gdb/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c
AC
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1bac305b 4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
8926118c 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
c5aa993b 40#include "inferior.h" /* for write_pc */
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
38017ce8 46#include <readline/readline.h>
7e8580c1 47#include "gdb_assert.h"
c906108c 48
c906108c
SS
49#include <sys/types.h>
50#include <fcntl.h>
51#include "gdb_string.h"
52#include "gdb_stat.h"
53#include <ctype.h>
54#include <time.h>
c906108c
SS
55
56#ifndef O_BINARY
57#define O_BINARY 0
58#endif
59
60#ifdef HPUXHPPA
61
62/* Some HP-UX related globals to clear when a new "main"
63 symbol file is loaded. HP-specific. */
64
65extern int hp_som_som_object_present;
66extern int hp_cxx_exception_support_initialized;
67#define RESET_HP_UX_GLOBALS() do {\
68 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
69 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
70 } while (0)
71#endif
72
917317f4 73int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
74void (*show_load_progress) (const char *section,
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
78 unsigned long total_size);
507f3c78
KB
79void (*pre_add_symbol_hook) (char *);
80void (*post_add_symbol_hook) (void);
81void (*target_new_objfile_hook) (struct objfile *);
c906108c 82
74b7792f
AC
83static void clear_symtab_users_cleanup (void *ignore);
84
c906108c 85/* Global variables owned by this file */
c5aa993b 86int readnow_symbol_files; /* Read full symbols immediately */
c906108c 87
c906108c
SS
88/* External variables and functions referenced. */
89
a14ed312 90extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
91
92/* Functions this file defines */
93
94#if 0
a14ed312
KB
95static int simple_read_overlay_region_table (void);
96static void simple_free_overlay_region_table (void);
c906108c
SS
97#endif
98
a14ed312 99static void set_initial_language (void);
c906108c 100
a14ed312 101static void load_command (char *, int);
c906108c 102
d7db6da9
FN
103static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
104
a14ed312 105static void add_symbol_file_command (char *, int);
c906108c 106
a14ed312 107static void add_shared_symbol_files_command (char *, int);
c906108c 108
5b5d99cf
JB
109static void reread_separate_symbols (struct objfile *objfile);
110
a14ed312 111static void cashier_psymtab (struct partial_symtab *);
c906108c 112
a14ed312 113bfd *symfile_bfd_open (char *);
c906108c 114
0e931cf0
JB
115int get_section_index (struct objfile *, char *);
116
a14ed312 117static void find_sym_fns (struct objfile *);
c906108c 118
a14ed312 119static void decrement_reading_symtab (void *);
c906108c 120
a14ed312 121static void overlay_invalidate_all (void);
c906108c 122
a14ed312 123static int overlay_is_mapped (struct obj_section *);
c906108c 124
a14ed312 125void list_overlays_command (char *, int);
c906108c 126
a14ed312 127void map_overlay_command (char *, int);
c906108c 128
a14ed312 129void unmap_overlay_command (char *, int);
c906108c 130
a14ed312 131static void overlay_auto_command (char *, int);
c906108c 132
a14ed312 133static void overlay_manual_command (char *, int);
c906108c 134
a14ed312 135static void overlay_off_command (char *, int);
c906108c 136
a14ed312 137static void overlay_load_command (char *, int);
c906108c 138
a14ed312 139static void overlay_command (char *, int);
c906108c 140
a14ed312 141static void simple_free_overlay_table (void);
c906108c 142
a14ed312 143static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 144
a14ed312 145static int simple_read_overlay_table (void);
c906108c 146
a14ed312 147static int simple_overlay_update_1 (struct obj_section *);
c906108c 148
a14ed312 149static void add_filename_language (char *ext, enum language lang);
392a587b 150
a14ed312 151static void set_ext_lang_command (char *args, int from_tty);
392a587b 152
a14ed312 153static void info_ext_lang_command (char *args, int from_tty);
392a587b 154
5b5d99cf
JB
155static char *find_separate_debug_file (struct objfile *objfile);
156
a14ed312 157static void init_filename_language_table (void);
392a587b 158
a14ed312 159void _initialize_symfile (void);
c906108c
SS
160
161/* List of all available sym_fns. On gdb startup, each object file reader
162 calls add_symtab_fns() to register information on each format it is
163 prepared to read. */
164
165static struct sym_fns *symtab_fns = NULL;
166
167/* Flag for whether user will be reloading symbols multiple times.
168 Defaults to ON for VxWorks, otherwise OFF. */
169
170#ifdef SYMBOL_RELOADING_DEFAULT
171int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
172#else
173int symbol_reloading = 0;
174#endif
175
b7209cb4
FF
176/* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
c906108c 183 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 184 report all the functions that are actually present. */
c906108c
SS
185
186int auto_solib_add = 1;
b7209cb4
FF
187
188/* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196int auto_solib_limit;
c906108c 197\f
c5aa993b 198
c906108c
SS
199/* Since this function is called from within qsort, in an ANSI environment
200 it must conform to the prototype for qsort, which specifies that the
201 comparison function takes two "void *" pointers. */
202
203static int
0cd64fe2 204compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
205{
206 register struct symbol **s1, **s2;
207
208 s1 = (struct symbol **) s1p;
209 s2 = (struct symbol **) s2p;
494b7ec9 210 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
211}
212
213/*
214
c5aa993b 215 LOCAL FUNCTION
c906108c 216
c5aa993b 217 compare_psymbols -- compare two partial symbols by name
c906108c 218
c5aa993b 219 DESCRIPTION
c906108c 220
c5aa993b
JM
221 Given pointers to pointers to two partial symbol table entries,
222 compare them by name and return -N, 0, or +N (ala strcmp).
223 Typically used by sorting routines like qsort().
c906108c 224
c5aa993b 225 NOTES
c906108c 226
c5aa993b
JM
227 Does direct compare of first two characters before punting
228 and passing to strcmp for longer compares. Note that the
229 original version had a bug whereby two null strings or two
230 identically named one character strings would return the
231 comparison of memory following the null byte.
c906108c
SS
232
233 */
234
235static int
0cd64fe2 236compare_psymbols (const void *s1p, const void *s2p)
c906108c 237{
fba7f19c
EZ
238 register struct partial_symbol **s1, **s2;
239 register char *st1, *st2;
240
241 s1 = (struct partial_symbol **) s1p;
242 s2 = (struct partial_symbol **) s2p;
243 st1 = SYMBOL_SOURCE_NAME (*s1);
244 st2 = SYMBOL_SOURCE_NAME (*s2);
245
c906108c
SS
246
247 if ((st1[0] - st2[0]) || !st1[0])
248 {
249 return (st1[0] - st2[0]);
250 }
251 else if ((st1[1] - st2[1]) || !st1[1])
252 {
253 return (st1[1] - st2[1]);
254 }
255 else
256 {
c5aa993b 257 return (strcmp (st1, st2));
c906108c
SS
258 }
259}
260
261void
fba45db2 262sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
263{
264 /* Sort the global list; don't sort the static list */
265
c5aa993b
JM
266 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
267 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
268 compare_psymbols);
269}
270
271/* Call sort_block_syms to sort alphabetically the symbols of one block. */
272
273void
fba45db2 274sort_block_syms (register struct block *b)
c906108c
SS
275{
276 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
277 sizeof (struct symbol *), compare_symbols);
278}
279
280/* Call sort_symtab_syms to sort alphabetically
281 the symbols of each block of one symtab. */
282
283void
fba45db2 284sort_symtab_syms (register struct symtab *s)
c906108c
SS
285{
286 register struct blockvector *bv;
287 int nbl;
288 int i;
289 register struct block *b;
290
291 if (s == 0)
292 return;
293 bv = BLOCKVECTOR (s);
294 nbl = BLOCKVECTOR_NBLOCKS (bv);
295 for (i = 0; i < nbl; i++)
296 {
297 b = BLOCKVECTOR_BLOCK (bv, i);
298 if (BLOCK_SHOULD_SORT (b))
299 sort_block_syms (b);
300 }
301}
302
303/* Make a null terminated copy of the string at PTR with SIZE characters in
304 the obstack pointed to by OBSTACKP . Returns the address of the copy.
305 Note that the string at PTR does not have to be null terminated, I.E. it
306 may be part of a larger string and we are only saving a substring. */
307
308char *
63ca651f 309obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c
SS
310{
311 register char *p = (char *) obstack_alloc (obstackp, size + 1);
312 /* Open-coded memcpy--saves function call time. These strings are usually
313 short. FIXME: Is this really still true with a compiler that can
314 inline memcpy? */
315 {
63ca651f 316 register const char *p1 = ptr;
c906108c 317 register char *p2 = p;
63ca651f 318 const char *end = ptr + size;
c906108c
SS
319 while (p1 != end)
320 *p2++ = *p1++;
321 }
322 p[size] = 0;
323 return p;
324}
325
326/* Concatenate strings S1, S2 and S3; return the new string. Space is found
327 in the obstack pointed to by OBSTACKP. */
328
329char *
fba45db2
KB
330obconcat (struct obstack *obstackp, const char *s1, const char *s2,
331 const char *s3)
c906108c
SS
332{
333 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
334 register char *val = (char *) obstack_alloc (obstackp, len);
335 strcpy (val, s1);
336 strcat (val, s2);
337 strcat (val, s3);
338 return val;
339}
340
341/* True if we are nested inside psymtab_to_symtab. */
342
343int currently_reading_symtab = 0;
344
345static void
fba45db2 346decrement_reading_symtab (void *dummy)
c906108c
SS
347{
348 currently_reading_symtab--;
349}
350
351/* Get the symbol table that corresponds to a partial_symtab.
352 This is fast after the first time you do it. In fact, there
353 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
354 case inline. */
355
356struct symtab *
fba45db2 357psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
358{
359 /* If it's been looked up before, return it. */
360 if (pst->symtab)
361 return pst->symtab;
362
363 /* If it has not yet been read in, read it. */
364 if (!pst->readin)
c5aa993b 365 {
c906108c
SS
366 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
367 currently_reading_symtab++;
368 (*pst->read_symtab) (pst);
369 do_cleanups (back_to);
370 }
371
372 return pst->symtab;
373}
374
375/* Initialize entry point information for this objfile. */
376
377void
fba45db2 378init_entry_point_info (struct objfile *objfile)
c906108c
SS
379{
380 /* Save startup file's range of PC addresses to help blockframe.c
381 decide where the bottom of the stack is. */
382
c5aa993b 383 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
384 {
385 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
386 the startup file because it contains the entry point. */
387 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
388 }
389 else
390 {
391 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 392 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 393 }
c5aa993b
JM
394 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
395 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
396 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
397 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
398 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
400}
401
402/* Get current entry point address. */
403
404CORE_ADDR
fba45db2 405entry_point_address (void)
c906108c
SS
406{
407 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
408}
409
410/* Remember the lowest-addressed loadable section we've seen.
411 This function is called via bfd_map_over_sections.
412
413 In case of equal vmas, the section with the largest size becomes the
414 lowest-addressed loadable section.
415
416 If the vmas and sizes are equal, the last section is considered the
417 lowest-addressed loadable section. */
418
419void
4efb68b1 420find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 421{
c5aa993b 422 asection **lowest = (asection **) obj;
c906108c
SS
423
424 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
425 return;
426 if (!*lowest)
427 *lowest = sect; /* First loadable section */
428 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
429 *lowest = sect; /* A lower loadable section */
430 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
431 && (bfd_section_size (abfd, (*lowest))
432 <= bfd_section_size (abfd, sect)))
433 *lowest = sect;
434}
435
62557bbc
KB
436
437/* Build (allocate and populate) a section_addr_info struct from
438 an existing section table. */
439
440extern struct section_addr_info *
441build_section_addr_info_from_section_table (const struct section_table *start,
442 const struct section_table *end)
443{
444 struct section_addr_info *sap;
445 const struct section_table *stp;
446 int oidx;
447
448 sap = xmalloc (sizeof (struct section_addr_info));
449 memset (sap, 0, sizeof (struct section_addr_info));
450
451 for (stp = start, oidx = 0; stp != end; stp++)
452 {
fbd35540
MS
453 if (bfd_get_section_flags (stp->bfd,
454 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
62557bbc
KB
455 && oidx < MAX_SECTIONS)
456 {
457 sap->other[oidx].addr = stp->addr;
fbd35540
MS
458 sap->other[oidx].name
459 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
460 sap->other[oidx].sectindex = stp->the_bfd_section->index;
461 oidx++;
462 }
463 }
464
465 return sap;
466}
467
468
469/* Free all memory allocated by build_section_addr_info_from_section_table. */
470
471extern void
472free_section_addr_info (struct section_addr_info *sap)
473{
474 int idx;
475
476 for (idx = 0; idx < MAX_SECTIONS; idx++)
477 if (sap->other[idx].name)
b8c9b27d
KB
478 xfree (sap->other[idx].name);
479 xfree (sap);
62557bbc
KB
480}
481
482
e8289572
JB
483/* Initialize OBJFILE's sect_index_* members. */
484static void
485init_objfile_sect_indices (struct objfile *objfile)
c906108c 486{
e8289572 487 asection *sect;
c906108c 488 int i;
e8289572 489
b8fbeb18
EZ
490 sect = bfd_get_section_by_name (objfile->obfd, ".text");
491 if (sect)
492 objfile->sect_index_text = sect->index;
493
494 sect = bfd_get_section_by_name (objfile->obfd, ".data");
495 if (sect)
496 objfile->sect_index_data = sect->index;
497
498 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
499 if (sect)
500 objfile->sect_index_bss = sect->index;
501
502 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
503 if (sect)
504 objfile->sect_index_rodata = sect->index;
505
bbcd32ad
FF
506 /* This is where things get really weird... We MUST have valid
507 indices for the various sect_index_* members or gdb will abort.
508 So if for example, there is no ".text" section, we have to
509 accomodate that. Except when explicitly adding symbol files at
510 some address, section_offsets contains nothing but zeros, so it
511 doesn't matter which slot in section_offsets the individual
512 sect_index_* members index into. So if they are all zero, it is
513 safe to just point all the currently uninitialized indices to the
514 first slot. */
515
516 for (i = 0; i < objfile->num_sections; i++)
517 {
518 if (ANOFFSET (objfile->section_offsets, i) != 0)
519 {
520 break;
521 }
522 }
523 if (i == objfile->num_sections)
524 {
525 if (objfile->sect_index_text == -1)
526 objfile->sect_index_text = 0;
527 if (objfile->sect_index_data == -1)
528 objfile->sect_index_data = 0;
529 if (objfile->sect_index_bss == -1)
530 objfile->sect_index_bss = 0;
531 if (objfile->sect_index_rodata == -1)
532 objfile->sect_index_rodata = 0;
533 }
b8fbeb18 534}
c906108c 535
e8289572
JB
536
537/* Parse the user's idea of an offset for dynamic linking, into our idea
538 of how to represent it for fast symbol reading. This is the default
539 version of the sym_fns.sym_offsets function for symbol readers that
540 don't need to do anything special. It allocates a section_offsets table
541 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
542
543void
544default_symfile_offsets (struct objfile *objfile,
545 struct section_addr_info *addrs)
546{
547 int i;
548
549 objfile->num_sections = SECT_OFF_MAX;
550 objfile->section_offsets = (struct section_offsets *)
551 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
552 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
553
554 /* Now calculate offsets for section that were specified by the
555 caller. */
556 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
557 {
558 struct other_sections *osp ;
559
560 osp = &addrs->other[i] ;
561 if (osp->addr == 0)
562 continue;
563
564 /* Record all sections in offsets */
565 /* The section_offsets in the objfile are here filled in using
566 the BFD index. */
567 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
568 }
569
570 /* Remember the bfd indexes for the .text, .data, .bss and
571 .rodata sections. */
572 init_objfile_sect_indices (objfile);
573}
574
575
c906108c
SS
576/* Process a symbol file, as either the main file or as a dynamically
577 loaded file.
