Use gdb::def_vector in sparc64-tdep.c
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* Functions this file defines. */
c906108c 86
a14ed312 87static void load_command (char *, int);
c906108c 88
ecf45d2c 89static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 90 objfile_flags flags);
d7db6da9 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
a14ed312 105static void info_ext_lang_command (char *args, int from_tty);
392a587b 106
31d99776
DJ
107static void symfile_find_segment_sections (struct objfile *objfile);
108
c906108c
SS
109/* List of all available sym_fns. On gdb startup, each object file reader
110 calls add_symtab_fns() to register information on each format it is
c378eb4e 111 prepared to read. */
c906108c 112
905014d7 113struct registered_sym_fns
c256e171 114{
905014d7
SM
115 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
116 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
117 {}
118
c256e171
DE
119 /* BFD flavour that we handle. */
120 enum bfd_flavour sym_flavour;
121
122 /* The "vtable" of symbol functions. */
123 const struct sym_fns *sym_fns;
905014d7 124};
c256e171 125
905014d7 126static std::vector<registered_sym_fns> symtab_fns;
c906108c 127
770e7fc7
DE
128/* Values for "set print symbol-loading". */
129
130const char print_symbol_loading_off[] = "off";
131const char print_symbol_loading_brief[] = "brief";
132const char print_symbol_loading_full[] = "full";
133static const char *print_symbol_loading_enums[] =
134{
135 print_symbol_loading_off,
136 print_symbol_loading_brief,
137 print_symbol_loading_full,
138 NULL
139};
140static const char *print_symbol_loading = print_symbol_loading_full;
141
b7209cb4
FF
142/* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
c906108c 149 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 150 report all the functions that are actually present. */
c906108c
SS
151
152int auto_solib_add = 1;
c906108c 153\f
c5aa993b 154
770e7fc7
DE
155/* Return non-zero if symbol-loading messages should be printed.
156 FROM_TTY is the standard from_tty argument to gdb commands.
157 If EXEC is non-zero the messages are for the executable.
158 Otherwise, messages are for shared libraries.
159 If FULL is non-zero then the caller is printing a detailed message.
160 E.g., the message includes the shared library name.
161 Otherwise, the caller is printing a brief "summary" message. */
162
163int
164print_symbol_loading_p (int from_tty, int exec, int full)
165{
166 if (!from_tty && !info_verbose)
167 return 0;
168
169 if (exec)
170 {
171 /* We don't check FULL for executables, there are few such
172 messages, therefore brief == full. */
173 return print_symbol_loading != print_symbol_loading_off;
174 }
175 if (full)
176 return print_symbol_loading == print_symbol_loading_full;
177 return print_symbol_loading == print_symbol_loading_brief;
178}
179
0d14a781 180/* True if we are reading a symbol table. */
c906108c
SS
181
182int currently_reading_symtab = 0;
183
ccefe4c4
TT
184/* Increment currently_reading_symtab and return a cleanup that can be
185 used to decrement it. */
3b7bacac 186
c83dd867 187scoped_restore_tmpl<int>
ccefe4c4 188increment_reading_symtab (void)
c906108c 189{
c83dd867
TT
190 gdb_assert (currently_reading_symtab >= 0);
191 return make_scoped_restore (&currently_reading_symtab,
192 currently_reading_symtab + 1);
c906108c
SS
193}
194
5417f6dc
RM
195/* Remember the lowest-addressed loadable section we've seen.
196 This function is called via bfd_map_over_sections.
c906108c
SS
197
198 In case of equal vmas, the section with the largest size becomes the
199 lowest-addressed loadable section.
200
201 If the vmas and sizes are equal, the last section is considered the
202 lowest-addressed loadable section. */
203
204void
4efb68b1 205find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 206{
c5aa993b 207 asection **lowest = (asection **) obj;
c906108c 208
eb73e134 209 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
210 return;
211 if (!*lowest)
212 *lowest = sect; /* First loadable section */
213 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
214 *lowest = sect; /* A lower loadable section */
215 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
216 && (bfd_section_size (abfd, (*lowest))
217 <= bfd_section_size (abfd, sect)))
218 *lowest = sect;
219}
220
d76488d8
TT
221/* Create a new section_addr_info, with room for NUM_SECTIONS. The
222 new object's 'num_sections' field is set to 0; it must be updated
223 by the caller. */
a39a16c4
MM
224
225struct section_addr_info *
226alloc_section_addr_info (size_t num_sections)
227{
228 struct section_addr_info *sap;
229 size_t size;
230
231 size = (sizeof (struct section_addr_info)
232 + sizeof (struct other_sections) * (num_sections - 1));
233 sap = (struct section_addr_info *) xmalloc (size);
234 memset (sap, 0, size);
a39a16c4
MM
235
236 return sap;
237}
62557bbc
KB
238
239/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 240 an existing section table. */
62557bbc
KB
241
242extern struct section_addr_info *
0542c86d
PA
243build_section_addr_info_from_section_table (const struct target_section *start,
244 const struct target_section *end)
62557bbc
KB
245{
246 struct section_addr_info *sap;
0542c86d 247 const struct target_section *stp;
62557bbc
KB
248 int oidx;
249
a39a16c4 250 sap = alloc_section_addr_info (end - start);
62557bbc
KB
251
252 for (stp = start, oidx = 0; stp != end; stp++)
253 {
2b2848e2
DE
254 struct bfd_section *asect = stp->the_bfd_section;
255 bfd *abfd = asect->owner;
256
257 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 258 && oidx < end - start)
62557bbc
KB
259 {
260 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
261 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
262 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
263 oidx++;
264 }
265 }
266
d76488d8
TT
267 sap->num_sections = oidx;
268
62557bbc
KB
269 return sap;
270}
271
82ccf5a5 272/* Create a section_addr_info from section offsets in ABFD. */
089b4803 273
82ccf5a5
JK
274static struct section_addr_info *
275build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
276{
277 struct section_addr_info *sap;
278 int i;
279 struct bfd_section *sec;
280
82ccf5a5
JK
281 sap = alloc_section_addr_info (bfd_count_sections (abfd));
282 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
283 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 284 {
82ccf5a5
JK
285 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
286 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 287 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
288 i++;
289 }
d76488d8
TT
290
291 sap->num_sections = i;
292
089b4803
TG
293 return sap;
294}
295
82ccf5a5
JK
296/* Create a section_addr_info from section offsets in OBJFILE. */
297
298struct section_addr_info *
299build_section_addr_info_from_objfile (const struct objfile *objfile)
300{
301 struct section_addr_info *sap;
302 int i;
303
304 /* Before reread_symbols gets rewritten it is not safe to call:
305 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
306 */
307 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 308 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
309 {
310 int sectindex = sap->other[i].sectindex;
311
312 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
313 }
314 return sap;
315}
62557bbc 316
c378eb4e 317/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
318
319extern void
320free_section_addr_info (struct section_addr_info *sap)
321{
322 int idx;
323
a39a16c4 324 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 325 xfree (sap->other[idx].name);
b8c9b27d 326 xfree (sap);
62557bbc
KB
327}
328
e8289572 329/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 330
e8289572
JB
331static void
332init_objfile_sect_indices (struct objfile *objfile)
c906108c 333{
e8289572 334 asection *sect;
c906108c 335 int i;
5417f6dc 336
b8fbeb18 337 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 338 if (sect)
b8fbeb18
EZ
339 objfile->sect_index_text = sect->index;
340
341 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 342 if (sect)
b8fbeb18
EZ
343 objfile->sect_index_data = sect->index;
344
345 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 346 if (sect)
b8fbeb18
EZ
347 objfile->sect_index_bss = sect->index;
348
349 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 350 if (sect)
b8fbeb18
EZ
351 objfile->sect_index_rodata = sect->index;
352
bbcd32ad
FF
353 /* This is where things get really weird... We MUST have valid
354 indices for the various sect_index_* members or gdb will abort.
355 So if for example, there is no ".text" section, we have to
31d99776
DJ
356 accomodate that. First, check for a file with the standard
357 one or two segments. */
358
359 symfile_find_segment_sections (objfile);
360
361 /* Except when explicitly adding symbol files at some address,
362 section_offsets contains nothing but zeros, so it doesn't matter
363 which slot in section_offsets the individual sect_index_* members
364 index into. So if they are all zero, it is safe to just point
365 all the currently uninitialized indices to the first slot. But
366 beware: if this is the main executable, it may be relocated
367 later, e.g. by the remote qOffsets packet, and then this will
368 be wrong! That's why we try segments first. */
bbcd32ad
FF
369
370 for (i = 0; i < objfile->num_sections; i++)
371 {
372 if (ANOFFSET (objfile->section_offsets, i) != 0)
373 {
374 break;
375 }
376 }
377 if (i == objfile->num_sections)
378 {
379 if (objfile->sect_index_text == -1)
380 objfile->sect_index_text = 0;
381 if (objfile->sect_index_data == -1)
382 objfile->sect_index_data = 0;
383 if (objfile->sect_index_bss == -1)
384 objfile->sect_index_bss = 0;
385 if (objfile->sect_index_rodata == -1)
386 objfile->sect_index_rodata = 0;
387 }
b8fbeb18 388}
c906108c 389
c1bd25fd
DJ
390/* The arguments to place_section. */
391
392struct place_section_arg
393{
394 struct section_offsets *offsets;
395 CORE_ADDR lowest;
396};
397
398/* Find a unique offset to use for loadable section SECT if
399 the user did not provide an offset. */
400
2c0b251b 401static void
c1bd25fd
DJ
402place_section (bfd *abfd, asection *sect, void *obj)
403{
19ba03f4 404 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
405 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
406 int done;
3bd72c6f 407 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 408
2711e456
DJ
409 /* We are only interested in allocated sections. */
410 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
411 return;
412
413 /* If the user specified an offset, honor it. */
65cf3563 414 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
415 return;
416
417 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
418 start_addr = (arg->lowest + align - 1) & -align;
419
c1bd25fd
DJ
420 do {
421 asection *cur_sec;
c1bd25fd 422
c1bd25fd
DJ
423 done = 1;
424
425 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
426 {
427 int indx = cur_sec->index;
c1bd25fd
DJ
428
429 /* We don't need to compare against ourself. */
430 if (cur_sec == sect)
431 continue;
432
2711e456
DJ
433 /* We can only conflict with allocated sections. */
434 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
435 continue;
436
437 /* If the section offset is 0, either the section has not been placed
438 yet, or it was the lowest section placed (in which case LOWEST
439 will be past its end). */
440 if (offsets[indx] == 0)
441 continue;
442
443 /* If this section would overlap us, then we must move up. */
444 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
445 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
446 {
447 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
448 start_addr = (start_addr + align - 1) & -align;
449 done = 0;
3bd72c6f 450 break;
c1bd25fd
DJ
451 }
452
453 /* Otherwise, we appear to be OK. So far. */
454 }
455 }
456 while (!done);
457
65cf3563 458 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 459 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 460}
e8289572 461
75242ef4
JK
462/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
463 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
464 entries. */
e8289572
JB
465
466void
75242ef4
JK
467relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
468 int num_sections,
3189cb12 469 const struct section_addr_info *addrs)
e8289572
JB
470{
471 int i;
472
75242ef4 473 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 474
c378eb4e 475 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 476 for (i = 0; i < addrs->num_sections; i++)
e8289572 477 {
3189cb12 478 const struct other_sections *osp;
e8289572 479
75242ef4 480 osp = &addrs->other[i];
5488dafb 481 if (osp->sectindex == -1)
e8289572
JB
482 continue;
483
c378eb4e 484 /* Record all sections in offsets. */
e8289572 485 /* The section_offsets in the objfile are here filled in using
c378eb4e 486 the BFD index. */
75242ef4
JK
487 section_offsets->offsets[osp->sectindex] = osp->addr;
488 }
489}
490
1276c759
JK
491/* Transform section name S for a name comparison. prelink can split section
492 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
493 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
494 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
495 (`.sbss') section has invalid (increased) virtual address. */
496
497static const char *
498addr_section_name (const char *s)
499{
500 if (strcmp (s, ".dynbss") == 0)
501 return ".bss";
502 if (strcmp (s, ".sdynbss") == 0)
503 return ".sbss";
504
505 return s;
506}
507
82ccf5a5
JK
508/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
509 their (name, sectindex) pair. sectindex makes the sort by name stable. */
510
511static int
512addrs_section_compar (const void *ap, const void *bp)
513{
514 const struct other_sections *a = *((struct other_sections **) ap);
515 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 516 int retval;
82ccf5a5 517
1276c759 518 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
519 if (retval)
520 return retval;
521
5488dafb 522 return a->sectindex - b->sectindex;
82ccf5a5
JK
523}
524
525/* Provide sorted array of pointers to sections of ADDRS. The array is
526 terminated by NULL. Caller is responsible to call xfree for it. */
527
528static struct other_sections **
529addrs_section_sort (struct section_addr_info *addrs)
530{
531 struct other_sections **array;
532 int i;
533
534 /* `+ 1' for the NULL terminator. */
8d749320 535 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 536 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
537 array[i] = &addrs->other[i];
538 array[i] = NULL;
539
540 qsort (array, i, sizeof (*array), addrs_section_compar);
541
542 return array;
543}
544
75242ef4 545/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
546 also SECTINDEXes specific to ABFD there. This function can be used to
547 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
548
549void
550addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
551{
552 asection *lower_sect;
75242ef4
JK
553 CORE_ADDR lower_offset;
554 int i;
82ccf5a5
JK
555 struct cleanup *my_cleanup;
556 struct section_addr_info *abfd_addrs;
557 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
558 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
559
560 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
561 continguous sections. */
562 lower_sect = NULL;
563 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
564 if (lower_sect == NULL)
565 {
566 warning (_("no loadable sections found in added symbol-file %s"),
567 bfd_get_filename (abfd));
568 lower_offset = 0;
e8289572 569 }
75242ef4
JK
570 else
571 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
572
82ccf5a5
JK
573 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
574 in ABFD. Section names are not unique - there can be multiple sections of
575 the same name. Also the sections of the same name do not have to be
576 adjacent to each other. Some sections may be present only in one of the
577 files. Even sections present in both files do not have to be in the same
578 order.
