Introduce gdb_argv, a class wrapper for buildargv
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c 63#include <ctype.h>
dcb07cfa 64#include <chrono>
c906108c 65
ccefe4c4 66#include "psymtab.h"
c906108c 67
3e43a32a
MS
68int (*deprecated_ui_load_progress_hook) (const char *section,
69 unsigned long num);
9a4105ab 70void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
c2d11a7d 74 unsigned long total_size);
769d7dc4
AC
75void (*deprecated_pre_add_symbol_hook) (const char *);
76void (*deprecated_post_add_symbol_hook) (void);
c906108c 77
74b7792f
AC
78static void clear_symtab_users_cleanup (void *ignore);
79
c378eb4e
MS
80/* Global variables owned by this file. */
81int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 82
c378eb4e 83/* Functions this file defines. */
c906108c 84
a14ed312 85static void load_command (char *, int);
c906108c 86
ecf45d2c 87static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 88 objfile_flags flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void overlay_auto_command (char *, int);
c906108c 97
a14ed312 98static void overlay_manual_command (char *, int);
c906108c 99
a14ed312 100static void overlay_off_command (char *, int);
c906108c 101
a14ed312 102static void overlay_load_command (char *, int);
c906108c 103
a14ed312 104static void overlay_command (char *, int);
c906108c 105
a14ed312 106static void simple_free_overlay_table (void);
c906108c 107
e17a4113
UW
108static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
109 enum bfd_endian);
c906108c 110
a14ed312 111static int simple_read_overlay_table (void);
c906108c 112
a14ed312 113static int simple_overlay_update_1 (struct obj_section *);
c906108c 114
a14ed312 115static void info_ext_lang_command (char *args, int from_tty);
392a587b 116
31d99776
DJ
117static void symfile_find_segment_sections (struct objfile *objfile);
118
a14ed312 119void _initialize_symfile (void);
c906108c
SS
120
121/* List of all available sym_fns. On gdb startup, each object file reader
122 calls add_symtab_fns() to register information on each format it is
c378eb4e 123 prepared to read. */
c906108c 124
c256e171
DE
125typedef struct
126{
127 /* BFD flavour that we handle. */
128 enum bfd_flavour sym_flavour;
129
130 /* The "vtable" of symbol functions. */
131 const struct sym_fns *sym_fns;
132} registered_sym_fns;
00b5771c 133
c256e171
DE
134DEF_VEC_O (registered_sym_fns);
135
136static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 137
770e7fc7
DE
138/* Values for "set print symbol-loading". */
139
140const char print_symbol_loading_off[] = "off";
141const char print_symbol_loading_brief[] = "brief";
142const char print_symbol_loading_full[] = "full";
143static const char *print_symbol_loading_enums[] =
144{
145 print_symbol_loading_off,
146 print_symbol_loading_brief,
147 print_symbol_loading_full,
148 NULL
149};
150static const char *print_symbol_loading = print_symbol_loading_full;
151
b7209cb4
FF
152/* If non-zero, shared library symbols will be added automatically
153 when the inferior is created, new libraries are loaded, or when
154 attaching to the inferior. This is almost always what users will
155 want to have happen; but for very large programs, the startup time
156 will be excessive, and so if this is a problem, the user can clear
157 this flag and then add the shared library symbols as needed. Note
158 that there is a potential for confusion, since if the shared
c906108c 159 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 160 report all the functions that are actually present. */
c906108c
SS
161
162int auto_solib_add = 1;
c906108c 163\f
c5aa993b 164
770e7fc7
DE
165/* Return non-zero if symbol-loading messages should be printed.
166 FROM_TTY is the standard from_tty argument to gdb commands.
167 If EXEC is non-zero the messages are for the executable.
168 Otherwise, messages are for shared libraries.
169 If FULL is non-zero then the caller is printing a detailed message.
170 E.g., the message includes the shared library name.
171 Otherwise, the caller is printing a brief "summary" message. */
172
173int
174print_symbol_loading_p (int from_tty, int exec, int full)
175{
176 if (!from_tty && !info_verbose)
177 return 0;
178
179 if (exec)
180 {
181 /* We don't check FULL for executables, there are few such
182 messages, therefore brief == full. */
183 return print_symbol_loading != print_symbol_loading_off;
184 }
185 if (full)
186 return print_symbol_loading == print_symbol_loading_full;
187 return print_symbol_loading == print_symbol_loading_brief;
188}
189
0d14a781 190/* True if we are reading a symbol table. */
c906108c
SS
191
192int currently_reading_symtab = 0;
193
ccefe4c4
TT
194/* Increment currently_reading_symtab and return a cleanup that can be
195 used to decrement it. */
3b7bacac 196
c83dd867 197scoped_restore_tmpl<int>
ccefe4c4 198increment_reading_symtab (void)
c906108c 199{
c83dd867
TT
200 gdb_assert (currently_reading_symtab >= 0);
201 return make_scoped_restore (&currently_reading_symtab,
202 currently_reading_symtab + 1);
c906108c
SS
203}
204
5417f6dc
RM
205/* Remember the lowest-addressed loadable section we've seen.
206 This function is called via bfd_map_over_sections.
c906108c
SS
207
208 In case of equal vmas, the section with the largest size becomes the
209 lowest-addressed loadable section.
210
211 If the vmas and sizes are equal, the last section is considered the
212 lowest-addressed loadable section. */
213
214void
4efb68b1 215find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 216{
c5aa993b 217 asection **lowest = (asection **) obj;
c906108c 218
eb73e134 219 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
220 return;
221 if (!*lowest)
222 *lowest = sect; /* First loadable section */
223 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
224 *lowest = sect; /* A lower loadable section */
225 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
226 && (bfd_section_size (abfd, (*lowest))
227 <= bfd_section_size (abfd, sect)))
228 *lowest = sect;
229}
230
d76488d8
TT
231/* Create a new section_addr_info, with room for NUM_SECTIONS. The
232 new object's 'num_sections' field is set to 0; it must be updated
233 by the caller. */
a39a16c4
MM
234
235struct section_addr_info *
236alloc_section_addr_info (size_t num_sections)
237{
238 struct section_addr_info *sap;
239 size_t size;
240
241 size = (sizeof (struct section_addr_info)
242 + sizeof (struct other_sections) * (num_sections - 1));
243 sap = (struct section_addr_info *) xmalloc (size);
244 memset (sap, 0, size);
a39a16c4
MM
245
246 return sap;
247}
62557bbc
KB
248
249/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 250 an existing section table. */
62557bbc
KB
251
252extern struct section_addr_info *
0542c86d
PA
253build_section_addr_info_from_section_table (const struct target_section *start,
254 const struct target_section *end)
62557bbc
KB
255{
256 struct section_addr_info *sap;
0542c86d 257 const struct target_section *stp;
62557bbc
KB
258 int oidx;
259
a39a16c4 260 sap = alloc_section_addr_info (end - start);
62557bbc
KB
261
262 for (stp = start, oidx = 0; stp != end; stp++)
263 {
2b2848e2
DE
264 struct bfd_section *asect = stp->the_bfd_section;
265 bfd *abfd = asect->owner;
266
267 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 268 && oidx < end - start)
62557bbc
KB
269 {
270 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
271 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
272 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
273 oidx++;
274 }
275 }
276
d76488d8
TT
277 sap->num_sections = oidx;
278
62557bbc
KB
279 return sap;
280}
281
82ccf5a5 282/* Create a section_addr_info from section offsets in ABFD. */
089b4803 283
82ccf5a5
JK
284static struct section_addr_info *
285build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
286{
287 struct section_addr_info *sap;
288 int i;
289 struct bfd_section *sec;
290
82ccf5a5
JK
291 sap = alloc_section_addr_info (bfd_count_sections (abfd));
292 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
293 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 294 {
82ccf5a5
JK
295 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
296 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 297 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
298 i++;
299 }
d76488d8
TT
300
301 sap->num_sections = i;
302
089b4803
TG
303 return sap;
304}
305
82ccf5a5
JK
306/* Create a section_addr_info from section offsets in OBJFILE. */
307
308struct section_addr_info *
309build_section_addr_info_from_objfile (const struct objfile *objfile)
310{
311 struct section_addr_info *sap;
312 int i;
313
314 /* Before reread_symbols gets rewritten it is not safe to call:
315 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
316 */
317 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 318 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
319 {
320 int sectindex = sap->other[i].sectindex;
321
322 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
323 }
324 return sap;
325}
62557bbc 326
c378eb4e 327/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
328
329extern void
330free_section_addr_info (struct section_addr_info *sap)
331{
332 int idx;
333
a39a16c4 334 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 335 xfree (sap->other[idx].name);
b8c9b27d 336 xfree (sap);
62557bbc
KB
337}
338
e8289572 339/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 340
e8289572
JB
341static void
342init_objfile_sect_indices (struct objfile *objfile)
c906108c 343{
e8289572 344 asection *sect;
c906108c 345 int i;
5417f6dc 346
b8fbeb18 347 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 348 if (sect)
b8fbeb18
EZ
349 objfile->sect_index_text = sect->index;
350
351 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 352 if (sect)
b8fbeb18
EZ
353 objfile->sect_index_data = sect->index;
354
355 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 356 if (sect)
b8fbeb18
EZ
357 objfile->sect_index_bss = sect->index;
358
359 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 360 if (sect)
b8fbeb18
EZ
361 objfile->sect_index_rodata = sect->index;
362
bbcd32ad
FF
363 /* This is where things get really weird... We MUST have valid
364 indices for the various sect_index_* members or gdb will abort.
365 So if for example, there is no ".text" section, we have to
31d99776
DJ
366 accomodate that. First, check for a file with the standard
367 one or two segments. */
368
369 symfile_find_segment_sections (objfile);
370
371 /* Except when explicitly adding symbol files at some address,
372 section_offsets contains nothing but zeros, so it doesn't matter
373 which slot in section_offsets the individual sect_index_* members
374 index into. So if they are all zero, it is safe to just point
375 all the currently uninitialized indices to the first slot. But
376 beware: if this is the main executable, it may be relocated
377 later, e.g. by the remote qOffsets packet, and then this will
378 be wrong! That's why we try segments first. */
bbcd32ad
FF
379
380 for (i = 0; i < objfile->num_sections; i++)
381 {
382 if (ANOFFSET (objfile->section_offsets, i) != 0)
383 {
384 break;
385 }
386 }
387 if (i == objfile->num_sections)
388 {
389 if (objfile->sect_index_text == -1)
390 objfile->sect_index_text = 0;
391 if (objfile->sect_index_data == -1)
392 objfile->sect_index_data = 0;
393 if (objfile->sect_index_bss == -1)
394 objfile->sect_index_bss = 0;
395 if (objfile->sect_index_rodata == -1)
396 objfile->sect_index_rodata = 0;
397 }
b8fbeb18 398}
c906108c 399
c1bd25fd
DJ
400/* The arguments to place_section. */
401
402struct place_section_arg
403{
404 struct section_offsets *offsets;
405 CORE_ADDR lowest;
406};
407
408/* Find a unique offset to use for loadable section SECT if
409 the user did not provide an offset. */
410
2c0b251b 411static void
c1bd25fd
DJ
412place_section (bfd *abfd, asection *sect, void *obj)
413{
19ba03f4 414 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
415 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
416 int done;
3bd72c6f 417 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 418
2711e456
DJ
419 /* We are only interested in allocated sections. */
420 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
421 return;
422
423 /* If the user specified an offset, honor it. */
65cf3563 424 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
425 return;
426
427 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
428 start_addr = (arg->lowest + align - 1) & -align;
429
c1bd25fd
DJ
430 do {
431 asection *cur_sec;
c1bd25fd 432
c1bd25fd
DJ
433 done = 1;
434
435 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
436 {
437 int indx = cur_sec->index;
c1bd25fd
DJ
438
439 /* We don't need to compare against ourself. */
440 if (cur_sec == sect)
441 continue;
442
2711e456
DJ
443 /* We can only conflict with allocated sections. */
444 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
445 continue;
446
447 /* If the section offset is 0, either the section has not been placed
448 yet, or it was the lowest section placed (in which case LOWEST
449 will be past its end). */
450 if (offsets[indx] == 0)
451 continue;
452
453 /* If this section would overlap us, then we must move up. */
454 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
455 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
456 {
457 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
458 start_addr = (start_addr + align - 1) & -align;
459 done = 0;
3bd72c6f 460 break;
c1bd25fd
DJ
461 }
462
463 /* Otherwise, we appear to be OK. So far. */
464 }
465 }
466 while (!done);
467
65cf3563 468 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 469 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 470}
e8289572 471
75242ef4
JK
472/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
473 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
474 entries. */
e8289572
JB
475
476void
75242ef4
JK
477relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
478 int num_sections,
3189cb12 479 const struct section_addr_info *addrs)
e8289572
JB
480{
481 int i;
482
75242ef4 483 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 484
c378eb4e 485 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 486 for (i = 0; i < addrs->num_sections; i++)
e8289572 487 {
3189cb12 488 const struct other_sections *osp;
e8289572 489
75242ef4 490 osp = &addrs->other[i];
5488dafb 491 if (osp->sectindex == -1)
e8289572
JB
492 continue;
493
c378eb4e 494 /* Record all sections in offsets. */
e8289572 495 /* The section_offsets in the objfile are here filled in using
c378eb4e 496 the BFD index. */
75242ef4
JK
497 section_offsets->offsets[osp->sectindex] = osp->addr;
498 }
499}
500
1276c759
JK
501/* Transform section name S for a name comparison. prelink can split section
502 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
503 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
504 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
505 (`.sbss') section has invalid (increased) virtual address. */
506
507static const char *
508addr_section_name (const char *s)
509{
510 if (strcmp (s, ".dynbss") == 0)
511 return ".bss";
512 if (strcmp (s, ".sdynbss") == 0)
513 return ".sbss";
514
515 return s;
516}
517
82ccf5a5
JK
518/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
519 their (name, sectindex) pair. sectindex makes the sort by name stable. */
520
521static int
522addrs_section_compar (const void *ap, const void *bp)
523{
524 const struct other_sections *a = *((struct other_sections **) ap);
525 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 526 int retval;
82ccf5a5 527
1276c759 528 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
529 if (retval)
530 return retval;
531
5488dafb 532 return a->sectindex - b->sectindex;
82ccf5a5
JK
533}
534
535/* Provide sorted array of pointers to sections of ADDRS. The array is
536 terminated by NULL. Caller is responsible to call xfree for it. */
537
538static struct other_sections **
539addrs_section_sort (struct section_addr_info *addrs)
540{
541 struct other_sections **array;
542 int i;
543
544 /* `+ 1' for the NULL terminator. */
8d749320 545 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 546 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
547 array[i] = &addrs->other[i];
548 array[i] = NULL;
549
550 qsort (array, i, sizeof (*array), addrs_section_compar);
551
552 return array;
553}
554
75242ef4 555/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
556 also SECTINDEXes specific to ABFD there. This function can be used to
557 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
558
559void
560addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
561{
562 asection *lower_sect;
75242ef4
JK
563 CORE_ADDR lower_offset;
564 int i;
82ccf5a5
JK
565 struct cleanup *my_cleanup;
566 struct section_addr_info *abfd_addrs;
567 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
568 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
569
570 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
571 continguous sections. */
572 lower_sect = NULL;
573 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
574 if (lower_sect == NULL)
575 {
576 warning (_("no loadable sections found in added symbol-file %s"),
577 bfd_get_filename (abfd));
578 lower_offset = 0;
e8289572 579 }
75242ef4
JK
580 else
581 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
582
82ccf5a5
JK
583 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
584 in ABFD. Section names are not unique - there can be multiple sections of
585 the same name. Also the sections of the same name do not have to be
586 adjacent to each other. Some sections may be present only in one of the
587 files. Even sections present in both files do not have to be in the same
588 order.
