This is a fix for PR ld/16744 which showed that an object file linked with -r and...
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
ecd75fc8 3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
1bfeeb0f 57#include "stack.h"
cbb099e8 58#include "gdb_bfd.h"
529480d0 59#include "cli/cli-utils.h"
c906108c 60
c906108c
SS
61#include <sys/types.h>
62#include <fcntl.h>
0e9f083f 63#include <string.h>
53ce3c39 64#include <sys/stat.h>
c906108c
SS
65#include <ctype.h>
66#include <time.h>
2b71414d 67#include <sys/time.h>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
a14ed312 88static void load_command (char *, int);
c906108c 89
69150c3d 90static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 91
a14ed312 92static void add_symbol_file_command (char *, int);
c906108c 93
00b5771c 94static const struct sym_fns *find_sym_fns (bfd *);
c906108c 95
a14ed312 96static void decrement_reading_symtab (void *);
c906108c 97
a14ed312 98static void overlay_invalidate_all (void);
c906108c 99
a14ed312 100static void overlay_auto_command (char *, int);
c906108c 101
a14ed312 102static void overlay_manual_command (char *, int);
c906108c 103
a14ed312 104static void overlay_off_command (char *, int);
c906108c 105
a14ed312 106static void overlay_load_command (char *, int);
c906108c 107
a14ed312 108static void overlay_command (char *, int);
c906108c 109
a14ed312 110static void simple_free_overlay_table (void);
c906108c 111
e17a4113
UW
112static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
c906108c 114
a14ed312 115static int simple_read_overlay_table (void);
c906108c 116
a14ed312 117static int simple_overlay_update_1 (struct obj_section *);
c906108c 118
a14ed312 119static void add_filename_language (char *ext, enum language lang);
392a587b 120
a14ed312 121static void info_ext_lang_command (char *args, int from_tty);
392a587b 122
a14ed312 123static void init_filename_language_table (void);
392a587b 124
31d99776
DJ
125static void symfile_find_segment_sections (struct objfile *objfile);
126
a14ed312 127void _initialize_symfile (void);
c906108c
SS
128
129/* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
c378eb4e 131 prepared to read. */
c906108c 132
c256e171
DE
133typedef struct
134{
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140} registered_sym_fns;
00b5771c 141
c256e171
DE
142DEF_VEC_O (registered_sym_fns);
143
144static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 145
b7209cb4
FF
146/* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
c906108c 153 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 154 report all the functions that are actually present. */
c906108c
SS
155
156int auto_solib_add = 1;
c906108c 157\f
c5aa993b 158
0d14a781 159/* True if we are reading a symbol table. */
c906108c
SS
160
161int currently_reading_symtab = 0;
162
163static void
fba45db2 164decrement_reading_symtab (void *dummy)
c906108c
SS
165{
166 currently_reading_symtab--;
2cb9c859 167 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
168}
169
ccefe4c4
TT
170/* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
3b7bacac 172
ccefe4c4
TT
173struct cleanup *
174increment_reading_symtab (void)
c906108c 175{
ccefe4c4 176 ++currently_reading_symtab;
2cb9c859 177 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 178 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
179}
180
5417f6dc
RM
181/* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
c906108c
SS
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190void
4efb68b1 191find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 192{
c5aa993b 193 asection **lowest = (asection **) obj;
c906108c 194
eb73e134 195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205}
206
d76488d8
TT
207/* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
a39a16c4
MM
210
211struct section_addr_info *
212alloc_section_addr_info (size_t num_sections)
213{
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
a39a16c4
MM
221
222 return sap;
223}
62557bbc
KB
224
225/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 226 an existing section table. */
62557bbc
KB
227
228extern struct section_addr_info *
0542c86d
PA
229build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
62557bbc
KB
231{
232 struct section_addr_info *sap;
0542c86d 233 const struct target_section *stp;
62557bbc
KB
234 int oidx;
235
a39a16c4 236 sap = alloc_section_addr_info (end - start);
62557bbc
KB
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
2b2848e2
DE
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 244 && oidx < end - start)
62557bbc
KB
245 {
246 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
249 oidx++;
250 }
251 }
252
d76488d8
TT
253 sap->num_sections = oidx;
254
62557bbc
KB
255 return sap;
256}
257
82ccf5a5 258/* Create a section_addr_info from section offsets in ABFD. */
089b4803 259
82ccf5a5
JK
260static struct section_addr_info *
261build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
262{
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
82ccf5a5
JK
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 270 {
82ccf5a5
JK
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
274 i++;
275 }
d76488d8
TT
276
277 sap->num_sections = i;
278
089b4803
TG
279 return sap;
280}
281
82ccf5a5
JK
282/* Create a section_addr_info from section offsets in OBJFILE. */
283
284struct section_addr_info *
285build_section_addr_info_from_objfile (const struct objfile *objfile)
286{
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 294 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301}
62557bbc 302
c378eb4e 303/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
304
305extern void
306free_section_addr_info (struct section_addr_info *sap)
307{
308 int idx;
309
a39a16c4 310 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 311 xfree (sap->other[idx].name);
b8c9b27d 312 xfree (sap);
62557bbc
KB
313}
314
e8289572 315/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 316
e8289572
JB
317static void
318init_objfile_sect_indices (struct objfile *objfile)
c906108c 319{
e8289572 320 asection *sect;
c906108c 321 int i;
5417f6dc 322
b8fbeb18 323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 324 if (sect)
b8fbeb18
EZ
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 328 if (sect)
b8fbeb18
EZ
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 332 if (sect)
b8fbeb18
EZ
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 336 if (sect)
b8fbeb18
EZ
337 objfile->sect_index_rodata = sect->index;
338
bbcd32ad
FF
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
31d99776
DJ
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
bbcd32ad
FF
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
b8fbeb18 374}
c906108c 375
c1bd25fd
DJ
376/* The arguments to place_section. */
377
378struct place_section_arg
379{
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382};
383
384/* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
2c0b251b 387static void
c1bd25fd
DJ
388place_section (bfd *abfd, asection *sect, void *obj)
389{
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
3bd72c6f 393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 394
2711e456
DJ
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
397 return;
398
399 /* If the user specified an offset, honor it. */
65cf3563 400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
404 start_addr = (arg->lowest + align - 1) & -align;
405
c1bd25fd
DJ
406 do {
407 asection *cur_sec;
c1bd25fd 408
c1bd25fd
DJ
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
c1bd25fd
DJ
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
2711e456
DJ
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
3bd72c6f 436 break;
c1bd25fd
DJ
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
65cf3563 444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 445 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 446}
e8289572 447
75242ef4
JK
448/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
e8289572
JB
451
452void
75242ef4
JK
453relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
3189cb12 455 const struct section_addr_info *addrs)
e8289572
JB
456{
457 int i;
458
75242ef4 459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 460
c378eb4e 461 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 462 for (i = 0; i < addrs->num_sections; i++)
e8289572 463 {
3189cb12 464 const struct other_sections *osp;
e8289572 465
75242ef4 466 osp = &addrs->other[i];
5488dafb 467 if (osp->sectindex == -1)
e8289572
JB
468 continue;
469
c378eb4e 470 /* Record all sections in offsets. */
e8289572 471 /* The section_offsets in the objfile are here filled in using
c378eb4e 472 the BFD index. */
75242ef4
JK
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475}
476
1276c759
JK
477/* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483static const char *
484addr_section_name (const char *s)
485{
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492}
493
82ccf5a5
JK
494/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497static int
498addrs_section_compar (const void *ap, const void *bp)
499{
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 502 int retval;
82ccf5a5 503
1276c759 504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
505 if (retval)
506 return retval;
507
5488dafb 508 return a->sectindex - b->sectindex;
82ccf5a5
JK
509}
510
511/* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514static struct other_sections **
515addrs_section_sort (struct section_addr_info *addrs)
516{
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
d76488d8 522 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529}
530
75242ef4 531/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
534
535void
536addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537{
538 asection *lower_sect;
75242ef4
JK
539 CORE_ADDR lower_offset;
540 int i;
82ccf5a5
JK
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
545
546 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
e8289572 555 }
75242ef4
JK
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
82ccf5a5
JK
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
c378eb4e
MS
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
1276c759 586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
587
588 while (*abfd_addrs_sorted
1276c759
JK
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
82ccf5a5
JK
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
1276c759
JK
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
82ccf5a5
JK
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
75242ef4
JK
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
d76488d8 621 for (i = 0; i < addrs->num_sections; i++)
75242ef4 622 {
82ccf5a5 623 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
624
625 if (sect)
75242ef4 626 {
c378eb4e 627 /* This is the index used by BFD. */
82ccf5a5 628 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
629
630 if (addrs->other[i].addr != 0)
75242ef4 631 {
82ccf5a5 632 addrs->other[i].addr -= sect->addr;
75242ef4 633 lower_offset = addrs->other[i].addr;
75242ef4
JK
634 }
635 else
672d9c23 636 addrs->other[i].addr = lower_offset;
75242ef4
JK
637 }
638 else
672d9c23 639 {
1276c759
JK
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
b0fcb67f
JK
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
4d9743af
JK
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
1276c759
JK
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 658 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
672d9c23 670 addrs->other[i].addr = 0;
5488dafb 671 addrs->other[i].sectindex = -1;
672d9c23 672 }
75242ef4 673 }
82ccf5a5
JK
674
675 do_cleanups (my_cleanup);
75242ef4
JK
676}
677
678/* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684void
685default_symfile_offsets (struct objfile *objfile,
3189cb12 686 const struct section_addr_info *addrs)
75242ef4 687{
d445b2f6 688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
e8289572 694
c1bd25fd
DJ
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
2711e456
DJ
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
2711e456
DJ
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
30510692 757 offsets[cur_sec->index]);
2711e456
DJ
758 offsets[cur_sec->index] = 0;
759 }
760 }
c1bd25fd
DJ
761 }
762
e8289572 763 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 764 .rodata sections. */
e8289572
JB
765 init_objfile_sect_indices (objfile);
766}
767
31d99776
DJ
768/* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774struct symfile_segment_data *
775default_symfile_segments (bfd *abfd)
776{
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
41bf6aca 802 data = XCNEW (struct symfile_segment_data);
31d99776 803 data->num_segments = 1;
fc270c35
TT
804 data->segment_bases = XCNEW (CORE_ADDR);
805 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
806
807 num_sections = bfd_count_sections (abfd);
fc270c35 808 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830}
831
608e2dbb
TT
832/* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835static void
836read_symbols (struct objfile *objfile, int add_flags)
837{
838 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 839 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
840
841 /* find_separate_debug_file_in_section should be called only if there is
842 single binary with no existing separate debug info file. */
843 if (!objfile_has_partial_symbols (objfile)
844 && objfile->separate_debug_objfile == NULL
845 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
846 {
847 bfd *abfd = find_separate_debug_file_in_section (objfile);
848 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
849
850 if (abfd != NULL)
24ba069a
JK
851 {
852 /* find_separate_debug_file_in_section uses the same filename for the
853 virtual section-as-bfd like the bfd filename containing the
854 section. Therefore use also non-canonical name form for the same
855 file containing the section. */
856 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
857 objfile);
858 }
608e2dbb
TT
859
860 do_cleanups (cleanup);
861 }
862 if ((add_flags & SYMFILE_NO_READ) == 0)
863 require_partial_symbols (objfile, 0);
864}
865
3d6e24f0
JB
866/* Initialize entry point information for this objfile. */
867
868static void
869init_entry_point_info (struct objfile *objfile)
870{
6ef55de7
TT
871 struct entry_info *ei = &objfile->per_bfd->ei;
872
873 if (ei->initialized)
874 return;
875 ei->initialized = 1;
876
3d6e24f0
JB
877 /* Save startup file's range of PC addresses to help blockframe.c
878 decide where the bottom of the stack is. */
879
880 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
881 {
882 /* Executable file -- record its entry point so we'll recognize
883 the startup file because it contains the entry point. */
6ef55de7
TT
884 ei->entry_point = bfd_get_start_address (objfile->obfd);
885 ei->entry_point_p = 1;
3d6e24f0
JB
886 }
887 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
888 && bfd_get_start_address (objfile->obfd) != 0)
889 {
890 /* Some shared libraries may have entry points set and be
891 runnable. There's no clear way to indicate this, so just check
892 for values other than zero. */
6ef55de7
TT
893 ei->entry_point = bfd_get_start_address (objfile->obfd);
894 ei->entry_point_p = 1;
3d6e24f0
JB
895 }
896 else
897 {
898 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 899 ei->entry_point_p = 0;
3d6e24f0
JB
900 }
901
6ef55de7 902 if (ei->entry_point_p)
3d6e24f0 903 {
53eddfa6 904 struct obj_section *osect;
6ef55de7 905 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 906 int found;
3d6e24f0
JB
907
908 /* Make certain that the address points at real code, and not a
909 function descriptor. */
910 entry_point
df6d5441 911 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
912 entry_point,
913 &current_target);
914
915 /* Remove any ISA markers, so that this matches entries in the
916 symbol table. */
6ef55de7 917 ei->entry_point
df6d5441 918 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
919
920 found = 0;
921 ALL_OBJFILE_OSECTIONS (objfile, osect)
922 {
923 struct bfd_section *sect = osect->the_bfd_section;
924
925 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
926 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
927 + bfd_get_section_size (sect)))
928 {
6ef55de7 929 ei->the_bfd_section_index
53eddfa6
TT
930 = gdb_bfd_section_index (objfile->obfd, sect);
931 found = 1;
932 break;
933 }
934 }
935
936 if (!found)
6ef55de7 937 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
938 }
939}
940
c906108c
SS
941/* Process a symbol file, as either the main file or as a dynamically
942 loaded file.
943
36e4d068
JB
944 This function does not set the OBJFILE's entry-point info.
945
96baa820
JM
946 OBJFILE is where the symbols are to be read from.
947
7e8580c1
JB
948 ADDRS is the list of section load addresses. If the user has given
949 an 'add-symbol-file' command, then this is the list of offsets and
950 addresses he or she provided as arguments to the command; or, if
951 we're handling a shared library, these are the actual addresses the
952 sections are loaded at, according to the inferior's dynamic linker
953 (as gleaned by GDB's shared library code). We convert each address
954 into an offset from the section VMA's as it appears in the object
955 file, and then call the file's sym_offsets function to convert this
956 into a format-specific offset table --- a `struct section_offsets'.