578
96baa820
JM
579 OBJFILE is where the symbols are to be read from.
580
7e8580c1
JB
581 ADDRS is the list of section load addresses. If the user has given
582 an 'add-symbol-file' command, then this is the list of offsets and
583 addresses he or she provided as arguments to the command; or, if
584 we're handling a shared library, these are the actual addresses the
585 sections are loaded at, according to the inferior's dynamic linker
586 (as gleaned by GDB's shared library code). We convert each address
587 into an offset from the section VMA's as it appears in the object
588 file, and then call the file's sym_offsets function to convert this
589 into a format-specific offset table --- a `struct section_offsets'.
590 If ADDRS is non-zero, OFFSETS must be zero.
591
592 OFFSETS is a table of section offsets already in the right
593 format-specific representation. NUM_OFFSETS is the number of
594 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
595 assume this is the proper table the call to sym_offsets described
596 above would produce. Instead of calling sym_offsets, we just dump
597 it right into objfile->section_offsets. (When we're re-reading
598 symbols from an objfile, we don't have the original load address
599 list any more; all we have is the section offset table.) If
600 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
601
602 MAINLINE is nonzero if this is the main symbol file, or zero if
603 it's an extra symbol file such as dynamically loaded code.
604
605 VERBO is nonzero if the caller has printed a verbose message about
606 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
607
608void
7e8580c1
JB
609syms_from_objfile (struct objfile *objfile,
610 struct section_addr_info *addrs,
611 struct section_offsets *offsets,
612 int num_offsets,
613 int mainline,
614 int verbo)
c906108c 615{
2acceee2
JM
616 asection *lower_sect;
617 asection *sect;
618 CORE_ADDR lower_offset;
619 struct section_addr_info local_addr;
c906108c 620 struct cleanup *old_chain;
2acceee2
JM
621 int i;
622
7e8580c1 623 gdb_assert (! (addrs && offsets));
2acceee2 624
7e8580c1
JB
625 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
626 list. We now establish the convention that an addr of zero means
627 no load address was specified. */
628 if (! addrs && ! offsets)
2acceee2
JM
629 {
630 memset (&local_addr, 0, sizeof (local_addr));
631 addrs = &local_addr;
632 }
c906108c 633
7e8580c1
JB
634 /* Now either addrs or offsets is non-zero. */
635
c906108c
SS
636 init_entry_point_info (objfile);
637 find_sym_fns (objfile);
638
75245b24
MS
639 if (objfile->sf == NULL)
640 return; /* No symbols. */
641
c906108c
SS
642 /* Make sure that partially constructed symbol tables will be cleaned up
643 if an error occurs during symbol reading. */
74b7792f 644 old_chain = make_cleanup_free_objfile (objfile);
c906108c 645
c5aa993b 646 if (mainline)
c906108c
SS
647 {
648 /* We will modify the main symbol table, make sure that all its users
c5aa993b 649 will be cleaned up if an error occurs during symbol reading. */
74b7792f 650 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
651
652 /* Since no error yet, throw away the old symbol table. */
653
654 if (symfile_objfile != NULL)
655 {
656 free_objfile (symfile_objfile);
657 symfile_objfile = NULL;
658 }
659
660 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
661 If the user wants to get rid of them, they should do "symbol-file"
662 without arguments first. Not sure this is the best behavior
663 (PR 2207). */
c906108c 664
c5aa993b 665 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
666 }
667
668 /* Convert addr into an offset rather than an absolute address.
669 We find the lowest address of a loaded segment in the objfile,
53a5351d 670 and assume that <addr> is where that got loaded.
c906108c 671
53a5351d
JM
672 We no longer warn if the lowest section is not a text segment (as
673 happens for the PA64 port. */
e7cf9df1 674 if (!mainline)
c906108c 675 {
2acceee2
JM
676 /* Find lowest loadable section to be used as starting point for
677 continguous sections. FIXME!! won't work without call to find
678 .text first, but this assumes text is lowest section. */
679 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
680 if (lower_sect == NULL)
c906108c 681 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 682 &lower_sect);
2acceee2 683 if (lower_sect == NULL)
c906108c
SS
684 warning ("no loadable sections found in added symbol-file %s",
685 objfile->name);
b8fbeb18
EZ
686 else
687 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
688 warning ("Lowest section in %s is %s at %s",
689 objfile->name,
690 bfd_section_name (objfile->obfd, lower_sect),
691 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
692 if (lower_sect != NULL)
693 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
694 else
695 lower_offset = 0;
696
13de58df 697 /* Calculate offsets for the loadable sections.
2acceee2
JM
698 FIXME! Sections must be in order of increasing loadable section
699 so that contiguous sections can use the lower-offset!!!
700
13de58df
JB
701 Adjust offsets if the segments are not contiguous.
702 If the section is contiguous, its offset should be set to
2acceee2
JM
703 the offset of the highest loadable section lower than it
704 (the loadable section directly below it in memory).
705 this_offset = lower_offset = lower_addr - lower_orig_addr */
706
13de58df 707 /* Calculate offsets for sections. */
7e8580c1
JB
708 if (addrs)
709 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
710 {
711 if (addrs->other[i].addr != 0)
712 {
713 sect = bfd_get_section_by_name (objfile->obfd,
714 addrs->other[i].name);
715 if (sect)
716 {
717 addrs->other[i].addr
718 -= bfd_section_vma (objfile->obfd, sect);
719 lower_offset = addrs->other[i].addr;
720 /* This is the index used by BFD. */
721 addrs->other[i].sectindex = sect->index ;
722 }
723 else
724 {
725 warning ("section %s not found in %s",
726 addrs->other[i].name,
727 objfile->name);
728 addrs->other[i].addr = 0;
729 }
730 }
731 else
732 addrs->other[i].addr = lower_offset;
733 }
c906108c
SS
734 }
735
736 /* Initialize symbol reading routines for this objfile, allow complaints to
737 appear for this new file, and record how verbose to be, then do the
738 initial symbol reading for this file. */
739
c5aa993b 740 (*objfile->sf->sym_init) (objfile);
b9caf505 741 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 742
7e8580c1
JB
743 if (addrs)
744 (*objfile->sf->sym_offsets) (objfile, addrs);
745 else
746 {
747 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
748
749 /* Just copy in the offset table directly as given to us. */
750 objfile->num_sections = num_offsets;
751 objfile->section_offsets
752 = ((struct section_offsets *)
753 obstack_alloc (&objfile->psymbol_obstack, size));
754 memcpy (objfile->section_offsets, offsets, size);
755
756 init_objfile_sect_indices (objfile);
757 }
c906108c
SS
758
759#ifndef IBM6000_TARGET
760 /* This is a SVR4/SunOS specific hack, I think. In any event, it
761 screws RS/6000. sym_offsets should be doing this sort of thing,
762 because it knows the mapping between bfd sections and
763 section_offsets. */
764 /* This is a hack. As far as I can tell, section offsets are not
765 target dependent. They are all set to addr with a couple of
766 exceptions. The exceptions are sysvr4 shared libraries, whose
767 offsets are kept in solib structures anyway and rs6000 xcoff
768 which handles shared libraries in a completely unique way.
769
770 Section offsets are built similarly, except that they are built
771 by adding addr in all cases because there is no clear mapping
772 from section_offsets into actual sections. Note that solib.c
96baa820 773 has a different algorithm for finding section offsets.
c906108c
SS
774
775 These should probably all be collapsed into some target
776 independent form of shared library support. FIXME. */
777
2acceee2 778 if (addrs)
c906108c
SS
779 {
780 struct obj_section *s;
781
2acceee2
JM
782 /* Map section offsets in "addr" back to the object's
783 sections by comparing the section names with bfd's
784 section names. Then adjust the section address by
785 the offset. */ /* for gdb/13815 */
786
96baa820 787 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 788 {
2acceee2
JM
789 CORE_ADDR s_addr = 0;
790 int i;
791
62557bbc
KB
792 for (i = 0;
793 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
794 i++)
fbd35540
MS
795 if (strcmp (bfd_section_name (s->objfile->obfd,
796 s->the_bfd_section),
797 addrs->other[i].name) == 0)
2acceee2
JM
798 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
799
c906108c 800 s->addr -= s->offset;
2acceee2 801 s->addr += s_addr;
c906108c 802 s->endaddr -= s->offset;
2acceee2
JM
803 s->endaddr += s_addr;
804 s->offset += s_addr;
c906108c
SS
805 }
806 }
807#endif /* not IBM6000_TARGET */
808
96baa820 809 (*objfile->sf->sym_read) (objfile, mainline);
c906108c
SS
810
811 if (!have_partial_symbols () && !have_full_symbols ())
812 {
813 wrap_here ("");
814 printf_filtered ("(no debugging symbols found)...");
815 wrap_here ("");
816 }
817
818 /* Don't allow char * to have a typename (else would get caddr_t).
819 Ditto void *. FIXME: Check whether this is now done by all the
820 symbol readers themselves (many of them now do), and if so remove
821 it from here. */
822
823 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
824 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
825
826 /* Mark the objfile has having had initial symbol read attempted. Note
827 that this does not mean we found any symbols... */
828
c5aa993b 829 objfile->flags |= OBJF_SYMS;
c906108c
SS
830
831 /* Discard cleanups as symbol reading was successful. */
832
833 discard_cleanups (old_chain);
834
96baa820 835 /* Call this after reading in a new symbol table to give target
38c2ef12 836 dependent code a crack at the new symbols. For instance, this
96baa820
JM
837 could be used to update the values of target-specific symbols GDB
838 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
839
840 TARGET_SYMFILE_POSTREAD (objfile);
841}
842
843/* Perform required actions after either reading in the initial
844 symbols for a new objfile, or mapping in the symbols from a reusable
845 objfile. */
c5aa993b 846
c906108c 847void
fba45db2 848new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
849{
850
851 /* If this is the main symbol file we have to clean up all users of the
852 old main symbol file. Otherwise it is sufficient to fixup all the
853 breakpoints that may have been redefined by this symbol file. */
854 if (mainline)
855 {
856 /* OK, make it the "real" symbol file. */
857 symfile_objfile = objfile;
858
859 clear_symtab_users ();
860 }
861 else
862 {
863 breakpoint_re_set ();
864 }
865
866 /* We're done reading the symbol file; finish off complaints. */
b9caf505 867 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
868}
869
870/* Process a symbol file, as either the main file or as a dynamically
871 loaded file.
872
873 NAME is the file name (which will be tilde-expanded and made
874 absolute herein) (but we don't free or modify NAME itself).
7904e09f
JB
875
876 FROM_TTY says how verbose to be.
877
878 MAINLINE specifies whether this is the main symbol file, or whether
879 it's an extra symbol file such as dynamically loaded code.
880
881 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
882 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
883 non-zero.
c906108c 884
c906108c
SS
885 Upon success, returns a pointer to the objfile that was added.
886 Upon failure, jumps back to command level (never returns). */
7904e09f
JB
887static struct objfile *
888symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
889 struct section_addr_info *addrs,
890 struct section_offsets *offsets,
891 int num_offsets,
892 int mainline, int flags)
c906108c
SS
893{
894 struct objfile *objfile;
895 struct partial_symtab *psymtab;
5b5d99cf 896 char *debugfile;
c906108c 897 bfd *abfd;
5b5d99cf
JB
898 struct section_addr_info orig_addrs;
899
900 if (addrs)
901 orig_addrs = *addrs;
c906108c
SS
902
903 /* Open a bfd for the file, and give user a chance to burp if we'd be
904 interactively wiping out any existing symbols. */
905
906 abfd = symfile_bfd_open (name);
907
908 if ((have_full_symbols () || have_partial_symbols ())
909 && mainline
910 && from_tty
911 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 912 error ("Not confirmed.");
c906108c 913
2df3850c 914 objfile = allocate_objfile (abfd, flags);
c906108c
SS
915
916 /* If the objfile uses a mapped symbol file, and we have a psymtab for
917 it, then skip reading any symbols at this time. */
918
c5aa993b 919 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
920 {
921 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
922 initial symbol reading performed, so we can skip that part. Notify
923 the user that instead of reading the symbols, they have been mapped.
924 */
c906108c
SS
925 if (from_tty || info_verbose)
926 {
927 printf_filtered ("Mapped symbols for %s...", name);
928 wrap_here ("");
929 gdb_flush (gdb_stdout);
930 }
931 init_entry_point_info (objfile);
932 find_sym_fns (objfile);
933 }
934 else
935 {
936 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
937 symbol table file which has not had initial symbol reading
938 performed, or need to read an unmapped symbol table. */
c906108c
SS
939 if (from_tty || info_verbose)
940 {
941 if (pre_add_symbol_hook)
942 pre_add_symbol_hook (name);
943 else
944 {
945 printf_filtered ("Reading symbols from %s...", name);
946 wrap_here ("");
947 gdb_flush (gdb_stdout);
948 }
949 }
7904e09f
JB
950 syms_from_objfile (objfile, addrs, offsets, num_offsets,
951 mainline, from_tty);
c906108c
SS
952 }
953
954 /* We now have at least a partial symbol table. Check to see if the
955 user requested that all symbols be read on initial access via either
956 the gdb startup command line or on a per symbol file basis. Expand
957 all partial symbol tables for this objfile if so. */
958
2acceee2 959 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
960 {
961 if (from_tty || info_verbose)
962 {
963 printf_filtered ("expanding to full symbols...");
964 wrap_here ("");
965 gdb_flush (gdb_stdout);
966 }
967
c5aa993b 968 for (psymtab = objfile->psymtabs;
c906108c 969 psymtab != NULL;
c5aa993b 970 psymtab = psymtab->next)
c906108c
SS
971 {
972 psymtab_to_symtab (psymtab);
973 }
974 }
975
5b5d99cf
JB
976 debugfile = find_separate_debug_file (objfile);
977 if (debugfile)
978 {
979 if (from_tty || info_verbose)
980 {
981 printf_filtered ("loading separate debug info from '%s'",
982 debugfile);
983 wrap_here ("");
984 gdb_flush (gdb_stdout);
985 }
986
987 if (addrs != NULL)
988 {
989 objfile->separate_debug_objfile
990 = symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
991 }
992 else
993 {
994 objfile->separate_debug_objfile
995 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
996 }
997 objfile->separate_debug_objfile->separate_debug_objfile_backlink
998 = objfile;
999
1000 /* Put the separate debug object before the normal one, this is so that
1001 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1002 put_objfile_before (objfile->separate_debug_objfile, objfile);
1003
1004 xfree (debugfile);
1005 }
1006
c906108c
SS
1007 if (from_tty || info_verbose)
1008 {
1009 if (post_add_symbol_hook)
c5aa993b 1010 post_add_symbol_hook ();
c906108c 1011 else
c5aa993b
JM
1012 {
1013 printf_filtered ("done.\n");
c5aa993b 1014 }
c906108c
SS
1015 }
1016
481d0f41
JB
1017 /* We print some messages regardless of whether 'from_tty ||
1018 info_verbose' is true, so make sure they go out at the right
1019 time. */
1020 gdb_flush (gdb_stdout);
1021
109f874e
MS
1022 if (objfile->sf == NULL)
1023 return objfile; /* No symbols. */
1024
c906108c
SS
1025 new_symfile_objfile (objfile, mainline, from_tty);
1026
11cf8741
JM
1027 if (target_new_objfile_hook)
1028 target_new_objfile_hook (objfile);
c906108c
SS
1029
1030 return (objfile);
1031}
1032
7904e09f
JB
1033
1034/* Process a symbol file, as either the main file or as a dynamically
1035 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1036 for details. */
1037struct objfile *
1038symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1039 int mainline, int flags)
1040{
1041 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
1042 mainline, flags);
1043}
1044
1045
d7db6da9
FN
1046/* Call symbol_file_add() with default values and update whatever is
1047 affected by the loading of a new main().