589
590 Use stable sort by name for the sections in both files. Then linearly
591 scan both lists matching as most of the entries as possible. */
592
593 addrs_sorted = addrs_section_sort (addrs);
594 my_cleanup = make_cleanup (xfree, addrs_sorted);
595
596 abfd_addrs = build_section_addr_info_from_bfd (abfd);
597 make_cleanup_free_section_addr_info (abfd_addrs);
598 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
599 make_cleanup (xfree, abfd_addrs_sorted);
600
c378eb4e
MS
601 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
602 ABFD_ADDRS_SORTED. */
82ccf5a5 603
8d749320 604 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
605 make_cleanup (xfree, addrs_to_abfd_addrs);
606
607 while (*addrs_sorted)
608 {
1276c759 609 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
610
611 while (*abfd_addrs_sorted
1276c759
JK
612 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
613 sect_name) < 0)
82ccf5a5
JK
614 abfd_addrs_sorted++;
615
616 if (*abfd_addrs_sorted
1276c759
JK
617 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
618 sect_name) == 0)
82ccf5a5
JK
619 {
620 int index_in_addrs;
621
622 /* Make the found item directly addressable from ADDRS. */
623 index_in_addrs = *addrs_sorted - addrs->other;
624 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
625 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
626
627 /* Never use the same ABFD entry twice. */
628 abfd_addrs_sorted++;
629 }
630
631 addrs_sorted++;
632 }
633
75242ef4
JK
634 /* Calculate offsets for the loadable sections.
635 FIXME! Sections must be in order of increasing loadable section
636 so that contiguous sections can use the lower-offset!!!
637
638 Adjust offsets if the segments are not contiguous.
639 If the section is contiguous, its offset should be set to
640 the offset of the highest loadable section lower than it
641 (the loadable section directly below it in memory).
642 this_offset = lower_offset = lower_addr - lower_orig_addr */
643
d76488d8 644 for (i = 0; i < addrs->num_sections; i++)
75242ef4 645 {
82ccf5a5 646 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
647
648 if (sect)
75242ef4 649 {
c378eb4e 650 /* This is the index used by BFD. */
82ccf5a5 651 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
652
653 if (addrs->other[i].addr != 0)
75242ef4 654 {
82ccf5a5 655 addrs->other[i].addr -= sect->addr;
75242ef4 656 lower_offset = addrs->other[i].addr;
75242ef4
JK
657 }
658 else
672d9c23 659 addrs->other[i].addr = lower_offset;
75242ef4
JK
660 }
661 else
672d9c23 662 {
1276c759
JK
663 /* addr_section_name transformation is not used for SECT_NAME. */
664 const char *sect_name = addrs->other[i].name;
665
b0fcb67f
JK
666 /* This section does not exist in ABFD, which is normally
667 unexpected and we want to issue a warning.
668
4d9743af
JK
669 However, the ELF prelinker does create a few sections which are
670 marked in the main executable as loadable (they are loaded in
671 memory from the DYNAMIC segment) and yet are not present in
672 separate debug info files. This is fine, and should not cause
673 a warning. Shared libraries contain just the section
674 ".gnu.liblist" but it is not marked as loadable there. There is
675 no other way to identify them than by their name as the sections
1276c759
JK
676 created by prelink have no special flags.
677
678 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
679
680 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 681 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
682 || (strcmp (sect_name, ".bss") == 0
683 && i > 0
684 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
685 && addrs_to_abfd_addrs[i - 1] != NULL)
686 || (strcmp (sect_name, ".sbss") == 0
687 && i > 0
688 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
689 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
690 warning (_("section %s not found in %s"), sect_name,
691 bfd_get_filename (abfd));
692
672d9c23 693 addrs->other[i].addr = 0;
5488dafb 694 addrs->other[i].sectindex = -1;
672d9c23 695 }
75242ef4 696 }
82ccf5a5
JK
697
698 do_cleanups (my_cleanup);
75242ef4
JK
699}
700
701/* Parse the user's idea of an offset for dynamic linking, into our idea
702 of how to represent it for fast symbol reading. This is the default
703 version of the sym_fns.sym_offsets function for symbol readers that
704 don't need to do anything special. It allocates a section_offsets table
705 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
706
707void
708default_symfile_offsets (struct objfile *objfile,
3189cb12 709 const struct section_addr_info *addrs)
75242ef4 710{
d445b2f6 711 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
712 objfile->section_offsets = (struct section_offsets *)
713 obstack_alloc (&objfile->objfile_obstack,
714 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
715 relative_addr_info_to_section_offsets (objfile->section_offsets,
716 objfile->num_sections, addrs);
e8289572 717
c1bd25fd
DJ
718 /* For relocatable files, all loadable sections will start at zero.
719 The zero is meaningless, so try to pick arbitrary addresses such
720 that no loadable sections overlap. This algorithm is quadratic,
721 but the number of sections in a single object file is generally
722 small. */
723 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
724 {
725 struct place_section_arg arg;
2711e456
DJ
726 bfd *abfd = objfile->obfd;
727 asection *cur_sec;
2711e456
DJ
728
729 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
730 /* We do not expect this to happen; just skip this step if the
731 relocatable file has a section with an assigned VMA. */
732 if (bfd_section_vma (abfd, cur_sec) != 0)
733 break;
734
735 if (cur_sec == NULL)
736 {
737 CORE_ADDR *offsets = objfile->section_offsets->offsets;
738
739 /* Pick non-overlapping offsets for sections the user did not
740 place explicitly. */
741 arg.offsets = objfile->section_offsets;
742 arg.lowest = 0;
743 bfd_map_over_sections (objfile->obfd, place_section, &arg);
744
745 /* Correctly filling in the section offsets is not quite
746 enough. Relocatable files have two properties that
747 (most) shared objects do not:
748
749 - Their debug information will contain relocations. Some
750 shared libraries do also, but many do not, so this can not
751 be assumed.
752
753 - If there are multiple code sections they will be loaded
754 at different relative addresses in memory than they are
755 in the objfile, since all sections in the file will start
756 at address zero.
757
758 Because GDB has very limited ability to map from an
759 address in debug info to the correct code section,
760 it relies on adding SECT_OFF_TEXT to things which might be
761 code. If we clear all the section offsets, and set the
762 section VMAs instead, then symfile_relocate_debug_section
763 will return meaningful debug information pointing at the
764 correct sections.
765
766 GDB has too many different data structures for section
767 addresses - a bfd, objfile, and so_list all have section
768 tables, as does exec_ops. Some of these could probably
769 be eliminated. */
770
771 for (cur_sec = abfd->sections; cur_sec != NULL;
772 cur_sec = cur_sec->next)
773 {
774 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
775 continue;
776
777 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
778 exec_set_section_address (bfd_get_filename (abfd),
779 cur_sec->index,
30510692 780 offsets[cur_sec->index]);
2711e456
DJ
781 offsets[cur_sec->index] = 0;
782 }
783 }
c1bd25fd
DJ
784 }
785
e8289572 786 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 787 .rodata sections. */
e8289572
JB
788 init_objfile_sect_indices (objfile);
789}
790
31d99776
DJ
791/* Divide the file into segments, which are individual relocatable units.
792 This is the default version of the sym_fns.sym_segments function for
793 symbol readers that do not have an explicit representation of segments.
794 It assumes that object files do not have segments, and fully linked
795 files have a single segment. */
796
797struct symfile_segment_data *
798default_symfile_segments (bfd *abfd)
799{
800 int num_sections, i;
801 asection *sect;
802 struct symfile_segment_data *data;
803 CORE_ADDR low, high;
804
805 /* Relocatable files contain enough information to position each
806 loadable section independently; they should not be relocated
807 in segments. */
808 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
809 return NULL;
810
811 /* Make sure there is at least one loadable section in the file. */
812 for (sect = abfd->sections; sect != NULL; sect = sect->next)
813 {
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 break;
818 }
819 if (sect == NULL)
820 return NULL;
821
822 low = bfd_get_section_vma (abfd, sect);
823 high = low + bfd_get_section_size (sect);
824
41bf6aca 825 data = XCNEW (struct symfile_segment_data);
31d99776 826 data->num_segments = 1;
fc270c35
TT
827 data->segment_bases = XCNEW (CORE_ADDR);
828 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
829
830 num_sections = bfd_count_sections (abfd);
fc270c35 831 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
832
833 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
834 {
835 CORE_ADDR vma;
836
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 vma = bfd_get_section_vma (abfd, sect);
841 if (vma < low)
842 low = vma;
843 if (vma + bfd_get_section_size (sect) > high)
844 high = vma + bfd_get_section_size (sect);
845
846 data->segment_info[i] = 1;
847 }
848
849 data->segment_bases[0] = low;
850 data->segment_sizes[0] = high - low;
851
852 return data;
853}
854
608e2dbb
TT
855/* This is a convenience function to call sym_read for OBJFILE and
856 possibly force the partial symbols to be read. */
857
858static void
b15cc25c 859read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
860{
861 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 862 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
863
864 /* find_separate_debug_file_in_section should be called only if there is
865 single binary with no existing separate debug info file. */
866 if (!objfile_has_partial_symbols (objfile)
867 && objfile->separate_debug_objfile == NULL
868 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 869 {
192b62ce 870 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
871
872 if (abfd != NULL)
24ba069a
JK
873 {
874 /* find_separate_debug_file_in_section uses the same filename for the
875 virtual section-as-bfd like the bfd filename containing the
876 section. Therefore use also non-canonical name form for the same
877 file containing the section. */
192b62ce
TT
878 symbol_file_add_separate (abfd.get (), objfile->original_name,
879 add_flags, objfile);
24ba069a 880 }
608e2dbb
TT
881 }
882 if ((add_flags & SYMFILE_NO_READ) == 0)
883 require_partial_symbols (objfile, 0);
884}
885
3d6e24f0
JB
886/* Initialize entry point information for this objfile. */
887
888static void
889init_entry_point_info (struct objfile *objfile)
890{
6ef55de7
TT
891 struct entry_info *ei = &objfile->per_bfd->ei;
892
893 if (ei->initialized)
894 return;
895 ei->initialized = 1;
896
3d6e24f0
JB
897 /* Save startup file's range of PC addresses to help blockframe.c
898 decide where the bottom of the stack is. */
899
900 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
901 {
902 /* Executable file -- record its entry point so we'll recognize
903 the startup file because it contains the entry point. */
6ef55de7
TT
904 ei->entry_point = bfd_get_start_address (objfile->obfd);
905 ei->entry_point_p = 1;
3d6e24f0
JB
906 }
907 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
908 && bfd_get_start_address (objfile->obfd) != 0)
909 {
910 /* Some shared libraries may have entry points set and be
911 runnable. There's no clear way to indicate this, so just check
912 for values other than zero. */
6ef55de7
TT
913 ei->entry_point = bfd_get_start_address (objfile->obfd);
914 ei->entry_point_p = 1;
3d6e24f0
JB
915 }
916 else
917 {
918 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 919 ei->entry_point_p = 0;
3d6e24f0
JB
920 }
921
6ef55de7 922 if (ei->entry_point_p)
3d6e24f0 923 {
53eddfa6 924 struct obj_section *osect;
6ef55de7 925 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 926 int found;
3d6e24f0
JB
927
928 /* Make certain that the address points at real code, and not a
929 function descriptor. */
930 entry_point
df6d5441 931 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
932 entry_point,
933 &current_target);
934
935 /* Remove any ISA markers, so that this matches entries in the
936 symbol table. */
6ef55de7 937 ei->entry_point
df6d5441 938 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
939
940 found = 0;
941 ALL_OBJFILE_OSECTIONS (objfile, osect)
942 {
943 struct bfd_section *sect = osect->the_bfd_section;
944
945 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
946 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
947 + bfd_get_section_size (sect)))
948 {
6ef55de7 949 ei->the_bfd_section_index
53eddfa6
TT
950 = gdb_bfd_section_index (objfile->obfd, sect);
951 found = 1;
952 break;
953 }
954 }
955
956 if (!found)
6ef55de7 957 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
958 }
959}
960
c906108c
SS
961/* Process a symbol file, as either the main file or as a dynamically
962 loaded file.
963
36e4d068
JB
964 This function does not set the OBJFILE's entry-point info.
965
96baa820
JM
966 OBJFILE is where the symbols are to be read from.
967
7e8580c1
JB
968 ADDRS is the list of section load addresses. If the user has given
969 an 'add-symbol-file' command, then this is the list of offsets and
970 addresses he or she provided as arguments to the command; or, if
971 we're handling a shared library, these are the actual addresses the
972 sections are loaded at, according to the inferior's dynamic linker
973 (as gleaned by GDB's shared library code). We convert each address
974 into an offset from the section VMA's as it appears in the object
975 file, and then call the file's sym_offsets function to convert this
976 into a format-specific offset table --- a `struct section_offsets'.
96baa820 977
7eedccfa
PP
978 ADD_FLAGS encodes verbosity level, whether this is main symbol or
979 an extra symbol file such as dynamically loaded code, and wether
980 breakpoint reset should be deferred. */
c906108c 981
36e4d068
JB
982static void
983syms_from_objfile_1 (struct objfile *objfile,
984 struct section_addr_info *addrs,
b15cc25c 985 symfile_add_flags add_flags)
c906108c 986{
a39a16c4 987 struct section_addr_info *local_addr = NULL;
c906108c 988 struct cleanup *old_chain;
7eedccfa 989 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 990
8fb8eb5c 991 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 992
75245b24 993 if (objfile->sf == NULL)
36e4d068
JB
994 {
995 /* No symbols to load, but we still need to make sure
996 that the section_offsets table is allocated. */
d445b2f6 997 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 998 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
999
1000 objfile->num_sections = num_sections;
1001 objfile->section_offsets
224c3ddb
SM
1002 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1003 size);
36e4d068
JB
1004 memset (objfile->section_offsets, 0, size);
1005 return;
1006 }
75245b24 1007
c906108c
SS
1008 /* Make sure that partially constructed symbol tables will be cleaned up
1009 if an error occurs during symbol reading. */
74b7792f 1010 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1011
6bf667bb
DE
1012 /* If ADDRS is NULL, put together a dummy address list.
1013 We now establish the convention that an addr of zero means
c378eb4e 1014 no load address was specified. */
6bf667bb 1015 if (! addrs)
a39a16c4 1016 {
d445b2f6 1017 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1018 make_cleanup (xfree, local_addr);
1019 addrs = local_addr;
1020 }
1021
c5aa993b 1022 if (mainline)
c906108c
SS
1023 {
1024 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1025 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1026 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1027
1028 /* Since no error yet, throw away the old symbol table. */
1029
1030 if (symfile_objfile != NULL)
1031 {
1032 free_objfile (symfile_objfile);
adb7f338 1033 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1034 }
1035
1036 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1037 If the user wants to get rid of them, they should do "symbol-file"
1038 without arguments first. Not sure this is the best behavior
1039 (PR 2207). */
c906108c 1040
c5aa993b 1041 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1042 }
1043
1044 /* Convert addr into an offset rather than an absolute address.
1045 We find the lowest address of a loaded segment in the objfile,
53a5351d 1046 and assume that <addr> is where that got loaded.
c906108c 1047
53a5351d
JM
1048 We no longer warn if the lowest section is not a text segment (as
1049 happens for the PA64 port. */
6bf667bb 1050 if (addrs->num_sections > 0)
75242ef4 1051 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1052
1053 /* Initialize symbol reading routines for this objfile, allow complaints to
1054 appear for this new file, and record how verbose to be, then do the
c378eb4e 1055 initial symbol reading for this file. */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_init) (objfile);
7eedccfa 1058 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1059
6bf667bb 1060 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1061
608e2dbb 1062 read_symbols (objfile, add_flags);
b11896a5 1063
c906108c
SS
1064 /* Discard cleanups as symbol reading was successful. */
1065
1066 discard_cleanups (old_chain);
f7545552 1067 xfree (local_addr);
c906108c
SS
1068}
1069
36e4d068
JB
1070/* Same as syms_from_objfile_1, but also initializes the objfile
1071 entry-point info. */
1072
6bf667bb 1073static void
36e4d068
JB
1074syms_from_objfile (struct objfile *objfile,
1075 struct section_addr_info *addrs,
b15cc25c 1076 symfile_add_flags add_flags)
36e4d068 1077{
6bf667bb 1078 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1079 init_entry_point_info (objfile);
1080}
1081
c906108c
SS
1082/* Perform required actions after either reading in the initial
1083 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1084 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1085
e7d52ed3 1086static void
b15cc25c 1087finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1088{
c906108c 1089 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1090 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1091 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1092 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1093 {
1094 /* OK, make it the "real" symbol file. */
1095 symfile_objfile = objfile;
1096
c1e56572 1097 clear_symtab_users (add_flags);
c906108c 1098 }
7eedccfa 1099 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1100 {
69de3c6a 1101 breakpoint_re_set ();
c906108c
SS
1102 }
1103
1104 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1105 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1106}
1107
1108/* Process a symbol file, as either the main file or as a dynamically
1109 loaded file.
1110
5417f6dc 1111 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1112 A new reference is acquired by this function.
