ChangeLog:
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
c5aa993b 40#include "inferior.h" /* for write_pc */
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
c906108c 56
c906108c
SS
57#include <sys/types.h>
58#include <fcntl.h>
59#include "gdb_string.h"
60#include "gdb_stat.h"
61#include <ctype.h>
62#include <time.h>
2b71414d 63#include <sys/time.h>
c906108c 64
c906108c 65
9a4105ab
AC
66int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
c2d11a7d 71 unsigned long total_size);
769d7dc4
AC
72void (*deprecated_pre_add_symbol_hook) (const char *);
73void (*deprecated_post_add_symbol_hook) (void);
c906108c 74
74b7792f
AC
75static void clear_symtab_users_cleanup (void *ignore);
76
c906108c 77/* Global variables owned by this file */
c5aa993b 78int readnow_symbol_files; /* Read full symbols immediately */
c906108c 79
c906108c
SS
80/* External variables and functions referenced. */
81
a14ed312 82extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
83
84/* Functions this file defines */
85
86#if 0
a14ed312
KB
87static int simple_read_overlay_region_table (void);
88static void simple_free_overlay_region_table (void);
c906108c
SS
89#endif
90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97static void add_shared_symbol_files_command (char *, int);
c906108c 98
5b5d99cf
JB
99static void reread_separate_symbols (struct objfile *objfile);
100
a14ed312 101static void cashier_psymtab (struct partial_symtab *);
c906108c 102
a14ed312 103bfd *symfile_bfd_open (char *);
c906108c 104
0e931cf0
JB
105int get_section_index (struct objfile *, char *);
106
31d99776 107static struct sym_fns *find_sym_fns (bfd *);
c906108c 108
a14ed312 109static void decrement_reading_symtab (void *);
c906108c 110
a14ed312 111static void overlay_invalidate_all (void);
c906108c 112
a14ed312 113static int overlay_is_mapped (struct obj_section *);
c906108c 114
a14ed312 115void list_overlays_command (char *, int);
c906108c 116
a14ed312 117void map_overlay_command (char *, int);
c906108c 118
a14ed312 119void unmap_overlay_command (char *, int);
c906108c 120
a14ed312 121static void overlay_auto_command (char *, int);
c906108c 122
a14ed312 123static void overlay_manual_command (char *, int);
c906108c 124
a14ed312 125static void overlay_off_command (char *, int);
c906108c 126
a14ed312 127static void overlay_load_command (char *, int);
c906108c 128
a14ed312 129static void overlay_command (char *, int);
c906108c 130
a14ed312 131static void simple_free_overlay_table (void);
c906108c 132
a14ed312 133static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 134
a14ed312 135static int simple_read_overlay_table (void);
c906108c 136
a14ed312 137static int simple_overlay_update_1 (struct obj_section *);
c906108c 138
a14ed312 139static void add_filename_language (char *ext, enum language lang);
392a587b 140
a14ed312 141static void info_ext_lang_command (char *args, int from_tty);
392a587b 142
5b5d99cf
JB
143static char *find_separate_debug_file (struct objfile *objfile);
144
a14ed312 145static void init_filename_language_table (void);
392a587b 146
31d99776
DJ
147static void symfile_find_segment_sections (struct objfile *objfile);
148
a14ed312 149void _initialize_symfile (void);
c906108c
SS
150
151/* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155static struct sym_fns *symtab_fns = NULL;
156
157/* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160#ifdef SYMBOL_RELOADING_DEFAULT
161int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162#else
163int symbol_reloading = 0;
164#endif
920d2a44
AC
165static void
166show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("\
170Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172}
173
c906108c 174
b7209cb4
FF
175/* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
c906108c 182 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 183 report all the functions that are actually present. */
c906108c
SS
184
185int auto_solib_add = 1;
b7209cb4
FF
186
187/* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195int auto_solib_limit;
c906108c 196\f
c5aa993b 197
0fe19209
DC
198/* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
c906108c
SS
200
201static int
0cd64fe2 202compare_psymbols (const void *s1p, const void *s2p)
c906108c 203{
0fe19209
DC
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
4725b721
PH
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
209}
210
211void
fba45db2 212sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
213{
214 /* Sort the global list; don't sort the static list */
215
c5aa993b
JM
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
218 compare_psymbols);
219}
220
c906108c
SS
221/* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226char *
63ca651f 227obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 228{
52f0bd74 229 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
aa1ee363
AC
234 const char *p1 = ptr;
235 char *p2 = p;
63ca651f 236 const char *end = ptr + size;
c906108c
SS
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242}
243
244/* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247char *
fba45db2
KB
248obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
c906108c 250{
52f0bd74
AC
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257}
258
259/* True if we are nested inside psymtab_to_symtab. */
260
261int currently_reading_symtab = 0;
262
263static void
fba45db2 264decrement_reading_symtab (void *dummy)
c906108c
SS
265{
266 currently_reading_symtab--;
267}
268
269/* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274struct symtab *
aa1ee363 275psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
276{
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
c5aa993b 283 {
c906108c
SS
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291}
292
5417f6dc
RM
293/* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
c906108c
SS
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302void
4efb68b1 303find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 304{
c5aa993b 305 asection **lowest = (asection **) obj;
c906108c
SS
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317}
318
a39a16c4
MM
319/* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321struct section_addr_info *
322alloc_section_addr_info (size_t num_sections)
323{
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334}
62557bbc 335
7b90c3f9
JB
336
337/* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339struct section_addr_info *
340copy_section_addr_info (struct section_addr_info *addrs)
341{
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358}
359
360
361
62557bbc
KB
362/* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365extern struct section_addr_info *
366build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368{
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
a39a16c4 373 sap = alloc_section_addr_info (end - start);
62557bbc
KB
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
5417f6dc 377 if (bfd_get_section_flags (stp->bfd,
fbd35540 378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 379 && oidx < end - start)
62557bbc
KB
380 {
381 sap->other[oidx].addr = stp->addr;
5417f6dc 382 sap->other[oidx].name
fbd35540 383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390}
391
392
393/* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395extern void
396free_section_addr_info (struct section_addr_info *sap)
397{
398 int idx;
399
a39a16c4 400 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 401 if (sap->other[idx].name)
b8c9b27d
KB
402 xfree (sap->other[idx].name);
403 xfree (sap);
62557bbc
KB
404}
405
406
e8289572
JB
407/* Initialize OBJFILE's sect_index_* members. */
408static void
409init_objfile_sect_indices (struct objfile *objfile)
c906108c 410{
e8289572 411 asection *sect;
c906108c 412 int i;
5417f6dc 413
b8fbeb18 414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 415 if (sect)
b8fbeb18
EZ
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 419 if (sect)
b8fbeb18
EZ
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 423 if (sect)
b8fbeb18
EZ
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 427 if (sect)
b8fbeb18
EZ
428 objfile->sect_index_rodata = sect->index;
429
bbcd32ad
FF
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
31d99776
DJ
433 accomodate that. First, check for a file with the standard
434 one or two segments. */
435
436 symfile_find_segment_sections (objfile);
437
438 /* Except when explicitly adding symbol files at some address,
439 section_offsets contains nothing but zeros, so it doesn't matter
440 which slot in section_offsets the individual sect_index_* members
441 index into. So if they are all zero, it is safe to just point
442 all the currently uninitialized indices to the first slot. But
443 beware: if this is the main executable, it may be relocated
444 later, e.g. by the remote qOffsets packet, and then this will
445 be wrong! That's why we try segments first. */
bbcd32ad
FF
446
447 for (i = 0; i < objfile->num_sections; i++)
448 {
449 if (ANOFFSET (objfile->section_offsets, i) != 0)
450 {
451 break;
452 }
453 }
454 if (i == objfile->num_sections)
455 {
456 if (objfile->sect_index_text == -1)
457 objfile->sect_index_text = 0;
458 if (objfile->sect_index_data == -1)
459 objfile->sect_index_data = 0;
460 if (objfile->sect_index_bss == -1)
461 objfile->sect_index_bss = 0;
462 if (objfile->sect_index_rodata == -1)
463 objfile->sect_index_rodata = 0;
464 }
b8fbeb18 465}
c906108c 466
c1bd25fd
DJ
467/* The arguments to place_section. */
468
469struct place_section_arg
470{
471 struct section_offsets *offsets;
472 CORE_ADDR lowest;
473};
474
475/* Find a unique offset to use for loadable section SECT if
476 the user did not provide an offset. */
477
478void
479place_section (bfd *abfd, asection *sect, void *obj)
480{
481 struct place_section_arg *arg = obj;
482 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
483 int done;
3bd72c6f 484 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 485
2711e456
DJ
486 /* We are only interested in allocated sections. */
487 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
488 return;
489
490 /* If the user specified an offset, honor it. */
491 if (offsets[sect->index] != 0)
492 return;
493
494 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
495 start_addr = (arg->lowest + align - 1) & -align;
496
c1bd25fd
DJ
497 do {
498 asection *cur_sec;
c1bd25fd 499
c1bd25fd
DJ
500 done = 1;
501
502 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
503 {
504 int indx = cur_sec->index;
505 CORE_ADDR cur_offset;
506
507 /* We don't need to compare against ourself. */
508 if (cur_sec == sect)
509 continue;
510
2711e456
DJ
511 /* We can only conflict with allocated sections. */
512 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
513 continue;
514
515 /* If the section offset is 0, either the section has not been placed
516 yet, or it was the lowest section placed (in which case LOWEST
517 will be past its end). */
518 if (offsets[indx] == 0)
519 continue;
520
521 /* If this section would overlap us, then we must move up. */
522 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
523 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
524 {
525 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
526 start_addr = (start_addr + align - 1) & -align;
527 done = 0;
3bd72c6f 528 break;
c1bd25fd
DJ
529 }
530
531 /* Otherwise, we appear to be OK. So far. */
532 }
533 }
534 while (!done);
535
536 offsets[sect->index] = start_addr;
537 arg->lowest = start_addr + bfd_get_section_size (sect);
538
539 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
540}
e8289572
JB
541
542/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 543 of how to represent it for fast symbol reading. This is the default
e8289572
JB
544 version of the sym_fns.sym_offsets function for symbol readers that
545 don't need to do anything special. It allocates a section_offsets table
546 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
547
548void
549default_symfile_offsets (struct objfile *objfile,
550 struct section_addr_info *addrs)
551{
552 int i;
553
a39a16c4 554 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 555 objfile->section_offsets = (struct section_offsets *)
5417f6dc 556 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 558 memset (objfile->section_offsets, 0,
a39a16c4 559 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
560
561 /* Now calculate offsets for section that were specified by the
562 caller. */
a39a16c4 563 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
564 {
565 struct other_sections *osp ;
566
567 osp = &addrs->other[i] ;
568 if (osp->addr == 0)
569 continue;
570
571 /* Record all sections in offsets */
572 /* The section_offsets in the objfile are here filled in using
573 the BFD index. */
574 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
575 }
576
c1bd25fd
DJ
577 /* For relocatable files, all loadable sections will start at zero.
578 The zero is meaningless, so try to pick arbitrary addresses such
579 that no loadable sections overlap. This algorithm is quadratic,
580 but the number of sections in a single object file is generally
581 small. */
582 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
583 {
584 struct place_section_arg arg;
2711e456
DJ
585 bfd *abfd = objfile->obfd;
586 asection *cur_sec;
587 CORE_ADDR lowest = 0;
588
589 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
590 /* We do not expect this to happen; just skip this step if the
591 relocatable file has a section with an assigned VMA. */
592 if (bfd_section_vma (abfd, cur_sec) != 0)
593 break;
594
595 if (cur_sec == NULL)
596 {
597 CORE_ADDR *offsets = objfile->section_offsets->offsets;
598
599 /* Pick non-overlapping offsets for sections the user did not
600 place explicitly. */
601 arg.offsets = objfile->section_offsets;
602 arg.lowest = 0;
603 bfd_map_over_sections (objfile->obfd, place_section, &arg);
604
605 /* Correctly filling in the section offsets is not quite
606 enough. Relocatable files have two properties that
607 (most) shared objects do not:
608
609 - Their debug information will contain relocations. Some
610 shared libraries do also, but many do not, so this can not
611 be assumed.
612
613 - If there are multiple code sections they will be loaded
614 at different relative addresses in memory than they are
615 in the objfile, since all sections in the file will start
616 at address zero.
617
618 Because GDB has very limited ability to map from an
619 address in debug info to the correct code section,
620 it relies on adding SECT_OFF_TEXT to things which might be
621 code. If we clear all the section offsets, and set the
622 section VMAs instead, then symfile_relocate_debug_section
623 will return meaningful debug information pointing at the
624 correct sections.
625
626 GDB has too many different data structures for section
627 addresses - a bfd, objfile, and so_list all have section
628 tables, as does exec_ops. Some of these could probably
629 be eliminated. */
630
631 for (cur_sec = abfd->sections; cur_sec != NULL;
632 cur_sec = cur_sec->next)
633 {
634 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
635 continue;
636
637 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
638 offsets[cur_sec->index] = 0;
639 }
640 }
c1bd25fd
DJ
641 }
642
e8289572
JB
643 /* Remember the bfd indexes for the .text, .data, .bss and
644 .rodata sections. */
645 init_objfile_sect_indices (objfile);
646}
647
648
31d99776
DJ
649/* Divide the file into segments, which are individual relocatable units.
650 This is the default version of the sym_fns.sym_segments function for
651 symbol readers that do not have an explicit representation of segments.
652 It assumes that object files do not have segments, and fully linked
653 files have a single segment. */
654
655struct symfile_segment_data *
656default_symfile_segments (bfd *abfd)
657{
658 int num_sections, i;
659 asection *sect;
660 struct symfile_segment_data *data;
661 CORE_ADDR low, high;
662
663 /* Relocatable files contain enough information to position each
664 loadable section independently; they should not be relocated
665 in segments. */
666 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
667 return NULL;
668
669 /* Make sure there is at least one loadable section in the file. */
670 for (sect = abfd->sections; sect != NULL; sect = sect->next)
671 {
672 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
673 continue;
674
675 break;
676 }
677 if (sect == NULL)
678 return NULL;
679
680 low = bfd_get_section_vma (abfd, sect);
681 high = low + bfd_get_section_size (sect);
682
683 data = XZALLOC (struct symfile_segment_data);
684 data->num_segments = 1;
685 data->segment_bases = XCALLOC (1, CORE_ADDR);
686 data->segment_sizes = XCALLOC (1, CORE_ADDR);
687
688 num_sections = bfd_count_sections (abfd);
689 data->segment_info = XCALLOC (num_sections, int);
690
691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
692 {
693 CORE_ADDR vma;
694
695 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
696 continue;
697
698 vma = bfd_get_section_vma (abfd, sect);
699 if (vma < low)
700 low = vma;
701 if (vma + bfd_get_section_size (sect) > high)
702 high = vma + bfd_get_section_size (sect);
703
704 data->segment_info[i] = 1;
705 }
706
707 data->segment_bases[0] = low;
708 data->segment_sizes[0] = high - low;
709
710 return data;
711}
712
c906108c
SS
713/* Process a symbol file, as either the main file or as a dynamically
714 loaded file.
715
96baa820
JM
716 OBJFILE is where the symbols are to be read from.
717
7e8580c1
JB
718 ADDRS is the list of section load addresses. If the user has given
719 an 'add-symbol-file' command, then this is the list of offsets and
720 addresses he or she provided as arguments to the command; or, if
721 we're handling a shared library, these are the actual addresses the
722 sections are loaded at, according to the inferior's dynamic linker
723 (as gleaned by GDB's shared library code). We convert each address
724 into an offset from the section VMA's as it appears in the object
725 file, and then call the file's sym_offsets function to convert this
726 into a format-specific offset table --- a `struct section_offsets'.
727 If ADDRS is non-zero, OFFSETS must be zero.
728
729 OFFSETS is a table of section offsets already in the right
730 format-specific representation. NUM_OFFSETS is the number of
731 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
732 assume this is the proper table the call to sym_offsets described
733 above would produce. Instead of calling sym_offsets, we just dump
734 it right into objfile->section_offsets. (When we're re-reading
735 symbols from an objfile, we don't have the original load address
736 list any more; all we have is the section offset table.) If
737 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
738
739 MAINLINE is nonzero if this is the main symbol file, or zero if
740 it's an extra symbol file such as dynamically loaded code.