1048 Used when the file is supplied in the gdb command line
1049 and by some targets with special loading requirements.
1050 The auxiliary function, symbol_file_add_main_1(), has the flags
1051 argument for the switches that can only be specified in the symbol_file
1052 command itself. */
1adeb98a
FN
1053
1054void
1055symbol_file_add_main (char *args, int from_tty)
1056{
d7db6da9
FN
1057 symbol_file_add_main_1 (args, from_tty, 0);
1058}
1059
1060static void
1061symbol_file_add_main_1 (char *args, int from_tty, int flags)
1062{
1063 symbol_file_add (args, from_tty, NULL, 1, flags);
1064
1065#ifdef HPUXHPPA
1066 RESET_HP_UX_GLOBALS ();
1067#endif
1068
1069 /* Getting new symbols may change our opinion about
1070 what is frameless. */
1071 reinit_frame_cache ();
1072
1073 set_initial_language ();
1adeb98a
FN
1074}
1075
1076void
1077symbol_file_clear (int from_tty)
1078{
1079 if ((have_full_symbols () || have_partial_symbols ())
1080 && from_tty
1081 && !query ("Discard symbol table from `%s'? ",
1082 symfile_objfile->name))
1083 error ("Not confirmed.");
1084 free_all_objfiles ();
1085
1086 /* solib descriptors may have handles to objfiles. Since their
1087 storage has just been released, we'd better wipe the solib
1088 descriptors as well.
1089 */
1090#if defined(SOLIB_RESTART)
1091 SOLIB_RESTART ();
1092#endif
1093
1094 symfile_objfile = NULL;
1095 if (from_tty)
1096 printf_unfiltered ("No symbol file now.\n");
1097#ifdef HPUXHPPA
1098 RESET_HP_UX_GLOBALS ();
1099#endif
1100}
1101
5b5d99cf
JB
1102static char *
1103get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1104{
1105 asection *sect;
1106 bfd_size_type debuglink_size;
1107 unsigned long crc32;
1108 char *contents;
1109 int crc_offset;
1110 unsigned char *p;
1111
1112 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1113
1114 if (sect == NULL)
1115 return NULL;
1116
1117 debuglink_size = bfd_section_size (objfile->obfd, sect);
1118
1119 contents = xmalloc (debuglink_size);
1120 bfd_get_section_contents (objfile->obfd, sect, contents,
1121 (file_ptr)0, (bfd_size_type)debuglink_size);
1122
1123 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1124 crc_offset = strlen (contents) + 1;
1125 crc_offset = (crc_offset + 3) & ~3;
1126
1127 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1128
1129 *crc32_out = crc32;
1130 return contents;
1131}
1132
1133static int
1134separate_debug_file_exists (const char *name, unsigned long crc)
1135{
1136 unsigned long file_crc = 0;
1137 int fd;
1138 char buffer[8*1024];
1139 int count;
1140
1141 fd = open (name, O_RDONLY | O_BINARY);
1142 if (fd < 0)
1143 return 0;
1144
1145 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1146 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1147
1148 close (fd);
1149
1150 return crc == file_crc;
1151}
1152
1153static char *debug_file_directory = NULL;
1154
1155#if ! defined (DEBUG_SUBDIRECTORY)
1156#define DEBUG_SUBDIRECTORY ".debug"
1157#endif
1158
1159static char *
1160find_separate_debug_file (struct objfile *objfile)
1161{
1162 asection *sect;
1163 char *basename;
1164 char *dir;
1165 char *debugfile;
1166 char *name_copy;
1167 bfd_size_type debuglink_size;
1168 unsigned long crc32;
1169 int i;
1170
1171 basename = get_debug_link_info (objfile, &crc32);
1172
1173 if (basename == NULL)
1174 return NULL;
1175
1176 dir = xstrdup (objfile->name);
1177
1178 /* Strip off filename part */
1179 for (i = strlen(dir) - 1; i >= 0; i--)
1180 {
1181 if (IS_DIR_SEPARATOR (dir[i]))
1182 break;
1183 }
1184 dir[i+1] = '\0';
1185
1186 debugfile = alloca (strlen (debug_file_directory) + 1
1187 + strlen (dir)
1188 + strlen (DEBUG_SUBDIRECTORY)
1189 + strlen ("/")
1190 + strlen (basename)
1191 + 1);
1192
1193 /* First try in the same directory as the original file. */
1194 strcpy (debugfile, dir);
1195 strcat (debugfile, basename);
1196
1197 if (separate_debug_file_exists (debugfile, crc32))
1198 {
1199 xfree (basename);
1200 xfree (dir);
1201 return xstrdup (debugfile);
1202 }
1203
1204 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1205 strcpy (debugfile, dir);
1206 strcat (debugfile, DEBUG_SUBDIRECTORY);
1207 strcat (debugfile, "/");
1208 strcat (debugfile, basename);
1209
1210 if (separate_debug_file_exists (debugfile, crc32))
1211 {
1212 xfree (basename);
1213 xfree (dir);
1214 return xstrdup (debugfile);
1215 }
1216
1217 /* Then try in the global debugfile directory. */
1218 strcpy (debugfile, debug_file_directory);
1219 strcat (debugfile, "/");
1220 strcat (debugfile, dir);
1221 strcat (debugfile, "/");
1222 strcat (debugfile, basename);
1223
1224 if (separate_debug_file_exists (debugfile, crc32))
1225 {
1226 xfree (basename);
1227 xfree (dir);
1228 return xstrdup (debugfile);
1229 }
1230
1231 xfree (basename);
1232 xfree (dir);
1233 return NULL;
1234}
1235
1236
c906108c
SS
1237/* This is the symbol-file command. Read the file, analyze its
1238 symbols, and add a struct symtab to a symtab list. The syntax of
1239 the command is rather bizarre--(1) buildargv implements various
1240 quoting conventions which are undocumented and have little or
1241 nothing in common with the way things are quoted (or not quoted)
1242 elsewhere in GDB, (2) options are used, which are not generally
1243 used in GDB (perhaps "set mapped on", "set readnow on" would be
1244 better), (3) the order of options matters, which is contrary to GNU
1245 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
1246/* Note: ezannoni 2000-04-17. This function used to have support for
1247 rombug (see remote-os9k.c). It consisted of a call to target_link()
1248 (target.c) to get the address of the text segment from the target,
1249 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
1250
1251void
fba45db2 1252symbol_file_command (char *args, int from_tty)
c906108c
SS
1253{
1254 char **argv;
1255 char *name = NULL;
c906108c 1256 struct cleanup *cleanups;
2df3850c 1257 int flags = OBJF_USERLOADED;
c906108c
SS
1258
1259 dont_repeat ();
1260
1261 if (args == NULL)
1262 {
1adeb98a 1263 symbol_file_clear (from_tty);
c906108c
SS
1264 }
1265 else
1266 {
1267 if ((argv = buildargv (args)) == NULL)
1268 {
1269 nomem (0);
1270 }
7a292a7a 1271 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1272 while (*argv != NULL)
1273 {
1274 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
1275 flags |= OBJF_MAPPED;
1276 else
1277 if (STREQ (*argv, "-readnow"))
2acceee2 1278 flags |= OBJF_READNOW;
4da95fc4
EZ
1279 else
1280 if (**argv == '-')
1281 error ("unknown option `%s'", *argv);
c5aa993b 1282 else
c5aa993b 1283 {
4da95fc4 1284 name = *argv;
c906108c 1285
d7db6da9 1286 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1287 }
c906108c
SS
1288 argv++;
1289 }
1290
1291 if (name == NULL)
1292 {
1293 error ("no symbol file name was specified");
1294 }
c906108c
SS
1295 do_cleanups (cleanups);
1296 }
1297}
1298
1299/* Set the initial language.
1300
1301 A better solution would be to record the language in the psymtab when reading
1302 partial symbols, and then use it (if known) to set the language. This would
1303 be a win for formats that encode the language in an easily discoverable place,
1304 such as DWARF. For stabs, we can jump through hoops looking for specially
1305 named symbols or try to intuit the language from the specific type of stabs
1306 we find, but we can't do that until later when we read in full symbols.
1307 FIXME. */
1308
1309static void
fba45db2 1310set_initial_language (void)
c906108c
SS
1311{
1312 struct partial_symtab *pst;
c5aa993b 1313 enum language lang = language_unknown;
c906108c
SS
1314
1315 pst = find_main_psymtab ();
1316 if (pst != NULL)
1317 {
c5aa993b 1318 if (pst->filename != NULL)
c906108c 1319 {
c5aa993b
JM
1320 lang = deduce_language_from_filename (pst->filename);
1321 }
c906108c
SS
1322 if (lang == language_unknown)
1323 {
c5aa993b
JM
1324 /* Make C the default language */
1325 lang = language_c;
c906108c
SS
1326 }
1327 set_language (lang);
1328 expected_language = current_language; /* Don't warn the user */
1329 }
1330}
1331
1332/* Open file specified by NAME and hand it off to BFD for preliminary
1333 analysis. Result is a newly initialized bfd *, which includes a newly
1334 malloc'd` copy of NAME (tilde-expanded and made absolute).
1335 In case of trouble, error() is called. */
1336
1337bfd *
fba45db2 1338symfile_bfd_open (char *name)
c906108c
SS
1339{
1340 bfd *sym_bfd;
1341 int desc;
1342 char *absolute_name;
1343
1344
1345
1346 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1347
1348 /* Look down path for it, allocate 2nd new malloc'd copy. */
1349 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1350#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1351 if (desc < 0)
1352 {
1353 char *exename = alloca (strlen (name) + 5);
1354 strcat (strcpy (exename, name), ".exe");
1355 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1356 0, &absolute_name);
c906108c
SS
1357 }
1358#endif
1359 if (desc < 0)
1360 {
b8c9b27d 1361 make_cleanup (xfree, name);
c906108c
SS
1362 perror_with_name (name);
1363 }
b8c9b27d 1364 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1365 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1366 /* It'll be freed in free_objfile(). */
c906108c
SS
1367
1368 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1369 if (!sym_bfd)
1370 {
1371 close (desc);
b8c9b27d 1372 make_cleanup (xfree, name);
c906108c
SS
1373 error ("\"%s\": can't open to read symbols: %s.", name,
1374 bfd_errmsg (bfd_get_error ()));
1375 }
81a9a963 1376 sym_bfd->cacheable = 1;
c906108c
SS
1377
1378 if (!bfd_check_format (sym_bfd, bfd_object))
1379 {
1380 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1381 on error it does not free all the storage associated with the
1382 bfd). */
c906108c 1383 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1384 make_cleanup (xfree, name);
c906108c
SS
1385 error ("\"%s\": can't read symbols: %s.", name,
1386 bfd_errmsg (bfd_get_error ()));
1387 }
1388 return (sym_bfd);
1389}
1390
0e931cf0
JB
1391/* Return the section index for the given section name. Return -1 if
1392 the section was not found. */
1393int
1394get_section_index (struct objfile *objfile, char *section_name)
1395{
1396 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1397 if (sect)
1398 return sect->index;
1399 else
1400 return -1;
1401}
1402
c906108c
SS
1403/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1404 startup by the _initialize routine in each object file format reader,
1405 to register information about each format the the reader is prepared
1406 to handle. */
1407
1408void
fba45db2 1409add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1410{
1411 sf->next = symtab_fns;
1412 symtab_fns = sf;
1413}
1414
1415
1416/* Initialize to read symbols from the symbol file sym_bfd. It either
1417 returns or calls error(). The result is an initialized struct sym_fns
1418 in the objfile structure, that contains cached information about the
1419 symbol file. */
1420
1421static void
fba45db2 1422find_sym_fns (struct objfile *objfile)
c906108c
SS
1423{
1424 struct sym_fns *sf;
c5aa993b
JM
1425 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1426 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1427
75245b24
MS
1428 if (our_flavour == bfd_target_srec_flavour
1429 || our_flavour == bfd_target_ihex_flavour
1430 || our_flavour == bfd_target_tekhex_flavour)
1431 return; /* No symbols. */
1432
c906108c
SS
1433 /* Special kludge for apollo. See dstread.c. */
1434 if (STREQN (our_target, "apollo", 6))
c5aa993b 1435 our_flavour = (enum bfd_flavour) -2;
c906108c 1436
c5aa993b 1437 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1438 {
c5aa993b 1439 if (our_flavour == sf->sym_flavour)
c906108c 1440 {
c5aa993b 1441 objfile->sf = sf;
c906108c
SS
1442 return;
1443 }
1444 }
1445 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1446 bfd_get_target (objfile->obfd));
c906108c
SS
1447}
1448\f
1449/* This function runs the load command of our current target. */
1450
1451static void
fba45db2 1452load_command (char *arg, int from_tty)
c906108c
SS
1453{
1454 if (arg == NULL)
1455 arg = get_exec_file (1);
1456 target_load (arg, from_tty);
2889e661
JB
1457
1458 /* After re-loading the executable, we don't really know which
1459 overlays are mapped any more. */
1460 overlay_cache_invalid = 1;
c906108c
SS
1461}
1462
1463/* This version of "load" should be usable for any target. Currently
1464 it is just used for remote targets, not inftarg.c or core files,
1465 on the theory that only in that case is it useful.