7904e09f 1113
24ba069a
JK
1114 For NAME description see allocate_objfile's definition.
1115
7eedccfa
PP
1116 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1117 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1118
6bf667bb 1119 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1120 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1121
63524580
JK
1122 PARENT is the original objfile if ABFD is a separate debug info file.
1123 Otherwise PARENT is NULL.
1124
c906108c 1125 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1126 Upon failure, jumps back to command level (never returns). */
7eedccfa 1127
7904e09f 1128static struct objfile *
b15cc25c
PA
1129symbol_file_add_with_addrs (bfd *abfd, const char *name,
1130 symfile_add_flags add_flags,
6bf667bb 1131 struct section_addr_info *addrs,
b15cc25c 1132 objfile_flags flags, struct objfile *parent)
c906108c
SS
1133{
1134 struct objfile *objfile;
7eedccfa 1135 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1136 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1137 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1138 && (readnow_symbol_files
1139 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1140
9291a0cd 1141 if (readnow_symbol_files)
b11896a5
TT
1142 {
1143 flags |= OBJF_READNOW;
1144 add_flags &= ~SYMFILE_NO_READ;
1145 }
9291a0cd 1146
5417f6dc
RM
1147 /* Give user a chance to burp if we'd be
1148 interactively wiping out any existing symbols. */
c906108c
SS
1149
1150 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1151 && mainline
c906108c 1152 && from_tty
9e2f0ad4 1153 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1154 error (_("Not confirmed."));
c906108c 1155
b15cc25c
PA
1156 if (mainline)
1157 flags |= OBJF_MAINLINE;
1158 objfile = allocate_objfile (abfd, name, flags);
c906108c 1159
63524580
JK
1160 if (parent)
1161 add_separate_debug_objfile (objfile, parent);
1162
78a4a9b9
AC
1163 /* We either created a new mapped symbol table, mapped an existing
1164 symbol table file which has not had initial symbol reading
c378eb4e 1165 performed, or need to read an unmapped symbol table. */
b11896a5 1166 if (should_print)
c906108c 1167 {
769d7dc4
AC
1168 if (deprecated_pre_add_symbol_hook)
1169 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1170 else
c906108c 1171 {
55333a84
DE
1172 printf_unfiltered (_("Reading symbols from %s..."), name);
1173 wrap_here ("");
1174 gdb_flush (gdb_stdout);
c906108c 1175 }
c906108c 1176 }
6bf667bb 1177 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1178
1179 /* We now have at least a partial symbol table. Check to see if the
1180 user requested that all symbols be read on initial access via either
1181 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1182 all partial symbol tables for this objfile if so. */
c906108c 1183
9291a0cd 1184 if ((flags & OBJF_READNOW))
c906108c 1185 {
b11896a5 1186 if (should_print)
c906108c 1187 {
a3f17187 1188 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1189 wrap_here ("");
1190 gdb_flush (gdb_stdout);
1191 }
1192
ccefe4c4
TT
1193 if (objfile->sf)
1194 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1195 }
1196
b11896a5 1197 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1198 {
1199 wrap_here ("");
55333a84 1200 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1201 wrap_here ("");
1202 }
1203
b11896a5 1204 if (should_print)
c906108c 1205 {
769d7dc4
AC
1206 if (deprecated_post_add_symbol_hook)
1207 deprecated_post_add_symbol_hook ();
c906108c 1208 else
55333a84 1209 printf_unfiltered (_("done.\n"));
c906108c
SS
1210 }
1211
481d0f41
JB
1212 /* We print some messages regardless of whether 'from_tty ||
1213 info_verbose' is true, so make sure they go out at the right
1214 time. */
1215 gdb_flush (gdb_stdout);
1216
109f874e 1217 if (objfile->sf == NULL)
8caee43b
PP
1218 {
1219 observer_notify_new_objfile (objfile);
c378eb4e 1220 return objfile; /* No symbols. */
8caee43b 1221 }
109f874e 1222
e7d52ed3 1223 finish_new_objfile (objfile, add_flags);
c906108c 1224
06d3b283 1225 observer_notify_new_objfile (objfile);
c906108c 1226
ce7d4522 1227 bfd_cache_close_all ();
c906108c
SS
1228 return (objfile);
1229}
1230
24ba069a
JK
1231/* Add BFD as a separate debug file for OBJFILE. For NAME description
1232 see allocate_objfile's definition. */
9cce227f
TG
1233
1234void
b15cc25c
PA
1235symbol_file_add_separate (bfd *bfd, const char *name,
1236 symfile_add_flags symfile_flags,
24ba069a 1237 struct objfile *objfile)
9cce227f 1238{
089b4803
TG
1239 struct section_addr_info *sap;
1240 struct cleanup *my_cleanup;
1241
1242 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1243 because sections of BFD may not match sections of OBJFILE and because
1244 vma may have been modified by tools such as prelink. */
1245 sap = build_section_addr_info_from_objfile (objfile);
1246 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1247
870f88f7 1248 symbol_file_add_with_addrs
24ba069a 1249 (bfd, name, symfile_flags, sap,
9cce227f 1250 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1251 | OBJF_USERLOADED),
1252 objfile);
089b4803
TG
1253
1254 do_cleanups (my_cleanup);
9cce227f 1255}
7904e09f 1256
eb4556d7
JB
1257/* Process the symbol file ABFD, as either the main file or as a
1258 dynamically loaded file.
6bf667bb 1259 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1260
eb4556d7 1261struct objfile *
b15cc25c
PA
1262symbol_file_add_from_bfd (bfd *abfd, const char *name,
1263 symfile_add_flags add_flags,
eb4556d7 1264 struct section_addr_info *addrs,
b15cc25c 1265 objfile_flags flags, struct objfile *parent)
eb4556d7 1266{
24ba069a
JK
1267 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1268 parent);
eb4556d7
JB
1269}
1270
7904e09f 1271/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1272 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
7904e09f 1274struct objfile *
b15cc25c
PA
1275symbol_file_add (const char *name, symfile_add_flags add_flags,
1276 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1277{
192b62ce 1278 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1279
192b62ce
TT
1280 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1281 flags, NULL);
7904e09f
JB
1282}
1283
d7db6da9
FN
1284/* Call symbol_file_add() with default values and update whatever is
1285 affected by the loading of a new main().
1286 Used when the file is supplied in the gdb command line
1287 and by some targets with special loading requirements.
1288 The auxiliary function, symbol_file_add_main_1(), has the flags
1289 argument for the switches that can only be specified in the symbol_file
1290 command itself. */
5417f6dc 1291
1adeb98a 1292void
ecf45d2c 1293symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1294{
ecf45d2c 1295 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1296}
1297
1298static void
ecf45d2c
SL
1299symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1300 objfile_flags flags)
d7db6da9 1301{
ecf45d2c 1302 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1303
7eedccfa 1304 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1305
d7db6da9
FN
1306 /* Getting new symbols may change our opinion about
1307 what is frameless. */
1308 reinit_frame_cache ();
1309
b15cc25c 1310 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1311 set_initial_language ();
1adeb98a
FN
1312}
1313
1314void
1315symbol_file_clear (int from_tty)
1316{
1317 if ((have_full_symbols () || have_partial_symbols ())
1318 && from_tty
0430b0d6
AS
1319 && (symfile_objfile
1320 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1321 objfile_name (symfile_objfile))
0430b0d6 1322 : !query (_("Discard symbol table? "))))
8a3fe4f8 1323 error (_("Not confirmed."));
1adeb98a 1324
0133421a
JK
1325 /* solib descriptors may have handles to objfiles. Wipe them before their
1326 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1327 no_shared_libraries (NULL, from_tty);
1328
0133421a
JK
1329 free_all_objfiles ();
1330
adb7f338 1331 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1332 if (from_tty)
1333 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1334}
1335
c4dcb155
SM
1336/* See symfile.h. */
1337
1338int separate_debug_file_debug = 0;
1339
5b5d99cf 1340static int
287ccc17 1341separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1342 struct objfile *parent_objfile)
5b5d99cf 1343{
904578ed
JK
1344 unsigned long file_crc;
1345 int file_crc_p;
32a0e547 1346 struct stat parent_stat, abfd_stat;
904578ed 1347 int verified_as_different;
32a0e547
JK
1348
1349 /* Find a separate debug info file as if symbols would be present in
1350 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1351 section can contain just the basename of PARENT_OBJFILE without any
1352 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1353 the separate debug infos with the same basename can exist. */
32a0e547 1354
4262abfb 1355 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1356 return 0;
5b5d99cf 1357
c4dcb155
SM
1358 if (separate_debug_file_debug)
1359 printf_unfiltered (_(" Trying %s\n"), name);
1360
192b62ce 1361 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1362
192b62ce 1363 if (abfd == NULL)
5b5d99cf
JB
1364 return 0;
1365
0ba1096a 1366 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1367
1368 Some operating systems, e.g. Windows, do not provide a meaningful
1369 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1370 meaningful st_dev.) Files accessed from gdbservers that do not
1371 support the vFile:fstat packet will also have st_ino set to zero.
1372 Do not indicate a duplicate library in either case. While there
1373 is no guarantee that a system that provides meaningful inode
1374 numbers will never set st_ino to zero, this is merely an
1375 optimization, so we do not need to worry about false negatives. */
32a0e547 1376
192b62ce 1377 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1378 && abfd_stat.st_ino != 0
1379 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1380 {
904578ed
JK
1381 if (abfd_stat.st_dev == parent_stat.st_dev
1382 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1383 return 0;
904578ed 1384 verified_as_different = 1;
32a0e547 1385 }
904578ed
JK
1386 else
1387 verified_as_different = 0;
32a0e547 1388
192b62ce 1389 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1390
904578ed
JK
1391 if (!file_crc_p)
1392 return 0;
1393
287ccc17
JK
1394 if (crc != file_crc)
1395 {
dccee2de
TT
1396 unsigned long parent_crc;
1397
0a93529c
GB
1398 /* If the files could not be verified as different with
1399 bfd_stat then we need to calculate the parent's CRC
1400 to verify whether the files are different or not. */
904578ed 1401
dccee2de 1402 if (!verified_as_different)
904578ed 1403 {
dccee2de 1404 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1405 return 0;
1406 }
1407
dccee2de 1408 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1409 warning (_("the debug information found in \"%s\""
1410 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1411 name, objfile_name (parent_objfile));
904578ed 1412
287ccc17
JK
1413 return 0;
1414 }
1415
1416 return 1;
5b5d99cf
JB
1417}
1418
aa28a74e 1419char *debug_file_directory = NULL;
920d2a44
AC
1420static void
1421show_debug_file_directory (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1423{
3e43a32a
MS
1424 fprintf_filtered (file,
1425 _("The directory where separate debug "
1426 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1427 value);
1428}
5b5d99cf
JB
1429
1430#if ! defined (DEBUG_SUBDIRECTORY)
1431#define DEBUG_SUBDIRECTORY ".debug"
1432#endif
1433
1db33378
PP
1434/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1435 where the original file resides (may not be the same as
1436 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1437 looking for. CANON_DIR is the "realpath" form of DIR.
1438 DIR must contain a trailing '/'.
1439 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1440
1441static char *
1442find_separate_debug_file (const char *dir,
1443 const char *canon_dir,
1444 const char *debuglink,
1445 unsigned long crc32, struct objfile *objfile)
9cce227f 1446{
1db33378
PP
1447 char *debugdir;
1448 char *debugfile;
9cce227f 1449 int i;
e4ab2fad
JK
1450 VEC (char_ptr) *debugdir_vec;
1451 struct cleanup *back_to;
1452 int ix;
5b5d99cf 1453
c4dcb155
SM
1454 if (separate_debug_file_debug)
1455 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1456 "%s\n"), objfile_name (objfile));
1457
325fac50 1458 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1459 i = strlen (dir);
1db33378
PP
1460 if (canon_dir != NULL && strlen (canon_dir) > i)
1461 i = strlen (canon_dir);
1ffa32ee 1462
224c3ddb
SM
1463 debugfile
1464 = (char *) xmalloc (strlen (debug_file_directory) + 1
1465 + i
1466 + strlen (DEBUG_SUBDIRECTORY)
1467 + strlen ("/")
1468 + strlen (debuglink)
1469 + 1);
5b5d99cf
JB
1470
1471 /* First try in the same directory as the original file. */
1472 strcpy (debugfile, dir);
1db33378 1473 strcat (debugfile, debuglink);
5b5d99cf 1474
32a0e547 1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1476 return debugfile;
5417f6dc 1477
5b5d99cf
JB
1478 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1479 strcpy (debugfile, dir);
1480 strcat (debugfile, DEBUG_SUBDIRECTORY);
1481 strcat (debugfile, "/");
1db33378 1482 strcat (debugfile, debuglink);
5b5d99cf 1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1485 return debugfile;
5417f6dc 1486
24ddea62 1487 /* Then try in the global debugfile directories.
f888f159 1488
24ddea62
JK
1489 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1490 cause "/..." lookups. */
5417f6dc 1491
e4ab2fad
JK
1492 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1493 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1494
e4ab2fad
JK
1495 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1496 {
1497 strcpy (debugfile, debugdir);
aa28a74e 1498 strcat (debugfile, "/");
24ddea62 1499 strcat (debugfile, dir);
1db33378 1500 strcat (debugfile, debuglink);
aa28a74e 1501
32a0e547 1502 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1503 {
1504 do_cleanups (back_to);
1505 return debugfile;
1506 }
24ddea62
JK
1507
1508 /* If the file is in the sysroot, try using its base path in the
1509 global debugfile directory. */
1db33378
PP
1510 if (canon_dir != NULL
1511 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1512 strlen (gdb_sysroot)) == 0
1db33378 1513 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1514 {
e4ab2fad 1515 strcpy (debugfile, debugdir);
1db33378 1516 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1517 strcat (debugfile, "/");
1db33378 1518 strcat (debugfile, debuglink);
24ddea62 1519
32a0e547 1520 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1521 {
1522 do_cleanups (back_to);
1523 return debugfile;
1524 }
24ddea62 1525 }
aa28a74e 1526 }
f888f159 1527
e4ab2fad 1528 do_cleanups (back_to);
25522fae 1529 xfree (debugfile);
1db33378
PP
1530 return NULL;
1531}
1532
7edbb660 1533/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1534 If there were no directory separators in PATH, PATH will be empty
1535 string on return. */
1536
1537static void
1538terminate_after_last_dir_separator (char *path)
1539{
1540 int i;
1541
1542 /* Strip off the final filename part, leaving the directory name,
1543 followed by a slash. The directory can be relative or absolute. */
1544 for (i = strlen(path) - 1; i >= 0; i--)
1545 if (IS_DIR_SEPARATOR (path[i]))
1546 break;
1547
1548 /* If I is -1 then no directory is present there and DIR will be "". */
1549 path[i + 1] = '\0';
1550}
1551
1552/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1553 Returns pathname, or NULL. */
1554
1555char *
1556find_separate_debug_file_by_debuglink (struct objfile *objfile)
1557{
1558 char *debuglink;
1559 char *dir, *canon_dir;
1560 char *debugfile;
1561 unsigned long crc32;
1562 struct cleanup *cleanups;
1563
cc0ea93c 1564 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1565
1566 if (debuglink == NULL)
1567 {
1568 /* There's no separate debug info, hence there's no way we could
1569 load it => no warning. */
1570 return NULL;
1571 }
1572
71bdabee 1573 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1574 dir = xstrdup (objfile_name (objfile));
71bdabee 1575 make_cleanup (xfree, dir);
1db33378
PP
1576 terminate_after_last_dir_separator (dir);
1577 canon_dir = lrealpath (dir);
1578
1579 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1580 crc32, objfile);
1581 xfree (canon_dir);
1582
1583 if (debugfile == NULL)
1584 {
1db33378
PP
1585 /* For PR gdb/9538, try again with realpath (if different from the
1586 original). */
1587
1588 struct stat st_buf;
1589
4262abfb
JK
1590 if (lstat (objfile_name (objfile), &st_buf) == 0
1591 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1592 {
1593 char *symlink_dir;
1594
4262abfb 1595 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1596 if (symlink_dir != NULL)
1597 {
1598 make_cleanup (xfree, symlink_dir);
1599 terminate_after_last_dir_separator (symlink_dir);
1600 if (strcmp (dir, symlink_dir) != 0)
1601 {
1602 /* Different directory, so try using it. */
1603 debugfile = find_separate_debug_file (symlink_dir,
1604 symlink_dir,
1605 debuglink,
1606 crc32,
1607 objfile);
1608 }
1609 }
1610 }
1db33378 1611 }
aa28a74e 1612
1db33378 1613 do_cleanups (cleanups);
25522fae 1614 return debugfile;
5b5d99cf
JB
1615}
1616
c906108c
SS
1617/* This is the symbol-file command. Read the file, analyze its
1618 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1619 the command is rather bizarre:
1620
1621 1. The function buildargv implements various quoting conventions
1622 which are undocumented and have little or nothing in common with
1623 the way things are quoted (or not quoted) elsewhere in GDB.