741
742 VERBO is nonzero if the caller has printed a verbose message about
743 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
744
745void
7e8580c1
JB
746syms_from_objfile (struct objfile *objfile,
747 struct section_addr_info *addrs,
748 struct section_offsets *offsets,
749 int num_offsets,
750 int mainline,
751 int verbo)
c906108c 752{
a39a16c4 753 struct section_addr_info *local_addr = NULL;
c906108c 754 struct cleanup *old_chain;
2acceee2 755
7e8580c1 756 gdb_assert (! (addrs && offsets));
2acceee2 757
c906108c 758 init_entry_point_info (objfile);
31d99776 759 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 760
75245b24
MS
761 if (objfile->sf == NULL)
762 return; /* No symbols. */
763
c906108c
SS
764 /* Make sure that partially constructed symbol tables will be cleaned up
765 if an error occurs during symbol reading. */
74b7792f 766 old_chain = make_cleanup_free_objfile (objfile);
c906108c 767
a39a16c4
MM
768 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
769 list. We now establish the convention that an addr of zero means
770 no load address was specified. */
771 if (! addrs && ! offsets)
772 {
5417f6dc 773 local_addr
a39a16c4
MM
774 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
775 make_cleanup (xfree, local_addr);
776 addrs = local_addr;
777 }
778
779 /* Now either addrs or offsets is non-zero. */
780
c5aa993b 781 if (mainline)
c906108c
SS
782 {
783 /* We will modify the main symbol table, make sure that all its users
c5aa993b 784 will be cleaned up if an error occurs during symbol reading. */
74b7792f 785 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
786
787 /* Since no error yet, throw away the old symbol table. */
788
789 if (symfile_objfile != NULL)
790 {
791 free_objfile (symfile_objfile);
792 symfile_objfile = NULL;
793 }
794
795 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
796 If the user wants to get rid of them, they should do "symbol-file"
797 without arguments first. Not sure this is the best behavior
798 (PR 2207). */
c906108c 799
c5aa993b 800 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
801 }
802
803 /* Convert addr into an offset rather than an absolute address.
804 We find the lowest address of a loaded segment in the objfile,
53a5351d 805 and assume that <addr> is where that got loaded.
c906108c 806
53a5351d
JM
807 We no longer warn if the lowest section is not a text segment (as
808 happens for the PA64 port. */
1549f619 809 if (!mainline && addrs && addrs->other[0].name)
c906108c 810 {
1549f619
EZ
811 asection *lower_sect;
812 asection *sect;
813 CORE_ADDR lower_offset;
814 int i;
815
5417f6dc 816 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
817 continguous sections. FIXME!! won't work without call to find
818 .text first, but this assumes text is lowest section. */
819 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
820 if (lower_sect == NULL)
c906108c 821 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 822 &lower_sect);
2acceee2 823 if (lower_sect == NULL)
ff8e85c3
PA
824 {
825 warning (_("no loadable sections found in added symbol-file %s"),
826 objfile->name);
827 lower_offset = 0;
828 }
2acceee2 829 else
ff8e85c3 830 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 831
13de58df 832 /* Calculate offsets for the loadable sections.
2acceee2
JM
833 FIXME! Sections must be in order of increasing loadable section
834 so that contiguous sections can use the lower-offset!!!
5417f6dc 835
13de58df
JB
836 Adjust offsets if the segments are not contiguous.
837 If the section is contiguous, its offset should be set to
2acceee2
JM
838 the offset of the highest loadable section lower than it
839 (the loadable section directly below it in memory).
840 this_offset = lower_offset = lower_addr - lower_orig_addr */
841
1549f619 842 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
843 {
844 if (addrs->other[i].addr != 0)
845 {
846 sect = bfd_get_section_by_name (objfile->obfd,
847 addrs->other[i].name);
848 if (sect)
849 {
850 addrs->other[i].addr
851 -= bfd_section_vma (objfile->obfd, sect);
852 lower_offset = addrs->other[i].addr;
853 /* This is the index used by BFD. */
854 addrs->other[i].sectindex = sect->index ;
855 }
856 else
857 {
8a3fe4f8 858 warning (_("section %s not found in %s"),
5417f6dc 859 addrs->other[i].name,
7e8580c1
JB
860 objfile->name);
861 addrs->other[i].addr = 0;
862 }
863 }
864 else
865 addrs->other[i].addr = lower_offset;
866 }
c906108c
SS
867 }
868
869 /* Initialize symbol reading routines for this objfile, allow complaints to
870 appear for this new file, and record how verbose to be, then do the
871 initial symbol reading for this file. */
872
c5aa993b 873 (*objfile->sf->sym_init) (objfile);
b9caf505 874 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 875
7e8580c1
JB
876 if (addrs)
877 (*objfile->sf->sym_offsets) (objfile, addrs);
878 else
879 {
880 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
881
882 /* Just copy in the offset table directly as given to us. */
883 objfile->num_sections = num_offsets;
884 objfile->section_offsets
885 = ((struct section_offsets *)
8b92e4d5 886 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
887 memcpy (objfile->section_offsets, offsets, size);
888
889 init_objfile_sect_indices (objfile);
890 }
c906108c 891
52d16ba8 892#ifndef DEPRECATED_IBM6000_TARGET
c906108c
SS
893 /* This is a SVR4/SunOS specific hack, I think. In any event, it
894 screws RS/6000. sym_offsets should be doing this sort of thing,
895 because it knows the mapping between bfd sections and
896 section_offsets. */
897 /* This is a hack. As far as I can tell, section offsets are not
898 target dependent. They are all set to addr with a couple of
899 exceptions. The exceptions are sysvr4 shared libraries, whose
900 offsets are kept in solib structures anyway and rs6000 xcoff
901 which handles shared libraries in a completely unique way.
902
903 Section offsets are built similarly, except that they are built
904 by adding addr in all cases because there is no clear mapping
905 from section_offsets into actual sections. Note that solib.c
96baa820 906 has a different algorithm for finding section offsets.
c906108c
SS
907
908 These should probably all be collapsed into some target
909 independent form of shared library support. FIXME. */
910
2acceee2 911 if (addrs)
c906108c
SS
912 {
913 struct obj_section *s;
914
5417f6dc
RM
915 /* Map section offsets in "addr" back to the object's
916 sections by comparing the section names with bfd's
2acceee2
JM
917 section names. Then adjust the section address by
918 the offset. */ /* for gdb/13815 */
5417f6dc 919
96baa820 920 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 921 {
2acceee2
JM
922 CORE_ADDR s_addr = 0;
923 int i;
924
5417f6dc 925 for (i = 0;
a39a16c4 926 !s_addr && i < addrs->num_sections && addrs->other[i].name;
62557bbc 927 i++)
5417f6dc
RM
928 if (strcmp (bfd_section_name (s->objfile->obfd,
929 s->the_bfd_section),
fbd35540 930 addrs->other[i].name) == 0)
2acceee2 931 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
5417f6dc 932
c906108c 933 s->addr -= s->offset;
2acceee2 934 s->addr += s_addr;
c906108c 935 s->endaddr -= s->offset;
2acceee2
JM
936 s->endaddr += s_addr;
937 s->offset += s_addr;
c906108c
SS
938 }
939 }
52d16ba8 940#endif /* not DEPRECATED_IBM6000_TARGET */
c906108c 941
96baa820 942 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 943
c906108c
SS
944 /* Don't allow char * to have a typename (else would get caddr_t).
945 Ditto void *. FIXME: Check whether this is now done by all the
946 symbol readers themselves (many of them now do), and if so remove
947 it from here. */
948
949 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
950 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
951
952 /* Mark the objfile has having had initial symbol read attempted. Note
953 that this does not mean we found any symbols... */
954
c5aa993b 955 objfile->flags |= OBJF_SYMS;
c906108c
SS
956
957 /* Discard cleanups as symbol reading was successful. */
958
959 discard_cleanups (old_chain);
c906108c
SS
960}
961
962/* Perform required actions after either reading in the initial
963 symbols for a new objfile, or mapping in the symbols from a reusable
964 objfile. */
c5aa993b 965
c906108c 966void
fba45db2 967new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
968{
969
970 /* If this is the main symbol file we have to clean up all users of the
971 old main symbol file. Otherwise it is sufficient to fixup all the
972 breakpoints that may have been redefined by this symbol file. */
973 if (mainline)
974 {
975 /* OK, make it the "real" symbol file. */
976 symfile_objfile = objfile;
977
978 clear_symtab_users ();
979 }
980 else
981 {
982 breakpoint_re_set ();
983 }
984
985 /* We're done reading the symbol file; finish off complaints. */
b9caf505 986 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
987}
988
989/* Process a symbol file, as either the main file or as a dynamically
990 loaded file.
991
5417f6dc
RM
992 ABFD is a BFD already open on the file, as from symfile_bfd_open.
993 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
994
995 FROM_TTY says how verbose to be.
996
997 MAINLINE specifies whether this is the main symbol file, or whether
998 it's an extra symbol file such as dynamically loaded code.
999
1000 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1001 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1002 non-zero.
c906108c 1003
c906108c
SS
1004 Upon success, returns a pointer to the objfile that was added.
1005 Upon failure, jumps back to command level (never returns). */
7904e09f 1006static struct objfile *
5417f6dc 1007symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
1008 struct section_addr_info *addrs,
1009 struct section_offsets *offsets,
1010 int num_offsets,
1011 int mainline, int flags)
c906108c
SS
1012{
1013 struct objfile *objfile;
1014 struct partial_symtab *psymtab;
77069918 1015 char *debugfile = NULL;
7b90c3f9 1016 struct section_addr_info *orig_addrs = NULL;
a39a16c4 1017 struct cleanup *my_cleanups;
5417f6dc 1018 const char *name = bfd_get_filename (abfd);
c906108c 1019
5417f6dc 1020 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1021
5417f6dc
RM
1022 /* Give user a chance to burp if we'd be
1023 interactively wiping out any existing symbols. */
c906108c
SS
1024
1025 if ((have_full_symbols () || have_partial_symbols ())
1026 && mainline
1027 && from_tty
1028 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 1029 error (_("Not confirmed."));
c906108c 1030
2df3850c 1031 objfile = allocate_objfile (abfd, flags);
5417f6dc 1032 discard_cleanups (my_cleanups);
c906108c 1033
a39a16c4 1034 if (addrs)
63cd24fe 1035 {
7b90c3f9
JB
1036 orig_addrs = copy_section_addr_info (addrs);
1037 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 1038 }
a39a16c4 1039
78a4a9b9
AC
1040 /* We either created a new mapped symbol table, mapped an existing
1041 symbol table file which has not had initial symbol reading
1042 performed, or need to read an unmapped symbol table. */
1043 if (from_tty || info_verbose)
c906108c 1044 {
769d7dc4
AC
1045 if (deprecated_pre_add_symbol_hook)
1046 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1047 else
c906108c 1048 {
a3f17187 1049 printf_unfiltered (_("Reading symbols from %s..."), name);
c906108c
SS
1050 wrap_here ("");
1051 gdb_flush (gdb_stdout);
1052 }
c906108c 1053 }
78a4a9b9
AC
1054 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1055 mainline, from_tty);
c906108c
SS
1056
1057 /* We now have at least a partial symbol table. Check to see if the
1058 user requested that all symbols be read on initial access via either
1059 the gdb startup command line or on a per symbol file basis. Expand
1060 all partial symbol tables for this objfile if so. */
1061
2acceee2 1062 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
1063 {
1064 if (from_tty || info_verbose)
1065 {
a3f17187 1066 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1067 wrap_here ("");
1068 gdb_flush (gdb_stdout);
1069 }
1070
c5aa993b 1071 for (psymtab = objfile->psymtabs;
c906108c 1072 psymtab != NULL;
c5aa993b 1073 psymtab = psymtab->next)
c906108c
SS
1074 {
1075 psymtab_to_symtab (psymtab);
1076 }
1077 }
1078
77069918
JK
1079 /* If the file has its own symbol tables it has no separate debug info.
1080 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1081 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1082 if (objfile->psymtabs == NULL)
1083 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1084 if (debugfile)
1085 {
5b5d99cf
JB
1086 if (addrs != NULL)
1087 {
1088 objfile->separate_debug_objfile
a39a16c4 1089 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1090 }
1091 else
1092 {
1093 objfile->separate_debug_objfile
1094 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1095 }
1096 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1097 = objfile;
5417f6dc 1098
5b5d99cf
JB
1099 /* Put the separate debug object before the normal one, this is so that
1100 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1101 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1102
5b5d99cf
JB
1103 xfree (debugfile);
1104 }
5417f6dc 1105
cb3c37b2
JB
1106 if (!have_partial_symbols () && !have_full_symbols ())
1107 {
1108 wrap_here ("");
a3f17187 1109 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
1110 if (from_tty || info_verbose)
1111 printf_filtered ("...");
1112 else
1113 printf_filtered ("\n");
cb3c37b2
JB
1114 wrap_here ("");
1115 }
1116
c906108c
SS
1117 if (from_tty || info_verbose)
1118 {
769d7dc4
AC
1119 if (deprecated_post_add_symbol_hook)
1120 deprecated_post_add_symbol_hook ();
c906108c 1121 else
c5aa993b 1122 {
a3f17187 1123 printf_unfiltered (_("done.\n"));
c5aa993b 1124 }
c906108c
SS
1125 }
1126
481d0f41
JB
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
a39a16c4
MM
1132 do_cleanups (my_cleanups);
1133
109f874e
MS
1134 if (objfile->sf == NULL)
1135 return objfile; /* No symbols. */
1136
c906108c
SS
1137 new_symfile_objfile (objfile, mainline, from_tty);
1138
06d3b283 1139 observer_notify_new_objfile (objfile);
c906108c 1140
ce7d4522 1141 bfd_cache_close_all ();
c906108c
SS
1142 return (objfile);
1143}
1144
7904e09f 1145
eb4556d7
JB
1146/* Process the symbol file ABFD, as either the main file or as a
1147 dynamically loaded file.
1148
1149 See symbol_file_add_with_addrs_or_offsets's comments for
1150 details. */
1151struct objfile *
1152symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1153 struct section_addr_info *addrs,
1154 int mainline, int flags)
1155{
1156 return symbol_file_add_with_addrs_or_offsets (abfd,
1157 from_tty, addrs, 0, 0,
1158 mainline, flags);
1159}
1160
1161
7904e09f
JB
1162/* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1164 for details. */
1165struct objfile *
1166symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1167 int mainline, int flags)
1168{
eb4556d7
JB
1169 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1170 addrs, mainline, flags);
7904e09f
JB
1171}
1172
1173
d7db6da9
FN
1174/* Call symbol_file_add() with default values and update whatever is
1175 affected by the loading of a new main().
1176 Used when the file is supplied in the gdb command line
1177 and by some targets with special loading requirements.
1178 The auxiliary function, symbol_file_add_main_1(), has the flags
1179 argument for the switches that can only be specified in the symbol_file
1180 command itself. */
5417f6dc 1181
1adeb98a
FN
1182void
1183symbol_file_add_main (char *args, int from_tty)
1184{
d7db6da9
FN
1185 symbol_file_add_main_1 (args, from_tty, 0);
1186}
1187
1188static void
1189symbol_file_add_main_1 (char *args, int from_tty, int flags)
1190{
1191 symbol_file_add (args, from_tty, NULL, 1, flags);
1192
d7db6da9
FN
1193 /* Getting new symbols may change our opinion about
1194 what is frameless. */
1195 reinit_frame_cache ();
1196
1197 set_initial_language ();
1adeb98a
FN
1198}
1199
1200void
1201symbol_file_clear (int from_tty)
1202{
1203 if ((have_full_symbols () || have_partial_symbols ())
1204 && from_tty
0430b0d6
AS
1205 && (symfile_objfile
1206 ? !query (_("Discard symbol table from `%s'? "),
1207 symfile_objfile->name)
1208 : !query (_("Discard symbol table? "))))
8a3fe4f8 1209 error (_("Not confirmed."));
1adeb98a
FN
1210 free_all_objfiles ();
1211
1212 /* solib descriptors may have handles to objfiles. Since their
1213 storage has just been released, we'd better wipe the solib
1214 descriptors as well.