1466
1467 Avoiding xmodem and the like seems like a win (a) because we don't have
1468 to worry about finding it, and (b) On VMS, fork() is very slow and so
1469 we don't want to run a subprocess. On the other hand, I'm not sure how
1470 performance compares. */
917317f4
JM
1471
1472static int download_write_size = 512;
1473static int validate_download = 0;
1474
e4f9b4d5
MS
1475/* Callback service function for generic_load (bfd_map_over_sections). */
1476
1477static void
1478add_section_size_callback (bfd *abfd, asection *asec, void *data)
1479{
1480 bfd_size_type *sum = data;
1481
1482 *sum += bfd_get_section_size_before_reloc (asec);
1483}
1484
1485/* Opaque data for load_section_callback. */
1486struct load_section_data {
1487 unsigned long load_offset;
1488 unsigned long write_count;
1489 unsigned long data_count;
1490 bfd_size_type total_size;
1491};
1492
1493/* Callback service function for generic_load (bfd_map_over_sections). */
1494
1495static void
1496load_section_callback (bfd *abfd, asection *asec, void *data)
1497{
1498 struct load_section_data *args = data;
1499
1500 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1501 {
1502 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1503 if (size > 0)
1504 {
1505 char *buffer;
1506 struct cleanup *old_chain;
1507 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1508 bfd_size_type block_size;
1509 int err;
1510 const char *sect_name = bfd_get_section_name (abfd, asec);
1511 bfd_size_type sent;
1512
1513 if (download_write_size > 0 && size > download_write_size)
1514 block_size = download_write_size;
1515 else
1516 block_size = size;
1517
1518 buffer = xmalloc (size);
1519 old_chain = make_cleanup (xfree, buffer);
1520
1521 /* Is this really necessary? I guess it gives the user something
1522 to look at during a long download. */
e4f9b4d5
MS
1523 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1524 sect_name, paddr_nz (size), paddr_nz (lma));
e4f9b4d5
MS
1525
1526 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1527
1528 sent = 0;
1529 do
1530 {
1531 int len;
1532 bfd_size_type this_transfer = size - sent;
1533
1534 if (this_transfer >= block_size)
1535 this_transfer = block_size;
1536 len = target_write_memory_partial (lma, buffer,
1537 this_transfer, &err);
1538 if (err)
1539 break;
1540 if (validate_download)
1541 {
1542 /* Broken memories and broken monitors manifest
1543 themselves here when bring new computers to
1544 life. This doubles already slow downloads. */
1545 /* NOTE: cagney/1999-10-18: A more efficient
1546 implementation might add a verify_memory()
1547 method to the target vector and then use
1548 that. remote.c could implement that method
1549 using the ``qCRC'' packet. */
1550 char *check = xmalloc (len);
1551 struct cleanup *verify_cleanups =
1552 make_cleanup (xfree, check);
1553
1554 if (target_read_memory (lma, check, len) != 0)
1555 error ("Download verify read failed at 0x%s",
1556 paddr (lma));
1557 if (memcmp (buffer, check, len) != 0)
1558 error ("Download verify compare failed at 0x%s",
1559 paddr (lma));
1560 do_cleanups (verify_cleanups);
1561 }
1562 args->data_count += len;
1563 lma += len;
1564 buffer += len;
1565 args->write_count += 1;
1566 sent += len;
1567 if (quit_flag
1568 || (ui_load_progress_hook != NULL
1569 && ui_load_progress_hook (sect_name, sent)))
1570 error ("Canceled the download");
1571
1572 if (show_load_progress != NULL)
1573 show_load_progress (sect_name, sent, size,
1574 args->data_count, args->total_size);
1575 }
1576 while (sent < size);
1577
1578 if (err != 0)
1579 error ("Memory access error while loading section %s.", sect_name);
1580
1581 do_cleanups (old_chain);
1582 }
1583 }
1584}
1585
c906108c 1586void
917317f4 1587generic_load (char *args, int from_tty)
c906108c 1588{
c906108c
SS
1589 asection *s;
1590 bfd *loadfile_bfd;
1591 time_t start_time, end_time; /* Start and end times of download */
917317f4
JM
1592 char *filename;
1593 struct cleanup *old_cleanups;
1594 char *offptr;
e4f9b4d5
MS
1595 struct load_section_data cbdata;
1596 CORE_ADDR entry;
1597
1598 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1599 cbdata.write_count = 0; /* Number of writes needed. */
1600 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1601 cbdata.total_size = 0; /* Total size of all bfd sectors. */
917317f4
JM
1602
1603 /* Parse the input argument - the user can specify a load offset as
1604 a second argument. */
1605 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1606 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1607 strcpy (filename, args);
1608 offptr = strchr (filename, ' ');
1609 if (offptr != NULL)
1610 {
1611 char *endptr;
ba5f2f8a 1612
e4f9b4d5 1613 cbdata.load_offset = strtoul (offptr, &endptr, 0);
917317f4
JM
1614 if (offptr == endptr)
1615 error ("Invalid download offset:%s\n", offptr);
1616 *offptr = '\0';
1617 }
c906108c 1618 else
e4f9b4d5 1619 cbdata.load_offset = 0;
c906108c 1620
917317f4 1621 /* Open the file for loading. */
c906108c
SS
1622 loadfile_bfd = bfd_openr (filename, gnutarget);
1623 if (loadfile_bfd == NULL)
1624 {
1625 perror_with_name (filename);
1626 return;
1627 }
917317f4 1628
c906108c
SS
1629 /* FIXME: should be checking for errors from bfd_close (for one thing,
1630 on error it does not free all the storage associated with the
1631 bfd). */
5c65bbb6 1632 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1633
c5aa993b 1634 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1635 {
1636 error ("\"%s\" is not an object file: %s", filename,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
c5aa993b 1639
e4f9b4d5
MS
1640 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1641 (void *) &cbdata.total_size);
c2d11a7d 1642
c906108c
SS
1643 start_time = time (NULL);
1644
e4f9b4d5 1645 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c906108c
SS
1646
1647 end_time = time (NULL);
ba5f2f8a 1648
e4f9b4d5 1649 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1650 ui_out_text (uiout, "Start address ");
1651 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1652 ui_out_text (uiout, ", load size ");
1653 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1654 ui_out_text (uiout, "\n");
e4f9b4d5
MS
1655 /* We were doing this in remote-mips.c, I suspect it is right
1656 for other targets too. */
1657 write_pc (entry);
c906108c
SS
1658
1659 /* FIXME: are we supposed to call symbol_file_add or not? According to
1660 a comment from remote-mips.c (where a call to symbol_file_add was
1661 commented out), making the call confuses GDB if more than one file is
1662 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1663 does. */
1664
e4f9b4d5
MS
1665 print_transfer_performance (gdb_stdout, cbdata.data_count,
1666 cbdata.write_count, end_time - start_time);
c906108c
SS
1667
1668 do_cleanups (old_cleanups);
1669}
1670
1671/* Report how fast the transfer went. */
1672
917317f4
JM
1673/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1674 replaced by print_transfer_performance (with a very different
1675 function signature). */
1676
c906108c 1677void
fba45db2
KB
1678report_transfer_performance (unsigned long data_count, time_t start_time,
1679 time_t end_time)
c906108c 1680{
ba5f2f8a
MS
1681 print_transfer_performance (gdb_stdout, data_count,
1682 end_time - start_time, 0);
917317f4
JM
1683}
1684
1685void
d9fcf2fb 1686print_transfer_performance (struct ui_file *stream,
917317f4
JM
1687 unsigned long data_count,
1688 unsigned long write_count,
1689 unsigned long time_count)
1690{
8b93c638
JM
1691 ui_out_text (uiout, "Transfer rate: ");
1692 if (time_count > 0)
1693 {
ba5f2f8a 1694 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
8b93c638
JM
1695 (data_count * 8) / time_count);
1696 ui_out_text (uiout, " bits/sec");
1697 }
1698 else
1699 {
ba5f2f8a 1700 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
8b93c638
JM
1701 ui_out_text (uiout, " bits in <1 sec");
1702 }
1703 if (write_count > 0)
1704 {
1705 ui_out_text (uiout, ", ");
ba5f2f8a 1706 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
1707 ui_out_text (uiout, " bytes/write");
1708 }
1709 ui_out_text (uiout, ".\n");
c906108c
SS
1710}
1711
1712/* This function allows the addition of incrementally linked object files.
1713 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1714/* Note: ezannoni 2000-04-13 This function/command used to have a
1715 special case syntax for the rombug target (Rombug is the boot
1716 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1717 rombug case, the user doesn't need to supply a text address,
1718 instead a call to target_link() (in target.c) would supply the
1719 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1720
1721/* ARGSUSED */
1722static void
fba45db2 1723add_symbol_file_command (char *args, int from_tty)
c906108c 1724{
db162d44 1725 char *filename = NULL;
2df3850c 1726 int flags = OBJF_USERLOADED;
c906108c 1727 char *arg;
2acceee2 1728 int expecting_option = 0;
db162d44 1729 int section_index = 0;
2acceee2
JM
1730 int argcnt = 0;
1731 int sec_num = 0;
1732 int i;
db162d44
EZ
1733 int expecting_sec_name = 0;
1734 int expecting_sec_addr = 0;
1735
2acceee2
JM
1736 struct
1737 {
2acceee2
JM
1738 char *name;
1739 char *value;
db162d44
EZ
1740 } sect_opts[SECT_OFF_MAX];
1741
2acceee2 1742 struct section_addr_info section_addrs;
3017564a 1743 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1744
c906108c
SS
1745 dont_repeat ();
1746
1747 if (args == NULL)
db162d44 1748 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1749
1750 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1751 args = xstrdup (args);
c906108c 1752
2acceee2
JM
1753 /* Ensure section_addrs is initialized */
1754 memset (&section_addrs, 0, sizeof (section_addrs));
1755
2acceee2 1756 while (*args != '\000')
c906108c 1757 {
db162d44 1758 /* Any leading spaces? */
c5aa993b 1759 while (isspace (*args))
db162d44
EZ
1760 args++;
1761
1762 /* Point arg to the beginning of the argument. */
c906108c 1763 arg = args;
db162d44
EZ
1764
1765 /* Move args pointer over the argument. */
c5aa993b 1766 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1767 args++;
1768
1769 /* If there are more arguments, terminate arg and
1770 proceed past it. */
c906108c 1771 if (*args != '\000')
db162d44
EZ
1772 *args++ = '\000';
1773
1774 /* Now process the argument. */
1775 if (argcnt == 0)
c906108c 1776 {
db162d44
EZ
1777 /* The first argument is the file name. */
1778 filename = tilde_expand (arg);
3017564a 1779 make_cleanup (xfree, filename);
c906108c 1780 }
db162d44 1781 else
7a78ae4e
ND
1782 if (argcnt == 1)
1783 {
1784 /* The second argument is always the text address at which
1785 to load the program. */
1786 sect_opts[section_index].name = ".text";
1787 sect_opts[section_index].value = arg;
1788 section_index++;
1789 }
1790 else
1791 {
1792 /* It's an option (starting with '-') or it's an argument
1793 to an option */
1794
1795 if (*arg == '-')
1796 {
1797 if (strcmp (arg, "-mapped") == 0)
1798 flags |= OBJF_MAPPED;
1799 else
1800 if (strcmp (arg, "-readnow") == 0)
1801 flags |= OBJF_READNOW;
1802 else
1803 if (strcmp (arg, "-s") == 0)
1804 {
1805 if (section_index >= SECT_OFF_MAX)
1806 error ("Too many sections specified.");
1807 expecting_sec_name = 1;
1808 expecting_sec_addr = 1;
1809 }
1810 }
1811 else
1812 {
1813 if (expecting_sec_name)
db162d44 1814 {
7a78ae4e
ND
1815 sect_opts[section_index].name = arg;
1816 expecting_sec_name = 0;
db162d44
EZ
1817 }
1818 else
7a78ae4e
ND
1819 if (expecting_sec_addr)
1820 {
1821 sect_opts[section_index].value = arg;
1822 expecting_sec_addr = 0;
1823 section_index++;
1824 }
1825 else
1826 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1827 }
1828 }
db162d44 1829 argcnt++;
c906108c 1830 }
c906108c 1831
db162d44
EZ
1832 /* Print the prompt for the query below. And save the arguments into
1833 a sect_addr_info structure to be passed around to other
1834 functions. We have to split this up into separate print
1835 statements because local_hex_string returns a local static
1836 string. */
2acceee2 1837
db162d44
EZ
1838 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1839 for (i = 0; i < section_index; i++)
c906108c 1840 {
db162d44
EZ
1841 CORE_ADDR addr;
1842 char *val = sect_opts[i].value;
1843 char *sec = sect_opts[i].name;
1844
1845 val = sect_opts[i].value;
1846 if (val[0] == '0' && val[1] == 'x')
1847 addr = strtoul (val+2, NULL, 16);
1848 else
1849 addr = strtoul (val, NULL, 10);
1850
db162d44
EZ
1851 /* Here we store the section offsets in the order they were
1852 entered on the command line. */
1853 section_addrs.other[sec_num].name = sec;
1854 section_addrs.other[sec_num].addr = addr;
1855 printf_filtered ("\t%s_addr = %s\n",
1856 sec,
1857 local_hex_string ((unsigned long)addr));
1858 sec_num++;
1859
1860 /* The object's sections are initialized when a
1861 call is made to build_objfile_section_table (objfile).
1862 This happens in reread_symbols.
1863 At this point, we don't know what file type this is,
1864 so we can't determine what section names are valid. */
2acceee2 1865 }
db162d44 1866
2acceee2 1867 if (from_tty && (!query ("%s", "")))
c906108c
SS
1868 error ("Not confirmed.");
1869
db162d44 1870 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1871
1872 /* Getting new symbols may change our opinion about what is
1873 frameless. */
1874 reinit_frame_cache ();
db162d44 1875 do_cleanups (my_cleanups);
c906108c
SS
1876}
1877\f
1878static void
fba45db2 1879add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1880{
1881#ifdef ADD_SHARED_SYMBOL_FILES
1882 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1883#else
1884 error ("This command is not available in this configuration of GDB.");
c5aa993b 1885#endif
c906108c
SS
1886}
1887\f
1888/* Re-read symbols if a symbol-file has changed. */
1889void
fba45db2 1890reread_symbols (void)
c906108c
SS
1891{
1892 struct objfile *objfile;
1893 long new_modtime;
1894 int reread_one = 0;
1895 struct stat new_statbuf;
1896 int res;
1897
1898 /* With the addition of shared libraries, this should be modified,
1899 the load time should be saved in the partial symbol tables, since
1900 different tables may come from different source files. FIXME.