1624
1625 2. Options are used, which are not generally used in GDB (perhaps
1626 "set mapped on", "set readnow on" would be better)
1627
1628 3. The order of options matters, which is contrary to GNU
c906108c
SS
1629 conventions (because it is confusing and inconvenient). */
1630
1631void
fba45db2 1632symbol_file_command (char *args, int from_tty)
c906108c 1633{
c906108c
SS
1634 dont_repeat ();
1635
1636 if (args == NULL)
1637 {
1adeb98a 1638 symbol_file_clear (from_tty);
c906108c
SS
1639 }
1640 else
1641 {
b15cc25c 1642 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1643 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1644 struct cleanup *cleanups;
1645 char *name = NULL;
1646
ecf45d2c
SL
1647 if (from_tty)
1648 add_flags |= SYMFILE_VERBOSE;
1649
773a1edc
TT
1650 gdb_argv built_argv (args);
1651 for (char *arg : built_argv)
c906108c 1652 {
773a1edc 1653 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1654 flags |= OBJF_READNOW;
773a1edc
TT
1655 else if (*arg == '-')
1656 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1657 else
1658 {
773a1edc
TT
1659 symbol_file_add_main_1 (arg, add_flags, flags);
1660 name = arg;
78a4a9b9 1661 }
c906108c
SS
1662 }
1663
1664 if (name == NULL)
cb2f3a29 1665 error (_("no symbol file name was specified"));
c906108c
SS
1666 }
1667}
1668
1669/* Set the initial language.
1670
cb2f3a29
MK
1671 FIXME: A better solution would be to record the language in the
1672 psymtab when reading partial symbols, and then use it (if known) to
1673 set the language. This would be a win for formats that encode the
1674 language in an easily discoverable place, such as DWARF. For
1675 stabs, we can jump through hoops looking for specially named
1676 symbols or try to intuit the language from the specific type of
1677 stabs we find, but we can't do that until later when we read in
1678 full symbols. */
c906108c 1679
8b60591b 1680void
fba45db2 1681set_initial_language (void)
c906108c 1682{
9e6c82ad 1683 enum language lang = main_language ();
c906108c 1684
9e6c82ad 1685 if (lang == language_unknown)
01f8c46d 1686 {
bf6d8a91 1687 char *name = main_name ();
d12307c1 1688 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1689
bf6d8a91
TT
1690 if (sym != NULL)
1691 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1692 }
cb2f3a29 1693
ccefe4c4
TT
1694 if (lang == language_unknown)
1695 {
1696 /* Make C the default language */
1697 lang = language_c;
c906108c 1698 }
ccefe4c4
TT
1699
1700 set_language (lang);
1701 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1702}
1703
cb2f3a29
MK
1704/* Open the file specified by NAME and hand it off to BFD for
1705 preliminary analysis. Return a newly initialized bfd *, which
1706 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1707 absolute). In case of trouble, error() is called. */
c906108c 1708
192b62ce 1709gdb_bfd_ref_ptr
97a41605 1710symfile_bfd_open (const char *name)
c906108c 1711{
97a41605
GB
1712 int desc = -1;
1713 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1714
97a41605 1715 if (!is_target_filename (name))
f1838a98 1716 {
97a41605 1717 char *expanded_name, *absolute_name;
f1838a98 1718
97a41605 1719 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1720
97a41605
GB
1721 /* Look down path for it, allocate 2nd new malloc'd copy. */
1722 desc = openp (getenv ("PATH"),
1723 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1724 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1725#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1726 if (desc < 0)
1727 {
0ae1c716 1728 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1729
97a41605
GB
1730 strcat (strcpy (exename, expanded_name), ".exe");
1731 desc = openp (getenv ("PATH"),
1732 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1733 exename, O_RDONLY | O_BINARY, &absolute_name);
1734 }
c906108c 1735#endif
97a41605
GB
1736 if (desc < 0)
1737 {
1738 make_cleanup (xfree, expanded_name);
1739 perror_with_name (expanded_name);
1740 }
cb2f3a29 1741
97a41605
GB
1742 xfree (expanded_name);
1743 make_cleanup (xfree, absolute_name);
1744 name = absolute_name;
1745 }
c906108c 1746
192b62ce
TT
1747 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1748 if (sym_bfd == NULL)
faab9922
JK
1749 error (_("`%s': can't open to read symbols: %s."), name,
1750 bfd_errmsg (bfd_get_error ()));
97a41605 1751
192b62ce
TT
1752 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1753 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1754
192b62ce
TT
1755 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1756 error (_("`%s': can't read symbols: %s."), name,
1757 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1758
faab9922
JK
1759 do_cleanups (back_to);
1760
cb2f3a29 1761 return sym_bfd;
c906108c
SS
1762}
1763
cb2f3a29
MK
1764/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1765 the section was not found. */
1766
0e931cf0 1767int
a121b7c1 1768get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1769{
1770 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1771
0e931cf0
JB
1772 if (sect)
1773 return sect->index;
1774 else
1775 return -1;
1776}
1777
c256e171
DE
1778/* Link SF into the global symtab_fns list.
1779 FLAVOUR is the file format that SF handles.
1780 Called on startup by the _initialize routine in each object file format
1781 reader, to register information about each format the reader is prepared
1782 to handle. */
c906108c
SS
1783
1784void
c256e171 1785add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1786{
c256e171
DE
1787 registered_sym_fns fns = { flavour, sf };
1788
1789 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1790}
1791
cb2f3a29
MK
1792/* Initialize OBJFILE to read symbols from its associated BFD. It
1793 either returns or calls error(). The result is an initialized
1794 struct sym_fns in the objfile structure, that contains cached
1795 information about the symbol file. */
c906108c 1796
00b5771c 1797static const struct sym_fns *
31d99776 1798find_sym_fns (bfd *abfd)
c906108c 1799{
c256e171 1800 registered_sym_fns *rsf;
31d99776 1801 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1802 int i;
c906108c 1803
75245b24
MS
1804 if (our_flavour == bfd_target_srec_flavour
1805 || our_flavour == bfd_target_ihex_flavour
1806 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1807 return NULL; /* No symbols. */
75245b24 1808
c256e171
DE
1809 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1810 if (our_flavour == rsf->sym_flavour)
1811 return rsf->sym_fns;
cb2f3a29 1812
8a3fe4f8 1813 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1814 bfd_get_target (abfd));
c906108c
SS
1815}
1816\f
cb2f3a29 1817
c906108c
SS
1818/* This function runs the load command of our current target. */
1819
1820static void
fba45db2 1821load_command (char *arg, int from_tty)
c906108c 1822{
5b3fca71
TT
1823 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1824
e5cc9f32
JB
1825 dont_repeat ();
1826
4487aabf
PA
1827 /* The user might be reloading because the binary has changed. Take
1828 this opportunity to check. */
1829 reopen_exec_file ();
1830 reread_symbols ();
1831
c906108c 1832 if (arg == NULL)
1986bccd
AS
1833 {
1834 char *parg;
1835 int count = 0;
1836
1837 parg = arg = get_exec_file (1);
1838
1839 /* Count how many \ " ' tab space there are in the name. */
1840 while ((parg = strpbrk (parg, "\\\"'\t ")))
1841 {
1842 parg++;
1843 count++;
1844 }
1845
1846 if (count)
1847 {
1848 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1849 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1850 char *ptemp = temp;
1851 char *prev;
1852
1853 make_cleanup (xfree, temp);
1854
1855 prev = parg = arg;
1856 while ((parg = strpbrk (parg, "\\\"'\t ")))
1857 {
1858 strncpy (ptemp, prev, parg - prev);
1859 ptemp += parg - prev;
1860 prev = parg++;
1861 *ptemp++ = '\\';
1862 }
1863 strcpy (ptemp, prev);
1864
1865 arg = temp;
1866 }
1867 }
1868
c906108c 1869 target_load (arg, from_tty);
2889e661
JB
1870
1871 /* After re-loading the executable, we don't really know which
1872 overlays are mapped any more. */
1873 overlay_cache_invalid = 1;
5b3fca71
TT
1874
1875 do_cleanups (cleanup);
c906108c
SS
1876}
1877
1878/* This version of "load" should be usable for any target. Currently
1879 it is just used for remote targets, not inftarg.c or core files,
1880 on the theory that only in that case is it useful.
1881
1882 Avoiding xmodem and the like seems like a win (a) because we don't have
1883 to worry about finding it, and (b) On VMS, fork() is very slow and so
1884 we don't want to run a subprocess. On the other hand, I'm not sure how
1885 performance compares. */
917317f4 1886
917317f4
JM
1887static int validate_download = 0;
1888
e4f9b4d5
MS
1889/* Callback service function for generic_load (bfd_map_over_sections). */
1890
1891static void
1892add_section_size_callback (bfd *abfd, asection *asec, void *data)
1893{
19ba03f4 1894 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1895
2c500098 1896 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1897}
1898
1899/* Opaque data for load_section_callback. */
1900struct load_section_data {
f698ca8e 1901 CORE_ADDR load_offset;
a76d924d
DJ
1902 struct load_progress_data *progress_data;
1903 VEC(memory_write_request_s) *requests;
1904};
1905
1906/* Opaque data for load_progress. */
1907struct load_progress_data {
1908 /* Cumulative data. */
e4f9b4d5
MS
1909 unsigned long write_count;
1910 unsigned long data_count;
1911 bfd_size_type total_size;
a76d924d
DJ
1912};
1913
1914/* Opaque data for load_progress for a single section. */
1915struct load_progress_section_data {
1916 struct load_progress_data *cumulative;
cf7a04e8 1917
a76d924d 1918 /* Per-section data. */
cf7a04e8
DJ
1919 const char *section_name;
1920 ULONGEST section_sent;
1921 ULONGEST section_size;
1922 CORE_ADDR lma;
1923 gdb_byte *buffer;
e4f9b4d5
MS
1924};
1925
a76d924d 1926/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1927
1928static void
1929load_progress (ULONGEST bytes, void *untyped_arg)
1930{
19ba03f4
SM
1931 struct load_progress_section_data *args
1932 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1933 struct load_progress_data *totals;
1934
1935 if (args == NULL)
1936 /* Writing padding data. No easy way to get at the cumulative
1937 stats, so just ignore this. */
1938 return;
1939
1940 totals = args->cumulative;
1941
1942 if (bytes == 0 && args->section_sent == 0)
1943 {
1944 /* The write is just starting. Let the user know we've started
1945 this section. */
112e8700
SM
1946 current_uiout->message ("Loading section %s, size %s lma %s\n",
1947 args->section_name,
1948 hex_string (args->section_size),
1949 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1950 return;
1951 }
cf7a04e8
DJ
1952
1953 if (validate_download)
1954 {
1955 /* Broken memories and broken monitors manifest themselves here
1956 when bring new computers to life. This doubles already slow
1957 downloads. */
1958 /* NOTE: cagney/1999-10-18: A more efficient implementation
1959 might add a verify_memory() method to the target vector and
1960 then use that. remote.c could implement that method using
1961 the ``qCRC'' packet. */
224c3ddb 1962 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1963 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1964
1965 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1966 error (_("Download verify read failed at %s"),
f5656ead 1967 paddress (target_gdbarch (), args->lma));
cf7a04e8 1968 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1969 error (_("Download verify compare failed at %s"),
f5656ead 1970 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1971 do_cleanups (verify_cleanups);
1972 }
a76d924d 1973 totals->data_count += bytes;
cf7a04e8
DJ
1974 args->lma += bytes;
1975 args->buffer += bytes;
a76d924d 1976 totals->write_count += 1;
cf7a04e8 1977 args->section_sent += bytes;
522002f9 1978 if (check_quit_flag ()
cf7a04e8
DJ
1979 || (deprecated_ui_load_progress_hook != NULL
1980 && deprecated_ui_load_progress_hook (args->section_name,
1981 args->section_sent)))
1982 error (_("Canceled the download"));
1983
1984 if (deprecated_show_load_progress != NULL)
1985 deprecated_show_load_progress (args->section_name,
1986 args->section_sent,
1987 args->section_size,
a76d924d
DJ
1988 totals->data_count,
1989 totals->total_size);
cf7a04e8
DJ
1990}
1991
e4f9b4d5
MS
1992/* Callback service function for generic_load (bfd_map_over_sections). */
1993
1994static void
1995load_section_callback (bfd *abfd, asection *asec, void *data)
1996{
a76d924d 1997 struct memory_write_request *new_request;
19ba03f4 1998 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1999 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2000 bfd_size_type size = bfd_get_section_size (asec);
2001 gdb_byte *buffer;
cf7a04e8 2002 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2003
cf7a04e8
DJ
2004 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2005 return;
e4f9b4d5 2006
cf7a04e8
DJ
2007 if (size == 0)
2008 return;
e4f9b4d5 2009
a76d924d
DJ
2010 new_request = VEC_safe_push (memory_write_request_s,
2011 args->requests, NULL);
2012 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2013 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2014 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2015 new_request->end = new_request->begin + size; /* FIXME Should size
2016 be in instead? */
224c3ddb 2017 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2018 new_request->baton = section_data;
cf7a04e8 2019
a76d924d 2020 buffer = new_request->data;
cf7a04e8 2021
a76d924d
DJ
2022 section_data->cumulative = args->progress_data;
2023 section_data->section_name = sect_name;
2024 section_data->section_size = size;
2025 section_data->lma = new_request->begin;
2026 section_data->buffer = buffer;
cf7a04e8
DJ
2027
2028 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2029}
2030
2031/* Clean up an entire memory request vector, including load
2032 data and progress records. */
cf7a04e8 2033
a76d924d
DJ
2034static void
2035clear_memory_write_data (void *arg)
2036{
19ba03f4 2037 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2038 VEC(memory_write_request_s) *vec = *vec_p;
2039 int i;
2040 struct memory_write_request *mr;
cf7a04e8 2041
a76d924d
DJ
2042 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2043 {
2044 xfree (mr->data);
2045 xfree (mr->baton);
2046 }
2047 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2048}
2049
dcb07cfa
PA
2050static void print_transfer_performance (struct ui_file *stream,
2051 unsigned long data_count,
2052 unsigned long write_count,
2053 std::chrono::steady_clock::duration d);
2054
c906108c 2055void
9cbe5fff 2056generic_load (const char *args, int from_tty)
c906108c 2057{
917317f4 2058 char *filename;
773a1edc 2059 struct cleanup *old_cleanups;
e4f9b4d5 2060 struct load_section_data cbdata;
a76d924d 2061 struct load_progress_data total_progress;
79a45e25 2062 struct ui_out *uiout = current_uiout;
a76d924d 2063
e4f9b4d5
MS
2064 CORE_ADDR entry;
2065
a76d924d
DJ
2066 memset (&cbdata, 0, sizeof (cbdata));
2067 memset (&total_progress, 0, sizeof (total_progress));
2068 cbdata.progress_data = &total_progress;
2069
773a1edc 2070 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2071
d1a41061
PP
2072 if (args == NULL)
2073 error_no_arg (_("file to load"));
1986bccd 2074
773a1edc 2075 gdb_argv argv (args);
1986bccd
AS
2076
2077 filename = tilde_expand (argv[0]);
2078 make_cleanup (xfree, filename);
2079
2080 if (argv[1] != NULL)
917317f4 2081 {
f698ca8e 2082 const char *endptr;
ba5f2f8a 2083
f698ca8e 2084 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2085
2086 /* If the last word was not a valid number then
2087 treat it as a file name with spaces in. */
2088 if (argv[1] == endptr)
2089 error (_("Invalid download offset:%s."), argv[1]);
2090
2091 if (argv[2] != NULL)
2092 error (_("Too many parameters."));
917317f4 2093 }
c906108c 2094
c378eb4e 2095 /* Open the file for loading. */
192b62ce 2096 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename, gnutarget, -1));
c906108c
SS
2097 if (loadfile_bfd == NULL)
2098 {
2099 perror_with_name (filename);
2100 return;
2101 }
917317f4 2102
192b62ce 2103 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2104 {
8a3fe4f8 2105 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2106 bfd_errmsg (bfd_get_error ()));
2107 }
c5aa993b 2108
192b62ce 2109 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2110 (void *) &total_progress.total_size);
2111
192b62ce 2112 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2113
dcb07cfa
PA
2114 using namespace std::chrono;
2115
2116 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2117
a76d924d
DJ
2118 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2119 load_progress) != 0)
2120 error (_("Load failed"));
c906108c 2121
dcb07cfa 2122 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2123
192b62ce 2124 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2125 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2126 uiout->text ("Start address ");
2127 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2128 uiout->text (", load size ");
2129 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2130 uiout->text ("\n");
fb14de7b 2131 regcache_write_pc (get_current_regcache (), entry);
c906108c 2132
38963c97
DJ
2133 /* Reset breakpoints, now that we have changed the load image. For
2134 instance, breakpoints may have been set (or reset, by
2135 post_create_inferior) while connected to the target but before we
2136 loaded the program. In that case, the prologue analyzer could
2137 have read instructions from the target to find the right
2138 breakpoint locations. Loading has changed the contents of that
2139 memory. */
2140
2141 breakpoint_re_set ();
2142
a76d924d
DJ
2143 print_transfer_performance (gdb_stdout, total_progress.data_count,
2144 total_progress.write_count,
dcb07cfa 2145 end_time - start_time);
c906108c
SS
2146
2147 do_cleanups (old_cleanups);
2148}
2149
dcb07cfa
PA
2150/* Report on STREAM the performance of a memory transfer operation,
2151 such as 'load'. DATA_COUNT is the number of bytes transferred.