579
580 Use stable sort by name for the sections in both files. Then linearly
581 scan both lists matching as most of the entries as possible. */
582
583 addrs_sorted = addrs_section_sort (addrs);
584 my_cleanup = make_cleanup (xfree, addrs_sorted);
585
586 abfd_addrs = build_section_addr_info_from_bfd (abfd);
587 make_cleanup_free_section_addr_info (abfd_addrs);
588 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
589 make_cleanup (xfree, abfd_addrs_sorted);
590
c378eb4e
MS
591 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
592 ABFD_ADDRS_SORTED. */
82ccf5a5 593
8d749320 594 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
595 make_cleanup (xfree, addrs_to_abfd_addrs);
596
597 while (*addrs_sorted)
598 {
1276c759 599 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
600
601 while (*abfd_addrs_sorted
1276c759
JK
602 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
603 sect_name) < 0)
82ccf5a5
JK
604 abfd_addrs_sorted++;
605
606 if (*abfd_addrs_sorted
1276c759
JK
607 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
608 sect_name) == 0)
82ccf5a5
JK
609 {
610 int index_in_addrs;
611
612 /* Make the found item directly addressable from ADDRS. */
613 index_in_addrs = *addrs_sorted - addrs->other;
614 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
615 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
616
617 /* Never use the same ABFD entry twice. */
618 abfd_addrs_sorted++;
619 }
620
621 addrs_sorted++;
622 }
623
75242ef4
JK
624 /* Calculate offsets for the loadable sections.
625 FIXME! Sections must be in order of increasing loadable section
626 so that contiguous sections can use the lower-offset!!!
627
628 Adjust offsets if the segments are not contiguous.
629 If the section is contiguous, its offset should be set to
630 the offset of the highest loadable section lower than it
631 (the loadable section directly below it in memory).
632 this_offset = lower_offset = lower_addr - lower_orig_addr */
633
d76488d8 634 for (i = 0; i < addrs->num_sections; i++)
75242ef4 635 {
82ccf5a5 636 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
637
638 if (sect)
75242ef4 639 {
c378eb4e 640 /* This is the index used by BFD. */
82ccf5a5 641 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
642
643 if (addrs->other[i].addr != 0)
75242ef4 644 {
82ccf5a5 645 addrs->other[i].addr -= sect->addr;
75242ef4 646 lower_offset = addrs->other[i].addr;
75242ef4
JK
647 }
648 else
672d9c23 649 addrs->other[i].addr = lower_offset;
75242ef4
JK
650 }
651 else
672d9c23 652 {
1276c759
JK
653 /* addr_section_name transformation is not used for SECT_NAME. */
654 const char *sect_name = addrs->other[i].name;
655
b0fcb67f
JK
656 /* This section does not exist in ABFD, which is normally
657 unexpected and we want to issue a warning.
658
4d9743af
JK
659 However, the ELF prelinker does create a few sections which are
660 marked in the main executable as loadable (they are loaded in
661 memory from the DYNAMIC segment) and yet are not present in
662 separate debug info files. This is fine, and should not cause
663 a warning. Shared libraries contain just the section
664 ".gnu.liblist" but it is not marked as loadable there. There is
665 no other way to identify them than by their name as the sections
1276c759
JK
666 created by prelink have no special flags.
667
668 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
669
670 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 671 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
672 || (strcmp (sect_name, ".bss") == 0
673 && i > 0
674 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
675 && addrs_to_abfd_addrs[i - 1] != NULL)
676 || (strcmp (sect_name, ".sbss") == 0
677 && i > 0
678 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
679 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
680 warning (_("section %s not found in %s"), sect_name,
681 bfd_get_filename (abfd));
682
672d9c23 683 addrs->other[i].addr = 0;
5488dafb 684 addrs->other[i].sectindex = -1;
672d9c23 685 }
75242ef4 686 }
82ccf5a5
JK
687
688 do_cleanups (my_cleanup);
75242ef4
JK
689}
690
691/* Parse the user's idea of an offset for dynamic linking, into our idea
692 of how to represent it for fast symbol reading. This is the default
693 version of the sym_fns.sym_offsets function for symbol readers that
694 don't need to do anything special. It allocates a section_offsets table
695 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
696
697void
698default_symfile_offsets (struct objfile *objfile,
3189cb12 699 const struct section_addr_info *addrs)
75242ef4 700{
d445b2f6 701 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
702 objfile->section_offsets = (struct section_offsets *)
703 obstack_alloc (&objfile->objfile_obstack,
704 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
705 relative_addr_info_to_section_offsets (objfile->section_offsets,
706 objfile->num_sections, addrs);
e8289572 707
c1bd25fd
DJ
708 /* For relocatable files, all loadable sections will start at zero.
709 The zero is meaningless, so try to pick arbitrary addresses such
710 that no loadable sections overlap. This algorithm is quadratic,
711 but the number of sections in a single object file is generally
712 small. */
713 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
714 {
715 struct place_section_arg arg;
2711e456
DJ
716 bfd *abfd = objfile->obfd;
717 asection *cur_sec;
2711e456
DJ
718
719 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
720 /* We do not expect this to happen; just skip this step if the
721 relocatable file has a section with an assigned VMA. */
722 if (bfd_section_vma (abfd, cur_sec) != 0)
723 break;
724
725 if (cur_sec == NULL)
726 {
727 CORE_ADDR *offsets = objfile->section_offsets->offsets;
728
729 /* Pick non-overlapping offsets for sections the user did not
730 place explicitly. */
731 arg.offsets = objfile->section_offsets;
732 arg.lowest = 0;
733 bfd_map_over_sections (objfile->obfd, place_section, &arg);
734
735 /* Correctly filling in the section offsets is not quite
736 enough. Relocatable files have two properties that
737 (most) shared objects do not:
738
739 - Their debug information will contain relocations. Some
740 shared libraries do also, but many do not, so this can not
741 be assumed.
742
743 - If there are multiple code sections they will be loaded
744 at different relative addresses in memory than they are
745 in the objfile, since all sections in the file will start
746 at address zero.
747
748 Because GDB has very limited ability to map from an
749 address in debug info to the correct code section,
750 it relies on adding SECT_OFF_TEXT to things which might be
751 code. If we clear all the section offsets, and set the
752 section VMAs instead, then symfile_relocate_debug_section
753 will return meaningful debug information pointing at the
754 correct sections.
755
756 GDB has too many different data structures for section
757 addresses - a bfd, objfile, and so_list all have section
758 tables, as does exec_ops. Some of these could probably
759 be eliminated. */
760
761 for (cur_sec = abfd->sections; cur_sec != NULL;
762 cur_sec = cur_sec->next)
763 {
764 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
765 continue;
766
767 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
768 exec_set_section_address (bfd_get_filename (abfd),
769 cur_sec->index,
30510692 770 offsets[cur_sec->index]);
2711e456
DJ
771 offsets[cur_sec->index] = 0;
772 }
773 }
c1bd25fd
DJ
774 }
775
e8289572 776 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 777 .rodata sections. */
e8289572
JB
778 init_objfile_sect_indices (objfile);
779}
780
31d99776
DJ
781/* Divide the file into segments, which are individual relocatable units.
782 This is the default version of the sym_fns.sym_segments function for
783 symbol readers that do not have an explicit representation of segments.
