE_ADDR a_start = obj_section_addr (a);
3155 CORE_ADDR a_end = obj_section_endaddr (a);
3156 CORE_ADDR b_start = obj_section_addr (b);
3157 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3158
3159 return (a_start < b_end && b_start < a_end);
3160}
3161
c906108c
SS
3162/* Function: overlay_unmapped_address (PC, SECTION)
3163 Returns the address corresponding to PC in the unmapped (load) range.
3164 May be the same as PC. */
3165
3166CORE_ADDR
714835d5 3167overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3168{
714835d5
UW
3169 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3170 {
3171 bfd *abfd = section->objfile->obfd;
3172 asection *bfd_section = section->the_bfd_section;
fbd35540 3173
714835d5
UW
3174 return pc + bfd_section_lma (abfd, bfd_section)
3175 - bfd_section_vma (abfd, bfd_section);
3176 }
c906108c
SS
3177
3178 return pc;
3179}
3180
3181/* Function: overlay_mapped_address (PC, SECTION)
3182 Returns the address corresponding to PC in the mapped (runtime) range.
3183 May be the same as PC. */
3184
3185CORE_ADDR
714835d5 3186overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3187{
714835d5
UW
3188 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3189 {
3190 bfd *abfd = section->objfile->obfd;
3191 asection *bfd_section = section->the_bfd_section;
fbd35540 3192
714835d5
UW
3193 return pc + bfd_section_vma (abfd, bfd_section)
3194 - bfd_section_lma (abfd, bfd_section);
3195 }
c906108c
SS
3196
3197 return pc;
3198}
3199
5417f6dc 3200/* Function: symbol_overlayed_address
c906108c
SS
3201 Return one of two addresses (relative to the VMA or to the LMA),
3202 depending on whether the section is mapped or not. */
3203
c5aa993b 3204CORE_ADDR
714835d5 3205symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3206{
3207 if (overlay_debugging)
3208 {
c378eb4e 3209 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3210 if (section == 0)
3211 return address;
c378eb4e
MS
3212 /* If the symbol's section is not an overlay, just return its
3213 address. */
c906108c
SS
3214 if (!section_is_overlay (section))
3215 return address;
c378eb4e 3216 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3217 if (section_is_mapped (section))
3218 return address;
3219 /*
3220 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3221 * then return its LOADED address rather than its vma address!!
3222 */
3223 return overlay_unmapped_address (address, section);
3224 }
3225 return address;
3226}
3227
5417f6dc 3228/* Function: find_pc_overlay (PC)
c906108c
SS
3229 Return the best-match overlay section for PC:
3230 If PC matches a mapped overlay section's VMA, return that section.
3231 Else if PC matches an unmapped section's VMA, return that section.
3232 Else if PC matches an unmapped section's LMA, return that section. */
3233
714835d5 3234struct obj_section *
fba45db2 3235find_pc_overlay (CORE_ADDR pc)
c906108c 3236{
c5aa993b 3237 struct objfile *objfile;
c906108c
SS
3238 struct obj_section *osect, *best_match = NULL;
3239
3240 if (overlay_debugging)
b631e59b
KT
3241 {
3242 ALL_OBJSECTIONS (objfile, osect)
3243 if (section_is_overlay (osect))
c5aa993b 3244 {
b631e59b
KT
3245 if (pc_in_mapped_range (pc, osect))
3246 {
3247 if (section_is_mapped (osect))
3248 return osect;
3249 else
3250 best_match = osect;
3251 }
3252 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3253 best_match = osect;
3254 }
b631e59b 3255 }
714835d5 3256 return best_match;
c906108c
SS
3257}
3258
3259/* Function: find_pc_mapped_section (PC)
5417f6dc 3260 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3261 currently marked as MAPPED, return that section. Else return NULL. */
3262
714835d5 3263struct obj_section *
fba45db2 3264find_pc_mapped_section (CORE_ADDR pc)
c906108c 3265{
c5aa993b 3266 struct objfile *objfile;
c906108c
SS
3267 struct obj_section *osect;
3268
3269 if (overlay_debugging)
b631e59b
KT
3270 {
3271 ALL_OBJSECTIONS (objfile, osect)
3272 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3273 return osect;
3274 }
c906108c
SS
3275
3276 return NULL;
3277}
3278
3279/* Function: list_overlays_command