2152 WRITE_COUNT is the number of separate write operations, or 0, if
2153 that information is not available. TIME is how long the operation
2154 lasted. */
c906108c 2155
dcb07cfa 2156static void
d9fcf2fb 2157print_transfer_performance (struct ui_file *stream,
917317f4
JM
2158 unsigned long data_count,
2159 unsigned long write_count,
dcb07cfa 2160 std::chrono::steady_clock::duration time)
917317f4 2161{
dcb07cfa 2162 using namespace std::chrono;
79a45e25 2163 struct ui_out *uiout = current_uiout;
2b71414d 2164
dcb07cfa 2165 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2166
112e8700 2167 uiout->text ("Transfer rate: ");
dcb07cfa 2168 if (ms.count () > 0)
8b93c638 2169 {
dcb07cfa 2170 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2171
112e8700 2172 if (uiout->is_mi_like_p ())
9f43d28c 2173 {
112e8700
SM
2174 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2175 uiout->text (" bits/sec");
9f43d28c
DJ
2176 }
2177 else if (rate < 1024)
2178 {
112e8700
SM
2179 uiout->field_fmt ("transfer-rate", "%lu", rate);
2180 uiout->text (" bytes/sec");
9f43d28c
DJ
2181 }
2182 else
2183 {
112e8700
SM
2184 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2185 uiout->text (" KB/sec");
9f43d28c 2186 }
8b93c638
JM
2187 }
2188 else
2189 {
112e8700
SM
2190 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2191 uiout->text (" bits in <1 sec");
8b93c638
JM
2192 }
2193 if (write_count > 0)
2194 {
112e8700
SM
2195 uiout->text (", ");
2196 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2197 uiout->text (" bytes/write");
8b93c638 2198 }
112e8700 2199 uiout->text (".\n");
c906108c
SS
2200}
2201
2202/* This function allows the addition of incrementally linked object files.
2203 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2204/* Note: ezannoni 2000-04-13 This function/command used to have a
2205 special case syntax for the rombug target (Rombug is the boot
2206 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2207 rombug case, the user doesn't need to supply a text address,
2208 instead a call to target_link() (in target.c) would supply the
c378eb4e 2209 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2210
c906108c 2211static void
fba45db2 2212add_symbol_file_command (char *args, int from_tty)
c906108c 2213{
5af949e3 2214 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2215 char *filename = NULL;
c906108c 2216 char *arg;
db162d44 2217 int section_index = 0;
2acceee2
JM
2218 int argcnt = 0;
2219 int sec_num = 0;
2220 int i;
db162d44
EZ
2221 int expecting_sec_name = 0;
2222 int expecting_sec_addr = 0;
76ad5e1e 2223 struct objfile *objf;
b15cc25c
PA
2224 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2225 symfile_add_flags add_flags = 0;
2226
2227 if (from_tty)
2228 add_flags |= SYMFILE_VERBOSE;
db162d44 2229
a39a16c4 2230 struct sect_opt
2acceee2 2231 {
a121b7c1
PA
2232 const char *name;
2233 const char *value;
a39a16c4 2234 };
db162d44 2235
a39a16c4
MM
2236 struct section_addr_info *section_addrs;
2237 struct sect_opt *sect_opts = NULL;
2238 size_t num_sect_opts = 0;
3017564a 2239 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2240
a39a16c4 2241 num_sect_opts = 16;
8d749320 2242 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2243
c906108c
SS
2244 dont_repeat ();
2245
2246 if (args == NULL)
8a3fe4f8 2247 error (_("add-symbol-file takes a file name and an address"));
c906108c 2248
773a1edc 2249 gdb_argv argv (args);
db162d44 2250
5b96932b
AS
2251 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2252 {
c378eb4e 2253 /* Process the argument. */
db162d44 2254 if (argcnt == 0)
c906108c 2255 {
c378eb4e 2256 /* The first argument is the file name. */
db162d44 2257 filename = tilde_expand (arg);
3017564a 2258 make_cleanup (xfree, filename);
c906108c 2259 }
41dc8db8
MB
2260 else if (argcnt == 1)
2261 {
2262 /* The second argument is always the text address at which
2263 to load the program. */
2264 sect_opts[section_index].name = ".text";
2265 sect_opts[section_index].value = arg;
2266 if (++section_index >= num_sect_opts)
2267 {
2268 num_sect_opts *= 2;
2269 sect_opts = ((struct sect_opt *)
2270 xrealloc (sect_opts,
2271 num_sect_opts
2272 * sizeof (struct sect_opt)));
2273 }
2274 }
db162d44 2275 else
41dc8db8
MB
2276 {
2277 /* It's an option (starting with '-') or it's an argument
2278 to an option. */
41dc8db8
MB
2279 if (expecting_sec_name)
2280 {
2281 sect_opts[section_index].name = arg;
2282 expecting_sec_name = 0;
2283 }
2284 else if (expecting_sec_addr)
2285 {
2286 sect_opts[section_index].value = arg;
2287 expecting_sec_addr = 0;
2288 if (++section_index >= num_sect_opts)
2289 {
2290 num_sect_opts *= 2;
2291 sect_opts = ((struct sect_opt *)
2292 xrealloc (sect_opts,
2293 num_sect_opts
2294 * sizeof (struct sect_opt)));
2295 }
2296 }
2297 else if (strcmp (arg, "-readnow") == 0)
2298 flags |= OBJF_READNOW;
2299 else if (strcmp (arg, "-s") == 0)
2300 {
2301 expecting_sec_name = 1;
2302 expecting_sec_addr = 1;
2303 }
2304 else
2305 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2306 " [-readnow] [-s <secname> <addr>]*"));
2307 }
c906108c 2308 }
c906108c 2309
927890d0
JB
2310 /* This command takes at least two arguments. The first one is a
2311 filename, and the second is the address where this file has been
2312 loaded. Abort now if this address hasn't been provided by the
2313 user. */
2314 if (section_index < 1)
2315 error (_("The address where %s has been loaded is missing"), filename);
2316
c378eb4e 2317 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2318 a sect_addr_info structure to be passed around to other
2319 functions. We have to split this up into separate print
bb599908 2320 statements because hex_string returns a local static
c378eb4e 2321 string. */
5417f6dc 2322
a3f17187 2323 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2324 section_addrs = alloc_section_addr_info (section_index);
2325 make_cleanup (xfree, section_addrs);
db162d44 2326 for (i = 0; i < section_index; i++)
c906108c 2327 {
db162d44 2328 CORE_ADDR addr;
a121b7c1
PA
2329 const char *val = sect_opts[i].value;
2330 const char *sec = sect_opts[i].name;
5417f6dc 2331
ae822768 2332 addr = parse_and_eval_address (val);
db162d44 2333
db162d44 2334 /* Here we store the section offsets in the order they were
c378eb4e 2335 entered on the command line. */
a121b7c1 2336 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2337 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2338 printf_unfiltered ("\t%s_addr = %s\n", sec,
2339 paddress (gdbarch, addr));
db162d44
EZ
2340 sec_num++;
2341
5417f6dc 2342 /* The object's sections are initialized when a
db162d44 2343 call is made to build_objfile_section_table (objfile).
5417f6dc 2344 This happens in reread_symbols.
db162d44
EZ
2345 At this point, we don't know what file type this is,
2346 so we can't determine what section names are valid. */
2acceee2 2347 }
d76488d8 2348 section_addrs->num_sections = sec_num;
db162d44 2349
2acceee2 2350 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2351 error (_("Not confirmed."));
c906108c 2352
b15cc25c 2353 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2354
2355 add_target_sections_of_objfile (objf);
c906108c
SS
2356
2357 /* Getting new symbols may change our opinion about what is
2358 frameless. */
2359 reinit_frame_cache ();
db162d44 2360 do_cleanups (my_cleanups);
c906108c
SS
2361}
2362\f
70992597 2363
63644780
NB
2364/* This function removes a symbol file that was added via add-symbol-file. */
2365
2366static void
2367remove_symbol_file_command (char *args, int from_tty)
2368{
63644780
NB
2369 struct objfile *objf = NULL;
2370 struct cleanup *my_cleanups;
2371 struct program_space *pspace = current_program_space;
63644780
NB
2372
2373 dont_repeat ();
2374
2375 if (args == NULL)
2376 error (_("remove-symbol-file: no symbol file provided"));
2377
2378 my_cleanups = make_cleanup (null_cleanup, NULL);
2379
773a1edc 2380 gdb_argv argv (args);
63644780
NB
2381
2382 if (strcmp (argv[0], "-a") == 0)
2383 {
2384 /* Interpret the next argument as an address. */
2385 CORE_ADDR addr;
2386
2387 if (argv[1] == NULL)
2388 error (_("Missing address argument"));
2389
2390 if (argv[2] != NULL)
2391 error (_("Junk after %s"), argv[1]);
2392
2393 addr = parse_and_eval_address (argv[1]);
2394
2395 ALL_OBJFILES (objf)
2396 {
d03de421
PA
2397 if ((objf->flags & OBJF_USERLOADED) != 0
2398 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2399 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2400 break;
2401 }
2402 }
2403 else if (argv[0] != NULL)
2404 {
2405 /* Interpret the current argument as a file name. */
2406 char *filename;
2407
2408 if (argv[1] != NULL)
2409 error (_("Junk after %s"), argv[0]);
2410
2411 filename = tilde_expand (argv[0]);
2412 make_cleanup (xfree, filename);
2413
2414 ALL_OBJFILES (objf)
2415 {
d03de421
PA
2416 if ((objf->flags & OBJF_USERLOADED) != 0
2417 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2418 && objf->pspace == pspace
2419 && filename_cmp (filename, objfile_name (objf)) == 0)
2420 break;
2421 }
2422 }
2423
2424 if (objf == NULL)
2425 error (_("No symbol file found"));
2426
2427 if (from_tty
2428 && !query (_("Remove symbol table from file \"%s\"? "),
2429 objfile_name (objf)))
2430 error (_("Not confirmed."));
2431
2432 free_objfile (objf);
2433 clear_symtab_users (0);
2434
2435 do_cleanups (my_cleanups);
2436}
2437
c906108c 2438/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2439
c906108c 2440void
fba45db2 2441reread_symbols (void)
c906108c
SS
2442{
2443 struct objfile *objfile;
2444 long new_modtime;
c906108c
SS
2445 struct stat new_statbuf;
2446 int res;
4c404b8b 2447 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2448
2449 /* With the addition of shared libraries, this should be modified,
2450 the load time should be saved in the partial symbol tables, since
2451 different tables may come from different source files. FIXME.
2452 This routine should then walk down each partial symbol table
c378eb4e 2453 and see if the symbol table that it originates from has been changed. */
c906108c 2454
c5aa993b
JM
2455 for (objfile = object_files; objfile; objfile = objfile->next)
2456 {
9cce227f
TG
2457 if (objfile->obfd == NULL)
2458 continue;
2459
2460 /* Separate debug objfiles are handled in the main objfile. */
2461 if (objfile->separate_debug_objfile_backlink)
2462 continue;
2463
02aeec7b
JB
2464 /* If this object is from an archive (what you usually create with
2465 `ar', often called a `static library' on most systems, though
2466 a `shared library' on AIX is also an archive), then you should
2467 stat on the archive name, not member name. */
9cce227f
TG
2468 if (objfile->obfd->my_archive)
2469 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2470 else
4262abfb 2471 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2472 if (res != 0)
2473 {
c378eb4e 2474 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2475 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2476 objfile_name (objfile));
9cce227f
TG
2477 continue;
2478 }
2479 new_modtime = new_statbuf.st_mtime;
2480 if (new_modtime != objfile->mtime)
2481 {
2482 struct cleanup *old_cleanups;
2483 struct section_offsets *offsets;
2484 int num_offsets;
24ba069a 2485 char *original_name;
9cce227f
TG
2486
2487 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2488 objfile_name (objfile));
9cce227f
TG
2489
2490 /* There are various functions like symbol_file_add,
2491 symfile_bfd_open, syms_from_objfile, etc., which might
2492 appear to do what we want. But they have various other
2493 effects which we *don't* want. So we just do stuff
2494 ourselves. We don't worry about mapped files (for one thing,
2495 any mapped file will be out of date). */
2496
2497 /* If we get an error, blow away this objfile (not sure if
2498 that is the correct response for things like shared
2499 libraries). */
2500 old_cleanups = make_cleanup_free_objfile (objfile);
2501 /* We need to do this whenever any symbols go away. */
2502 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2503
0ba1096a
KT
2504 if (exec_bfd != NULL
2505 && filename_cmp (bfd_get_filename (objfile->obfd),
2506 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2507 {
2508 /* Reload EXEC_BFD without asking anything. */
2509
2510 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2511 }
2512
f6eeced0
JK
2513 /* Keep the calls order approx. the same as in free_objfile. */
2514
2515 /* Free the separate debug objfiles. It will be
2516 automatically recreated by sym_read. */
2517 free_objfile_separate_debug (objfile);
2518
2519 /* Remove any references to this objfile in the global
2520 value lists. */
2521 preserve_values (objfile);
2522
2523 /* Nuke all the state that we will re-read. Much of the following
2524 code which sets things to NULL really is necessary to tell
2525 other parts of GDB that there is nothing currently there.