1901 This routine should then walk down each partial symbol table
1902 and see if the symbol table that it originates from has been changed */
1903
c5aa993b
JM
1904 for (objfile = object_files; objfile; objfile = objfile->next)
1905 {
1906 if (objfile->obfd)
1907 {
c906108c 1908#ifdef IBM6000_TARGET
c5aa993b
JM
1909 /* If this object is from a shared library, then you should
1910 stat on the library name, not member name. */
c906108c 1911
c5aa993b
JM
1912 if (objfile->obfd->my_archive)
1913 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1914 else
c906108c 1915#endif
c5aa993b
JM
1916 res = stat (objfile->name, &new_statbuf);
1917 if (res != 0)
c906108c 1918 {
c5aa993b
JM
1919 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1920 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1921 objfile->name);
1922 continue;
c906108c 1923 }
c5aa993b
JM
1924 new_modtime = new_statbuf.st_mtime;
1925 if (new_modtime != objfile->mtime)
c906108c 1926 {
c5aa993b
JM
1927 struct cleanup *old_cleanups;
1928 struct section_offsets *offsets;
1929 int num_offsets;
c5aa993b
JM
1930 char *obfd_filename;
1931
1932 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1933 objfile->name);
1934
1935 /* There are various functions like symbol_file_add,
1936 symfile_bfd_open, syms_from_objfile, etc., which might
1937 appear to do what we want. But they have various other
1938 effects which we *don't* want. So we just do stuff
1939 ourselves. We don't worry about mapped files (for one thing,
1940 any mapped file will be out of date). */
1941
1942 /* If we get an error, blow away this objfile (not sure if
1943 that is the correct response for things like shared
1944 libraries). */
74b7792f 1945 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1946 /* We need to do this whenever any symbols go away. */
74b7792f 1947 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1948
1949 /* Clean up any state BFD has sitting around. We don't need
1950 to close the descriptor but BFD lacks a way of closing the
1951 BFD without closing the descriptor. */
1952 obfd_filename = bfd_get_filename (objfile->obfd);
1953 if (!bfd_close (objfile->obfd))
1954 error ("Can't close BFD for %s: %s", objfile->name,
1955 bfd_errmsg (bfd_get_error ()));
1956 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1957 if (objfile->obfd == NULL)
1958 error ("Can't open %s to read symbols.", objfile->name);
1959 /* bfd_openr sets cacheable to true, which is what we want. */
1960 if (!bfd_check_format (objfile->obfd, bfd_object))
1961 error ("Can't read symbols from %s: %s.", objfile->name,
1962 bfd_errmsg (bfd_get_error ()));
1963
1964 /* Save the offsets, we will nuke them with the rest of the
1965 psymbol_obstack. */
1966 num_offsets = objfile->num_sections;
d4f3574e
SS
1967 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1968 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1969
1970 /* Nuke all the state that we will re-read. Much of the following
1971 code which sets things to NULL really is necessary to tell
1972 other parts of GDB that there is nothing currently there. */
1973
1974 /* FIXME: Do we have to free a whole linked list, or is this
1975 enough? */
1976 if (objfile->global_psymbols.list)
aac7f4ea 1977 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1978 memset (&objfile->global_psymbols, 0,
1979 sizeof (objfile->global_psymbols));
1980 if (objfile->static_psymbols.list)
aac7f4ea 1981 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1982 memset (&objfile->static_psymbols, 0,
1983 sizeof (objfile->static_psymbols));
1984
1985 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
1986 bcache_xfree (objfile->psymbol_cache);
1987 objfile->psymbol_cache = bcache_xmalloc ();
1988 bcache_xfree (objfile->macro_cache);
1989 objfile->macro_cache = bcache_xmalloc ();
c5aa993b
JM
1990 obstack_free (&objfile->psymbol_obstack, 0);
1991 obstack_free (&objfile->symbol_obstack, 0);
1992 obstack_free (&objfile->type_obstack, 0);
1993 objfile->sections = NULL;
1994 objfile->symtabs = NULL;
1995 objfile->psymtabs = NULL;
1996 objfile->free_psymtabs = NULL;
1997 objfile->msymbols = NULL;
1998 objfile->minimal_symbol_count = 0;
0a83117a
MS
1999 memset (&objfile->msymbol_hash, 0,
2000 sizeof (objfile->msymbol_hash));
2001 memset (&objfile->msymbol_demangled_hash, 0,
2002 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
2003 objfile->fundamental_types = NULL;
2004 if (objfile->sf != NULL)
2005 {
2006 (*objfile->sf->sym_finish) (objfile);
2007 }
2008
2009 /* We never make this a mapped file. */
2010 objfile->md = NULL;
2011 /* obstack_specify_allocation also initializes the obstack so
2012 it is empty. */
af5f3db6
AC
2013 objfile->psymbol_cache = bcache_xmalloc ();
2014 objfile->macro_cache = bcache_xmalloc ();
c5aa993b 2015 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 2016 xmalloc, xfree);
c5aa993b 2017 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 2018 xmalloc, xfree);
c5aa993b 2019 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 2020 xmalloc, xfree);
c5aa993b
JM
2021 if (build_objfile_section_table (objfile))
2022 {
2023 error ("Can't find the file sections in `%s': %s",
2024 objfile->name, bfd_errmsg (bfd_get_error ()));
2025 }
2026
2027 /* We use the same section offsets as from last time. I'm not
2028 sure whether that is always correct for shared libraries. */
2029 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
2030 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
2031 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
2032 objfile->num_sections = num_offsets;
2033
2034 /* What the hell is sym_new_init for, anyway? The concept of
2035 distinguishing between the main file and additional files
2036 in this way seems rather dubious. */
2037 if (objfile == symfile_objfile)
2038 {
2039 (*objfile->sf->sym_new_init) (objfile);
c906108c 2040#ifdef HPUXHPPA
c5aa993b 2041 RESET_HP_UX_GLOBALS ();
c906108c 2042#endif
c5aa993b
JM
2043 }
2044
2045 (*objfile->sf->sym_init) (objfile);
b9caf505 2046 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2047 /* The "mainline" parameter is a hideous hack; I think leaving it
2048 zero is OK since dbxread.c also does what it needs to do if
2049 objfile->global_psymbols.size is 0. */
96baa820 2050 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2051 if (!have_partial_symbols () && !have_full_symbols ())
2052 {
2053 wrap_here ("");
2054 printf_filtered ("(no debugging symbols found)\n");
2055 wrap_here ("");
2056 }
2057 objfile->flags |= OBJF_SYMS;
2058
2059 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2060 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2061
c5aa993b
JM
2062 /* Getting new symbols may change our opinion about what is
2063 frameless. */
c906108c 2064
c5aa993b 2065 reinit_frame_cache ();
c906108c 2066
c5aa993b
JM
2067 /* Discard cleanups as symbol reading was successful. */
2068 discard_cleanups (old_cleanups);
c906108c 2069
c5aa993b
JM
2070 /* If the mtime has changed between the time we set new_modtime
2071 and now, we *want* this to be out of date, so don't call stat
2072 again now. */
2073 objfile->mtime = new_modtime;
2074 reread_one = 1;
c906108c 2075
c5aa993b 2076 /* Call this after reading in a new symbol table to give target
38c2ef12 2077 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
2078 could be used to update the values of target-specific symbols GDB
2079 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 2080
c5aa993b 2081 TARGET_SYMFILE_POSTREAD (objfile);
5b5d99cf
JB
2082
2083 reread_separate_symbols (objfile);
c5aa993b 2084 }
c906108c
SS
2085 }
2086 }
c906108c
SS
2087
2088 if (reread_one)
2089 clear_symtab_users ();
2090}
5b5d99cf
JB
2091
2092
2093/* Handle separate debug info for OBJFILE, which has just been
2094 re-read:
2095 - If we had separate debug info before, but now we don't, get rid
2096 of the separated objfile.
2097 - If we didn't have separated debug info before, but now we do,
2098 read in the new separated debug info file.
2099 - If the debug link points to a different file, toss the old one
2100 and read the new one.
2101 This function does *not* handle the case where objfile is still
2102 using the same separate debug info file, but that file's timestamp
2103 has changed. That case should be handled by the loop in
2104 reread_symbols already. */
2105static void
2106reread_separate_symbols (struct objfile *objfile)
2107{
2108 char *debug_file;
2109 unsigned long crc32;
2110
2111 /* Does the updated objfile's debug info live in a
2112 separate file? */
2113 debug_file = find_separate_debug_file (objfile);
2114
2115 if (objfile->separate_debug_objfile)
2116 {
2117 /* There are two cases where we need to get rid of
2118 the old separated debug info objfile:
2119 - if the new primary objfile doesn't have
2120 separated debug info, or
2121 - if the new primary objfile has separate debug
2122 info, but it's under a different filename.
2123
2124 If the old and new objfiles both have separate
2125 debug info, under the same filename, then we're
2126 okay --- if the separated file's contents have
2127 changed, we will have caught that when we
2128 visited it in this function's outermost
2129 loop. */
2130 if (! debug_file
2131 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2132 free_objfile (objfile->separate_debug_objfile);
2133 }
2134
2135 /* If the new objfile has separate debug info, and we
2136 haven't loaded it already, do so now. */
2137 if (debug_file
2138 && ! objfile->separate_debug_objfile)
2139 {
2140 /* Use the same section offset table as objfile itself.
2141 Preserve the flags from objfile that make sense. */
2142 objfile->separate_debug_objfile
2143 = (symbol_file_add_with_addrs_or_offsets
2144 (debug_file,
2145 info_verbose, /* from_tty: Don't override the default. */
2146 0, /* No addr table. */
2147 objfile->section_offsets, objfile->num_sections,
2148 0, /* Not mainline. See comments about this above. */
2149 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2150 | OBJF_SHARED | OBJF_READNOW
2151 | OBJF_USERLOADED)));
2152 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2153 = objfile;
2154 }
2155}
2156
2157
c906108c
SS
2158\f
2159
c5aa993b
JM
2160
2161typedef struct
2162{
2163 char *ext;
c906108c 2164 enum language lang;
c5aa993b
JM
2165}
2166filename_language;
c906108c 2167
c5aa993b 2168static filename_language *filename_language_table;
c906108c
SS
2169static int fl_table_size, fl_table_next;
2170
2171static void
fba45db2 2172add_filename_language (char *ext, enum language lang)
c906108c
SS
2173{
2174 if (fl_table_next >= fl_table_size)
2175 {
2176 fl_table_size += 10;
25bf3106
PM
2177 filename_language_table =
2178 xrealloc (filename_language_table,
2179 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2180 }
2181
4fcf66da 2182 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2183 filename_language_table[fl_table_next].lang = lang;
2184 fl_table_next++;
2185}
2186
2187static char *ext_args;
2188
2189static void
fba45db2 2190set_ext_lang_command (char *args, int from_tty)
c906108c
SS
2191{
2192 int i;
2193 char *cp = ext_args;
2194 enum language lang;
2195
2196 /* First arg is filename extension, starting with '.' */
2197 if (*cp != '.')
2198 error ("'%s': Filename extension must begin with '.'", ext_args);
2199
2200 /* Find end of first arg. */
c5aa993b 2201 while (*cp && !isspace (*cp))
c906108c
SS
2202 cp++;
2203
2204 if (*cp == '\0')
2205 error ("'%s': two arguments required -- filename extension and language",
2206 ext_args);
2207
2208 /* Null-terminate first arg */
c5aa993b 2209 *cp++ = '\0';
c906108c
SS
2210
2211 /* Find beginning of second arg, which should be a source language. */
2212 while (*cp && isspace (*cp))
2213 cp++;
2214
2215 if (*cp == '\0')
2216 error ("'%s': two arguments required -- filename extension and language",
2217 ext_args);
2218
2219 /* Lookup the language from among those we know. */
2220 lang = language_enum (cp);
2221
2222 /* Now lookup the filename extension: do we already know it? */
2223 for (i = 0; i < fl_table_next; i++)
2224 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2225 break;
2226
2227 if (i >= fl_table_next)
2228 {
2229 /* new file extension */
2230 add_filename_language (ext_args, lang);
2231 }
2232 else
2233 {
2234 /* redefining a previously known filename extension */
2235
2236 /* if (from_tty) */
2237 /* query ("Really make files of type %s '%s'?", */
2238 /* ext_args, language_str (lang)); */
2239
b8c9b27d 2240 xfree (filename_language_table[i].ext);
4fcf66da 2241 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2242 filename_language_table[i].lang = lang;
2243 }
2244}
2245
2246static void
fba45db2 2247info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2248{
2249 int i;
2250
2251 printf_filtered ("Filename extensions and the languages they represent:");
2252 printf_filtered ("\n\n");
2253 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2254 printf_filtered ("\t%s\t- %s\n",
2255 filename_language_table[i].ext,
c906108c
SS
2256 language_str (filename_language_table[i].lang));
2257}
2258
2259static void
fba45db2 2260init_filename_language_table (void)
c906108c
SS
2261{
2262 if (fl_table_size == 0) /* protect against repetition */
2263 {
2264 fl_table_size = 20;
2265 fl_table_next = 0;
c5aa993b 2266 filename_language_table =
c906108c 2267 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2268 add_filename_language (".c", language_c);
2269 add_filename_language (".C", language_cplus);
2270 add_filename_language (".cc", language_cplus);
2271 add_filename_language (".cp", language_cplus);
2272 add_filename_language (".cpp", language_cplus);
2273 add_filename_language (".cxx", language_cplus);
2274 add_filename_language (".c++", language_cplus);
2275 add_filename_language (".java", language_java);
c906108c 2276 add_filename_language (".class", language_java);
da2cf7e0 2277 add_filename_language (".m", language_objc);
c5aa993b
JM
2278 add_filename_language (".f", language_fortran);
2279 add_filename_language (".F", language_fortran);
2280 add_filename_language (".s", language_asm);
2281 add_filename_language (".S", language_asm);
c6fd39cd
PM
2282 add_filename_language (".pas", language_pascal);
2283 add_filename_language (".p", language_pascal);
2284 add_filename_language (".pp", language_pascal);
c906108c
SS
2285 }
2286}
2287
2288enum language
fba45db2 2289deduce_language_from_filename (char *filename)
c906108c
SS
2290{
2291 int i;
2292 char *cp;
2293
2294 if (filename != NULL)
2295 if ((cp = strrchr (filename, '.')) != NULL)
2296 for (i = 0; i < fl_table_next; i++)
2297 if (strcmp (cp, filename_language_table[i].ext) == 0)
2298 return filename_language_table[i].lang;
2299
2300 return language_unknown;
2301}
2302\f
2303/* allocate_symtab:
2304
2305 Allocate and partly initialize a new symbol table. Return a pointer
2306 to it. error() if no space.
2307
2308 Caller must set these fields:
c5aa993b
JM
2309 LINETABLE(symtab)
2310 symtab->blockvector
2311 symtab->dirname
2312 symtab->free_code
2313 symtab->free_ptr
2314 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2315 */
2316
2317struct symtab *
fba45db2 2318allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
2319{
2320 register struct symtab *symtab;
2321
2322 symtab = (struct symtab *)
c5aa993b 2323 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 2324 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
2325 symtab->filename = obsavestring (filename, strlen (filename),
2326 &objfile->symbol_obstack);
2327 symtab->fullname = NULL;
2328 symtab->language = deduce_language_from_filename (filename);
2329 symtab->debugformat = obsavestring ("unknown", 7,
2330 &objfile->symbol_obstack);
c906108c
SS
2331
2332 /* Hook it to the objfile it comes from */
2333
c5aa993b
JM
2334 symtab->objfile = objfile;
2335 symtab->next = objfile->symtabs;
2336 objfile->symtabs = symtab;
c906108c
SS
2337
2338 /* FIXME: This should go away. It is only defined for the Z8000,
2339 and the Z8000 definition of this macro doesn't have anything to
2340 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2341 here for convenience. */
2342#ifdef INIT_EXTRA_SYMTAB_INFO
2343 INIT_EXTRA_SYMTAB_INFO (symtab);
2344#endif
2345
2346 return (symtab);
2347}
2348
2349struct partial_symtab *
fba45db2 2350allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2351{
2352 struct partial_symtab *psymtab;
2353
c5aa993b 2354 if (objfile->free_psymtabs)
c906108c 2355 {
c5aa993b
JM
2356 psymtab = objfile->free_psymtabs;
2357 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2358 }
2359 else
2360 psymtab = (struct partial_symtab *)
c5aa993b 2361 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
2362 sizeof (struct partial_symtab));
2363
2364 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
2365 psymtab->filename = obsavestring (filename, strlen (filename),
2366 &objfile->psymbol_obstack);
2367 psymtab->symtab = NULL;
c906108c
SS
2368
2369 /* Prepend it to the psymtab list for the objfile it belongs to.