784 It assumes that object files do not have segments, and fully linked
785 files have a single segment. */
786
787struct symfile_segment_data *
788default_symfile_segments (bfd *abfd)
789{
790 int num_sections, i;
791 asection *sect;
792 struct symfile_segment_data *data;
793 CORE_ADDR low, high;
794
795 /* Relocatable files contain enough information to position each
796 loadable section independently; they should not be relocated
797 in segments. */
798 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
799 return NULL;
800
801 /* Make sure there is at least one loadable section in the file. */
802 for (sect = abfd->sections; sect != NULL; sect = sect->next)
803 {
804 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
805 continue;
806
807 break;
808 }
809 if (sect == NULL)
810 return NULL;
811
812 low = bfd_get_section_vma (abfd, sect);
813 high = low + bfd_get_section_size (sect);
814
41bf6aca 815 data = XCNEW (struct symfile_segment_data);
31d99776 816 data->num_segments = 1;
fc270c35
TT
817 data->segment_bases = XCNEW (CORE_ADDR);
818 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
819
820 num_sections = bfd_count_sections (abfd);
fc270c35 821 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
822
823 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
824 {
825 CORE_ADDR vma;
826
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 vma = bfd_get_section_vma (abfd, sect);
831 if (vma < low)
832 low = vma;
833 if (vma + bfd_get_section_size (sect) > high)
834 high = vma + bfd_get_section_size (sect);
835
836 data->segment_info[i] = 1;
837 }
838
839 data->segment_bases[0] = low;
840 data->segment_sizes[0] = high - low;
841
842 return data;
843}
844
608e2dbb
TT
845/* This is a convenience function to call sym_read for OBJFILE and
846 possibly force the partial symbols to be read. */
847
848static void
b15cc25c 849read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
850{
851 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 852 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
853
854 /* find_separate_debug_file_in_section should be called only if there is
855 single binary with no existing separate debug info file. */
856 if (!objfile_has_partial_symbols (objfile)
857 && objfile->separate_debug_objfile == NULL
858 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 859 {
192b62ce 860 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
861
862 if (abfd != NULL)
24ba069a
JK
863 {
864 /* find_separate_debug_file_in_section uses the same filename for the
865 virtual section-as-bfd like the bfd filename containing the
866 section. Therefore use also non-canonical name form for the same
867 file containing the section. */
192b62ce
TT
868 symbol_file_add_separate (abfd.get (), objfile->original_name,
869 add_flags, objfile);
24ba069a 870 }
608e2dbb
TT
871 }
872 if ((add_flags & SYMFILE_NO_READ) == 0)
873 require_partial_symbols (objfile, 0);
874}
875
3d6e24f0
JB
876/* Initialize entry point information for this objfile. */
877
878static void
879init_entry_point_info (struct objfile *objfile)
880{
6ef55de7
TT
881 struct entry_info *ei = &objfile->per_bfd->ei;
882
883 if (ei->initialized)
884 return;
885 ei->initialized = 1;
886
3d6e24f0
JB
887 /* Save startup file's range of PC addresses to help blockframe.c
888 decide where the bottom of the stack is. */
889
890 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
891 {
892 /* Executable file -- record its entry point so we'll recognize
893 the startup file because it contains the entry point. */
6ef55de7
TT
894 ei->entry_point = bfd_get_start_address (objfile->obfd);
895 ei->entry_point_p = 1;
3d6e24f0
JB
896 }
897 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
898 && bfd_get_start_address (objfile->obfd) != 0)
899 {
900 /* Some shared libraries may have entry points set and be
901 runnable. There's no clear way to indicate this, so just check
902 for values other than zero. */
6ef55de7
TT
903 ei->entry_point = bfd_get_start_address (objfile->obfd);
904 ei->entry_point_p = 1;
3d6e24f0
JB
905 }
906 else
907 {
908 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 909 ei->entry_point_p = 0;
3d6e24f0
JB
910 }
911
6ef55de7 912 if (ei->entry_point_p)
3d6e24f0 913 {
53eddfa6 914 struct obj_section *osect;
6ef55de7 915 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 916 int found;
3d6e24f0
JB
917
918 /* Make certain that the address points at real code, and not a
919 function descriptor. */
920 entry_point
df6d5441 921 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
922 entry_point,
923 &current_target);
924
925 /* Remove any ISA markers, so that this matches entries in the
926 symbol table. */
6ef55de7 927 ei->entry_point
df6d5441 928 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
929
930 found = 0;
931 ALL_OBJFILE_OSECTIONS (objfile, osect)
932 {
933 struct bfd_section *sect = osect->the_bfd_section;
934
935 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
936 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
937 + bfd_get_section_size (sect)))
938 {
6ef55de7 939 ei->the_bfd_section_index
53eddfa6
TT
940 = gdb_bfd_section_index (objfile->obfd, sect);
941 found = 1;
942 break;
943 }
944 }
945
946 if (!found)
6ef55de7 947 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
948 }
949}
950
c906108c
SS
951/* Process a symbol file, as either the main file or as a dynamically
952 loaded file.
953
36e4d068
JB
954 This function does not set the OBJFILE's entry-point info.
955
96baa820
JM
956 OBJFILE is where the symbols are to be read from.
957
7e8580c1
JB
958 ADDRS is the list of section load addresses. If the user has given
959 an 'add-symbol-file' command, then this is the list of offsets and
960 addresses he or she provided as arguments to the command; or, if
961 we're handling a shared library, these are the actual addresses the
962 sections are loaded at, according to the inferior's dynamic linker
963 (as gleaned by GDB's shared library code). We convert each address
964 into an offset from the section VMA's as it appears in the object
965 file, and then call the file's sym_offsets function to convert this
966 into a format-specific offset table --- a `struct section_offsets'.
96baa820 967
7eedccfa
PP
968 ADD_FLAGS encodes verbosity level, whether this is main symbol or
969 an extra symbol file such as dynamically loaded code, and wether
970 breakpoint reset should be deferred. */
c906108c 971
36e4d068
JB
972static void
973syms_from_objfile_1 (struct objfile *objfile,
974 struct section_addr_info *addrs,
b15cc25c 975 symfile_add_flags add_flags)
c906108c 976{
a39a16c4 977 struct section_addr_info *local_addr = NULL;
c906108c 978 struct cleanup *old_chain;
7eedccfa 979 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 980
8fb8eb5c 981 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 982
75245b24 983 if (objfile->sf == NULL)
36e4d068
JB
984 {
985 /* No symbols to load, but we still need to make sure
986 that the section_offsets table is allocated. */
d445b2f6 987 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 988 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
989
990 objfile->num_sections = num_sections;
991 objfile->section_offsets
224c3ddb
SM
992 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
993 size);
36e4d068
JB
994 memset (objfile->section_offsets, 0, size);
995 return;
996 }
75245b24 997
c906108c
SS
998 /* Make sure that partially constructed symbol tables will be cleaned up
999 if an error occurs during symbol reading. */
74b7792f 1000 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1001
6bf667bb
DE
1002 /* If ADDRS is NULL, put together a dummy address list.
1003 We now establish the convention that an addr of zero means
c378eb4e 1004 no load address was specified. */
6bf667bb 1005 if (! addrs)
a39a16c4 1006 {
d445b2f6 1007 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1008 make_cleanup (xfree, local_addr);
1009 addrs = local_addr;
1010 }
1011
c5aa993b 1012 if (mainline)
c906108c
SS
1013 {
1014 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1015 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1016 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1017
1018 /* Since no error yet, throw away the old symbol table. */
1019
1020 if (symfile_objfile != NULL)
1021 {
9e86da07 1022 delete symfile_objfile;
adb7f338 1023 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1024 }
1025
1026 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1027 If the user wants to get rid of them, they should do "symbol-file"
1028 without arguments first. Not sure this is the best behavior
1029 (PR 2207). */
c906108c 1030
c5aa993b 1031 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1032 }
1033
1034 /* Convert addr into an offset rather than an absolute address.
1035 We find the lowest address of a loaded segment in the objfile,
53a5351d 1036 and assume that <addr> is where that got loaded.
c906108c 1037
53a5351d
JM
1038 We no longer warn if the lowest section is not a text segment (as
1039 happens for the PA64 port. */
6bf667bb 1040 if (addrs->num_sections > 0)
75242ef4 1041 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1042
1043 /* Initialize symbol reading routines for this objfile, allow complaints to
1044 appear for this new file, and record how verbose to be, then do the
c378eb4e 1045 initial symbol reading for this file. */
c906108c 1046
c5aa993b 1047 (*objfile->sf->sym_init) (objfile);
7eedccfa 1048 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1049
6bf667bb 1050 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1051
608e2dbb 1052 read_symbols (objfile, add_flags);
b11896a5 1053
c906108c
SS
1054 /* Discard cleanups as symbol reading was successful. */
1055
1056 discard_cleanups (old_chain);
f7545552 1057 xfree (local_addr);
c906108c
SS
1058}
1059
36e4d068
JB
1060/* Same as syms_from_objfile_1, but also initializes the objfile
1061 entry-point info. */
1062
6bf667bb 1063static void
36e4d068
JB
1064syms_from_objfile (struct objfile *objfile,
1065 struct section_addr_info *addrs,
b15cc25c 1066 symfile_add_flags add_flags)
36e4d068 1067{
6bf667bb 1068 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1069 init_entry_point_info (objfile);
1070}
1071
c906108c
SS
1072/* Perform required actions after either reading in the initial
1073 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1074 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1075
e7d52ed3 1076static void
b15cc25c 1077finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1078{
c906108c 1079 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1080 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1081 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1082 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1083 {
1084 /* OK, make it the "real" symbol file. */
1085 symfile_objfile = objfile;
1086
c1e56572 1087 clear_symtab_users (add_flags);
c906108c 1088 }
7eedccfa 1089 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1090 {
69de3c6a 1091 breakpoint_re_set ();
c906108c
SS
1092 }
1093
1094 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1095 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1096}
1097
1098/* Process a symbol file, as either the main file or as a dynamically
1099 loaded file.
1100
5417f6dc 1101 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1102 A new reference is acquired by this function.
7904e09f 1103
9e86da07 1104 For NAME description see the objfile constructor.
24ba069a 1105
7eedccfa
PP
1106 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1107 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1108
6bf667bb 1109 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1110 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1111