1215 */
e85a822c 1216 no_shared_libraries (NULL, from_tty);
1adeb98a
FN
1217
1218 symfile_objfile = NULL;
1219 if (from_tty)
a3f17187 1220 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1221}
1222
77069918
JK
1223struct build_id
1224 {
1225 size_t size;
1226 gdb_byte data[1];
1227 };
1228
1229/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1230
1231static struct build_id *
1232build_id_bfd_get (bfd *abfd)
1233{
1234 struct build_id *retval;
1235
1236 if (!bfd_check_format (abfd, bfd_object)
1237 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1238 || elf_tdata (abfd)->build_id == NULL)
1239 return NULL;
1240
1241 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1242 retval->size = elf_tdata (abfd)->build_id_size;
1243 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1244
1245 return retval;
1246}
1247
1248/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1249
1250static int
1251build_id_verify (const char *filename, struct build_id *check)
1252{
1253 bfd *abfd;
1254 struct build_id *found = NULL;
1255 int retval = 0;
1256
1257 /* We expect to be silent on the non-existing files. */
1258 abfd = bfd_openr (filename, gnutarget);
1259 if (abfd == NULL)
1260 return 0;
1261
1262 found = build_id_bfd_get (abfd);
1263
1264 if (found == NULL)
1265 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1266 else if (found->size != check->size
1267 || memcmp (found->data, check->data, found->size) != 0)
1268 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1269 else
1270 retval = 1;
1271
1272 if (!bfd_close (abfd))
1273 warning (_("cannot close \"%s\": %s"), filename,
1274 bfd_errmsg (bfd_get_error ()));
1275 return retval;
1276}
1277
1278static char *
1279build_id_to_debug_filename (struct build_id *build_id)
1280{
1281 char *link, *s, *retval = NULL;
1282 gdb_byte *data = build_id->data;
1283 size_t size = build_id->size;
1284
1285 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1286 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1287 + 2 * size + (sizeof ".debug" - 1) + 1);
1288 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1289 if (size > 0)
1290 {
1291 size--;
1292 s += sprintf (s, "%02x", (unsigned) *data++);
1293 }
1294 if (size > 0)
1295 *s++ = '/';
1296 while (size-- > 0)
1297 s += sprintf (s, "%02x", (unsigned) *data++);
1298 strcpy (s, ".debug");
1299
1300 /* lrealpath() is expensive even for the usually non-existent files. */
1301 if (access (link, F_OK) == 0)
1302 retval = lrealpath (link);
1303 xfree (link);
1304
1305 if (retval != NULL && !build_id_verify (retval, build_id))
1306 {
1307 xfree (retval);
1308 retval = NULL;
1309 }
1310
1311 return retval;
1312}
1313
5b5d99cf
JB
1314static char *
1315get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1316{
1317 asection *sect;
1318 bfd_size_type debuglink_size;
1319 unsigned long crc32;
1320 char *contents;
1321 int crc_offset;
1322 unsigned char *p;
5417f6dc 1323
5b5d99cf
JB
1324 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1325
1326 if (sect == NULL)
1327 return NULL;
1328
1329 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1330
5b5d99cf
JB
1331 contents = xmalloc (debuglink_size);
1332 bfd_get_section_contents (objfile->obfd, sect, contents,
1333 (file_ptr)0, (bfd_size_type)debuglink_size);
1334
1335 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1336 crc_offset = strlen (contents) + 1;
1337 crc_offset = (crc_offset + 3) & ~3;
1338
1339 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1340
5b5d99cf
JB
1341 *crc32_out = crc32;
1342 return contents;
1343}
1344
1345static int
1346separate_debug_file_exists (const char *name, unsigned long crc)
1347{
1348 unsigned long file_crc = 0;
1349 int fd;
777ea8f1 1350 gdb_byte buffer[8*1024];
5b5d99cf
JB
1351 int count;
1352
1353 fd = open (name, O_RDONLY | O_BINARY);
1354 if (fd < 0)
1355 return 0;
1356
1357 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 close (fd);
1361
1362 return crc == file_crc;
1363}
1364
aa28a74e 1365char *debug_file_directory = NULL;
920d2a44
AC
1366static void
1367show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369{
1370 fprintf_filtered (file, _("\
1371The directory where separate debug symbols are searched for is \"%s\".\n"),
1372 value);
1373}
5b5d99cf
JB
1374
1375#if ! defined (DEBUG_SUBDIRECTORY)
1376#define DEBUG_SUBDIRECTORY ".debug"
1377#endif
1378
1379static char *
1380find_separate_debug_file (struct objfile *objfile)
1381{
1382 asection *sect;
1383 char *basename;
1384 char *dir;
1385 char *debugfile;
1386 char *name_copy;
aa28a74e 1387 char *canon_name;
5b5d99cf
JB
1388 bfd_size_type debuglink_size;
1389 unsigned long crc32;
1390 int i;
77069918
JK
1391 struct build_id *build_id;
1392
1393 build_id = build_id_bfd_get (objfile->obfd);
1394 if (build_id != NULL)
1395 {
1396 char *build_id_name;
1397
1398 build_id_name = build_id_to_debug_filename (build_id);
1399 free (build_id);
1400 /* Prevent looping on a stripped .debug file. */
1401 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1402 {
1403 warning (_("\"%s\": separate debug info file has no debug info"),
1404 build_id_name);
1405 xfree (build_id_name);
1406 }
1407 else if (build_id_name != NULL)
1408 return build_id_name;
1409 }
5b5d99cf
JB
1410
1411 basename = get_debug_link_info (objfile, &crc32);
1412
1413 if (basename == NULL)
1414 return NULL;
5417f6dc 1415
5b5d99cf
JB
1416 dir = xstrdup (objfile->name);
1417
fe36c4f4
JB
1418 /* Strip off the final filename part, leaving the directory name,
1419 followed by a slash. Objfile names should always be absolute and
1420 tilde-expanded, so there should always be a slash in there
1421 somewhere. */
5b5d99cf
JB
1422 for (i = strlen(dir) - 1; i >= 0; i--)
1423 {
1424 if (IS_DIR_SEPARATOR (dir[i]))
1425 break;
1426 }
fe36c4f4 1427 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1428 dir[i+1] = '\0';
5417f6dc 1429
5b5d99cf
JB
1430 debugfile = alloca (strlen (debug_file_directory) + 1
1431 + strlen (dir)
1432 + strlen (DEBUG_SUBDIRECTORY)
1433 + strlen ("/")
5417f6dc 1434 + strlen (basename)
5b5d99cf
JB
1435 + 1);
1436
1437 /* First try in the same directory as the original file. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, basename);
1440
1441 if (separate_debug_file_exists (debugfile, crc32))
1442 {
1443 xfree (basename);
1444 xfree (dir);
1445 return xstrdup (debugfile);
1446 }
5417f6dc 1447
5b5d99cf
JB
1448 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1449 strcpy (debugfile, dir);
1450 strcat (debugfile, DEBUG_SUBDIRECTORY);
1451 strcat (debugfile, "/");
1452 strcat (debugfile, basename);
1453
1454 if (separate_debug_file_exists (debugfile, crc32))
1455 {
1456 xfree (basename);
1457 xfree (dir);
1458 return xstrdup (debugfile);
1459 }
5417f6dc 1460
5b5d99cf
JB
1461 /* Then try in the global debugfile directory. */
1462 strcpy (debugfile, debug_file_directory);
1463 strcat (debugfile, "/");
1464 strcat (debugfile, dir);
5b5d99cf
JB
1465 strcat (debugfile, basename);
1466
1467 if (separate_debug_file_exists (debugfile, crc32))
1468 {
1469 xfree (basename);
1470 xfree (dir);
1471 return xstrdup (debugfile);
1472 }
5417f6dc 1473
aa28a74e
DJ
1474 /* If the file is in the sysroot, try using its base path in the
1475 global debugfile directory. */
1476 canon_name = lrealpath (dir);
1477 if (canon_name
1478 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1479 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1480 {
1481 strcpy (debugfile, debug_file_directory);
1482 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1483 strcat (debugfile, "/");
1484 strcat (debugfile, basename);
1485
1486 if (separate_debug_file_exists (debugfile, crc32))
1487 {
1488 xfree (canon_name);
1489 xfree (basename);
1490 xfree (dir);
1491 return xstrdup (debugfile);
1492 }
1493 }
1494
1495 if (canon_name)
1496 xfree (canon_name);
1497
5b5d99cf
JB
1498 xfree (basename);
1499 xfree (dir);
1500 return NULL;
1501}
1502
1503
c906108c
SS
1504/* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
c906108c
SS
1516 conventions (because it is confusing and inconvenient). */
1517
1518void
fba45db2 1519symbol_file_command (char *args, int from_tty)
c906108c 1520{
c906108c
SS
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1adeb98a 1525 symbol_file_clear (from_tty);
c906108c
SS
1526 }
1527 else
1528 {
cb2f3a29
MK
1529 char **argv = buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 if (argv == NULL)
1535 nomem (0);
1536
7a292a7a 1537 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1538 while (*argv != NULL)
1539 {
78a4a9b9
AC
1540 if (strcmp (*argv, "-readnow") == 0)
1541 flags |= OBJF_READNOW;
1542 else if (**argv == '-')
8a3fe4f8 1543 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1544 else
1545 {
cb2f3a29 1546 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1547 name = *argv;
78a4a9b9 1548 }
cb2f3a29 1549
c906108c
SS
1550 argv++;
1551 }
1552
1553 if (name == NULL)
cb2f3a29
MK
1554 error (_("no symbol file name was specified"));
1555
c906108c
SS
1556 do_cleanups (cleanups);
1557 }
1558}
1559
1560/* Set the initial language.
1561
cb2f3a29
MK
1562 FIXME: A better solution would be to record the language in the
1563 psymtab when reading partial symbols, and then use it (if known) to
1564 set the language. This would be a win for formats that encode the
1565 language in an easily discoverable place, such as DWARF. For
1566 stabs, we can jump through hoops looking for specially named
1567 symbols or try to intuit the language from the specific type of
1568 stabs we find, but we can't do that until later when we read in
1569 full symbols. */
c906108c 1570
8b60591b 1571void
fba45db2 1572set_initial_language (void)
c906108c
SS
1573{
1574 struct partial_symtab *pst;
c5aa993b 1575 enum language lang = language_unknown;
c906108c
SS
1576
1577 pst = find_main_psymtab ();
1578 if (pst != NULL)
1579 {
c5aa993b 1580 if (pst->filename != NULL)
cb2f3a29
MK
1581 lang = deduce_language_from_filename (pst->filename);
1582
c906108c
SS
1583 if (lang == language_unknown)
1584 {
c5aa993b
JM
1585 /* Make C the default language */
1586 lang = language_c;
c906108c 1587 }
cb2f3a29 1588
c906108c 1589 set_language (lang);
cb2f3a29 1590 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1591 }
1592}
1593
cb2f3a29
MK
1594/* Open the file specified by NAME and hand it off to BFD for
1595 preliminary analysis. Return a newly initialized bfd *, which
1596 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1597 absolute). In case of trouble, error() is called. */
c906108c
SS
1598
1599bfd *
fba45db2 1600symfile_bfd_open (char *name)
c906108c
SS
1601{
1602 bfd *sym_bfd;
1603 int desc;
1604 char *absolute_name;
1605
cb2f3a29 1606 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1607
1608 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1609 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1610 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1611#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1612 if (desc < 0)
1613 {
1614 char *exename = alloca (strlen (name) + 5);
1615 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1616 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1617 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1618 }
1619#endif
1620 if (desc < 0)
1621 {
b8c9b27d 1622 make_cleanup (xfree, name);
c906108c
SS
1623 perror_with_name (name);
1624 }
cb2f3a29
MK
1625
1626 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1627 bfd. It'll be freed in free_objfile(). */
1628 xfree (name);
1629 name = absolute_name;
c906108c 1630
9f76c2cd 1631 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1632 if (!sym_bfd)
1633 {
1634 close (desc);
b8c9b27d 1635 make_cleanup (xfree, name);
8a3fe4f8 1636 error (_("\"%s\": can't open to read symbols: %s."), name,
c906108c
SS
1637 bfd_errmsg (bfd_get_error ()));
1638 }
549c1eea 1639 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1640
1641 if (!bfd_check_format (sym_bfd, bfd_object))
1642 {
cb2f3a29
MK
1643 /* FIXME: should be checking for errors from bfd_close (for one
1644 thing, on error it does not free all the storage associated
1645 with the bfd). */
1646 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1647 make_cleanup (xfree, name);
8a3fe4f8 1648 error (_("\"%s\": can't read symbols: %s."), name,
c906108c
SS
1649 bfd_errmsg (bfd_get_error ()));
1650 }
cb2f3a29
MK
1651
1652 return sym_bfd;
c906108c
SS
1653}
1654
cb2f3a29
MK
1655/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1656 the section was not found. */
1657
0e931cf0
JB
1658int
1659get_section_index (struct objfile *objfile, char *section_name)
1660{
1661 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1662
0e931cf0
JB
1663 if (sect)
1664 return sect->index;
1665 else
1666 return -1;
1667}
1668
cb2f3a29
MK
1669/* Link SF into the global symtab_fns list. Called on startup by the
1670 _initialize routine in each object file format reader, to register
1671 information about each format the the reader is prepared to
1672 handle. */
c906108c
SS
1673
1674void
fba45db2 1675add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1676{
1677 sf->next = symtab_fns;
1678 symtab_fns = sf;
1679}
1680
cb2f3a29
MK
1681/* Initialize OBJFILE to read symbols from its associated BFD. It
1682 either returns or calls error(). The result is an initialized
1683 struct sym_fns in the objfile structure, that contains cached
1684 information about the symbol file. */
c906108c 1685
31d99776
DJ
1686static struct sym_fns *
1687find_sym_fns (bfd *abfd)
c906108c
SS
1688{
1689 struct sym_fns *sf;
31d99776 1690 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1691
75245b24
MS
1692 if (our_flavour == bfd_target_srec_flavour
1693 || our_flavour == bfd_target_ihex_flavour
1694 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1695 return NULL; /* No symbols. */
75245b24 1696
c5aa993b 1697 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1698 if (our_flavour == sf->sym_flavour)
1699 return sf;
cb2f3a29 1700
8a3fe4f8 1701 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1702 bfd_get_target (abfd));
c906108c
SS
1703}
1704\f
cb2f3a29 1705
c906108c
SS
1706/* This function runs the load command of our current target. */
1707
1708static void
fba45db2 1709load_command (char *arg, int from_tty)
c906108c
SS
1710{
1711 if (arg == NULL)
1986bccd
AS
1712 {
1713 char *parg;
1714 int count = 0;
1715
1716 parg = arg = get_exec_file (1);
1717
1718 /* Count how many \ " ' tab space there are in the name. */
1719 while ((parg = strpbrk (parg, "\\\"'\t ")))
1720 {
1721 parg++;
1722 count++;
1723 }
1724
1725 if (count)
1726 {
1727 /* We need to quote this string so buildargv can pull it apart. */
1728 char *temp = xmalloc (strlen (arg) + count + 1 );
1729 char *ptemp = temp;
1730 char *prev;
1731
1732 make_cleanup (xfree, temp);
1733
1734 prev = parg = arg;
1735 while ((parg = strpbrk (parg, "\\\"'\t ")))
1736 {
1737 strncpy (ptemp, prev, parg - prev);
1738 ptemp += parg - prev;
1739 prev = parg++;
1740 *ptemp++ = '\\';
1741 }
1742 strcpy (ptemp, prev);
1743
1744 arg = temp;
1745 }
1746 }
1747
6490cafe
DJ
1748 /* The user might be reloading because the binary has changed. Take
1749 this opportunity to check. */
1750 reopen_exec_file ();
1751 reread_symbols ();
1752
c906108c 1753 target_load (arg, from_tty);
2889e661
JB
1754
1755 /* After re-loading the executable, we don't really know which
1756 overlays are mapped any more. */
1757 overlay_cache_invalid = 1;
c906108c
SS
1758}
1759
1760/* This version of "load" should be usable for any target. Currently
1761 it is just used for remote targets, not inftarg.c or core files,
1762 on the theory that only in that case is it useful.