2370 Psymtabs are searched in most recent inserted -> least recent
2371 inserted order. */
2372
c5aa993b
JM
2373 psymtab->objfile = objfile;
2374 psymtab->next = objfile->psymtabs;
2375 objfile->psymtabs = psymtab;
c906108c
SS
2376#if 0
2377 {
2378 struct partial_symtab **prev_pst;
c5aa993b
JM
2379 psymtab->objfile = objfile;
2380 psymtab->next = NULL;
2381 prev_pst = &(objfile->psymtabs);
c906108c 2382 while ((*prev_pst) != NULL)
c5aa993b 2383 prev_pst = &((*prev_pst)->next);
c906108c 2384 (*prev_pst) = psymtab;
c5aa993b 2385 }
c906108c 2386#endif
c5aa993b 2387
c906108c
SS
2388 return (psymtab);
2389}
2390
2391void
fba45db2 2392discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2393{
2394 struct partial_symtab **prev_pst;
2395
2396 /* From dbxread.c:
2397 Empty psymtabs happen as a result of header files which don't
2398 have any symbols in them. There can be a lot of them. But this
2399 check is wrong, in that a psymtab with N_SLINE entries but
2400 nothing else is not empty, but we don't realize that. Fixing
2401 that without slowing things down might be tricky. */
2402
2403 /* First, snip it out of the psymtab chain */
2404
2405 prev_pst = &(pst->objfile->psymtabs);
2406 while ((*prev_pst) != pst)
2407 prev_pst = &((*prev_pst)->next);
2408 (*prev_pst) = pst->next;
2409
2410 /* Next, put it on a free list for recycling */
2411
2412 pst->next = pst->objfile->free_psymtabs;
2413 pst->objfile->free_psymtabs = pst;
2414}
c906108c 2415\f
c5aa993b 2416
c906108c
SS
2417/* Reset all data structures in gdb which may contain references to symbol
2418 table data. */
2419
2420void
fba45db2 2421clear_symtab_users (void)
c906108c
SS
2422{
2423 /* Someday, we should do better than this, by only blowing away
2424 the things that really need to be blown. */
2425 clear_value_history ();
2426 clear_displays ();
2427 clear_internalvars ();
2428 breakpoint_re_set ();
2429 set_default_breakpoint (0, 0, 0, 0);
0378c332 2430 clear_current_source_symtab_and_line ();
c906108c 2431 clear_pc_function_cache ();
11cf8741
JM
2432 if (target_new_objfile_hook)
2433 target_new_objfile_hook (NULL);
c906108c
SS
2434}
2435
74b7792f
AC
2436static void
2437clear_symtab_users_cleanup (void *ignore)
2438{
2439 clear_symtab_users ();
2440}
2441
c906108c
SS
2442/* clear_symtab_users_once:
2443
2444 This function is run after symbol reading, or from a cleanup.
2445 If an old symbol table was obsoleted, the old symbol table
2446 has been blown away, but the other GDB data structures that may
2447 reference it have not yet been cleared or re-directed. (The old
2448 symtab was zapped, and the cleanup queued, in free_named_symtab()
2449 below.)
2450
2451 This function can be queued N times as a cleanup, or called
2452 directly; it will do all the work the first time, and then will be a
2453 no-op until the next time it is queued. This works by bumping a
2454 counter at queueing time. Much later when the cleanup is run, or at
2455 the end of symbol processing (in case the cleanup is discarded), if
2456 the queued count is greater than the "done-count", we do the work
2457 and set the done-count to the queued count. If the queued count is
2458 less than or equal to the done-count, we just ignore the call. This
2459 is needed because reading a single .o file will often replace many
2460 symtabs (one per .h file, for example), and we don't want to reset
2461 the breakpoints N times in the user's face.
2462
2463 The reason we both queue a cleanup, and call it directly after symbol
2464 reading, is because the cleanup protects us in case of errors, but is
2465 discarded if symbol reading is successful. */
2466
2467#if 0
2468/* FIXME: As free_named_symtabs is currently a big noop this function
2469 is no longer needed. */
a14ed312 2470static void clear_symtab_users_once (void);
c906108c
SS
2471
2472static int clear_symtab_users_queued;
2473static int clear_symtab_users_done;
2474
2475static void
fba45db2 2476clear_symtab_users_once (void)
c906108c
SS
2477{
2478 /* Enforce once-per-`do_cleanups'-semantics */
2479 if (clear_symtab_users_queued <= clear_symtab_users_done)
2480 return;
2481 clear_symtab_users_done = clear_symtab_users_queued;
2482
2483 clear_symtab_users ();
2484}
2485#endif
2486
2487/* Delete the specified psymtab, and any others that reference it. */
2488
2489static void
fba45db2 2490cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2491{
2492 struct partial_symtab *ps, *pprev = NULL;
2493 int i;
2494
2495 /* Find its previous psymtab in the chain */
c5aa993b
JM
2496 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2497 {
2498 if (ps == pst)
2499 break;
2500 pprev = ps;
2501 }
c906108c 2502
c5aa993b
JM
2503 if (ps)
2504 {
2505 /* Unhook it from the chain. */
2506 if (ps == pst->objfile->psymtabs)
2507 pst->objfile->psymtabs = ps->next;
2508 else
2509 pprev->next = ps->next;
2510
2511 /* FIXME, we can't conveniently deallocate the entries in the
2512 partial_symbol lists (global_psymbols/static_psymbols) that
2513 this psymtab points to. These just take up space until all
2514 the psymtabs are reclaimed. Ditto the dependencies list and
2515 filename, which are all in the psymbol_obstack. */
2516
2517 /* We need to cashier any psymtab that has this one as a dependency... */
2518 again:
2519 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2520 {
2521 for (i = 0; i < ps->number_of_dependencies; i++)
2522 {
2523 if (ps->dependencies[i] == pst)
2524 {
2525 cashier_psymtab (ps);
2526 goto again; /* Must restart, chain has been munged. */
2527 }
2528 }
c906108c 2529 }
c906108c 2530 }
c906108c
SS
2531}
2532
2533/* If a symtab or psymtab for filename NAME is found, free it along
2534 with any dependent breakpoints, displays, etc.
2535 Used when loading new versions of object modules with the "add-file"
2536 command. This is only called on the top-level symtab or psymtab's name;
2537 it is not called for subsidiary files such as .h files.
2538
2539 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2540 FIXME. The return value appears to never be used.
c906108c
SS
2541
2542 FIXME. I think this is not the best way to do this. We should
2543 work on being gentler to the environment while still cleaning up
2544 all stray pointers into the freed symtab. */
2545
2546int
fba45db2 2547free_named_symtabs (char *name)
c906108c
SS
2548{
2549#if 0
2550 /* FIXME: With the new method of each objfile having it's own
2551 psymtab list, this function needs serious rethinking. In particular,
2552 why was it ever necessary to toss psymtabs with specific compilation
2553 unit filenames, as opposed to all psymtabs from a particular symbol
2554 file? -- fnf
2555 Well, the answer is that some systems permit reloading of particular
2556 compilation units. We want to blow away any old info about these
2557 compilation units, regardless of which objfiles they arrived in. --gnu. */
2558
2559 register struct symtab *s;
2560 register struct symtab *prev;
2561 register struct partial_symtab *ps;
2562 struct blockvector *bv;
2563 int blewit = 0;
2564
2565 /* We only wack things if the symbol-reload switch is set. */
2566 if (!symbol_reloading)
2567 return 0;
2568
2569 /* Some symbol formats have trouble providing file names... */
2570 if (name == 0 || *name == '\0')
2571 return 0;
2572
2573 /* Look for a psymtab with the specified name. */
2574
2575again2:
c5aa993b
JM
2576 for (ps = partial_symtab_list; ps; ps = ps->next)
2577 {
2578 if (STREQ (name, ps->filename))
2579 {
2580 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2581 goto again2; /* Must restart, chain has been munged */
2582 }
c906108c 2583 }
c906108c
SS
2584
2585 /* Look for a symtab with the specified name. */
2586
2587 for (s = symtab_list; s; s = s->next)
2588 {
2589 if (STREQ (name, s->filename))
2590 break;
2591 prev = s;
2592 }
2593
2594 if (s)
2595 {
2596 if (s == symtab_list)
2597 symtab_list = s->next;
2598 else
2599 prev->next = s->next;
2600
2601 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2602 or not they depend on the symtab being freed. This should be
2603 changed so that only those data structures affected are deleted. */
c906108c
SS
2604
2605 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2606 This test is necessary due to a bug in "dbxread.c" that
2607 causes empty symtabs to be created for N_SO symbols that
2608 contain the pathname of the object file. (This problem
2609 has been fixed in GDB 3.9x). */
c906108c
SS
2610
2611 bv = BLOCKVECTOR (s);
2612 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2613 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2614 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2615 {
b9caf505
AC
2616 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2617 name);
c906108c
SS
2618 clear_symtab_users_queued++;
2619 make_cleanup (clear_symtab_users_once, 0);
2620 blewit = 1;
c5aa993b
JM
2621 }
2622 else
2623 {
b9caf505
AC
2624 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2625 name);
c906108c
SS
2626 }
2627
2628 free_symtab (s);
2629 }
2630 else
2631 {
2632 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2633 even though no symtab was found, since the file might have
2634 been compiled without debugging, and hence not be associated
2635 with a symtab. In order to handle this correctly, we would need
2636 to keep a list of text address ranges for undebuggable files.
2637 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2638 ;
2639 }
2640
2641 /* FIXME, what about the minimal symbol table? */
2642 return blewit;
2643#else
2644 return (0);
2645#endif
2646}
2647\f
2648/* Allocate and partially fill a partial symtab. It will be
2649 completely filled at the end of the symbol list.
2650
d4f3574e 2651 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2652
2653struct partial_symtab *
fba45db2
KB
2654start_psymtab_common (struct objfile *objfile,
2655 struct section_offsets *section_offsets, char *filename,
2656 CORE_ADDR textlow, struct partial_symbol **global_syms,
2657 struct partial_symbol **static_syms)
c906108c
SS
2658{
2659 struct partial_symtab *psymtab;
2660
2661 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2662 psymtab->section_offsets = section_offsets;
2663 psymtab->textlow = textlow;
2664 psymtab->texthigh = psymtab->textlow; /* default */
2665 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2666 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2667 return (psymtab);
2668}
2669\f
2670/* Add a symbol with a long value to a psymtab.
2671 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2672
2673void
fba45db2
KB
2674add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2675 enum address_class class,
2676 struct psymbol_allocation_list *list, long val, /* Value as a long */
2677 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2678 enum language language, struct objfile *objfile)
c906108c
SS
2679{
2680 register struct partial_symbol *psym;
2681 char *buf = alloca (namelength + 1);
2682 /* psymbol is static so that there will be no uninitialized gaps in the
2683 structure which might contain random data, causing cache misses in
2684 bcache. */
2685 static struct partial_symbol psymbol;
2686
2687 /* Create local copy of the partial symbol */
2688 memcpy (buf, name, namelength);
2689 buf[namelength] = '\0';
af5f3db6 2690 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2691 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2692 if (val != 0)
2693 {
2694 SYMBOL_VALUE (&psymbol) = val;
2695 }
2696 else
2697 {
2698 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2699 }
2700 SYMBOL_SECTION (&psymbol) = 0;
2701 SYMBOL_LANGUAGE (&psymbol) = language;
2702 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2703 PSYMBOL_CLASS (&psymbol) = class;
2704 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2705
2706 /* Stash the partial symbol away in the cache */
af5f3db6 2707 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2708
2709 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2710 if (list->next >= list->list + list->size)
2711 {
2712 extend_psymbol_list (list, objfile);
2713 }
2714 *list->next++ = psym;
2715 OBJSTAT (objfile, n_psyms++);
2716}
2717
2718/* Add a symbol with a long value to a psymtab. This differs from
2719 * add_psymbol_to_list above in taking both a mangled and a demangled
2720 * name. */
2721
2722void
fba45db2
KB
2723add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2724 int dem_namelength, namespace_enum namespace,
2725 enum address_class class,
2726 struct psymbol_allocation_list *list, long val, /* Value as a long */
2727 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2728 enum language language,
2729 struct objfile *objfile)
c906108c
SS
2730{
2731 register struct partial_symbol *psym;
2732 char *buf = alloca (namelength + 1);
2733 /* psymbol is static so that there will be no uninitialized gaps in the
2734 structure which might contain random data, causing cache misses in
2735 bcache. */
2736 static struct partial_symbol psymbol;
2737
2738 /* Create local copy of the partial symbol */
2739
2740 memcpy (buf, name, namelength);
2741 buf[namelength] = '\0';
af5f3db6 2742 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
c906108c
SS
2743
2744 buf = alloca (dem_namelength + 1);
2745 memcpy (buf, dem_name, dem_namelength);
2746 buf[dem_namelength] = '\0';
c5aa993b 2747
c906108c
SS
2748 switch (language)
2749 {
c5aa993b
JM
2750 case language_c:
2751 case language_cplus:
2752 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
af5f3db6 2753 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
c5aa993b 2754 break;
c906108c
SS
2755 /* FIXME What should be done for the default case? Ignoring for now. */
2756 }
2757
2758 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2759 if (val != 0)
2760 {
2761 SYMBOL_VALUE (&psymbol) = val;
2762 }
2763 else
2764 {
2765 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2766 }
2767 SYMBOL_SECTION (&psymbol) = 0;
2768 SYMBOL_LANGUAGE (&psymbol) = language;
2769 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2770 PSYMBOL_CLASS (&psymbol) = class;
2771 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2772
2773 /* Stash the partial symbol away in the cache */
af5f3db6 2774 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
c906108c
SS
2775
2776 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2777 if (list->next >= list->list + list->size)
2778 {
2779 extend_psymbol_list (list, objfile);
2780 }
2781 *list->next++ = psym;
2782 OBJSTAT (objfile, n_psyms++);
2783}
2784
2785/* Initialize storage for partial symbols. */
2786
2787void
fba45db2 2788init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2789{
2790 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2791
2792 if (objfile->global_psymbols.list)
c906108c 2793 {
4efb68b1 2794 xmfree (objfile->md, objfile->global_psymbols.list);
c906108c 2795 }
c5aa993b 2796 if (objfile->static_psymbols.list)
c906108c 2797 {
4efb68b1 2798 xmfree (objfile->md, objfile->static_psymbols.list);
c906108c 2799 }
c5aa993b 2800
c906108c
SS
2801 /* Current best guess is that approximately a twentieth
2802 of the total symbols (in a debugging file) are global or static
2803 oriented symbols */
c906108c 2804
c5aa993b
JM
2805 objfile->global_psymbols.size = total_symbols / 10;
2806 objfile->static_psymbols.size = total_symbols / 10;
2807
2808 if (objfile->global_psymbols.size > 0)
c906108c 2809 {
c5aa993b
JM
2810 objfile->global_psymbols.next =
2811 objfile->global_psymbols.list = (struct partial_symbol **)
2812 xmmalloc (objfile->md, (objfile->global_psymbols.size
2813 * sizeof (struct partial_symbol *)));
c906108c 2814 }
c5aa993b 2815 if (objfile->static_psymbols.size > 0)
c906108c 2816 {
c5aa993b
JM
2817 objfile->static_psymbols.next =
2818 objfile->static_psymbols.list = (struct partial_symbol **)
2819 xmmalloc (objfile->md, (objfile->static_psymbols.size
2820 * sizeof (struct partial_symbol *)));
c906108c
SS
2821 }
2822}
2823
2824/* OVERLAYS:
2825 The following code implements an abstraction for debugging overlay sections.
2826
2827 The target model is as follows:
2828 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2829 same VMA, each with its own unique LMA (or load address).
c906108c 2830 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2831 sections, one by one, from the load address into the VMA address.
c906108c 2832 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2833 sections should be considered to be mapped from the VMA to the LMA.