96baa820 957
7eedccfa
PP
958 ADD_FLAGS encodes verbosity level, whether this is main symbol or
959 an extra symbol file such as dynamically loaded code, and wether
960 breakpoint reset should be deferred. */
c906108c 961
36e4d068
JB
962static void
963syms_from_objfile_1 (struct objfile *objfile,
964 struct section_addr_info *addrs,
36e4d068 965 int add_flags)
c906108c 966{
a39a16c4 967 struct section_addr_info *local_addr = NULL;
c906108c 968 struct cleanup *old_chain;
7eedccfa 969 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 970
8fb8eb5c 971 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 972
75245b24 973 if (objfile->sf == NULL)
36e4d068
JB
974 {
975 /* No symbols to load, but we still need to make sure
976 that the section_offsets table is allocated. */
d445b2f6 977 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 978 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
979
980 objfile->num_sections = num_sections;
981 objfile->section_offsets
982 = obstack_alloc (&objfile->objfile_obstack, size);
983 memset (objfile->section_offsets, 0, size);
984 return;
985 }
75245b24 986
c906108c
SS
987 /* Make sure that partially constructed symbol tables will be cleaned up
988 if an error occurs during symbol reading. */
74b7792f 989 old_chain = make_cleanup_free_objfile (objfile);
c906108c 990
6bf667bb
DE
991 /* If ADDRS is NULL, put together a dummy address list.
992 We now establish the convention that an addr of zero means
c378eb4e 993 no load address was specified. */
6bf667bb 994 if (! addrs)
a39a16c4 995 {
d445b2f6 996 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
997 make_cleanup (xfree, local_addr);
998 addrs = local_addr;
999 }
1000
c5aa993b 1001 if (mainline)
c906108c
SS
1002 {
1003 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1004 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1005 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1006
1007 /* Since no error yet, throw away the old symbol table. */
1008
1009 if (symfile_objfile != NULL)
1010 {
1011 free_objfile (symfile_objfile);
adb7f338 1012 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1013 }
1014
1015 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1016 If the user wants to get rid of them, they should do "symbol-file"
1017 without arguments first. Not sure this is the best behavior
1018 (PR 2207). */
c906108c 1019
c5aa993b 1020 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1021 }
1022
1023 /* Convert addr into an offset rather than an absolute address.
1024 We find the lowest address of a loaded segment in the objfile,
53a5351d 1025 and assume that <addr> is where that got loaded.
c906108c 1026
53a5351d
JM
1027 We no longer warn if the lowest section is not a text segment (as
1028 happens for the PA64 port. */
6bf667bb 1029 if (addrs->num_sections > 0)
75242ef4 1030 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1031
1032 /* Initialize symbol reading routines for this objfile, allow complaints to
1033 appear for this new file, and record how verbose to be, then do the
c378eb4e 1034 initial symbol reading for this file. */
c906108c 1035
c5aa993b 1036 (*objfile->sf->sym_init) (objfile);
7eedccfa 1037 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1038
6bf667bb 1039 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1040
608e2dbb 1041 read_symbols (objfile, add_flags);
b11896a5 1042
c906108c
SS
1043 /* Discard cleanups as symbol reading was successful. */
1044
1045 discard_cleanups (old_chain);
f7545552 1046 xfree (local_addr);
c906108c
SS
1047}
1048
36e4d068
JB
1049/* Same as syms_from_objfile_1, but also initializes the objfile
1050 entry-point info. */
1051
6bf667bb 1052static void
36e4d068
JB
1053syms_from_objfile (struct objfile *objfile,
1054 struct section_addr_info *addrs,
36e4d068
JB
1055 int add_flags)
1056{
6bf667bb 1057 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1058 init_entry_point_info (objfile);
1059}
1060
c906108c
SS
1061/* Perform required actions after either reading in the initial
1062 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1063 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1064
c906108c 1065void
7eedccfa 1066new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1067{
c906108c 1068 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1069 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1070 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1071 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1072 {
1073 /* OK, make it the "real" symbol file. */
1074 symfile_objfile = objfile;
1075
c1e56572 1076 clear_symtab_users (add_flags);
c906108c 1077 }
7eedccfa 1078 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1079 {
69de3c6a 1080 breakpoint_re_set ();
c906108c
SS
1081 }
1082
1083 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1084 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1085}
1086
1087/* Process a symbol file, as either the main file or as a dynamically
1088 loaded file.
1089
5417f6dc 1090 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1091 A new reference is acquired by this function.
7904e09f 1092
24ba069a
JK
1093 For NAME description see allocate_objfile's definition.
1094
7eedccfa
PP
1095 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1096 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1097
6bf667bb 1098 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1099 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1100
63524580
JK
1101 PARENT is the original objfile if ABFD is a separate debug info file.
1102 Otherwise PARENT is NULL.
1103
c906108c 1104 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1105 Upon failure, jumps back to command level (never returns). */
7eedccfa 1106
7904e09f 1107static struct objfile *
24ba069a 1108symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1109 struct section_addr_info *addrs,
1110 int flags, struct objfile *parent)
c906108c
SS
1111{
1112 struct objfile *objfile;
7eedccfa 1113 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1114 const int mainline = add_flags & SYMFILE_MAINLINE;
b11896a5
TT
1115 const int should_print = ((from_tty || info_verbose)
1116 && (readnow_symbol_files
1117 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1118
9291a0cd 1119 if (readnow_symbol_files)
b11896a5
TT
1120 {
1121 flags |= OBJF_READNOW;
1122 add_flags &= ~SYMFILE_NO_READ;
1123 }
9291a0cd 1124
5417f6dc
RM
1125 /* Give user a chance to burp if we'd be
1126 interactively wiping out any existing symbols. */
c906108c
SS
1127
1128 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1129 && mainline
c906108c 1130 && from_tty
9e2f0ad4 1131 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1132 error (_("Not confirmed."));
c906108c 1133
24ba069a
JK
1134 objfile = allocate_objfile (abfd, name,
1135 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1136
63524580
JK
1137 if (parent)
1138 add_separate_debug_objfile (objfile, parent);
1139
78a4a9b9
AC
1140 /* We either created a new mapped symbol table, mapped an existing
1141 symbol table file which has not had initial symbol reading
c378eb4e 1142 performed, or need to read an unmapped symbol table. */
b11896a5 1143 if (should_print)
c906108c 1144 {
769d7dc4
AC
1145 if (deprecated_pre_add_symbol_hook)
1146 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1147 else
c906108c 1148 {
55333a84
DE
1149 printf_unfiltered (_("Reading symbols from %s..."), name);
1150 wrap_here ("");
1151 gdb_flush (gdb_stdout);
c906108c 1152 }
c906108c 1153 }
6bf667bb 1154 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1155
1156 /* We now have at least a partial symbol table. Check to see if the
1157 user requested that all symbols be read on initial access via either
1158 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1159 all partial symbol tables for this objfile if so. */
c906108c 1160
9291a0cd 1161 if ((flags & OBJF_READNOW))
c906108c 1162 {
b11896a5 1163 if (should_print)
c906108c 1164 {
a3f17187 1165 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1166 wrap_here ("");
1167 gdb_flush (gdb_stdout);
1168 }
1169
ccefe4c4
TT
1170 if (objfile->sf)
1171 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1172 }
1173
b11896a5 1174 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1175 {
1176 wrap_here ("");
55333a84 1177 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1178 wrap_here ("");
1179 }
1180
b11896a5 1181 if (should_print)
c906108c 1182 {
769d7dc4
AC
1183 if (deprecated_post_add_symbol_hook)
1184 deprecated_post_add_symbol_hook ();
c906108c 1185 else
55333a84 1186 printf_unfiltered (_("done.\n"));
c906108c
SS
1187 }
1188
481d0f41
JB
1189 /* We print some messages regardless of whether 'from_tty ||
1190 info_verbose' is true, so make sure they go out at the right
1191 time. */
1192 gdb_flush (gdb_stdout);
1193
109f874e 1194 if (objfile->sf == NULL)
8caee43b
PP
1195 {
1196 observer_notify_new_objfile (objfile);
c378eb4e 1197 return objfile; /* No symbols. */
8caee43b 1198 }
109f874e 1199
7eedccfa 1200 new_symfile_objfile (objfile, add_flags);
c906108c 1201
06d3b283 1202 observer_notify_new_objfile (objfile);
c906108c 1203
ce7d4522 1204 bfd_cache_close_all ();
c906108c
SS
1205 return (objfile);
1206}
1207
24ba069a
JK
1208/* Add BFD as a separate debug file for OBJFILE. For NAME description
1209 see allocate_objfile's definition. */
9cce227f
TG
1210
1211void
24ba069a
JK
1212symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1213 struct objfile *objfile)
9cce227f 1214{
15d123c9 1215 struct objfile *new_objfile;
089b4803
TG
1216 struct section_addr_info *sap;
1217 struct cleanup *my_cleanup;
1218
1219 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1220 because sections of BFD may not match sections of OBJFILE and because
1221 vma may have been modified by tools such as prelink. */
1222 sap = build_section_addr_info_from_objfile (objfile);
1223 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1224
6bf667bb 1225 new_objfile = symbol_file_add_with_addrs
24ba069a 1226 (bfd, name, symfile_flags, sap,
9cce227f 1227 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1228 | OBJF_USERLOADED),
1229 objfile);
089b4803
TG
1230
1231 do_cleanups (my_cleanup);
9cce227f 1232}
7904e09f 1233
eb4556d7
JB
1234/* Process the symbol file ABFD, as either the main file or as a
1235 dynamically loaded file.
6bf667bb 1236 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1237
eb4556d7 1238struct objfile *
24ba069a 1239symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1240 struct section_addr_info *addrs,
63524580 1241 int flags, struct objfile *parent)
eb4556d7 1242{
24ba069a
JK
1243 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1244 parent);
eb4556d7
JB
1245}
1246
7904e09f 1247/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1248 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1249
7904e09f 1250struct objfile *
69150c3d
JK
1251symbol_file_add (const char *name, int add_flags,
1252 struct section_addr_info *addrs, int flags)
7904e09f 1253{
8ac244b4
TT
1254 bfd *bfd = symfile_bfd_open (name);
1255 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1256 struct objfile *objf;
1257
24ba069a 1258 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1259 do_cleanups (cleanup);
1260 return objf;
7904e09f
JB
1261}
1262
d7db6da9
FN
1263/* Call symbol_file_add() with default values and update whatever is
1264 affected by the loading of a new main().
1265 Used when the file is supplied in the gdb command line
1266 and by some targets with special loading requirements.
1267 The auxiliary function, symbol_file_add_main_1(), has the flags
1268 argument for the switches that can only be specified in the symbol_file
1269 command itself. */
5417f6dc 1270
1adeb98a 1271void
69150c3d 1272symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1273{
d7db6da9
FN
1274 symbol_file_add_main_1 (args, from_tty, 0);
1275}
1276
1277static void
69150c3d 1278symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1279{
7dcd53a0
TT
1280 const int add_flags = (current_inferior ()->symfile_flags
1281 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1282
7eedccfa 1283 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1284
d7db6da9
FN
1285 /* Getting new symbols may change our opinion about
1286 what is frameless. */
1287 reinit_frame_cache ();
1288
7dcd53a0
TT
1289 if ((flags & SYMFILE_NO_READ) == 0)
1290 set_initial_language ();
1adeb98a
FN
1291}
1292
1293void
1294symbol_file_clear (int from_tty)
1295{
1296 if ((have_full_symbols () || have_partial_symbols ())
1297 && from_tty
0430b0d6
AS
1298 && (symfile_objfile
1299 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1300 objfile_name (symfile_objfile))
0430b0d6 1301 : !query (_("Discard symbol table? "))))
8a3fe4f8 1302 error (_("Not confirmed."));
1adeb98a 1303
0133421a
JK
1304 /* solib descriptors may have handles to objfiles. Wipe them before their
1305 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1306 no_shared_libraries (NULL, from_tty);
1307
0133421a
JK
1308 free_all_objfiles ();
1309
adb7f338 1310 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1311 if (from_tty)
1312 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1313}
1314
5b5d99cf 1315static int
287ccc17 1316separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1317 struct objfile *parent_objfile)
5b5d99cf 1318{
904578ed
JK
1319 unsigned long file_crc;
1320 int file_crc_p;
f1838a98 1321 bfd *abfd;
32a0e547 1322 struct stat parent_stat, abfd_stat;
904578ed 1323 int verified_as_different;
32a0e547
JK
1324
1325 /* Find a separate debug info file as if symbols would be present in
1326 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1327 section can contain just the basename of PARENT_OBJFILE without any
1328 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1329 the separate debug infos with the same basename can exist. */
32a0e547 1330
4262abfb 1331 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1332 return 0;
5b5d99cf 1333
08d2cd74 1334 abfd = gdb_bfd_open_maybe_remote (name);
f1838a98
UW
1335
1336 if (!abfd)
5b5d99cf
JB
1337 return 0;
1338
0ba1096a 1339 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1340
1341 Some operating systems, e.g. Windows, do not provide a meaningful
1342 st_ino; they always set it to zero. (Windows does provide a
1343 meaningful st_dev.) Do not indicate a duplicate library in that
1344 case. While there is no guarantee that a system that provides
1345 meaningful inode numbers will never set st_ino to zero, this is
1346 merely an optimization, so we do not need to worry about false
1347 negatives. */
1348
1349 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1350 && abfd_stat.st_ino != 0
1351 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1352 {
904578ed
JK
1353 if (abfd_stat.st_dev == parent_stat.st_dev
1354 && abfd_stat.st_ino == parent_stat.st_ino)
1355 {
cbb099e8 1356 gdb_bfd_unref (abfd);
904578ed
JK
1357 return 0;
1358 }
1359 verified_as_different = 1;
32a0e547 1360 }
904578ed
JK
1361 else
1362 verified_as_different = 0;
32a0e547 1363
dccee2de 1364 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1365
cbb099e8 1366 gdb_bfd_unref (abfd);
5b5d99cf 1367
904578ed
JK
1368 if (!file_crc_p)
1369 return 0;
1370
287ccc17
JK
1371 if (crc != file_crc)
1372 {
dccee2de
TT
1373 unsigned long parent_crc;
1374
904578ed
JK
1375 /* If one (or both) the files are accessed for example the via "remote:"
1376 gdbserver way it does not support the bfd_stat operation. Verify
1377 whether those two files are not the same manually. */
1378
dccee2de 1379 if (!verified_as_different)
904578ed 1380 {
dccee2de 1381 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1382 return 0;
1383 }
1384
dccee2de 1385 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1386 warning (_("the debug information found in \"%s\""
1387 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1388 name, objfile_name (parent_objfile));
904578ed 1389
287ccc17
JK
1390 return 0;
1391 }
1392
1393 return 1;
5b5d99cf
JB
1394}
1395
aa28a74e 1396char *debug_file_directory = NULL;
920d2a44
AC
1397static void
1398show_debug_file_directory (struct ui_file *file, int from_tty,
1399 struct cmd_list_element *c, const char *value)
1400{
3e43a32a
MS
1401 fprintf_filtered (file,
1402 _("The directory where separate debug "
1403 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1404 value);
1405}
5b5d99cf
JB
1406
1407#if ! defined (DEBUG_SUBDIRECTORY)
1408#define DEBUG_SUBDIRECTORY ".debug"
1409#endif
1410
1db33378
PP
1411/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1412 where the original file resides (may not be the same as
1413 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1414 looking for. CANON_DIR is the "realpath" form of DIR.