c378eb4e 3280 Print a list of mapped sections and their PC ranges. */
c906108c 3281
5d3055ad 3282static void
fba45db2 3283list_overlays_command (char *args, int from_tty)
c906108c 3284{
c5aa993b
JM
3285 int nmapped = 0;
3286 struct objfile *objfile;
c906108c
SS
3287 struct obj_section *osect;
3288
3289 if (overlay_debugging)
b631e59b
KT
3290 {
3291 ALL_OBJSECTIONS (objfile, osect)
714835d5 3292 if (section_is_mapped (osect))
b631e59b
KT
3293 {
3294 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3295 const char *name;
3296 bfd_vma lma, vma;
3297 int size;
3298
3299 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3300 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3301 size = bfd_get_section_size (osect->the_bfd_section);
3302 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3303
3304 printf_filtered ("Section %s, loaded at ", name);
3305 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3306 puts_filtered (" - ");
3307 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3308 printf_filtered (", mapped at ");
3309 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3310 puts_filtered (" - ");
3311 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3312 puts_filtered ("\n");
3313
3314 nmapped++;
3315 }
3316 }
c906108c 3317 if (nmapped == 0)
a3f17187 3318 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3319}
3320
3321/* Function: map_overlay_command
3322 Mark the named section as mapped (ie. residing at its VMA address). */
3323
5d3055ad 3324static void
fba45db2 3325map_overlay_command (char *args, int from_tty)
c906108c 3326{
c5aa993b
JM
3327 struct objfile *objfile, *objfile2;
3328 struct obj_section *sec, *sec2;
c906108c
SS
3329
3330 if (!overlay_debugging)
3e43a32a
MS
3331 error (_("Overlay debugging not enabled. Use "
3332 "either the 'overlay auto' or\n"
3333 "the 'overlay manual' command."));
c906108c
SS
3334
3335 if (args == 0 || *args == 0)
8a3fe4f8 3336 error (_("Argument required: name of an overlay section"));
c906108c 3337
c378eb4e 3338 /* First, find a section matching the user supplied argument. */
c906108c
SS
3339 ALL_OBJSECTIONS (objfile, sec)
3340 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3341 {
c378eb4e 3342 /* Now, check to see if the section is an overlay. */
714835d5 3343 if (!section_is_overlay (sec))
c5aa993b
JM
3344 continue; /* not an overlay section */
3345
c378eb4e 3346 /* Mark the overlay as "mapped". */
c5aa993b
JM
3347 sec->ovly_mapped = 1;
3348
3349 /* Next, make a pass and unmap any sections that are
3350 overlapped by this new section: */
3351 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3352 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3353 {
3354 if (info_verbose)
a3f17187 3355 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3356 bfd_section_name (objfile->obfd,
3357 sec2->the_bfd_section));
c378eb4e 3358 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3359 }
3360 return;
3361 }
8a3fe4f8 3362 error (_("No overlay section called %s"), args);
c906108c
SS
3363}
3364
3365/* Function: unmap_overlay_command
5417f6dc 3366 Mark the overlay section as unmapped
c906108c
SS
3367 (ie. resident in its LMA address range, rather than the VMA range). */
3368
5d3055ad 3369static void
fba45db2 3370unmap_overlay_command (char *args, int from_tty)
c906108c 3371{
c5aa993b 3372 struct objfile *objfile;
7a270e0c 3373 struct obj_section *sec = NULL;
c906108c
SS
3374
3375 if (!overlay_debugging)
3e43a32a
MS
3376 error (_("Overlay debugging not enabled. "
3377 "Use either the 'overlay auto' or\n"
3378 "the 'overlay manual' command."));
c906108c
SS
3379
3380 if (args == 0 || *args == 0)
8a3fe4f8 3381 error (_("Argument required: name of an overlay section"));
c906108c 3382
c378eb4e 3383 /* First, find a section matching the user supplied argument. */
c906108c
SS
3384 ALL_OBJSECTIONS (objfile, sec)
3385 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3386 {
3387 if (!sec->ovly_mapped)
8a3fe4f8 3388 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3389 sec->ovly_mapped = 0;
3390 return;
3391 }
8a3fe4f8 3392 error (_("No overlay section called %s"), args);
