gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
0b302171 3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
c906108c 58
c906108c
SS
59#include <sys/types.h>
60#include <fcntl.h>
61#include "gdb_string.h"
62#include "gdb_stat.h"
63#include <ctype.h>
64#include <time.h>
2b71414d 65#include <sys/time.h>
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* External variables and functions referenced. */
c906108c 85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 87
c378eb4e 88/* Functions this file defines. */
c906108c 89
a14ed312 90static void load_command (char *, int);
c906108c 91
d7db6da9
FN
92static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
a14ed312 94static void add_symbol_file_command (char *, int);
c906108c 95
a14ed312 96bfd *symfile_bfd_open (char *);
c906108c 97
0e931cf0
JB
98int get_section_index (struct objfile *, char *);
99
00b5771c 100static const struct sym_fns *find_sym_fns (bfd *);
c906108c 101
a14ed312 102static void decrement_reading_symtab (void *);
c906108c 103
a14ed312 104static void overlay_invalidate_all (void);
c906108c 105
a14ed312 106void list_overlays_command (char *, int);
c906108c 107
a14ed312 108void map_overlay_command (char *, int);
c906108c 109
a14ed312 110void unmap_overlay_command (char *, int);
c906108c 111
a14ed312 112static void overlay_auto_command (char *, int);
c906108c 113
a14ed312 114static void overlay_manual_command (char *, int);
c906108c 115
a14ed312 116static void overlay_off_command (char *, int);
c906108c 117
a14ed312 118static void overlay_load_command (char *, int);
c906108c 119
a14ed312 120static void overlay_command (char *, int);
c906108c 121
a14ed312 122static void simple_free_overlay_table (void);
c906108c 123
e17a4113
UW
124static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
c906108c 126
a14ed312 127static int simple_read_overlay_table (void);
c906108c 128
a14ed312 129static int simple_overlay_update_1 (struct obj_section *);
c906108c 130
a14ed312 131static void add_filename_language (char *ext, enum language lang);
392a587b 132
a14ed312 133static void info_ext_lang_command (char *args, int from_tty);
392a587b 134
a14ed312 135static void init_filename_language_table (void);
392a587b 136
31d99776
DJ
137static void symfile_find_segment_sections (struct objfile *objfile);
138
a14ed312 139void _initialize_symfile (void);
c906108c
SS
140
141/* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
c378eb4e 143 prepared to read. */
c906108c 144
00b5771c
TT
145typedef const struct sym_fns *sym_fns_ptr;
146DEF_VEC_P (sym_fns_ptr);
147
148static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c 149
b7209cb4
FF
150/* If non-zero, shared library symbols will be added automatically
151 when the inferior is created, new libraries are loaded, or when
152 attaching to the inferior. This is almost always what users will
153 want to have happen; but for very large programs, the startup time
154 will be excessive, and so if this is a problem, the user can clear
155 this flag and then add the shared library symbols as needed. Note
156 that there is a potential for confusion, since if the shared
c906108c 157 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 158 report all the functions that are actually present. */
c906108c
SS
159
160int auto_solib_add = 1;
c906108c 161\f
c5aa993b 162
c906108c
SS
163/* Make a null terminated copy of the string at PTR with SIZE characters in
164 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 165 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 166 may be part of a larger string and we are only saving a substring. */
c906108c
SS
167
168char *
63ca651f 169obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 170{
52f0bd74 171 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
172 /* Open-coded memcpy--saves function call time. These strings are usually
173 short. FIXME: Is this really still true with a compiler that can
c378eb4e 174 inline memcpy? */
c906108c 175 {
aa1ee363
AC
176 const char *p1 = ptr;
177 char *p2 = p;
63ca651f 178 const char *end = ptr + size;
433759f7 179
c906108c
SS
180 while (p1 != end)
181 *p2++ = *p1++;
182 }
183 p[size] = 0;
184 return p;
185}
186
3e43a32a
MS
187/* Concatenate NULL terminated variable argument list of `const char *'
188 strings; return the new string. Space is found in the OBSTACKP.
189 Argument list must be terminated by a sentinel expression `(char *)
190 NULL'. */
c906108c
SS
191
192char *
48cb83fd 193obconcat (struct obstack *obstackp, ...)
c906108c 194{
48cb83fd
JK
195 va_list ap;
196
197 va_start (ap, obstackp);
198 for (;;)
199 {
200 const char *s = va_arg (ap, const char *);
201
202 if (s == NULL)
203 break;
204
205 obstack_grow_str (obstackp, s);
206 }
207 va_end (ap);
208 obstack_1grow (obstackp, 0);
209
210 return obstack_finish (obstackp);
c906108c
SS
211}
212
0d14a781 213/* True if we are reading a symbol table. */
c906108c
SS
214
215int currently_reading_symtab = 0;
216
217static void
fba45db2 218decrement_reading_symtab (void *dummy)
c906108c
SS
219{
220 currently_reading_symtab--;
221}
222
ccefe4c4
TT
223/* Increment currently_reading_symtab and return a cleanup that can be
224 used to decrement it. */
225struct cleanup *
226increment_reading_symtab (void)
c906108c 227{
ccefe4c4
TT
228 ++currently_reading_symtab;
229 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
230}
231
5417f6dc
RM
232/* Remember the lowest-addressed loadable section we've seen.
233 This function is called via bfd_map_over_sections.
c906108c
SS
234
235 In case of equal vmas, the section with the largest size becomes the
236 lowest-addressed loadable section.
237
238 If the vmas and sizes are equal, the last section is considered the
239 lowest-addressed loadable section. */
240
241void
4efb68b1 242find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 243{
c5aa993b 244 asection **lowest = (asection **) obj;
c906108c 245
eb73e134 246 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
247 return;
248 if (!*lowest)
249 *lowest = sect; /* First loadable section */
250 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
251 *lowest = sect; /* A lower loadable section */
252 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
253 && (bfd_section_size (abfd, (*lowest))
254 <= bfd_section_size (abfd, sect)))
255 *lowest = sect;
256}
257
a39a16c4
MM
258/* Create a new section_addr_info, with room for NUM_SECTIONS. */
259
260struct section_addr_info *
261alloc_section_addr_info (size_t num_sections)
262{
263 struct section_addr_info *sap;
264 size_t size;
265
266 size = (sizeof (struct section_addr_info)
267 + sizeof (struct other_sections) * (num_sections - 1));
268 sap = (struct section_addr_info *) xmalloc (size);
269 memset (sap, 0, size);
270 sap->num_sections = num_sections;
271
272 return sap;
273}
62557bbc
KB
274
275/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 276 an existing section table. */
62557bbc
KB
277
278extern struct section_addr_info *
0542c86d
PA
279build_section_addr_info_from_section_table (const struct target_section *start,
280 const struct target_section *end)
62557bbc
KB
281{
282 struct section_addr_info *sap;
0542c86d 283 const struct target_section *stp;
62557bbc
KB
284 int oidx;
285
a39a16c4 286 sap = alloc_section_addr_info (end - start);
62557bbc
KB
287
288 for (stp = start, oidx = 0; stp != end; stp++)
289 {
5417f6dc 290 if (bfd_get_section_flags (stp->bfd,
fbd35540 291 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 292 && oidx < end - start)
62557bbc
KB
293 {
294 sap->other[oidx].addr = stp->addr;
5417f6dc 295 sap->other[oidx].name
fbd35540 296 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
297 sap->other[oidx].sectindex = stp->the_bfd_section->index;
298 oidx++;
299 }
300 }
301
302 return sap;
303}
304
82ccf5a5 305/* Create a section_addr_info from section offsets in ABFD. */
089b4803 306
82ccf5a5
JK
307static struct section_addr_info *
308build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
309{
310 struct section_addr_info *sap;
311 int i;
312 struct bfd_section *sec;
313
82ccf5a5
JK
314 sap = alloc_section_addr_info (bfd_count_sections (abfd));
315 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
316 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 317 {
82ccf5a5
JK
318 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
319 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
320 sap->other[i].sectindex = sec->index;
321 i++;
322 }
089b4803
TG
323 return sap;
324}
325
82ccf5a5
JK
326/* Create a section_addr_info from section offsets in OBJFILE. */
327
328struct section_addr_info *
329build_section_addr_info_from_objfile (const struct objfile *objfile)
330{
331 struct section_addr_info *sap;
332 int i;
333
334 /* Before reread_symbols gets rewritten it is not safe to call:
335 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
336 */
337 sap = build_section_addr_info_from_bfd (objfile->obfd);
338 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
339 {
340 int sectindex = sap->other[i].sectindex;
341
342 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
343 }
344 return sap;
345}
62557bbc 346
c378eb4e 347/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
348
349extern void
350free_section_addr_info (struct section_addr_info *sap)
351{
352 int idx;
353
a39a16c4 354 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 355 if (sap->other[idx].name)
b8c9b27d
KB
356 xfree (sap->other[idx].name);
357 xfree (sap);
62557bbc
KB
358}
359
360
e8289572
JB
361/* Initialize OBJFILE's sect_index_* members. */
362static void
363init_objfile_sect_indices (struct objfile *objfile)
c906108c 364{
e8289572 365 asection *sect;
c906108c 366 int i;
5417f6dc 367
b8fbeb18 368 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_text = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_data = sect->index;
375
376 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 377 if (sect)
b8fbeb18
EZ
378 objfile->sect_index_bss = sect->index;
379
380 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 381 if (sect)
b8fbeb18
EZ
382 objfile->sect_index_rodata = sect->index;
383
bbcd32ad
FF
384 /* This is where things get really weird... We MUST have valid
385 indices for the various sect_index_* members or gdb will abort.
386 So if for example, there is no ".text" section, we have to
31d99776
DJ
387 accomodate that. First, check for a file with the standard
388 one or two segments. */
389
390 symfile_find_segment_sections (objfile);
391
392 /* Except when explicitly adding symbol files at some address,
393 section_offsets contains nothing but zeros, so it doesn't matter
394 which slot in section_offsets the individual sect_index_* members
395 index into. So if they are all zero, it is safe to just point
396 all the currently uninitialized indices to the first slot. But
397 beware: if this is the main executable, it may be relocated
398 later, e.g. by the remote qOffsets packet, and then this will
399 be wrong! That's why we try segments first. */
bbcd32ad
FF
400
401 for (i = 0; i < objfile->num_sections; i++)
402 {
403 if (ANOFFSET (objfile->section_offsets, i) != 0)
404 {
405 break;
406 }
407 }
408 if (i == objfile->num_sections)
409 {
410 if (objfile->sect_index_text == -1)
411 objfile->sect_index_text = 0;
412 if (objfile->sect_index_data == -1)
413 objfile->sect_index_data = 0;
414 if (objfile->sect_index_bss == -1)
415 objfile->sect_index_bss = 0;
416 if (objfile->sect_index_rodata == -1)
417 objfile->sect_index_rodata = 0;
418 }
b8fbeb18 419}
c906108c 420
c1bd25fd
DJ
421/* The arguments to place_section. */
422
423struct place_section_arg
424{
425 struct section_offsets *offsets;
426 CORE_ADDR lowest;
427};
428
429/* Find a unique offset to use for loadable section SECT if
430 the user did not provide an offset. */
431
2c0b251b 432static void
c1bd25fd
DJ
433place_section (bfd *abfd, asection *sect, void *obj)
434{
435 struct place_section_arg *arg = obj;
436 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
437 int done;
3bd72c6f 438 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 439
2711e456
DJ
440 /* We are only interested in allocated sections. */
441 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
442 return;
443
444 /* If the user specified an offset, honor it. */
445 if (offsets[sect->index] != 0)
446 return;
447
448 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
449 start_addr = (arg->lowest + align - 1) & -align;
450
c1bd25fd
DJ
451 do {
452 asection *cur_sec;
c1bd25fd 453
c1bd25fd
DJ
454 done = 1;
455
456 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
457 {
458 int indx = cur_sec->index;
c1bd25fd
DJ
459
460 /* We don't need to compare against ourself. */
461 if (cur_sec == sect)
462 continue;
463
2711e456
DJ
464 /* We can only conflict with allocated sections. */
465 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
466 continue;
467
468 /* If the section offset is 0, either the section has not been placed
469 yet, or it was the lowest section placed (in which case LOWEST
470 will be past its end). */
471 if (offsets[indx] == 0)
472 continue;
473
474 /* If this section would overlap us, then we must move up. */
475 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
476 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
477 {
478 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
479 start_addr = (start_addr + align - 1) & -align;
480 done = 0;
3bd72c6f 481 break;
c1bd25fd
DJ
482 }
483
484 /* Otherwise, we appear to be OK. So far. */
485 }
486 }
487 while (!done);
488
489 offsets[sect->index] = start_addr;
490 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 491}
e8289572 492
75242ef4
JK
493/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
494 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
495 entries. */
e8289572
JB
496
497void
75242ef4
JK
498relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
499 int num_sections,
500 struct section_addr_info *addrs)
e8289572
JB
501{
502 int i;
503
75242ef4 504 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 505
c378eb4e 506 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 507 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 508 {
75242ef4 509 struct other_sections *osp;
e8289572 510
75242ef4 511 osp = &addrs->other[i];
5488dafb 512 if (osp->sectindex == -1)
e8289572
JB
513 continue;
514
c378eb4e 515 /* Record all sections in offsets. */
e8289572 516 /* The section_offsets in the objfile are here filled in using
c378eb4e 517 the BFD index. */
75242ef4
JK
518 section_offsets->offsets[osp->sectindex] = osp->addr;
519 }
520}
521
1276c759
JK
522/* Transform section name S for a name comparison. prelink can split section
523 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
524 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
525 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
526 (`.sbss') section has invalid (increased) virtual address. */
527
528static const char *
529addr_section_name (const char *s)
530{
531 if (strcmp (s, ".dynbss") == 0)
532 return ".bss";
533 if (strcmp (s, ".sdynbss") == 0)
534 return ".sbss";
535
536 return s;
537}
538
82ccf5a5
JK
539/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
540 their (name, sectindex) pair. sectindex makes the sort by name stable. */
541
542static int
543addrs_section_compar (const void *ap, const void *bp)
544{
545 const struct other_sections *a = *((struct other_sections **) ap);
546 const struct other_sections *b = *((struct other_sections **) bp);
547 int retval, a_idx, b_idx;
548
1276c759 549 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
550 if (retval)
551 return retval;
552
5488dafb 553 return a->sectindex - b->sectindex;
82ccf5a5
JK
554}
555
556/* Provide sorted array of pointers to sections of ADDRS. The array is
557 terminated by NULL. Caller is responsible to call xfree for it. */
558
559static struct other_sections **
560addrs_section_sort (struct section_addr_info *addrs)
561{
562 struct other_sections **array;
563 int i;
564
565 /* `+ 1' for the NULL terminator. */
566 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 array[i] = &addrs->other[i];
569 array[i] = NULL;
570
571 qsort (array, i, sizeof (*array), addrs_section_compar);
572
573 return array;
574}
575
75242ef4 576/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
577 also SECTINDEXes specific to ABFD there. This function can be used to
578 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
579
580void
581addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
582{
583 asection *lower_sect;
75242ef4
JK
584 CORE_ADDR lower_offset;
585 int i;
82ccf5a5
JK
586 struct cleanup *my_cleanup;
587 struct section_addr_info *abfd_addrs;
588 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
589 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
590
591 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
592 continguous sections. */
593 lower_sect = NULL;
594 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
595 if (lower_sect == NULL)
596 {
597 warning (_("no loadable sections found in added symbol-file %s"),
598 bfd_get_filename (abfd));
599 lower_offset = 0;
e8289572 600 }
75242ef4
JK
601 else
602 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
603
82ccf5a5
JK
604 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
605 in ABFD. Section names are not unique - there can be multiple sections of
606 the same name. Also the sections of the same name do not have to be
607 adjacent to each other. Some sections may be present only in one of the
608 files. Even sections present in both files do not have to be in the same
609 order.