1763
1764 Avoiding xmodem and the like seems like a win (a) because we don't have
1765 to worry about finding it, and (b) On VMS, fork() is very slow and so
1766 we don't want to run a subprocess. On the other hand, I'm not sure how
1767 performance compares. */
917317f4 1768
917317f4
JM
1769static int validate_download = 0;
1770
e4f9b4d5
MS
1771/* Callback service function for generic_load (bfd_map_over_sections). */
1772
1773static void
1774add_section_size_callback (bfd *abfd, asection *asec, void *data)
1775{
1776 bfd_size_type *sum = data;
1777
2c500098 1778 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1779}
1780
1781/* Opaque data for load_section_callback. */
1782struct load_section_data {
1783 unsigned long load_offset;
a76d924d
DJ
1784 struct load_progress_data *progress_data;
1785 VEC(memory_write_request_s) *requests;
1786};
1787
1788/* Opaque data for load_progress. */
1789struct load_progress_data {
1790 /* Cumulative data. */
e4f9b4d5
MS
1791 unsigned long write_count;
1792 unsigned long data_count;
1793 bfd_size_type total_size;
a76d924d
DJ
1794};
1795
1796/* Opaque data for load_progress for a single section. */
1797struct load_progress_section_data {
1798 struct load_progress_data *cumulative;
cf7a04e8 1799
a76d924d 1800 /* Per-section data. */
cf7a04e8
DJ
1801 const char *section_name;
1802 ULONGEST section_sent;
1803 ULONGEST section_size;
1804 CORE_ADDR lma;
1805 gdb_byte *buffer;
e4f9b4d5
MS
1806};
1807
a76d924d 1808/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1809
1810static void
1811load_progress (ULONGEST bytes, void *untyped_arg)
1812{
a76d924d
DJ
1813 struct load_progress_section_data *args = untyped_arg;
1814 struct load_progress_data *totals;
1815
1816 if (args == NULL)
1817 /* Writing padding data. No easy way to get at the cumulative
1818 stats, so just ignore this. */
1819 return;
1820
1821 totals = args->cumulative;
1822
1823 if (bytes == 0 && args->section_sent == 0)
1824 {
1825 /* The write is just starting. Let the user know we've started
1826 this section. */
1827 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1828 args->section_name, paddr_nz (args->section_size),
1829 paddr_nz (args->lma));
1830 return;
1831 }
cf7a04e8
DJ
1832
1833 if (validate_download)
1834 {
1835 /* Broken memories and broken monitors manifest themselves here
1836 when bring new computers to life. This doubles already slow
1837 downloads. */
1838 /* NOTE: cagney/1999-10-18: A more efficient implementation
1839 might add a verify_memory() method to the target vector and
1840 then use that. remote.c could implement that method using
1841 the ``qCRC'' packet. */
1842 gdb_byte *check = xmalloc (bytes);
1843 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1844
1845 if (target_read_memory (args->lma, check, bytes) != 0)
1846 error (_("Download verify read failed at 0x%s"),
1847 paddr (args->lma));
1848 if (memcmp (args->buffer, check, bytes) != 0)
1849 error (_("Download verify compare failed at 0x%s"),
1850 paddr (args->lma));
1851 do_cleanups (verify_cleanups);
1852 }
a76d924d 1853 totals->data_count += bytes;
cf7a04e8
DJ
1854 args->lma += bytes;
1855 args->buffer += bytes;
a76d924d 1856 totals->write_count += 1;
cf7a04e8
DJ
1857 args->section_sent += bytes;
1858 if (quit_flag
1859 || (deprecated_ui_load_progress_hook != NULL
1860 && deprecated_ui_load_progress_hook (args->section_name,
1861 args->section_sent)))
1862 error (_("Canceled the download"));
1863
1864 if (deprecated_show_load_progress != NULL)
1865 deprecated_show_load_progress (args->section_name,
1866 args->section_sent,
1867 args->section_size,
a76d924d
DJ
1868 totals->data_count,
1869 totals->total_size);
cf7a04e8
DJ
1870}
1871
e4f9b4d5
MS
1872/* Callback service function for generic_load (bfd_map_over_sections). */
1873
1874static void
1875load_section_callback (bfd *abfd, asection *asec, void *data)
1876{
a76d924d 1877 struct memory_write_request *new_request;
e4f9b4d5 1878 struct load_section_data *args = data;
a76d924d 1879 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1880 bfd_size_type size = bfd_get_section_size (asec);
1881 gdb_byte *buffer;
cf7a04e8 1882 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1883
cf7a04e8
DJ
1884 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1885 return;
e4f9b4d5 1886
cf7a04e8
DJ
1887 if (size == 0)
1888 return;
e4f9b4d5 1889
a76d924d
DJ
1890 new_request = VEC_safe_push (memory_write_request_s,
1891 args->requests, NULL);
1892 memset (new_request, 0, sizeof (struct memory_write_request));
1893 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1894 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1895 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1896 new_request->data = xmalloc (size);
1897 new_request->baton = section_data;
cf7a04e8 1898
a76d924d 1899 buffer = new_request->data;
cf7a04e8 1900
a76d924d
DJ
1901 section_data->cumulative = args->progress_data;
1902 section_data->section_name = sect_name;
1903 section_data->section_size = size;
1904 section_data->lma = new_request->begin;
1905 section_data->buffer = buffer;
cf7a04e8
DJ
1906
1907 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1908}
1909
1910/* Clean up an entire memory request vector, including load
1911 data and progress records. */
cf7a04e8 1912
a76d924d
DJ
1913static void
1914clear_memory_write_data (void *arg)
1915{
1916 VEC(memory_write_request_s) **vec_p = arg;
1917 VEC(memory_write_request_s) *vec = *vec_p;
1918 int i;
1919 struct memory_write_request *mr;
cf7a04e8 1920
a76d924d
DJ
1921 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1922 {
1923 xfree (mr->data);
1924 xfree (mr->baton);
1925 }
1926 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1927}
1928
c906108c 1929void
917317f4 1930generic_load (char *args, int from_tty)
c906108c 1931{
c906108c 1932 bfd *loadfile_bfd;
2b71414d 1933 struct timeval start_time, end_time;
917317f4 1934 char *filename;
1986bccd 1935 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1936 struct load_section_data cbdata;
a76d924d
DJ
1937 struct load_progress_data total_progress;
1938
e4f9b4d5 1939 CORE_ADDR entry;
1986bccd 1940 char **argv;
e4f9b4d5 1941
a76d924d
DJ
1942 memset (&cbdata, 0, sizeof (cbdata));
1943 memset (&total_progress, 0, sizeof (total_progress));
1944 cbdata.progress_data = &total_progress;
1945
1946 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1947
1986bccd
AS
1948 argv = buildargv (args);
1949
1950 if (argv == NULL)
1951 nomem(0);
1952
1953 make_cleanup_freeargv (argv);
1954
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1957
1958 if (argv[1] != NULL)
917317f4
JM
1959 {
1960 char *endptr;
ba5f2f8a 1961
1986bccd
AS
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1968
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
917317f4 1971 }
c906108c 1972
917317f4 1973 /* Open the file for loading. */
c906108c
SS
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1976 {
1977 perror_with_name (filename);
1978 return;
1979 }
917317f4 1980
c906108c
SS
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1983 bfd). */
5c65bbb6 1984 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1985
c5aa993b 1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1987 {
8a3fe4f8 1988 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1989 bfd_errmsg (bfd_get_error ()));
1990 }
c5aa993b 1991
5417f6dc 1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1993 (void *) &total_progress.total_size);
1994
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1996
2b71414d 1997 gettimeofday (&start_time, NULL);
c906108c 1998
a76d924d
DJ
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
c906108c 2002
2b71414d 2003 gettimeofday (&end_time, NULL);
ba5f2f8a 2004
e4f9b4d5 2005 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
2006 ui_out_text (uiout, "Start address ");
2007 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2008 ui_out_text (uiout, ", load size ");
a76d924d 2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2010 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
2013 write_pc (entry);
c906108c 2014
7ca9f392
AC
2015 /* FIXME: are we supposed to call symbol_file_add or not? According
2016 to a comment from remote-mips.c (where a call to symbol_file_add
2017 was commented out), making the call confuses GDB if more than one
2018 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2019 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2020
a76d924d
DJ
2021 print_transfer_performance (gdb_stdout, total_progress.data_count,
2022 total_progress.write_count,
2023 &start_time, &end_time);
c906108c
SS
2024
2025 do_cleanups (old_cleanups);
2026}
2027
2028/* Report how fast the transfer went. */
2029
917317f4
JM
2030/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2031 replaced by print_transfer_performance (with a very different
2032 function signature). */
2033
c906108c 2034void
fba45db2
KB
2035report_transfer_performance (unsigned long data_count, time_t start_time,
2036 time_t end_time)
c906108c 2037{
2b71414d
DJ
2038 struct timeval start, end;
2039
2040 start.tv_sec = start_time;
2041 start.tv_usec = 0;
2042 end.tv_sec = end_time;
2043 end.tv_usec = 0;
2044
2045 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2046}
2047
2048void
d9fcf2fb 2049print_transfer_performance (struct ui_file *stream,
917317f4
JM
2050 unsigned long data_count,
2051 unsigned long write_count,
2b71414d
DJ
2052 const struct timeval *start_time,
2053 const struct timeval *end_time)
917317f4 2054{
9f43d28c 2055 ULONGEST time_count;
2b71414d
DJ
2056
2057 /* Compute the elapsed time in milliseconds, as a tradeoff between
2058 accuracy and overflow. */
2059 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2060 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2061
8b93c638
JM
2062 ui_out_text (uiout, "Transfer rate: ");
2063 if (time_count > 0)
2064 {
9f43d28c
DJ
2065 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2066
2067 if (ui_out_is_mi_like_p (uiout))
2068 {
2069 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2070 ui_out_text (uiout, " bits/sec");
2071 }
2072 else if (rate < 1024)
2073 {
2074 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2075 ui_out_text (uiout, " bytes/sec");
2076 }
2077 else
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2080 ui_out_text (uiout, " KB/sec");
2081 }
8b93c638
JM
2082 }
2083 else
2084 {
ba5f2f8a 2085 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2086 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2087 }
2088 if (write_count > 0)
2089 {
2090 ui_out_text (uiout, ", ");
ba5f2f8a 2091 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2092 ui_out_text (uiout, " bytes/write");
2093 }
2094 ui_out_text (uiout, ".\n");
c906108c
SS
2095}
2096
2097/* This function allows the addition of incrementally linked object files.
2098 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2099/* Note: ezannoni 2000-04-13 This function/command used to have a
2100 special case syntax for the rombug target (Rombug is the boot
2101 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2102 rombug case, the user doesn't need to supply a text address,
2103 instead a call to target_link() (in target.c) would supply the
2104 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2105
c906108c 2106static void
fba45db2 2107add_symbol_file_command (char *args, int from_tty)
c906108c 2108{
db162d44 2109 char *filename = NULL;
2df3850c 2110 int flags = OBJF_USERLOADED;
c906108c 2111 char *arg;
2acceee2 2112 int expecting_option = 0;
db162d44 2113 int section_index = 0;
2acceee2
JM
2114 int argcnt = 0;
2115 int sec_num = 0;
2116 int i;
db162d44
EZ
2117 int expecting_sec_name = 0;
2118 int expecting_sec_addr = 0;
5b96932b 2119 char **argv;
db162d44 2120
a39a16c4 2121 struct sect_opt
2acceee2 2122 {
2acceee2
JM
2123 char *name;
2124 char *value;
a39a16c4 2125 };
db162d44 2126
a39a16c4
MM
2127 struct section_addr_info *section_addrs;
2128 struct sect_opt *sect_opts = NULL;
2129 size_t num_sect_opts = 0;
3017564a 2130 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2131
a39a16c4 2132 num_sect_opts = 16;
5417f6dc 2133 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2134 * sizeof (struct sect_opt));
2135
c906108c
SS
2136 dont_repeat ();
2137
2138 if (args == NULL)
8a3fe4f8 2139 error (_("add-symbol-file takes a file name and an address"));
c906108c 2140
5b96932b
AS
2141 argv = buildargv (args);
2142 make_cleanup_freeargv (argv);
db162d44 2143
5b96932b
AS
2144 if (argv == NULL)
2145 nomem (0);
db162d44 2146
5b96932b
AS
2147 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2148 {
2149 /* Process the argument. */
db162d44 2150 if (argcnt == 0)
c906108c 2151 {
db162d44
EZ
2152 /* The first argument is the file name. */
2153 filename = tilde_expand (arg);
3017564a 2154 make_cleanup (xfree, filename);
c906108c 2155 }
db162d44 2156 else
7a78ae4e
ND
2157 if (argcnt == 1)
2158 {
2159 /* The second argument is always the text address at which
2160 to load the program. */
2161 sect_opts[section_index].name = ".text";
2162 sect_opts[section_index].value = arg;
f414f22f 2163 if (++section_index >= num_sect_opts)
a39a16c4
MM
2164 {
2165 num_sect_opts *= 2;
5417f6dc 2166 sect_opts = ((struct sect_opt *)
a39a16c4 2167 xrealloc (sect_opts,
5417f6dc 2168 num_sect_opts
a39a16c4
MM
2169 * sizeof (struct sect_opt)));
2170 }
7a78ae4e
ND
2171 }
2172 else
2173 {
2174 /* It's an option (starting with '-') or it's an argument
2175 to an option */
2176
2177 if (*arg == '-')
2178 {
78a4a9b9
AC
2179 if (strcmp (arg, "-readnow") == 0)
2180 flags |= OBJF_READNOW;
2181 else if (strcmp (arg, "-s") == 0)
2182 {
2183 expecting_sec_name = 1;
2184 expecting_sec_addr = 1;
2185 }
7a78ae4e
ND
2186 }
2187 else
2188 {
2189 if (expecting_sec_name)
db162d44 2190 {
7a78ae4e
ND
2191 sect_opts[section_index].name = arg;
2192 expecting_sec_name = 0;
db162d44
EZ
2193 }
2194 else
7a78ae4e
ND
2195 if (expecting_sec_addr)
2196 {
2197 sect_opts[section_index].value = arg;
2198 expecting_sec_addr = 0;
f414f22f 2199 if (++section_index >= num_sect_opts)
a39a16c4
MM
2200 {
2201 num_sect_opts *= 2;
5417f6dc 2202 sect_opts = ((struct sect_opt *)
a39a16c4 2203 xrealloc (sect_opts,
5417f6dc 2204 num_sect_opts
a39a16c4
MM
2205 * sizeof (struct sect_opt)));
2206 }
7a78ae4e
ND
2207 }
2208 else
8a3fe4f8 2209 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2210 }
2211 }
c906108c 2212 }
c906108c 2213
927890d0
JB
2214 /* This command takes at least two arguments. The first one is a
2215 filename, and the second is the address where this file has been
2216 loaded. Abort now if this address hasn't been provided by the
2217 user. */
2218 if (section_index < 1)
2219 error (_("The address where %s has been loaded is missing"), filename);
2220
db162d44
EZ
2221 /* Print the prompt for the query below. And save the arguments into
2222 a sect_addr_info structure to be passed around to other
2223 functions. We have to split this up into separate print
bb599908 2224 statements because hex_string returns a local static
db162d44 2225 string. */
5417f6dc 2226
a3f17187 2227 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2228 section_addrs = alloc_section_addr_info (section_index);
2229 make_cleanup (xfree, section_addrs);
db162d44 2230 for (i = 0; i < section_index; i++)
c906108c 2231 {
db162d44
EZ
2232 CORE_ADDR addr;
2233 char *val = sect_opts[i].value;
2234 char *sec = sect_opts[i].name;
5417f6dc 2235
ae822768 2236 addr = parse_and_eval_address (val);
db162d44 2237
db162d44
EZ
2238 /* Here we store the section offsets in the order they were
2239 entered on the command line. */
a39a16c4
MM
2240 section_addrs->other[sec_num].name = sec;
2241 section_addrs->other[sec_num].addr = addr;
46f45a4a 2242 printf_unfiltered ("\t%s_addr = %s\n",
bb599908 2243 sec, hex_string ((unsigned long)addr));
db162d44
EZ
2244 sec_num++;
2245
5417f6dc 2246 /* The object's sections are initialized when a
db162d44 2247 call is made to build_objfile_section_table (objfile).