c906108c
SS
3393}
3394
3395/* Function: overlay_auto_command
3396 A utility command to turn on overlay debugging.
c378eb4e 3397 Possibly this should be done via a set/show command. */
c906108c
SS
3398
3399static void
fba45db2 3400overlay_auto_command (char *args, int from_tty)
c906108c 3401{
d874f1e2 3402 overlay_debugging = ovly_auto;
1900040c 3403 enable_overlay_breakpoints ();
c906108c 3404 if (info_verbose)
a3f17187 3405 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3406}
3407
3408/* Function: overlay_manual_command
3409 A utility command to turn on overlay debugging.
c378eb4e 3410 Possibly this should be done via a set/show command. */
c906108c
SS
3411
3412static void
fba45db2 3413overlay_manual_command (char *args, int from_tty)
c906108c 3414{
d874f1e2 3415 overlay_debugging = ovly_on;
1900040c 3416 disable_overlay_breakpoints ();
c906108c 3417 if (info_verbose)
a3f17187 3418 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3419}
3420
3421/* Function: overlay_off_command
3422 A utility command to turn on overlay debugging.
c378eb4e 3423 Possibly this should be done via a set/show command. */
c906108c
SS
3424
3425static void
fba45db2 3426overlay_off_command (char *args, int from_tty)
c906108c 3427{
d874f1e2 3428 overlay_debugging = ovly_off;
1900040c 3429 disable_overlay_breakpoints ();
c906108c 3430 if (info_verbose)
a3f17187 3431 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3432}
3433
3434static void
fba45db2 3435overlay_load_command (char *args, int from_tty)
c906108c 3436{
e17c207e
UW
3437 struct gdbarch *gdbarch = get_current_arch ();
3438
3439 if (gdbarch_overlay_update_p (gdbarch))
3440 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3441 else
8a3fe4f8 3442 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3443}
3444
3445/* Function: overlay_command
c378eb4e 3446 A place-holder for a mis-typed command. */
c906108c 3447
c378eb4e 3448/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3449static struct cmd_list_element *overlaylist;
c906108c
SS
3450
3451static void
fba45db2 3452overlay_command (char *args, int from_tty)
c906108c 3453{
c5aa993b 3454 printf_unfiltered
c906108c 3455 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3456 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3457}
3458
c906108c
SS
3459/* Target Overlays for the "Simplest" overlay manager:
3460
5417f6dc
RM
3461 This is GDB's default target overlay layer. It works with the
3462 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3463 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3464 so targets that use a different runtime overlay manager can
c906108c
SS
3465 substitute their own overlay_update function and take over the
3466 function pointer.
3467
3468 The overlay_update function pokes around in the target's data structures
3469 to see what overlays are mapped, and updates GDB's overlay mapping with
3470 this information.
3471
3472 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3473 unsigned _novlys; /# number of overlay sections #/
3474 unsigned _ovly_table[_novlys][4] = {
438e1e42 3475 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3476 {..., ..., ..., ...},
3477 }
3478 unsigned _novly_regions; /# number of overlay regions #/
3479 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3480 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3481 {..., ..., ...},
3482 }
c906108c
SS
3483 These functions will attempt to update GDB's mappedness state in the
3484 symbol section table, based on the target's mappedness state.