610
611 Use stable sort by name for the sections in both files. Then linearly
612 scan both lists matching as most of the entries as possible. */
613
614 addrs_sorted = addrs_section_sort (addrs);
615 my_cleanup = make_cleanup (xfree, addrs_sorted);
616
617 abfd_addrs = build_section_addr_info_from_bfd (abfd);
618 make_cleanup_free_section_addr_info (abfd_addrs);
619 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
620 make_cleanup (xfree, abfd_addrs_sorted);
621
c378eb4e
MS
622 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
623 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
624
625 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
626 * addrs->num_sections);
627 make_cleanup (xfree, addrs_to_abfd_addrs);
628
629 while (*addrs_sorted)
630 {
1276c759 631 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
632
633 while (*abfd_addrs_sorted
1276c759
JK
634 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
635 sect_name) < 0)
82ccf5a5
JK
636 abfd_addrs_sorted++;
637
638 if (*abfd_addrs_sorted
1276c759
JK
639 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
640 sect_name) == 0)
82ccf5a5
JK
641 {
642 int index_in_addrs;
643
644 /* Make the found item directly addressable from ADDRS. */
645 index_in_addrs = *addrs_sorted - addrs->other;
646 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
647 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
648
649 /* Never use the same ABFD entry twice. */
650 abfd_addrs_sorted++;
651 }
652
653 addrs_sorted++;
654 }
655
75242ef4
JK
656 /* Calculate offsets for the loadable sections.
657 FIXME! Sections must be in order of increasing loadable section
658 so that contiguous sections can use the lower-offset!!!
659
660 Adjust offsets if the segments are not contiguous.
661 If the section is contiguous, its offset should be set to
662 the offset of the highest loadable section lower than it
663 (the loadable section directly below it in memory).
664 this_offset = lower_offset = lower_addr - lower_orig_addr */
665
666 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
667 {
82ccf5a5 668 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
669
670 if (sect)
75242ef4 671 {
c378eb4e 672 /* This is the index used by BFD. */
82ccf5a5 673 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
674
675 if (addrs->other[i].addr != 0)
75242ef4 676 {
82ccf5a5 677 addrs->other[i].addr -= sect->addr;
75242ef4 678 lower_offset = addrs->other[i].addr;
75242ef4
JK
679 }
680 else
672d9c23 681 addrs->other[i].addr = lower_offset;
75242ef4
JK
682 }
683 else
672d9c23 684 {
1276c759
JK
685 /* addr_section_name transformation is not used for SECT_NAME. */
686 const char *sect_name = addrs->other[i].name;
687
b0fcb67f
JK
688 /* This section does not exist in ABFD, which is normally
689 unexpected and we want to issue a warning.
690
4d9743af
JK
691 However, the ELF prelinker does create a few sections which are
692 marked in the main executable as loadable (they are loaded in
693 memory from the DYNAMIC segment) and yet are not present in
694 separate debug info files. This is fine, and should not cause
695 a warning. Shared libraries contain just the section
696 ".gnu.liblist" but it is not marked as loadable there. There is
697 no other way to identify them than by their name as the sections
1276c759
JK
698 created by prelink have no special flags.
699
700 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
701
702 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 703 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
704 || (strcmp (sect_name, ".bss") == 0
705 && i > 0
706 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
707 && addrs_to_abfd_addrs[i - 1] != NULL)
708 || (strcmp (sect_name, ".sbss") == 0
709 && i > 0
710 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
711 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
712 warning (_("section %s not found in %s"), sect_name,
713 bfd_get_filename (abfd));
714
672d9c23 715 addrs->other[i].addr = 0;
5488dafb 716 addrs->other[i].sectindex = -1;
672d9c23 717 }
75242ef4 718 }
82ccf5a5
JK
719
720 do_cleanups (my_cleanup);
75242ef4
JK
721}
722
723/* Parse the user's idea of an offset for dynamic linking, into our idea
724 of how to represent it for fast symbol reading. This is the default
725 version of the sym_fns.sym_offsets function for symbol readers that
726 don't need to do anything special. It allocates a section_offsets table
727 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
728
729void
730default_symfile_offsets (struct objfile *objfile,
731 struct section_addr_info *addrs)
732{
733 objfile->num_sections = bfd_count_sections (objfile->obfd);
734 objfile->section_offsets = (struct section_offsets *)
735 obstack_alloc (&objfile->objfile_obstack,
736 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
737 relative_addr_info_to_section_offsets (objfile->section_offsets,
738 objfile->num_sections, addrs);
e8289572 739
c1bd25fd
DJ
740 /* For relocatable files, all loadable sections will start at zero.
741 The zero is meaningless, so try to pick arbitrary addresses such
742 that no loadable sections overlap. This algorithm is quadratic,
743 but the number of sections in a single object file is generally
744 small. */
745 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
746 {
747 struct place_section_arg arg;
2711e456
DJ
748 bfd *abfd = objfile->obfd;
749 asection *cur_sec;
2711e456
DJ
750
751 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
752 /* We do not expect this to happen; just skip this step if the
753 relocatable file has a section with an assigned VMA. */
754 if (bfd_section_vma (abfd, cur_sec) != 0)
755 break;
756
757 if (cur_sec == NULL)
758 {
759 CORE_ADDR *offsets = objfile->section_offsets->offsets;
760
761 /* Pick non-overlapping offsets for sections the user did not
762 place explicitly. */
763 arg.offsets = objfile->section_offsets;
764 arg.lowest = 0;
765 bfd_map_over_sections (objfile->obfd, place_section, &arg);
766
767 /* Correctly filling in the section offsets is not quite
768 enough. Relocatable files have two properties that
769 (most) shared objects do not:
770
771 - Their debug information will contain relocations. Some
772 shared libraries do also, but many do not, so this can not
773 be assumed.
774
775 - If there are multiple code sections they will be loaded
776 at different relative addresses in memory than they are
777 in the objfile, since all sections in the file will start
778 at address zero.
779
780 Because GDB has very limited ability to map from an
781 address in debug info to the correct code section,
782 it relies on adding SECT_OFF_TEXT to things which might be
783 code. If we clear all the section offsets, and set the
784 section VMAs instead, then symfile_relocate_debug_section
785 will return meaningful debug information pointing at the
786 correct sections.
787
788 GDB has too many different data structures for section
789 addresses - a bfd, objfile, and so_list all have section
790 tables, as does exec_ops. Some of these could probably
791 be eliminated. */
792
793 for (cur_sec = abfd->sections; cur_sec != NULL;
794 cur_sec = cur_sec->next)
795 {
796 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
797 continue;
798
799 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
800 exec_set_section_address (bfd_get_filename (abfd),
801 cur_sec->index,
30510692 802 offsets[cur_sec->index]);
2711e456
DJ
803 offsets[cur_sec->index] = 0;
804 }
805 }
c1bd25fd
DJ
806 }
807
e8289572 808 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 809 .rodata sections. */
e8289572
JB
810 init_objfile_sect_indices (objfile);
811}
812
813
31d99776
DJ
814/* Divide the file into segments, which are individual relocatable units.
815 This is the default version of the sym_fns.sym_segments function for
816 symbol readers that do not have an explicit representation of segments.
817 It assumes that object files do not have segments, and fully linked
818 files have a single segment. */
819
820struct symfile_segment_data *
821default_symfile_segments (bfd *abfd)
822{
823 int num_sections, i;
824 asection *sect;
825 struct symfile_segment_data *data;
826 CORE_ADDR low, high;
827
828 /* Relocatable files contain enough information to position each
829 loadable section independently; they should not be relocated
830 in segments. */
831 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
832 return NULL;
833
834 /* Make sure there is at least one loadable section in the file. */
835 for (sect = abfd->sections; sect != NULL; sect = sect->next)
836 {
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 break;
841 }
842 if (sect == NULL)
843 return NULL;
844
845 low = bfd_get_section_vma (abfd, sect);
846 high = low + bfd_get_section_size (sect);
847
848 data = XZALLOC (struct symfile_segment_data);
849 data->num_segments = 1;
850 data->segment_bases = XCALLOC (1, CORE_ADDR);
851 data->segment_sizes = XCALLOC (1, CORE_ADDR);
852
853 num_sections = bfd_count_sections (abfd);
854 data->segment_info = XCALLOC (num_sections, int);
855
856 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
857 {
858 CORE_ADDR vma;
859
860 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
861 continue;
862
863 vma = bfd_get_section_vma (abfd, sect);
864 if (vma < low)
865 low = vma;
866 if (vma + bfd_get_section_size (sect) > high)
867 high = vma + bfd_get_section_size (sect);
868
869 data->segment_info[i] = 1;
870 }
871
872 data->segment_bases[0] = low;
873 data->segment_sizes[0] = high - low;
874
875 return data;
876}
877
c906108c
SS
878/* Process a symbol file, as either the main file or as a dynamically
879 loaded file.
880
96baa820
JM
881 OBJFILE is where the symbols are to be read from.
882
7e8580c1
JB
883 ADDRS is the list of section load addresses. If the user has given
884 an 'add-symbol-file' command, then this is the list of offsets and
885 addresses he or she provided as arguments to the command; or, if
886 we're handling a shared library, these are the actual addresses the
887 sections are loaded at, according to the inferior's dynamic linker
888 (as gleaned by GDB's shared library code). We convert each address
889 into an offset from the section VMA's as it appears in the object
890 file, and then call the file's sym_offsets function to convert this
891 into a format-specific offset table --- a `struct section_offsets'.
892 If ADDRS is non-zero, OFFSETS must be zero.
893
894 OFFSETS is a table of section offsets already in the right
895 format-specific representation. NUM_OFFSETS is the number of
896 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
897 assume this is the proper table the call to sym_offsets described
898 above would produce. Instead of calling sym_offsets, we just dump
899 it right into objfile->section_offsets. (When we're re-reading
900 symbols from an objfile, we don't have the original load address
901 list any more; all we have is the section offset table.) If
902 OFFSETS is non-zero, ADDRS must be zero.
96baa820 903
7eedccfa
PP
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and wether
906 breakpoint reset should be deferred. */
c906108c
SS
907
908void
7e8580c1
JB
909syms_from_objfile (struct objfile *objfile,
910 struct section_addr_info *addrs,
911 struct section_offsets *offsets,
912 int num_offsets,
7eedccfa 913 int add_flags)
c906108c 914{
a39a16c4 915 struct section_addr_info *local_addr = NULL;
c906108c 916 struct cleanup *old_chain;
7eedccfa 917 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 918
7e8580c1 919 gdb_assert (! (addrs && offsets));
2acceee2 920
c906108c 921 init_entry_point_info (objfile);
31d99776 922 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 923
75245b24 924 if (objfile->sf == NULL)
c378eb4e 925 return; /* No symbols. */
75245b24 926
c906108c
SS
927 /* Make sure that partially constructed symbol tables will be cleaned up
928 if an error occurs during symbol reading. */
74b7792f 929 old_chain = make_cleanup_free_objfile (objfile);
c906108c 930
a39a16c4
MM
931 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
932 list. We now establish the convention that an addr of zero means
c378eb4e 933 no load address was specified. */
a39a16c4
MM
934 if (! addrs && ! offsets)
935 {
5417f6dc 936 local_addr
a39a16c4
MM
937 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
938 make_cleanup (xfree, local_addr);
939 addrs = local_addr;
940 }
941
942 /* Now either addrs or offsets is non-zero. */
943
c5aa993b 944 if (mainline)
c906108c
SS
945 {
946 /* We will modify the main symbol table, make sure that all its users
c5aa993b 947 will be cleaned up if an error occurs during symbol reading. */
74b7792f 948 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
949
950 /* Since no error yet, throw away the old symbol table. */
951
952 if (symfile_objfile != NULL)
953 {
954 free_objfile (symfile_objfile);
adb7f338 955 gdb_assert (symfile_objfile == NULL);
c906108c
SS
956 }
957
958 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
959 If the user wants to get rid of them, they should do "symbol-file"
960 without arguments first. Not sure this is the best behavior
961 (PR 2207). */
c906108c 962
c5aa993b 963 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
964 }
965
966 /* Convert addr into an offset rather than an absolute address.
967 We find the lowest address of a loaded segment in the objfile,
53a5351d 968 and assume that <addr> is where that got loaded.
c906108c 969
53a5351d
JM
970 We no longer warn if the lowest section is not a text segment (as
971 happens for the PA64 port. */
0d15807d 972 if (addrs && addrs->other[0].name)
75242ef4 973 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
974
975 /* Initialize symbol reading routines for this objfile, allow complaints to
976 appear for this new file, and record how verbose to be, then do the
c378eb4e 977 initial symbol reading for this file. */
c906108c 978
c5aa993b 979 (*objfile->sf->sym_init) (objfile);
7eedccfa 980 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 981
7e8580c1
JB
982 if (addrs)
983 (*objfile->sf->sym_offsets) (objfile, addrs);
984 else
985 {
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
987
988 /* Just copy in the offset table directly as given to us. */
989 objfile->num_sections = num_offsets;
990 objfile->section_offsets
991 = ((struct section_offsets *)
8b92e4d5 992 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
993 memcpy (objfile->section_offsets, offsets, size);
994
995 init_objfile_sect_indices (objfile);
996 }
c906108c 997
f4352531 998 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 999
b11896a5
TT
1000 if ((add_flags & SYMFILE_NO_READ) == 0)
1001 require_partial_symbols (objfile, 0);
1002
c906108c
SS
1003 /* Discard cleanups as symbol reading was successful. */
1004
1005 discard_cleanups (old_chain);
f7545552 1006 xfree (local_addr);
c906108c
SS
1007}
1008
1009/* Perform required actions after either reading in the initial
1010 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1011 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1012
c906108c 1013void
7eedccfa 1014new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1015{
c906108c 1016 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1017 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1018 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1019 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1020 {
1021 /* OK, make it the "real" symbol file. */
1022 symfile_objfile = objfile;
1023
c1e56572 1024 clear_symtab_users (add_flags);
c906108c 1025 }
7eedccfa 1026 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1027 {
69de3c6a 1028 breakpoint_re_set ();
c906108c
SS
1029 }
1030
1031 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1032 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1033}
1034
1035/* Process a symbol file, as either the main file or as a dynamically
1036 loaded file.
1037
5417f6dc
RM
1038 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1039 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1040
7eedccfa
PP
1041 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1042 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1043
1044 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1045 syms_from_objfile, above.