5417f6dc 2248 This happens in reread_symbols.
db162d44
EZ
2249 At this point, we don't know what file type this is,
2250 so we can't determine what section names are valid. */
2acceee2 2251 }
db162d44 2252
2acceee2 2253 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2254 error (_("Not confirmed."));
c906108c 2255
a39a16c4 2256 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2257
2258 /* Getting new symbols may change our opinion about what is
2259 frameless. */
2260 reinit_frame_cache ();
db162d44 2261 do_cleanups (my_cleanups);
c906108c
SS
2262}
2263\f
2264static void
fba45db2 2265add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2266{
2267#ifdef ADD_SHARED_SYMBOL_FILES
2268 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2269#else
8a3fe4f8 2270 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2271#endif
c906108c
SS
2272}
2273\f
2274/* Re-read symbols if a symbol-file has changed. */
2275void
fba45db2 2276reread_symbols (void)
c906108c
SS
2277{
2278 struct objfile *objfile;
2279 long new_modtime;
2280 int reread_one = 0;
2281 struct stat new_statbuf;
2282 int res;
2283
2284 /* With the addition of shared libraries, this should be modified,
2285 the load time should be saved in the partial symbol tables, since
2286 different tables may come from different source files. FIXME.
2287 This routine should then walk down each partial symbol table
2288 and see if the symbol table that it originates from has been changed */
2289
c5aa993b
JM
2290 for (objfile = object_files; objfile; objfile = objfile->next)
2291 {
2292 if (objfile->obfd)
2293 {
52d16ba8 2294#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2295 /* If this object is from a shared library, then you should
2296 stat on the library name, not member name. */
c906108c 2297
c5aa993b
JM
2298 if (objfile->obfd->my_archive)
2299 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2300 else
c906108c 2301#endif
c5aa993b
JM
2302 res = stat (objfile->name, &new_statbuf);
2303 if (res != 0)
c906108c 2304 {
c5aa993b 2305 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2306 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2307 objfile->name);
2308 continue;
c906108c 2309 }
c5aa993b
JM
2310 new_modtime = new_statbuf.st_mtime;
2311 if (new_modtime != objfile->mtime)
c906108c 2312 {
c5aa993b
JM
2313 struct cleanup *old_cleanups;
2314 struct section_offsets *offsets;
2315 int num_offsets;
c5aa993b
JM
2316 char *obfd_filename;
2317
a3f17187 2318 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2319 objfile->name);
2320
2321 /* There are various functions like symbol_file_add,
2322 symfile_bfd_open, syms_from_objfile, etc., which might
2323 appear to do what we want. But they have various other
2324 effects which we *don't* want. So we just do stuff
2325 ourselves. We don't worry about mapped files (for one thing,
2326 any mapped file will be out of date). */
2327
2328 /* If we get an error, blow away this objfile (not sure if
2329 that is the correct response for things like shared
2330 libraries). */
74b7792f 2331 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2332 /* We need to do this whenever any symbols go away. */
74b7792f 2333 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
2334
2335 /* Clean up any state BFD has sitting around. We don't need
2336 to close the descriptor but BFD lacks a way of closing the
2337 BFD without closing the descriptor. */
2338 obfd_filename = bfd_get_filename (objfile->obfd);
2339 if (!bfd_close (objfile->obfd))
8a3fe4f8 2340 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b
JM
2341 bfd_errmsg (bfd_get_error ()));
2342 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2343 if (objfile->obfd == NULL)
8a3fe4f8 2344 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2345 /* bfd_openr sets cacheable to true, which is what we want. */
2346 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2347 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2348 bfd_errmsg (bfd_get_error ()));
2349
2350 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2351 objfile_obstack. */
c5aa993b 2352 num_offsets = objfile->num_sections;
5417f6dc 2353 offsets = ((struct section_offsets *)
a39a16c4 2354 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2355 memcpy (offsets, objfile->section_offsets,
a39a16c4 2356 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2357
ae5a43e0
DJ
2358 /* Remove any references to this objfile in the global
2359 value lists. */
2360 preserve_values (objfile);
2361
c5aa993b
JM
2362 /* Nuke all the state that we will re-read. Much of the following
2363 code which sets things to NULL really is necessary to tell
2364 other parts of GDB that there is nothing currently there. */
2365
2366 /* FIXME: Do we have to free a whole linked list, or is this
2367 enough? */
2368 if (objfile->global_psymbols.list)
2dc74dc1 2369 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2370 memset (&objfile->global_psymbols, 0,
2371 sizeof (objfile->global_psymbols));
2372 if (objfile->static_psymbols.list)
2dc74dc1 2373 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2374 memset (&objfile->static_psymbols, 0,
2375 sizeof (objfile->static_psymbols));
2376
2377 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2378 bcache_xfree (objfile->psymbol_cache);
2379 objfile->psymbol_cache = bcache_xmalloc ();
2380 bcache_xfree (objfile->macro_cache);
2381 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2382 if (objfile->demangled_names_hash != NULL)
2383 {
2384 htab_delete (objfile->demangled_names_hash);
2385 objfile->demangled_names_hash = NULL;
2386 }
b99607ea 2387 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2388 objfile->sections = NULL;
2389 objfile->symtabs = NULL;
2390 objfile->psymtabs = NULL;
2391 objfile->free_psymtabs = NULL;
a1b8c067 2392 objfile->cp_namespace_symtab = NULL;
c5aa993b 2393 objfile->msymbols = NULL;
0a6ddd08 2394 objfile->deprecated_sym_private = NULL;
c5aa993b 2395 objfile->minimal_symbol_count = 0;
0a83117a
MS
2396 memset (&objfile->msymbol_hash, 0,
2397 sizeof (objfile->msymbol_hash));
2398 memset (&objfile->msymbol_demangled_hash, 0,
2399 sizeof (objfile->msymbol_demangled_hash));
7b097ae3 2400 clear_objfile_data (objfile);
c5aa993b
JM
2401 if (objfile->sf != NULL)
2402 {
2403 (*objfile->sf->sym_finish) (objfile);
2404 }
2405
2406 /* We never make this a mapped file. */
2407 objfile->md = NULL;
af5f3db6
AC
2408 objfile->psymbol_cache = bcache_xmalloc ();
2409 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2410 /* obstack_init also initializes the obstack so it is
2411 empty. We could use obstack_specify_allocation but
2412 gdb_obstack.h specifies the alloc/dealloc
2413 functions. */
2414 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2415 if (build_objfile_section_table (objfile))
2416 {
8a3fe4f8 2417 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2418 objfile->name, bfd_errmsg (bfd_get_error ()));
2419 }
15831452 2420 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2421
2422 /* We use the same section offsets as from last time. I'm not
2423 sure whether that is always correct for shared libraries. */
2424 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2425 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2426 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2427 memcpy (objfile->section_offsets, offsets,
a39a16c4 2428 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2429 objfile->num_sections = num_offsets;
2430
2431 /* What the hell is sym_new_init for, anyway? The concept of
2432 distinguishing between the main file and additional files
2433 in this way seems rather dubious. */
2434 if (objfile == symfile_objfile)
2435 {
2436 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2437 }
2438
2439 (*objfile->sf->sym_init) (objfile);
b9caf505 2440 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2441 /* The "mainline" parameter is a hideous hack; I think leaving it
2442 zero is OK since dbxread.c also does what it needs to do if
2443 objfile->global_psymbols.size is 0. */
96baa820 2444 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2445 if (!have_partial_symbols () && !have_full_symbols ())
2446 {
2447 wrap_here ("");
a3f17187 2448 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2449 wrap_here ("");
2450 }
2451 objfile->flags |= OBJF_SYMS;
2452
2453 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2454 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2455
c5aa993b
JM
2456 /* Getting new symbols may change our opinion about what is
2457 frameless. */
c906108c 2458
c5aa993b 2459 reinit_frame_cache ();
c906108c 2460
c5aa993b
JM
2461 /* Discard cleanups as symbol reading was successful. */
2462 discard_cleanups (old_cleanups);
c906108c 2463
c5aa993b
JM
2464 /* If the mtime has changed between the time we set new_modtime
2465 and now, we *want* this to be out of date, so don't call stat
2466 again now. */
2467 objfile->mtime = new_modtime;
2468 reread_one = 1;
5b5d99cf 2469 reread_separate_symbols (objfile);
c5aa993b 2470 }
c906108c
SS
2471 }
2472 }
c906108c
SS
2473
2474 if (reread_one)
ea53e89f
JB
2475 {
2476 clear_symtab_users ();
2477 /* At least one objfile has changed, so we can consider that
2478 the executable we're debugging has changed too. */
2479 observer_notify_executable_changed (NULL);
2480 }
2481
c906108c 2482}
5b5d99cf
JB
2483
2484
2485/* Handle separate debug info for OBJFILE, which has just been
2486 re-read:
2487 - If we had separate debug info before, but now we don't, get rid
2488 of the separated objfile.
2489 - If we didn't have separated debug info before, but now we do,
2490 read in the new separated debug info file.
2491 - If the debug link points to a different file, toss the old one
2492 and read the new one.
2493 This function does *not* handle the case where objfile is still
2494 using the same separate debug info file, but that file's timestamp
2495 has changed. That case should be handled by the loop in
2496 reread_symbols already. */
2497static void
2498reread_separate_symbols (struct objfile *objfile)
2499{
2500 char *debug_file;
2501 unsigned long crc32;
2502
2503 /* Does the updated objfile's debug info live in a
2504 separate file? */
2505 debug_file = find_separate_debug_file (objfile);
2506
2507 if (objfile->separate_debug_objfile)
2508 {
2509 /* There are two cases where we need to get rid of
2510 the old separated debug info objfile:
2511 - if the new primary objfile doesn't have
2512 separated debug info, or
2513 - if the new primary objfile has separate debug
2514 info, but it's under a different filename.
5417f6dc 2515
5b5d99cf
JB
2516 If the old and new objfiles both have separate
2517 debug info, under the same filename, then we're
2518 okay --- if the separated file's contents have
2519 changed, we will have caught that when we
2520 visited it in this function's outermost
2521 loop. */
2522 if (! debug_file
2523 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2524 free_objfile (objfile->separate_debug_objfile);
2525 }
2526
2527 /* If the new objfile has separate debug info, and we
2528 haven't loaded it already, do so now. */
2529 if (debug_file
2530 && ! objfile->separate_debug_objfile)
2531 {
2532 /* Use the same section offset table as objfile itself.
2533 Preserve the flags from objfile that make sense. */
2534 objfile->separate_debug_objfile
2535 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2536 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2537 info_verbose, /* from_tty: Don't override the default. */
2538 0, /* No addr table. */
2539 objfile->section_offsets, objfile->num_sections,
2540 0, /* Not mainline. See comments about this above. */
78a4a9b9 2541 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2542 | OBJF_USERLOADED)));
2543 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2544 = objfile;
2545 }
73780b3c
MS
2546 if (debug_file)
2547 xfree (debug_file);
5b5d99cf
JB
2548}
2549
2550
c906108c
SS
2551\f
2552
c5aa993b
JM
2553
2554typedef struct
2555{
2556 char *ext;
c906108c 2557 enum language lang;
c5aa993b
JM
2558}
2559filename_language;
c906108c 2560
c5aa993b 2561static filename_language *filename_language_table;
c906108c
SS
2562static int fl_table_size, fl_table_next;
2563
2564static void
fba45db2 2565add_filename_language (char *ext, enum language lang)
c906108c
SS
2566{
2567 if (fl_table_next >= fl_table_size)
2568 {
2569 fl_table_size += 10;
5417f6dc 2570 filename_language_table =
25bf3106
PM
2571 xrealloc (filename_language_table,
2572 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2573 }
2574
4fcf66da 2575 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2576 filename_language_table[fl_table_next].lang = lang;
2577 fl_table_next++;
2578}
2579
2580static char *ext_args;
920d2a44
AC
2581static void
2582show_ext_args (struct ui_file *file, int from_tty,
2583 struct cmd_list_element *c, const char *value)
2584{
2585 fprintf_filtered (file, _("\
2586Mapping between filename extension and source language is \"%s\".\n"),
2587 value);
2588}
c906108c
SS
2589
2590static void
26c41df3 2591set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2592{
2593 int i;
2594 char *cp = ext_args;
2595 enum language lang;
2596
2597 /* First arg is filename extension, starting with '.' */
2598 if (*cp != '.')
8a3fe4f8 2599 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2600
2601 /* Find end of first arg. */
c5aa993b 2602 while (*cp && !isspace (*cp))
c906108c
SS
2603 cp++;
2604
2605 if (*cp == '\0')
8a3fe4f8 2606 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2607 ext_args);
2608
2609 /* Null-terminate first arg */
c5aa993b 2610 *cp++ = '\0';
c906108c
SS
2611
2612 /* Find beginning of second arg, which should be a source language. */
2613 while (*cp && isspace (*cp))
2614 cp++;
2615
2616 if (*cp == '\0')
8a3fe4f8 2617 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2618 ext_args);
2619
2620 /* Lookup the language from among those we know. */
2621 lang = language_enum (cp);
2622
2623 /* Now lookup the filename extension: do we already know it? */
2624 for (i = 0; i < fl_table_next; i++)
2625 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2626 break;
2627
2628 if (i >= fl_table_next)
2629 {
2630 /* new file extension */
2631 add_filename_language (ext_args, lang);
2632 }
2633 else
2634 {
2635 /* redefining a previously known filename extension */
2636
2637 /* if (from_tty) */
2638 /* query ("Really make files of type %s '%s'?", */
2639 /* ext_args, language_str (lang)); */
2640
b8c9b27d 2641 xfree (filename_language_table[i].ext);
4fcf66da 2642 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2643 filename_language_table[i].lang = lang;
2644 }
2645}
2646
2647static void
fba45db2 2648info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2649{
2650 int i;
2651
a3f17187 2652 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2653 printf_filtered ("\n\n");
2654 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2655 printf_filtered ("\t%s\t- %s\n",
2656 filename_language_table[i].ext,
c906108c
SS
2657 language_str (filename_language_table[i].lang));
2658}
2659
2660static void
fba45db2 2661init_filename_language_table (void)
c906108c
SS
2662{
2663 if (fl_table_size == 0) /* protect against repetition */
2664 {
2665 fl_table_size = 20;
2666 fl_table_next = 0;
c5aa993b 2667 filename_language_table =
c906108c 2668 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2669 add_filename_language (".c", language_c);
2670 add_filename_language (".C", language_cplus);
2671 add_filename_language (".cc", language_cplus);
2672 add_filename_language (".cp", language_cplus);
2673 add_filename_language (".cpp", language_cplus);
2674 add_filename_language (".cxx", language_cplus);
2675 add_filename_language (".c++", language_cplus);
2676 add_filename_language (".java", language_java);
c906108c 2677 add_filename_language (".class", language_java);
da2cf7e0 2678 add_filename_language (".m", language_objc);
c5aa993b
JM
2679 add_filename_language (".f", language_fortran);
2680 add_filename_language (".F", language_fortran);
2681 add_filename_language (".s", language_asm);
aa707ed0 2682 add_filename_language (".sx", language_asm);
c5aa993b 2683 add_filename_language (".S", language_asm);
c6fd39cd
PM
2684 add_filename_language (".pas", language_pascal);
2685 add_filename_language (".p", language_pascal);
2686 add_filename_language (".pp", language_pascal);
963a6417
PH
2687 add_filename_language (".adb", language_ada);
2688 add_filename_language (".ads", language_ada);
2689 add_filename_language (".a", language_ada);
2690 add_filename_language (".ada", language_ada);
c906108c
SS
2691 }
2692}
2693
2694enum language
fba45db2 2695deduce_language_from_filename (char *filename)
c906108c
SS
2696{
2697 int i;
2698 char *cp;
2699
2700 if (filename != NULL)
2701 if ((cp = strrchr (filename, '.')) != NULL)
2702 for (i = 0; i < fl_table_next; i++)
2703 if (strcmp (cp, filename_language_table[i].ext) == 0)
2704 return filename_language_table[i].lang;
2705
2706 return language_unknown;
2707}
2708\f
2709/* allocate_symtab:
2710
2711 Allocate and partly initialize a new symbol table. Return a pointer
2712 to it. error() if no space.