3485
3486 To do this, we keep a cached copy of the target's _ovly_table, and
3487 attempt to detect when the cached copy is invalidated. The main
3488 entry point is "simple_overlay_update(SECT), which looks up SECT in
3489 the cached table and re-reads only the entry for that section from
c378eb4e 3490 the target (whenever possible). */
c906108c
SS
3491
3492/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3493static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3494static unsigned cache_novlys = 0;
c906108c 3495static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3496enum ovly_index
3497 {
438e1e42 3498 VMA, OSIZE, LMA, MAPPED
c5aa993b 3499 };
c906108c 3500
c378eb4e 3501/* Throw away the cached copy of _ovly_table. */
3b7bacac 3502
c906108c 3503static void
fba45db2 3504simple_free_overlay_table (void)
c906108c
SS
3505{
3506 if (cache_ovly_table)
b8c9b27d 3507 xfree (cache_ovly_table);
c5aa993b 3508 cache_novlys = 0;
c906108c
SS
3509 cache_ovly_table = NULL;
3510 cache_ovly_table_base = 0;
3511}
3512
9216df95 3513/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3514 Convert to host order. int LEN is number of ints. */
3b7bacac 3515
c906108c 3516static void
9216df95 3517read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3518 int len, int size, enum bfd_endian byte_order)
c906108c 3519{
c378eb4e 3520 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3521 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3522 int i;
c906108c 3523
9216df95 3524 read_memory (memaddr, buf, len * size);
c906108c 3525 for (i = 0; i < len; i++)
e17a4113 3526 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3527}
3528
3529/* Find and grab a copy of the target _ovly_table
c378eb4e 3530 (and _novlys, which is needed for the table's size). */
3b7bacac 3531
c5aa993b 3532static int
fba45db2 3533simple_read_overlay_table (void)
c906108c 3534{
3b7344d5 3535 struct bound_minimal_symbol novlys_msym;
7c7b6655 3536 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3537 struct gdbarch *gdbarch;
3538 int word_size;
e17a4113 3539 enum bfd_endian byte_order;
c906108c
SS
3540
3541 simple_free_overlay_table ();
9b27852e 3542 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3543 if (! novlys_msym.minsym)
c906108c 3544 {
8a3fe4f8 3545 error (_("Error reading inferior's overlay table: "
0d43edd1 3546 "couldn't find `_novlys' variable\n"
8a3fe4f8 3547 "in inferior. Use `overlay manual' mode."));
0d43edd1 3548 return 0;
c906108c 3549 }
0d43edd1 3550
7c7b6655
TT
3551 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3552 if (! ovly_table_msym.minsym)
0d43edd1 3553 {
8a3fe4f8 3554 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3555 "`_ovly_table' array\n"
8a3fe4f8 3556 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3557 return 0;
3558 }
3559
7c7b6655 3560 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3561 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3562 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3563
77e371c0
TT
3564 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3565 4, byte_order);
0d43edd1 3566 cache_ovly_table
224c3ddb 3567 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3568 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3569 read_target_long_array (cache_ovly_table_base,
777ea8f1 3570 (unsigned int *) cache_ovly_table,
e17a4113 3571 cache_novlys * 4, word_size, byte_order);
0d43edd1 3572
c5aa993b 3573 return 1; /* SUCCESS */
c906108c
SS
3574}
3575
5417f6dc 3576/* Function: simple_overlay_update_1
c906108c
SS
3577 A helper function for simple_overlay_update. Assuming a cached copy
3578 of _ovly_table exists, look through it to find an entry whose vma,
3579 lma and size match those of OSECT. Re-read the entry and make sure
3580 it still matches OSECT (else the table may no longer be valid).
3581 Set OSECT's mapped state to match the entry. Return: 1 for
3582 success, 0 for failure. */
3583
3584static int
fba45db2 3585simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3586{
3587 int i, size;
fbd35540
MS
3588 bfd *obfd = osect->objfile->obfd;
3589 asection *bsect = osect->the_bfd_section;
9216df95
UW
3590 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3591 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3593
2c500098 3594 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3595 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3596 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3597 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3598 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c 3599 {
9216df95
UW
3600 read_target_long_array (cache_ovly_table_base + i * word_size,
3601 (unsigned int *) cache_ovly_table[i],
e17a4113 3602 4, word_size, byte_order);
fbd35540
MS
3603 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3604 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3605 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c
SS
3606 {
3607 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3608 return 1;
3609 }
c378eb4e 3610 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3611 return 0;
3612 }
3613 return 0;
3614}
3615
3616/* Function: simple_overlay_update
5417f6dc
RM
3617 If OSECT is NULL, then update all sections' mapped state
3618 (after re-reading the entire target _ovly_table).
3619 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3620 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3621 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3622 re-read the entire cache, and go ahead and update all sections. */
3623
1c772458 3624void
fba45db2 3625simple_overlay_update (struct obj_section *osect)
c906108c 3626{
c5aa993b 3627 struct objfile *objfile;
c906108c 3628
c378eb4e 3629 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3630 if (osect)
c378eb4e 3631 /* Have we got a cached copy of the target's overlay table? */
c906108c 3632 if (cache_ovly_table != NULL)
9cc89665
MS
3633 {
3634 /* Does its cached location match what's currently in the
3635 symtab? */
3b7344d5 3636 struct bound_minimal_symbol minsym
9cc89665
MS
3637 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3638
3b7344d5 3639 if (minsym.minsym == NULL)
9cc89665
MS
3640 error (_("Error reading inferior's overlay table: couldn't "
3641 "find `_ovly_table' array\n"
3642 "in inferior. Use `overlay manual' mode."));
3643
77e371c0 3644 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3645 /* Then go ahead and try to look up this single section in
3646 the cache. */
3647 if (simple_overlay_update_1 (osect))
3648 /* Found it! We're done. */
3649 return;
3650 }
c906108c
SS
3651
3652 /* Cached table no good: need to read the entire table anew.