1046 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1047
63524580
JK
1048 PARENT is the original objfile if ABFD is a separate debug info file.
1049 Otherwise PARENT is NULL.
1050
c906108c 1051 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1052 Upon failure, jumps back to command level (never returns). */
7eedccfa 1053
7904e09f 1054static struct objfile *
7eedccfa
PP
1055symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1056 int add_flags,
7904e09f
JB
1057 struct section_addr_info *addrs,
1058 struct section_offsets *offsets,
1059 int num_offsets,
63524580 1060 int flags, struct objfile *parent)
c906108c
SS
1061{
1062 struct objfile *objfile;
a39a16c4 1063 struct cleanup *my_cleanups;
5417f6dc 1064 const char *name = bfd_get_filename (abfd);
7eedccfa 1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1066 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1070
9291a0cd 1071 if (readnow_symbol_files)
b11896a5
TT
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
9291a0cd 1076
5417f6dc 1077 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1078
5417f6dc
RM
1079 /* Give user a chance to burp if we'd be
1080 interactively wiping out any existing symbols. */
c906108c
SS
1081
1082 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1083 && mainline
c906108c 1084 && from_tty
9e2f0ad4 1085 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1086 error (_("Not confirmed."));
c906108c 1087
0838fb57 1088 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
5417f6dc 1089 discard_cleanups (my_cleanups);
c906108c 1090
63524580
JK
1091 if (parent)
1092 add_separate_debug_objfile (objfile, parent);
1093
78a4a9b9
AC
1094 /* We either created a new mapped symbol table, mapped an existing
1095 symbol table file which has not had initial symbol reading
c378eb4e 1096 performed, or need to read an unmapped symbol table. */
b11896a5 1097 if (should_print)
c906108c 1098 {
769d7dc4
AC
1099 if (deprecated_pre_add_symbol_hook)
1100 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1101 else
c906108c 1102 {
55333a84
DE
1103 printf_unfiltered (_("Reading symbols from %s..."), name);
1104 wrap_here ("");
1105 gdb_flush (gdb_stdout);
c906108c 1106 }
c906108c 1107 }
78a4a9b9 1108 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1109 add_flags);
c906108c
SS
1110
1111 /* We now have at least a partial symbol table. Check to see if the
1112 user requested that all symbols be read on initial access via either
1113 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1114 all partial symbol tables for this objfile if so. */
c906108c 1115
9291a0cd 1116 if ((flags & OBJF_READNOW))
c906108c 1117 {
b11896a5 1118 if (should_print)
c906108c 1119 {
a3f17187 1120 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124
ccefe4c4
TT
1125 if (objfile->sf)
1126 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1127 }
1128
b11896a5 1129 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1130 {
1131 wrap_here ("");
55333a84 1132 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1133 wrap_here ("");
1134 }
1135
b11896a5 1136 if (should_print)
c906108c 1137 {
769d7dc4
AC
1138 if (deprecated_post_add_symbol_hook)
1139 deprecated_post_add_symbol_hook ();
c906108c 1140 else
55333a84 1141 printf_unfiltered (_("done.\n"));
c906108c
SS
1142 }
1143
481d0f41
JB
1144 /* We print some messages regardless of whether 'from_tty ||
1145 info_verbose' is true, so make sure they go out at the right
1146 time. */
1147 gdb_flush (gdb_stdout);
1148
109f874e 1149 if (objfile->sf == NULL)
8caee43b
PP
1150 {
1151 observer_notify_new_objfile (objfile);
c378eb4e 1152 return objfile; /* No symbols. */
8caee43b 1153 }
109f874e 1154
7eedccfa 1155 new_symfile_objfile (objfile, add_flags);
c906108c 1156
06d3b283 1157 observer_notify_new_objfile (objfile);
c906108c 1158
ce7d4522 1159 bfd_cache_close_all ();
c906108c
SS
1160 return (objfile);
1161}
1162
9cce227f
TG
1163/* Add BFD as a separate debug file for OBJFILE. */
1164
1165void
1166symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1167{
15d123c9 1168 struct objfile *new_objfile;
089b4803
TG
1169 struct section_addr_info *sap;
1170 struct cleanup *my_cleanup;
1171
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 sap = build_section_addr_info_from_objfile (objfile);
1176 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1177
15d123c9 1178 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1179 (bfd, symfile_flags,
089b4803 1180 sap, NULL, 0,
9cce227f 1181 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1182 | OBJF_USERLOADED),
1183 objfile);
089b4803
TG
1184
1185 do_cleanups (my_cleanup);
9cce227f 1186}
7904e09f 1187
eb4556d7
JB
1188/* Process the symbol file ABFD, as either the main file or as a
1189 dynamically loaded file.
1190
1191 See symbol_file_add_with_addrs_or_offsets's comments for
1192 details. */
1193struct objfile *
7eedccfa 1194symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1195 struct section_addr_info *addrs,
63524580 1196 int flags, struct objfile *parent)
eb4556d7 1197{
7eedccfa 1198 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
63524580 1199 flags, parent);
eb4556d7
JB
1200}
1201
1202
7904e09f
JB
1203/* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1205 for details. */
1206struct objfile *
7eedccfa
PP
1207symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
7904e09f 1209{
7eedccfa 1210 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
63524580 1211 flags, NULL);
7904e09f
JB
1212}
1213
1214
d7db6da9
FN
1215/* Call symbol_file_add() with default values and update whatever is
1216 affected by the loading of a new main().
1217 Used when the file is supplied in the gdb command line
1218 and by some targets with special loading requirements.
1219 The auxiliary function, symbol_file_add_main_1(), has the flags
1220 argument for the switches that can only be specified in the symbol_file
1221 command itself. */
5417f6dc 1222
1adeb98a
FN
1223void
1224symbol_file_add_main (char *args, int from_tty)
1225{
d7db6da9
FN
1226 symbol_file_add_main_1 (args, from_tty, 0);
1227}
1228
1229static void
1230symbol_file_add_main_1 (char *args, int from_tty, int flags)
1231{
7dcd53a0
TT
1232 const int add_flags = (current_inferior ()->symfile_flags
1233 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1234
7eedccfa 1235 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1236
d7db6da9
FN
1237 /* Getting new symbols may change our opinion about
1238 what is frameless. */
1239 reinit_frame_cache ();
1240
7dcd53a0
TT
1241 if ((flags & SYMFILE_NO_READ) == 0)
1242 set_initial_language ();
1adeb98a
FN
1243}
1244
1245void
1246symbol_file_clear (int from_tty)
1247{
1248 if ((have_full_symbols () || have_partial_symbols ())
1249 && from_tty
0430b0d6
AS
1250 && (symfile_objfile
1251 ? !query (_("Discard symbol table from `%s'? "),
1252 symfile_objfile->name)
1253 : !query (_("Discard symbol table? "))))
8a3fe4f8 1254 error (_("Not confirmed."));
1adeb98a 1255
0133421a
JK
1256 /* solib descriptors may have handles to objfiles. Wipe them before their
1257 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1258 no_shared_libraries (NULL, from_tty);
1259
0133421a
JK
1260 free_all_objfiles ();
1261
adb7f338 1262 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1263 if (from_tty)
1264 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1265}
1266
5b5d99cf
JB
1267static char *
1268get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269{
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
5417f6dc 1275
5b5d99cf
JB
1276 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1277
1278 if (sect == NULL)
1279 return NULL;
1280
1281 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1282
5b5d99cf
JB
1283 contents = xmalloc (debuglink_size);
1284 bfd_get_section_contents (objfile->obfd, sect, contents,
1285 (file_ptr)0, (bfd_size_type)debuglink_size);
1286
c378eb4e 1287 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1288 crc_offset = strlen (contents) + 1;
1289 crc_offset = (crc_offset + 3) & ~3;
1290
1291 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1292
5b5d99cf
JB
1293 *crc32_out = crc32;
1294 return contents;
1295}
1296
904578ed
JK
1297/* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1298 return 1. Otherwise print a warning and return 0. ABFD seek position is
1299 not preserved. */
1300
1301static int
1302get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1303{
1304 unsigned long file_crc = 0;
1305
1306 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1307 {
1308 warning (_("Problem reading \"%s\" for CRC: %s"),
1309 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1310 return 0;
1311 }
1312
1313 for (;;)
1314 {
1315 gdb_byte buffer[8 * 1024];
1316 bfd_size_type count;
1317
1318 count = bfd_bread (buffer, sizeof (buffer), abfd);
1319 if (count == (bfd_size_type) -1)
1320 {
1321 warning (_("Problem reading \"%s\" for CRC: %s"),
1322 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1323 return 0;
1324 }
1325 if (count == 0)
1326 break;
1327 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1328 }
1329
1330 *file_crc_return = file_crc;
1331 return 1;
1332}
1333
5b5d99cf 1334static int
287ccc17 1335separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1336 struct objfile *parent_objfile)
5b5d99cf 1337{
904578ed
JK
1338 unsigned long file_crc;
1339 int file_crc_p;
f1838a98 1340 bfd *abfd;
32a0e547 1341 struct stat parent_stat, abfd_stat;
904578ed 1342 int verified_as_different;
32a0e547
JK
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1348 the separate debug infos with the same basename can exist. */
32a0e547 1349
0ba1096a 1350 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1351 return 0;
5b5d99cf 1352
874f5765 1353 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1354
1355 if (!abfd)
5b5d99cf
JB
1356 return 0;
1357
0ba1096a 1358 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1359
1360 Some operating systems, e.g. Windows, do not provide a meaningful
1361 st_ino; they always set it to zero. (Windows does provide a
1362 meaningful st_dev.) Do not indicate a duplicate library in that
1363 case. While there is no guarantee that a system that provides
1364 meaningful inode numbers will never set st_ino to zero, this is
1365 merely an optimization, so we do not need to worry about false
1366 negatives. */
1367
1368 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1369 && abfd_stat.st_ino != 0
1370 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1371 {
904578ed
JK
1372 if (abfd_stat.st_dev == parent_stat.st_dev
1373 && abfd_stat.st_ino == parent_stat.st_ino)
1374 {
1375 bfd_close (abfd);
1376 return 0;
1377 }
1378 verified_as_different = 1;
32a0e547 1379 }
904578ed
JK
1380 else
1381 verified_as_different = 0;
32a0e547 1382
904578ed 1383 file_crc_p = get_file_crc (abfd, &file_crc);
5b5d99cf 1384
f1838a98 1385 bfd_close (abfd);
5b5d99cf 1386
904578ed
JK
1387 if (!file_crc_p)
1388 return 0;
1389
287ccc17
JK
1390 if (crc != file_crc)
1391 {
904578ed
JK
1392 /* If one (or both) the files are accessed for example the via "remote:"
1393 gdbserver way it does not support the bfd_stat operation. Verify
1394 whether those two files are not the same manually. */
1395
1396 if (!verified_as_different && !parent_objfile->crc32_p)
1397 {
1398 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1399 &parent_objfile->crc32);
1400 if (!parent_objfile->crc32_p)
1401 return 0;
1402 }
1403
0e8aefe7 1404 if (verified_as_different || parent_objfile->crc32 != file_crc)
904578ed
JK
1405 warning (_("the debug information found in \"%s\""
1406 " does not match \"%s\" (CRC mismatch).\n"),
1407 name, parent_objfile->name);
1408
287ccc17
JK
1409 return 0;
1410 }
1411
1412 return 1;
5b5d99cf
JB
1413}
1414
aa28a74e 1415char *debug_file_directory = NULL;
920d2a44
AC
1416static void
1417show_debug_file_directory (struct ui_file *file, int from_tty,
1418 struct cmd_list_element *c, const char *value)
1419{
3e43a32a
MS
1420 fprintf_filtered (file,
1421 _("The directory where separate debug "
1422 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1423 value);
1424}
5b5d99cf
JB
1425
1426#if ! defined (DEBUG_SUBDIRECTORY)
1427#define DEBUG_SUBDIRECTORY ".debug"
1428#endif
1429
1db33378
PP
1430/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1431 where the original file resides (may not be the same as
1432 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1433 looking for. Returns the name of the debuginfo, of NULL. */
1434
1435static char *
1436find_separate_debug_file (const char *dir,
1437 const char *canon_dir,
1438 const char *debuglink,
1439 unsigned long crc32, struct objfile *objfile)
9cce227f 1440{
1db33378
PP
1441 char *debugdir;
1442 char *debugfile;
9cce227f 1443 int i;
5b5d99cf 1444
1db33378 1445 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1446 i = strlen (dir);
1db33378
PP
1447 if (canon_dir != NULL && strlen (canon_dir) > i)
1448 i = strlen (canon_dir);
1ffa32ee 1449
25522fae
JK
1450 debugfile = xmalloc (strlen (debug_file_directory) + 1
1451 + i
1452 + strlen (DEBUG_SUBDIRECTORY)
1453 + strlen ("/")
1db33378 1454 + strlen (debuglink)
25522fae 1455 + 1);
5b5d99cf
JB
1456
1457 /* First try in the same directory as the original file. */
1458 strcpy (debugfile, dir);
1db33378 1459 strcat (debugfile, debuglink);
5b5d99cf 1460
32a0e547 1461 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1462 return debugfile;
5417f6dc 1463
5b5d99cf
JB
1464 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1465 strcpy (debugfile, dir);
1466 strcat (debugfile, DEBUG_SUBDIRECTORY);
1467 strcat (debugfile, "/");
1db33378 1468 strcat (debugfile, debuglink);
5b5d99cf 1469
32a0e547 1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1471 return debugfile;
5417f6dc 1472
24ddea62 1473 /* Then try in the global debugfile directories.
f888f159 1474
24ddea62
JK
1475 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1476 cause "/..." lookups. */
5417f6dc 1477
24ddea62
JK
1478 debugdir = debug_file_directory;
1479 do
aa28a74e 1480 {
24ddea62
JK
1481 char *debugdir_end;
1482
1483 while (*debugdir == DIRNAME_SEPARATOR)
1484 debugdir++;
1485
1486 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1487 if (debugdir_end == NULL)
1488 debugdir_end = &debugdir[strlen (debugdir)];
1489
1490 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1491 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1492 strcat (debugfile, "/");
24ddea62 1493 strcat (debugfile, dir);
1db33378 1494 strcat (debugfile, debuglink);
aa28a74e 1495
32a0e547 1496 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1497 return debugfile;
24ddea62
JK
1498
1499 /* If the file is in the sysroot, try using its base path in the
1500 global debugfile directory. */
1db33378
PP
1501 if (canon_dir != NULL
1502 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1503 strlen (gdb_sysroot)) == 0
1db33378 1504 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62
JK
1505 {
1506 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1507 debugfile[debugdir_end - debugdir] = 0;
1db33378 1508 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1509 strcat (debugfile, "/");
1db33378 1510 strcat (debugfile, debuglink);
24ddea62 1511
32a0e547 1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1513 return debugfile;
24ddea62
JK
1514 }
1515
1516 debugdir = debugdir_end;
aa28a74e 1517 }
24ddea62 1518 while (*debugdir != 0);
f888f159 1519
25522fae 1520 xfree (debugfile);
1db33378
PP
1521 return NULL;
1522}
1523
1524/* Modify PATH to contain only "directory/" part of PATH.
1525 If there were no directory separators in PATH, PATH will be empty
1526 string on return. */
1527
1528static void
1529terminate_after_last_dir_separator (char *path)
1530{
1531 int i;
1532
1533 /* Strip off the final filename part, leaving the directory name,
1534 followed by a slash. The directory can be relative or absolute. */
1535 for (i = strlen(path) - 1; i >= 0; i--)
1536 if (IS_DIR_SEPARATOR (path[i]))
1537 break;
1538
1539 /* If I is -1 then no directory is present there and DIR will be "". */
1540 path[i + 1] = '\0';
1541}
1542
1543/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1544 Returns pathname, or NULL. */
1545
1546char *
1547find_separate_debug_file_by_debuglink (struct objfile *objfile)
1548{
1549 char *debuglink;
1550 char *dir, *canon_dir;
1551 char *debugfile;
1552 unsigned long crc32;
1553 struct cleanup *cleanups;
1554
1555 debuglink = get_debug_link_info (objfile, &crc32);
1556
1557 if (debuglink == NULL)
1558 {
1559 /* There's no separate debug info, hence there's no way we could
1560 load it => no warning. */
1561 return NULL;
1562 }
1563
1564 dir = xstrdup (objfile->name);
1565 cleanups = make_cleanup (xfree, dir);
1566 terminate_after_last_dir_separator (dir);
1567 canon_dir = lrealpath (dir);
1568
1569 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1570 crc32, objfile);
1571 xfree (canon_dir);
1572
1573 if (debugfile == NULL)
1574 {
1575#ifdef HAVE_LSTAT
1576 /* For PR gdb/9538, try again with realpath (if different from the
1577 original). */
1578
1579 struct stat st_buf;
1580
1581 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1582 {
1583 char *symlink_dir;
1584
1585 symlink_dir = lrealpath (objfile->name);
1586 if (symlink_dir != NULL)
1587 {
1588 make_cleanup (xfree, symlink_dir);
1589 terminate_after_last_dir_separator (symlink_dir);
1590 if (strcmp (dir, symlink_dir) != 0)
1591 {
1592 /* Different directory, so try using it. */
1593 debugfile = find_separate_debug_file (symlink_dir,
1594 symlink_dir,
1595 debuglink,
1596 crc32,
1597 objfile);
1598 }
1599 }
1600 }
1601#endif /* HAVE_LSTAT */
1602 }
aa28a74e 1603
1db33378 1604 do_cleanups (cleanups);
25522fae 1605 return debugfile;
5b5d99cf
JB
1606}
1607
1608
c906108c
SS
1609/* This is the symbol-file command. Read the file, analyze its
1610 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1611 the command is rather bizarre:
1612
1613 1. The function buildargv implements various quoting conventions
1614 which are undocumented and have little or nothing in common with
1615 the way things are quoted (or not quoted) elsewhere in GDB.