63524580
JK
1112 PARENT is the original objfile if ABFD is a separate debug info file.
1113 Otherwise PARENT is NULL.
1114
c906108c 1115 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1116 Upon failure, jumps back to command level (never returns). */
7eedccfa 1117
7904e09f 1118static struct objfile *
b15cc25c
PA
1119symbol_file_add_with_addrs (bfd *abfd, const char *name,
1120 symfile_add_flags add_flags,
6bf667bb 1121 struct section_addr_info *addrs,
b15cc25c 1122 objfile_flags flags, struct objfile *parent)
c906108c
SS
1123{
1124 struct objfile *objfile;
7eedccfa 1125 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1126 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1127 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1128 && (readnow_symbol_files
1129 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1130
9291a0cd 1131 if (readnow_symbol_files)
b11896a5
TT
1132 {
1133 flags |= OBJF_READNOW;
1134 add_flags &= ~SYMFILE_NO_READ;
1135 }
9291a0cd 1136
5417f6dc
RM
1137 /* Give user a chance to burp if we'd be
1138 interactively wiping out any existing symbols. */
c906108c
SS
1139
1140 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1141 && mainline
c906108c 1142 && from_tty
9e2f0ad4 1143 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1144 error (_("Not confirmed."));
c906108c 1145
b15cc25c
PA
1146 if (mainline)
1147 flags |= OBJF_MAINLINE;
9e86da07 1148 objfile = new struct objfile (abfd, name, flags);
c906108c 1149
63524580
JK
1150 if (parent)
1151 add_separate_debug_objfile (objfile, parent);
1152
78a4a9b9
AC
1153 /* We either created a new mapped symbol table, mapped an existing
1154 symbol table file which has not had initial symbol reading
c378eb4e 1155 performed, or need to read an unmapped symbol table. */
b11896a5 1156 if (should_print)
c906108c 1157 {
769d7dc4
AC
1158 if (deprecated_pre_add_symbol_hook)
1159 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1160 else
c906108c 1161 {
55333a84
DE
1162 printf_unfiltered (_("Reading symbols from %s..."), name);
1163 wrap_here ("");
1164 gdb_flush (gdb_stdout);
c906108c 1165 }
c906108c 1166 }
6bf667bb 1167 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1168
1169 /* We now have at least a partial symbol table. Check to see if the
1170 user requested that all symbols be read on initial access via either
1171 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1172 all partial symbol tables for this objfile if so. */
c906108c 1173
9291a0cd 1174 if ((flags & OBJF_READNOW))
c906108c 1175 {
b11896a5 1176 if (should_print)
c906108c 1177 {
a3f17187 1178 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1179 wrap_here ("");
1180 gdb_flush (gdb_stdout);
1181 }
1182
ccefe4c4
TT
1183 if (objfile->sf)
1184 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1185 }
1186
b11896a5 1187 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1188 {
1189 wrap_here ("");
55333a84 1190 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1191 wrap_here ("");
1192 }
1193
b11896a5 1194 if (should_print)
c906108c 1195 {
769d7dc4
AC
1196 if (deprecated_post_add_symbol_hook)
1197 deprecated_post_add_symbol_hook ();
c906108c 1198 else
55333a84 1199 printf_unfiltered (_("done.\n"));
c906108c
SS
1200 }
1201
481d0f41
JB
1202 /* We print some messages regardless of whether 'from_tty ||
1203 info_verbose' is true, so make sure they go out at the right
1204 time. */
1205 gdb_flush (gdb_stdout);
1206
109f874e 1207 if (objfile->sf == NULL)
8caee43b
PP
1208 {
1209 observer_notify_new_objfile (objfile);
c378eb4e 1210 return objfile; /* No symbols. */
8caee43b 1211 }
109f874e 1212
e7d52ed3 1213 finish_new_objfile (objfile, add_flags);
c906108c 1214
06d3b283 1215 observer_notify_new_objfile (objfile);
c906108c 1216
ce7d4522 1217 bfd_cache_close_all ();
c906108c
SS
1218 return (objfile);
1219}
1220
24ba069a 1221/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1222 see the objfile constructor. */
9cce227f
TG
1223
1224void
b15cc25c
PA
1225symbol_file_add_separate (bfd *bfd, const char *name,
1226 symfile_add_flags symfile_flags,
24ba069a 1227 struct objfile *objfile)
9cce227f 1228{
089b4803
TG
1229 struct section_addr_info *sap;
1230 struct cleanup *my_cleanup;
1231
1232 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1233 because sections of BFD may not match sections of OBJFILE and because
1234 vma may have been modified by tools such as prelink. */
1235 sap = build_section_addr_info_from_objfile (objfile);
1236 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1237
870f88f7 1238 symbol_file_add_with_addrs
24ba069a 1239 (bfd, name, symfile_flags, sap,
9cce227f 1240 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1241 | OBJF_USERLOADED),
1242 objfile);
089b4803
TG
1243
1244 do_cleanups (my_cleanup);
9cce227f 1245}
7904e09f 1246
eb4556d7
JB
1247/* Process the symbol file ABFD, as either the main file or as a
1248 dynamically loaded file.
6bf667bb 1249 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1250
eb4556d7 1251struct objfile *
b15cc25c
PA
1252symbol_file_add_from_bfd (bfd *abfd, const char *name,
1253 symfile_add_flags add_flags,
eb4556d7 1254 struct section_addr_info *addrs,
b15cc25c 1255 objfile_flags flags, struct objfile *parent)
eb4556d7 1256{
24ba069a
JK
1257 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1258 parent);
eb4556d7
JB
1259}
1260
7904e09f 1261/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1262 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1263
7904e09f 1264struct objfile *
b15cc25c
PA
1265symbol_file_add (const char *name, symfile_add_flags add_flags,
1266 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1267{
192b62ce 1268 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1269
192b62ce
TT
1270 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1271 flags, NULL);
7904e09f
JB
1272}
1273
d7db6da9
FN
1274/* Call symbol_file_add() with default values and update whatever is
1275 affected by the loading of a new main().
1276 Used when the file is supplied in the gdb command line
1277 and by some targets with special loading requirements.
1278 The auxiliary function, symbol_file_add_main_1(), has the flags
1279 argument for the switches that can only be specified in the symbol_file
1280 command itself. */
5417f6dc 1281
1adeb98a 1282void
ecf45d2c 1283symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1284{
ecf45d2c 1285 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1286}
1287
1288static void
ecf45d2c
SL
1289symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1290 objfile_flags flags)
d7db6da9 1291{
ecf45d2c 1292 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1293
7eedccfa 1294 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1295
d7db6da9
FN
1296 /* Getting new symbols may change our opinion about
1297 what is frameless. */
1298 reinit_frame_cache ();
1299
b15cc25c 1300 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1301 set_initial_language ();
1adeb98a
FN
1302}
1303
1304void
1305symbol_file_clear (int from_tty)
1306{
1307 if ((have_full_symbols () || have_partial_symbols ())
1308 && from_tty
0430b0d6
AS
1309 && (symfile_objfile
1310 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1311 objfile_name (symfile_objfile))
0430b0d6 1312 : !query (_("Discard symbol table? "))))
8a3fe4f8 1313 error (_("Not confirmed."));
1adeb98a 1314
0133421a
JK
1315 /* solib descriptors may have handles to objfiles. Wipe them before their
1316 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1317 no_shared_libraries (NULL, from_tty);
1318
0133421a
JK
1319 free_all_objfiles ();
1320
adb7f338 1321 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1322 if (from_tty)
1323 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1324}
1325
c4dcb155
SM
1326/* See symfile.h. */
1327
1328int separate_debug_file_debug = 0;
1329
5b5d99cf 1330static int
287ccc17 1331separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1332 struct objfile *parent_objfile)
5b5d99cf 1333{
904578ed
JK
1334 unsigned long file_crc;
1335 int file_crc_p;
32a0e547 1336 struct stat parent_stat, abfd_stat;
904578ed 1337 int verified_as_different;
32a0e547
JK
1338
1339 /* Find a separate debug info file as if symbols would be present in
1340 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1341 section can contain just the basename of PARENT_OBJFILE without any
1342 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1343 the separate debug infos with the same basename can exist. */
32a0e547 1344
4262abfb 1345 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1346 return 0;
5b5d99cf 1347
c4dcb155
SM
1348 if (separate_debug_file_debug)
1349 printf_unfiltered (_(" Trying %s\n"), name);
1350
192b62ce 1351 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1352
192b62ce 1353 if (abfd == NULL)
5b5d99cf
JB
1354 return 0;
1355
0ba1096a 1356 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1357
1358 Some operating systems, e.g. Windows, do not provide a meaningful
1359 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1360 meaningful st_dev.) Files accessed from gdbservers that do not
1361 support the vFile:fstat packet will also have st_ino set to zero.
1362 Do not indicate a duplicate library in either case. While there
1363 is no guarantee that a system that provides meaningful inode
1364 numbers will never set st_ino to zero, this is merely an
1365 optimization, so we do not need to worry about false negatives. */
32a0e547 1366
192b62ce 1367 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1368 && abfd_stat.st_ino != 0
1369 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1370 {
904578ed
JK
1371 if (abfd_stat.st_dev == parent_stat.st_dev
1372 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1373 return 0;
904578ed 1374 verified_as_different = 1;
32a0e547 1375 }
904578ed
JK
1376 else
1377 verified_as_different = 0;
32a0e547 1378
192b62ce 1379 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1380
904578ed
JK
1381 if (!file_crc_p)
1382 return 0;
1383
287ccc17
JK
1384 if (crc != file_crc)
1385 {
dccee2de
TT
1386 unsigned long parent_crc;
1387
0a93529c
GB
1388 /* If the files could not be verified as different with
1389 bfd_stat then we need to calculate the parent's CRC
1390 to verify whether the files are different or not. */
904578ed 1391
dccee2de 1392 if (!verified_as_different)
904578ed 1393 {
dccee2de 1394 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1395 return 0;
1396 }
1397
dccee2de 1398 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1399 warning (_("the debug information found in \"%s\""
1400 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1401 name, objfile_name (parent_objfile));
904578ed 1402
287ccc17
JK
1403 return 0;
1404 }
1405
1406 return 1;
5b5d99cf
JB
1407}
1408
aa28a74e 1409char *debug_file_directory = NULL;
920d2a44
AC
1410static void
1411show_debug_file_directory (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413{
3e43a32a
MS
1414 fprintf_filtered (file,
1415 _("The directory where separate debug "
1416 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1417 value);
1418}
5b5d99cf
JB
1419
1420#if ! defined (DEBUG_SUBDIRECTORY)
1421#define DEBUG_SUBDIRECTORY ".debug"
1422#endif
1423
1db33378
PP
1424/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1425 where the original file resides (may not be the same as
1426 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1427 looking for. CANON_DIR is the "realpath" form of DIR.
1428 DIR must contain a trailing '/'.
1429 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1430
1431static char *
1432find_separate_debug_file (const char *dir,
1433 const char *canon_dir,
1434 const char *debuglink,
1435 unsigned long crc32, struct objfile *objfile)
9cce227f 1436{
1db33378
PP
1437 char *debugdir;
1438 char *debugfile;
9cce227f 1439 int i;
e4ab2fad
JK
1440 VEC (char_ptr) *debugdir_vec;
1441 struct cleanup *back_to;
1442 int ix;
5b5d99cf 1443
c4dcb155
SM
1444 if (separate_debug_file_debug)
1445 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1446 "%s\n"), objfile_name (objfile));
1447
325fac50 1448 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1449 i = strlen (dir);
1db33378
PP
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1ffa32ee 1452
224c3ddb
SM
1453 debugfile
1454 = (char *) xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
5b5d99cf
JB
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1db33378 1463 strcat (debugfile, debuglink);
5b5d99cf 1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1466 return debugfile;
5417f6dc 1467
5b5d99cf
JB
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1db33378 1472 strcat (debugfile, debuglink);
5b5d99cf 1473
32a0e547 1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1475 return debugfile;
5417f6dc 1476
24ddea62 1477 /* Then try in the global debugfile directories.