1415 DIR must contain a trailing '/'.
1416 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1417
1418static char *
1419find_separate_debug_file (const char *dir,
1420 const char *canon_dir,
1421 const char *debuglink,
1422 unsigned long crc32, struct objfile *objfile)
9cce227f 1423{
1db33378
PP
1424 char *debugdir;
1425 char *debugfile;
9cce227f 1426 int i;
e4ab2fad
JK
1427 VEC (char_ptr) *debugdir_vec;
1428 struct cleanup *back_to;
1429 int ix;
5b5d99cf 1430
1db33378 1431 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1432 i = strlen (dir);
1db33378
PP
1433 if (canon_dir != NULL && strlen (canon_dir) > i)
1434 i = strlen (canon_dir);
1ffa32ee 1435
25522fae
JK
1436 debugfile = xmalloc (strlen (debug_file_directory) + 1
1437 + i
1438 + strlen (DEBUG_SUBDIRECTORY)
1439 + strlen ("/")
1db33378 1440 + strlen (debuglink)
25522fae 1441 + 1);
5b5d99cf
JB
1442
1443 /* First try in the same directory as the original file. */
1444 strcpy (debugfile, dir);
1db33378 1445 strcat (debugfile, debuglink);
5b5d99cf 1446
32a0e547 1447 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1448 return debugfile;
5417f6dc 1449
5b5d99cf
JB
1450 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1451 strcpy (debugfile, dir);
1452 strcat (debugfile, DEBUG_SUBDIRECTORY);
1453 strcat (debugfile, "/");
1db33378 1454 strcat (debugfile, debuglink);
5b5d99cf 1455
32a0e547 1456 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1457 return debugfile;
5417f6dc 1458
24ddea62 1459 /* Then try in the global debugfile directories.
f888f159 1460
24ddea62
JK
1461 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1462 cause "/..." lookups. */
5417f6dc 1463
e4ab2fad
JK
1464 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1465 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1466
e4ab2fad
JK
1467 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1468 {
1469 strcpy (debugfile, debugdir);
aa28a74e 1470 strcat (debugfile, "/");
24ddea62 1471 strcat (debugfile, dir);
1db33378 1472 strcat (debugfile, debuglink);
aa28a74e 1473
32a0e547 1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1475 {
1476 do_cleanups (back_to);
1477 return debugfile;
1478 }
24ddea62
JK
1479
1480 /* If the file is in the sysroot, try using its base path in the
1481 global debugfile directory. */
1db33378
PP
1482 if (canon_dir != NULL
1483 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1484 strlen (gdb_sysroot)) == 0
1db33378 1485 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1486 {
e4ab2fad 1487 strcpy (debugfile, debugdir);
1db33378 1488 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1489 strcat (debugfile, "/");
1db33378 1490 strcat (debugfile, debuglink);
24ddea62 1491
32a0e547 1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1493 {
1494 do_cleanups (back_to);
1495 return debugfile;
1496 }
24ddea62 1497 }
aa28a74e 1498 }
f888f159 1499
e4ab2fad 1500 do_cleanups (back_to);
25522fae 1501 xfree (debugfile);
1db33378
PP
1502 return NULL;
1503}
1504
7edbb660 1505/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1506 If there were no directory separators in PATH, PATH will be empty
1507 string on return. */
1508
1509static void
1510terminate_after_last_dir_separator (char *path)
1511{
1512 int i;
1513
1514 /* Strip off the final filename part, leaving the directory name,
1515 followed by a slash. The directory can be relative or absolute. */
1516 for (i = strlen(path) - 1; i >= 0; i--)
1517 if (IS_DIR_SEPARATOR (path[i]))
1518 break;
1519
1520 /* If I is -1 then no directory is present there and DIR will be "". */
1521 path[i + 1] = '\0';
1522}
1523
1524/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1525 Returns pathname, or NULL. */
1526
1527char *
1528find_separate_debug_file_by_debuglink (struct objfile *objfile)
1529{
1530 char *debuglink;
1531 char *dir, *canon_dir;
1532 char *debugfile;
1533 unsigned long crc32;
1534 struct cleanup *cleanups;
1535
cc0ea93c 1536 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1537
1538 if (debuglink == NULL)
1539 {
1540 /* There's no separate debug info, hence there's no way we could
1541 load it => no warning. */
1542 return NULL;
1543 }
1544
71bdabee 1545 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1546 dir = xstrdup (objfile_name (objfile));
71bdabee 1547 make_cleanup (xfree, dir);
1db33378
PP
1548 terminate_after_last_dir_separator (dir);
1549 canon_dir = lrealpath (dir);
1550
1551 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1552 crc32, objfile);
1553 xfree (canon_dir);
1554
1555 if (debugfile == NULL)
1556 {
1557#ifdef HAVE_LSTAT
1558 /* For PR gdb/9538, try again with realpath (if different from the
1559 original). */
1560
1561 struct stat st_buf;
1562
4262abfb
JK
1563 if (lstat (objfile_name (objfile), &st_buf) == 0
1564 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1565 {
1566 char *symlink_dir;
1567
4262abfb 1568 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1569 if (symlink_dir != NULL)
1570 {
1571 make_cleanup (xfree, symlink_dir);
1572 terminate_after_last_dir_separator (symlink_dir);
1573 if (strcmp (dir, symlink_dir) != 0)
1574 {
1575 /* Different directory, so try using it. */
1576 debugfile = find_separate_debug_file (symlink_dir,
1577 symlink_dir,
1578 debuglink,
1579 crc32,
1580 objfile);
1581 }
1582 }
1583 }
1584#endif /* HAVE_LSTAT */
1585 }
aa28a74e 1586
1db33378 1587 do_cleanups (cleanups);
25522fae 1588 return debugfile;
5b5d99cf
JB
1589}
1590
c906108c
SS
1591/* This is the symbol-file command. Read the file, analyze its
1592 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1593 the command is rather bizarre:
1594
1595 1. The function buildargv implements various quoting conventions
1596 which are undocumented and have little or nothing in common with
1597 the way things are quoted (or not quoted) elsewhere in GDB.
1598
1599 2. Options are used, which are not generally used in GDB (perhaps
1600 "set mapped on", "set readnow on" would be better)
1601
1602 3. The order of options matters, which is contrary to GNU
c906108c
SS
1603 conventions (because it is confusing and inconvenient). */
1604
1605void
fba45db2 1606symbol_file_command (char *args, int from_tty)
c906108c 1607{
c906108c
SS
1608 dont_repeat ();
1609
1610 if (args == NULL)
1611 {
1adeb98a 1612 symbol_file_clear (from_tty);
c906108c
SS
1613 }
1614 else
1615 {
d1a41061 1616 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1617 int flags = OBJF_USERLOADED;
1618 struct cleanup *cleanups;
1619 char *name = NULL;
1620
7a292a7a 1621 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1622 while (*argv != NULL)
1623 {
78a4a9b9
AC
1624 if (strcmp (*argv, "-readnow") == 0)
1625 flags |= OBJF_READNOW;
1626 else if (**argv == '-')
8a3fe4f8 1627 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1628 else
1629 {
cb2f3a29 1630 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1631 name = *argv;
78a4a9b9 1632 }
cb2f3a29 1633
c906108c
SS
1634 argv++;
1635 }
1636
1637 if (name == NULL)
cb2f3a29
MK
1638 error (_("no symbol file name was specified"));
1639
c906108c
SS
1640 do_cleanups (cleanups);
1641 }
1642}
1643
1644/* Set the initial language.
1645
cb2f3a29
MK
1646 FIXME: A better solution would be to record the language in the
1647 psymtab when reading partial symbols, and then use it (if known) to
1648 set the language. This would be a win for formats that encode the
1649 language in an easily discoverable place, such as DWARF. For
1650 stabs, we can jump through hoops looking for specially named
1651 symbols or try to intuit the language from the specific type of
1652 stabs we find, but we can't do that until later when we read in
1653 full symbols. */
c906108c 1654
8b60591b 1655void
fba45db2 1656set_initial_language (void)
c906108c 1657{
9e6c82ad 1658 enum language lang = main_language ();
c906108c 1659
9e6c82ad 1660 if (lang == language_unknown)
01f8c46d 1661 {
bf6d8a91
TT
1662 char *name = main_name ();
1663 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
f888f159 1664
bf6d8a91
TT
1665 if (sym != NULL)
1666 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1667 }
cb2f3a29 1668
ccefe4c4
TT
1669 if (lang == language_unknown)
1670 {
1671 /* Make C the default language */
1672 lang = language_c;
c906108c 1673 }
ccefe4c4
TT
1674
1675 set_language (lang);
1676 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1677}
1678
874f5765 1679/* If NAME is a remote name open the file using remote protocol, otherwise
cbb099e8
TT
1680 open it normally. Returns a new reference to the BFD. On error,
1681 returns NULL with the BFD error set. */
874f5765
TG
1682
1683bfd *
08d2cd74 1684gdb_bfd_open_maybe_remote (const char *name)
874f5765 1685{
520b0001
TT
1686 bfd *result;
1687
874f5765 1688 if (remote_filename_p (name))
520b0001 1689 result = remote_bfd_open (name, gnutarget);
874f5765 1690 else
1c00ec6b 1691 result = gdb_bfd_open (name, gnutarget, -1);
520b0001 1692
520b0001 1693 return result;
874f5765
TG
1694}
1695
cb2f3a29
MK
1696/* Open the file specified by NAME and hand it off to BFD for
1697 preliminary analysis. Return a newly initialized bfd *, which
1698 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1699 absolute). In case of trouble, error() is called. */
c906108c
SS
1700
1701bfd *
69150c3d 1702symfile_bfd_open (const char *cname)
c906108c
SS
1703{
1704 bfd *sym_bfd;
1705 int desc;
69150c3d 1706 char *name, *absolute_name;
faab9922 1707 struct cleanup *back_to;
c906108c 1708
69150c3d 1709 if (remote_filename_p (cname))
f1838a98 1710 {
69150c3d 1711 sym_bfd = remote_bfd_open (cname, gnutarget);
f1838a98 1712 if (!sym_bfd)
69150c3d 1713 error (_("`%s': can't open to read symbols: %s."), cname,
a4453b7e 1714 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
1715
1716 if (!bfd_check_format (sym_bfd, bfd_object))
1717 {
f9a062ff 1718 make_cleanup_bfd_unref (sym_bfd);
69150c3d 1719 error (_("`%s': can't read symbols: %s."), cname,
f1838a98
UW
1720 bfd_errmsg (bfd_get_error ()));
1721 }
1722
1723 return sym_bfd;
1724 }
1725
69150c3d 1726 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
c906108c
SS
1727
1728 /* Look down path for it, allocate 2nd new malloc'd copy. */
492c0ab7 1729 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
fbdebf46 1730 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1731#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1732 if (desc < 0)
1733 {
1734 char *exename = alloca (strlen (name) + 5);
433759f7 1735
c906108c 1736 strcat (strcpy (exename, name), ".exe");
492c0ab7
JK
1737 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1738 exename, O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1739 }
1740#endif
1741 if (desc < 0)
1742 {
b8c9b27d 1743 make_cleanup (xfree, name);
c906108c
SS
1744 perror_with_name (name);
1745 }
cb2f3a29 1746
cb2f3a29
MK
1747 xfree (name);
1748 name = absolute_name;
faab9922 1749 back_to = make_cleanup (xfree, name);
c906108c 1750
1c00ec6b 1751 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1752 if (!sym_bfd)
faab9922
JK
1753 error (_("`%s': can't open to read symbols: %s."), name,
1754 bfd_errmsg (bfd_get_error ()));
549c1eea 1755 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1756
1757 if (!bfd_check_format (sym_bfd, bfd_object))
1758 {
f9a062ff 1759 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1760 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1761 bfd_errmsg (bfd_get_error ()));
1762 }
cb2f3a29 1763
faab9922
JK
1764 do_cleanups (back_to);
1765
cb2f3a29 1766 return sym_bfd;
c906108c
SS
1767}
1768
cb2f3a29
MK
1769/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1770 the section was not found. */
1771
0e931cf0
JB
1772int
1773get_section_index (struct objfile *objfile, char *section_name)
1774{
1775 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1776
0e931cf0
JB
1777 if (sect)
1778 return sect->index;
1779 else
1780 return -1;
1781}
1782
c256e171
DE
1783/* Link SF into the global symtab_fns list.
1784 FLAVOUR is the file format that SF handles.
1785 Called on startup by the _initialize routine in each object file format
1786 reader, to register information about each format the reader is prepared
1787 to handle. */
c906108c
SS
1788
1789void
c256e171 1790add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1791{
c256e171
DE
1792 registered_sym_fns fns = { flavour, sf };
1793
1794 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1795}
1796
cb2f3a29
MK
1797/* Initialize OBJFILE to read symbols from its associated BFD. It
1798 either returns or calls error(). The result is an initialized
1799 struct sym_fns in the objfile structure, that contains cached
1800 information about the symbol file. */
c906108c 1801
00b5771c 1802static const struct sym_fns *
31d99776 1803find_sym_fns (bfd *abfd)
c906108c 1804{
c256e171 1805 registered_sym_fns *rsf;
31d99776 1806 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1807 int i;
c906108c 1808
75245b24
MS
1809 if (our_flavour == bfd_target_srec_flavour
1810 || our_flavour == bfd_target_ihex_flavour
1811 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1812 return NULL; /* No symbols. */
75245b24 1813
c256e171
DE
1814 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1815 if (our_flavour == rsf->sym_flavour)
1816 return rsf->sym_fns;
cb2f3a29 1817
8a3fe4f8 1818 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1819 bfd_get_target (abfd));
c906108c
SS
1820}
1821\f
cb2f3a29 1822
c906108c
SS
1823/* This function runs the load command of our current target. */
1824
1825static void
fba45db2 1826load_command (char *arg, int from_tty)
c906108c 1827{
5b3fca71
TT
1828 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1829
e5cc9f32
JB
1830 dont_repeat ();
1831
4487aabf
PA
1832 /* The user might be reloading because the binary has changed. Take
1833 this opportunity to check. */
1834 reopen_exec_file ();
1835 reread_symbols ();
1836
c906108c 1837 if (arg == NULL)
1986bccd
AS
1838 {
1839 char *parg;
1840 int count = 0;
1841
1842 parg = arg = get_exec_file (1);
1843
1844 /* Count how many \ " ' tab space there are in the name. */
1845 while ((parg = strpbrk (parg, "\\\"'\t ")))
1846 {
1847 parg++;
1848 count++;
1849 }
1850
1851 if (count)
1852 {
1853 /* We need to quote this string so buildargv can pull it apart. */
1854 char *temp = xmalloc (strlen (arg) + count + 1 );
1855 char *ptemp = temp;
1856 char *prev;
1857
1858 make_cleanup (xfree, temp);
1859
1860 prev = parg = arg;
1861 while ((parg = strpbrk (parg, "\\\"'\t ")))
1862 {
1863 strncpy (ptemp, prev, parg - prev);
1864 ptemp += parg - prev;
1865 prev = parg++;
1866 *ptemp++ = '\\';
1867 }
1868 strcpy (ptemp, prev);
1869
1870 arg = temp;
1871 }
1872 }
1873
c906108c 1874 target_load (arg, from_tty);
2889e661
JB
1875
1876 /* After re-loading the executable, we don't really know which
1877 overlays are mapped any more. */
1878 overlay_cache_invalid = 1;
5b3fca71
TT
1879
1880 do_cleanups (cleanup);
c906108c
SS
1881}
1882
1883/* This version of "load" should be usable for any target. Currently
1884 it is just used for remote targets, not inftarg.c or core files,
1885 on the theory that only in that case is it useful.