1616
1617 2. Options are used, which are not generally used in GDB (perhaps
1618 "set mapped on", "set readnow on" would be better)
1619
1620 3. The order of options matters, which is contrary to GNU
c906108c
SS
1621 conventions (because it is confusing and inconvenient). */
1622
1623void
fba45db2 1624symbol_file_command (char *args, int from_tty)
c906108c 1625{
c906108c
SS
1626 dont_repeat ();
1627
1628 if (args == NULL)
1629 {
1adeb98a 1630 symbol_file_clear (from_tty);
c906108c
SS
1631 }
1632 else
1633 {
d1a41061 1634 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1635 int flags = OBJF_USERLOADED;
1636 struct cleanup *cleanups;
1637 char *name = NULL;
1638
7a292a7a 1639 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1640 while (*argv != NULL)
1641 {
78a4a9b9
AC
1642 if (strcmp (*argv, "-readnow") == 0)
1643 flags |= OBJF_READNOW;
1644 else if (**argv == '-')
8a3fe4f8 1645 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1646 else
1647 {
cb2f3a29 1648 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1649 name = *argv;
78a4a9b9 1650 }
cb2f3a29 1651
c906108c
SS
1652 argv++;
1653 }
1654
1655 if (name == NULL)
cb2f3a29
MK
1656 error (_("no symbol file name was specified"));
1657
c906108c
SS
1658 do_cleanups (cleanups);
1659 }
1660}
1661
1662/* Set the initial language.
1663
cb2f3a29
MK
1664 FIXME: A better solution would be to record the language in the
1665 psymtab when reading partial symbols, and then use it (if known) to
1666 set the language. This would be a win for formats that encode the
1667 language in an easily discoverable place, such as DWARF. For
1668 stabs, we can jump through hoops looking for specially named
1669 symbols or try to intuit the language from the specific type of
1670 stabs we find, but we can't do that until later when we read in
1671 full symbols. */
c906108c 1672
8b60591b 1673void
fba45db2 1674set_initial_language (void)
c906108c 1675{
c5aa993b 1676 enum language lang = language_unknown;
c906108c 1677
01f8c46d
JK
1678 if (language_of_main != language_unknown)
1679 lang = language_of_main;
1680 else
1681 {
1682 const char *filename;
f888f159 1683
01f8c46d
JK
1684 filename = find_main_filename ();
1685 if (filename != NULL)
1686 lang = deduce_language_from_filename (filename);
1687 }
cb2f3a29 1688
ccefe4c4
TT
1689 if (lang == language_unknown)
1690 {
1691 /* Make C the default language */
1692 lang = language_c;
c906108c 1693 }
ccefe4c4
TT
1694
1695 set_language (lang);
1696 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1697}
1698
874f5765
TG
1699/* If NAME is a remote name open the file using remote protocol, otherwise
1700 open it normally. */
1701
1702bfd *
1703bfd_open_maybe_remote (const char *name)
1704{
1705 if (remote_filename_p (name))
1706 return remote_bfd_open (name, gnutarget);
1707 else
1708 return bfd_openr (name, gnutarget);
1709}
1710
1711
cb2f3a29
MK
1712/* Open the file specified by NAME and hand it off to BFD for
1713 preliminary analysis. Return a newly initialized bfd *, which
1714 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1715 absolute). In case of trouble, error() is called. */
c906108c
SS
1716
1717bfd *
fba45db2 1718symfile_bfd_open (char *name)
c906108c
SS
1719{
1720 bfd *sym_bfd;
1721 int desc;
1722 char *absolute_name;
1723
f1838a98
UW
1724 if (remote_filename_p (name))
1725 {
1726 name = xstrdup (name);
1727 sym_bfd = remote_bfd_open (name, gnutarget);
1728 if (!sym_bfd)
1729 {
1730 make_cleanup (xfree, name);
1731 error (_("`%s': can't open to read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733 }
1734
1735 if (!bfd_check_format (sym_bfd, bfd_object))
1736 {
1737 bfd_close (sym_bfd);
1738 make_cleanup (xfree, name);
1739 error (_("`%s': can't read symbols: %s."), name,
1740 bfd_errmsg (bfd_get_error ()));
1741 }
1742
1743 return sym_bfd;
1744 }
1745
cb2f3a29 1746 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1747
1748 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1749 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1750 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1751#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1752 if (desc < 0)
1753 {
1754 char *exename = alloca (strlen (name) + 5);
433759f7 1755
c906108c 1756 strcat (strcpy (exename, name), ".exe");
014d698b 1757 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1758 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1759 }
1760#endif
1761 if (desc < 0)
1762 {
b8c9b27d 1763 make_cleanup (xfree, name);
c906108c
SS
1764 perror_with_name (name);
1765 }
cb2f3a29
MK
1766
1767 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
c378eb4e 1768 bfd. It'll be freed in free_objfile(). */
cb2f3a29
MK
1769 xfree (name);
1770 name = absolute_name;
c906108c 1771
9f76c2cd 1772 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1773 if (!sym_bfd)
1774 {
1775 close (desc);
b8c9b27d 1776 make_cleanup (xfree, name);
f1838a98 1777 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1778 bfd_errmsg (bfd_get_error ()));
1779 }
549c1eea 1780 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1781
1782 if (!bfd_check_format (sym_bfd, bfd_object))
1783 {
cb2f3a29
MK
1784 /* FIXME: should be checking for errors from bfd_close (for one
1785 thing, on error it does not free all the storage associated
1786 with the bfd). */
1787 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1788 make_cleanup (xfree, name);
f1838a98 1789 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1790 bfd_errmsg (bfd_get_error ()));
1791 }
cb2f3a29 1792
4f6f9936
JK
1793 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1794 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1795
cb2f3a29 1796 return sym_bfd;
c906108c
SS
1797}
1798
cb2f3a29
MK
1799/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1800 the section was not found. */
1801
0e931cf0
JB
1802int
1803get_section_index (struct objfile *objfile, char *section_name)
1804{
1805 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1806
0e931cf0
JB
1807 if (sect)
1808 return sect->index;
1809 else
1810 return -1;
1811}
1812
cb2f3a29
MK
1813/* Link SF into the global symtab_fns list. Called on startup by the
1814 _initialize routine in each object file format reader, to register
b021a221 1815 information about each format the reader is prepared to handle. */
c906108c
SS
1816
1817void
00b5771c 1818add_symtab_fns (const struct sym_fns *sf)
c906108c 1819{
00b5771c 1820 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1821}
1822
cb2f3a29
MK
1823/* Initialize OBJFILE to read symbols from its associated BFD. It
1824 either returns or calls error(). The result is an initialized
1825 struct sym_fns in the objfile structure, that contains cached
1826 information about the symbol file. */
c906108c 1827
00b5771c 1828static const struct sym_fns *
31d99776 1829find_sym_fns (bfd *abfd)
c906108c 1830{
00b5771c 1831 const struct sym_fns *sf;
31d99776 1832 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1833 int i;
c906108c 1834
75245b24
MS
1835 if (our_flavour == bfd_target_srec_flavour
1836 || our_flavour == bfd_target_ihex_flavour
1837 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1838 return NULL; /* No symbols. */
75245b24 1839
00b5771c 1840 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1841 if (our_flavour == sf->sym_flavour)
1842 return sf;
cb2f3a29 1843
8a3fe4f8 1844 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1845 bfd_get_target (abfd));
c906108c
SS
1846}
1847\f
cb2f3a29 1848
c906108c
SS
1849/* This function runs the load command of our current target. */
1850
1851static void
fba45db2 1852load_command (char *arg, int from_tty)
c906108c 1853{
e5cc9f32
JB
1854 dont_repeat ();
1855
4487aabf
PA
1856 /* The user might be reloading because the binary has changed. Take
1857 this opportunity to check. */
1858 reopen_exec_file ();
1859 reread_symbols ();
1860
c906108c 1861 if (arg == NULL)
1986bccd
AS
1862 {
1863 char *parg;
1864 int count = 0;
1865
1866 parg = arg = get_exec_file (1);
1867
1868 /* Count how many \ " ' tab space there are in the name. */
1869 while ((parg = strpbrk (parg, "\\\"'\t ")))
1870 {
1871 parg++;
1872 count++;
1873 }
1874
1875 if (count)
1876 {
1877 /* We need to quote this string so buildargv can pull it apart. */
1878 char *temp = xmalloc (strlen (arg) + count + 1 );
1879 char *ptemp = temp;
1880 char *prev;
1881
1882 make_cleanup (xfree, temp);
1883
1884 prev = parg = arg;
1885 while ((parg = strpbrk (parg, "\\\"'\t ")))
1886 {
1887 strncpy (ptemp, prev, parg - prev);
1888 ptemp += parg - prev;
1889 prev = parg++;
1890 *ptemp++ = '\\';
1891 }
1892 strcpy (ptemp, prev);
1893
1894 arg = temp;
1895 }
1896 }
1897
c906108c 1898 target_load (arg, from_tty);
2889e661
JB
1899
1900 /* After re-loading the executable, we don't really know which
1901 overlays are mapped any more. */
1902 overlay_cache_invalid = 1;
c906108c
SS
1903}
1904
1905/* This version of "load" should be usable for any target. Currently
1906 it is just used for remote targets, not inftarg.c or core files,
1907 on the theory that only in that case is it useful.
1908
1909 Avoiding xmodem and the like seems like a win (a) because we don't have
1910 to worry about finding it, and (b) On VMS, fork() is very slow and so
1911 we don't want to run a subprocess. On the other hand, I'm not sure how
1912 performance compares. */
917317f4 1913
917317f4
JM
1914static int validate_download = 0;
1915
e4f9b4d5
MS
1916/* Callback service function for generic_load (bfd_map_over_sections). */
1917
1918static void
1919add_section_size_callback (bfd *abfd, asection *asec, void *data)
1920{
1921 bfd_size_type *sum = data;
1922
2c500098 1923 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1924}
1925
1926/* Opaque data for load_section_callback. */
1927struct load_section_data {
1928 unsigned long load_offset;
a76d924d
DJ
1929 struct load_progress_data *progress_data;
1930 VEC(memory_write_request_s) *requests;
1931};
1932
1933/* Opaque data for load_progress. */
1934struct load_progress_data {
1935 /* Cumulative data. */
e4f9b4d5
MS
1936 unsigned long write_count;
1937 unsigned long data_count;
1938 bfd_size_type total_size;
a76d924d
DJ
1939};
1940
1941/* Opaque data for load_progress for a single section. */
1942struct load_progress_section_data {
1943 struct load_progress_data *cumulative;
cf7a04e8 1944
a76d924d 1945 /* Per-section data. */
cf7a04e8
DJ
1946 const char *section_name;
1947 ULONGEST section_sent;
1948 ULONGEST section_size;
1949 CORE_ADDR lma;
1950 gdb_byte *buffer;
e4f9b4d5
MS
1951};
1952
a76d924d 1953/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1954
1955static void
1956load_progress (ULONGEST bytes, void *untyped_arg)
1957{
a76d924d
DJ
1958 struct load_progress_section_data *args = untyped_arg;
1959 struct load_progress_data *totals;
1960
1961 if (args == NULL)
1962 /* Writing padding data. No easy way to get at the cumulative
1963 stats, so just ignore this. */
1964 return;
1965
1966 totals = args->cumulative;
1967
1968 if (bytes == 0 && args->section_sent == 0)
1969 {
1970 /* The write is just starting. Let the user know we've started
1971 this section. */
79a45e25 1972 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3
UW
1973 args->section_name, hex_string (args->section_size),
1974 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1975 return;
1976 }
cf7a04e8
DJ
1977
1978 if (validate_download)
1979 {
1980 /* Broken memories and broken monitors manifest themselves here
1981 when bring new computers to life. This doubles already slow
1982 downloads. */
1983 /* NOTE: cagney/1999-10-18: A more efficient implementation
1984 might add a verify_memory() method to the target vector and
1985 then use that. remote.c could implement that method using
1986 the ``qCRC'' packet. */
1987 gdb_byte *check = xmalloc (bytes);
1988 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1989
1990 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1991 error (_("Download verify read failed at %s"),
1992 paddress (target_gdbarch, args->lma));
cf7a04e8 1993 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1994 error (_("Download verify compare failed at %s"),
1995 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1996 do_cleanups (verify_cleanups);
1997 }
a76d924d 1998 totals->data_count += bytes;
cf7a04e8
DJ
1999 args->lma += bytes;
2000 args->buffer += bytes;
a76d924d 2001 totals->write_count += 1;
cf7a04e8
DJ
2002 args->section_sent += bytes;
2003 if (quit_flag
2004 || (deprecated_ui_load_progress_hook != NULL
2005 && deprecated_ui_load_progress_hook (args->section_name,
2006 args->section_sent)))
2007 error (_("Canceled the download"));
2008
2009 if (deprecated_show_load_progress != NULL)
2010 deprecated_show_load_progress (args->section_name,
2011 args->section_sent,
2012 args->section_size,
a76d924d
DJ
2013 totals->data_count,
2014 totals->total_size);
cf7a04e8
DJ
2015}
2016
e4f9b4d5
MS
2017/* Callback service function for generic_load (bfd_map_over_sections). */
2018
2019static void
2020load_section_callback (bfd *abfd, asection *asec, void *data)
2021{
a76d924d 2022 struct memory_write_request *new_request;
e4f9b4d5 2023 struct load_section_data *args = data;
a76d924d 2024 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2025 bfd_size_type size = bfd_get_section_size (asec);
2026 gdb_byte *buffer;
cf7a04e8 2027 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2028
cf7a04e8
DJ
2029 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2030 return;
e4f9b4d5 2031
cf7a04e8
DJ
2032 if (size == 0)
2033 return;
e4f9b4d5 2034
a76d924d
DJ
2035 new_request = VEC_safe_push (memory_write_request_s,
2036 args->requests, NULL);
2037 memset (new_request, 0, sizeof (struct memory_write_request));
2038 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2039 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2040 new_request->end = new_request->begin + size; /* FIXME Should size
2041 be in instead? */
a76d924d
DJ
2042 new_request->data = xmalloc (size);
2043 new_request->baton = section_data;
cf7a04e8 2044
a76d924d 2045 buffer = new_request->data;
cf7a04e8 2046
a76d924d
DJ
2047 section_data->cumulative = args->progress_data;
2048 section_data->section_name = sect_name;
2049 section_data->section_size = size;
2050 section_data->lma = new_request->begin;
2051 section_data->buffer = buffer;
cf7a04e8
DJ
2052
2053 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2054}
2055
2056/* Clean up an entire memory request vector, including load
2057 data and progress records. */
cf7a04e8 2058
a76d924d
DJ
2059static void
2060clear_memory_write_data (void *arg)
2061{
2062 VEC(memory_write_request_s) **vec_p = arg;
2063 VEC(memory_write_request_s) *vec = *vec_p;
2064 int i;
2065 struct memory_write_request *mr;
cf7a04e8 2066
a76d924d
DJ
2067 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2068 {
2069 xfree (mr->data);
2070 xfree (mr->baton);
2071 }
2072 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2073}
2074
c906108c 2075void
917317f4 2076generic_load (char *args, int from_tty)
c906108c 2077{
c906108c 2078 bfd *loadfile_bfd;
2b71414d 2079 struct timeval start_time, end_time;
917317f4 2080 char *filename;
1986bccd 2081 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2082 struct load_section_data cbdata;
a76d924d 2083 struct load_progress_data total_progress;
79a45e25 2084 struct ui_out *uiout = current_uiout;
a76d924d 2085
e4f9b4d5 2086 CORE_ADDR entry;