3653 Or else we want all the sections, in which case it's actually
3654 more efficient to read the whole table in one block anyway. */
3655
0d43edd1
JB
3656 if (! simple_read_overlay_table ())
3657 return;
3658
c378eb4e 3659 /* Now may as well update all sections, even if only one was requested. */
c906108c 3660 ALL_OBJSECTIONS (objfile, osect)
714835d5 3661 if (section_is_overlay (osect))
c5aa993b
JM
3662 {
3663 int i, size;
fbd35540
MS
3664 bfd *obfd = osect->objfile->obfd;
3665 asection *bsect = osect->the_bfd_section;
c5aa993b 3666
2c500098 3667 size = bfd_get_section_size (bsect);
c5aa993b 3668 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3669 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3670 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3671 /* && cache_ovly_table[i][OSIZE] == size */ )
c378eb4e 3672 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3673 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3674 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3675 }
3676 }
c906108c
SS
3677}
3678
086df311
DJ
3679/* Set the output sections and output offsets for section SECTP in
3680 ABFD. The relocation code in BFD will read these offsets, so we
3681 need to be sure they're initialized. We map each section to itself,
3682 with no offset; this means that SECTP->vma will be honored. */
3683
3684static void
3685symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3686{
3687 sectp->output_section = sectp;
3688 sectp->output_offset = 0;
3689}
3690
ac8035ab
TG
3691/* Default implementation for sym_relocate. */
3692
ac8035ab
TG
3693bfd_byte *
3694default_symfile_relocate (struct objfile *objfile, asection *sectp,
3695 bfd_byte *buf)
3696{
3019eac3
DE
3697 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3698 DWO file. */
3699 bfd *abfd = sectp->owner;
ac8035ab
TG
3700
3701 /* We're only interested in sections with relocation
3702 information. */
3703 if ((sectp->flags & SEC_RELOC) == 0)
3704 return NULL;
3705
3706 /* We will handle section offsets properly elsewhere, so relocate as if
3707 all sections begin at 0. */
3708 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3709
3710 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3711}
3712
086df311
DJ
3713/* Relocate the contents of a debug section SECTP in ABFD. The
3714 contents are stored in BUF if it is non-NULL, or returned in a
3715 malloc'd buffer otherwise.
3716
3717 For some platforms and debug info formats, shared libraries contain
3718 relocations against the debug sections (particularly for DWARF-2;
3719 one affected platform is PowerPC GNU/Linux, although it depends on
3720 the version of the linker in use). Also, ELF object files naturally
3721 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3722 the relocations in order to get the locations of symbols correct.
3723 Another example that may require relocation processing, is the
3724 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3725 debug section. */
086df311
DJ
3726
3727bfd_byte *
ac8035ab
TG
3728symfile_relocate_debug_section (struct objfile *objfile,
3729 asection *sectp, bfd_byte *buf)
086df311 3730{
ac8035ab 3731 gdb_assert (objfile->sf->sym_relocate);
086df311 3732
ac8035ab 3733 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3734}
c906108c 3735
31d99776
DJ
3736struct symfile_segment_data *
3737get_symfile_segment_data (bfd *abfd)
3738{
00b5771c 3739 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3740
3741 if (sf == NULL)
3742 return NULL;
3743
3744 return sf->sym_segments (abfd);
3745}
3746
3747void
3748free_symfile_segment_data (struct symfile_segment_data *data)
3749{
3750 xfree (data->segment_bases);
3751 xfree (data->segment_sizes);
3752 xfree (data->segment_info);
3753 xfree (data);
3754}
3755
28c32713
JB
3756/* Given:
3757 - DATA, containing segment addresses from the object file ABFD, and
3758 the mapping from ABFD's sections onto the segments that own them,
3759 and
3760 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3761 segment addresses reported by the target,
3762 store the appropriate offsets for each section in OFFSETS.