2713
2714 Caller must set these fields:
c5aa993b
JM
2715 LINETABLE(symtab)
2716 symtab->blockvector
2717 symtab->dirname
2718 symtab->free_code
2719 symtab->free_ptr
2720 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2721 */
2722
2723struct symtab *
fba45db2 2724allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2725{
52f0bd74 2726 struct symtab *symtab;
c906108c
SS
2727
2728 symtab = (struct symtab *)
4a146b47 2729 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2730 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2731 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2732 &objfile->objfile_obstack);
c5aa993b
JM
2733 symtab->fullname = NULL;
2734 symtab->language = deduce_language_from_filename (filename);
2735 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2736 &objfile->objfile_obstack);
c906108c
SS
2737
2738 /* Hook it to the objfile it comes from */
2739
c5aa993b
JM
2740 symtab->objfile = objfile;
2741 symtab->next = objfile->symtabs;
2742 objfile->symtabs = symtab;
c906108c 2743
c906108c
SS
2744 return (symtab);
2745}
2746
2747struct partial_symtab *
fba45db2 2748allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2749{
2750 struct partial_symtab *psymtab;
2751
c5aa993b 2752 if (objfile->free_psymtabs)
c906108c 2753 {
c5aa993b
JM
2754 psymtab = objfile->free_psymtabs;
2755 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2756 }
2757 else
2758 psymtab = (struct partial_symtab *)
8b92e4d5 2759 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2760 sizeof (struct partial_symtab));
2761
2762 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2763 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2764 &objfile->objfile_obstack);
c5aa993b 2765 psymtab->symtab = NULL;
c906108c
SS
2766
2767 /* Prepend it to the psymtab list for the objfile it belongs to.
2768 Psymtabs are searched in most recent inserted -> least recent
2769 inserted order. */
2770
c5aa993b
JM
2771 psymtab->objfile = objfile;
2772 psymtab->next = objfile->psymtabs;
2773 objfile->psymtabs = psymtab;
c906108c
SS
2774#if 0
2775 {
2776 struct partial_symtab **prev_pst;
c5aa993b
JM
2777 psymtab->objfile = objfile;
2778 psymtab->next = NULL;
2779 prev_pst = &(objfile->psymtabs);
c906108c 2780 while ((*prev_pst) != NULL)
c5aa993b 2781 prev_pst = &((*prev_pst)->next);
c906108c 2782 (*prev_pst) = psymtab;
c5aa993b 2783 }
c906108c 2784#endif
c5aa993b 2785
c906108c
SS
2786 return (psymtab);
2787}
2788
2789void
fba45db2 2790discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2791{
2792 struct partial_symtab **prev_pst;
2793
2794 /* From dbxread.c:
2795 Empty psymtabs happen as a result of header files which don't
2796 have any symbols in them. There can be a lot of them. But this
2797 check is wrong, in that a psymtab with N_SLINE entries but
2798 nothing else is not empty, but we don't realize that. Fixing
2799 that without slowing things down might be tricky. */
2800
2801 /* First, snip it out of the psymtab chain */
2802
2803 prev_pst = &(pst->objfile->psymtabs);
2804 while ((*prev_pst) != pst)
2805 prev_pst = &((*prev_pst)->next);
2806 (*prev_pst) = pst->next;
2807
2808 /* Next, put it on a free list for recycling */
2809
2810 pst->next = pst->objfile->free_psymtabs;
2811 pst->objfile->free_psymtabs = pst;
2812}
c906108c 2813\f
c5aa993b 2814
c906108c
SS
2815/* Reset all data structures in gdb which may contain references to symbol
2816 table data. */
2817
2818void
fba45db2 2819clear_symtab_users (void)
c906108c
SS
2820{
2821 /* Someday, we should do better than this, by only blowing away
2822 the things that really need to be blown. */
c0501be5
DJ
2823
2824 /* Clear the "current" symtab first, because it is no longer valid.
2825 breakpoint_re_set may try to access the current symtab. */
2826 clear_current_source_symtab_and_line ();
2827
c906108c 2828 clear_displays ();
c906108c
SS
2829 breakpoint_re_set ();
2830 set_default_breakpoint (0, 0, 0, 0);
c906108c 2831 clear_pc_function_cache ();
06d3b283 2832 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2833
2834 /* Clear globals which might have pointed into a removed objfile.
2835 FIXME: It's not clear which of these are supposed to persist
2836 between expressions and which ought to be reset each time. */
2837 expression_context_block = NULL;
2838 innermost_block = NULL;
8756216b
DP
2839
2840 /* Varobj may refer to old symbols, perform a cleanup. */
2841 varobj_invalidate ();
2842
c906108c
SS
2843}
2844
74b7792f
AC
2845static void
2846clear_symtab_users_cleanup (void *ignore)
2847{
2848 clear_symtab_users ();
2849}
2850
c906108c
SS
2851/* clear_symtab_users_once:
2852
2853 This function is run after symbol reading, or from a cleanup.
2854 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2855 has been blown away, but the other GDB data structures that may
c906108c
SS
2856 reference it have not yet been cleared or re-directed. (The old
2857 symtab was zapped, and the cleanup queued, in free_named_symtab()
2858 below.)
2859
2860 This function can be queued N times as a cleanup, or called
2861 directly; it will do all the work the first time, and then will be a
2862 no-op until the next time it is queued. This works by bumping a
2863 counter at queueing time. Much later when the cleanup is run, or at
2864 the end of symbol processing (in case the cleanup is discarded), if
2865 the queued count is greater than the "done-count", we do the work
2866 and set the done-count to the queued count. If the queued count is
2867 less than or equal to the done-count, we just ignore the call. This
2868 is needed because reading a single .o file will often replace many
2869 symtabs (one per .h file, for example), and we don't want to reset
2870 the breakpoints N times in the user's face.
2871
2872 The reason we both queue a cleanup, and call it directly after symbol
2873 reading, is because the cleanup protects us in case of errors, but is
2874 discarded if symbol reading is successful. */
2875
2876#if 0
2877/* FIXME: As free_named_symtabs is currently a big noop this function
2878 is no longer needed. */
a14ed312 2879static void clear_symtab_users_once (void);
c906108c
SS
2880
2881static int clear_symtab_users_queued;
2882static int clear_symtab_users_done;
2883
2884static void
fba45db2 2885clear_symtab_users_once (void)
c906108c
SS
2886{
2887 /* Enforce once-per-`do_cleanups'-semantics */
2888 if (clear_symtab_users_queued <= clear_symtab_users_done)
2889 return;
2890 clear_symtab_users_done = clear_symtab_users_queued;
2891
2892 clear_symtab_users ();
2893}
2894#endif
2895
2896/* Delete the specified psymtab, and any others that reference it. */
2897
2898static void
fba45db2 2899cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2900{
2901 struct partial_symtab *ps, *pprev = NULL;
2902 int i;
2903
2904 /* Find its previous psymtab in the chain */
c5aa993b
JM
2905 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2906 {
2907 if (ps == pst)
2908 break;
2909 pprev = ps;
2910 }
c906108c 2911
c5aa993b
JM
2912 if (ps)
2913 {
2914 /* Unhook it from the chain. */
2915 if (ps == pst->objfile->psymtabs)
2916 pst->objfile->psymtabs = ps->next;
2917 else
2918 pprev->next = ps->next;
2919
2920 /* FIXME, we can't conveniently deallocate the entries in the
2921 partial_symbol lists (global_psymbols/static_psymbols) that
2922 this psymtab points to. These just take up space until all
2923 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2924 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2925
2926 /* We need to cashier any psymtab that has this one as a dependency... */
2927 again:
2928 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2929 {
2930 for (i = 0; i < ps->number_of_dependencies; i++)
2931 {
2932 if (ps->dependencies[i] == pst)
2933 {
2934 cashier_psymtab (ps);
2935 goto again; /* Must restart, chain has been munged. */
2936 }
2937 }
c906108c 2938 }
c906108c 2939 }
c906108c
SS
2940}
2941
2942/* If a symtab or psymtab for filename NAME is found, free it along
2943 with any dependent breakpoints, displays, etc.
2944 Used when loading new versions of object modules with the "add-file"
2945 command. This is only called on the top-level symtab or psymtab's name;
2946 it is not called for subsidiary files such as .h files.
2947
2948 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2949 FIXME. The return value appears to never be used.
c906108c
SS
2950
2951 FIXME. I think this is not the best way to do this. We should
2952 work on being gentler to the environment while still cleaning up
2953 all stray pointers into the freed symtab. */
2954
2955int
fba45db2 2956free_named_symtabs (char *name)
c906108c
SS
2957{
2958#if 0
2959 /* FIXME: With the new method of each objfile having it's own
2960 psymtab list, this function needs serious rethinking. In particular,
2961 why was it ever necessary to toss psymtabs with specific compilation
2962 unit filenames, as opposed to all psymtabs from a particular symbol
2963 file? -- fnf
2964 Well, the answer is that some systems permit reloading of particular
2965 compilation units. We want to blow away any old info about these
2966 compilation units, regardless of which objfiles they arrived in. --gnu. */
2967
52f0bd74
AC
2968 struct symtab *s;
2969 struct symtab *prev;
2970 struct partial_symtab *ps;
c906108c
SS
2971 struct blockvector *bv;
2972 int blewit = 0;
2973
2974 /* We only wack things if the symbol-reload switch is set. */
2975 if (!symbol_reloading)
2976 return 0;
2977
2978 /* Some symbol formats have trouble providing file names... */
2979 if (name == 0 || *name == '\0')
2980 return 0;
2981
2982 /* Look for a psymtab with the specified name. */
2983
2984again2:
c5aa993b
JM
2985 for (ps = partial_symtab_list; ps; ps = ps->next)
2986 {
6314a349 2987 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2988 {
2989 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2990 goto again2; /* Must restart, chain has been munged */
2991 }
c906108c 2992 }
c906108c
SS
2993
2994 /* Look for a symtab with the specified name. */
2995
2996 for (s = symtab_list; s; s = s->next)
2997 {
6314a349 2998 if (strcmp (name, s->filename) == 0)
c906108c
SS
2999 break;
3000 prev = s;
3001 }
3002
3003 if (s)
3004 {
3005 if (s == symtab_list)
3006 symtab_list = s->next;
3007 else
3008 prev->next = s->next;
3009
3010 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3011 or not they depend on the symtab being freed. This should be
3012 changed so that only those data structures affected are deleted. */
c906108c
SS
3013
3014 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3015 This test is necessary due to a bug in "dbxread.c" that
3016 causes empty symtabs to be created for N_SO symbols that
3017 contain the pathname of the object file. (This problem
3018 has been fixed in GDB 3.9x). */
c906108c
SS
3019
3020 bv = BLOCKVECTOR (s);
3021 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3022 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3023 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3024 {
e2e0b3e5 3025 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3026 name);
c906108c
SS
3027 clear_symtab_users_queued++;
3028 make_cleanup (clear_symtab_users_once, 0);
3029 blewit = 1;
c5aa993b
JM
3030 }
3031 else
e2e0b3e5
AC
3032 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3033 name);
c906108c
SS
3034
3035 free_symtab (s);
3036 }
3037 else
3038 {
3039 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3040 even though no symtab was found, since the file might have
3041 been compiled without debugging, and hence not be associated
3042 with a symtab. In order to handle this correctly, we would need
3043 to keep a list of text address ranges for undebuggable files.
3044 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3045 ;
3046 }
3047
3048 /* FIXME, what about the minimal symbol table? */
3049 return blewit;
3050#else
3051 return (0);
3052#endif
3053}
3054\f
3055/* Allocate and partially fill a partial symtab. It will be
3056 completely filled at the end of the symbol list.
3057
d4f3574e 3058 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3059
3060struct partial_symtab *
fba45db2
KB
3061start_psymtab_common (struct objfile *objfile,
3062 struct section_offsets *section_offsets, char *filename,
3063 CORE_ADDR textlow, struct partial_symbol **global_syms,
3064 struct partial_symbol **static_syms)
c906108c
SS
3065{
3066 struct partial_symtab *psymtab;
3067
3068 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3069 psymtab->section_offsets = section_offsets;
3070 psymtab->textlow = textlow;
3071 psymtab->texthigh = psymtab->textlow; /* default */
3072 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3073 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3074 return (psymtab);
3075}
3076\f
3077/* Add a symbol with a long value to a psymtab.
5417f6dc 3078 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3079 Return the partial symbol that has been added. */
3080
3081/* NOTE: carlton/2003-09-11: The reason why we return the partial
3082 symbol is so that callers can get access to the symbol's demangled
3083 name, which they don't have any cheap way to determine otherwise.
3084 (Currenly, dwarf2read.c is the only file who uses that information,
3085 though it's possible that other readers might in the future.)
3086 Elena wasn't thrilled about that, and I don't blame her, but we
3087 couldn't come up with a better way to get that information. If
3088 it's needed in other situations, we could consider breaking up
3089 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3090 cache. */
3091
3092const struct partial_symbol *
176620f1 3093add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2
KB
3094 enum address_class class,
3095 struct psymbol_allocation_list *list, long val, /* Value as a long */
3096 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3097 enum language language, struct objfile *objfile)
c906108c 3098{
52f0bd74 3099 struct partial_symbol *psym;
c906108c
SS
3100 char *buf = alloca (namelength + 1);
3101 /* psymbol is static so that there will be no uninitialized gaps in the
3102 structure which might contain random data, causing cache misses in
3103 bcache. */
3104 static struct partial_symbol psymbol;
3105
3106 /* Create local copy of the partial symbol */
3107 memcpy (buf, name, namelength);
3108 buf[namelength] = '\0';
c906108c
SS
3109 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3110 if (val != 0)
3111 {
3112 SYMBOL_VALUE (&psymbol) = val;
3113 }
3114 else
3115 {
3116 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3117 }
3118 SYMBOL_SECTION (&psymbol) = 0;
3119 SYMBOL_LANGUAGE (&psymbol) = language;
176620f1 3120 PSYMBOL_DOMAIN (&psymbol) = domain;
c906108c 3121 PSYMBOL_CLASS (&psymbol) = class;
2de7ced7
DJ
3122
3123 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
c906108c
SS
3124
3125 /* Stash the partial symbol away in the cache */
3a16a68c
AC
3126 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3127 objfile->psymbol_cache);
c906108c
SS
3128
3129 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3130 if (list->next >= list->list + list->size)
3131 {
3132 extend_psymbol_list (list, objfile);
3133 }
3134 *list->next++ = psym;
3135 OBJSTAT (objfile, n_psyms++);
5c4e30ca
DC
3136
3137 return psym;
c906108c
SS
3138}
3139
c906108c
SS
3140/* Initialize storage for partial symbols. */
3141
3142void
fba45db2 3143init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3144{
3145 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3146
3147 if (objfile->global_psymbols.list)
c906108c 3148 {
2dc74dc1 3149 xfree (objfile->global_psymbols.list);
c906108c 3150 }
c5aa993b 3151 if (objfile->static_psymbols.list)
c906108c 3152 {
2dc74dc1 3153 xfree (objfile->static_psymbols.list);
c906108c 3154 }
c5aa993b 3155
c906108c
SS
3156 /* Current best guess is that approximately a twentieth
3157 of the total symbols (in a debugging file) are global or static
3158 oriented symbols */
c906108c 3159
c5aa993b
JM
3160 objfile->global_psymbols.size = total_symbols / 10;
3161 objfile->static_psymbols.size = total_symbols / 10;
3162
3163 if (objfile->global_psymbols.size > 0)
c906108c 3164 {
c5aa993b
JM
3165 objfile->global_psymbols.next =
3166 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3167 xmalloc ((objfile->global_psymbols.size
3168 * sizeof (struct partial_symbol *)));
c906108c 3169 }
c5aa993b 3170 if (objfile->static_psymbols.size > 0)
c906108c 3171 {
c5aa993b
JM
3172 objfile->static_psymbols.next =
3173 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3174 xmalloc ((objfile->static_psymbols.size
3175 * sizeof (struct partial_symbol *)));
c906108c
SS
3176 }
3177}
3178
3179/* OVERLAYS:
3180 The following code implements an abstraction for debugging overlay sections.
3181
3182 The target model is as follows:
3183 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3184 same VMA, each with its own unique LMA (or load address).
c906108c 3185 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3186 sections, one by one, from the load address into the VMA address.