2526
2527 Try to keep the freeing order compatible with free_objfile. */
2528
2529 if (objfile->sf != NULL)
2530 {
2531 (*objfile->sf->sym_finish) (objfile);
2532 }
2533
2534 clear_objfile_data (objfile);
2535
e1507e95 2536 /* Clean up any state BFD has sitting around. */
a4453b7e 2537 {
192b62ce 2538 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2539 char *obfd_filename;
a4453b7e
TT
2540
2541 obfd_filename = bfd_get_filename (objfile->obfd);
2542 /* Open the new BFD before freeing the old one, so that
2543 the filename remains live. */
192b62ce
TT
2544 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2545 objfile->obfd = temp.release ();
e1507e95 2546 if (objfile->obfd == NULL)
192b62ce 2547 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2548 }
2549
24ba069a
JK
2550 original_name = xstrdup (objfile->original_name);
2551 make_cleanup (xfree, original_name);
2552
9cce227f
TG
2553 /* bfd_openr sets cacheable to true, which is what we want. */
2554 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2555 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2556 bfd_errmsg (bfd_get_error ()));
2557
2558 /* Save the offsets, we will nuke them with the rest of the
2559 objfile_obstack. */
2560 num_offsets = objfile->num_sections;
2561 offsets = ((struct section_offsets *)
2562 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2563 memcpy (offsets, objfile->section_offsets,
2564 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2565
9cce227f
TG
2566 /* FIXME: Do we have to free a whole linked list, or is this
2567 enough? */
2568 if (objfile->global_psymbols.list)
2569 xfree (objfile->global_psymbols.list);
2570 memset (&objfile->global_psymbols, 0,
2571 sizeof (objfile->global_psymbols));
2572 if (objfile->static_psymbols.list)
2573 xfree (objfile->static_psymbols.list);
2574 memset (&objfile->static_psymbols, 0,
2575 sizeof (objfile->static_psymbols));
2576
c378eb4e 2577 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2578 psymbol_bcache_free (objfile->psymbol_cache);
2579 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2580
2581 /* NB: after this call to obstack_free, objfiles_changed
2582 will need to be called (see discussion below). */
9cce227f
TG
2583 obstack_free (&objfile->objfile_obstack, 0);
2584 objfile->sections = NULL;
43f3e411 2585 objfile->compunit_symtabs = NULL;
9cce227f
TG
2586 objfile->psymtabs = NULL;
2587 objfile->psymtabs_addrmap = NULL;
2588 objfile->free_psymtabs = NULL;
34eaf542 2589 objfile->template_symbols = NULL;
9cce227f 2590
9cce227f
TG
2591 /* obstack_init also initializes the obstack so it is
2592 empty. We could use obstack_specify_allocation but
d82ea6a8 2593 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2594 obstack_init (&objfile->objfile_obstack);
779bd270 2595
846060df
JB
2596 /* set_objfile_per_bfd potentially allocates the per-bfd
2597 data on the objfile's obstack (if sharing data across
2598 multiple users is not possible), so it's important to
2599 do it *after* the obstack has been initialized. */
2600 set_objfile_per_bfd (objfile);
2601
224c3ddb
SM
2602 objfile->original_name
2603 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2604 strlen (original_name));
24ba069a 2605
779bd270
DE
2606 /* Reset the sym_fns pointer. The ELF reader can change it
2607 based on whether .gdb_index is present, and we need it to
2608 start over. PR symtab/15885 */
8fb8eb5c 2609 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2610
d82ea6a8 2611 build_objfile_section_table (objfile);
9cce227f
TG
2612 terminate_minimal_symbol_table (objfile);
2613
2614 /* We use the same section offsets as from last time. I'm not
2615 sure whether that is always correct for shared libraries. */
2616 objfile->section_offsets = (struct section_offsets *)
2617 obstack_alloc (&objfile->objfile_obstack,
2618 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2619 memcpy (objfile->section_offsets, offsets,
2620 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2621 objfile->num_sections = num_offsets;
2622
2623 /* What the hell is sym_new_init for, anyway? The concept of
2624 distinguishing between the main file and additional files
2625 in this way seems rather dubious. */
2626 if (objfile == symfile_objfile)
c906108c 2627 {
9cce227f 2628 (*objfile->sf->sym_new_init) (objfile);
c906108c 2629 }
9cce227f
TG
2630
2631 (*objfile->sf->sym_init) (objfile);
2632 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2633
2634 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2635
2636 /* We are about to read new symbols and potentially also
2637 DWARF information. Some targets may want to pass addresses
2638 read from DWARF DIE's through an adjustment function before
2639 saving them, like MIPS, which may call into
2640 "find_pc_section". When called, that function will make
2641 use of per-objfile program space data.
2642
2643 Since we discarded our section information above, we have
2644 dangling pointers in the per-objfile program space data
2645 structure. Force GDB to update the section mapping
2646 information by letting it know the objfile has changed,
2647 making the dangling pointers point to correct data
2648 again. */
2649
2650 objfiles_changed ();
2651
608e2dbb 2652 read_symbols (objfile, 0);
b11896a5 2653
9cce227f 2654 if (!objfile_has_symbols (objfile))
c906108c 2655 {
9cce227f
TG
2656 wrap_here ("");
2657 printf_unfiltered (_("(no debugging symbols found)\n"));
2658 wrap_here ("");
c5aa993b 2659 }
9cce227f
TG
2660
2661 /* We're done reading the symbol file; finish off complaints. */
2662 clear_complaints (&symfile_complaints, 0, 1);
2663
2664 /* Getting new symbols may change our opinion about what is
2665 frameless. */
2666
2667 reinit_frame_cache ();
2668
2669 /* Discard cleanups as symbol reading was successful. */
2670 discard_cleanups (old_cleanups);
2671
2672 /* If the mtime has changed between the time we set new_modtime
2673 and now, we *want* this to be out of date, so don't call stat
2674 again now. */
2675 objfile->mtime = new_modtime;
9cce227f 2676 init_entry_point_info (objfile);
4ac39b97 2677
4c404b8b 2678 new_objfiles.push_back (objfile);
c906108c
SS
2679 }
2680 }
c906108c 2681
4c404b8b 2682 if (!new_objfiles.empty ())
ea53e89f 2683 {
c1e56572 2684 clear_symtab_users (0);
4ac39b97
JK
2685
2686 /* clear_objfile_data for each objfile was called before freeing it and
2687 observer_notify_new_objfile (NULL) has been called by
2688 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2689 for (auto iter : new_objfiles)
2690 observer_notify_new_objfile (iter);
4ac39b97 2691
ea53e89f
JB
2692 /* At least one objfile has changed, so we can consider that
2693 the executable we're debugging has changed too. */
781b42b0 2694 observer_notify_executable_changed ();
ea53e89f 2695 }
c906108c 2696}
c906108c
SS
2697\f
2698
c5aa993b
JM
2699typedef struct
2700{
2701 char *ext;
c906108c 2702 enum language lang;
3fcf0b0d
TT
2703} filename_language;
2704
2705DEF_VEC_O (filename_language);
c906108c 2706
3fcf0b0d 2707static VEC (filename_language) *filename_language_table;
c906108c 2708
56618e20
TT
2709/* See symfile.h. */
2710
2711void
2712add_filename_language (const char *ext, enum language lang)
c906108c 2713{
3fcf0b0d
TT
2714 filename_language entry;
2715
2716 entry.ext = xstrdup (ext);
2717 entry.lang = lang;
c906108c 2718
3fcf0b0d 2719 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2720}
2721
2722static char *ext_args;
920d2a44
AC
2723static void
2724show_ext_args (struct ui_file *file, int from_tty,
2725 struct cmd_list_element *c, const char *value)
2726{
3e43a32a
MS
2727 fprintf_filtered (file,
2728 _("Mapping between filename extension "
2729 "and source language is \"%s\".\n"),
920d2a44
AC
2730 value);
2731}
c906108c
SS
2732
2733static void
26c41df3 2734set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2735{
2736 int i;
2737 char *cp = ext_args;
2738 enum language lang;
3fcf0b0d 2739 filename_language *entry;
c906108c 2740
c378eb4e 2741 /* First arg is filename extension, starting with '.' */
c906108c 2742 if (*cp != '.')
8a3fe4f8 2743 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2744
2745 /* Find end of first arg. */
c5aa993b 2746 while (*cp && !isspace (*cp))
c906108c
SS
2747 cp++;
2748
2749 if (*cp == '\0')
3e43a32a
MS
2750 error (_("'%s': two arguments required -- "
2751 "filename extension and language"),
c906108c
SS
2752 ext_args);
2753
c378eb4e 2754 /* Null-terminate first arg. */
c5aa993b 2755 *cp++ = '\0';
c906108c
SS
2756
2757 /* Find beginning of second arg, which should be a source language. */
529480d0 2758 cp = skip_spaces (cp);
c906108c
SS
2759
2760 if (*cp == '\0')
3e43a32a
MS
2761 error (_("'%s': two arguments required -- "
2762 "filename extension and language"),
c906108c
SS
2763 ext_args);
2764
2765 /* Lookup the language from among those we know. */
2766 lang = language_enum (cp);
2767
2768 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2769 for (i = 0;
2770 VEC_iterate (filename_language, filename_language_table, i, entry);
2771 ++i)
2772 {
2773 if (0 == strcmp (ext_args, entry->ext))
2774 break;
2775 }
c906108c 2776
3fcf0b0d 2777 if (entry == NULL)
c906108c 2778 {
c378eb4e 2779 /* New file extension. */
c906108c
SS
2780 add_filename_language (ext_args, lang);
2781 }
2782 else
2783 {
c378eb4e 2784 /* Redefining a previously known filename extension. */
c906108c
SS
2785
2786 /* if (from_tty) */
2787 /* query ("Really make files of type %s '%s'?", */
2788 /* ext_args, language_str (lang)); */
2789
3fcf0b0d
TT
2790 xfree (entry->ext);
2791 entry->ext = xstrdup (ext_args);
2792 entry->lang = lang;
c906108c
SS
2793 }
2794}
2795
2796static void
fba45db2 2797info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2798{
2799 int i;
3fcf0b0d 2800 filename_language *entry;
c906108c 2801
a3f17187 2802 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2803 printf_filtered ("\n\n");
3fcf0b0d
TT
2804 for (i = 0;
2805 VEC_iterate (filename_language, filename_language_table, i, entry);
2806 ++i)
2807 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2808}
2809
c906108c 2810enum language
dd786858 2811deduce_language_from_filename (const char *filename)
c906108c
SS
2812{
2813 int i;
e6a959d6 2814 const char *cp;
c906108c
SS
2815
2816 if (filename != NULL)
2817 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2818 {
2819 filename_language *entry;
2820
2821 for (i = 0;
2822 VEC_iterate (filename_language, filename_language_table, i, entry);
2823 ++i)
2824 if (strcmp (cp, entry->ext) == 0)
2825 return entry->lang;
2826 }
c906108c
SS
2827
2828 return language_unknown;
2829}
2830\f
43f3e411
DE
2831/* Allocate and initialize a new symbol table.
2832 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2833
2834struct symtab *
43f3e411 2835allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2836{
43f3e411
DE
2837 struct objfile *objfile = cust->objfile;
2838 struct symtab *symtab
2839 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2840
19ba03f4
SM
2841 symtab->filename
2842 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2843 objfile->per_bfd->filename_cache);
c5aa993b
JM
2844 symtab->fullname = NULL;
2845 symtab->language = deduce_language_from_filename (filename);
c906108c 2846
db0fec5c
DE
2847 /* This can be very verbose with lots of headers.
2848 Only print at higher debug levels. */
2849 if (symtab_create_debug >= 2)
45cfd468
DE
2850 {
2851 /* Be a bit clever with debugging messages, and don't print objfile
2852 every time, only when it changes. */
2853 static char *last_objfile_name = NULL;
2854
2855 if (last_objfile_name == NULL
4262abfb 2856 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2857 {
2858 xfree (last_objfile_name);
4262abfb 2859 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2860 fprintf_unfiltered (gdb_stdlog,
2861 "Creating one or more symtabs for objfile %s ...\n",
2862 last_objfile_name);
2863 }
2864 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2865 "Created symtab %s for module %s.\n",
2866 host_address_to_string (symtab), filename);
45cfd468
DE
2867 }
2868
43f3e411
DE
2869 /* Add it to CUST's list of symtabs. */
2870 if (cust->filetabs == NULL)
2871 {
2872 cust->filetabs = symtab;
2873 cust->last_filetab = symtab;
2874 }
2875 else
2876 {
2877 cust->last_filetab->next = symtab;
2878 cust->last_filetab = symtab;
2879 }
2880
2881 /* Backlink to the containing compunit symtab. */
2882 symtab->compunit_symtab = cust;
2883
2884 return symtab;
2885}
2886
2887/* Allocate and initialize a new compunit.
2888 NAME is the name of the main source file, if there is one, or some
2889 descriptive text if there are no source files. */
2890
2891struct compunit_symtab *
2892allocate_compunit_symtab (struct objfile *objfile, const char *name)
2893{
2894 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2895 struct compunit_symtab);
2896 const char *saved_name;
2897
2898 cu->objfile = objfile;
2899
2900 /* The name we record here is only for display/debugging purposes.
2901 Just save the basename to avoid path issues (too long for display,
2902 relative vs absolute, etc.). */
2903 saved_name = lbasename (name);
224c3ddb
SM
2904 cu->name
2905 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2906 strlen (saved_name));
43f3e411
DE
2907
2908 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2909
2910 if (symtab_create_debug)
2911 {
2912 fprintf_unfiltered (gdb_stdlog,
2913 "Created compunit symtab %s for %s.\n",
2914 host_address_to_string (cu),
2915 cu->name);
2916 }
2917
2918 return cu;
2919}
2920
2921/* Hook CU to the objfile it comes from. */
2922
2923void
2924add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2925{
2926 cu->next = cu->objfile->compunit_symtabs;
2927 cu->objfile->compunit_symtabs = cu;
c906108c 2928}
c906108c 2929\f
c5aa993b 2930
b15cc25c
PA
2931/* Reset all data structures in gdb which may contain references to
2932 symbol table data. */
c906108c
SS
2933
2934void
b15cc25c 2935clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2936{
2937 /* Someday, we should do better than this, by only blowing away
2938 the things that really need to be blown. */
c0501be5
DJ
2939
2940 /* Clear the "current" symtab first, because it is no longer valid.
2941 breakpoint_re_set may try to access the current symtab. */
2942 clear_current_source_symtab_and_line ();
2943
c906108c 2944 clear_displays ();
1bfeeb0f 2945 clear_last_displayed_sal ();
c906108c 2946 clear_pc_function_cache ();
06d3b283 2947 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2948
2949 /* Clear globals which might have pointed into a removed objfile.
2950 FIXME: It's not clear which of these are supposed to persist
2951 between expressions and which ought to be reset each time. */
2952 expression_context_block = NULL;
2953 innermost_block = NULL;
8756216b
DP
2954
2955 /* Varobj may refer to old symbols, perform a cleanup. */
2956 varobj_invalidate ();
2957
e700d1b2
JB
2958 /* Now that the various caches have been cleared, we can re_set
2959 our breakpoints without risking it using stale data. */
2960 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2961 breakpoint_re_set ();
c906108c
SS
2962}
2963
74b7792f
AC
2964static void
2965clear_symtab_users_cleanup (void *ignore)
2966{
c1e56572 2967 clear_symtab_users (0);
74b7792f 2968}
c906108c 2969\f
c906108c
SS
2970/* OVERLAYS:
2971 The following code implements an abstraction for debugging overlay sections.
2972
2973 The target model is as follows:
2974 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2975 same VMA, each with its own unique LMA (or load address).
c906108c 2976 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2977 sections, one by one, from the load address into the VMA address.
5417f6dc 2978 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2979 sections should be considered to be mapped from the VMA to the LMA.
2980 This information is used for symbol lookup, and memory read/write.
5417f6dc 2981 For instance, if a section has been mapped then its contents
c5aa993b 2982 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2983
2984 Two levels of debugger support for overlays are available. One is
2985 "manual", in which the debugger relies on the user to tell it which
2986 overlays are currently mapped. This level of support is
2987 implemented entirely in the core debugger, and the information about
2988 whether a section is mapped is kept in the objfile->obj_section table.
2989
2990 The second level of support is "automatic", and is only available if
2991 the target-specific code provides functionality to read the target's
2992 overlay mapping table, and translate its contents for the debugger
2993 (by updating the mapped state information in the obj_section tables).
2994
2995 The interface is as follows:
c5aa993b
JM
2996 User commands:
2997 overlay map <name> -- tell gdb to consider this section mapped
2998 overlay unmap <name> -- tell gdb to consider this section unmapped
2999 overlay list -- list the sections that GDB thinks are mapped
3000 overlay read-target -- get the target's state of what's mapped
3001 overlay off/manual/auto -- set overlay debugging state
3002 Functional interface:
3003 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3004 section, return that section.