f888f159 1478
24ddea62
JK
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
5417f6dc 1481
e4ab2fad
JK
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1484
e4ab2fad
JK
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
aa28a74e 1488 strcat (debugfile, "/");
24ddea62 1489 strcat (debugfile, dir);
1db33378 1490 strcat (debugfile, debuglink);
aa28a74e 1491
32a0e547 1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1493 {
1494 do_cleanups (back_to);
1495 return debugfile;
1496 }
24ddea62
JK
1497
1498 /* If the file is in the sysroot, try using its base path in the
1499 global debugfile directory. */
1db33378
PP
1500 if (canon_dir != NULL
1501 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1502 strlen (gdb_sysroot)) == 0
1db33378 1503 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1504 {
e4ab2fad 1505 strcpy (debugfile, debugdir);
1db33378 1506 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1507 strcat (debugfile, "/");
1db33378 1508 strcat (debugfile, debuglink);
24ddea62 1509
32a0e547 1510 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1511 {
1512 do_cleanups (back_to);
1513 return debugfile;
1514 }
24ddea62 1515 }
aa28a74e 1516 }
f888f159 1517
e4ab2fad 1518 do_cleanups (back_to);
25522fae 1519 xfree (debugfile);
1db33378
PP
1520 return NULL;
1521}
1522
7edbb660 1523/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1524 If there were no directory separators in PATH, PATH will be empty
1525 string on return. */
1526
1527static void
1528terminate_after_last_dir_separator (char *path)
1529{
1530 int i;
1531
1532 /* Strip off the final filename part, leaving the directory name,
1533 followed by a slash. The directory can be relative or absolute. */
1534 for (i = strlen(path) - 1; i >= 0; i--)
1535 if (IS_DIR_SEPARATOR (path[i]))
1536 break;
1537
1538 /* If I is -1 then no directory is present there and DIR will be "". */
1539 path[i + 1] = '\0';
1540}
1541
1542/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1543 Returns pathname, or NULL. */
1544
1545char *
1546find_separate_debug_file_by_debuglink (struct objfile *objfile)
1547{
1db33378
PP
1548 char *debugfile;
1549 unsigned long crc32;
1db33378 1550
5eae7aea
TT
1551 gdb::unique_xmalloc_ptr<char> debuglink
1552 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1553
1554 if (debuglink == NULL)
1555 {
1556 /* There's no separate debug info, hence there's no way we could
1557 load it => no warning. */
1558 return NULL;
1559 }
1560
5eae7aea
TT
1561 std::string dir = objfile_name (objfile);
1562 terminate_after_last_dir_separator (&dir[0]);
1563 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1564
5eae7aea
TT
1565 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1566 debuglink.get (), crc32, objfile);
1db33378
PP
1567
1568 if (debugfile == NULL)
1569 {
1db33378
PP
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
4262abfb
JK
1575 if (lstat (objfile_name (objfile), &st_buf) == 0
1576 && S_ISLNK (st_buf.st_mode))
1db33378 1577 {
5eae7aea
TT
1578 gdb::unique_xmalloc_ptr<char> symlink_dir
1579 (lrealpath (objfile_name (objfile)));
1db33378
PP
1580 if (symlink_dir != NULL)
1581 {
5eae7aea
TT
1582 terminate_after_last_dir_separator (symlink_dir.get ());
1583 if (dir != symlink_dir.get ())
1db33378
PP
1584 {
1585 /* Different directory, so try using it. */
5eae7aea
TT
1586 debugfile = find_separate_debug_file (symlink_dir.get (),
1587 symlink_dir.get (),
1588 debuglink.get (),
1db33378
PP
1589 crc32,
1590 objfile);
1591 }
1592 }
1593 }
1db33378 1594 }
aa28a74e 1595
25522fae 1596 return debugfile;
5b5d99cf
JB
1597}
1598
c906108c
SS
1599/* This is the symbol-file command. Read the file, analyze its
1600 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1601 the command is rather bizarre:
1602
1603 1. The function buildargv implements various quoting conventions
1604 which are undocumented and have little or nothing in common with
1605 the way things are quoted (or not quoted) elsewhere in GDB.
1606
1607 2. Options are used, which are not generally used in GDB (perhaps
1608 "set mapped on", "set readnow on" would be better)
1609
1610 3. The order of options matters, which is contrary to GNU
c906108c
SS
1611 conventions (because it is confusing and inconvenient). */
1612
1613void
1d8b34a7 1614symbol_file_command (const char *args, int from_tty)
c906108c 1615{
c906108c
SS
1616 dont_repeat ();
1617
1618 if (args == NULL)
1619 {
1adeb98a 1620 symbol_file_clear (from_tty);
c906108c
SS
1621 }
1622 else
1623 {
b15cc25c 1624 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1625 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1626 char *name = NULL;
1627
ecf45d2c
SL
1628 if (from_tty)
1629 add_flags |= SYMFILE_VERBOSE;
1630
773a1edc
TT
1631 gdb_argv built_argv (args);
1632 for (char *arg : built_argv)
c906108c 1633 {
773a1edc 1634 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1635 flags |= OBJF_READNOW;
773a1edc
TT
1636 else if (*arg == '-')
1637 error (_("unknown option `%s'"), arg);
78a4a9b9
AC
1638 else
1639 {
773a1edc
TT
1640 symbol_file_add_main_1 (arg, add_flags, flags);
1641 name = arg;
78a4a9b9 1642 }
c906108c
SS
1643 }
1644
1645 if (name == NULL)
cb2f3a29 1646 error (_("no symbol file name was specified"));
c906108c
SS
1647 }
1648}
1649
1650/* Set the initial language.
1651
cb2f3a29
MK
1652 FIXME: A better solution would be to record the language in the
1653 psymtab when reading partial symbols, and then use it (if known) to
1654 set the language. This would be a win for formats that encode the
1655 language in an easily discoverable place, such as DWARF. For
1656 stabs, we can jump through hoops looking for specially named
1657 symbols or try to intuit the language from the specific type of
1658 stabs we find, but we can't do that until later when we read in
1659 full symbols. */
c906108c 1660
8b60591b 1661void
fba45db2 1662set_initial_language (void)
c906108c 1663{
9e6c82ad 1664 enum language lang = main_language ();
c906108c 1665
9e6c82ad 1666 if (lang == language_unknown)
01f8c46d 1667 {
bf6d8a91 1668 char *name = main_name ();
d12307c1 1669 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1670
bf6d8a91
TT
1671 if (sym != NULL)
1672 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1673 }
cb2f3a29 1674
ccefe4c4
TT
1675 if (lang == language_unknown)
1676 {
1677 /* Make C the default language */
1678 lang = language_c;
c906108c 1679 }
ccefe4c4
TT
1680
1681 set_language (lang);
1682 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1683}
1684
cb2f3a29
MK
1685/* Open the file specified by NAME and hand it off to BFD for
1686 preliminary analysis. Return a newly initialized bfd *, which
1687 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1688 absolute). In case of trouble, error() is called. */
c906108c 1689
192b62ce 1690gdb_bfd_ref_ptr
97a41605 1691symfile_bfd_open (const char *name)
c906108c 1692{
97a41605
GB
1693 int desc = -1;
1694 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1695
97a41605 1696 if (!is_target_filename (name))
f1838a98 1697 {
ee0c3293 1698 char *absolute_name;
f1838a98 1699
ee0c3293 1700 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1701
97a41605
GB
1702 /* Look down path for it, allocate 2nd new malloc'd copy. */
1703 desc = openp (getenv ("PATH"),
1704 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1705 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1706#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1707 if (desc < 0)
1708 {
ee0c3293 1709 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1710
ee0c3293 1711 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1712 desc = openp (getenv ("PATH"),
1713 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1714 exename, O_RDONLY | O_BINARY, &absolute_name);
1715 }
c906108c 1716#endif
97a41605 1717 if (desc < 0)
ee0c3293 1718 perror_with_name (expanded_name.get ());
cb2f3a29 1719
97a41605
GB
1720 make_cleanup (xfree, absolute_name);
1721 name = absolute_name;
1722 }
c906108c 1723
192b62ce
TT
1724 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1725 if (sym_bfd == NULL)
faab9922
JK
1726 error (_("`%s': can't open to read symbols: %s."), name,
1727 bfd_errmsg (bfd_get_error ()));
97a41605 1728
192b62ce
TT
1729 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1730 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1731
192b62ce
TT
1732 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1733 error (_("`%s': can't read symbols: %s."), name,
1734 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1735
faab9922
JK
1736 do_cleanups (back_to);
1737
cb2f3a29 1738 return sym_bfd;
c906108c
SS
1739}
1740
cb2f3a29
MK
1741/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1742 the section was not found. */
1743
0e931cf0 1744int
a121b7c1 1745get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1746{
1747 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1748
0e931cf0
JB
1749 if (sect)
1750 return sect->index;
1751 else
1752 return -1;
1753}
1754
c256e171
DE
1755/* Link SF into the global symtab_fns list.
1756 FLAVOUR is the file format that SF handles.
1757 Called on startup by the _initialize routine in each object file format
1758 reader, to register information about each format the reader is prepared
1759 to handle. */
c906108c
SS
1760
1761void
c256e171 1762add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1763{
905014d7 1764 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1765}
1766
cb2f3a29
MK
1767/* Initialize OBJFILE to read symbols from its associated BFD. It
1768 either returns or calls error(). The result is an initialized
1769 struct sym_fns in the objfile structure, that contains cached
1770 information about the symbol file. */
c906108c 1771
00b5771c 1772static const struct sym_fns *
31d99776 1773find_sym_fns (bfd *abfd)
c906108c 1774{
31d99776 1775 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1776
75245b24
MS
1777 if (our_flavour == bfd_target_srec_flavour
1778 || our_flavour == bfd_target_ihex_flavour
1779 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1780 return NULL; /* No symbols. */
75245b24 1781
905014d7
SM
1782 for (const registered_sym_fns &rsf : symtab_fns)
1783 if (our_flavour == rsf.sym_flavour)
1784 return rsf.sym_fns;
cb2f3a29 1785
8a3fe4f8 1786 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1787 bfd_get_target (abfd));
c906108c
SS
1788}
1789\f
cb2f3a29 1790
c906108c
SS
1791/* This function runs the load command of our current target. */
1792
1793static void
fba45db2 1794load_command (char *arg, int from_tty)
c906108c 1795{
5b3fca71
TT
1796 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1797
e5cc9f32
JB
1798 dont_repeat ();
1799
4487aabf
PA
1800 /* The user might be reloading because the binary has changed. Take
1801 this opportunity to check. */
1802 reopen_exec_file ();
1803 reread_symbols ();
1804
c906108c 1805 if (arg == NULL)
1986bccd
AS
1806 {
1807 char *parg;
1808 int count = 0;
1809
1810 parg = arg = get_exec_file (1);
1811
1812 /* Count how many \ " ' tab space there are in the name. */
1813 while ((parg = strpbrk (parg, "\\\"'\t ")))
1814 {
1815 parg++;
1816 count++;
1817 }
1818
1819 if (count)
1820 {
1821 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1822 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1823 char *ptemp = temp;
1824 char *prev;
1825
1826 make_cleanup (xfree, temp);
1827
1828 prev = parg = arg;
1829 while ((parg = strpbrk (parg, "\\\"'\t ")))
1830 {
1831 strncpy (ptemp, prev, parg - prev);
1832 ptemp += parg - prev;
1833 prev = parg++;
1834 *ptemp++ = '\\';
1835 }
1836 strcpy (ptemp, prev);
1837
1838 arg = temp;
1839 }
1840 }
1841
c906108c 1842 target_load (arg, from_tty);
2889e661
JB
1843
1844 /* After re-loading the executable, we don't really know which
1845 overlays are mapped any more. */
1846 overlay_cache_invalid = 1;
5b3fca71
TT
1847
1848 do_cleanups (cleanup);
c906108c
SS
1849}
1850
1851/* This version of "load" should be usable for any target. Currently
1852 it is just used for remote targets, not inftarg.c or core files,
1853 on the theory that only in that case is it useful.