1886
1887 Avoiding xmodem and the like seems like a win (a) because we don't have
1888 to worry about finding it, and (b) On VMS, fork() is very slow and so
1889 we don't want to run a subprocess. On the other hand, I'm not sure how
1890 performance compares. */
917317f4 1891
917317f4
JM
1892static int validate_download = 0;
1893
e4f9b4d5
MS
1894/* Callback service function for generic_load (bfd_map_over_sections). */
1895
1896static void
1897add_section_size_callback (bfd *abfd, asection *asec, void *data)
1898{
1899 bfd_size_type *sum = data;
1900
2c500098 1901 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1902}
1903
1904/* Opaque data for load_section_callback. */
1905struct load_section_data {
f698ca8e 1906 CORE_ADDR load_offset;
a76d924d
DJ
1907 struct load_progress_data *progress_data;
1908 VEC(memory_write_request_s) *requests;
1909};
1910
1911/* Opaque data for load_progress. */
1912struct load_progress_data {
1913 /* Cumulative data. */
e4f9b4d5
MS
1914 unsigned long write_count;
1915 unsigned long data_count;
1916 bfd_size_type total_size;
a76d924d
DJ
1917};
1918
1919/* Opaque data for load_progress for a single section. */
1920struct load_progress_section_data {
1921 struct load_progress_data *cumulative;
cf7a04e8 1922
a76d924d 1923 /* Per-section data. */
cf7a04e8
DJ
1924 const char *section_name;
1925 ULONGEST section_sent;
1926 ULONGEST section_size;
1927 CORE_ADDR lma;
1928 gdb_byte *buffer;
e4f9b4d5
MS
1929};
1930
a76d924d 1931/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1932
1933static void
1934load_progress (ULONGEST bytes, void *untyped_arg)
1935{
a76d924d
DJ
1936 struct load_progress_section_data *args = untyped_arg;
1937 struct load_progress_data *totals;
1938
1939 if (args == NULL)
1940 /* Writing padding data. No easy way to get at the cumulative
1941 stats, so just ignore this. */
1942 return;
1943
1944 totals = args->cumulative;
1945
1946 if (bytes == 0 && args->section_sent == 0)
1947 {
1948 /* The write is just starting. Let the user know we've started
1949 this section. */
79a45e25 1950 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1951 args->section_name, hex_string (args->section_size),
f5656ead 1952 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1953 return;
1954 }
cf7a04e8
DJ
1955
1956 if (validate_download)
1957 {
1958 /* Broken memories and broken monitors manifest themselves here
1959 when bring new computers to life. This doubles already slow
1960 downloads. */
1961 /* NOTE: cagney/1999-10-18: A more efficient implementation
1962 might add a verify_memory() method to the target vector and
1963 then use that. remote.c could implement that method using
1964 the ``qCRC'' packet. */
1965 gdb_byte *check = xmalloc (bytes);
1966 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1967
1968 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1969 error (_("Download verify read failed at %s"),
f5656ead 1970 paddress (target_gdbarch (), args->lma));
cf7a04e8 1971 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1972 error (_("Download verify compare failed at %s"),
f5656ead 1973 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1974 do_cleanups (verify_cleanups);
1975 }
a76d924d 1976 totals->data_count += bytes;
cf7a04e8
DJ
1977 args->lma += bytes;
1978 args->buffer += bytes;
a76d924d 1979 totals->write_count += 1;
cf7a04e8 1980 args->section_sent += bytes;
522002f9 1981 if (check_quit_flag ()
cf7a04e8
DJ
1982 || (deprecated_ui_load_progress_hook != NULL
1983 && deprecated_ui_load_progress_hook (args->section_name,
1984 args->section_sent)))
1985 error (_("Canceled the download"));
1986
1987 if (deprecated_show_load_progress != NULL)
1988 deprecated_show_load_progress (args->section_name,
1989 args->section_sent,
1990 args->section_size,
a76d924d
DJ
1991 totals->data_count,
1992 totals->total_size);
cf7a04e8
DJ
1993}
1994
e4f9b4d5
MS
1995/* Callback service function for generic_load (bfd_map_over_sections). */
1996
1997static void
1998load_section_callback (bfd *abfd, asection *asec, void *data)
1999{
a76d924d 2000 struct memory_write_request *new_request;
e4f9b4d5 2001 struct load_section_data *args = data;
a76d924d 2002 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2003 bfd_size_type size = bfd_get_section_size (asec);
2004 gdb_byte *buffer;
cf7a04e8 2005 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2006
cf7a04e8
DJ
2007 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2008 return;
e4f9b4d5 2009
cf7a04e8
DJ
2010 if (size == 0)
2011 return;
e4f9b4d5 2012
a76d924d
DJ
2013 new_request = VEC_safe_push (memory_write_request_s,
2014 args->requests, NULL);
2015 memset (new_request, 0, sizeof (struct memory_write_request));
2016 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2017 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2018 new_request->end = new_request->begin + size; /* FIXME Should size
2019 be in instead? */
a76d924d
DJ
2020 new_request->data = xmalloc (size);
2021 new_request->baton = section_data;
cf7a04e8 2022
a76d924d 2023 buffer = new_request->data;
cf7a04e8 2024
a76d924d
DJ
2025 section_data->cumulative = args->progress_data;
2026 section_data->section_name = sect_name;
2027 section_data->section_size = size;
2028 section_data->lma = new_request->begin;
2029 section_data->buffer = buffer;
cf7a04e8
DJ
2030
2031 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2032}
2033
2034/* Clean up an entire memory request vector, including load
2035 data and progress records. */
cf7a04e8 2036
a76d924d
DJ
2037static void
2038clear_memory_write_data (void *arg)
2039{
2040 VEC(memory_write_request_s) **vec_p = arg;
2041 VEC(memory_write_request_s) *vec = *vec_p;
2042 int i;
2043 struct memory_write_request *mr;
cf7a04e8 2044
a76d924d
DJ
2045 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2046 {
2047 xfree (mr->data);
2048 xfree (mr->baton);
2049 }
2050 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2051}
2052
c906108c 2053void
917317f4 2054generic_load (char *args, int from_tty)
c906108c 2055{
c906108c 2056 bfd *loadfile_bfd;
2b71414d 2057 struct timeval start_time, end_time;
917317f4 2058 char *filename;
1986bccd 2059 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2060 struct load_section_data cbdata;
a76d924d 2061 struct load_progress_data total_progress;
79a45e25 2062 struct ui_out *uiout = current_uiout;
a76d924d 2063
e4f9b4d5 2064 CORE_ADDR entry;
1986bccd 2065 char **argv;
e4f9b4d5 2066
a76d924d
DJ
2067 memset (&cbdata, 0, sizeof (cbdata));
2068 memset (&total_progress, 0, sizeof (total_progress));
2069 cbdata.progress_data = &total_progress;
2070
2071 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2072
d1a41061
PP
2073 if (args == NULL)
2074 error_no_arg (_("file to load"));
1986bccd 2075
d1a41061 2076 argv = gdb_buildargv (args);
1986bccd
AS
2077 make_cleanup_freeargv (argv);
2078
2079 filename = tilde_expand (argv[0]);
2080 make_cleanup (xfree, filename);
2081
2082 if (argv[1] != NULL)
917317f4 2083 {
f698ca8e 2084 const char *endptr;
ba5f2f8a 2085
f698ca8e 2086 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2087
2088 /* If the last word was not a valid number then
2089 treat it as a file name with spaces in. */
2090 if (argv[1] == endptr)
2091 error (_("Invalid download offset:%s."), argv[1]);
2092
2093 if (argv[2] != NULL)
2094 error (_("Too many parameters."));
917317f4 2095 }
c906108c 2096
c378eb4e 2097 /* Open the file for loading. */
1c00ec6b 2098 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2099 if (loadfile_bfd == NULL)
2100 {
2101 perror_with_name (filename);
2102 return;
2103 }
917317f4 2104
f9a062ff 2105 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2106
c5aa993b 2107 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2108 {
8a3fe4f8 2109 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2110 bfd_errmsg (bfd_get_error ()));
2111 }
c5aa993b 2112
5417f6dc 2113 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2114 (void *) &total_progress.total_size);
2115
2116 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2117
2b71414d 2118 gettimeofday (&start_time, NULL);
c906108c 2119
a76d924d
DJ
2120 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2121 load_progress) != 0)
2122 error (_("Load failed"));
c906108c 2123
2b71414d 2124 gettimeofday (&end_time, NULL);
ba5f2f8a 2125
e4f9b4d5 2126 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2127 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2128 ui_out_text (uiout, "Start address ");
f5656ead 2129 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2130 ui_out_text (uiout, ", load size ");
a76d924d 2131 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2132 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2133 /* We were doing this in remote-mips.c, I suspect it is right
2134 for other targets too. */
fb14de7b 2135 regcache_write_pc (get_current_regcache (), entry);
c906108c 2136
38963c97
DJ
2137 /* Reset breakpoints, now that we have changed the load image. For
2138 instance, breakpoints may have been set (or reset, by
2139 post_create_inferior) while connected to the target but before we
2140 loaded the program. In that case, the prologue analyzer could
2141 have read instructions from the target to find the right
2142 breakpoint locations. Loading has changed the contents of that
2143 memory. */
2144
2145 breakpoint_re_set ();
2146
7ca9f392
AC
2147 /* FIXME: are we supposed to call symbol_file_add or not? According
2148 to a comment from remote-mips.c (where a call to symbol_file_add
2149 was commented out), making the call confuses GDB if more than one
2150 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2151 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2152
a76d924d
DJ
2153 print_transfer_performance (gdb_stdout, total_progress.data_count,
2154 total_progress.write_count,
2155 &start_time, &end_time);
c906108c
SS
2156
2157 do_cleanups (old_cleanups);
2158}
2159
c378eb4e 2160/* Report how fast the transfer went. */
c906108c 2161
917317f4 2162void
d9fcf2fb 2163print_transfer_performance (struct ui_file *stream,
917317f4
JM
2164 unsigned long data_count,
2165 unsigned long write_count,
2b71414d
DJ
2166 const struct timeval *start_time,
2167 const struct timeval *end_time)
917317f4 2168{
9f43d28c 2169 ULONGEST time_count;
79a45e25 2170 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2171
2172 /* Compute the elapsed time in milliseconds, as a tradeoff between
2173 accuracy and overflow. */
2174 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2175 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2176
8b93c638
JM
2177 ui_out_text (uiout, "Transfer rate: ");
2178 if (time_count > 0)
2179 {
9f43d28c
DJ
2180 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2181
2182 if (ui_out_is_mi_like_p (uiout))
2183 {
2184 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2185 ui_out_text (uiout, " bits/sec");
2186 }
2187 else if (rate < 1024)
2188 {
2189 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2190 ui_out_text (uiout, " bytes/sec");
2191 }
2192 else
2193 {
2194 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2195 ui_out_text (uiout, " KB/sec");
2196 }
8b93c638
JM
2197 }
2198 else
2199 {
ba5f2f8a 2200 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2201 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2202 }
2203 if (write_count > 0)
2204 {
2205 ui_out_text (uiout, ", ");
ba5f2f8a 2206 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2207 ui_out_text (uiout, " bytes/write");
2208 }
2209 ui_out_text (uiout, ".\n");
c906108c
SS
2210}
2211
2212/* This function allows the addition of incrementally linked object files.
2213 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2214/* Note: ezannoni 2000-04-13 This function/command used to have a
2215 special case syntax for the rombug target (Rombug is the boot
2216 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2217 rombug case, the user doesn't need to supply a text address,
2218 instead a call to target_link() (in target.c) would supply the
c378eb4e 2219 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2220
c906108c 2221static void
fba45db2 2222add_symbol_file_command (char *args, int from_tty)
c906108c 2223{
5af949e3 2224 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2225 char *filename = NULL;
2df3850c 2226 int flags = OBJF_USERLOADED;
c906108c 2227 char *arg;
db162d44 2228 int section_index = 0;
2acceee2
JM
2229 int argcnt = 0;
2230 int sec_num = 0;
2231 int i;
db162d44
EZ
2232 int expecting_sec_name = 0;
2233 int expecting_sec_addr = 0;
5b96932b 2234 char **argv;
76ad5e1e 2235 struct objfile *objf;
db162d44 2236
a39a16c4 2237 struct sect_opt
2acceee2 2238 {
2acceee2
JM
2239 char *name;
2240 char *value;
a39a16c4 2241 };
db162d44 2242
a39a16c4
MM
2243 struct section_addr_info *section_addrs;
2244 struct sect_opt *sect_opts = NULL;
2245 size_t num_sect_opts = 0;
3017564a 2246 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2247
a39a16c4 2248 num_sect_opts = 16;
5417f6dc 2249 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2250 * sizeof (struct sect_opt));
2251
c906108c
SS
2252 dont_repeat ();
2253
2254 if (args == NULL)
8a3fe4f8 2255 error (_("add-symbol-file takes a file name and an address"));
c906108c 2256
d1a41061 2257 argv = gdb_buildargv (args);
5b96932b 2258 make_cleanup_freeargv (argv);
db162d44 2259
5b96932b
AS
2260 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2261 {
c378eb4e 2262 /* Process the argument. */
db162d44 2263 if (argcnt == 0)
c906108c 2264 {
c378eb4e 2265 /* The first argument is the file name. */
db162d44 2266 filename = tilde_expand (arg);
3017564a 2267 make_cleanup (xfree, filename);
c906108c 2268 }
41dc8db8
MB
2269 else if (argcnt == 1)
2270 {
2271 /* The second argument is always the text address at which
2272 to load the program. */
2273 sect_opts[section_index].name = ".text";
2274 sect_opts[section_index].value = arg;
2275 if (++section_index >= num_sect_opts)
2276 {
2277 num_sect_opts *= 2;
2278 sect_opts = ((struct sect_opt *)
2279 xrealloc (sect_opts,
2280 num_sect_opts
2281 * sizeof (struct sect_opt)));
2282 }
2283 }
db162d44 2284 else
41dc8db8
MB
2285 {
2286 /* It's an option (starting with '-') or it's an argument
2287 to an option. */
41dc8db8
MB
2288 if (expecting_sec_name)
2289 {
2290 sect_opts[section_index].name = arg;
2291 expecting_sec_name = 0;
2292 }
2293 else if (expecting_sec_addr)
2294 {
2295 sect_opts[section_index].value = arg;
2296 expecting_sec_addr = 0;
2297 if (++section_index >= num_sect_opts)
2298 {
2299 num_sect_opts *= 2;
2300 sect_opts = ((struct sect_opt *)
2301 xrealloc (sect_opts,
2302 num_sect_opts
2303 * sizeof (struct sect_opt)));
2304 }
2305 }
2306 else if (strcmp (arg, "-readnow") == 0)
2307 flags |= OBJF_READNOW;
2308 else if (strcmp (arg, "-s") == 0)
2309 {
2310 expecting_sec_name = 1;
2311 expecting_sec_addr = 1;
2312 }
2313 else
2314 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2315 " [-readnow] [-s <secname> <addr>]*"));
2316 }
c906108c 2317 }
c906108c 2318
927890d0
JB
2319 /* This command takes at least two arguments. The first one is a
2320 filename, and the second is the address where this file has been
2321 loaded. Abort now if this address hasn't been provided by the
2322 user. */
2323 if (section_index < 1)
2324 error (_("The address where %s has been loaded is missing"), filename);
2325
c378eb4e 2326 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2327 a sect_addr_info structure to be passed around to other
2328 functions. We have to split this up into separate print
bb599908 2329 statements because hex_string returns a local static
c378eb4e 2330 string. */
5417f6dc 2331
a3f17187 2332 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2333 section_addrs = alloc_section_addr_info (section_index);
2334 make_cleanup (xfree, section_addrs);
db162d44 2335 for (i = 0; i < section_index; i++)
c906108c 2336 {
db162d44
EZ
2337 CORE_ADDR addr;
2338 char *val = sect_opts[i].value;
2339 char *sec = sect_opts[i].name;
5417f6dc 2340
ae822768 2341 addr = parse_and_eval_address (val);
db162d44 2342
db162d44 2343 /* Here we store the section offsets in the order they were
c378eb4e 2344 entered on the command line. */
a39a16c4
MM
2345 section_addrs->other[sec_num].name = sec;
2346 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2347 printf_unfiltered ("\t%s_addr = %s\n", sec,
2348 paddress (gdbarch, addr));
db162d44
EZ
2349 sec_num++;
2350
5417f6dc 2351 /* The object's sections are initialized when a
db162d44 2352 call is made to build_objfile_section_table (objfile).