1986bccd 2087 char **argv;
e4f9b4d5 2088
a76d924d
DJ
2089 memset (&cbdata, 0, sizeof (cbdata));
2090 memset (&total_progress, 0, sizeof (total_progress));
2091 cbdata.progress_data = &total_progress;
2092
2093 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2094
d1a41061
PP
2095 if (args == NULL)
2096 error_no_arg (_("file to load"));
1986bccd 2097
d1a41061 2098 argv = gdb_buildargv (args);
1986bccd
AS
2099 make_cleanup_freeargv (argv);
2100
2101 filename = tilde_expand (argv[0]);
2102 make_cleanup (xfree, filename);
2103
2104 if (argv[1] != NULL)
917317f4
JM
2105 {
2106 char *endptr;
ba5f2f8a 2107
1986bccd
AS
2108 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2109
2110 /* If the last word was not a valid number then
2111 treat it as a file name with spaces in. */
2112 if (argv[1] == endptr)
2113 error (_("Invalid download offset:%s."), argv[1]);
2114
2115 if (argv[2] != NULL)
2116 error (_("Too many parameters."));
917317f4 2117 }
c906108c 2118
c378eb4e 2119 /* Open the file for loading. */
c906108c
SS
2120 loadfile_bfd = bfd_openr (filename, gnutarget);
2121 if (loadfile_bfd == NULL)
2122 {
2123 perror_with_name (filename);
2124 return;
2125 }
917317f4 2126
c906108c
SS
2127 /* FIXME: should be checking for errors from bfd_close (for one thing,
2128 on error it does not free all the storage associated with the
2129 bfd). */
5c65bbb6 2130 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2131
c5aa993b 2132 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2133 {
8a3fe4f8 2134 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2135 bfd_errmsg (bfd_get_error ()));
2136 }
c5aa993b 2137
5417f6dc 2138 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2139 (void *) &total_progress.total_size);
2140
2141 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2142
2b71414d 2143 gettimeofday (&start_time, NULL);
c906108c 2144
a76d924d
DJ
2145 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2146 load_progress) != 0)
2147 error (_("Load failed"));
c906108c 2148
2b71414d 2149 gettimeofday (&end_time, NULL);
ba5f2f8a 2150
e4f9b4d5 2151 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2152 ui_out_text (uiout, "Start address ");
5af949e3 2153 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2154 ui_out_text (uiout, ", load size ");
a76d924d 2155 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2156 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2157 /* We were doing this in remote-mips.c, I suspect it is right
2158 for other targets too. */
fb14de7b 2159 regcache_write_pc (get_current_regcache (), entry);
c906108c 2160
38963c97
DJ
2161 /* Reset breakpoints, now that we have changed the load image. For
2162 instance, breakpoints may have been set (or reset, by
2163 post_create_inferior) while connected to the target but before we
2164 loaded the program. In that case, the prologue analyzer could
2165 have read instructions from the target to find the right
2166 breakpoint locations. Loading has changed the contents of that
2167 memory. */
2168
2169 breakpoint_re_set ();
2170
7ca9f392
AC
2171 /* FIXME: are we supposed to call symbol_file_add or not? According
2172 to a comment from remote-mips.c (where a call to symbol_file_add
2173 was commented out), making the call confuses GDB if more than one
2174 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2175 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2176
a76d924d
DJ
2177 print_transfer_performance (gdb_stdout, total_progress.data_count,
2178 total_progress.write_count,
2179 &start_time, &end_time);
c906108c
SS
2180
2181 do_cleanups (old_cleanups);
2182}
2183
c378eb4e 2184/* Report how fast the transfer went. */
c906108c 2185
917317f4
JM
2186/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2187 replaced by print_transfer_performance (with a very different
c378eb4e 2188 function signature). */
917317f4 2189
c906108c 2190void
fba45db2
KB
2191report_transfer_performance (unsigned long data_count, time_t start_time,
2192 time_t end_time)
c906108c 2193{
2b71414d
DJ
2194 struct timeval start, end;
2195
2196 start.tv_sec = start_time;
2197 start.tv_usec = 0;
2198 end.tv_sec = end_time;
2199 end.tv_usec = 0;
2200
2201 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2202}
2203
2204void
d9fcf2fb 2205print_transfer_performance (struct ui_file *stream,
917317f4
JM
2206 unsigned long data_count,
2207 unsigned long write_count,
2b71414d
DJ
2208 const struct timeval *start_time,
2209 const struct timeval *end_time)
917317f4 2210{
9f43d28c 2211 ULONGEST time_count;
79a45e25 2212 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2213
2214 /* Compute the elapsed time in milliseconds, as a tradeoff between
2215 accuracy and overflow. */
2216 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2217 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2218
8b93c638
JM
2219 ui_out_text (uiout, "Transfer rate: ");
2220 if (time_count > 0)
2221 {
9f43d28c
DJ
2222 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2223
2224 if (ui_out_is_mi_like_p (uiout))
2225 {
2226 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2227 ui_out_text (uiout, " bits/sec");
2228 }
2229 else if (rate < 1024)
2230 {
2231 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2232 ui_out_text (uiout, " bytes/sec");
2233 }
2234 else
2235 {
2236 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2237 ui_out_text (uiout, " KB/sec");
2238 }
8b93c638
JM
2239 }
2240 else
2241 {
ba5f2f8a 2242 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2243 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2244 }
2245 if (write_count > 0)
2246 {
2247 ui_out_text (uiout, ", ");
ba5f2f8a 2248 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2249 ui_out_text (uiout, " bytes/write");
2250 }
2251 ui_out_text (uiout, ".\n");
c906108c
SS
2252}
2253
2254/* This function allows the addition of incrementally linked object files.
2255 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2256/* Note: ezannoni 2000-04-13 This function/command used to have a
2257 special case syntax for the rombug target (Rombug is the boot
2258 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2259 rombug case, the user doesn't need to supply a text address,
2260 instead a call to target_link() (in target.c) would supply the
c378eb4e 2261 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2262
c906108c 2263static void
fba45db2 2264add_symbol_file_command (char *args, int from_tty)
c906108c 2265{
5af949e3 2266 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2267 char *filename = NULL;
2df3850c 2268 int flags = OBJF_USERLOADED;
c906108c 2269 char *arg;
db162d44 2270 int section_index = 0;
2acceee2
JM
2271 int argcnt = 0;
2272 int sec_num = 0;
2273 int i;
db162d44
EZ
2274 int expecting_sec_name = 0;
2275 int expecting_sec_addr = 0;
5b96932b 2276 char **argv;
db162d44 2277
a39a16c4 2278 struct sect_opt
2acceee2 2279 {
2acceee2
JM
2280 char *name;
2281 char *value;
a39a16c4 2282 };
db162d44 2283
a39a16c4
MM
2284 struct section_addr_info *section_addrs;
2285 struct sect_opt *sect_opts = NULL;
2286 size_t num_sect_opts = 0;
3017564a 2287 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2288
a39a16c4 2289 num_sect_opts = 16;
5417f6dc 2290 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2291 * sizeof (struct sect_opt));
2292
c906108c
SS
2293 dont_repeat ();
2294
2295 if (args == NULL)
8a3fe4f8 2296 error (_("add-symbol-file takes a file name and an address"));
c906108c 2297
d1a41061 2298 argv = gdb_buildargv (args);
5b96932b 2299 make_cleanup_freeargv (argv);
db162d44 2300
5b96932b
AS
2301 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2302 {
c378eb4e 2303 /* Process the argument. */
db162d44 2304 if (argcnt == 0)
c906108c 2305 {
c378eb4e 2306 /* The first argument is the file name. */
db162d44 2307 filename = tilde_expand (arg);
3017564a 2308 make_cleanup (xfree, filename);
c906108c 2309 }
db162d44 2310 else
7a78ae4e
ND
2311 if (argcnt == 1)
2312 {
2313 /* The second argument is always the text address at which
c378eb4e 2314 to load the program. */
7a78ae4e
ND
2315 sect_opts[section_index].name = ".text";
2316 sect_opts[section_index].value = arg;
f414f22f 2317 if (++section_index >= num_sect_opts)
a39a16c4
MM
2318 {
2319 num_sect_opts *= 2;
5417f6dc 2320 sect_opts = ((struct sect_opt *)
a39a16c4 2321 xrealloc (sect_opts,
5417f6dc 2322 num_sect_opts
a39a16c4
MM
2323 * sizeof (struct sect_opt)));
2324 }
7a78ae4e
ND
2325 }
2326 else
2327 {
2328 /* It's an option (starting with '-') or it's an argument
c378eb4e 2329 to an option. */
7a78ae4e
ND
2330
2331 if (*arg == '-')
2332 {
78a4a9b9
AC
2333 if (strcmp (arg, "-readnow") == 0)
2334 flags |= OBJF_READNOW;
2335 else if (strcmp (arg, "-s") == 0)
2336 {
2337 expecting_sec_name = 1;
2338 expecting_sec_addr = 1;
2339 }
7a78ae4e
ND
2340 }
2341 else
2342 {
2343 if (expecting_sec_name)
db162d44 2344 {
7a78ae4e
ND
2345 sect_opts[section_index].name = arg;
2346 expecting_sec_name = 0;
db162d44
EZ
2347 }
2348 else
7a78ae4e
ND
2349 if (expecting_sec_addr)
2350 {
2351 sect_opts[section_index].value = arg;
2352 expecting_sec_addr = 0;
f414f22f 2353 if (++section_index >= num_sect_opts)
a39a16c4
MM
2354 {
2355 num_sect_opts *= 2;
5417f6dc 2356 sect_opts = ((struct sect_opt *)
a39a16c4 2357 xrealloc (sect_opts,
5417f6dc 2358 num_sect_opts
a39a16c4
MM
2359 * sizeof (struct sect_opt)));
2360 }
7a78ae4e
ND
2361 }
2362 else
3e43a32a 2363 error (_("USAGE: add-symbol-file <filename> <textaddress>"
412946b6 2364 " [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2365 }
2366 }
c906108c 2367 }
c906108c 2368
927890d0
JB
2369 /* This command takes at least two arguments. The first one is a
2370 filename, and the second is the address where this file has been
2371 loaded. Abort now if this address hasn't been provided by the
2372 user. */
2373 if (section_index < 1)
2374 error (_("The address where %s has been loaded is missing"), filename);
2375
c378eb4e 2376 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2377 a sect_addr_info structure to be passed around to other
2378 functions. We have to split this up into separate print
bb599908 2379 statements because hex_string returns a local static
c378eb4e 2380 string. */
5417f6dc 2381
a3f17187 2382 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2383 section_addrs = alloc_section_addr_info (section_index);
2384 make_cleanup (xfree, section_addrs);
db162d44 2385 for (i = 0; i < section_index; i++)
c906108c 2386 {
db162d44
EZ
2387 CORE_ADDR addr;
2388 char *val = sect_opts[i].value;
2389 char *sec = sect_opts[i].name;
5417f6dc 2390
ae822768 2391 addr = parse_and_eval_address (val);
db162d44 2392
db162d44 2393 /* Here we store the section offsets in the order they were
c378eb4e 2394 entered on the command line. */
a39a16c4
MM
2395 section_addrs->other[sec_num].name = sec;
2396 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2397 printf_unfiltered ("\t%s_addr = %s\n", sec,
2398 paddress (gdbarch, addr));
db162d44
EZ
2399 sec_num++;
2400
5417f6dc 2401 /* The object's sections are initialized when a
db162d44 2402 call is made to build_objfile_section_table (objfile).
5417f6dc 2403 This happens in reread_symbols.
db162d44
EZ
2404 At this point, we don't know what file type this is,
2405 so we can't determine what section names are valid. */
2acceee2 2406 }
db162d44 2407
2acceee2 2408 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2409 error (_("Not confirmed."));
c906108c 2410
7eedccfa
PP
2411 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2412 section_addrs, flags);
c906108c
SS
2413
2414 /* Getting new symbols may change our opinion about what is
2415 frameless. */
2416 reinit_frame_cache ();
db162d44 2417 do_cleanups (my_cleanups);
c906108c
SS
2418}
2419\f
70992597 2420
4ac39b97
JK
2421typedef struct objfile *objfilep;
2422
2423DEF_VEC_P (objfilep);
2424
c906108c
SS
2425/* Re-read symbols if a symbol-file has changed. */
2426void
fba45db2 2427reread_symbols (void)
c906108c
SS
2428{
2429 struct objfile *objfile;
2430 long new_modtime;
c906108c
SS
2431 struct stat new_statbuf;
2432 int res;
4ac39b97
JK
2433 VEC (objfilep) *new_objfiles = NULL;
2434 struct cleanup *all_cleanups;
2435
2436 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2437
2438 /* With the addition of shared libraries, this should be modified,
2439 the load time should be saved in the partial symbol tables, since
2440 different tables may come from different source files. FIXME.
2441 This routine should then walk down each partial symbol table
c378eb4e 2442 and see if the symbol table that it originates from has been changed. */
c906108c 2443
c5aa993b
JM
2444 for (objfile = object_files; objfile; objfile = objfile->next)
2445 {
9cce227f
TG
2446 /* solib-sunos.c creates one objfile with obfd. */
2447 if (objfile->obfd == NULL)
2448 continue;
2449
2450 /* Separate debug objfiles are handled in the main objfile. */
2451 if (objfile->separate_debug_objfile_backlink)
2452 continue;
2453
02aeec7b
JB
2454 /* If this object is from an archive (what you usually create with
2455 `ar', often called a `static library' on most systems, though
2456 a `shared library' on AIX is also an archive), then you should
2457 stat on the archive name, not member name. */
9cce227f
TG
2458 if (objfile->obfd->my_archive)
2459 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2460 else
9cce227f
TG
2461 res = stat (objfile->name, &new_statbuf);
2462 if (res != 0)
2463 {
c378eb4e 2464 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2465 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2466 objfile->name);
2467 continue;
2468 }
2469 new_modtime = new_statbuf.st_mtime;
2470 if (new_modtime != objfile->mtime)
2471 {
2472 struct cleanup *old_cleanups;
2473 struct section_offsets *offsets;
2474 int num_offsets;
2475 char *obfd_filename;
2476
2477 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2478 objfile->name);
2479
2480 /* There are various functions like symbol_file_add,
2481 symfile_bfd_open, syms_from_objfile, etc., which might
2482 appear to do what we want. But they have various other
2483 effects which we *don't* want. So we just do stuff
2484 ourselves. We don't worry about mapped files (for one thing,
2485 any mapped file will be out of date). */
2486
2487 /* If we get an error, blow away this objfile (not sure if
2488 that is the correct response for things like shared
2489 libraries). */
2490 old_cleanups = make_cleanup_free_objfile (objfile);
2491 /* We need to do this whenever any symbols go away. */
2492 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2493
0ba1096a
KT
2494 if (exec_bfd != NULL
2495 && filename_cmp (bfd_get_filename (objfile->obfd),
2496 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2497 {
2498 /* Reload EXEC_BFD without asking anything. */
2499
2500 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2501 }
2502
f6eeced0
JK
2503 /* Keep the calls order approx. the same as in free_objfile. */
2504
2505 /* Free the separate debug objfiles. It will be
2506 automatically recreated by sym_read. */
2507 free_objfile_separate_debug (objfile);
2508
2509 /* Remove any references to this objfile in the global
2510 value lists. */
2511 preserve_values (objfile);
2512
2513 /* Nuke all the state that we will re-read. Much of the following
2514 code which sets things to NULL really is necessary to tell
2515 other parts of GDB that there is nothing currently there.