3763
3764 If there are fewer entries in SEGMENT_BASES than there are segments
3765 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3766
8d385431
DJ
3767 If there are more entries, then ignore the extra. The target may
3768 not be able to distinguish between an empty data segment and a
3769 missing data segment; a missing text segment is less plausible. */
3b7bacac 3770
31d99776 3771int
3189cb12
DE
3772symfile_map_offsets_to_segments (bfd *abfd,
3773 const struct symfile_segment_data *data,
31d99776
DJ
3774 struct section_offsets *offsets,
3775 int num_segment_bases,
3776 const CORE_ADDR *segment_bases)
3777{
3778 int i;
3779 asection *sect;
3780
28c32713
JB
3781 /* It doesn't make sense to call this function unless you have some
3782 segment base addresses. */
202b96c1 3783 gdb_assert (num_segment_bases > 0);
28c32713 3784
31d99776
DJ
3785 /* If we do not have segment mappings for the object file, we
3786 can not relocate it by segments. */
3787 gdb_assert (data != NULL);
3788 gdb_assert (data->num_segments > 0);
3789
31d99776
DJ
3790 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3791 {
31d99776
DJ
3792 int which = data->segment_info[i];
3793
28c32713
JB
3794 gdb_assert (0 <= which && which <= data->num_segments);
3795
3796 /* Don't bother computing offsets for sections that aren't
3797 loaded as part of any segment. */
3798 if (! which)
3799 continue;
3800
3801 /* Use the last SEGMENT_BASES entry as the address of any extra
3802 segments mentioned in DATA->segment_info. */
31d99776 3803 if (which > num_segment_bases)
28c32713 3804 which = num_segment_bases;
31d99776 3805
28c32713
JB
3806 offsets->offsets[i] = (segment_bases[which - 1]
3807 - data->segment_bases[which - 1]);
31d99776
DJ
3808 }
3809
3810 return 1;
3811}
3812
3813static void
3814symfile_find_segment_sections (struct objfile *objfile)
3815{
3816 bfd *abfd = objfile->obfd;
3817 int i;
3818 asection *sect;
3819 struct symfile_segment_data *data;
3820
3821 data = get_symfile_segment_data (objfile->obfd);
3822 if (data == NULL)
3823 return;
3824
3825 if (data->num_segments != 1 && data->num_segments != 2)
3826 {
3827 free_symfile_segment_data (data);
3828 return;
3829 }
3830
3831 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3832 {
31d99776
DJ
3833 int which = data->segment_info[i];
3834
3835 if (which == 1)
3836 {
3837 if (objfile->sect_index_text == -1)
3838 objfile->sect_index_text = sect->index;
3839
3840 if (objfile->sect_index_rodata == -1)
3841 objfile->sect_index_rodata = sect->index;
3842 }
3843 else if (which == 2)
3844 {
3845 if (objfile->sect_index_data == -1)
3846 objfile->sect_index_data = sect->index;
3847
3848 if (objfile->sect_index_bss == -1)
3849 objfile->sect_index_bss = sect->index;
3850 }
3851 }
3852
3853 free_symfile_segment_data (data);
3854}
3855
76ad5e1e
NB
3856/* Listen for free_objfile events. */
3857
3858static void
3859symfile_free_objfile (struct objfile *objfile)
3860{
c33b2f12
MM
3861 /* Remove the target sections owned by this objfile. */
3862 if (objfile != NULL)
76ad5e1e
NB
3863 remove_target_sections ((void *) objfile);
3864}
3865
540c2971
DE
3866/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3867 Expand all symtabs that match the specified criteria.
3868 See quick_symbol_functions.expand_symtabs_matching for details. */
3869
3870void
bb4142cf
DE
3871expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3872 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3873 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3874 enum search_domain kind,
3875 void *data)
540c2971
DE
3876{
3877 struct objfile *objfile;
3878
3879 ALL_OBJFILES (objfile)
3880 {
3881 if (objfile->sf)
bb4142cf 3882 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3883 symbol_matcher,
3884 expansion_notify, kind,
bb4142cf 3885 data);
540c2971
DE
3886 }
3887}
3888
3889/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3890 Map function FUN over every file.