5417f6dc 2353 This happens in reread_symbols.
db162d44
EZ
2354 At this point, we don't know what file type this is,
2355 so we can't determine what section names are valid. */
2acceee2 2356 }
d76488d8 2357 section_addrs->num_sections = sec_num;
db162d44 2358
2acceee2 2359 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2360 error (_("Not confirmed."));
c906108c 2361
76ad5e1e
NB
2362 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2363 section_addrs, flags);
2364
2365 add_target_sections_of_objfile (objf);
c906108c
SS
2366
2367 /* Getting new symbols may change our opinion about what is
2368 frameless. */
2369 reinit_frame_cache ();
db162d44 2370 do_cleanups (my_cleanups);
c906108c
SS
2371}
2372\f
70992597 2373
63644780
NB
2374/* This function removes a symbol file that was added via add-symbol-file. */
2375
2376static void
2377remove_symbol_file_command (char *args, int from_tty)
2378{
2379 char **argv;
2380 struct objfile *objf = NULL;
2381 struct cleanup *my_cleanups;
2382 struct program_space *pspace = current_program_space;
2383 struct gdbarch *gdbarch = get_current_arch ();
2384
2385 dont_repeat ();
2386
2387 if (args == NULL)
2388 error (_("remove-symbol-file: no symbol file provided"));
2389
2390 my_cleanups = make_cleanup (null_cleanup, NULL);
2391
2392 argv = gdb_buildargv (args);
2393
2394 if (strcmp (argv[0], "-a") == 0)
2395 {
2396 /* Interpret the next argument as an address. */
2397 CORE_ADDR addr;
2398
2399 if (argv[1] == NULL)
2400 error (_("Missing address argument"));
2401
2402 if (argv[2] != NULL)
2403 error (_("Junk after %s"), argv[1]);
2404
2405 addr = parse_and_eval_address (argv[1]);
2406
2407 ALL_OBJFILES (objf)
2408 {
2409 if (objf != 0
2410 && objf->flags & OBJF_USERLOADED
2411 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2412 break;
2413 }
2414 }
2415 else if (argv[0] != NULL)
2416 {
2417 /* Interpret the current argument as a file name. */
2418 char *filename;
2419
2420 if (argv[1] != NULL)
2421 error (_("Junk after %s"), argv[0]);
2422
2423 filename = tilde_expand (argv[0]);
2424 make_cleanup (xfree, filename);
2425
2426 ALL_OBJFILES (objf)
2427 {
2428 if (objf != 0
2429 && objf->flags & OBJF_USERLOADED
2430 && objf->pspace == pspace
2431 && filename_cmp (filename, objfile_name (objf)) == 0)
2432 break;
2433 }
2434 }
2435
2436 if (objf == NULL)
2437 error (_("No symbol file found"));
2438
2439 if (from_tty
2440 && !query (_("Remove symbol table from file \"%s\"? "),
2441 objfile_name (objf)))
2442 error (_("Not confirmed."));
2443
2444 free_objfile (objf);
2445 clear_symtab_users (0);
2446
2447 do_cleanups (my_cleanups);
2448}
2449
4ac39b97
JK
2450typedef struct objfile *objfilep;
2451
2452DEF_VEC_P (objfilep);
2453
c906108c 2454/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2455
c906108c 2456void
fba45db2 2457reread_symbols (void)
c906108c
SS
2458{
2459 struct objfile *objfile;
2460 long new_modtime;
c906108c
SS
2461 struct stat new_statbuf;
2462 int res;
4ac39b97
JK
2463 VEC (objfilep) *new_objfiles = NULL;
2464 struct cleanup *all_cleanups;
2465
2466 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2467
2468 /* With the addition of shared libraries, this should be modified,
2469 the load time should be saved in the partial symbol tables, since
2470 different tables may come from different source files. FIXME.
2471 This routine should then walk down each partial symbol table
c378eb4e 2472 and see if the symbol table that it originates from has been changed. */
c906108c 2473
c5aa993b
JM
2474 for (objfile = object_files; objfile; objfile = objfile->next)
2475 {
9cce227f
TG
2476 if (objfile->obfd == NULL)
2477 continue;
2478
2479 /* Separate debug objfiles are handled in the main objfile. */
2480 if (objfile->separate_debug_objfile_backlink)
2481 continue;
2482
02aeec7b
JB
2483 /* If this object is from an archive (what you usually create with
2484 `ar', often called a `static library' on most systems, though
2485 a `shared library' on AIX is also an archive), then you should
2486 stat on the archive name, not member name. */
9cce227f
TG
2487 if (objfile->obfd->my_archive)
2488 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2489 else
4262abfb 2490 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2491 if (res != 0)
2492 {
c378eb4e 2493 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2494 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2495 objfile_name (objfile));
9cce227f
TG
2496 continue;
2497 }
2498 new_modtime = new_statbuf.st_mtime;
2499 if (new_modtime != objfile->mtime)
2500 {
2501 struct cleanup *old_cleanups;
2502 struct section_offsets *offsets;
2503 int num_offsets;
24ba069a 2504 char *original_name;
9cce227f
TG
2505
2506 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2507 objfile_name (objfile));
9cce227f
TG
2508
2509 /* There are various functions like symbol_file_add,
2510 symfile_bfd_open, syms_from_objfile, etc., which might
2511 appear to do what we want. But they have various other
2512 effects which we *don't* want. So we just do stuff
2513 ourselves. We don't worry about mapped files (for one thing,
2514 any mapped file will be out of date). */
2515
2516 /* If we get an error, blow away this objfile (not sure if
2517 that is the correct response for things like shared
2518 libraries). */
2519 old_cleanups = make_cleanup_free_objfile (objfile);
2520 /* We need to do this whenever any symbols go away. */
2521 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2522
0ba1096a
KT
2523 if (exec_bfd != NULL
2524 && filename_cmp (bfd_get_filename (objfile->obfd),
2525 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2526 {
2527 /* Reload EXEC_BFD without asking anything. */
2528
2529 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2530 }
2531
f6eeced0
JK
2532 /* Keep the calls order approx. the same as in free_objfile. */
2533
2534 /* Free the separate debug objfiles. It will be
2535 automatically recreated by sym_read. */
2536 free_objfile_separate_debug (objfile);
2537
2538 /* Remove any references to this objfile in the global
2539 value lists. */
2540 preserve_values (objfile);
2541
2542 /* Nuke all the state that we will re-read. Much of the following
2543 code which sets things to NULL really is necessary to tell
2544 other parts of GDB that there is nothing currently there.
2545
2546 Try to keep the freeing order compatible with free_objfile. */
2547
2548 if (objfile->sf != NULL)
2549 {
2550 (*objfile->sf->sym_finish) (objfile);
2551 }
2552
2553 clear_objfile_data (objfile);
2554
e1507e95 2555 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2556 {
2557 struct bfd *obfd = objfile->obfd;
d3846e71 2558 char *obfd_filename;
a4453b7e
TT
2559
2560 obfd_filename = bfd_get_filename (objfile->obfd);
2561 /* Open the new BFD before freeing the old one, so that
2562 the filename remains live. */
08d2cd74 2563 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
e1507e95
TT
2564 if (objfile->obfd == NULL)
2565 {
2566 /* We have to make a cleanup and error here, rather
2567 than erroring later, because once we unref OBFD,
2568 OBFD_FILENAME will be freed. */
2569 make_cleanup_bfd_unref (obfd);
2570 error (_("Can't open %s to read symbols."), obfd_filename);
2571 }
a4453b7e
TT
2572 gdb_bfd_unref (obfd);
2573 }
2574
24ba069a
JK
2575 original_name = xstrdup (objfile->original_name);
2576 make_cleanup (xfree, original_name);
2577
9cce227f
TG
2578 /* bfd_openr sets cacheable to true, which is what we want. */
2579 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2580 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2581 bfd_errmsg (bfd_get_error ()));
2582
2583 /* Save the offsets, we will nuke them with the rest of the
2584 objfile_obstack. */
2585 num_offsets = objfile->num_sections;
2586 offsets = ((struct section_offsets *)
2587 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2588 memcpy (offsets, objfile->section_offsets,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590
9cce227f
TG
2591 /* FIXME: Do we have to free a whole linked list, or is this
2592 enough? */
2593 if (objfile->global_psymbols.list)
2594 xfree (objfile->global_psymbols.list);
2595 memset (&objfile->global_psymbols, 0,
2596 sizeof (objfile->global_psymbols));
2597 if (objfile->static_psymbols.list)
2598 xfree (objfile->static_psymbols.list);
2599 memset (&objfile->static_psymbols, 0,
2600 sizeof (objfile->static_psymbols));
2601
c378eb4e 2602 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2603 psymbol_bcache_free (objfile->psymbol_cache);
2604 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2605 obstack_free (&objfile->objfile_obstack, 0);
2606 objfile->sections = NULL;
2607 objfile->symtabs = NULL;
2608 objfile->psymtabs = NULL;
2609 objfile->psymtabs_addrmap = NULL;
2610 objfile->free_psymtabs = NULL;
34eaf542 2611 objfile->template_symbols = NULL;
9cce227f 2612
9cce227f
TG
2613 /* obstack_init also initializes the obstack so it is
2614 empty. We could use obstack_specify_allocation but
d82ea6a8 2615 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2616 obstack_init (&objfile->objfile_obstack);
779bd270 2617
846060df
JB
2618 /* set_objfile_per_bfd potentially allocates the per-bfd
2619 data on the objfile's obstack (if sharing data across
2620 multiple users is not possible), so it's important to
2621 do it *after* the obstack has been initialized. */
2622 set_objfile_per_bfd (objfile);
2623
24ba069a
JK
2624 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2625 original_name,
2626 strlen (original_name));
2627
779bd270
DE
2628 /* Reset the sym_fns pointer. The ELF reader can change it
2629 based on whether .gdb_index is present, and we need it to
2630 start over. PR symtab/15885 */
8fb8eb5c 2631 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2632
d82ea6a8 2633 build_objfile_section_table (objfile);
9cce227f
TG
2634 terminate_minimal_symbol_table (objfile);
2635
2636 /* We use the same section offsets as from last time. I'm not
2637 sure whether that is always correct for shared libraries. */
2638 objfile->section_offsets = (struct section_offsets *)
2639 obstack_alloc (&objfile->objfile_obstack,
2640 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2641 memcpy (objfile->section_offsets, offsets,
2642 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2643 objfile->num_sections = num_offsets;
2644
2645 /* What the hell is sym_new_init for, anyway? The concept of
2646 distinguishing between the main file and additional files
2647 in this way seems rather dubious. */
2648 if (objfile == symfile_objfile)
c906108c 2649 {
9cce227f 2650 (*objfile->sf->sym_new_init) (objfile);
c906108c 2651 }
9cce227f
TG
2652
2653 (*objfile->sf->sym_init) (objfile);
2654 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2655
2656 objfile->flags &= ~OBJF_PSYMTABS_READ;
2657 read_symbols (objfile, 0);
b11896a5 2658
9cce227f 2659 if (!objfile_has_symbols (objfile))
c906108c 2660 {
9cce227f
TG
2661 wrap_here ("");
2662 printf_unfiltered (_("(no debugging symbols found)\n"));
2663 wrap_here ("");
c5aa993b 2664 }
9cce227f
TG
2665
2666 /* We're done reading the symbol file; finish off complaints. */
2667 clear_complaints (&symfile_complaints, 0, 1);
2668
2669 /* Getting new symbols may change our opinion about what is
2670 frameless. */
2671
2672 reinit_frame_cache ();
2673
2674 /* Discard cleanups as symbol reading was successful. */
2675 discard_cleanups (old_cleanups);
2676
2677 /* If the mtime has changed between the time we set new_modtime
2678 and now, we *want* this to be out of date, so don't call stat
2679 again now. */
2680 objfile->mtime = new_modtime;
9cce227f 2681 init_entry_point_info (objfile);
4ac39b97
JK
2682
2683 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2684 }
2685 }
c906108c 2686
4ac39b97 2687 if (new_objfiles)
ea53e89f 2688 {
4ac39b97
JK
2689 int ix;
2690
ff3536bc
UW
2691 /* Notify objfiles that we've modified objfile sections. */
2692 objfiles_changed ();
2693
c1e56572 2694 clear_symtab_users (0);
4ac39b97
JK
2695
2696 /* clear_objfile_data for each objfile was called before freeing it and
2697 observer_notify_new_objfile (NULL) has been called by
2698 clear_symtab_users above. Notify the new files now. */
2699 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2700 observer_notify_new_objfile (objfile);
2701
ea53e89f
JB
2702 /* At least one objfile has changed, so we can consider that
2703 the executable we're debugging has changed too. */
781b42b0 2704 observer_notify_executable_changed ();
ea53e89f 2705 }
4ac39b97
JK
2706
2707 do_cleanups (all_cleanups);
c906108c 2708}
c906108c
SS
2709\f
2710
c5aa993b
JM
2711typedef struct
2712{
2713 char *ext;
c906108c 2714 enum language lang;
c5aa993b
JM
2715}
2716filename_language;
c906108c 2717
c5aa993b 2718static filename_language *filename_language_table;
c906108c
SS
2719static int fl_table_size, fl_table_next;
2720
2721static void
fba45db2 2722add_filename_language (char *ext, enum language lang)
c906108c
SS
2723{
2724 if (fl_table_next >= fl_table_size)
2725 {
2726 fl_table_size += 10;
5417f6dc 2727 filename_language_table =
25bf3106
PM
2728 xrealloc (filename_language_table,
2729 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2730 }
2731
4fcf66da 2732 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2733 filename_language_table[fl_table_next].lang = lang;
2734 fl_table_next++;
2735}
2736
2737static char *ext_args;
920d2a44
AC
2738static void
2739show_ext_args (struct ui_file *file, int from_tty,
2740 struct cmd_list_element *c, const char *value)
2741{
3e43a32a
MS
2742 fprintf_filtered (file,
2743 _("Mapping between filename extension "
2744 "and source language is \"%s\".\n"),
920d2a44
AC
2745 value);
2746}
c906108c
SS
2747
2748static void
26c41df3 2749set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2750{
2751 int i;
2752 char *cp = ext_args;
2753 enum language lang;
2754
c378eb4e 2755 /* First arg is filename extension, starting with '.' */
c906108c 2756 if (*cp != '.')