2516
2517 Try to keep the freeing order compatible with free_objfile. */
2518
2519 if (objfile->sf != NULL)
2520 {
2521 (*objfile->sf->sym_finish) (objfile);
2522 }
2523
2524 clear_objfile_data (objfile);
2525
9cce227f
TG
2526 /* Clean up any state BFD has sitting around. We don't need
2527 to close the descriptor but BFD lacks a way of closing the
2528 BFD without closing the descriptor. */
2529 obfd_filename = bfd_get_filename (objfile->obfd);
2530 if (!bfd_close (objfile->obfd))
2531 error (_("Can't close BFD for %s: %s"), objfile->name,
2532 bfd_errmsg (bfd_get_error ()));
874f5765 2533 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2534 if (objfile->obfd == NULL)
2535 error (_("Can't open %s to read symbols."), objfile->name);
2536 else
2537 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2538 /* bfd_openr sets cacheable to true, which is what we want. */
2539 if (!bfd_check_format (objfile->obfd, bfd_object))
2540 error (_("Can't read symbols from %s: %s."), objfile->name,
2541 bfd_errmsg (bfd_get_error ()));
2542
2543 /* Save the offsets, we will nuke them with the rest of the
2544 objfile_obstack. */
2545 num_offsets = objfile->num_sections;
2546 offsets = ((struct section_offsets *)
2547 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2548 memcpy (offsets, objfile->section_offsets,
2549 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2550
9cce227f
TG
2551 /* FIXME: Do we have to free a whole linked list, or is this
2552 enough? */
2553 if (objfile->global_psymbols.list)
2554 xfree (objfile->global_psymbols.list);
2555 memset (&objfile->global_psymbols, 0,
2556 sizeof (objfile->global_psymbols));
2557 if (objfile->static_psymbols.list)
2558 xfree (objfile->static_psymbols.list);
2559 memset (&objfile->static_psymbols, 0,
2560 sizeof (objfile->static_psymbols));
2561
c378eb4e 2562 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2563 psymbol_bcache_free (objfile->psymbol_cache);
2564 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2565 bcache_xfree (objfile->macro_cache);
cbd70537 2566 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2567 bcache_xfree (objfile->filename_cache);
cbd70537 2568 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2569 if (objfile->demangled_names_hash != NULL)
2570 {
2571 htab_delete (objfile->demangled_names_hash);
2572 objfile->demangled_names_hash = NULL;
2573 }
2574 obstack_free (&objfile->objfile_obstack, 0);
2575 objfile->sections = NULL;
2576 objfile->symtabs = NULL;
2577 objfile->psymtabs = NULL;
2578 objfile->psymtabs_addrmap = NULL;
2579 objfile->free_psymtabs = NULL;
34eaf542 2580 objfile->template_symbols = NULL;
9cce227f
TG
2581 objfile->msymbols = NULL;
2582 objfile->deprecated_sym_private = NULL;
2583 objfile->minimal_symbol_count = 0;
2584 memset (&objfile->msymbol_hash, 0,
2585 sizeof (objfile->msymbol_hash));
2586 memset (&objfile->msymbol_demangled_hash, 0,
2587 sizeof (objfile->msymbol_demangled_hash));
2588
9cce227f
TG
2589 /* obstack_init also initializes the obstack so it is
2590 empty. We could use obstack_specify_allocation but
d82ea6a8 2591 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2592 obstack_init (&objfile->objfile_obstack);
d82ea6a8 2593 build_objfile_section_table (objfile);
9cce227f
TG
2594 terminate_minimal_symbol_table (objfile);
2595
2596 /* We use the same section offsets as from last time. I'm not
2597 sure whether that is always correct for shared libraries. */
2598 objfile->section_offsets = (struct section_offsets *)
2599 obstack_alloc (&objfile->objfile_obstack,
2600 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2601 memcpy (objfile->section_offsets, offsets,
2602 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2603 objfile->num_sections = num_offsets;
2604
2605 /* What the hell is sym_new_init for, anyway? The concept of
2606 distinguishing between the main file and additional files
2607 in this way seems rather dubious. */
2608 if (objfile == symfile_objfile)
c906108c 2609 {
9cce227f 2610 (*objfile->sf->sym_new_init) (objfile);
c906108c 2611 }
9cce227f
TG
2612
2613 (*objfile->sf->sym_init) (objfile);
2614 clear_complaints (&symfile_complaints, 1, 1);
2615 /* Do not set flags as this is safe and we don't want to be
2616 verbose. */
2617 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2618 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2619 {
2620 objfile->flags &= ~OBJF_PSYMTABS_READ;
2621 require_partial_symbols (objfile, 0);
2622 }
2623
9cce227f 2624 if (!objfile_has_symbols (objfile))
c906108c 2625 {
9cce227f
TG
2626 wrap_here ("");
2627 printf_unfiltered (_("(no debugging symbols found)\n"));
2628 wrap_here ("");
c5aa993b 2629 }
9cce227f
TG
2630
2631 /* We're done reading the symbol file; finish off complaints. */
2632 clear_complaints (&symfile_complaints, 0, 1);
2633
2634 /* Getting new symbols may change our opinion about what is
2635 frameless. */
2636
2637 reinit_frame_cache ();
2638
2639 /* Discard cleanups as symbol reading was successful. */
2640 discard_cleanups (old_cleanups);
2641
2642 /* If the mtime has changed between the time we set new_modtime
2643 and now, we *want* this to be out of date, so don't call stat
2644 again now. */
2645 objfile->mtime = new_modtime;
9cce227f 2646 init_entry_point_info (objfile);
4ac39b97
JK
2647
2648 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2649 }
2650 }
c906108c 2651
4ac39b97 2652 if (new_objfiles)
ea53e89f 2653 {
4ac39b97
JK
2654 int ix;
2655
ff3536bc
UW
2656 /* Notify objfiles that we've modified objfile sections. */
2657 objfiles_changed ();
2658
c1e56572 2659 clear_symtab_users (0);
4ac39b97
JK
2660
2661 /* clear_objfile_data for each objfile was called before freeing it and
2662 observer_notify_new_objfile (NULL) has been called by
2663 clear_symtab_users above. Notify the new files now. */
2664 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2665 observer_notify_new_objfile (objfile);
2666
ea53e89f
JB
2667 /* At least one objfile has changed, so we can consider that
2668 the executable we're debugging has changed too. */
781b42b0 2669 observer_notify_executable_changed ();
ea53e89f 2670 }
4ac39b97
JK
2671
2672 do_cleanups (all_cleanups);
c906108c 2673}
c906108c
SS
2674\f
2675
c5aa993b
JM
2676
2677typedef struct
2678{
2679 char *ext;
c906108c 2680 enum language lang;
c5aa993b
JM
2681}
2682filename_language;
c906108c 2683
c5aa993b 2684static filename_language *filename_language_table;
c906108c
SS
2685static int fl_table_size, fl_table_next;
2686
2687static void
fba45db2 2688add_filename_language (char *ext, enum language lang)
c906108c
SS
2689{
2690 if (fl_table_next >= fl_table_size)
2691 {
2692 fl_table_size += 10;
5417f6dc 2693 filename_language_table =
25bf3106
PM
2694 xrealloc (filename_language_table,
2695 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2696 }
2697
4fcf66da 2698 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2699 filename_language_table[fl_table_next].lang = lang;
2700 fl_table_next++;
2701}
2702
2703static char *ext_args;
920d2a44
AC
2704static void
2705show_ext_args (struct ui_file *file, int from_tty,
2706 struct cmd_list_element *c, const char *value)
2707{
3e43a32a
MS
2708 fprintf_filtered (file,
2709 _("Mapping between filename extension "
2710 "and source language is \"%s\".\n"),
920d2a44
AC
2711 value);
2712}
c906108c
SS
2713
2714static void
26c41df3 2715set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2716{
2717 int i;
2718 char *cp = ext_args;
2719 enum language lang;
2720
c378eb4e 2721 /* First arg is filename extension, starting with '.' */
c906108c 2722 if (*cp != '.')
8a3fe4f8 2723 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2724
2725 /* Find end of first arg. */
c5aa993b 2726 while (*cp && !isspace (*cp))
c906108c
SS
2727 cp++;
2728
2729 if (*cp == '\0')
3e43a32a
MS
2730 error (_("'%s': two arguments required -- "
2731 "filename extension and language"),
c906108c
SS
2732 ext_args);
2733
c378eb4e 2734 /* Null-terminate first arg. */
c5aa993b 2735 *cp++ = '\0';
c906108c
SS
2736
2737 /* Find beginning of second arg, which should be a source language. */
2738 while (*cp && isspace (*cp))
2739 cp++;
2740
2741 if (*cp == '\0')
3e43a32a
MS
2742 error (_("'%s': two arguments required -- "
2743 "filename extension and language"),
c906108c
SS
2744 ext_args);
2745
2746 /* Lookup the language from among those we know. */
2747 lang = language_enum (cp);
2748
2749 /* Now lookup the filename extension: do we already know it? */
2750 for (i = 0; i < fl_table_next; i++)
2751 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2752 break;
2753
2754 if (i >= fl_table_next)
2755 {
c378eb4e 2756 /* New file extension. */
c906108c
SS
2757 add_filename_language (ext_args, lang);
2758 }
2759 else
2760 {
c378eb4e 2761 /* Redefining a previously known filename extension. */
c906108c
SS
2762
2763 /* if (from_tty) */
2764 /* query ("Really make files of type %s '%s'?", */
2765 /* ext_args, language_str (lang)); */
2766
b8c9b27d 2767 xfree (filename_language_table[i].ext);
4fcf66da 2768 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2769 filename_language_table[i].lang = lang;
2770 }
2771}
2772
2773static void
fba45db2 2774info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2775{
2776 int i;
2777
a3f17187 2778 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2779 printf_filtered ("\n\n");
2780 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2781 printf_filtered ("\t%s\t- %s\n",
2782 filename_language_table[i].ext,
c906108c
SS
2783 language_str (filename_language_table[i].lang));
2784}
2785
2786static void
fba45db2 2787init_filename_language_table (void)
c906108c 2788{
c378eb4e 2789 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2790 {
2791 fl_table_size = 20;
2792 fl_table_next = 0;
c5aa993b 2793 filename_language_table =
c906108c 2794 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2795 add_filename_language (".c", language_c);
6aecb9c2 2796 add_filename_language (".d", language_d);
c5aa993b
JM
2797 add_filename_language (".C", language_cplus);
2798 add_filename_language (".cc", language_cplus);
2799 add_filename_language (".cp", language_cplus);
2800 add_filename_language (".cpp", language_cplus);
2801 add_filename_language (".cxx", language_cplus);
2802 add_filename_language (".c++", language_cplus);
2803 add_filename_language (".java", language_java);
c906108c 2804 add_filename_language (".class", language_java);
da2cf7e0 2805 add_filename_language (".m", language_objc);
c5aa993b
JM
2806 add_filename_language (".f", language_fortran);
2807 add_filename_language (".F", language_fortran);
fd5700c7
JK
2808 add_filename_language (".for", language_fortran);
2809 add_filename_language (".FOR", language_fortran);
2810 add_filename_language (".ftn", language_fortran);
2811 add_filename_language (".FTN", language_fortran);
2812 add_filename_language (".fpp", language_fortran);
2813 add_filename_language (".FPP", language_fortran);
2814 add_filename_language (".f90", language_fortran);
2815 add_filename_language (".F90", language_fortran);
2816 add_filename_language (".f95", language_fortran);
2817 add_filename_language (".F95", language_fortran);
2818 add_filename_language (".f03", language_fortran);
2819 add_filename_language (".F03", language_fortran);
2820 add_filename_language (".f08", language_fortran);
2821 add_filename_language (".F08", language_fortran);
c5aa993b 2822 add_filename_language (".s", language_asm);
aa707ed0 2823 add_filename_language (".sx", language_asm);
c5aa993b 2824 add_filename_language (".S", language_asm);
c6fd39cd
PM
2825 add_filename_language (".pas", language_pascal);
2826 add_filename_language (".p", language_pascal);
2827 add_filename_language (".pp", language_pascal);
963a6417
PH
2828 add_filename_language (".adb", language_ada);
2829 add_filename_language (".ads", language_ada);
2830 add_filename_language (".a", language_ada);
2831 add_filename_language (".ada", language_ada);
dde59185 2832 add_filename_language (".dg", language_ada);
c906108c
SS
2833 }
2834}
2835
2836enum language
dd786858 2837deduce_language_from_filename (const char *filename)
c906108c
SS
2838{
2839 int i;
2840 char *cp;
2841
2842 if (filename != NULL)
2843 if ((cp = strrchr (filename, '.')) != NULL)
2844 for (i = 0; i < fl_table_next; i++)
2845 if (strcmp (cp, filename_language_table[i].ext) == 0)
2846 return filename_language_table[i].lang;
2847
2848 return language_unknown;
2849}
2850\f
2851/* allocate_symtab:
2852
2853 Allocate and partly initialize a new symbol table. Return a pointer
2854 to it. error() if no space.
2855
2856 Caller must set these fields:
c5aa993b
JM
2857 LINETABLE(symtab)
2858 symtab->blockvector
2859 symtab->dirname
2860 symtab->free_code
2861 symtab->free_ptr
c906108c
SS
2862 */
2863
2864struct symtab *
72b9f47f 2865allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2866{
52f0bd74 2867 struct symtab *symtab;
c906108c
SS
2868
2869 symtab = (struct symtab *)
4a146b47 2870 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2871 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2872 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2873 objfile->filename_cache);
c5aa993b
JM
2874 symtab->fullname = NULL;
2875 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2876 symtab->debugformat = "unknown";
c906108c 2877
c378eb4e 2878 /* Hook it to the objfile it comes from. */
c906108c 2879
c5aa993b
JM
2880 symtab->objfile = objfile;
2881 symtab->next = objfile->symtabs;
2882 objfile->symtabs = symtab;
c906108c 2883
c906108c
SS
2884 return (symtab);
2885}
c906108c 2886\f
c5aa993b 2887
c906108c 2888/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2889 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2890
2891void
c1e56572 2892clear_symtab_users (int add_flags)
c906108c
SS
2893{
2894 /* Someday, we should do better than this, by only blowing away
2895 the things that really need to be blown. */
c0501be5
DJ
2896
2897 /* Clear the "current" symtab first, because it is no longer valid.
2898 breakpoint_re_set may try to access the current symtab. */
2899 clear_current_source_symtab_and_line ();
2900
c906108c 2901 clear_displays ();
c1e56572
JK
2902 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2903 breakpoint_re_set ();
1bfeeb0f 2904 clear_last_displayed_sal ();
c906108c 2905 clear_pc_function_cache ();
06d3b283 2906 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2907
2908 /* Clear globals which might have pointed into a removed objfile.
2909 FIXME: It's not clear which of these are supposed to persist
2910 between expressions and which ought to be reset each time. */
2911 expression_context_block = NULL;
2912 innermost_block = NULL;
8756216b
DP
2913
2914 /* Varobj may refer to old symbols, perform a cleanup. */
2915 varobj_invalidate ();
2916
c906108c
SS
2917}
2918
74b7792f
AC
2919static void
2920clear_symtab_users_cleanup (void *ignore)
2921{
c1e56572 2922 clear_symtab_users (0);
74b7792f 2923}
c906108c 2924\f
c906108c
SS
2925/* OVERLAYS:
2926 The following code implements an abstraction for debugging overlay sections.
2927
2928 The target model is as follows:
2929 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2930 same VMA, each with its own unique LMA (or load address).
c906108c 2931 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2932 sections, one by one, from the load address into the VMA address.