1854
1855 Avoiding xmodem and the like seems like a win (a) because we don't have
1856 to worry about finding it, and (b) On VMS, fork() is very slow and so
1857 we don't want to run a subprocess. On the other hand, I'm not sure how
1858 performance compares. */
917317f4 1859
917317f4
JM
1860static int validate_download = 0;
1861
e4f9b4d5
MS
1862/* Callback service function for generic_load (bfd_map_over_sections). */
1863
1864static void
1865add_section_size_callback (bfd *abfd, asection *asec, void *data)
1866{
19ba03f4 1867 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1868
2c500098 1869 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1870}
1871
1872/* Opaque data for load_section_callback. */
1873struct load_section_data {
f698ca8e 1874 CORE_ADDR load_offset;
a76d924d
DJ
1875 struct load_progress_data *progress_data;
1876 VEC(memory_write_request_s) *requests;
1877};
1878
1879/* Opaque data for load_progress. */
1880struct load_progress_data {
1881 /* Cumulative data. */
e4f9b4d5
MS
1882 unsigned long write_count;
1883 unsigned long data_count;
1884 bfd_size_type total_size;
a76d924d
DJ
1885};
1886
1887/* Opaque data for load_progress for a single section. */
1888struct load_progress_section_data {
1889 struct load_progress_data *cumulative;
cf7a04e8 1890
a76d924d 1891 /* Per-section data. */
cf7a04e8
DJ
1892 const char *section_name;
1893 ULONGEST section_sent;
1894 ULONGEST section_size;
1895 CORE_ADDR lma;
1896 gdb_byte *buffer;
e4f9b4d5
MS
1897};
1898
a76d924d 1899/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1900
1901static void
1902load_progress (ULONGEST bytes, void *untyped_arg)
1903{
19ba03f4
SM
1904 struct load_progress_section_data *args
1905 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1906 struct load_progress_data *totals;
1907
1908 if (args == NULL)
1909 /* Writing padding data. No easy way to get at the cumulative
1910 stats, so just ignore this. */
1911 return;
1912
1913 totals = args->cumulative;
1914
1915 if (bytes == 0 && args->section_sent == 0)
1916 {
1917 /* The write is just starting. Let the user know we've started
1918 this section. */
112e8700
SM
1919 current_uiout->message ("Loading section %s, size %s lma %s\n",
1920 args->section_name,
1921 hex_string (args->section_size),
1922 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1923 return;
1924 }
cf7a04e8
DJ
1925
1926 if (validate_download)
1927 {
1928 /* Broken memories and broken monitors manifest themselves here
1929 when bring new computers to life. This doubles already slow
1930 downloads. */
1931 /* NOTE: cagney/1999-10-18: A more efficient implementation
1932 might add a verify_memory() method to the target vector and
1933 then use that. remote.c could implement that method using
1934 the ``qCRC'' packet. */
0efef640 1935 gdb::byte_vector check (bytes);
cf7a04e8 1936
0efef640 1937 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1938 error (_("Download verify read failed at %s"),
f5656ead 1939 paddress (target_gdbarch (), args->lma));
0efef640 1940 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1941 error (_("Download verify compare failed at %s"),
f5656ead 1942 paddress (target_gdbarch (), args->lma));
cf7a04e8 1943 }
a76d924d 1944 totals->data_count += bytes;
cf7a04e8
DJ
1945 args->lma += bytes;
1946 args->buffer += bytes;
a76d924d 1947 totals->write_count += 1;
cf7a04e8 1948 args->section_sent += bytes;
522002f9 1949 if (check_quit_flag ()
cf7a04e8
DJ
1950 || (deprecated_ui_load_progress_hook != NULL
1951 && deprecated_ui_load_progress_hook (args->section_name,
1952 args->section_sent)))
1953 error (_("Canceled the download"));
1954
1955 if (deprecated_show_load_progress != NULL)
1956 deprecated_show_load_progress (args->section_name,
1957 args->section_sent,
1958 args->section_size,
a76d924d
DJ
1959 totals->data_count,
1960 totals->total_size);
cf7a04e8
DJ
1961}
1962
e4f9b4d5
MS
1963/* Callback service function for generic_load (bfd_map_over_sections). */
1964
1965static void
1966load_section_callback (bfd *abfd, asection *asec, void *data)
1967{
a76d924d 1968 struct memory_write_request *new_request;
19ba03f4 1969 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1970 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1971 bfd_size_type size = bfd_get_section_size (asec);
1972 gdb_byte *buffer;
cf7a04e8 1973 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1974
cf7a04e8
DJ
1975 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1976 return;
e4f9b4d5 1977
cf7a04e8
DJ
1978 if (size == 0)
1979 return;
e4f9b4d5 1980
a76d924d
DJ
1981 new_request = VEC_safe_push (memory_write_request_s,
1982 args->requests, NULL);
1983 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 1984 section_data = XCNEW (struct load_progress_section_data);
a76d924d 1985 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1986 new_request->end = new_request->begin + size; /* FIXME Should size
1987 be in instead? */
224c3ddb 1988 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 1989 new_request->baton = section_data;
cf7a04e8 1990
a76d924d 1991 buffer = new_request->data;
cf7a04e8 1992
a76d924d
DJ
1993 section_data->cumulative = args->progress_data;
1994 section_data->section_name = sect_name;
1995 section_data->section_size = size;
1996 section_data->lma = new_request->begin;
1997 section_data->buffer = buffer;
cf7a04e8
DJ
1998
1999 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2000}
2001
2002/* Clean up an entire memory request vector, including load
2003 data and progress records. */
cf7a04e8 2004
a76d924d
DJ
2005static void
2006clear_memory_write_data (void *arg)
2007{
19ba03f4 2008 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2009 VEC(memory_write_request_s) *vec = *vec_p;
2010 int i;
2011 struct memory_write_request *mr;
cf7a04e8 2012
a76d924d
DJ
2013 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2014 {
2015 xfree (mr->data);
2016 xfree (mr->baton);
2017 }
2018 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2019}
2020
dcb07cfa
PA
2021static void print_transfer_performance (struct ui_file *stream,
2022 unsigned long data_count,
2023 unsigned long write_count,
2024 std::chrono::steady_clock::duration d);
2025
c906108c 2026void
9cbe5fff 2027generic_load (const char *args, int from_tty)
c906108c 2028{
773a1edc 2029 struct cleanup *old_cleanups;
e4f9b4d5 2030 struct load_section_data cbdata;
a76d924d 2031 struct load_progress_data total_progress;
79a45e25 2032 struct ui_out *uiout = current_uiout;
a76d924d 2033
e4f9b4d5
MS
2034 CORE_ADDR entry;
2035
a76d924d
DJ
2036 memset (&cbdata, 0, sizeof (cbdata));
2037 memset (&total_progress, 0, sizeof (total_progress));
2038 cbdata.progress_data = &total_progress;
2039
773a1edc 2040 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2041
d1a41061
PP
2042 if (args == NULL)
2043 error_no_arg (_("file to load"));
1986bccd 2044
773a1edc 2045 gdb_argv argv (args);
1986bccd 2046
ee0c3293 2047 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2048
2049 if (argv[1] != NULL)
917317f4 2050 {
f698ca8e 2051 const char *endptr;
ba5f2f8a 2052
f698ca8e 2053 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2054
2055 /* If the last word was not a valid number then
2056 treat it as a file name with spaces in. */
2057 if (argv[1] == endptr)
2058 error (_("Invalid download offset:%s."), argv[1]);
2059
2060 if (argv[2] != NULL)
2061 error (_("Too many parameters."));
917317f4 2062 }
c906108c 2063
c378eb4e 2064 /* Open the file for loading. */
ee0c3293 2065 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2066 if (loadfile_bfd == NULL)
ee0c3293 2067 perror_with_name (filename.get ());
917317f4 2068
192b62ce 2069 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2070 {
ee0c3293 2071 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2072 bfd_errmsg (bfd_get_error ()));
2073 }
c5aa993b 2074
192b62ce 2075 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2076 (void *) &total_progress.total_size);
2077
192b62ce 2078 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2079
dcb07cfa
PA
2080 using namespace std::chrono;
2081
2082 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2083
a76d924d
DJ
2084 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2085 load_progress) != 0)
2086 error (_("Load failed"));
c906108c 2087
dcb07cfa 2088 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2089
192b62ce 2090 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2091 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2092 uiout->text ("Start address ");
2093 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2094 uiout->text (", load size ");
2095 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2096 uiout->text ("\n");
fb14de7b 2097 regcache_write_pc (get_current_regcache (), entry);
c906108c 2098
38963c97
DJ
2099 /* Reset breakpoints, now that we have changed the load image. For
2100 instance, breakpoints may have been set (or reset, by
2101 post_create_inferior) while connected to the target but before we
2102 loaded the program. In that case, the prologue analyzer could
2103 have read instructions from the target to find the right
2104 breakpoint locations. Loading has changed the contents of that
2105 memory. */
2106
2107 breakpoint_re_set ();
2108
a76d924d
DJ
2109 print_transfer_performance (gdb_stdout, total_progress.data_count,
2110 total_progress.write_count,
dcb07cfa 2111 end_time - start_time);
c906108c
SS
2112
2113 do_cleanups (old_cleanups);
2114}
2115
dcb07cfa
PA
2116/* Report on STREAM the performance of a memory transfer operation,
2117 such as 'load'. DATA_COUNT is the number of bytes transferred.
2118 WRITE_COUNT is the number of separate write operations, or 0, if
2119 that information is not available. TIME is how long the operation
2120 lasted. */
c906108c 2121
dcb07cfa 2122static void
d9fcf2fb 2123print_transfer_performance (struct ui_file *stream,
917317f4
JM
2124 unsigned long data_count,
2125 unsigned long write_count,
dcb07cfa 2126 std::chrono::steady_clock::duration time)
917317f4 2127{
dcb07cfa 2128 using namespace std::chrono;
79a45e25 2129 struct ui_out *uiout = current_uiout;
2b71414d 2130
dcb07cfa 2131 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2132
112e8700 2133 uiout->text ("Transfer rate: ");
dcb07cfa 2134 if (ms.count () > 0)
8b93c638 2135 {
dcb07cfa 2136 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2137
112e8700 2138 if (uiout->is_mi_like_p ())
9f43d28c 2139 {
112e8700
SM
2140 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2141 uiout->text (" bits/sec");
9f43d28c
DJ
2142 }
2143 else if (rate < 1024)
2144 {
112e8700
SM
2145 uiout->field_fmt ("transfer-rate", "%lu", rate);
2146 uiout->text (" bytes/sec");
9f43d28c
DJ
2147 }
2148 else
2149 {
112e8700
SM
2150 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2151 uiout->text (" KB/sec");
9f43d28c 2152 }
8b93c638
JM
2153 }
2154 else
2155 {
112e8700
SM
2156 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2157 uiout->text (" bits in <1 sec");
8b93c638
JM
2158 }
2159 if (write_count > 0)
2160 {
112e8700
SM
2161 uiout->text (", ");
2162 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2163 uiout->text (" bytes/write");
8b93c638 2164 }
112e8700 2165 uiout->text (".\n");
c906108c
SS
2166}
2167
2168/* This function allows the addition of incrementally linked object files.