8a3fe4f8 2757 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2758
2759 /* Find end of first arg. */
c5aa993b 2760 while (*cp && !isspace (*cp))
c906108c
SS
2761 cp++;
2762
2763 if (*cp == '\0')
3e43a32a
MS
2764 error (_("'%s': two arguments required -- "
2765 "filename extension and language"),
c906108c
SS
2766 ext_args);
2767
c378eb4e 2768 /* Null-terminate first arg. */
c5aa993b 2769 *cp++ = '\0';
c906108c
SS
2770
2771 /* Find beginning of second arg, which should be a source language. */
529480d0 2772 cp = skip_spaces (cp);
c906108c
SS
2773
2774 if (*cp == '\0')
3e43a32a
MS
2775 error (_("'%s': two arguments required -- "
2776 "filename extension and language"),
c906108c
SS
2777 ext_args);
2778
2779 /* Lookup the language from among those we know. */
2780 lang = language_enum (cp);
2781
2782 /* Now lookup the filename extension: do we already know it? */
2783 for (i = 0; i < fl_table_next; i++)
2784 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2785 break;
2786
2787 if (i >= fl_table_next)
2788 {
c378eb4e 2789 /* New file extension. */
c906108c
SS
2790 add_filename_language (ext_args, lang);
2791 }
2792 else
2793 {
c378eb4e 2794 /* Redefining a previously known filename extension. */
c906108c
SS
2795
2796 /* if (from_tty) */
2797 /* query ("Really make files of type %s '%s'?", */
2798 /* ext_args, language_str (lang)); */
2799
b8c9b27d 2800 xfree (filename_language_table[i].ext);
4fcf66da 2801 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2802 filename_language_table[i].lang = lang;
2803 }
2804}
2805
2806static void
fba45db2 2807info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2808{
2809 int i;
2810
a3f17187 2811 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2812 printf_filtered ("\n\n");
2813 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2814 printf_filtered ("\t%s\t- %s\n",
2815 filename_language_table[i].ext,
c906108c
SS
2816 language_str (filename_language_table[i].lang));
2817}
2818
2819static void
fba45db2 2820init_filename_language_table (void)
c906108c 2821{
c378eb4e 2822 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2823 {
2824 fl_table_size = 20;
2825 fl_table_next = 0;
c5aa993b 2826 filename_language_table =
c906108c 2827 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2828 add_filename_language (".c", language_c);
6aecb9c2 2829 add_filename_language (".d", language_d);
c5aa993b
JM
2830 add_filename_language (".C", language_cplus);
2831 add_filename_language (".cc", language_cplus);
2832 add_filename_language (".cp", language_cplus);
2833 add_filename_language (".cpp", language_cplus);
2834 add_filename_language (".cxx", language_cplus);
2835 add_filename_language (".c++", language_cplus);
2836 add_filename_language (".java", language_java);
c906108c 2837 add_filename_language (".class", language_java);
da2cf7e0 2838 add_filename_language (".m", language_objc);
c5aa993b
JM
2839 add_filename_language (".f", language_fortran);
2840 add_filename_language (".F", language_fortran);
fd5700c7
JK
2841 add_filename_language (".for", language_fortran);
2842 add_filename_language (".FOR", language_fortran);
2843 add_filename_language (".ftn", language_fortran);
2844 add_filename_language (".FTN", language_fortran);
2845 add_filename_language (".fpp", language_fortran);
2846 add_filename_language (".FPP", language_fortran);
2847 add_filename_language (".f90", language_fortran);
2848 add_filename_language (".F90", language_fortran);
2849 add_filename_language (".f95", language_fortran);
2850 add_filename_language (".F95", language_fortran);
2851 add_filename_language (".f03", language_fortran);
2852 add_filename_language (".F03", language_fortran);
2853 add_filename_language (".f08", language_fortran);
2854 add_filename_language (".F08", language_fortran);
c5aa993b 2855 add_filename_language (".s", language_asm);
aa707ed0 2856 add_filename_language (".sx", language_asm);
c5aa993b 2857 add_filename_language (".S", language_asm);
c6fd39cd
PM
2858 add_filename_language (".pas", language_pascal);
2859 add_filename_language (".p", language_pascal);
2860 add_filename_language (".pp", language_pascal);
963a6417
PH
2861 add_filename_language (".adb", language_ada);
2862 add_filename_language (".ads", language_ada);
2863 add_filename_language (".a", language_ada);
2864 add_filename_language (".ada", language_ada);
dde59185 2865 add_filename_language (".dg", language_ada);
c906108c
SS
2866 }
2867}
2868
2869enum language
dd786858 2870deduce_language_from_filename (const char *filename)
c906108c
SS
2871{
2872 int i;
2873 char *cp;
2874
2875 if (filename != NULL)
2876 if ((cp = strrchr (filename, '.')) != NULL)
2877 for (i = 0; i < fl_table_next; i++)
2878 if (strcmp (cp, filename_language_table[i].ext) == 0)
2879 return filename_language_table[i].lang;
2880
2881 return language_unknown;
2882}
2883\f
2884/* allocate_symtab:
2885
2886 Allocate and partly initialize a new symbol table. Return a pointer
2887 to it. error() if no space.
2888
2889 Caller must set these fields:
c5aa993b
JM
2890 LINETABLE(symtab)
2891 symtab->blockvector
2892 symtab->dirname
2893 symtab->free_code
2894 symtab->free_ptr
c906108c
SS
2895 */
2896
2897struct symtab *
72b9f47f 2898allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2899{
52f0bd74 2900 struct symtab *symtab;
c906108c
SS
2901
2902 symtab = (struct symtab *)
4a146b47 2903 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2904 memset (symtab, 0, sizeof (*symtab));
21ea9eec
TT
2905 symtab->filename = bcache (filename, strlen (filename) + 1,
2906 objfile->per_bfd->filename_cache);
c5aa993b
JM
2907 symtab->fullname = NULL;
2908 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2909 symtab->debugformat = "unknown";
c906108c 2910
c378eb4e 2911 /* Hook it to the objfile it comes from. */
c906108c 2912
c5aa993b
JM
2913 symtab->objfile = objfile;
2914 symtab->next = objfile->symtabs;
2915 objfile->symtabs = symtab;
c906108c 2916
db0fec5c
DE
2917 /* This can be very verbose with lots of headers.
2918 Only print at higher debug levels. */
2919 if (symtab_create_debug >= 2)
45cfd468
DE
2920 {
2921 /* Be a bit clever with debugging messages, and don't print objfile
2922 every time, only when it changes. */
2923 static char *last_objfile_name = NULL;
2924
2925 if (last_objfile_name == NULL
4262abfb 2926 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2927 {
2928 xfree (last_objfile_name);
4262abfb 2929 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2930 fprintf_unfiltered (gdb_stdlog,
2931 "Creating one or more symtabs for objfile %s ...\n",
2932 last_objfile_name);
2933 }
2934 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2935 "Created symtab %s for module %s.\n",
2936 host_address_to_string (symtab), filename);
45cfd468
DE
2937 }
2938
c906108c
SS
2939 return (symtab);
2940}
c906108c 2941\f
c5aa993b 2942
c906108c 2943/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2944 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2945
2946void
c1e56572 2947clear_symtab_users (int add_flags)
c906108c
SS
2948{
2949 /* Someday, we should do better than this, by only blowing away
2950 the things that really need to be blown. */
c0501be5
DJ
2951
2952 /* Clear the "current" symtab first, because it is no longer valid.
2953 breakpoint_re_set may try to access the current symtab. */
2954 clear_current_source_symtab_and_line ();
2955
c906108c 2956 clear_displays ();
c1e56572
JK
2957 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2958 breakpoint_re_set ();
1bfeeb0f 2959 clear_last_displayed_sal ();
c906108c 2960 clear_pc_function_cache ();
06d3b283 2961 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2962
2963 /* Clear globals which might have pointed into a removed objfile.
2964 FIXME: It's not clear which of these are supposed to persist
2965 between expressions and which ought to be reset each time. */
2966 expression_context_block = NULL;
2967 innermost_block = NULL;
8756216b
DP
2968
2969 /* Varobj may refer to old symbols, perform a cleanup. */
2970 varobj_invalidate ();
2971
c906108c
SS
2972}
2973
74b7792f
AC
2974static void
2975clear_symtab_users_cleanup (void *ignore)
2976{
c1e56572 2977 clear_symtab_users (0);
74b7792f 2978}
c906108c 2979\f
c906108c
SS
2980/* OVERLAYS:
2981 The following code implements an abstraction for debugging overlay sections.
2982
2983 The target model is as follows:
2984 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2985 same VMA, each with its own unique LMA (or load address).
c906108c 2986 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2987 sections, one by one, from the load address into the VMA address.
5417f6dc 2988 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2989 sections should be considered to be mapped from the VMA to the LMA.
2990 This information is used for symbol lookup, and memory read/write.
5417f6dc 2991 For instance, if a section has been mapped then its contents
c5aa993b 2992 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2993
2994 Two levels of debugger support for overlays are available. One is
2995 "manual", in which the debugger relies on the user to tell it which
2996 overlays are currently mapped. This level of support is
2997 implemented entirely in the core debugger, and the information about
2998 whether a section is mapped is kept in the objfile->obj_section table.
2999
3000 The second level of support is "automatic", and is only available if
3001 the target-specific code provides functionality to read the target's
3002 overlay mapping table, and translate its contents for the debugger
3003 (by updating the mapped state information in the obj_section tables).
3004
3005 The interface is as follows:
c5aa993b
JM
3006 User commands:
3007 overlay map <name> -- tell gdb to consider this section mapped
3008 overlay unmap <name> -- tell gdb to consider this section unmapped
3009 overlay list -- list the sections that GDB thinks are mapped
3010 overlay read-target -- get the target's state of what's mapped
3011 overlay off/manual/auto -- set overlay debugging state
3012 Functional interface:
3013 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3014 section, return that section.
5417f6dc 3015 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3016 the pc, either in its VMA or its LMA
714835d5 3017 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3018 section_is_overlay(sect): true if section's VMA != LMA
3019 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3020 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3021 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3022 overlay_mapped_address(...): map an address from section's LMA to VMA
3023 overlay_unmapped_address(...): map an address from section's VMA to LMA
3024 symbol_overlayed_address(...): Return a "current" address for symbol:
3025 either in VMA or LMA depending on whether
c378eb4e 3026 the symbol's section is currently mapped. */
c906108c
SS
3027
3028/* Overlay debugging state: */
3029
d874f1e2 3030enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3031int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3032
c906108c 3033/* Function: section_is_overlay (SECTION)
5417f6dc 3034 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3035 SECTION is loaded at an address different from where it will "run". */
3036
3037int
714835d5 3038section_is_overlay (struct obj_section *section)
c906108c 3039{
714835d5
UW
3040 if (overlay_debugging && section)
3041 {
3042 bfd *abfd = section->objfile->obfd;
3043 asection *bfd_section = section->the_bfd_section;
f888f159 3044
714835d5
UW
3045 if (bfd_section_lma (abfd, bfd_section) != 0
3046 && bfd_section_lma (abfd, bfd_section)
3047 != bfd_section_vma (abfd, bfd_section))
3048 return 1;
3049 }
c906108c
SS
3050
3051 return 0;
3052}
3053
3054/* Function: overlay_invalidate_all (void)
3055 Invalidate the mapped state of all overlay sections (mark it as stale). */
3056
3057static void
fba45db2 3058overlay_invalidate_all (void)
c906108c 3059{
c5aa993b 3060 struct objfile *objfile;
c906108c
SS
3061 struct obj_section *sect;
3062
3063 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3064 if (section_is_overlay (sect))
3065 sect->ovly_mapped = -1;
c906108c
SS
3066}
3067
714835d5 3068/* Function: section_is_mapped (SECTION)
5417f6dc 3069 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3070
3071 Access to the ovly_mapped flag is restricted to this function, so
3072 that we can do automatic update. If the global flag
3073 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3074 overlay_invalidate_all. If the mapped state of the particular
3075 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3076
714835d5
UW
3077int
3078section_is_mapped (struct obj_section *osect)
c906108c 3079{
9216df95
UW
3080 struct gdbarch *gdbarch;
3081
714835d5 3082 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3083 return 0;
3084
c5aa993b 3085 switch (overlay_debugging)
c906108c
SS
3086 {
3087 default:
d874f1e2 3088 case ovly_off:
c5aa993b 3089 return 0; /* overlay debugging off */
d874f1e2 3090 case ovly_auto: /* overlay debugging automatic */
1c772458 3091 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3092 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3093 gdbarch = get_objfile_arch (osect->objfile);
3094 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3095 {
3096 if (overlay_cache_invalid)
3097 {
3098 overlay_invalidate_all ();
3099 overlay_cache_invalid = 0;
3100 }
3101 if (osect->ovly_mapped == -1)
9216df95 3102 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3103 }
3104 /* fall thru to manual case */
d874f1e2 3105 case ovly_on: /* overlay debugging manual */
c906108c
SS
3106 return osect->ovly_mapped == 1;
3107 }
3108}
3109
c906108c
SS
3110/* Function: pc_in_unmapped_range
3111 If PC falls into the lma range of SECTION, return true, else false. */
3112
3113CORE_ADDR
714835d5 3114pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3115{
714835d5
UW
3116 if (section_is_overlay (section))
3117 {
3118 bfd *abfd = section->objfile->obfd;
3119 asection *bfd_section = section->the_bfd_section;
fbd35540 3120
714835d5
UW
3121 /* We assume the LMA is relocated by the same offset as the VMA. */
3122 bfd_vma size = bfd_get_section_size (bfd_section);
3123 CORE_ADDR offset = obj_section_offset (section);
3124
3125 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3126 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3127 return 1;
3128 }
c906108c 3129
c906108c
SS
3130 return 0;
3131}
3132
3133/* Function: pc_in_mapped_range
3134 If PC falls into the vma range of SECTION, return true, else false. */
3135
3136CORE_ADDR
714835d5 3137pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3138{
714835d5
UW
3139 if (section_is_overlay (section))
3140 {
3141 if (obj_section_addr (section) <= pc
3142 && pc < obj_section_endaddr (section))
3143 return 1;
3144 }
c906108c 3145
c906108c
SS
3146 return 0;
3147}
3148
9ec8e6a0
JB
3149/* Return true if the mapped ranges of sections A and B overlap, false
3150 otherwise. */
3b7bacac 3151
b9362cc7 3152static int
714835d5 3153sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3154{
714835d5
UW
3155 CORE_ADDR a_start = obj_section_addr (a);
3156 CORE_ADDR a_end = obj_section_endaddr (a);
3157 CORE_ADDR b_start = obj_section_addr (b);
3158 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3159
3160 return (a_start < b_end && b_start < a_end);
3161}
3162
c906108c
SS
3163/* Function: overlay_unmapped_address (PC, SECTION)