5417f6dc 3005 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3006 the pc, either in its VMA or its LMA
714835d5 3007 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3008 section_is_overlay(sect): true if section's VMA != LMA
3009 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3010 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3011 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3012 overlay_mapped_address(...): map an address from section's LMA to VMA
3013 overlay_unmapped_address(...): map an address from section's VMA to LMA
3014 symbol_overlayed_address(...): Return a "current" address for symbol:
3015 either in VMA or LMA depending on whether
c378eb4e 3016 the symbol's section is currently mapped. */
c906108c
SS
3017
3018/* Overlay debugging state: */
3019
d874f1e2 3020enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3021int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3022
c906108c 3023/* Function: section_is_overlay (SECTION)
5417f6dc 3024 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3025 SECTION is loaded at an address different from where it will "run". */
3026
3027int
714835d5 3028section_is_overlay (struct obj_section *section)
c906108c 3029{
714835d5
UW
3030 if (overlay_debugging && section)
3031 {
3032 bfd *abfd = section->objfile->obfd;
3033 asection *bfd_section = section->the_bfd_section;
f888f159 3034
714835d5
UW
3035 if (bfd_section_lma (abfd, bfd_section) != 0
3036 && bfd_section_lma (abfd, bfd_section)
3037 != bfd_section_vma (abfd, bfd_section))
3038 return 1;
3039 }
c906108c
SS
3040
3041 return 0;
3042}
3043
3044/* Function: overlay_invalidate_all (void)
3045 Invalidate the mapped state of all overlay sections (mark it as stale). */
3046
3047static void
fba45db2 3048overlay_invalidate_all (void)
c906108c 3049{
c5aa993b 3050 struct objfile *objfile;
c906108c
SS
3051 struct obj_section *sect;
3052
3053 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3054 if (section_is_overlay (sect))
3055 sect->ovly_mapped = -1;
c906108c
SS
3056}
3057
714835d5 3058/* Function: section_is_mapped (SECTION)
5417f6dc 3059 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3060
3061 Access to the ovly_mapped flag is restricted to this function, so
3062 that we can do automatic update. If the global flag
3063 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3064 overlay_invalidate_all. If the mapped state of the particular
3065 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3066
714835d5
UW
3067int
3068section_is_mapped (struct obj_section *osect)
c906108c 3069{
9216df95
UW
3070 struct gdbarch *gdbarch;
3071
714835d5 3072 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3073 return 0;
3074
c5aa993b 3075 switch (overlay_debugging)
c906108c
SS
3076 {
3077 default:
d874f1e2 3078 case ovly_off:
c5aa993b 3079 return 0; /* overlay debugging off */
d874f1e2 3080 case ovly_auto: /* overlay debugging automatic */
1c772458 3081 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3082 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3083 gdbarch = get_objfile_arch (osect->objfile);
3084 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3085 {
3086 if (overlay_cache_invalid)
3087 {
3088 overlay_invalidate_all ();
3089 overlay_cache_invalid = 0;
3090 }
3091 if (osect->ovly_mapped == -1)
9216df95 3092 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3093 }
3094 /* fall thru to manual case */
d874f1e2 3095 case ovly_on: /* overlay debugging manual */
c906108c
SS
3096 return osect->ovly_mapped == 1;
3097 }
3098}
3099
c906108c
SS
3100/* Function: pc_in_unmapped_range
3101 If PC falls into the lma range of SECTION, return true, else false. */
3102
3103CORE_ADDR
714835d5 3104pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3105{
714835d5
UW
3106 if (section_is_overlay (section))
3107 {
3108 bfd *abfd = section->objfile->obfd;
3109 asection *bfd_section = section->the_bfd_section;
fbd35540 3110
714835d5
UW
3111 /* We assume the LMA is relocated by the same offset as the VMA. */
3112 bfd_vma size = bfd_get_section_size (bfd_section);
3113 CORE_ADDR offset = obj_section_offset (section);
3114
3115 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3116 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3117 return 1;
3118 }
c906108c 3119
c906108c
SS
3120 return 0;
3121}
3122
3123/* Function: pc_in_mapped_range
3124 If PC falls into the vma range of SECTION, return true, else false. */
3125
3126CORE_ADDR
714835d5 3127pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3128{
714835d5
UW
3129 if (section_is_overlay (section))
3130 {
3131 if (obj_section_addr (section) <= pc
3132 && pc < obj_section_endaddr (section))
3133 return 1;
3134 }
c906108c 3135
c906108c
SS
3136 return 0;
3137}
3138
9ec8e6a0
JB
3139/* Return true if the mapped ranges of sections A and B overlap, false
3140 otherwise. */
3b7bacac 3141
b9362cc7 3142static int
714835d5 3143sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3144{
714835d5
UW
3145 CORE_ADDR a_start = obj_section_addr (a);
3146 CORE_ADDR a_end = obj_section_endaddr (a);
3147 CORE_ADDR b_start = obj_section_addr (b);
3148 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3149
3150 return (a_start < b_end && b_start < a_end);
3151}
3152
c906108c
SS
3153/* Function: overlay_unmapped_address (PC, SECTION)
3154 Returns the address corresponding to PC in the unmapped (load) range.
3155 May be the same as PC. */
3156
3157CORE_ADDR
714835d5 3158overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3159{
714835d5
UW
3160 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3161 {
3162 bfd *abfd = section->objfile->obfd;
3163 asection *bfd_section = section->the_bfd_section;
fbd35540 3164
714835d5
UW
3165 return pc + bfd_section_lma (abfd, bfd_section)
3166 - bfd_section_vma (abfd, bfd_section);
3167 }
c906108c
SS
3168
3169 return pc;
3170}
3171
3172/* Function: overlay_mapped_address (PC, SECTION)
3173 Returns the address corresponding to PC in the mapped (runtime) range.
3174 May be the same as PC. */
3175
3176CORE_ADDR
714835d5 3177overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3178{
714835d5
UW
3179 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3180 {
3181 bfd *abfd = section->objfile->obfd;
3182 asection *bfd_section = section->the_bfd_section;
fbd35540 3183
714835d5
UW
3184 return pc + bfd_section_vma (abfd, bfd_section)
3185 - bfd_section_lma (abfd, bfd_section);
3186 }
c906108c
SS
3187
3188 return pc;
3189}
3190
5417f6dc 3191/* Function: symbol_overlayed_address
c906108c
SS
3192 Return one of two addresses (relative to the VMA or to the LMA),
3193 depending on whether the section is mapped or not. */
3194
c5aa993b 3195CORE_ADDR
714835d5 3196symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3197{
3198 if (overlay_debugging)
3199 {
c378eb4e 3200 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3201 if (section == 0)
3202 return address;
c378eb4e
MS
3203 /* If the symbol's section is not an overlay, just return its
3204 address. */
c906108c
SS
3205 if (!section_is_overlay (section))
3206 return address;
c378eb4e 3207 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3208 if (section_is_mapped (section))
3209 return address;
3210 /*
3211 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3212 * then return its LOADED address rather than its vma address!!
3213 */
3214 return overlay_unmapped_address (address, section);
3215 }
3216 return address;
3217}
3218
5417f6dc 3219/* Function: find_pc_overlay (PC)
c906108c
SS
3220 Return the best-match overlay section for PC:
3221 If PC matches a mapped overlay section's VMA, return that section.
3222 Else if PC matches an unmapped section's VMA, return that section.
3223 Else if PC matches an unmapped section's LMA, return that section. */
3224
714835d5 3225struct obj_section *
fba45db2 3226find_pc_overlay (CORE_ADDR pc)
c906108c 3227{
c5aa993b 3228 struct objfile *objfile;
c906108c
SS
3229 struct obj_section *osect, *best_match = NULL;
3230
3231 if (overlay_debugging)
b631e59b
KT
3232 {
3233 ALL_OBJSECTIONS (objfile, osect)
3234 if (section_is_overlay (osect))
c5aa993b 3235 {
b631e59b
KT
3236 if (pc_in_mapped_range (pc, osect))
3237 {
3238 if (section_is_mapped (osect))
3239 return osect;
3240 else
3241 best_match = osect;
3242 }
3243 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3244 best_match = osect;
3245 }
b631e59b 3246 }
714835d5 3247 return best_match;
c906108c
SS
3248}
3249
3250/* Function: find_pc_mapped_section (PC)
5417f6dc 3251 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3252 currently marked as MAPPED, return that section. Else return NULL. */
3253
714835d5 3254struct obj_section *
fba45db2 3255find_pc_mapped_section (CORE_ADDR pc)
c906108c 3256{
c5aa993b 3257 struct objfile *objfile;
c906108c
SS
3258 struct obj_section *osect;
3259
3260 if (overlay_debugging)
b631e59b
KT
3261 {
3262 ALL_OBJSECTIONS (objfile, osect)
3263 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3264 return osect;
3265 }
c906108c
SS
3266
3267 return NULL;
3268}
3269
3270/* Function: list_overlays_command
c378eb4e 3271 Print a list of mapped sections and their PC ranges. */
c906108c 3272
5d3055ad 3273static void
fba45db2 3274list_overlays_command (char *args, int from_tty)
c906108c 3275{
c5aa993b
JM
3276 int nmapped = 0;
3277 struct objfile *objfile;
c906108c
SS
3278 struct obj_section *osect;
3279
3280 if (overlay_debugging)
b631e59b
KT
3281 {
3282 ALL_OBJSECTIONS (objfile, osect)
714835d5 3283 if (section_is_mapped (osect))
b631e59b
KT
3284 {
3285 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3286 const char *name;
3287 bfd_vma lma, vma;
3288 int size;
3289
3290 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3291 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3292 size = bfd_get_section_size (osect->the_bfd_section);
3293 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3294
3295 printf_filtered ("Section %s, loaded at ", name);
3296 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3297 puts_filtered (" - ");
3298 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3299 printf_filtered (", mapped at ");
3300 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3301 puts_filtered (" - ");
3302 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3303 puts_filtered ("\n");
3304
3305 nmapped++;
3306 }
3307 }
c906108c 3308 if (nmapped == 0)
a3f17187 3309 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3310}
3311
3312/* Function: map_overlay_command
3313 Mark the named section as mapped (ie. residing at its VMA address). */
3314
5d3055ad 3315static void
fba45db2 3316map_overlay_command (char *args, int from_tty)
c906108c 3317{
c5aa993b
JM
3318 struct objfile *objfile, *objfile2;
3319 struct obj_section *sec, *sec2;
c906108c
SS
3320
3321 if (!overlay_debugging)
3e43a32a
MS
3322 error (_("Overlay debugging not enabled. Use "
3323 "either the 'overlay auto' or\n"
3324 "the 'overlay manual' command."));
c906108c
SS
3325
3326 if (args == 0 || *args == 0)
8a3fe4f8 3327 error (_("Argument required: name of an overlay section"));
c906108c 3328
c378eb4e 3329 /* First, find a section matching the user supplied argument. */
c906108c
SS
3330 ALL_OBJSECTIONS (objfile, sec)
3331 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3332 {
c378eb4e 3333 /* Now, check to see if the section is an overlay. */
714835d5 3334 if (!section_is_overlay (sec))
c5aa993b
JM
3335 continue; /* not an overlay section */
3336
c378eb4e 3337 /* Mark the overlay as "mapped". */
c5aa993b
JM
3338 sec->ovly_mapped = 1;
3339
3340 /* Next, make a pass and unmap any sections that are
3341 overlapped by this new section: */
3342 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3343 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3344 {
3345 if (info_verbose)
a3f17187 3346 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3347 bfd_section_name (objfile->obfd,
3348 sec2->the_bfd_section));
c378eb4e 3349 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3350 }
3351 return;
3352 }
8a3fe4f8 3353 error (_("No overlay section called %s"), args);
c906108c
SS
3354}
3355
3356/* Function: unmap_overlay_command
5417f6dc 3357 Mark the overlay section as unmapped
c906108c
SS
3358 (ie. resident in its LMA address range, rather than the VMA range). */
3359
5d3055ad 3360static void
fba45db2 3361unmap_overlay_command (char *args, int from_tty)
c906108c 3362{
c5aa993b 3363 struct objfile *objfile;
7a270e0c 3364 struct obj_section *sec = NULL;
c906108c
SS
3365
3366 if (!overlay_debugging)
3e43a32a
MS
3367 error (_("Overlay debugging not enabled. "
3368 "Use either the 'overlay auto' or\n"
3369 "the 'overlay manual' command."));
c906108c
SS
3370
3371 if (args == 0 || *args == 0)
8a3fe4f8 3372 error (_("Argument required: name of an overlay section"));
c906108c 3373
c378eb4e 3374 /* First, find a section matching the user supplied argument. */
c906108c
SS
3375 ALL_OBJSECTIONS (objfile, sec)
3376 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3377 {
3378 if (!sec->ovly_mapped)
8a3fe4f8 3379 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3380 sec->ovly_mapped = 0;
3381 return;
3382 }
8a3fe4f8 3383 error (_("No overlay section called %s"), args);
c906108c
SS
3384}
3385
3386/* Function: overlay_auto_command
3387 A utility command to turn on overlay debugging.
c378eb4e 3388 Possibly this should be done via a set/show command. */
c906108c
SS
3389
3390static void
fba45db2 3391overlay_auto_command (char *args, int from_tty)
c906108c 3392{
d874f1e2 3393 overlay_debugging = ovly_auto;
1900040c 3394 enable_overlay_breakpoints ();
c906108c 3395 if (info_verbose)
a3f17187 3396 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3397}
3398
3399/* Function: overlay_manual_command
3400 A utility command to turn on overlay debugging.
c378eb4e 3401 Possibly this should be done via a set/show command. */
c906108c
SS
3402
3403static void
fba45db2 3404overlay_manual_command (char *args, int from_tty)
c906108c 3405{
d874f1e2 3406 overlay_debugging = ovly_on;
1900040c 3407 disable_overlay_breakpoints ();
c906108c 3408 if (info_verbose)
a3f17187 3409 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3410}
3411
3412/* Function: overlay_off_command
3413 A utility command to turn on overlay debugging.
c378eb4e 3414 Possibly this should be done via a set/show command. */
c906108c
SS
3415
3416static void
fba45db2 3417overlay_off_command (char *args, int from_tty)
c906108c 3418{
d874f1e2 3419 overlay_debugging = ovly_off;
1900040c 3420 disable_overlay_breakpoints ();
c906108c 3421 if (info_verbose)
a3f17187 3422 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3423}
3424
3425static void
fba45db2 3426overlay_load_command (char *args, int from_tty)
c906108c 3427{
e17c207e
UW
3428 struct gdbarch *gdbarch = get_current_arch ();
3429
3430 if (gdbarch_overlay_update_p (gdbarch))
3431 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3432 else
8a3fe4f8 3433 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3434}
3435
3436/* Function: overlay_command
c378eb4e 3437 A place-holder for a mis-typed command. */
c906108c 3438
c378eb4e 3439/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3440static struct cmd_list_element *overlaylist;
c906108c
SS
3441
3442static void
fba45db2 3443overlay_command (char *args, int from_tty)
c906108c 3444{
c5aa993b 3445 printf_unfiltered
c906108c 3446 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3447 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3448}
3449
c906108c
SS
3450/* Target Overlays for the "Simplest" overlay manager:
3451
5417f6dc
RM
3452 This is GDB's default target overlay layer. It works with the
3453 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3454 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3455 so targets that use a different runtime overlay manager can
c906108c
SS
3456 substitute their own overlay_update function and take over the
3457 function pointer.
3458
3459 The overlay_update function pokes around in the target's data structures
3460 to see what overlays are mapped, and updates GDB's overlay mapping with
3461 this information.
3462
3463 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3464 unsigned _novlys; /# number of overlay sections #/
3465 unsigned _ovly_table[_novlys][4] = {
438e1e42 3466 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3467 {..., ..., ..., ...},
3468 }
3469 unsigned _novly_regions; /# number of overlay regions #/
3470 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3471 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3472 {..., ..., ...},
3473 }
c906108c
SS
3474 These functions will attempt to update GDB's mappedness state in the
3475 symbol section table, based on the target's mappedness state.