2169 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2170/* Note: ezannoni 2000-04-13 This function/command used to have a
2171 special case syntax for the rombug target (Rombug is the boot
2172 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2173 rombug case, the user doesn't need to supply a text address,
2174 instead a call to target_link() (in target.c) would supply the
c378eb4e 2175 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2176
c906108c 2177static void
2cf311eb 2178add_symbol_file_command (const char *args, int from_tty)
c906108c 2179{
5af949e3 2180 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2181 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2182 char *arg;
2acceee2
JM
2183 int argcnt = 0;
2184 int sec_num = 0;
db162d44
EZ
2185 int expecting_sec_name = 0;
2186 int expecting_sec_addr = 0;
76ad5e1e 2187 struct objfile *objf;
b15cc25c
PA
2188 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2189 symfile_add_flags add_flags = 0;
2190
2191 if (from_tty)
2192 add_flags |= SYMFILE_VERBOSE;
db162d44 2193
a39a16c4 2194 struct sect_opt
2acceee2 2195 {
a121b7c1
PA
2196 const char *name;
2197 const char *value;
a39a16c4 2198 };
db162d44 2199
a39a16c4 2200 struct section_addr_info *section_addrs;
f978cb06 2201 std::vector<sect_opt> sect_opts;
3017564a 2202 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2203
c906108c
SS
2204 dont_repeat ();
2205
2206 if (args == NULL)
8a3fe4f8 2207 error (_("add-symbol-file takes a file name and an address"));
c906108c 2208
773a1edc 2209 gdb_argv argv (args);
db162d44 2210
5b96932b
AS
2211 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2212 {
c378eb4e 2213 /* Process the argument. */
db162d44 2214 if (argcnt == 0)
c906108c 2215 {
c378eb4e 2216 /* The first argument is the file name. */
ee0c3293 2217 filename.reset (tilde_expand (arg));
c906108c 2218 }
41dc8db8
MB
2219 else if (argcnt == 1)
2220 {
2221 /* The second argument is always the text address at which
2222 to load the program. */
f978cb06
TT
2223 sect_opt sect = { ".text", arg };
2224 sect_opts.push_back (sect);
41dc8db8 2225 }
db162d44 2226 else
41dc8db8
MB
2227 {
2228 /* It's an option (starting with '-') or it's an argument
2229 to an option. */
41dc8db8
MB
2230 if (expecting_sec_name)
2231 {
f978cb06
TT
2232 sect_opt sect = { arg, NULL };
2233 sect_opts.push_back (sect);
41dc8db8
MB
2234 expecting_sec_name = 0;
2235 }
2236 else if (expecting_sec_addr)
2237 {
f978cb06 2238 sect_opts.back ().value = arg;
41dc8db8 2239 expecting_sec_addr = 0;
41dc8db8
MB
2240 }
2241 else if (strcmp (arg, "-readnow") == 0)
2242 flags |= OBJF_READNOW;
2243 else if (strcmp (arg, "-s") == 0)
2244 {
2245 expecting_sec_name = 1;
2246 expecting_sec_addr = 1;
2247 }
2248 else
2249 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2250 " [-readnow] [-s <secname> <addr>]*"));
2251 }
c906108c 2252 }
c906108c 2253
927890d0
JB
2254 /* This command takes at least two arguments. The first one is a
2255 filename, and the second is the address where this file has been
2256 loaded. Abort now if this address hasn't been provided by the
2257 user. */
f978cb06 2258 if (sect_opts.empty ())
ee0c3293
TT
2259 error (_("The address where %s has been loaded is missing"),
2260 filename.get ());
927890d0 2261
c378eb4e 2262 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2263 a sect_addr_info structure to be passed around to other
2264 functions. We have to split this up into separate print
bb599908 2265 statements because hex_string returns a local static
c378eb4e 2266 string. */
5417f6dc 2267
ee0c3293
TT
2268 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2269 filename.get ());
f978cb06 2270 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2271 make_cleanup (xfree, section_addrs);
f978cb06 2272 for (sect_opt &sect : sect_opts)
c906108c 2273 {
db162d44 2274 CORE_ADDR addr;
f978cb06
TT
2275 const char *val = sect.value;
2276 const char *sec = sect.name;
5417f6dc 2277
ae822768 2278 addr = parse_and_eval_address (val);
db162d44 2279
db162d44 2280 /* Here we store the section offsets in the order they were
c378eb4e 2281 entered on the command line. */
a121b7c1 2282 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2283 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2284 printf_unfiltered ("\t%s_addr = %s\n", sec,
2285 paddress (gdbarch, addr));
db162d44
EZ
2286 sec_num++;
2287
5417f6dc 2288 /* The object's sections are initialized when a
db162d44 2289 call is made to build_objfile_section_table (objfile).
5417f6dc 2290 This happens in reread_symbols.
db162d44
EZ
2291 At this point, we don't know what file type this is,
2292 so we can't determine what section names are valid. */
2acceee2 2293 }
d76488d8 2294 section_addrs->num_sections = sec_num;
db162d44 2295
2acceee2 2296 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2297 error (_("Not confirmed."));
c906108c 2298
ee0c3293 2299 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2300
2301 add_target_sections_of_objfile (objf);
c906108c
SS
2302
2303 /* Getting new symbols may change our opinion about what is
2304 frameless. */
2305 reinit_frame_cache ();
db162d44 2306 do_cleanups (my_cleanups);
c906108c
SS
2307}
2308\f
70992597 2309
63644780
NB
2310/* This function removes a symbol file that was added via add-symbol-file. */
2311
2312static void
2cf311eb 2313remove_symbol_file_command (const char *args, int from_tty)
63644780 2314{
63644780 2315 struct objfile *objf = NULL;
63644780 2316 struct program_space *pspace = current_program_space;
63644780
NB
2317
2318 dont_repeat ();
2319
2320 if (args == NULL)
2321 error (_("remove-symbol-file: no symbol file provided"));
2322
773a1edc 2323 gdb_argv argv (args);
63644780
NB
2324
2325 if (strcmp (argv[0], "-a") == 0)
2326 {
2327 /* Interpret the next argument as an address. */
2328 CORE_ADDR addr;
2329
2330 if (argv[1] == NULL)
2331 error (_("Missing address argument"));
2332
2333 if (argv[2] != NULL)
2334 error (_("Junk after %s"), argv[1]);
2335
2336 addr = parse_and_eval_address (argv[1]);
2337
2338 ALL_OBJFILES (objf)
2339 {
d03de421
PA
2340 if ((objf->flags & OBJF_USERLOADED) != 0
2341 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2342 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2343 break;
2344 }
2345 }
2346 else if (argv[0] != NULL)
2347 {
2348 /* Interpret the current argument as a file name. */
63644780
NB
2349
2350 if (argv[1] != NULL)
2351 error (_("Junk after %s"), argv[0]);
2352
ee0c3293 2353 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2354
2355 ALL_OBJFILES (objf)
2356 {
d03de421
PA
2357 if ((objf->flags & OBJF_USERLOADED) != 0
2358 && (objf->flags & OBJF_SHARED) != 0
63644780 2359 && objf->pspace == pspace
ee0c3293 2360 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2361 break;
2362 }
2363 }
2364
2365 if (objf == NULL)
2366 error (_("No symbol file found"));
2367
2368 if (from_tty
2369 && !query (_("Remove symbol table from file \"%s\"? "),
2370 objfile_name (objf)))
2371 error (_("Not confirmed."));
2372
9e86da07 2373 delete objf;
63644780 2374 clear_symtab_users (0);
63644780
NB
2375}
2376
c906108c 2377/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2378
c906108c 2379void
fba45db2 2380reread_symbols (void)
c906108c
SS
2381{
2382 struct objfile *objfile;
2383 long new_modtime;
c906108c
SS
2384 struct stat new_statbuf;
2385 int res;
4c404b8b 2386 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2387
2388 /* With the addition of shared libraries, this should be modified,
2389 the load time should be saved in the partial symbol tables, since
2390 different tables may come from different source files. FIXME.
2391 This routine should then walk down each partial symbol table
c378eb4e 2392 and see if the symbol table that it originates from has been changed. */
c906108c 2393
c5aa993b
JM
2394 for (objfile = object_files; objfile; objfile = objfile->next)
2395 {
9cce227f
TG
2396 if (objfile->obfd == NULL)
2397 continue;
2398
2399 /* Separate debug objfiles are handled in the main objfile. */
2400 if (objfile->separate_debug_objfile_backlink)
2401 continue;
2402
02aeec7b
JB
2403 /* If this object is from an archive (what you usually create with
2404 `ar', often called a `static library' on most systems, though
2405 a `shared library' on AIX is also an archive), then you should
2406 stat on the archive name, not member name. */
9cce227f
TG
2407 if (objfile->obfd->my_archive)
2408 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2409 else
4262abfb 2410 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2411 if (res != 0)
2412 {
c378eb4e 2413 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2414 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2415 objfile_name (objfile));
9cce227f
TG
2416 continue;
2417 }
2418 new_modtime = new_statbuf.st_mtime;
2419 if (new_modtime != objfile->mtime)
2420 {
2421 struct cleanup *old_cleanups;
2422 struct section_offsets *offsets;
2423 int num_offsets;
24ba069a 2424 char *original_name;
9cce227f
TG
2425
2426 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2427 objfile_name (objfile));
9cce227f
TG
2428
2429 /* There are various functions like symbol_file_add,
2430 symfile_bfd_open, syms_from_objfile, etc., which might
2431 appear to do what we want. But they have various other
2432 effects which we *don't* want. So we just do stuff
2433 ourselves. We don't worry about mapped files (for one thing,
2434 any mapped file will be out of date). */
2435
2436 /* If we get an error, blow away this objfile (not sure if
2437 that is the correct response for things like shared
2438 libraries). */
2439 old_cleanups = make_cleanup_free_objfile (objfile);
2440 /* We need to do this whenever any symbols go away. */
2441 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2442
0ba1096a
KT
2443 if (exec_bfd != NULL
2444 && filename_cmp (bfd_get_filename (objfile->obfd),
2445 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2446 {
2447 /* Reload EXEC_BFD without asking anything. */
2448
2449 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2450 }
2451
f6eeced0
JK
2452 /* Keep the calls order approx. the same as in free_objfile. */
2453
2454 /* Free the separate debug objfiles. It will be
2455 automatically recreated by sym_read. */
2456 free_objfile_separate_debug (objfile);
2457
2458 /* Remove any references to this objfile in the global
2459 value lists. */
2460 preserve_values (objfile);
2461
2462 /* Nuke all the state that we will re-read. Much of the following
2463 code which sets things to NULL really is necessary to tell
2464 other parts of GDB that there is nothing currently there.