5417f6dc 3187 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3188 sections should be considered to be mapped from the VMA to the LMA.
3189 This information is used for symbol lookup, and memory read/write.
5417f6dc 3190 For instance, if a section has been mapped then its contents
c5aa993b 3191 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3192
3193 Two levels of debugger support for overlays are available. One is
3194 "manual", in which the debugger relies on the user to tell it which
3195 overlays are currently mapped. This level of support is
3196 implemented entirely in the core debugger, and the information about
3197 whether a section is mapped is kept in the objfile->obj_section table.
3198
3199 The second level of support is "automatic", and is only available if
3200 the target-specific code provides functionality to read the target's
3201 overlay mapping table, and translate its contents for the debugger
3202 (by updating the mapped state information in the obj_section tables).
3203
3204 The interface is as follows:
c5aa993b
JM
3205 User commands:
3206 overlay map <name> -- tell gdb to consider this section mapped
3207 overlay unmap <name> -- tell gdb to consider this section unmapped
3208 overlay list -- list the sections that GDB thinks are mapped
3209 overlay read-target -- get the target's state of what's mapped
3210 overlay off/manual/auto -- set overlay debugging state
3211 Functional interface:
3212 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3213 section, return that section.
5417f6dc 3214 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3215 the pc, either in its VMA or its LMA
3216 overlay_is_mapped(sect): true if overlay is marked as mapped
3217 section_is_overlay(sect): true if section's VMA != LMA
3218 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3219 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3220 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3221 overlay_mapped_address(...): map an address from section's LMA to VMA
3222 overlay_unmapped_address(...): map an address from section's VMA to LMA
3223 symbol_overlayed_address(...): Return a "current" address for symbol:
3224 either in VMA or LMA depending on whether
3225 the symbol's section is currently mapped
c906108c
SS
3226 */
3227
3228/* Overlay debugging state: */
3229
d874f1e2 3230enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3231int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3232
c906108c 3233/* Function: section_is_overlay (SECTION)
5417f6dc 3234 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3235 SECTION is loaded at an address different from where it will "run". */
3236
3237int
fba45db2 3238section_is_overlay (asection *section)
c906108c 3239{
fbd35540
MS
3240 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3241
c906108c
SS
3242 if (overlay_debugging)
3243 if (section && section->lma != 0 &&
3244 section->vma != section->lma)
3245 return 1;
3246
3247 return 0;
3248}
3249
3250/* Function: overlay_invalidate_all (void)
3251 Invalidate the mapped state of all overlay sections (mark it as stale). */
3252
3253static void
fba45db2 3254overlay_invalidate_all (void)
c906108c 3255{
c5aa993b 3256 struct objfile *objfile;
c906108c
SS
3257 struct obj_section *sect;
3258
3259 ALL_OBJSECTIONS (objfile, sect)
3260 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3261 sect->ovly_mapped = -1;
c906108c
SS
3262}
3263
3264/* Function: overlay_is_mapped (SECTION)
5417f6dc 3265 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3266 Private: public access is thru function section_is_mapped.
3267
3268 Access to the ovly_mapped flag is restricted to this function, so
3269 that we can do automatic update. If the global flag
3270 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3271 overlay_invalidate_all. If the mapped state of the particular
3272 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3273
c5aa993b 3274static int
fba45db2 3275overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3276{
3277 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3278 return 0;
3279
c5aa993b 3280 switch (overlay_debugging)
c906108c
SS
3281 {
3282 default:
d874f1e2 3283 case ovly_off:
c5aa993b 3284 return 0; /* overlay debugging off */
d874f1e2 3285 case ovly_auto: /* overlay debugging automatic */
1c772458 3286 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3287 there's really nothing useful to do here (can't really go auto) */
1c772458 3288 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3289 {
3290 if (overlay_cache_invalid)
3291 {
3292 overlay_invalidate_all ();
3293 overlay_cache_invalid = 0;
3294 }
3295 if (osect->ovly_mapped == -1)
1c772458 3296 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3297 }
3298 /* fall thru to manual case */
d874f1e2 3299 case ovly_on: /* overlay debugging manual */
c906108c
SS
3300 return osect->ovly_mapped == 1;
3301 }
3302}
3303
3304/* Function: section_is_mapped
3305 Returns true if section is an overlay, and is currently mapped. */
3306
3307int
fba45db2 3308section_is_mapped (asection *section)
c906108c 3309{
c5aa993b 3310 struct objfile *objfile;
c906108c
SS
3311 struct obj_section *osect;
3312
3313 if (overlay_debugging)
3314 if (section && section_is_overlay (section))
3315 ALL_OBJSECTIONS (objfile, osect)
3316 if (osect->the_bfd_section == section)
c5aa993b 3317 return overlay_is_mapped (osect);
c906108c
SS
3318
3319 return 0;
3320}
3321
3322/* Function: pc_in_unmapped_range
3323 If PC falls into the lma range of SECTION, return true, else false. */
3324
3325CORE_ADDR
fba45db2 3326pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3327{
fbd35540
MS
3328 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3329
c906108c
SS
3330 int size;
3331
3332 if (overlay_debugging)
3333 if (section && section_is_overlay (section))
3334 {
2c500098 3335 size = bfd_get_section_size (section);
c906108c
SS
3336 if (section->lma <= pc && pc < section->lma + size)
3337 return 1;
3338 }
3339 return 0;
3340}
3341
3342/* Function: pc_in_mapped_range
3343 If PC falls into the vma range of SECTION, return true, else false. */
3344
3345CORE_ADDR
fba45db2 3346pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3347{
fbd35540
MS
3348 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3349
c906108c
SS
3350 int size;
3351
3352 if (overlay_debugging)
3353 if (section && section_is_overlay (section))
3354 {
2c500098 3355 size = bfd_get_section_size (section);
c906108c
SS
3356 if (section->vma <= pc && pc < section->vma + size)
3357 return 1;
3358 }
3359 return 0;
3360}
3361
9ec8e6a0
JB
3362
3363/* Return true if the mapped ranges of sections A and B overlap, false
3364 otherwise. */
b9362cc7 3365static int
9ec8e6a0
JB
3366sections_overlap (asection *a, asection *b)
3367{
fbd35540
MS
3368 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3369
9ec8e6a0 3370 CORE_ADDR a_start = a->vma;
2c500098 3371 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3372 CORE_ADDR b_start = b->vma;
2c500098 3373 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3374
3375 return (a_start < b_end && b_start < a_end);
3376}
3377
c906108c
SS
3378/* Function: overlay_unmapped_address (PC, SECTION)
3379 Returns the address corresponding to PC in the unmapped (load) range.
3380 May be the same as PC. */
3381
3382CORE_ADDR
fba45db2 3383overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3384{
fbd35540
MS
3385 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3386
c906108c
SS
3387 if (overlay_debugging)
3388 if (section && section_is_overlay (section) &&
3389 pc_in_mapped_range (pc, section))
3390 return pc + section->lma - section->vma;
3391
3392 return pc;
3393}
3394
3395/* Function: overlay_mapped_address (PC, SECTION)
3396 Returns the address corresponding to PC in the mapped (runtime) range.
3397 May be the same as PC. */
3398
3399CORE_ADDR
fba45db2 3400overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3401{
fbd35540
MS
3402 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3403
c906108c
SS
3404 if (overlay_debugging)
3405 if (section && section_is_overlay (section) &&
3406 pc_in_unmapped_range (pc, section))
3407 return pc + section->vma - section->lma;
3408
3409 return pc;
3410}
3411
3412
5417f6dc 3413/* Function: symbol_overlayed_address
c906108c
SS
3414 Return one of two addresses (relative to the VMA or to the LMA),
3415 depending on whether the section is mapped or not. */
3416
c5aa993b 3417CORE_ADDR
fba45db2 3418symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3419{
3420 if (overlay_debugging)
3421 {
3422 /* If the symbol has no section, just return its regular address. */
3423 if (section == 0)
3424 return address;
3425 /* If the symbol's section is not an overlay, just return its address */
3426 if (!section_is_overlay (section))
3427 return address;
3428 /* If the symbol's section is mapped, just return its address */
3429 if (section_is_mapped (section))
3430 return address;
3431 /*
3432 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3433 * then return its LOADED address rather than its vma address!!
3434 */
3435 return overlay_unmapped_address (address, section);
3436 }
3437 return address;
3438}
3439
5417f6dc 3440/* Function: find_pc_overlay (PC)
c906108c
SS
3441 Return the best-match overlay section for PC:
3442 If PC matches a mapped overlay section's VMA, return that section.
3443 Else if PC matches an unmapped section's VMA, return that section.
3444 Else if PC matches an unmapped section's LMA, return that section. */
3445
3446asection *
fba45db2 3447find_pc_overlay (CORE_ADDR pc)
c906108c 3448{
c5aa993b 3449 struct objfile *objfile;
c906108c
SS
3450 struct obj_section *osect, *best_match = NULL;
3451
3452 if (overlay_debugging)
3453 ALL_OBJSECTIONS (objfile, osect)
3454 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3455 {
3456 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3457 {
3458 if (overlay_is_mapped (osect))
3459 return osect->the_bfd_section;
3460 else
3461 best_match = osect;
3462 }
3463 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3464 best_match = osect;
3465 }
c906108c
SS
3466 return best_match ? best_match->the_bfd_section : NULL;
3467}
3468
3469/* Function: find_pc_mapped_section (PC)
5417f6dc 3470 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3471 currently marked as MAPPED, return that section. Else return NULL. */
3472
3473asection *
fba45db2 3474find_pc_mapped_section (CORE_ADDR pc)
c906108c 3475{
c5aa993b 3476 struct objfile *objfile;
c906108c
SS
3477 struct obj_section *osect;
3478
3479 if (overlay_debugging)
3480 ALL_OBJSECTIONS (objfile, osect)
3481 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3482 overlay_is_mapped (osect))
c5aa993b 3483 return osect->the_bfd_section;
c906108c
SS
3484
3485 return NULL;
3486}
3487
3488/* Function: list_overlays_command
3489 Print a list of mapped sections and their PC ranges */
3490
3491void
fba45db2 3492list_overlays_command (char *args, int from_tty)
c906108c 3493{
c5aa993b
JM
3494 int nmapped = 0;
3495 struct objfile *objfile;
c906108c
SS
3496 struct obj_section *osect;
3497
3498 if (overlay_debugging)
3499 ALL_OBJSECTIONS (objfile, osect)
3500 if (overlay_is_mapped (osect))
c5aa993b
JM
3501 {
3502 const char *name;
3503 bfd_vma lma, vma;
3504 int size;
3505
3506 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3507 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3508 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3509 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3510
3511 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3512 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3513 puts_filtered (" - ");
ed49a04f 3514 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3515 printf_filtered (", mapped at ");
ed49a04f 3516 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3517 puts_filtered (" - ");
ed49a04f 3518 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3519 puts_filtered ("\n");
3520
3521 nmapped++;
3522 }
c906108c 3523 if (nmapped == 0)
a3f17187 3524 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3525}
3526
3527/* Function: map_overlay_command
3528 Mark the named section as mapped (ie. residing at its VMA address). */
3529
3530void
fba45db2 3531map_overlay_command (char *args, int from_tty)
c906108c 3532{
c5aa993b
JM
3533 struct objfile *objfile, *objfile2;
3534 struct obj_section *sec, *sec2;
3535 asection *bfdsec;
c906108c
SS
3536
3537 if (!overlay_debugging)
8a3fe4f8 3538 error (_("\
515ad16c 3539Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3540the 'overlay manual' command."));
c906108c
SS
3541
3542 if (args == 0 || *args == 0)
8a3fe4f8 3543 error (_("Argument required: name of an overlay section"));
c906108c
SS
3544
3545 /* First, find a section matching the user supplied argument */
3546 ALL_OBJSECTIONS (objfile, sec)
3547 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3548 {
3549 /* Now, check to see if the section is an overlay. */
3550 bfdsec = sec->the_bfd_section;
3551 if (!section_is_overlay (bfdsec))
3552 continue; /* not an overlay section */
3553
3554 /* Mark the overlay as "mapped" */
3555 sec->ovly_mapped = 1;
3556
3557 /* Next, make a pass and unmap any sections that are
3558 overlapped by this new section: */
3559 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3560 if (sec2->ovly_mapped
3561 && sec != sec2
3562 && sec->the_bfd_section != sec2->the_bfd_section
3563 && sections_overlap (sec->the_bfd_section,
3564 sec2->the_bfd_section))
c5aa993b
JM
3565 {
3566 if (info_verbose)
a3f17187 3567 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3568 bfd_section_name (objfile->obfd,
3569 sec2->the_bfd_section));
3570 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3571 }
3572 return;
3573 }
8a3fe4f8 3574 error (_("No overlay section called %s"), args);
c906108c
SS
3575}
3576
3577/* Function: unmap_overlay_command
5417f6dc 3578 Mark the overlay section as unmapped
c906108c
SS
3579 (ie. resident in its LMA address range, rather than the VMA range). */
3580
3581void
fba45db2 3582unmap_overlay_command (char *args, int from_tty)
c906108c 3583{
c5aa993b 3584 struct objfile *objfile;
c906108c
SS
3585 struct obj_section *sec;
3586
3587 if (!overlay_debugging)
8a3fe4f8 3588 error (_("\
515ad16c 3589Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3590the 'overlay manual' command."));
c906108c
SS
3591
3592 if (args == 0 || *args == 0)
8a3fe4f8 3593 error (_("Argument required: name of an overlay section"));
c906108c
SS
3594
3595 /* First, find a section matching the user supplied argument */
3596 ALL_OBJSECTIONS (objfile, sec)
3597 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3598 {
3599 if (!sec->ovly_mapped)
8a3fe4f8 3600 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3601 sec->ovly_mapped = 0;
3602 return;
3603 }
8a3fe4f8 3604 error (_("No overlay section called %s"), args);
c906108c
SS
3605}
3606
3607/* Function: overlay_auto_command
3608 A utility command to turn on overlay debugging.
3609 Possibly this should be done via a set/show command. */
3610
3611static void
fba45db2 3612overlay_auto_command (char *args, int from_tty)
c906108c 3613{
d874f1e2 3614 overlay_debugging = ovly_auto;
1900040c 3615 enable_overlay_breakpoints ();
c906108c 3616 if (info_verbose)
a3f17187 3617 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3618}
3619
3620/* Function: overlay_manual_command
3621 A utility command to turn on overlay debugging.
3622 Possibly this should be done via a set/show command. */
3623
3624static void
fba45db2 3625overlay_manual_command (char *args, int from_tty)
c906108c 3626{
d874f1e2 3627 overlay_debugging = ovly_on;
1900040c 3628 disable_overlay_breakpoints ();
c906108c 3629 if (info_verbose)
a3f17187 3630 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3631}
3632
3633/* Function: overlay_off_command
3634 A utility command to turn on overlay debugging.
3635 Possibly this should be done via a set/show command. */
3636
3637static void
fba45db2 3638overlay_off_command (char *args, int from_tty)
c906108c 3639{
d874f1e2 3640 overlay_debugging = ovly_off;
1900040c 3641 disable_overlay_breakpoints ();
c906108c 3642 if (info_verbose)
a3f17187 3643 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3644}
3645
3646static void
fba45db2 3647overlay_load_command (char *args, int from_tty)
c906108c 3648{
1c772458
UW
3649 if (gdbarch_overlay_update_p (current_gdbarch))
3650 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3651 else
8a3fe4f8 3652 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3653}
3654
3655/* Function: overlay_command
3656 A place-holder for a mis-typed command */
3657
3658/* Command list chain containing all defined "overlay" subcommands. */
3659struct cmd_list_element *overlaylist;
3660
3661static void
fba45db2 3662overlay_command (char *args, int from_tty)
c906108c 3663{
c5aa993b 3664 printf_unfiltered
c906108c
SS
3665 ("\"overlay\" must be followed by the name of an overlay command.\n");
3666 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3667}
3668
3669
3670/* Target Overlays for the "Simplest" overlay manager:
3671
5417f6dc
RM
3672 This is GDB's default target overlay layer. It works with the
3673 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3674 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3675 so targets that use a different runtime overlay manager can
c906108c
SS
3676 substitute their own overlay_update function and take over the
3677 function pointer.