5417f6dc 2933 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2934 sections should be considered to be mapped from the VMA to the LMA.
2935 This information is used for symbol lookup, and memory read/write.
5417f6dc 2936 For instance, if a section has been mapped then its contents
c5aa993b 2937 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2938
2939 Two levels of debugger support for overlays are available. One is
2940 "manual", in which the debugger relies on the user to tell it which
2941 overlays are currently mapped. This level of support is
2942 implemented entirely in the core debugger, and the information about
2943 whether a section is mapped is kept in the objfile->obj_section table.
2944
2945 The second level of support is "automatic", and is only available if
2946 the target-specific code provides functionality to read the target's
2947 overlay mapping table, and translate its contents for the debugger
2948 (by updating the mapped state information in the obj_section tables).
2949
2950 The interface is as follows:
c5aa993b
JM
2951 User commands:
2952 overlay map <name> -- tell gdb to consider this section mapped
2953 overlay unmap <name> -- tell gdb to consider this section unmapped
2954 overlay list -- list the sections that GDB thinks are mapped
2955 overlay read-target -- get the target's state of what's mapped
2956 overlay off/manual/auto -- set overlay debugging state
2957 Functional interface:
2958 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2959 section, return that section.
5417f6dc 2960 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2961 the pc, either in its VMA or its LMA
714835d5 2962 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2963 section_is_overlay(sect): true if section's VMA != LMA
2964 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2965 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2966 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2967 overlay_mapped_address(...): map an address from section's LMA to VMA
2968 overlay_unmapped_address(...): map an address from section's VMA to LMA
2969 symbol_overlayed_address(...): Return a "current" address for symbol:
2970 either in VMA or LMA depending on whether
c378eb4e 2971 the symbol's section is currently mapped. */
c906108c
SS
2972
2973/* Overlay debugging state: */
2974
d874f1e2 2975enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2976int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2977
c906108c 2978/* Function: section_is_overlay (SECTION)
5417f6dc 2979 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2980 SECTION is loaded at an address different from where it will "run". */
2981
2982int
714835d5 2983section_is_overlay (struct obj_section *section)
c906108c 2984{
714835d5
UW
2985 if (overlay_debugging && section)
2986 {
2987 bfd *abfd = section->objfile->obfd;
2988 asection *bfd_section = section->the_bfd_section;
f888f159 2989
714835d5
UW
2990 if (bfd_section_lma (abfd, bfd_section) != 0
2991 && bfd_section_lma (abfd, bfd_section)
2992 != bfd_section_vma (abfd, bfd_section))
2993 return 1;
2994 }
c906108c
SS
2995
2996 return 0;
2997}
2998
2999/* Function: overlay_invalidate_all (void)
3000 Invalidate the mapped state of all overlay sections (mark it as stale). */
3001
3002static void
fba45db2 3003overlay_invalidate_all (void)
c906108c 3004{
c5aa993b 3005 struct objfile *objfile;
c906108c
SS
3006 struct obj_section *sect;
3007
3008 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3009 if (section_is_overlay (sect))
3010 sect->ovly_mapped = -1;
c906108c
SS
3011}
3012
714835d5 3013/* Function: section_is_mapped (SECTION)
5417f6dc 3014 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3015
3016 Access to the ovly_mapped flag is restricted to this function, so
3017 that we can do automatic update. If the global flag
3018 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3019 overlay_invalidate_all. If the mapped state of the particular
3020 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3021
714835d5
UW
3022int
3023section_is_mapped (struct obj_section *osect)
c906108c 3024{
9216df95
UW
3025 struct gdbarch *gdbarch;
3026
714835d5 3027 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3028 return 0;
3029
c5aa993b 3030 switch (overlay_debugging)
c906108c
SS
3031 {
3032 default:
d874f1e2 3033 case ovly_off:
c5aa993b 3034 return 0; /* overlay debugging off */
d874f1e2 3035 case ovly_auto: /* overlay debugging automatic */
1c772458 3036 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3037 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3038 gdbarch = get_objfile_arch (osect->objfile);
3039 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3040 {
3041 if (overlay_cache_invalid)
3042 {
3043 overlay_invalidate_all ();
3044 overlay_cache_invalid = 0;
3045 }
3046 if (osect->ovly_mapped == -1)
9216df95 3047 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3048 }
3049 /* fall thru to manual case */
d874f1e2 3050 case ovly_on: /* overlay debugging manual */
c906108c
SS
3051 return osect->ovly_mapped == 1;
3052 }
3053}
3054
c906108c
SS
3055/* Function: pc_in_unmapped_range
3056 If PC falls into the lma range of SECTION, return true, else false. */
3057
3058CORE_ADDR
714835d5 3059pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3060{
714835d5
UW
3061 if (section_is_overlay (section))
3062 {
3063 bfd *abfd = section->objfile->obfd;
3064 asection *bfd_section = section->the_bfd_section;
fbd35540 3065
714835d5
UW
3066 /* We assume the LMA is relocated by the same offset as the VMA. */
3067 bfd_vma size = bfd_get_section_size (bfd_section);
3068 CORE_ADDR offset = obj_section_offset (section);
3069
3070 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3071 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3072 return 1;
3073 }
c906108c 3074
c906108c
SS
3075 return 0;
3076}
3077
3078/* Function: pc_in_mapped_range
3079 If PC falls into the vma range of SECTION, return true, else false. */
3080
3081CORE_ADDR
714835d5 3082pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3083{
714835d5
UW
3084 if (section_is_overlay (section))
3085 {
3086 if (obj_section_addr (section) <= pc
3087 && pc < obj_section_endaddr (section))
3088 return 1;
3089 }
c906108c 3090
c906108c
SS
3091 return 0;
3092}
3093
9ec8e6a0
JB
3094
3095/* Return true if the mapped ranges of sections A and B overlap, false
3096 otherwise. */
b9362cc7 3097static int
714835d5 3098sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3099{
714835d5
UW
3100 CORE_ADDR a_start = obj_section_addr (a);
3101 CORE_ADDR a_end = obj_section_endaddr (a);
3102 CORE_ADDR b_start = obj_section_addr (b);
3103 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3104
3105 return (a_start < b_end && b_start < a_end);
3106}
3107
c906108c
SS
3108/* Function: overlay_unmapped_address (PC, SECTION)
3109 Returns the address corresponding to PC in the unmapped (load) range.
3110 May be the same as PC. */
3111
3112CORE_ADDR
714835d5 3113overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3114{
714835d5
UW
3115 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3116 {
3117 bfd *abfd = section->objfile->obfd;
3118 asection *bfd_section = section->the_bfd_section;
fbd35540 3119
714835d5
UW
3120 return pc + bfd_section_lma (abfd, bfd_section)
3121 - bfd_section_vma (abfd, bfd_section);
3122 }
c906108c
SS
3123
3124 return pc;
3125}
3126
3127/* Function: overlay_mapped_address (PC, SECTION)
3128 Returns the address corresponding to PC in the mapped (runtime) range.
3129 May be the same as PC. */
3130
3131CORE_ADDR
714835d5 3132overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3133{
714835d5
UW
3134 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3135 {
3136 bfd *abfd = section->objfile->obfd;
3137 asection *bfd_section = section->the_bfd_section;
fbd35540 3138
714835d5
UW
3139 return pc + bfd_section_vma (abfd, bfd_section)
3140 - bfd_section_lma (abfd, bfd_section);
3141 }
c906108c
SS
3142
3143 return pc;
3144}
3145
3146
5417f6dc 3147/* Function: symbol_overlayed_address
c906108c
SS
3148 Return one of two addresses (relative to the VMA or to the LMA),
3149 depending on whether the section is mapped or not. */
3150
c5aa993b 3151CORE_ADDR
714835d5 3152symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3153{
3154 if (overlay_debugging)
3155 {
c378eb4e 3156 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3157 if (section == 0)
3158 return address;
c378eb4e
MS
3159 /* If the symbol's section is not an overlay, just return its
3160 address. */
c906108c
SS
3161 if (!section_is_overlay (section))
3162 return address;
c378eb4e 3163 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3164 if (section_is_mapped (section))
3165 return address;
3166 /*
3167 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3168 * then return its LOADED address rather than its vma address!!
3169 */
3170 return overlay_unmapped_address (address, section);
3171 }
3172 return address;
3173}
3174
5417f6dc 3175/* Function: find_pc_overlay (PC)
c906108c
SS
3176 Return the best-match overlay section for PC:
3177 If PC matches a mapped overlay section's VMA, return that section.
3178 Else if PC matches an unmapped section's VMA, return that section.
3179 Else if PC matches an unmapped section's LMA, return that section. */
3180
714835d5 3181struct obj_section *
fba45db2 3182find_pc_overlay (CORE_ADDR pc)
c906108c 3183{
c5aa993b 3184 struct objfile *objfile;
c906108c
SS
3185 struct obj_section *osect, *best_match = NULL;
3186
3187 if (overlay_debugging)
3188 ALL_OBJSECTIONS (objfile, osect)
714835d5 3189 if (section_is_overlay (osect))
c5aa993b 3190 {
714835d5 3191 if (pc_in_mapped_range (pc, osect))
c5aa993b 3192 {
714835d5
UW
3193 if (section_is_mapped (osect))
3194 return osect;
c5aa993b
JM
3195 else
3196 best_match = osect;
3197 }
714835d5 3198 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3199 best_match = osect;
3200 }
714835d5 3201 return best_match;
c906108c
SS
3202}
3203
3204/* Function: find_pc_mapped_section (PC)
5417f6dc 3205 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3206 currently marked as MAPPED, return that section. Else return NULL. */
3207
714835d5 3208struct obj_section *
fba45db2 3209find_pc_mapped_section (CORE_ADDR pc)
c906108c 3210{
c5aa993b 3211 struct objfile *objfile;
c906108c
SS
3212 struct obj_section *osect;
3213
3214 if (overlay_debugging)
3215 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3216 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3217 return osect;
c906108c
SS
3218
3219 return NULL;
3220}
3221
3222/* Function: list_overlays_command
c378eb4e 3223 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3224
3225void
fba45db2 3226list_overlays_command (char *args, int from_tty)
c906108c 3227{
c5aa993b
JM
3228 int nmapped = 0;
3229 struct objfile *objfile;
c906108c
SS
3230 struct obj_section *osect;
3231
3232 if (overlay_debugging)
3233 ALL_OBJSECTIONS (objfile, osect)
714835d5 3234 if (section_is_mapped (osect))
c5aa993b 3235 {
5af949e3 3236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3242 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3243 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3244 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3245
3246 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3247 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3248 puts_filtered (" - ");
5af949e3 3249 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3250 printf_filtered (", mapped at ");
5af949e3 3251 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3252 puts_filtered (" - ");
5af949e3 3253 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3254 puts_filtered ("\n");
3255
3256 nmapped++;
3257 }
c906108c 3258 if (nmapped == 0)
a3f17187 3259 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3260}
3261
3262/* Function: map_overlay_command
3263 Mark the named section as mapped (ie. residing at its VMA address). */
3264
3265void
fba45db2 3266map_overlay_command (char *args, int from_tty)
c906108c 3267{
c5aa993b
JM
3268 struct objfile *objfile, *objfile2;
3269 struct obj_section *sec, *sec2;
c906108c
SS
3270
3271 if (!overlay_debugging)
3e43a32a
MS
3272 error (_("Overlay debugging not enabled. Use "
3273 "either the 'overlay auto' or\n"
3274 "the 'overlay manual' command."));
c906108c
SS
3275
3276 if (args == 0 || *args == 0)
8a3fe4f8 3277 error (_("Argument required: name of an overlay section"));
c906108c 3278
c378eb4e 3279 /* First, find a section matching the user supplied argument. */
c906108c
SS
3280 ALL_OBJSECTIONS (objfile, sec)
3281 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3282 {
c378eb4e 3283 /* Now, check to see if the section is an overlay. */
714835d5 3284 if (!section_is_overlay (sec))
c5aa993b
JM
3285 continue; /* not an overlay section */
3286
c378eb4e 3287 /* Mark the overlay as "mapped". */
c5aa993b
JM
3288 sec->ovly_mapped = 1;
3289
3290 /* Next, make a pass and unmap any sections that are
3291 overlapped by this new section: */
3292 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3293 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3294 {
3295 if (info_verbose)
a3f17187 3296 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3297 bfd_section_name (objfile->obfd,
3298 sec2->the_bfd_section));
c378eb4e 3299 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3300 }
3301 return;
3302 }
8a3fe4f8 3303 error (_("No overlay section called %s"), args);
c906108c
SS
3304}
3305
3306/* Function: unmap_overlay_command
5417f6dc 3307 Mark the overlay section as unmapped
c906108c
SS
3308 (ie. resident in its LMA address range, rather than the VMA range). */
3309
3310void
fba45db2 3311unmap_overlay_command (char *args, int from_tty)
c906108c 3312{
c5aa993b 3313 struct objfile *objfile;
c906108c
SS
3314 struct obj_section *sec;
3315
3316 if (!overlay_debugging)
3e43a32a
MS
3317 error (_("Overlay debugging not enabled. "
3318 "Use either the 'overlay auto' or\n"
3319 "the 'overlay manual' command."));
c906108c
SS
3320
3321 if (args == 0 || *args == 0)
8a3fe4f8 3322 error (_("Argument required: name of an overlay section"));
c906108c 3323
c378eb4e 3324 /* First, find a section matching the user supplied argument. */
c906108c
SS
3325 ALL_OBJSECTIONS (objfile, sec)
3326 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3327 {
3328 if (!sec->ovly_mapped)
8a3fe4f8 3329 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3330 sec->ovly_mapped = 0;
3331 return;
3332 }
8a3fe4f8 3333 error (_("No overlay section called %s"), args);
c906108c
SS
3334}
3335
3336/* Function: overlay_auto_command
3337 A utility command to turn on overlay debugging.
c378eb4e 3338 Possibly this should be done via a set/show command. */
c906108c
SS
3339
3340static void
fba45db2 3341overlay_auto_command (char *args, int from_tty)
c906108c 3342{
d874f1e2 3343 overlay_debugging = ovly_auto;
1900040c 3344 enable_overlay_breakpoints ();
c906108c 3345 if (info_verbose)
a3f17187 3346 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3347}
3348
3349/* Function: overlay_manual_command
3350 A utility command to turn on overlay debugging.
c378eb4e 3351 Possibly this should be done via a set/show command. */
c906108c
SS
3352
3353static void
fba45db2 3354overlay_manual_command (char *args, int from_tty)
c906108c 3355{
d874f1e2 3356 overlay_debugging = ovly_on;
1900040c 3357 disable_overlay_breakpoints ();
c906108c 3358 if (info_verbose)
a3f17187 3359 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3360}
3361
3362/* Function: overlay_off_command
3363 A utility command to turn on overlay debugging.
c378eb4e 3364 Possibly this should be done via a set/show command. */
c906108c
SS
3365
3366static void
fba45db2 3367overlay_off_command (char *args, int from_tty)
c906108c 3368{
d874f1e2 3369 overlay_debugging = ovly_off;
1900040c 3370 disable_overlay_breakpoints ();
c906108c 3371 if (info_verbose)
a3f17187 3372 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3373}
3374
3375static void
fba45db2 3376overlay_load_command (char *args, int from_tty)
c906108c 3377{
e17c207e
UW
3378 struct gdbarch *gdbarch = get_current_arch ();
3379
3380 if (gdbarch_overlay_update_p (gdbarch))
3381 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3382 else
8a3fe4f8 3383 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3384}
3385
3386/* Function: overlay_command
c378eb4e 3387 A place-holder for a mis-typed command. */
c906108c 3388
c378eb4e 3389/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3390struct cmd_list_element *overlaylist;
3391
3392static void
fba45db2 3393overlay_command (char *args, int from_tty)
c906108c 3394{
c5aa993b 3395 printf_unfiltered
c906108c
SS
3396 ("\"overlay\" must be followed by the name of an overlay command.\n");
3397 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3398}
3399
3400
3401/* Target Overlays for the "Simplest" overlay manager:
3402
5417f6dc
RM
3403 This is GDB's default target overlay layer. It works with the
3404 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3405 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3406 so targets that use a different runtime overlay manager can
c906108c
SS
3407 substitute their own overlay_update function and take over the
3408 function pointer.