3476
3477 To do this, we keep a cached copy of the target's _ovly_table, and
3478 attempt to detect when the cached copy is invalidated. The main
3479 entry point is "simple_overlay_update(SECT), which looks up SECT in
3480 the cached table and re-reads only the entry for that section from
c378eb4e 3481 the target (whenever possible). */
c906108c
SS
3482
3483/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3484static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3485static unsigned cache_novlys = 0;
c906108c 3486static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3487enum ovly_index
3488 {
438e1e42 3489 VMA, OSIZE, LMA, MAPPED
c5aa993b 3490 };
c906108c 3491
c378eb4e 3492/* Throw away the cached copy of _ovly_table. */
3b7bacac 3493
c906108c 3494static void
fba45db2 3495simple_free_overlay_table (void)
c906108c
SS
3496{
3497 if (cache_ovly_table)
b8c9b27d 3498 xfree (cache_ovly_table);
c5aa993b 3499 cache_novlys = 0;
c906108c
SS
3500 cache_ovly_table = NULL;
3501 cache_ovly_table_base = 0;
3502}
3503
9216df95 3504/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3505 Convert to host order. int LEN is number of ints. */
3b7bacac 3506
c906108c 3507static void
9216df95 3508read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3509 int len, int size, enum bfd_endian byte_order)
c906108c 3510{
c378eb4e 3511 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3512 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3513 int i;
c906108c 3514
9216df95 3515 read_memory (memaddr, buf, len * size);
c906108c 3516 for (i = 0; i < len; i++)
e17a4113 3517 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3518}
3519
3520/* Find and grab a copy of the target _ovly_table
c378eb4e 3521 (and _novlys, which is needed for the table's size). */
3b7bacac 3522
c5aa993b 3523static int
fba45db2 3524simple_read_overlay_table (void)
c906108c 3525{
3b7344d5 3526 struct bound_minimal_symbol novlys_msym;
7c7b6655 3527 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3528 struct gdbarch *gdbarch;
3529 int word_size;
e17a4113 3530 enum bfd_endian byte_order;
c906108c
SS
3531
3532 simple_free_overlay_table ();
9b27852e 3533 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3534 if (! novlys_msym.minsym)
c906108c 3535 {
8a3fe4f8 3536 error (_("Error reading inferior's overlay table: "
0d43edd1 3537 "couldn't find `_novlys' variable\n"
8a3fe4f8 3538 "in inferior. Use `overlay manual' mode."));
0d43edd1 3539 return 0;
c906108c 3540 }
0d43edd1 3541
7c7b6655
TT
3542 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3543 if (! ovly_table_msym.minsym)
0d43edd1 3544 {
8a3fe4f8 3545 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3546 "`_ovly_table' array\n"
8a3fe4f8 3547 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3548 return 0;
3549 }
3550
7c7b6655 3551 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3552 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3553 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3554
77e371c0
TT
3555 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3556 4, byte_order);
0d43edd1 3557 cache_ovly_table
224c3ddb 3558 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3559 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3560 read_target_long_array (cache_ovly_table_base,
777ea8f1 3561 (unsigned int *) cache_ovly_table,
e17a4113 3562 cache_novlys * 4, word_size, byte_order);
0d43edd1 3563
c5aa993b 3564 return 1; /* SUCCESS */
c906108c
SS
3565}
3566
5417f6dc 3567/* Function: simple_overlay_update_1
c906108c
SS
3568 A helper function for simple_overlay_update. Assuming a cached copy
3569 of _ovly_table exists, look through it to find an entry whose vma,
3570 lma and size match those of OSECT. Re-read the entry and make sure
3571 it still matches OSECT (else the table may no longer be valid).
3572 Set OSECT's mapped state to match the entry. Return: 1 for
3573 success, 0 for failure. */
3574
3575static int
fba45db2 3576simple_overlay_update_1 (struct obj_section *osect)
c906108c 3577{
764c99c1 3578 int i;
fbd35540
MS
3579 bfd *obfd = osect->objfile->obfd;
3580 asection *bsect = osect->the_bfd_section;
9216df95
UW
3581 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3582 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3583 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3584
c906108c 3585 for (i = 0; i < cache_novlys; i++)
fbd35540 3586 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3587 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3588 {
9216df95
UW
3589 read_target_long_array (cache_ovly_table_base + i * word_size,
3590 (unsigned int *) cache_ovly_table[i],
e17a4113 3591 4, word_size, byte_order);
fbd35540 3592 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3593 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3594 {
3595 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3596 return 1;
3597 }
c378eb4e 3598 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3599 return 0;
3600 }
3601 return 0;
3602}
3603
3604/* Function: simple_overlay_update
5417f6dc
RM
3605 If OSECT is NULL, then update all sections' mapped state
3606 (after re-reading the entire target _ovly_table).
3607 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3608 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3609 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3610 re-read the entire cache, and go ahead and update all sections. */
3611
1c772458 3612void
fba45db2 3613simple_overlay_update (struct obj_section *osect)
c906108c 3614{
c5aa993b 3615 struct objfile *objfile;
c906108c 3616
c378eb4e 3617 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3618 if (osect)
c378eb4e 3619 /* Have we got a cached copy of the target's overlay table? */
c906108c 3620 if (cache_ovly_table != NULL)
9cc89665
MS
3621 {
3622 /* Does its cached location match what's currently in the
3623 symtab? */
3b7344d5 3624 struct bound_minimal_symbol minsym
9cc89665
MS
3625 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3626
3b7344d5 3627 if (minsym.minsym == NULL)
9cc89665
MS
3628 error (_("Error reading inferior's overlay table: couldn't "
3629 "find `_ovly_table' array\n"
3630 "in inferior. Use `overlay manual' mode."));
3631
77e371c0 3632 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3633 /* Then go ahead and try to look up this single section in
3634 the cache. */
3635 if (simple_overlay_update_1 (osect))
3636 /* Found it! We're done. */
3637 return;
3638 }
c906108c
SS
3639
3640 /* Cached table no good: need to read the entire table anew.
3641 Or else we want all the sections, in which case it's actually
3642 more efficient to read the whole table in one block anyway. */
3643
0d43edd1
JB
3644 if (! simple_read_overlay_table ())
3645 return;
3646
c378eb4e 3647 /* Now may as well update all sections, even if only one was requested. */
c906108c 3648 ALL_OBJSECTIONS (objfile, osect)
714835d5 3649 if (section_is_overlay (osect))
c5aa993b 3650 {
764c99c1 3651 int i;
fbd35540
MS
3652 bfd *obfd = osect->objfile->obfd;
3653 asection *bsect = osect->the_bfd_section;
c5aa993b 3654
c5aa993b 3655 for (i = 0; i < cache_novlys; i++)
fbd35540 3656 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3657 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3658 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3659 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3660 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3661 }
3662 }
c906108c
SS
3663}
3664
086df311
DJ
3665/* Set the output sections and output offsets for section SECTP in
3666 ABFD. The relocation code in BFD will read these offsets, so we
3667 need to be sure they're initialized. We map each section to itself,
3668 with no offset; this means that SECTP->vma will be honored. */
3669
3670static void
3671symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3672{
3673 sectp->output_section = sectp;
3674 sectp->output_offset = 0;
3675}
3676
ac8035ab
TG
3677/* Default implementation for sym_relocate. */
3678
ac8035ab
TG
3679bfd_byte *
3680default_symfile_relocate (struct objfile *objfile, asection *sectp,
3681 bfd_byte *buf)
3682{
3019eac3
DE
3683 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3684 DWO file. */
3685 bfd *abfd = sectp->owner;
ac8035ab
TG
3686
3687 /* We're only interested in sections with relocation
3688 information. */
3689 if ((sectp->flags & SEC_RELOC) == 0)
3690 return NULL;
3691
3692 /* We will handle section offsets properly elsewhere, so relocate as if
3693 all sections begin at 0. */
3694 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3695
3696 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3697}
3698
086df311
DJ
3699/* Relocate the contents of a debug section SECTP in ABFD. The
3700 contents are stored in BUF if it is non-NULL, or returned in a
3701 malloc'd buffer otherwise.
3702
3703 For some platforms and debug info formats, shared libraries contain
3704 relocations against the debug sections (particularly for DWARF-2;
3705 one affected platform is PowerPC GNU/Linux, although it depends on
3706 the version of the linker in use). Also, ELF object files naturally
3707 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3708 the relocations in order to get the locations of symbols correct.
3709 Another example that may require relocation processing, is the
3710 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3711 debug section. */
086df311
DJ
3712
3713bfd_byte *
ac8035ab
TG
3714symfile_relocate_debug_section (struct objfile *objfile,
3715 asection *sectp, bfd_byte *buf)
086df311 3716{
ac8035ab 3717 gdb_assert (objfile->sf->sym_relocate);
086df311 3718
ac8035ab 3719 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3720}
c906108c 3721
31d99776
DJ
3722struct symfile_segment_data *
3723get_symfile_segment_data (bfd *abfd)
3724{
00b5771c 3725 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3726
3727 if (sf == NULL)
3728 return NULL;
3729
3730 return sf->sym_segments (abfd);
3731}
3732
3733void
3734free_symfile_segment_data (struct symfile_segment_data *data)
3735{
3736 xfree (data->segment_bases);
3737 xfree (data->segment_sizes);
3738 xfree (data->segment_info);
3739 xfree (data);
3740}
3741
28c32713
JB
3742/* Given:
3743 - DATA, containing segment addresses from the object file ABFD, and
3744 the mapping from ABFD's sections onto the segments that own them,
3745 and
3746 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3747 segment addresses reported by the target,
3748 store the appropriate offsets for each section in OFFSETS.
3749
3750 If there are fewer entries in SEGMENT_BASES than there are segments
3751 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3752
8d385431
DJ
3753 If there are more entries, then ignore the extra. The target may
3754 not be able to distinguish between an empty data segment and a
3755 missing data segment; a missing text segment is less plausible. */
3b7bacac 3756
31d99776 3757int
3189cb12
DE
3758symfile_map_offsets_to_segments (bfd *abfd,
3759 const struct symfile_segment_data *data,
31d99776
DJ
3760 struct section_offsets *offsets,
3761 int num_segment_bases,
3762 const CORE_ADDR *segment_bases)
3763{
3764 int i;
3765 asection *sect;
3766
28c32713
JB
3767 /* It doesn't make sense to call this function unless you have some
3768 segment base addresses. */
202b96c1 3769 gdb_assert (num_segment_bases > 0);
28c32713 3770
31d99776
DJ
3771 /* If we do not have segment mappings for the object file, we
3772 can not relocate it by segments. */
3773 gdb_assert (data != NULL);
3774 gdb_assert (data->num_segments > 0);
3775
31d99776
DJ
3776 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3777 {
31d99776
DJ
3778 int which = data->segment_info[i];
3779
28c32713
JB
3780 gdb_assert (0 <= which && which <= data->num_segments);
3781
3782 /* Don't bother computing offsets for sections that aren't
3783 loaded as part of any segment. */
3784 if (! which)
3785 continue;
3786
3787 /* Use the last SEGMENT_BASES entry as the address of any extra
3788 segments mentioned in DATA->segment_info. */
31d99776 3789 if (which > num_segment_bases)
28c32713 3790 which = num_segment_bases;
31d99776 3791
28c32713
JB
3792 offsets->offsets[i] = (segment_bases[which - 1]
3793 - data->segment_bases[which - 1]);
31d99776
DJ
3794 }
3795
3796 return 1;
3797}
3798
3799static void
3800symfile_find_segment_sections (struct objfile *objfile)
3801{
3802 bfd *abfd = objfile->obfd;
3803 int i;
3804 asection *sect;
3805 struct symfile_segment_data *data;
3806
3807 data = get_symfile_segment_data (objfile->obfd);
3808 if (data == NULL)
3809 return;
3810
3811 if (data->num_segments != 1 && data->num_segments != 2)
3812 {
3813 free_symfile_segment_data (data);
3814 return;
3815 }
3816
3817 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3818 {
31d99776
DJ
3819 int which = data->segment_info[i];
3820
3821 if (which == 1)
3822 {
3823 if (objfile->sect_index_text == -1)
3824 objfile->sect_index_text = sect->index;
3825
3826 if (objfile->sect_index_rodata == -1)
3827 objfile->sect_index_rodata = sect->index;
3828 }
3829 else if (which == 2)
3830 {
3831 if (objfile->sect_index_data == -1)
3832 objfile->sect_index_data = sect->index;
3833
3834 if (objfile->sect_index_bss == -1)
3835 objfile->sect_index_bss = sect->index;
3836 }
3837 }
3838
3839 free_symfile_segment_data (data);
3840}
3841
76ad5e1e
NB
3842/* Listen for free_objfile events. */
3843
3844static void
3845symfile_free_objfile (struct objfile *objfile)
3846{
c33b2f12
MM
3847 /* Remove the target sections owned by this objfile. */
3848 if (objfile != NULL)
76ad5e1e
NB
3849 remove_target_sections ((void *) objfile);
3850}
3851
540c2971
DE
3852/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3853 Expand all symtabs that match the specified criteria.
3854 See quick_symbol_functions.expand_symtabs_matching for details. */
3855
3856void
14bc53a8
PA
3857expand_symtabs_matching
3858 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3859 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3860 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3861 enum search_domain kind)
540c2971
DE
3862{
3863 struct objfile *objfile;
3864
3865 ALL_OBJFILES (objfile)
3866 {
3867 if (objfile->sf)
bb4142cf 3868 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3869 symbol_matcher,
14bc53a8 3870 expansion_notify, kind);
540c2971
DE
3871 }
3872}
3873
3874/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3875 Map function FUN over every file.
3876 See quick_symbol_functions.map_symbol_filenames for details. */
3877
3878void
bb4142cf
DE
3879map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3880 int need_fullname)
540c2971
DE
3881{
3882 struct objfile *objfile;
3883
3884 ALL_OBJFILES (objfile)
3885 {
3886 if (objfile->sf)
3887 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3888 need_fullname);
3889 }
3890}
3891
c906108c 3892void
fba45db2 3893_initialize_symfile (void)
c906108c
SS
3894{
3895 struct cmd_list_element *c;
c5aa993b 3896
76ad5e1e
NB
3897 observer_attach_free_objfile (symfile_free_objfile);
3898
1a966eab
AC
3899 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3900Load symbol table from executable file FILE.\n\
c906108c 3901The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3902to execute."), &cmdlist);
5ba2abeb 3903 set_cmd_completer (c, filename_completer);
c906108c 3904
1a966eab 3905 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3906Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3907Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3908 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3909The optional arguments are section-name section-address pairs and\n\
3910should be specified if the data and bss segments are not contiguous\n\
1a966eab 3911with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3912 &cmdlist);
5ba2abeb 3913 set_cmd_completer (c, filename_completer);
c906108c 3914
63644780
NB
3915 c = add_cmd ("remove-symbol-file", class_files,
3916 remove_symbol_file_command, _("\
3917Remove a symbol file added via the add-symbol-file command.\n\
3918Usage: remove-symbol-file FILENAME\n\
3919 remove-symbol-file -a ADDRESS\n\
3920The file to remove can be identified by its filename or by an address\n\
3921that lies within the boundaries of this symbol file in memory."),
3922 &cmdlist);
3923
1a966eab
AC
3924 c = add_cmd ("load", class_files, load_command, _("\
3925Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3926for access from GDB.\n\
5cf30ebf
LM
3927An optional load OFFSET may also be given as a literal address.\n\
3928When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3929on its own.\n\
3930Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3931 set_cmd_completer (c, filename_completer);
c906108c 3932
c5aa993b 3933 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3934 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3935 "overlay ", 0, &cmdlist);
3936
3937 add_com_alias ("ovly", "overlay", class_alias, 1);
3938 add_com_alias ("ov", "overlay", class_alias, 1);
3939
c5aa993b 3940 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3941 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3942
c5aa993b 3943 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3944 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3945
c5aa993b 3946 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3947 _("List mappings of overlay sections."), &overlaylist);
c906108c 3948
c5aa993b 3949 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3950 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3951 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3952 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3953 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3954 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3955 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3956 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3957
3958 /* Filename extension to source language lookup table: */
26c41df3
AC
3959 add_setshow_string_noescape_cmd ("extension-language", class_files,
3960 &ext_args, _("\
3961Set mapping between filename extension and source language."), _("\
3962Show mapping between filename extension and source language."), _("\
3963Usage: set extension-language .foo bar"),
3964 set_ext_lang_command,
920d2a44 3965 show_ext_args,
26c41df3 3966 &setlist, &showlist);
c906108c 3967
c5aa993b 3968 add_info ("extensions", info_ext_lang_command,
1bedd215 3969 _("All filename extensions associated with a source language."));
917317f4 3970
525226b5
AC
3971 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3972 &debug_file_directory, _("\
24ddea62
JK
3973Set the directories where separate debug symbols are searched for."), _("\
3974Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3975Separate debug symbols are first searched for in the same\n\
3976directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3977and lastly at the path of the directory of the binary with\n\
24ddea62 3978each global debug-file-directory component prepended."),
525226b5 3979 NULL,
920d2a44 3980 show_debug_file_directory,
525226b5 3981 &setlist, &showlist);
770e7fc7
DE
3982
3983 add_setshow_enum_cmd ("symbol-loading", no_class,
3984 print_symbol_loading_enums, &print_symbol_loading,
3985 _("\
3986Set printing of symbol loading messages."), _("\
3987Show printing of symbol loading messages."), _("\
3988off == turn all messages off\n\
3989brief == print messages for the executable,\n\
3990 and brief messages for shared libraries\n\
3991full == print messages for the executable,\n\
3992 and messages for each shared library."),
3993 NULL,
3994 NULL,
3995 &setprintlist, &showprintlist);
c4dcb155
SM
3996
3997 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3998 &separate_debug_file_debug, _("\
3999Set printing of separate debug info file search debug."), _("\
4000Show printing of separate debug info file search debug."), _("\
4001When on, GDB prints the searched locations while looking for separate debug \
4002info files."), NULL, NULL, &setdebuglist, &showdebuglist);
c906108c 4003}
This page took 2.269269 seconds and 4 git commands to generate.