3891 See quick_symbol_functions.map_symbol_filenames for details. */
3892
3893void
bb4142cf
DE
3894map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3895 int need_fullname)
540c2971
DE
3896{
3897 struct objfile *objfile;
3898
3899 ALL_OBJFILES (objfile)
3900 {
3901 if (objfile->sf)
3902 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3903 need_fullname);
3904 }
3905}
3906
c906108c 3907void
fba45db2 3908_initialize_symfile (void)
c906108c
SS
3909{
3910 struct cmd_list_element *c;
c5aa993b 3911
76ad5e1e
NB
3912 observer_attach_free_objfile (symfile_free_objfile);
3913
1a966eab
AC
3914 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3915Load symbol table from executable file FILE.\n\
c906108c 3916The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3917to execute."), &cmdlist);
5ba2abeb 3918 set_cmd_completer (c, filename_completer);
c906108c 3919
1a966eab 3920 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3921Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3922Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3923 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3924The optional arguments are section-name section-address pairs and\n\
3925should be specified if the data and bss segments are not contiguous\n\
1a966eab 3926with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3927 &cmdlist);
5ba2abeb 3928 set_cmd_completer (c, filename_completer);
c906108c 3929
63644780
NB
3930 c = add_cmd ("remove-symbol-file", class_files,
3931 remove_symbol_file_command, _("\
3932Remove a symbol file added via the add-symbol-file command.\n\
3933Usage: remove-symbol-file FILENAME\n\
3934 remove-symbol-file -a ADDRESS\n\
3935The file to remove can be identified by its filename or by an address\n\
3936that lies within the boundaries of this symbol file in memory."),
3937 &cmdlist);
3938
1a966eab
AC
3939 c = add_cmd ("load", class_files, load_command, _("\
3940Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3941for access from GDB.\n\
3942A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3943 set_cmd_completer (c, filename_completer);
c906108c 3944
c5aa993b 3945 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3946 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3947 "overlay ", 0, &cmdlist);
3948
3949 add_com_alias ("ovly", "overlay", class_alias, 1);
3950 add_com_alias ("ov", "overlay", class_alias, 1);
3951
c5aa993b 3952 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3953 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3954
c5aa993b 3955 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3956 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3957
c5aa993b 3958 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3959 _("List mappings of overlay sections."), &overlaylist);
c906108c 3960
c5aa993b 3961 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3962 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3963 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3964 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3965 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3966 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3967 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3968 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3969
3970 /* Filename extension to source language lookup table: */
26c41df3
AC
3971 add_setshow_string_noescape_cmd ("extension-language", class_files,
3972 &ext_args, _("\
3973Set mapping between filename extension and source language."), _("\
3974Show mapping between filename extension and source language."), _("\
3975Usage: set extension-language .foo bar"),
3976 set_ext_lang_command,
920d2a44 3977 show_ext_args,
26c41df3 3978 &setlist, &showlist);
c906108c 3979
c5aa993b 3980 add_info ("extensions", info_ext_lang_command,
1bedd215 3981 _("All filename extensions associated with a source language."));
917317f4 3982
525226b5
AC
3983 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3984 &debug_file_directory, _("\
24ddea62
JK
3985Set the directories where separate debug symbols are searched for."), _("\
3986Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3987Separate debug symbols are first searched for in the same\n\
3988directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3989and lastly at the path of the directory of the binary with\n\
24ddea62 3990each global debug-file-directory component prepended."),
525226b5 3991 NULL,
920d2a44 3992 show_debug_file_directory,
525226b5 3993 &setlist, &showlist);
770e7fc7
DE
3994
3995 add_setshow_enum_cmd ("symbol-loading", no_class,
3996 print_symbol_loading_enums, &print_symbol_loading,
3997 _("\
3998Set printing of symbol loading messages."), _("\
3999Show printing of symbol loading messages."), _("\
4000off == turn all messages off\n\
4001brief == print messages for the executable,\n\
4002 and brief messages for shared libraries\n\
4003full == print messages for the executable,\n\
4004 and messages for each shared library."),
4005 NULL,
4006 NULL,
4007 &setprintlist, &showprintlist);
c906108c 4008}
This page took 2.861798 seconds and 4 git commands to generate.