2834 This information is used for symbol lookup, and memory read/write.
2835 For instance, if a section has been mapped then its contents
2836 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2837
2838 Two levels of debugger support for overlays are available. One is
2839 "manual", in which the debugger relies on the user to tell it which
2840 overlays are currently mapped. This level of support is
2841 implemented entirely in the core debugger, and the information about
2842 whether a section is mapped is kept in the objfile->obj_section table.
2843
2844 The second level of support is "automatic", and is only available if
2845 the target-specific code provides functionality to read the target's
2846 overlay mapping table, and translate its contents for the debugger
2847 (by updating the mapped state information in the obj_section tables).
2848
2849 The interface is as follows:
c5aa993b
JM
2850 User commands:
2851 overlay map <name> -- tell gdb to consider this section mapped
2852 overlay unmap <name> -- tell gdb to consider this section unmapped
2853 overlay list -- list the sections that GDB thinks are mapped
2854 overlay read-target -- get the target's state of what's mapped
2855 overlay off/manual/auto -- set overlay debugging state
2856 Functional interface:
2857 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2858 section, return that section.
2859 find_pc_overlay(pc): find any overlay section that contains
2860 the pc, either in its VMA or its LMA
2861 overlay_is_mapped(sect): true if overlay is marked as mapped
2862 section_is_overlay(sect): true if section's VMA != LMA
2863 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2864 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2865 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2866 overlay_mapped_address(...): map an address from section's LMA to VMA
2867 overlay_unmapped_address(...): map an address from section's VMA to LMA
2868 symbol_overlayed_address(...): Return a "current" address for symbol:
2869 either in VMA or LMA depending on whether
2870 the symbol's section is currently mapped
c906108c
SS
2871 */
2872
2873/* Overlay debugging state: */
2874
d874f1e2 2875enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2876int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2877
2878/* Target vector for refreshing overlay mapped state */
a14ed312 2879static void simple_overlay_update (struct obj_section *);
507f3c78 2880void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2881
2882/* Function: section_is_overlay (SECTION)
2883 Returns true if SECTION has VMA not equal to LMA, ie.
2884 SECTION is loaded at an address different from where it will "run". */
2885
2886int
fba45db2 2887section_is_overlay (asection *section)
c906108c 2888{
fbd35540
MS
2889 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2890
c906108c
SS
2891 if (overlay_debugging)
2892 if (section && section->lma != 0 &&
2893 section->vma != section->lma)
2894 return 1;
2895
2896 return 0;
2897}
2898
2899/* Function: overlay_invalidate_all (void)
2900 Invalidate the mapped state of all overlay sections (mark it as stale). */
2901
2902static void
fba45db2 2903overlay_invalidate_all (void)
c906108c 2904{
c5aa993b 2905 struct objfile *objfile;
c906108c
SS
2906 struct obj_section *sect;
2907
2908 ALL_OBJSECTIONS (objfile, sect)
2909 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2910 sect->ovly_mapped = -1;
c906108c
SS
2911}
2912
2913/* Function: overlay_is_mapped (SECTION)
2914 Returns true if section is an overlay, and is currently mapped.
2915 Private: public access is thru function section_is_mapped.
2916
2917 Access to the ovly_mapped flag is restricted to this function, so
2918 that we can do automatic update. If the global flag
2919 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2920 overlay_invalidate_all. If the mapped state of the particular
2921 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2922
c5aa993b 2923static int
fba45db2 2924overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2925{
2926 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2927 return 0;
2928
c5aa993b 2929 switch (overlay_debugging)
c906108c
SS
2930 {
2931 default:
d874f1e2 2932 case ovly_off:
c5aa993b 2933 return 0; /* overlay debugging off */
d874f1e2 2934 case ovly_auto: /* overlay debugging automatic */
c906108c 2935 /* Unles there is a target_overlay_update function,
c5aa993b 2936 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2937 if (target_overlay_update)
2938 {
2939 if (overlay_cache_invalid)
2940 {
2941 overlay_invalidate_all ();
2942 overlay_cache_invalid = 0;
2943 }
2944 if (osect->ovly_mapped == -1)
2945 (*target_overlay_update) (osect);
2946 }
2947 /* fall thru to manual case */
d874f1e2 2948 case ovly_on: /* overlay debugging manual */
c906108c
SS
2949 return osect->ovly_mapped == 1;
2950 }
2951}
2952
2953/* Function: section_is_mapped
2954 Returns true if section is an overlay, and is currently mapped. */
2955
2956int
fba45db2 2957section_is_mapped (asection *section)
c906108c 2958{
c5aa993b 2959 struct objfile *objfile;
c906108c
SS
2960 struct obj_section *osect;
2961
2962 if (overlay_debugging)
2963 if (section && section_is_overlay (section))
2964 ALL_OBJSECTIONS (objfile, osect)
2965 if (osect->the_bfd_section == section)
c5aa993b 2966 return overlay_is_mapped (osect);
c906108c
SS
2967
2968 return 0;
2969}
2970
2971/* Function: pc_in_unmapped_range
2972 If PC falls into the lma range of SECTION, return true, else false. */
2973
2974CORE_ADDR
fba45db2 2975pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 2976{
fbd35540
MS
2977 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2978
c906108c
SS
2979 int size;
2980
2981 if (overlay_debugging)
2982 if (section && section_is_overlay (section))
2983 {
2984 size = bfd_get_section_size_before_reloc (section);
2985 if (section->lma <= pc && pc < section->lma + size)
2986 return 1;
2987 }
2988 return 0;
2989}
2990
2991/* Function: pc_in_mapped_range
2992 If PC falls into the vma range of SECTION, return true, else false. */
2993
2994CORE_ADDR
fba45db2 2995pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 2996{
fbd35540
MS
2997 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2998
c906108c
SS
2999 int size;
3000
3001 if (overlay_debugging)
3002 if (section && section_is_overlay (section))
3003 {
3004 size = bfd_get_section_size_before_reloc (section);
3005 if (section->vma <= pc && pc < section->vma + size)
3006 return 1;
3007 }
3008 return 0;
3009}
3010
9ec8e6a0
JB
3011
3012/* Return true if the mapped ranges of sections A and B overlap, false
3013 otherwise. */
3014int
3015sections_overlap (asection *a, asection *b)
3016{
fbd35540
MS
3017 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3018
9ec8e6a0
JB
3019 CORE_ADDR a_start = a->vma;
3020 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
3021 CORE_ADDR b_start = b->vma;
3022 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
3023
3024 return (a_start < b_end && b_start < a_end);
3025}
3026
c906108c
SS
3027/* Function: overlay_unmapped_address (PC, SECTION)
3028 Returns the address corresponding to PC in the unmapped (load) range.
3029 May be the same as PC. */
3030
3031CORE_ADDR
fba45db2 3032overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3033{
fbd35540
MS
3034 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3035
c906108c
SS
3036 if (overlay_debugging)
3037 if (section && section_is_overlay (section) &&
3038 pc_in_mapped_range (pc, section))
3039 return pc + section->lma - section->vma;
3040
3041 return pc;
3042}
3043
3044/* Function: overlay_mapped_address (PC, SECTION)
3045 Returns the address corresponding to PC in the mapped (runtime) range.
3046 May be the same as PC. */
3047
3048CORE_ADDR
fba45db2 3049overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3050{
fbd35540
MS
3051 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3052
c906108c
SS
3053 if (overlay_debugging)
3054 if (section && section_is_overlay (section) &&
3055 pc_in_unmapped_range (pc, section))
3056 return pc + section->vma - section->lma;
3057
3058 return pc;
3059}
3060
3061
3062/* Function: symbol_overlayed_address
3063 Return one of two addresses (relative to the VMA or to the LMA),
3064 depending on whether the section is mapped or not. */
3065
c5aa993b 3066CORE_ADDR
fba45db2 3067symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3068{
3069 if (overlay_debugging)
3070 {
3071 /* If the symbol has no section, just return its regular address. */
3072 if (section == 0)
3073 return address;
3074 /* If the symbol's section is not an overlay, just return its address */
3075 if (!section_is_overlay (section))
3076 return address;
3077 /* If the symbol's section is mapped, just return its address */
3078 if (section_is_mapped (section))
3079 return address;
3080 /*
3081 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3082 * then return its LOADED address rather than its vma address!!
3083 */
3084 return overlay_unmapped_address (address, section);
3085 }
3086 return address;
3087}
3088
3089/* Function: find_pc_overlay (PC)
3090 Return the best-match overlay section for PC:
3091 If PC matches a mapped overlay section's VMA, return that section.
3092 Else if PC matches an unmapped section's VMA, return that section.
3093 Else if PC matches an unmapped section's LMA, return that section. */
3094
3095asection *
fba45db2 3096find_pc_overlay (CORE_ADDR pc)
c906108c 3097{
c5aa993b 3098 struct objfile *objfile;
c906108c
SS
3099 struct obj_section *osect, *best_match = NULL;
3100
3101 if (overlay_debugging)
3102 ALL_OBJSECTIONS (objfile, osect)
3103 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3104 {
3105 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3106 {
3107 if (overlay_is_mapped (osect))
3108 return osect->the_bfd_section;
3109 else
3110 best_match = osect;
3111 }
3112 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3113 best_match = osect;
3114 }
c906108c
SS
3115 return best_match ? best_match->the_bfd_section : NULL;
3116}
3117
3118/* Function: find_pc_mapped_section (PC)
3119 If PC falls into the VMA address range of an overlay section that is
3120 currently marked as MAPPED, return that section. Else return NULL. */
3121
3122asection *
fba45db2 3123find_pc_mapped_section (CORE_ADDR pc)
c906108c 3124{
c5aa993b 3125 struct objfile *objfile;
c906108c
SS
3126 struct obj_section *osect;
3127
3128 if (overlay_debugging)
3129 ALL_OBJSECTIONS (objfile, osect)
3130 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3131 overlay_is_mapped (osect))
c5aa993b 3132 return osect->the_bfd_section;
c906108c
SS
3133
3134 return NULL;
3135}
3136
3137/* Function: list_overlays_command
3138 Print a list of mapped sections and their PC ranges */
3139
3140void
fba45db2 3141list_overlays_command (char *args, int from_tty)
c906108c 3142{
c5aa993b
JM
3143 int nmapped = 0;
3144 struct objfile *objfile;
c906108c
SS
3145 struct obj_section *osect;
3146
3147 if (overlay_debugging)
3148 ALL_OBJSECTIONS (objfile, osect)
3149 if (overlay_is_mapped (osect))
c5aa993b
JM
3150 {
3151 const char *name;
3152 bfd_vma lma, vma;
3153 int size;
3154
3155 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3156 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3157 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3158 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3159
3160 printf_filtered ("Section %s, loaded at ", name);
3161 print_address_numeric (lma, 1, gdb_stdout);
3162 puts_filtered (" - ");
3163 print_address_numeric (lma + size, 1, gdb_stdout);
3164 printf_filtered (", mapped at ");
3165 print_address_numeric (vma, 1, gdb_stdout);
3166 puts_filtered (" - ");
3167 print_address_numeric (vma + size, 1, gdb_stdout);
3168 puts_filtered ("\n");
3169
3170 nmapped++;
3171 }
c906108c
SS
3172 if (nmapped == 0)
3173 printf_filtered ("No sections are mapped.\n");
3174}
3175
3176/* Function: map_overlay_command
3177 Mark the named section as mapped (ie. residing at its VMA address). */
3178
3179void
fba45db2 3180map_overlay_command (char *args, int from_tty)
c906108c 3181{
c5aa993b
JM
3182 struct objfile *objfile, *objfile2;
3183 struct obj_section *sec, *sec2;
3184 asection *bfdsec;
c906108c
SS
3185
3186 if (!overlay_debugging)
515ad16c
EZ
3187 error ("\
3188Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3189the 'overlay manual' command.");
c906108c
SS
3190
3191 if (args == 0 || *args == 0)
3192 error ("Argument required: name of an overlay section");
3193
3194 /* First, find a section matching the user supplied argument */
3195 ALL_OBJSECTIONS (objfile, sec)
3196 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3197 {
3198 /* Now, check to see if the section is an overlay. */
3199 bfdsec = sec->the_bfd_section;
3200 if (!section_is_overlay (bfdsec))
3201 continue; /* not an overlay section */
3202
3203 /* Mark the overlay as "mapped" */
3204 sec->ovly_mapped = 1;
3205
3206 /* Next, make a pass and unmap any sections that are
3207 overlapped by this new section: */
3208 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3209 if (sec2->ovly_mapped
3210 && sec != sec2
3211 && sec->the_bfd_section != sec2->the_bfd_section
3212 && sections_overlap (sec->the_bfd_section,
3213 sec2->the_bfd_section))
c5aa993b
JM
3214 {
3215 if (info_verbose)
3216 printf_filtered ("Note: section %s unmapped by overlap\n",
3217 bfd_section_name (objfile->obfd,
3218 sec2->the_bfd_section));
3219 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3220 }
3221 return;
3222 }
c906108c
SS
3223 error ("No overlay section called %s", args);
3224}
3225
3226/* Function: unmap_overlay_command
3227 Mark the overlay section as unmapped
3228 (ie. resident in its LMA address range, rather than the VMA range). */
3229
3230void
fba45db2 3231unmap_overlay_command (char *args, int from_tty)
c906108c 3232{
c5aa993b 3233 struct objfile *objfile;
c906108c
SS
3234 struct obj_section *sec;
3235
3236 if (!overlay_debugging)
515ad16c
EZ
3237 error ("\
3238Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3239the 'overlay manual' command.");
c906108c
SS
3240
3241 if (args == 0 || *args == 0)
3242 error ("Argument required: name of an overlay section");
3243
3244 /* First, find a section matching the user supplied argument */
3245 ALL_OBJSECTIONS (objfile, sec)
3246 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3247 {
3248 if (!sec->ovly_mapped)
3249 error ("Section %s is not mapped", args);
3250 sec->ovly_mapped = 0;
3251 return;
3252 }
c906108c
SS
3253 error ("No overlay section called %s", args);