3164 Returns the address corresponding to PC in the unmapped (load) range.
3165 May be the same as PC. */
3166
3167CORE_ADDR
714835d5 3168overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3169{
714835d5
UW
3170 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3171 {
3172 bfd *abfd = section->objfile->obfd;
3173 asection *bfd_section = section->the_bfd_section;
fbd35540 3174
714835d5
UW
3175 return pc + bfd_section_lma (abfd, bfd_section)
3176 - bfd_section_vma (abfd, bfd_section);
3177 }
c906108c
SS
3178
3179 return pc;
3180}
3181
3182/* Function: overlay_mapped_address (PC, SECTION)
3183 Returns the address corresponding to PC in the mapped (runtime) range.
3184 May be the same as PC. */
3185
3186CORE_ADDR
714835d5 3187overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3188{
714835d5
UW
3189 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3190 {
3191 bfd *abfd = section->objfile->obfd;
3192 asection *bfd_section = section->the_bfd_section;
fbd35540 3193
714835d5
UW
3194 return pc + bfd_section_vma (abfd, bfd_section)
3195 - bfd_section_lma (abfd, bfd_section);
3196 }
c906108c
SS
3197
3198 return pc;
3199}
3200
5417f6dc 3201/* Function: symbol_overlayed_address
c906108c
SS
3202 Return one of two addresses (relative to the VMA or to the LMA),
3203 depending on whether the section is mapped or not. */
3204
c5aa993b 3205CORE_ADDR
714835d5 3206symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3207{
3208 if (overlay_debugging)
3209 {
c378eb4e 3210 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3211 if (section == 0)
3212 return address;
c378eb4e
MS
3213 /* If the symbol's section is not an overlay, just return its
3214 address. */
c906108c
SS
3215 if (!section_is_overlay (section))
3216 return address;
c378eb4e 3217 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3218 if (section_is_mapped (section))
3219 return address;
3220 /*
3221 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3222 * then return its LOADED address rather than its vma address!!
3223 */
3224 return overlay_unmapped_address (address, section);
3225 }
3226 return address;
3227}
3228
5417f6dc 3229/* Function: find_pc_overlay (PC)
c906108c
SS
3230 Return the best-match overlay section for PC:
3231 If PC matches a mapped overlay section's VMA, return that section.
3232 Else if PC matches an unmapped section's VMA, return that section.
3233 Else if PC matches an unmapped section's LMA, return that section. */
3234
714835d5 3235struct obj_section *
fba45db2 3236find_pc_overlay (CORE_ADDR pc)
c906108c 3237{
c5aa993b 3238 struct objfile *objfile;
c906108c
SS
3239 struct obj_section *osect, *best_match = NULL;
3240
3241 if (overlay_debugging)
3242 ALL_OBJSECTIONS (objfile, osect)
714835d5 3243 if (section_is_overlay (osect))
c5aa993b 3244 {
714835d5 3245 if (pc_in_mapped_range (pc, osect))
c5aa993b 3246 {
714835d5
UW
3247 if (section_is_mapped (osect))
3248 return osect;
c5aa993b
JM
3249 else
3250 best_match = osect;
3251 }
714835d5 3252 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3253 best_match = osect;
3254 }
714835d5 3255 return best_match;
c906108c
SS
3256}
3257
3258/* Function: find_pc_mapped_section (PC)
5417f6dc 3259 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3260 currently marked as MAPPED, return that section. Else return NULL. */
3261
714835d5 3262struct obj_section *
fba45db2 3263find_pc_mapped_section (CORE_ADDR pc)
c906108c 3264{
c5aa993b 3265 struct objfile *objfile;
c906108c
SS
3266 struct obj_section *osect;
3267
3268 if (overlay_debugging)
3269 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3270 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3271 return osect;
c906108c
SS
3272
3273 return NULL;
3274}
3275
3276/* Function: list_overlays_command
c378eb4e 3277 Print a list of mapped sections and their PC ranges. */
c906108c 3278
5d3055ad 3279static void
fba45db2 3280list_overlays_command (char *args, int from_tty)
c906108c 3281{
c5aa993b
JM
3282 int nmapped = 0;
3283 struct objfile *objfile;
c906108c
SS
3284 struct obj_section *osect;
3285
3286 if (overlay_debugging)
3287 ALL_OBJSECTIONS (objfile, osect)
714835d5 3288 if (section_is_mapped (osect))
c5aa993b 3289 {
5af949e3 3290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3291 const char *name;
3292 bfd_vma lma, vma;
3293 int size;
3294
3295 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3296 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3297 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3298 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3299
3300 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3301 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3302 puts_filtered (" - ");
5af949e3 3303 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3304 printf_filtered (", mapped at ");
5af949e3 3305 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3306 puts_filtered (" - ");
5af949e3 3307 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3308 puts_filtered ("\n");
3309
3310 nmapped++;
3311 }
c906108c 3312 if (nmapped == 0)
a3f17187 3313 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3314}
3315
3316/* Function: map_overlay_command
3317 Mark the named section as mapped (ie. residing at its VMA address). */
3318
5d3055ad 3319static void
fba45db2 3320map_overlay_command (char *args, int from_tty)
c906108c 3321{
c5aa993b
JM
3322 struct objfile *objfile, *objfile2;
3323 struct obj_section *sec, *sec2;
c906108c
SS
3324
3325 if (!overlay_debugging)
3e43a32a
MS
3326 error (_("Overlay debugging not enabled. Use "
3327 "either the 'overlay auto' or\n"
3328 "the 'overlay manual' command."));
c906108c
SS
3329
3330 if (args == 0 || *args == 0)
8a3fe4f8 3331 error (_("Argument required: name of an overlay section"));
c906108c 3332
c378eb4e 3333 /* First, find a section matching the user supplied argument. */
c906108c
SS
3334 ALL_OBJSECTIONS (objfile, sec)
3335 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3336 {
c378eb4e 3337 /* Now, check to see if the section is an overlay. */
714835d5 3338 if (!section_is_overlay (sec))
c5aa993b
JM
3339 continue; /* not an overlay section */
3340
c378eb4e 3341 /* Mark the overlay as "mapped". */
c5aa993b
JM
3342 sec->ovly_mapped = 1;
3343
3344 /* Next, make a pass and unmap any sections that are
3345 overlapped by this new section: */
3346 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3347 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3348 {
3349 if (info_verbose)
a3f17187 3350 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3351 bfd_section_name (objfile->obfd,
3352 sec2->the_bfd_section));
c378eb4e 3353 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3354 }
3355 return;
3356 }
8a3fe4f8 3357 error (_("No overlay section called %s"), args);
c906108c
SS
3358}
3359
3360/* Function: unmap_overlay_command
5417f6dc 3361 Mark the overlay section as unmapped
c906108c
SS
3362 (ie. resident in its LMA address range, rather than the VMA range). */
3363
5d3055ad 3364static void
fba45db2 3365unmap_overlay_command (char *args, int from_tty)
c906108c 3366{
c5aa993b 3367 struct objfile *objfile;
c906108c
SS
3368 struct obj_section *sec;
3369
3370 if (!overlay_debugging)
3e43a32a
MS
3371 error (_("Overlay debugging not enabled. "
3372 "Use either the 'overlay auto' or\n"
3373 "the 'overlay manual' command."));
c906108c
SS
3374
3375 if (args == 0 || *args == 0)
8a3fe4f8 3376 error (_("Argument required: name of an overlay section"));
c906108c 3377
c378eb4e 3378 /* First, find a section matching the user supplied argument. */
c906108c
SS
3379 ALL_OBJSECTIONS (objfile, sec)
3380 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3381 {
3382 if (!sec->ovly_mapped)
8a3fe4f8 3383 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3384 sec->ovly_mapped = 0;
3385 return;
3386 }
8a3fe4f8 3387 error (_("No overlay section called %s"), args);
c906108c
SS
3388}
3389
3390/* Function: overlay_auto_command
3391 A utility command to turn on overlay debugging.
c378eb4e 3392 Possibly this should be done via a set/show command. */
c906108c
SS
3393
3394static void
fba45db2 3395overlay_auto_command (char *args, int from_tty)
c906108c 3396{
d874f1e2 3397 overlay_debugging = ovly_auto;
1900040c 3398 enable_overlay_breakpoints ();
c906108c 3399 if (info_verbose)
a3f17187 3400 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3401}
3402
3403/* Function: overlay_manual_command
3404 A utility command to turn on overlay debugging.
c378eb4e 3405 Possibly this should be done via a set/show command. */
c906108c
SS
3406
3407static void
fba45db2 3408overlay_manual_command (char *args, int from_tty)
c906108c 3409{
d874f1e2 3410 overlay_debugging = ovly_on;
1900040c 3411 disable_overlay_breakpoints ();
c906108c 3412 if (info_verbose)
a3f17187 3413 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3414}
3415
3416/* Function: overlay_off_command
3417 A utility command to turn on overlay debugging.
c378eb4e 3418 Possibly this should be done via a set/show command. */
c906108c
SS
3419
3420static void
fba45db2 3421overlay_off_command (char *args, int from_tty)
c906108c 3422{
d874f1e2 3423 overlay_debugging = ovly_off;
1900040c 3424 disable_overlay_breakpoints ();
c906108c 3425 if (info_verbose)
a3f17187 3426 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3427}
3428
3429static void
fba45db2 3430overlay_load_command (char *args, int from_tty)
c906108c 3431{
e17c207e
UW
3432 struct gdbarch *gdbarch = get_current_arch ();
3433
3434 if (gdbarch_overlay_update_p (gdbarch))
3435 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3436 else
8a3fe4f8 3437 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3438}
3439
3440/* Function: overlay_command
c378eb4e 3441 A place-holder for a mis-typed command. */
c906108c 3442
c378eb4e 3443/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3444static struct cmd_list_element *overlaylist;
c906108c
SS
3445
3446static void
fba45db2 3447overlay_command (char *args, int from_tty)
c906108c 3448{
c5aa993b 3449 printf_unfiltered
c906108c
SS
3450 ("\"overlay\" must be followed by the name of an overlay command.\n");
3451 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3452}
3453
c906108c
SS
3454/* Target Overlays for the "Simplest" overlay manager:
3455
5417f6dc
RM
3456 This is GDB's default target overlay layer. It works with the
3457 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3458 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3459 so targets that use a different runtime overlay manager can
c906108c
SS
3460 substitute their own overlay_update function and take over the
3461 function pointer.
3462
3463 The overlay_update function pokes around in the target's data structures
3464 to see what overlays are mapped, and updates GDB's overlay mapping with
3465 this information.
3466
3467 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3468 unsigned _novlys; /# number of overlay sections #/
3469 unsigned _ovly_table[_novlys][4] = {
3470 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3471 {..., ..., ..., ...},
3472 }
3473 unsigned _novly_regions; /# number of overlay regions #/
3474 unsigned _ovly_region_table[_novly_regions][3] = {
3475 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3476 {..., ..., ...},
3477 }
c906108c
SS
3478 These functions will attempt to update GDB's mappedness state in the
3479 symbol section table, based on the target's mappedness state.
3480
3481 To do this, we keep a cached copy of the target's _ovly_table, and
3482 attempt to detect when the cached copy is invalidated. The main
3483 entry point is "simple_overlay_update(SECT), which looks up SECT in
3484 the cached table and re-reads only the entry for that section from
c378eb4e 3485 the target (whenever possible). */
c906108c
SS
3486
3487/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3488static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3489static unsigned cache_novlys = 0;
c906108c 3490static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3491enum ovly_index
3492 {
3493 VMA, SIZE, LMA, MAPPED
3494 };
c906108c 3495
c378eb4e 3496/* Throw away the cached copy of _ovly_table. */
3b7bacac 3497
c906108c 3498static void
fba45db2 3499simple_free_overlay_table (void)
c906108c
SS
3500{
3501 if (cache_ovly_table)
b8c9b27d 3502 xfree (cache_ovly_table);
c5aa993b 3503 cache_novlys = 0;
c906108c
SS
3504 cache_ovly_table = NULL;
3505 cache_ovly_table_base = 0;
3506}
3507
9216df95 3508/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3509 Convert to host order. int LEN is number of ints. */
3b7bacac 3510
c906108c 3511static void
9216df95 3512read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3513 int len, int size, enum bfd_endian byte_order)
c906108c 3514{
c378eb4e 3515 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3516 gdb_byte *buf = alloca (len * size);
c5aa993b 3517 int i;
c906108c 3518
9216df95 3519 read_memory (memaddr, buf, len * size);
c906108c 3520 for (i = 0; i < len; i++)
e17a4113 3521 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3522}
3523
3524/* Find and grab a copy of the target _ovly_table
c378eb4e 3525 (and _novlys, which is needed for the table's size). */
3b7bacac 3526
c5aa993b 3527static int
fba45db2 3528simple_read_overlay_table (void)
c906108c 3529{
3b7344d5 3530 struct bound_minimal_symbol novlys_msym;
7c7b6655 3531 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3532 struct gdbarch *gdbarch;
3533 int word_size;
e17a4113 3534 enum bfd_endian byte_order;
c906108c
SS
3535
3536 simple_free_overlay_table ();
9b27852e 3537 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3538 if (! novlys_msym.minsym)
c906108c 3539 {
8a3fe4f8 3540 error (_("Error reading inferior's overlay table: "
0d43edd1 3541 "couldn't find `_novlys' variable\n"
8a3fe4f8 3542 "in inferior. Use `overlay manual' mode."));
0d43edd1 3543 return 0;
c906108c 3544 }
0d43edd1 3545
7c7b6655
TT
3546 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3547 if (! ovly_table_msym.minsym)
0d43edd1 3548 {
8a3fe4f8 3549 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3550 "`_ovly_table' array\n"
8a3fe4f8 3551 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3552 return 0;
3553 }
3554
7c7b6655 3555 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3556 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3557 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3558
77e371c0
TT
3559 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3560 4, byte_order);
0d43edd1
JB
3561 cache_ovly_table
3562 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3563 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3564 read_target_long_array (cache_ovly_table_base,
777ea8f1 3565 (unsigned int *) cache_ovly_table,
e17a4113 3566 cache_novlys * 4, word_size, byte_order);
0d43edd1 3567
c5aa993b 3568 return 1; /* SUCCESS */
c906108c
SS
3569}
3570
5417f6dc 3571/* Function: simple_overlay_update_1
c906108c
SS
3572 A helper function for simple_overlay_update. Assuming a cached copy
3573 of _ovly_table exists, look through it to find an entry whose vma,
3574 lma and size match those of OSECT. Re-read the entry and make sure
3575 it still matches OSECT (else the table may no longer be valid).