3409
3410 The overlay_update function pokes around in the target's data structures
3411 to see what overlays are mapped, and updates GDB's overlay mapping with
3412 this information.
3413
3414 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3415 unsigned _novlys; /# number of overlay sections #/
3416 unsigned _ovly_table[_novlys][4] = {
3417 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3418 {..., ..., ..., ...},
3419 }
3420 unsigned _novly_regions; /# number of overlay regions #/
3421 unsigned _ovly_region_table[_novly_regions][3] = {
3422 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3423 {..., ..., ...},
3424 }
c906108c
SS
3425 These functions will attempt to update GDB's mappedness state in the
3426 symbol section table, based on the target's mappedness state.
3427
3428 To do this, we keep a cached copy of the target's _ovly_table, and
3429 attempt to detect when the cached copy is invalidated. The main
3430 entry point is "simple_overlay_update(SECT), which looks up SECT in
3431 the cached table and re-reads only the entry for that section from
c378eb4e 3432 the target (whenever possible). */
c906108c
SS
3433
3434/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3435static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3436static unsigned cache_novlys = 0;
c906108c 3437static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3438enum ovly_index
3439 {
3440 VMA, SIZE, LMA, MAPPED
3441 };
c906108c 3442
c378eb4e 3443/* Throw away the cached copy of _ovly_table. */
c906108c 3444static void
fba45db2 3445simple_free_overlay_table (void)
c906108c
SS
3446{
3447 if (cache_ovly_table)
b8c9b27d 3448 xfree (cache_ovly_table);
c5aa993b 3449 cache_novlys = 0;
c906108c
SS
3450 cache_ovly_table = NULL;
3451 cache_ovly_table_base = 0;
3452}
3453
9216df95 3454/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3455 Convert to host order. int LEN is number of ints. */
c906108c 3456static void
9216df95 3457read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3458 int len, int size, enum bfd_endian byte_order)
c906108c 3459{
c378eb4e 3460 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3461 gdb_byte *buf = alloca (len * size);
c5aa993b 3462 int i;
c906108c 3463
9216df95 3464 read_memory (memaddr, buf, len * size);
c906108c 3465 for (i = 0; i < len; i++)
e17a4113 3466 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3467}
3468
3469/* Find and grab a copy of the target _ovly_table
c378eb4e 3470 (and _novlys, which is needed for the table's size). */
c5aa993b 3471static int
fba45db2 3472simple_read_overlay_table (void)
c906108c 3473{
0d43edd1 3474 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3475 struct gdbarch *gdbarch;
3476 int word_size;
e17a4113 3477 enum bfd_endian byte_order;
c906108c
SS
3478
3479 simple_free_overlay_table ();
9b27852e 3480 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3481 if (! novlys_msym)
c906108c 3482 {
8a3fe4f8 3483 error (_("Error reading inferior's overlay table: "
0d43edd1 3484 "couldn't find `_novlys' variable\n"
8a3fe4f8 3485 "in inferior. Use `overlay manual' mode."));
0d43edd1 3486 return 0;
c906108c 3487 }
0d43edd1 3488
9b27852e 3489 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3490 if (! ovly_table_msym)
3491 {
8a3fe4f8 3492 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3493 "`_ovly_table' array\n"
8a3fe4f8 3494 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3495 return 0;
3496 }
3497
9216df95
UW
3498 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3499 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3500 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3501
e17a4113
UW
3502 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3503 4, byte_order);
0d43edd1
JB
3504 cache_ovly_table
3505 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3506 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3507 read_target_long_array (cache_ovly_table_base,
777ea8f1 3508 (unsigned int *) cache_ovly_table,
e17a4113 3509 cache_novlys * 4, word_size, byte_order);
0d43edd1 3510
c5aa993b 3511 return 1; /* SUCCESS */
c906108c
SS
3512}
3513
5417f6dc 3514/* Function: simple_overlay_update_1
c906108c
SS
3515 A helper function for simple_overlay_update. Assuming a cached copy
3516 of _ovly_table exists, look through it to find an entry whose vma,
3517 lma and size match those of OSECT. Re-read the entry and make sure
3518 it still matches OSECT (else the table may no longer be valid).
3519 Set OSECT's mapped state to match the entry. Return: 1 for
3520 success, 0 for failure. */
3521
3522static int
fba45db2 3523simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3524{
3525 int i, size;
fbd35540
MS
3526 bfd *obfd = osect->objfile->obfd;
3527 asection *bsect = osect->the_bfd_section;
9216df95
UW
3528 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3529 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3531
2c500098 3532 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3533 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3536 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3537 {
9216df95
UW
3538 read_target_long_array (cache_ovly_table_base + i * word_size,
3539 (unsigned int *) cache_ovly_table[i],
e17a4113 3540 4, word_size, byte_order);
fbd35540
MS
3541 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3542 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3543 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3544 {
3545 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3546 return 1;
3547 }
c378eb4e 3548 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3549 return 0;
3550 }
3551 return 0;
3552}
3553
3554/* Function: simple_overlay_update
5417f6dc
RM
3555 If OSECT is NULL, then update all sections' mapped state
3556 (after re-reading the entire target _ovly_table).
3557 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3558 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3559 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3560 re-read the entire cache, and go ahead and update all sections. */
3561
1c772458 3562void
fba45db2 3563simple_overlay_update (struct obj_section *osect)
c906108c 3564{
c5aa993b 3565 struct objfile *objfile;
c906108c 3566
c378eb4e 3567 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3568 if (osect)
c378eb4e 3569 /* Have we got a cached copy of the target's overlay table? */
c906108c 3570 if (cache_ovly_table != NULL)
9cc89665
MS
3571 {
3572 /* Does its cached location match what's currently in the
3573 symtab? */
3574 struct minimal_symbol *minsym
3575 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3576
3577 if (minsym == NULL)
3578 error (_("Error reading inferior's overlay table: couldn't "
3579 "find `_ovly_table' array\n"
3580 "in inferior. Use `overlay manual' mode."));
3581
3582 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3583 /* Then go ahead and try to look up this single section in
3584 the cache. */
3585 if (simple_overlay_update_1 (osect))
3586 /* Found it! We're done. */
3587 return;
3588 }
c906108c
SS
3589
3590 /* Cached table no good: need to read the entire table anew.
3591 Or else we want all the sections, in which case it's actually
3592 more efficient to read the whole table in one block anyway. */
3593
0d43edd1
JB
3594 if (! simple_read_overlay_table ())
3595 return;
3596
c378eb4e 3597 /* Now may as well update all sections, even if only one was requested. */
c906108c 3598 ALL_OBJSECTIONS (objfile, osect)
714835d5 3599 if (section_is_overlay (osect))
c5aa993b
JM
3600 {
3601 int i, size;
fbd35540
MS
3602 bfd *obfd = osect->objfile->obfd;
3603 asection *bsect = osect->the_bfd_section;
c5aa993b 3604
2c500098 3605 size = bfd_get_section_size (bsect);
c5aa993b 3606 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3607 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3608 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3609 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3610 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3611 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3612 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3613 }
3614 }
c906108c
SS
3615}
3616
086df311
DJ
3617/* Set the output sections and output offsets for section SECTP in
3618 ABFD. The relocation code in BFD will read these offsets, so we
3619 need to be sure they're initialized. We map each section to itself,
3620 with no offset; this means that SECTP->vma will be honored. */
3621
3622static void
3623symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3624{
3625 sectp->output_section = sectp;
3626 sectp->output_offset = 0;
3627}
3628
ac8035ab
TG
3629/* Default implementation for sym_relocate. */
3630
3631
3632bfd_byte *
3633default_symfile_relocate (struct objfile *objfile, asection *sectp,
3634 bfd_byte *buf)
3635{
3636 bfd *abfd = objfile->obfd;
3637
3638 /* We're only interested in sections with relocation
3639 information. */
3640 if ((sectp->flags & SEC_RELOC) == 0)
3641 return NULL;
3642
3643 /* We will handle section offsets properly elsewhere, so relocate as if
3644 all sections begin at 0. */
3645 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3646
3647 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3648}
3649
086df311
DJ
3650/* Relocate the contents of a debug section SECTP in ABFD. The
3651 contents are stored in BUF if it is non-NULL, or returned in a
3652 malloc'd buffer otherwise.
3653
3654 For some platforms and debug info formats, shared libraries contain
3655 relocations against the debug sections (particularly for DWARF-2;
3656 one affected platform is PowerPC GNU/Linux, although it depends on
3657 the version of the linker in use). Also, ELF object files naturally
3658 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3659 the relocations in order to get the locations of symbols correct.
3660 Another example that may require relocation processing, is the
3661 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3662 debug section. */
086df311
DJ
3663
3664bfd_byte *
ac8035ab
TG
3665symfile_relocate_debug_section (struct objfile *objfile,
3666 asection *sectp, bfd_byte *buf)
086df311 3667{
ac8035ab 3668 gdb_assert (objfile->sf->sym_relocate);
086df311 3669
ac8035ab 3670 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3671}
c906108c 3672
31d99776
DJ
3673struct symfile_segment_data *
3674get_symfile_segment_data (bfd *abfd)
3675{
00b5771c 3676 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3677
3678 if (sf == NULL)
3679 return NULL;
3680
3681 return sf->sym_segments (abfd);
3682}
3683
3684void
3685free_symfile_segment_data (struct symfile_segment_data *data)
3686{
3687 xfree (data->segment_bases);
3688 xfree (data->segment_sizes);
3689 xfree (data->segment_info);
3690 xfree (data);
3691}
3692
28c32713
JB
3693
3694/* Given:
3695 - DATA, containing segment addresses from the object file ABFD, and
3696 the mapping from ABFD's sections onto the segments that own them,
3697 and
3698 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3699 segment addresses reported by the target,
3700 store the appropriate offsets for each section in OFFSETS.
3701
3702 If there are fewer entries in SEGMENT_BASES than there are segments
3703 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3704
8d385431
DJ
3705 If there are more entries, then ignore the extra. The target may
3706 not be able to distinguish between an empty data segment and a
3707 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3708int
3709symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3710 struct section_offsets *offsets,
3711 int num_segment_bases,
3712 const CORE_ADDR *segment_bases)
3713{
3714 int i;
3715 asection *sect;
3716
28c32713
JB
3717 /* It doesn't make sense to call this function unless you have some
3718 segment base addresses. */
202b96c1 3719 gdb_assert (num_segment_bases > 0);
28c32713 3720
31d99776
DJ
3721 /* If we do not have segment mappings for the object file, we
3722 can not relocate it by segments. */
3723 gdb_assert (data != NULL);
3724 gdb_assert (data->num_segments > 0);
3725
31d99776
DJ
3726 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3727 {
31d99776
DJ
3728 int which = data->segment_info[i];
3729
28c32713
JB
3730 gdb_assert (0 <= which && which <= data->num_segments);
3731
3732 /* Don't bother computing offsets for sections that aren't
3733 loaded as part of any segment. */
3734 if (! which)
3735 continue;
3736
3737 /* Use the last SEGMENT_BASES entry as the address of any extra
3738 segments mentioned in DATA->segment_info. */
31d99776 3739 if (which > num_segment_bases)
28c32713 3740 which = num_segment_bases;
31d99776 3741
28c32713
JB
3742 offsets->offsets[i] = (segment_bases[which - 1]
3743 - data->segment_bases[which - 1]);
31d99776
DJ
3744 }
3745
3746 return 1;
3747}
3748
3749static void
3750symfile_find_segment_sections (struct objfile *objfile)
3751{
3752 bfd *abfd = objfile->obfd;
3753 int i;
3754 asection *sect;
3755 struct symfile_segment_data *data;
3756
3757 data = get_symfile_segment_data (objfile->obfd);
3758 if (data == NULL)
3759 return;
3760
3761 if (data->num_segments != 1 && data->num_segments != 2)
3762 {
3763 free_symfile_segment_data (data);
3764 return;
3765 }
3766
3767 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3768 {
31d99776
DJ
3769 int which = data->segment_info[i];
3770
3771 if (which == 1)
3772 {
3773 if (objfile->sect_index_text == -1)
3774 objfile->sect_index_text = sect->index;
3775
3776 if (objfile->sect_index_rodata == -1)
3777 objfile->sect_index_rodata = sect->index;
3778 }
3779 else if (which == 2)
3780 {
3781 if (objfile->sect_index_data == -1)
3782 objfile->sect_index_data = sect->index;
3783
3784 if (objfile->sect_index_bss == -1)
3785 objfile->sect_index_bss = sect->index;
3786 }
3787 }
3788
3789 free_symfile_segment_data (data);
3790}
3791
c906108c 3792void
fba45db2 3793_initialize_symfile (void)
c906108c
SS
3794{
3795 struct cmd_list_element *c;
c5aa993b 3796
1a966eab
AC
3797 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3798Load symbol table from executable file FILE.\n\
c906108c 3799The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3800to execute."), &cmdlist);
5ba2abeb 3801 set_cmd_completer (c, filename_completer);
c906108c 3802
1a966eab 3803 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3804Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3805Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3806 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3807The optional arguments are section-name section-address pairs and\n\
3808should be specified if the data and bss segments are not contiguous\n\
1a966eab 3809with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3810 &cmdlist);
5ba2abeb 3811 set_cmd_completer (c, filename_completer);
c906108c 3812
1a966eab
AC
3813 c = add_cmd ("load", class_files, load_command, _("\
3814Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3815for access from GDB.\n\
3816A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3817 set_cmd_completer (c, filename_completer);
c906108c 3818
c5aa993b 3819 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3820 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3821 "overlay ", 0, &cmdlist);
3822
3823 add_com_alias ("ovly", "overlay", class_alias, 1);
3824 add_com_alias ("ov", "overlay", class_alias, 1);
3825
c5aa993b 3826 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3827 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3828
c5aa993b 3829 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3830 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3831
c5aa993b 3832 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3833 _("List mappings of overlay sections."), &overlaylist);
c906108c 3834
c5aa993b 3835 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3836 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3837 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3838 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3839 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3840 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3841 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3842 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3843
3844 /* Filename extension to source language lookup table: */
3845 init_filename_language_table ();
26c41df3
AC
3846 add_setshow_string_noescape_cmd ("extension-language", class_files,
3847 &ext_args, _("\
3848Set mapping between filename extension and source language."), _("\
3849Show mapping between filename extension and source language."), _("\
3850Usage: set extension-language .foo bar"),
3851 set_ext_lang_command,
920d2a44 3852 show_ext_args,
26c41df3 3853 &setlist, &showlist);
c906108c 3854
c5aa993b 3855 add_info ("extensions", info_ext_lang_command,
1bedd215 3856 _("All filename extensions associated with a source language."));
917317f4 3857
525226b5
AC
3858 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3859 &debug_file_directory, _("\
24ddea62
JK
3860Set the directories where separate debug symbols are searched for."), _("\
3861Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3862Separate debug symbols are first searched for in the same\n\
3863directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3864and lastly at the path of the directory of the binary with\n\
24ddea62 3865each global debug-file-directory component prepended."),
525226b5 3866 NULL,
920d2a44 3867 show_debug_file_directory,
525226b5 3868 &setlist, &showlist);
c906108c 3869}
This page took 1.491389 seconds and 4 git commands to generate.