3678
3679 The overlay_update function pokes around in the target's data structures
3680 to see what overlays are mapped, and updates GDB's overlay mapping with
3681 this information.
3682
3683 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3684 unsigned _novlys; /# number of overlay sections #/
3685 unsigned _ovly_table[_novlys][4] = {
3686 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3687 {..., ..., ..., ...},
3688 }
3689 unsigned _novly_regions; /# number of overlay regions #/
3690 unsigned _ovly_region_table[_novly_regions][3] = {
3691 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3692 {..., ..., ...},
3693 }
c906108c
SS
3694 These functions will attempt to update GDB's mappedness state in the
3695 symbol section table, based on the target's mappedness state.
3696
3697 To do this, we keep a cached copy of the target's _ovly_table, and
3698 attempt to detect when the cached copy is invalidated. The main
3699 entry point is "simple_overlay_update(SECT), which looks up SECT in
3700 the cached table and re-reads only the entry for that section from
3701 the target (whenever possible).
3702 */
3703
3704/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3705static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3706#if 0
c5aa993b 3707static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3708#endif
c5aa993b 3709static unsigned cache_novlys = 0;
c906108c 3710#if 0
c5aa993b 3711static unsigned cache_novly_regions = 0;
c906108c
SS
3712#endif
3713static CORE_ADDR cache_ovly_table_base = 0;
3714#if 0
3715static CORE_ADDR cache_ovly_region_table_base = 0;
3716#endif
c5aa993b
JM
3717enum ovly_index
3718 {
3719 VMA, SIZE, LMA, MAPPED
3720 };
9a76efb6
UW
3721#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3722 / TARGET_CHAR_BIT)
c906108c
SS
3723
3724/* Throw away the cached copy of _ovly_table */
3725static void
fba45db2 3726simple_free_overlay_table (void)
c906108c
SS
3727{
3728 if (cache_ovly_table)
b8c9b27d 3729 xfree (cache_ovly_table);
c5aa993b 3730 cache_novlys = 0;
c906108c
SS
3731 cache_ovly_table = NULL;
3732 cache_ovly_table_base = 0;
3733}
3734
3735#if 0
3736/* Throw away the cached copy of _ovly_region_table */
3737static void
fba45db2 3738simple_free_overlay_region_table (void)
c906108c
SS
3739{
3740 if (cache_ovly_region_table)
b8c9b27d 3741 xfree (cache_ovly_region_table);
c5aa993b 3742 cache_novly_regions = 0;
c906108c
SS
3743 cache_ovly_region_table = NULL;
3744 cache_ovly_region_table_base = 0;
3745}
3746#endif
3747
3748/* Read an array of ints from the target into a local buffer.
3749 Convert to host order. int LEN is number of ints */
3750static void
fba45db2 3751read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3752{
34c0bd93 3753 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3754 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3755 int i;
c906108c
SS
3756
3757 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3758 for (i = 0; i < len; i++)
c5aa993b 3759 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3760 TARGET_LONG_BYTES);
3761}
3762
3763/* Find and grab a copy of the target _ovly_table
3764 (and _novlys, which is needed for the table's size) */
c5aa993b 3765static int
fba45db2 3766simple_read_overlay_table (void)
c906108c 3767{
0d43edd1 3768 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3769
3770 simple_free_overlay_table ();
9b27852e 3771 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3772 if (! novlys_msym)
c906108c 3773 {
8a3fe4f8 3774 error (_("Error reading inferior's overlay table: "
0d43edd1 3775 "couldn't find `_novlys' variable\n"
8a3fe4f8 3776 "in inferior. Use `overlay manual' mode."));
0d43edd1 3777 return 0;
c906108c 3778 }
0d43edd1 3779
9b27852e 3780 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3781 if (! ovly_table_msym)
3782 {
8a3fe4f8 3783 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3784 "`_ovly_table' array\n"
8a3fe4f8 3785 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3786 return 0;
3787 }
3788
3789 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3790 cache_ovly_table
3791 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3792 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3793 read_target_long_array (cache_ovly_table_base,
777ea8f1 3794 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3795 cache_novlys * 4);
3796
c5aa993b 3797 return 1; /* SUCCESS */
c906108c
SS
3798}
3799
3800#if 0
3801/* Find and grab a copy of the target _ovly_region_table
3802 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3803static int
fba45db2 3804simple_read_overlay_region_table (void)
c906108c
SS
3805{
3806 struct minimal_symbol *msym;
3807
3808 simple_free_overlay_region_table ();
9b27852e 3809 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3810 if (msym != NULL)
3811 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3812 else
3813 return 0; /* failure */
c906108c
SS
3814 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3815 if (cache_ovly_region_table != NULL)
3816 {
9b27852e 3817 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3818 if (msym != NULL)
3819 {
3820 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3821 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3822 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3823 cache_novly_regions * 3);
3824 }
c5aa993b
JM
3825 else
3826 return 0; /* failure */
c906108c 3827 }
c5aa993b
JM
3828 else
3829 return 0; /* failure */
3830 return 1; /* SUCCESS */
c906108c
SS
3831}
3832#endif
3833
5417f6dc 3834/* Function: simple_overlay_update_1
c906108c
SS
3835 A helper function for simple_overlay_update. Assuming a cached copy
3836 of _ovly_table exists, look through it to find an entry whose vma,
3837 lma and size match those of OSECT. Re-read the entry and make sure
3838 it still matches OSECT (else the table may no longer be valid).
3839 Set OSECT's mapped state to match the entry. Return: 1 for
3840 success, 0 for failure. */
3841
3842static int
fba45db2 3843simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3844{
3845 int i, size;
fbd35540
MS
3846 bfd *obfd = osect->objfile->obfd;
3847 asection *bsect = osect->the_bfd_section;
c906108c 3848
2c500098 3849 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3850 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3851 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3852 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3853 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3854 {
3855 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3856 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3857 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3858 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3859 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3860 {
3861 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3862 return 1;
3863 }
fbd35540 3864 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3865 return 0;
3866 }
3867 return 0;
3868}
3869
3870/* Function: simple_overlay_update
5417f6dc
RM
3871 If OSECT is NULL, then update all sections' mapped state
3872 (after re-reading the entire target _ovly_table).
3873 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3874 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3875 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3876 re-read the entire cache, and go ahead and update all sections. */
3877
1c772458 3878void
fba45db2 3879simple_overlay_update (struct obj_section *osect)
c906108c 3880{
c5aa993b 3881 struct objfile *objfile;
c906108c
SS
3882
3883 /* Were we given an osect to look up? NULL means do all of them. */
3884 if (osect)
3885 /* Have we got a cached copy of the target's overlay table? */
3886 if (cache_ovly_table != NULL)
3887 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3888 if (cache_ovly_table_base ==
9b27852e 3889 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3890 /* Then go ahead and try to look up this single section in the cache */
3891 if (simple_overlay_update_1 (osect))
3892 /* Found it! We're done. */
3893 return;
3894
3895 /* Cached table no good: need to read the entire table anew.
3896 Or else we want all the sections, in which case it's actually
3897 more efficient to read the whole table in one block anyway. */
3898
0d43edd1
JB
3899 if (! simple_read_overlay_table ())
3900 return;
3901
c906108c
SS
3902 /* Now may as well update all sections, even if only one was requested. */
3903 ALL_OBJSECTIONS (objfile, osect)
3904 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3905 {
3906 int i, size;
fbd35540
MS
3907 bfd *obfd = osect->objfile->obfd;
3908 asection *bsect = osect->the_bfd_section;
c5aa993b 3909
2c500098 3910 size = bfd_get_section_size (bsect);
c5aa993b 3911 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3912 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3913 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3914 /* && cache_ovly_table[i][SIZE] == size */ )
3915 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3916 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3917 break; /* finished with inner for loop: break out */
3918 }
3919 }
c906108c
SS
3920}
3921
086df311
DJ
3922/* Set the output sections and output offsets for section SECTP in
3923 ABFD. The relocation code in BFD will read these offsets, so we
3924 need to be sure they're initialized. We map each section to itself,
3925 with no offset; this means that SECTP->vma will be honored. */
3926
3927static void
3928symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3929{
3930 sectp->output_section = sectp;
3931 sectp->output_offset = 0;
3932}
3933
3934/* Relocate the contents of a debug section SECTP in ABFD. The
3935 contents are stored in BUF if it is non-NULL, or returned in a
3936 malloc'd buffer otherwise.
3937
3938 For some platforms and debug info formats, shared libraries contain
3939 relocations against the debug sections (particularly for DWARF-2;
3940 one affected platform is PowerPC GNU/Linux, although it depends on
3941 the version of the linker in use). Also, ELF object files naturally
3942 have unresolved relocations for their debug sections. We need to apply
3943 the relocations in order to get the locations of symbols correct. */
3944
3945bfd_byte *
3946symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3947{
3948 /* We're only interested in debugging sections with relocation
3949 information. */
3950 if ((sectp->flags & SEC_RELOC) == 0)
3951 return NULL;
3952 if ((sectp->flags & SEC_DEBUGGING) == 0)
3953 return NULL;
3954
3955 /* We will handle section offsets properly elsewhere, so relocate as if
3956 all sections begin at 0. */
3957 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3958
97606a13 3959 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 3960}
c906108c 3961
31d99776
DJ
3962struct symfile_segment_data *
3963get_symfile_segment_data (bfd *abfd)
3964{
3965 struct sym_fns *sf = find_sym_fns (abfd);
3966
3967 if (sf == NULL)
3968 return NULL;
3969
3970 return sf->sym_segments (abfd);
3971}
3972
3973void
3974free_symfile_segment_data (struct symfile_segment_data *data)
3975{
3976 xfree (data->segment_bases);
3977 xfree (data->segment_sizes);
3978 xfree (data->segment_info);
3979 xfree (data);
3980}
3981
28c32713
JB
3982
3983/* Given:
3984 - DATA, containing segment addresses from the object file ABFD, and
3985 the mapping from ABFD's sections onto the segments that own them,
3986 and
3987 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3988 segment addresses reported by the target,
3989 store the appropriate offsets for each section in OFFSETS.
3990
3991 If there are fewer entries in SEGMENT_BASES than there are segments
3992 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3993
3994 If there are more, then verify that all the excess addresses are
3995 the same as the last legitimate one, and then ignore them. This
3996 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
3997 only a single segment. */
31d99776
DJ
3998int
3999symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4000 struct section_offsets *offsets,
4001 int num_segment_bases,
4002 const CORE_ADDR *segment_bases)
4003{
4004 int i;
4005 asection *sect;
4006
28c32713
JB
4007 /* It doesn't make sense to call this function unless you have some
4008 segment base addresses. */
4009 gdb_assert (segment_bases > 0);
4010
31d99776
DJ
4011 /* If we do not have segment mappings for the object file, we
4012 can not relocate it by segments. */
4013 gdb_assert (data != NULL);
4014 gdb_assert (data->num_segments > 0);
4015
28c32713 4016 /* Check any extra SEGMENT_BASES entries. */
31d99776
DJ
4017 if (num_segment_bases > data->num_segments)
4018 for (i = data->num_segments; i < num_segment_bases; i++)
4019 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4020 return 0;
4021
4022 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4023 {
31d99776
DJ
4024 int which = data->segment_info[i];
4025
28c32713
JB
4026 gdb_assert (0 <= which && which <= data->num_segments);
4027
4028 /* Don't bother computing offsets for sections that aren't
4029 loaded as part of any segment. */
4030 if (! which)
4031 continue;
4032
4033 /* Use the last SEGMENT_BASES entry as the address of any extra
4034 segments mentioned in DATA->segment_info. */
31d99776 4035 if (which > num_segment_bases)
28c32713 4036 which = num_segment_bases;
31d99776 4037
28c32713
JB
4038 offsets->offsets[i] = (segment_bases[which - 1]
4039 - data->segment_bases[which - 1]);
31d99776
DJ
4040 }
4041
4042 return 1;
4043}
4044
4045static void
4046symfile_find_segment_sections (struct objfile *objfile)
4047{
4048 bfd *abfd = objfile->obfd;
4049 int i;
4050 asection *sect;
4051 struct symfile_segment_data *data;
4052
4053 data = get_symfile_segment_data (objfile->obfd);
4054 if (data == NULL)
4055 return;
4056
4057 if (data->num_segments != 1 && data->num_segments != 2)
4058 {
4059 free_symfile_segment_data (data);
4060 return;
4061 }
4062
4063 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4064 {
4065 CORE_ADDR vma;
4066 int which = data->segment_info[i];
4067
4068 if (which == 1)
4069 {
4070 if (objfile->sect_index_text == -1)
4071 objfile->sect_index_text = sect->index;
4072
4073 if (objfile->sect_index_rodata == -1)
4074 objfile->sect_index_rodata = sect->index;
4075 }
4076 else if (which == 2)
4077 {
4078 if (objfile->sect_index_data == -1)
4079 objfile->sect_index_data = sect->index;
4080
4081 if (objfile->sect_index_bss == -1)
4082 objfile->sect_index_bss = sect->index;
4083 }
4084 }
4085
4086 free_symfile_segment_data (data);
4087}
4088
c906108c 4089void
fba45db2 4090_initialize_symfile (void)
c906108c
SS
4091{
4092 struct cmd_list_element *c;
c5aa993b 4093
1a966eab
AC
4094 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4095Load symbol table from executable file FILE.\n\
c906108c 4096The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4097to execute."), &cmdlist);
5ba2abeb 4098 set_cmd_completer (c, filename_completer);
c906108c 4099
1a966eab 4100 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4101Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4102Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4103ADDR is the starting address of the file's text.\n\
db162d44
EZ
4104The optional arguments are section-name section-address pairs and\n\
4105should be specified if the data and bss segments are not contiguous\n\
1a966eab 4106with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4107 &cmdlist);
5ba2abeb 4108 set_cmd_completer (c, filename_completer);
c906108c
SS
4109
4110 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
4111 add_shared_symbol_files_command, _("\
4112Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 4113 &cmdlist);
c906108c
SS
4114 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4115 &cmdlist);
4116
1a966eab
AC
4117 c = add_cmd ("load", class_files, load_command, _("\
4118Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4119for access from GDB.\n\
4120A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4121 set_cmd_completer (c, filename_completer);
c906108c 4122
5bf193a2
AC
4123 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4124 &symbol_reloading, _("\
4125Set dynamic symbol table reloading multiple times in one run."), _("\
4126Show dynamic symbol table reloading multiple times in one run."), NULL,
4127 NULL,
920d2a44 4128 show_symbol_reloading,
5bf193a2 4129 &setlist, &showlist);
c906108c 4130
c5aa993b 4131 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4132 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4133 "overlay ", 0, &cmdlist);
4134
4135 add_com_alias ("ovly", "overlay", class_alias, 1);
4136 add_com_alias ("ov", "overlay", class_alias, 1);
4137
c5aa993b 4138 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4139 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4140
c5aa993b 4141 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4142 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4143
c5aa993b 4144 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4145 _("List mappings of overlay sections."), &overlaylist);
c906108c 4146
c5aa993b 4147 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4148 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4149 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4150 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4151 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4152 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4153 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4154 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4155
4156 /* Filename extension to source language lookup table: */
4157 init_filename_language_table ();
26c41df3
AC
4158 add_setshow_string_noescape_cmd ("extension-language", class_files,
4159 &ext_args, _("\
4160Set mapping between filename extension and source language."), _("\
4161Show mapping between filename extension and source language."), _("\
4162Usage: set extension-language .foo bar"),
4163 set_ext_lang_command,
920d2a44 4164 show_ext_args,
26c41df3 4165 &setlist, &showlist);
c906108c 4166
c5aa993b 4167 add_info ("extensions", info_ext_lang_command,
1bedd215 4168 _("All filename extensions associated with a source language."));
917317f4 4169
525226b5
AC
4170 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4171 &debug_file_directory, _("\
4172Set the directory where separate debug symbols are searched for."), _("\
4173Show the directory where separate debug symbols are searched for."), _("\
4174Separate debug symbols are first searched for in the same\n\
4175directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4176and lastly at the path of the directory of the binary with\n\
4177the global debug-file directory prepended."),
4178 NULL,
920d2a44 4179 show_debug_file_directory,
525226b5 4180 &setlist, &showlist);
c906108c 4181}
This page took 1.037821 seconds and 4 git commands to generate.