3254}
3255
3256/* Function: overlay_auto_command
3257 A utility command to turn on overlay debugging.
3258 Possibly this should be done via a set/show command. */
3259
3260static void
fba45db2 3261overlay_auto_command (char *args, int from_tty)
c906108c 3262{
d874f1e2 3263 overlay_debugging = ovly_auto;
1900040c 3264 enable_overlay_breakpoints ();
c906108c
SS
3265 if (info_verbose)
3266 printf_filtered ("Automatic overlay debugging enabled.");
3267}
3268
3269/* Function: overlay_manual_command
3270 A utility command to turn on overlay debugging.
3271 Possibly this should be done via a set/show command. */
3272
3273static void
fba45db2 3274overlay_manual_command (char *args, int from_tty)
c906108c 3275{
d874f1e2 3276 overlay_debugging = ovly_on;
1900040c 3277 disable_overlay_breakpoints ();
c906108c
SS
3278 if (info_verbose)
3279 printf_filtered ("Overlay debugging enabled.");
3280}
3281
3282/* Function: overlay_off_command
3283 A utility command to turn on overlay debugging.
3284 Possibly this should be done via a set/show command. */
3285
3286static void
fba45db2 3287overlay_off_command (char *args, int from_tty)
c906108c 3288{
d874f1e2 3289 overlay_debugging = ovly_off;
1900040c 3290 disable_overlay_breakpoints ();
c906108c
SS
3291 if (info_verbose)
3292 printf_filtered ("Overlay debugging disabled.");
3293}
3294
3295static void
fba45db2 3296overlay_load_command (char *args, int from_tty)
c906108c
SS
3297{
3298 if (target_overlay_update)
3299 (*target_overlay_update) (NULL);
3300 else
3301 error ("This target does not know how to read its overlay state.");
3302}
3303
3304/* Function: overlay_command
3305 A place-holder for a mis-typed command */
3306
3307/* Command list chain containing all defined "overlay" subcommands. */
3308struct cmd_list_element *overlaylist;
3309
3310static void
fba45db2 3311overlay_command (char *args, int from_tty)
c906108c 3312{
c5aa993b 3313 printf_unfiltered
c906108c
SS
3314 ("\"overlay\" must be followed by the name of an overlay command.\n");
3315 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3316}
3317
3318
3319/* Target Overlays for the "Simplest" overlay manager:
3320
3321 This is GDB's default target overlay layer. It works with the
3322 minimal overlay manager supplied as an example by Cygnus. The
3323 entry point is via a function pointer "target_overlay_update",
3324 so targets that use a different runtime overlay manager can
3325 substitute their own overlay_update function and take over the
3326 function pointer.
3327
3328 The overlay_update function pokes around in the target's data structures
3329 to see what overlays are mapped, and updates GDB's overlay mapping with
3330 this information.
3331
3332 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3333 unsigned _novlys; /# number of overlay sections #/
3334 unsigned _ovly_table[_novlys][4] = {
3335 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3336 {..., ..., ..., ...},
3337 }
3338 unsigned _novly_regions; /# number of overlay regions #/
3339 unsigned _ovly_region_table[_novly_regions][3] = {
3340 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3341 {..., ..., ...},
3342 }
c906108c
SS
3343 These functions will attempt to update GDB's mappedness state in the
3344 symbol section table, based on the target's mappedness state.
3345
3346 To do this, we keep a cached copy of the target's _ovly_table, and
3347 attempt to detect when the cached copy is invalidated. The main
3348 entry point is "simple_overlay_update(SECT), which looks up SECT in
3349 the cached table and re-reads only the entry for that section from
3350 the target (whenever possible).
3351 */
3352
3353/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3354static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3355#if 0
c5aa993b 3356static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3357#endif
c5aa993b 3358static unsigned cache_novlys = 0;
c906108c 3359#if 0
c5aa993b 3360static unsigned cache_novly_regions = 0;
c906108c
SS
3361#endif
3362static CORE_ADDR cache_ovly_table_base = 0;
3363#if 0
3364static CORE_ADDR cache_ovly_region_table_base = 0;
3365#endif
c5aa993b
JM
3366enum ovly_index
3367 {
3368 VMA, SIZE, LMA, MAPPED
3369 };
c906108c
SS
3370#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3371
3372/* Throw away the cached copy of _ovly_table */
3373static void
fba45db2 3374simple_free_overlay_table (void)
c906108c
SS
3375{
3376 if (cache_ovly_table)
b8c9b27d 3377 xfree (cache_ovly_table);
c5aa993b 3378 cache_novlys = 0;
c906108c
SS
3379 cache_ovly_table = NULL;
3380 cache_ovly_table_base = 0;
3381}
3382
3383#if 0
3384/* Throw away the cached copy of _ovly_region_table */
3385static void
fba45db2 3386simple_free_overlay_region_table (void)
c906108c
SS
3387{
3388 if (cache_ovly_region_table)
b8c9b27d 3389 xfree (cache_ovly_region_table);
c5aa993b 3390 cache_novly_regions = 0;
c906108c
SS
3391 cache_ovly_region_table = NULL;
3392 cache_ovly_region_table_base = 0;
3393}
3394#endif
3395
3396/* Read an array of ints from the target into a local buffer.
3397 Convert to host order. int LEN is number of ints */
3398static void
fba45db2 3399read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3400{
34c0bd93 3401 /* FIXME (alloca): Not safe if array is very large. */
c906108c 3402 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3403 int i;
c906108c
SS
3404
3405 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3406 for (i = 0; i < len; i++)
c5aa993b 3407 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3408 TARGET_LONG_BYTES);
3409}
3410
3411/* Find and grab a copy of the target _ovly_table
3412 (and _novlys, which is needed for the table's size) */
c5aa993b 3413static int
fba45db2 3414simple_read_overlay_table (void)
c906108c 3415{
0d43edd1 3416 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3417
3418 simple_free_overlay_table ();
9b27852e 3419 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3420 if (! novlys_msym)
c906108c 3421 {
0d43edd1
JB
3422 error ("Error reading inferior's overlay table: "
3423 "couldn't find `_novlys' variable\n"
3424 "in inferior. Use `overlay manual' mode.");
3425 return 0;
c906108c 3426 }
0d43edd1 3427
9b27852e 3428 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3429 if (! ovly_table_msym)
3430 {
3431 error ("Error reading inferior's overlay table: couldn't find "
3432 "`_ovly_table' array\n"
3433 "in inferior. Use `overlay manual' mode.");
3434 return 0;
3435 }
3436
3437 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3438 cache_ovly_table
3439 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3440 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3441 read_target_long_array (cache_ovly_table_base,
3442 (int *) cache_ovly_table,
3443 cache_novlys * 4);
3444
c5aa993b 3445 return 1; /* SUCCESS */
c906108c
SS
3446}
3447
3448#if 0
3449/* Find and grab a copy of the target _ovly_region_table
3450 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3451static int
fba45db2 3452simple_read_overlay_region_table (void)
c906108c
SS
3453{
3454 struct minimal_symbol *msym;
3455
3456 simple_free_overlay_region_table ();
9b27852e 3457 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3458 if (msym != NULL)
3459 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3460 else
3461 return 0; /* failure */
c906108c
SS
3462 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3463 if (cache_ovly_region_table != NULL)
3464 {
9b27852e 3465 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3466 if (msym != NULL)
3467 {
3468 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3469 read_target_long_array (cache_ovly_region_table_base,
3470 (int *) cache_ovly_region_table,
c906108c
SS
3471 cache_novly_regions * 3);
3472 }
c5aa993b
JM
3473 else
3474 return 0; /* failure */
c906108c 3475 }
c5aa993b
JM
3476 else
3477 return 0; /* failure */
3478 return 1; /* SUCCESS */
c906108c
SS
3479}
3480#endif
3481
3482/* Function: simple_overlay_update_1
3483 A helper function for simple_overlay_update. Assuming a cached copy
3484 of _ovly_table exists, look through it to find an entry whose vma,
3485 lma and size match those of OSECT. Re-read the entry and make sure
3486 it still matches OSECT (else the table may no longer be valid).
3487 Set OSECT's mapped state to match the entry. Return: 1 for
3488 success, 0 for failure. */
3489
3490static int
fba45db2 3491simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3492{
3493 int i, size;
fbd35540
MS
3494 bfd *obfd = osect->objfile->obfd;
3495 asection *bsect = osect->the_bfd_section;
c906108c
SS
3496
3497 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3498 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3499 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3500 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3501 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3502 {
3503 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3504 (int *) cache_ovly_table[i], 4);
fbd35540
MS
3505 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3506 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3507 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3508 {
3509 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3510 return 1;
3511 }
fbd35540 3512 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3513 return 0;
3514 }
3515 return 0;
3516}
3517
3518/* Function: simple_overlay_update
3519 If OSECT is NULL, then update all sections' mapped state
3520 (after re-reading the entire target _ovly_table).
3521 If OSECT is non-NULL, then try to find a matching entry in the
3522 cached ovly_table and update only OSECT's mapped state.
3523 If a cached entry can't be found or the cache isn't valid, then
3524 re-read the entire cache, and go ahead and update all sections. */
3525
3526static void
fba45db2 3527simple_overlay_update (struct obj_section *osect)
c906108c 3528{
c5aa993b 3529 struct objfile *objfile;
c906108c
SS
3530
3531 /* Were we given an osect to look up? NULL means do all of them. */
3532 if (osect)
3533 /* Have we got a cached copy of the target's overlay table? */
3534 if (cache_ovly_table != NULL)
3535 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3536 if (cache_ovly_table_base ==
9b27852e 3537 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3538 /* Then go ahead and try to look up this single section in the cache */
3539 if (simple_overlay_update_1 (osect))
3540 /* Found it! We're done. */
3541 return;
3542
3543 /* Cached table no good: need to read the entire table anew.
3544 Or else we want all the sections, in which case it's actually
3545 more efficient to read the whole table in one block anyway. */
3546
0d43edd1
JB
3547 if (! simple_read_overlay_table ())
3548 return;
3549
c906108c
SS
3550 /* Now may as well update all sections, even if only one was requested. */
3551 ALL_OBJSECTIONS (objfile, osect)
3552 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3553 {
3554 int i, size;
fbd35540
MS
3555 bfd *obfd = osect->objfile->obfd;
3556 asection *bsect = osect->the_bfd_section;
c5aa993b
JM
3557
3558 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3559 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3560 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3561 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3562 /* && cache_ovly_table[i][SIZE] == size */ )
3563 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3564 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3565 break; /* finished with inner for loop: break out */
3566 }
3567 }
c906108c
SS
3568}
3569
3570
3571void
fba45db2 3572_initialize_symfile (void)
c906108c
SS
3573{
3574 struct cmd_list_element *c;
c5aa993b 3575
c906108c 3576 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3577 "Load symbol table from executable file FILE.\n\
c906108c
SS
3578The `file' command can also load symbol tables, as well as setting the file\n\
3579to execute.", &cmdlist);
5ba2abeb 3580 set_cmd_completer (c, filename_completer);
c906108c
SS
3581
3582 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3583 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3584Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3585ADDR is the starting address of the file's text.\n\
db162d44
EZ
3586The optional arguments are section-name section-address pairs and\n\
3587should be specified if the data and bss segments are not contiguous\n\
d4654627 3588with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c 3589 &cmdlist);
5ba2abeb 3590 set_cmd_completer (c, filename_completer);
c906108c
SS
3591
3592 c = add_cmd ("add-shared-symbol-files", class_files,
3593 add_shared_symbol_files_command,
3594 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3595 &cmdlist);
c906108c
SS
3596 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3597 &cmdlist);
3598
3599 c = add_cmd ("load", class_files, load_command,
c5aa993b 3600 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c 3601for access from GDB.", &cmdlist);
5ba2abeb 3602 set_cmd_completer (c, filename_completer);
c906108c
SS
3603
3604 add_show_from_set
3605 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3606 (char *) &symbol_reloading,
3607 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3608 &setlist),
3609 &showlist);
3610
c5aa993b
JM
3611 add_prefix_cmd ("overlay", class_support, overlay_command,
3612 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3613 "overlay ", 0, &cmdlist);
3614
3615 add_com_alias ("ovly", "overlay", class_alias, 1);
3616 add_com_alias ("ov", "overlay", class_alias, 1);
3617
c5aa993b 3618 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3619 "Assert that an overlay section is mapped.", &overlaylist);
3620
c5aa993b 3621 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3622 "Assert that an overlay section is unmapped.", &overlaylist);
3623
c5aa993b 3624 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3625 "List mappings of overlay sections.", &overlaylist);
3626
c5aa993b 3627 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3628 "Enable overlay debugging.", &overlaylist);
c5aa993b 3629 add_cmd ("off", class_support, overlay_off_command,
c906108c 3630 "Disable overlay debugging.", &overlaylist);
c5aa993b 3631 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3632 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3633 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3634 "Read the overlay mapping state from the target.", &overlaylist);
3635
3636 /* Filename extension to source language lookup table: */
3637 init_filename_language_table ();
3638 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3639 (char *) &ext_args,
c906108c
SS
3640 "Set mapping between filename extension and source language.\n\
3641Usage: set extension-language .foo bar",
c5aa993b 3642 &setlist);
9f60d481 3643 set_cmd_cfunc (c, set_ext_lang_command);
c906108c 3644
c5aa993b 3645 add_info ("extensions", info_ext_lang_command,
c906108c 3646 "All filename extensions associated with a source language.");
917317f4
JM
3647
3648 add_show_from_set
3649 (add_set_cmd ("download-write-size", class_obscure,
3650 var_integer, (char *) &download_write_size,
3651 "Set the write size used when downloading a program.\n"
3652 "Only used when downloading a program onto a remote\n"
3653 "target. Specify zero, or a negative value, to disable\n"
3654 "blocked writes. The actual size of each transfer is also\n"
3655 "limited by the size of the target packet and the memory\n"
3656 "cache.\n",
3657 &setlist),
3658 &showlist);
5b5d99cf
JB
3659
3660 debug_file_directory = xstrdup (DEBUGDIR);
3661 c = (add_set_cmd
3662 ("debug-file-directory", class_support, var_string,
3663 (char *) &debug_file_directory,
3664 "Set the directory where separate debug symbols are searched for.\n"
3665 "Separate debug symbols are first searched for in the same\n"
3666 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3667 "' subdirectory,\n"
3668 "and lastly at the path of the directory of the binary with\n"
3669 "the global debug-file directory prepended\n",
3670 &setlist));
3671 add_show_from_set (c, &showlist);
3672 set_cmd_completer (c, filename_completer);
3673
c906108c 3674}
This page took 0.705332 seconds and 4 git commands to generate.