3576 Set OSECT's mapped state to match the entry. Return: 1 for
3577 success, 0 for failure. */
3578
3579static int
fba45db2 3580simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3581{
3582 int i, size;
fbd35540
MS
3583 bfd *obfd = osect->objfile->obfd;
3584 asection *bsect = osect->the_bfd_section;
9216df95
UW
3585 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3586 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3588
2c500098 3589 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3590 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3591 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3592 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3593 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3594 {
9216df95
UW
3595 read_target_long_array (cache_ovly_table_base + i * word_size,
3596 (unsigned int *) cache_ovly_table[i],
e17a4113 3597 4, word_size, byte_order);
fbd35540
MS
3598 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3599 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3600 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3601 {
3602 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3603 return 1;
3604 }
c378eb4e 3605 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3606 return 0;
3607 }
3608 return 0;
3609}
3610
3611/* Function: simple_overlay_update
5417f6dc
RM
3612 If OSECT is NULL, then update all sections' mapped state
3613 (after re-reading the entire target _ovly_table).
3614 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3615 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3616 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3617 re-read the entire cache, and go ahead and update all sections. */
3618
1c772458 3619void
fba45db2 3620simple_overlay_update (struct obj_section *osect)
c906108c 3621{
c5aa993b 3622 struct objfile *objfile;
c906108c 3623
c378eb4e 3624 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3625 if (osect)
c378eb4e 3626 /* Have we got a cached copy of the target's overlay table? */
c906108c 3627 if (cache_ovly_table != NULL)
9cc89665
MS
3628 {
3629 /* Does its cached location match what's currently in the
3630 symtab? */
3b7344d5 3631 struct bound_minimal_symbol minsym
9cc89665
MS
3632 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3633
3b7344d5 3634 if (minsym.minsym == NULL)
9cc89665
MS
3635 error (_("Error reading inferior's overlay table: couldn't "
3636 "find `_ovly_table' array\n"
3637 "in inferior. Use `overlay manual' mode."));
3638
77e371c0 3639 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3640 /* Then go ahead and try to look up this single section in
3641 the cache. */
3642 if (simple_overlay_update_1 (osect))
3643 /* Found it! We're done. */
3644 return;
3645 }
c906108c
SS
3646
3647 /* Cached table no good: need to read the entire table anew.
3648 Or else we want all the sections, in which case it's actually
3649 more efficient to read the whole table in one block anyway. */
3650
0d43edd1
JB
3651 if (! simple_read_overlay_table ())
3652 return;
3653
c378eb4e 3654 /* Now may as well update all sections, even if only one was requested. */
c906108c 3655 ALL_OBJSECTIONS (objfile, osect)
714835d5 3656 if (section_is_overlay (osect))
c5aa993b
JM
3657 {
3658 int i, size;
fbd35540
MS
3659 bfd *obfd = osect->objfile->obfd;
3660 asection *bsect = osect->the_bfd_section;
c5aa993b 3661
2c500098 3662 size = bfd_get_section_size (bsect);
c5aa993b 3663 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3664 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3665 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3666 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3667 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3668 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3669 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3670 }
3671 }
c906108c
SS
3672}
3673
086df311
DJ
3674/* Set the output sections and output offsets for section SECTP in
3675 ABFD. The relocation code in BFD will read these offsets, so we
3676 need to be sure they're initialized. We map each section to itself,
3677 with no offset; this means that SECTP->vma will be honored. */
3678
3679static void
3680symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3681{
3682 sectp->output_section = sectp;
3683 sectp->output_offset = 0;
3684}
3685
ac8035ab
TG
3686/* Default implementation for sym_relocate. */
3687
ac8035ab
TG
3688bfd_byte *
3689default_symfile_relocate (struct objfile *objfile, asection *sectp,
3690 bfd_byte *buf)
3691{
3019eac3
DE
3692 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3693 DWO file. */
3694 bfd *abfd = sectp->owner;
ac8035ab
TG
3695
3696 /* We're only interested in sections with relocation
3697 information. */
3698 if ((sectp->flags & SEC_RELOC) == 0)
3699 return NULL;
3700
3701 /* We will handle section offsets properly elsewhere, so relocate as if
3702 all sections begin at 0. */
3703 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3704
3705 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3706}
3707
086df311
DJ
3708/* Relocate the contents of a debug section SECTP in ABFD. The
3709 contents are stored in BUF if it is non-NULL, or returned in a
3710 malloc'd buffer otherwise.
3711
3712 For some platforms and debug info formats, shared libraries contain
3713 relocations against the debug sections (particularly for DWARF-2;
3714 one affected platform is PowerPC GNU/Linux, although it depends on
3715 the version of the linker in use). Also, ELF object files naturally
3716 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3717 the relocations in order to get the locations of symbols correct.
3718 Another example that may require relocation processing, is the
3719 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3720 debug section. */
086df311
DJ
3721
3722bfd_byte *
ac8035ab
TG
3723symfile_relocate_debug_section (struct objfile *objfile,
3724 asection *sectp, bfd_byte *buf)
086df311 3725{
ac8035ab 3726 gdb_assert (objfile->sf->sym_relocate);
086df311 3727
ac8035ab 3728 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3729}
c906108c 3730
31d99776
DJ
3731struct symfile_segment_data *
3732get_symfile_segment_data (bfd *abfd)
3733{
00b5771c 3734 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3735
3736 if (sf == NULL)
3737 return NULL;
3738
3739 return sf->sym_segments (abfd);
3740}
3741
3742void
3743free_symfile_segment_data (struct symfile_segment_data *data)
3744{
3745 xfree (data->segment_bases);
3746 xfree (data->segment_sizes);
3747 xfree (data->segment_info);
3748 xfree (data);
3749}
3750
28c32713
JB
3751/* Given:
3752 - DATA, containing segment addresses from the object file ABFD, and
3753 the mapping from ABFD's sections onto the segments that own them,
3754 and
3755 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3756 segment addresses reported by the target,
3757 store the appropriate offsets for each section in OFFSETS.
3758
3759 If there are fewer entries in SEGMENT_BASES than there are segments
3760 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3761
8d385431
DJ
3762 If there are more entries, then ignore the extra. The target may
3763 not be able to distinguish between an empty data segment and a
3764 missing data segment; a missing text segment is less plausible. */
3b7bacac 3765
31d99776 3766int
3189cb12
DE
3767symfile_map_offsets_to_segments (bfd *abfd,
3768 const struct symfile_segment_data *data,
31d99776
DJ
3769 struct section_offsets *offsets,
3770 int num_segment_bases,
3771 const CORE_ADDR *segment_bases)
3772{
3773 int i;
3774 asection *sect;
3775
28c32713
JB
3776 /* It doesn't make sense to call this function unless you have some
3777 segment base addresses. */
202b96c1 3778 gdb_assert (num_segment_bases > 0);
28c32713 3779
31d99776
DJ
3780 /* If we do not have segment mappings for the object file, we
3781 can not relocate it by segments. */
3782 gdb_assert (data != NULL);
3783 gdb_assert (data->num_segments > 0);
3784
31d99776
DJ
3785 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3786 {
31d99776
DJ
3787 int which = data->segment_info[i];
3788
28c32713
JB
3789 gdb_assert (0 <= which && which <= data->num_segments);
3790
3791 /* Don't bother computing offsets for sections that aren't
3792 loaded as part of any segment. */
3793 if (! which)
3794 continue;
3795
3796 /* Use the last SEGMENT_BASES entry as the address of any extra
3797 segments mentioned in DATA->segment_info. */
31d99776 3798 if (which > num_segment_bases)
28c32713 3799 which = num_segment_bases;
31d99776 3800
28c32713
JB
3801 offsets->offsets[i] = (segment_bases[which - 1]
3802 - data->segment_bases[which - 1]);
31d99776
DJ
3803 }
3804
3805 return 1;
3806}
3807
3808static void
3809symfile_find_segment_sections (struct objfile *objfile)
3810{
3811 bfd *abfd = objfile->obfd;
3812 int i;
3813 asection *sect;
3814 struct symfile_segment_data *data;
3815
3816 data = get_symfile_segment_data (objfile->obfd);
3817 if (data == NULL)
3818 return;
3819
3820 if (data->num_segments != 1 && data->num_segments != 2)
3821 {
3822 free_symfile_segment_data (data);
3823 return;
3824 }
3825
3826 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3827 {
31d99776
DJ
3828 int which = data->segment_info[i];
3829
3830 if (which == 1)
3831 {
3832 if (objfile->sect_index_text == -1)
3833 objfile->sect_index_text = sect->index;
3834
3835 if (objfile->sect_index_rodata == -1)
3836 objfile->sect_index_rodata = sect->index;
3837 }
3838 else if (which == 2)
3839 {
3840 if (objfile->sect_index_data == -1)
3841 objfile->sect_index_data = sect->index;
3842
3843 if (objfile->sect_index_bss == -1)
3844 objfile->sect_index_bss = sect->index;
3845 }
3846 }
3847
3848 free_symfile_segment_data (data);
3849}
3850
76ad5e1e
NB
3851/* Listen for free_objfile events. */
3852
3853static void
3854symfile_free_objfile (struct objfile *objfile)
3855{
3856 /* Remove the target sections of user-added objfiles. */
3857 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3858 remove_target_sections ((void *) objfile);
3859}
3860
540c2971
DE
3861/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3862 Expand all symtabs that match the specified criteria.
3863 See quick_symbol_functions.expand_symtabs_matching for details. */
3864
3865void
bb4142cf
DE
3866expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3867 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3868 enum search_domain kind,
3869 void *data)
540c2971
DE
3870{
3871 struct objfile *objfile;
3872
3873 ALL_OBJFILES (objfile)
3874 {
3875 if (objfile->sf)
bb4142cf
DE
3876 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3877 symbol_matcher, kind,
3878 data);
540c2971
DE
3879 }
3880}
3881
3882/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3883 Map function FUN over every file.
3884 See quick_symbol_functions.map_symbol_filenames for details. */
3885
3886void
bb4142cf
DE
3887map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3888 int need_fullname)
540c2971
DE
3889{
3890 struct objfile *objfile;
3891
3892 ALL_OBJFILES (objfile)
3893 {
3894 if (objfile->sf)
3895 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3896 need_fullname);
3897 }
3898}
3899
c906108c 3900void
fba45db2 3901_initialize_symfile (void)
c906108c
SS
3902{
3903 struct cmd_list_element *c;
c5aa993b 3904
76ad5e1e
NB
3905 observer_attach_free_objfile (symfile_free_objfile);
3906
1a966eab
AC
3907 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3908Load symbol table from executable file FILE.\n\
c906108c 3909The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3910to execute."), &cmdlist);
5ba2abeb 3911 set_cmd_completer (c, filename_completer);
c906108c 3912
1a966eab 3913 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3914Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3915Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3916 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3917The optional arguments are section-name section-address pairs and\n\
3918should be specified if the data and bss segments are not contiguous\n\
1a966eab 3919with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3920 &cmdlist);
5ba2abeb 3921 set_cmd_completer (c, filename_completer);
c906108c 3922
63644780
NB
3923 c = add_cmd ("remove-symbol-file", class_files,
3924 remove_symbol_file_command, _("\
3925Remove a symbol file added via the add-symbol-file command.\n\
3926Usage: remove-symbol-file FILENAME\n\
3927 remove-symbol-file -a ADDRESS\n\
3928The file to remove can be identified by its filename or by an address\n\
3929that lies within the boundaries of this symbol file in memory."),
3930 &cmdlist);
3931
1a966eab
AC
3932 c = add_cmd ("load", class_files, load_command, _("\
3933Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3934for access from GDB.\n\
3935A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3936 set_cmd_completer (c, filename_completer);
c906108c 3937
c5aa993b 3938 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3939 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3940 "overlay ", 0, &cmdlist);
3941
3942 add_com_alias ("ovly", "overlay", class_alias, 1);
3943 add_com_alias ("ov", "overlay", class_alias, 1);
3944
c5aa993b 3945 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3946 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3947
c5aa993b 3948 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3949 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3950
c5aa993b 3951 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3952 _("List mappings of overlay sections."), &overlaylist);
c906108c 3953
c5aa993b 3954 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3955 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3956 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3957 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3958 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3959 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3960 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3961 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3962
3963 /* Filename extension to source language lookup table: */
3964 init_filename_language_table ();
26c41df3
AC
3965 add_setshow_string_noescape_cmd ("extension-language", class_files,
3966 &ext_args, _("\
3967Set mapping between filename extension and source language."), _("\
3968Show mapping between filename extension and source language."), _("\
3969Usage: set extension-language .foo bar"),
3970 set_ext_lang_command,
920d2a44 3971 show_ext_args,
26c41df3 3972 &setlist, &showlist);
c906108c 3973
c5aa993b 3974 add_info ("extensions", info_ext_lang_command,
1bedd215 3975 _("All filename extensions associated with a source language."));
917317f4 3976
525226b5
AC
3977 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3978 &debug_file_directory, _("\
24ddea62
JK
3979Set the directories where separate debug symbols are searched for."), _("\
3980Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3981Separate debug symbols are first searched for in the same\n\
3982directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3983and lastly at the path of the directory of the binary with\n\
24ddea62 3984each global debug-file-directory component prepended."),
525226b5 3985 NULL,
920d2a44 3986 show_debug_file_directory,
525226b5 3987 &setlist, &showlist);
c906108c 3988}
This page took 2.004801 seconds and 4 git commands to generate.