2465
2466 Try to keep the freeing order compatible with free_objfile. */
2467
2468 if (objfile->sf != NULL)
2469 {
2470 (*objfile->sf->sym_finish) (objfile);
2471 }
2472
2473 clear_objfile_data (objfile);
2474
e1507e95 2475 /* Clean up any state BFD has sitting around. */
a4453b7e 2476 {
192b62ce 2477 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2478 char *obfd_filename;
a4453b7e
TT
2479
2480 obfd_filename = bfd_get_filename (objfile->obfd);
2481 /* Open the new BFD before freeing the old one, so that
2482 the filename remains live. */
192b62ce
TT
2483 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2484 objfile->obfd = temp.release ();
e1507e95 2485 if (objfile->obfd == NULL)
192b62ce 2486 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2487 }
2488
24ba069a
JK
2489 original_name = xstrdup (objfile->original_name);
2490 make_cleanup (xfree, original_name);
2491
9cce227f
TG
2492 /* bfd_openr sets cacheable to true, which is what we want. */
2493 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2494 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2495 bfd_errmsg (bfd_get_error ()));
2496
2497 /* Save the offsets, we will nuke them with the rest of the
2498 objfile_obstack. */
2499 num_offsets = objfile->num_sections;
2500 offsets = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2502 memcpy (offsets, objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2504
9cce227f
TG
2505 /* FIXME: Do we have to free a whole linked list, or is this
2506 enough? */
af5bf4ad
SM
2507 objfile->global_psymbols.clear ();
2508 objfile->static_psymbols.clear ();
9cce227f 2509
c378eb4e 2510 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2511 psymbol_bcache_free (objfile->psymbol_cache);
2512 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2513
2514 /* NB: after this call to obstack_free, objfiles_changed
2515 will need to be called (see discussion below). */
9cce227f
TG
2516 obstack_free (&objfile->objfile_obstack, 0);
2517 objfile->sections = NULL;
43f3e411 2518 objfile->compunit_symtabs = NULL;
9cce227f
TG
2519 objfile->psymtabs = NULL;
2520 objfile->psymtabs_addrmap = NULL;
2521 objfile->free_psymtabs = NULL;
34eaf542 2522 objfile->template_symbols = NULL;
9cce227f 2523
9cce227f
TG
2524 /* obstack_init also initializes the obstack so it is
2525 empty. We could use obstack_specify_allocation but
d82ea6a8 2526 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2527 obstack_init (&objfile->objfile_obstack);
779bd270 2528
846060df
JB
2529 /* set_objfile_per_bfd potentially allocates the per-bfd
2530 data on the objfile's obstack (if sharing data across
2531 multiple users is not possible), so it's important to
2532 do it *after* the obstack has been initialized. */
2533 set_objfile_per_bfd (objfile);
2534
224c3ddb
SM
2535 objfile->original_name
2536 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2537 strlen (original_name));
24ba069a 2538
779bd270
DE
2539 /* Reset the sym_fns pointer. The ELF reader can change it
2540 based on whether .gdb_index is present, and we need it to
2541 start over. PR symtab/15885 */
8fb8eb5c 2542 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2543
d82ea6a8 2544 build_objfile_section_table (objfile);
9cce227f
TG
2545 terminate_minimal_symbol_table (objfile);
2546
2547 /* We use the same section offsets as from last time. I'm not
2548 sure whether that is always correct for shared libraries. */
2549 objfile->section_offsets = (struct section_offsets *)
2550 obstack_alloc (&objfile->objfile_obstack,
2551 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2552 memcpy (objfile->section_offsets, offsets,
2553 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2554 objfile->num_sections = num_offsets;
2555
2556 /* What the hell is sym_new_init for, anyway? The concept of
2557 distinguishing between the main file and additional files
2558 in this way seems rather dubious. */
2559 if (objfile == symfile_objfile)
c906108c 2560 {
9cce227f 2561 (*objfile->sf->sym_new_init) (objfile);
c906108c 2562 }
9cce227f
TG
2563
2564 (*objfile->sf->sym_init) (objfile);
2565 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2566
2567 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2568
2569 /* We are about to read new symbols and potentially also
2570 DWARF information. Some targets may want to pass addresses
2571 read from DWARF DIE's through an adjustment function before
2572 saving them, like MIPS, which may call into
2573 "find_pc_section". When called, that function will make
2574 use of per-objfile program space data.
2575
2576 Since we discarded our section information above, we have
2577 dangling pointers in the per-objfile program space data
2578 structure. Force GDB to update the section mapping
2579 information by letting it know the objfile has changed,
2580 making the dangling pointers point to correct data
2581 again. */
2582
2583 objfiles_changed ();
2584
608e2dbb 2585 read_symbols (objfile, 0);
b11896a5 2586
9cce227f 2587 if (!objfile_has_symbols (objfile))
c906108c 2588 {
9cce227f
TG
2589 wrap_here ("");
2590 printf_unfiltered (_("(no debugging symbols found)\n"));
2591 wrap_here ("");
c5aa993b 2592 }
9cce227f
TG
2593
2594 /* We're done reading the symbol file; finish off complaints. */
2595 clear_complaints (&symfile_complaints, 0, 1);
2596
2597 /* Getting new symbols may change our opinion about what is
2598 frameless. */
2599
2600 reinit_frame_cache ();
2601
2602 /* Discard cleanups as symbol reading was successful. */
2603 discard_cleanups (old_cleanups);
2604
2605 /* If the mtime has changed between the time we set new_modtime
2606 and now, we *want* this to be out of date, so don't call stat
2607 again now. */
2608 objfile->mtime = new_modtime;
9cce227f 2609 init_entry_point_info (objfile);
4ac39b97 2610
4c404b8b 2611 new_objfiles.push_back (objfile);
c906108c
SS
2612 }
2613 }
c906108c 2614
4c404b8b 2615 if (!new_objfiles.empty ())
ea53e89f 2616 {
c1e56572 2617 clear_symtab_users (0);
4ac39b97
JK
2618
2619 /* clear_objfile_data for each objfile was called before freeing it and
2620 observer_notify_new_objfile (NULL) has been called by
2621 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2622 for (auto iter : new_objfiles)
2623 observer_notify_new_objfile (iter);
4ac39b97 2624
ea53e89f
JB
2625 /* At least one objfile has changed, so we can consider that
2626 the executable we're debugging has changed too. */
781b42b0 2627 observer_notify_executable_changed ();
ea53e89f 2628 }
c906108c 2629}
c906108c
SS
2630\f
2631
593e3209 2632struct filename_language
c5aa993b 2633{
593e3209
SM
2634 filename_language (const std::string &ext_, enum language lang_)
2635 : ext (ext_), lang (lang_)
2636 {}
3fcf0b0d 2637
593e3209
SM
2638 std::string ext;
2639 enum language lang;
2640};
c906108c 2641
593e3209 2642static std::vector<filename_language> filename_language_table;
c906108c 2643
56618e20
TT
2644/* See symfile.h. */
2645
2646void
2647add_filename_language (const char *ext, enum language lang)
c906108c 2648{
593e3209 2649 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2650}
2651
2652static char *ext_args;
920d2a44
AC
2653static void
2654show_ext_args (struct ui_file *file, int from_tty,
2655 struct cmd_list_element *c, const char *value)
2656{
3e43a32a
MS
2657 fprintf_filtered (file,
2658 _("Mapping between filename extension "
2659 "and source language is \"%s\".\n"),
920d2a44
AC
2660 value);
2661}
c906108c
SS
2662
2663static void
26c41df3 2664set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c 2665{
c906108c
SS
2666 char *cp = ext_args;
2667 enum language lang;
2668
c378eb4e 2669 /* First arg is filename extension, starting with '.' */
c906108c 2670 if (*cp != '.')
8a3fe4f8 2671 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2672
2673 /* Find end of first arg. */
c5aa993b 2674 while (*cp && !isspace (*cp))
c906108c
SS
2675 cp++;
2676
2677 if (*cp == '\0')
3e43a32a
MS
2678 error (_("'%s': two arguments required -- "
2679 "filename extension and language"),
c906108c
SS
2680 ext_args);
2681
c378eb4e 2682 /* Null-terminate first arg. */
c5aa993b 2683 *cp++ = '\0';
c906108c
SS
2684
2685 /* Find beginning of second arg, which should be a source language. */
529480d0 2686 cp = skip_spaces (cp);
c906108c
SS
2687
2688 if (*cp == '\0')
3e43a32a
MS
2689 error (_("'%s': two arguments required -- "
2690 "filename extension and language"),
c906108c
SS
2691 ext_args);
2692
2693 /* Lookup the language from among those we know. */
2694 lang = language_enum (cp);
2695
593e3209 2696 auto it = filename_language_table.begin ();
c906108c 2697 /* Now lookup the filename extension: do we already know it? */
593e3209 2698 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2699 {
593e3209 2700 if (it->ext == ext_args)
3fcf0b0d
TT
2701 break;
2702 }
c906108c 2703
593e3209 2704 if (it == filename_language_table.end ())
c906108c 2705 {
c378eb4e 2706 /* New file extension. */
c906108c
SS
2707 add_filename_language (ext_args, lang);
2708 }
2709 else
2710 {
c378eb4e 2711 /* Redefining a previously known filename extension. */
c906108c
SS
2712
2713 /* if (from_tty) */
2714 /* query ("Really make files of type %s '%s'?", */
2715 /* ext_args, language_str (lang)); */
2716
593e3209 2717 it->lang = lang;
c906108c
SS
2718 }
2719}
2720
2721static void
fba45db2 2722info_ext_lang_command (char *args, int from_tty)
c906108c 2723{
a3f17187 2724 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2725 printf_filtered ("\n\n");
593e3209
SM
2726 for (const filename_language &entry : filename_language_table)
2727 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2728 language_str (entry.lang));
c906108c
SS
2729}
2730
c906108c 2731enum language
dd786858 2732deduce_language_from_filename (const char *filename)
c906108c 2733{
e6a959d6 2734 const char *cp;
c906108c
SS
2735
2736 if (filename != NULL)
2737 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2738 {
593e3209
SM
2739 for (const filename_language &entry : filename_language_table)
2740 if (entry.ext == cp)
2741 return entry.lang;
3fcf0b0d 2742 }
c906108c
SS
2743
2744 return language_unknown;
2745}
2746\f
43f3e411
DE
2747/* Allocate and initialize a new symbol table.
2748 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2749
2750struct symtab *
43f3e411 2751allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2752{
43f3e411
DE
2753 struct objfile *objfile = cust->objfile;
2754 struct symtab *symtab
2755 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2756
19ba03f4
SM
2757 symtab->filename
2758 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2759 objfile->per_bfd->filename_cache);
c5aa993b
JM
2760 symtab->fullname = NULL;
2761 symtab->language = deduce_language_from_filename (filename);
c906108c 2762
db0fec5c
DE
2763 /* This can be very verbose with lots of headers.
2764 Only print at higher debug levels. */
2765 if (symtab_create_debug >= 2)
45cfd468
DE
2766 {
2767 /* Be a bit clever with debugging messages, and don't print objfile
2768 every time, only when it changes. */
2769 static char *last_objfile_name = NULL;
2770
2771 if (last_objfile_name == NULL
4262abfb 2772 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2773 {
2774 xfree (last_objfile_name);
4262abfb 2775 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2776 fprintf_unfiltered (gdb_stdlog,
2777 "Creating one or more symtabs for objfile %s ...\n",
2778 last_objfile_name);
2779 }
2780 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2781 "Created symtab %s for module %s.\n",
2782 host_address_to_string (symtab), filename);
45cfd468
DE
2783 }
2784
43f3e411
DE
2785 /* Add it to CUST's list of symtabs. */
2786 if (cust->filetabs == NULL)
2787 {
2788 cust->filetabs = symtab;
2789 cust->last_filetab = symtab;
2790 }
2791 else
2792 {
2793 cust->last_filetab->next = symtab;
2794 cust->last_filetab = symtab;
2795 }
2796
2797 /* Backlink to the containing compunit symtab. */
2798 symtab->compunit_symtab = cust;
2799
2800 return symtab;
2801}
2802
2803/* Allocate and initialize a new compunit.
2804 NAME is the name of the main source file, if there is one, or some
2805 descriptive text if there are no source files. */
2806
2807struct compunit_symtab *
2808allocate_compunit_symtab (struct objfile *objfile, const char *name)
2809{
2810 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2811 struct compunit_symtab);
2812 const char *saved_name;
2813
2814 cu->objfile = objfile;
2815
2816 /* The name we record here is only for display/debugging purposes.
2817 Just save the basename to avoid path issues (too long for display,
2818 relative vs absolute, etc.). */
2819 saved_name = lbasename (name);
224c3ddb
SM
2820 cu->name
2821 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2822 strlen (saved_name));
43f3e411
DE
2823
2824 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2825
2826 if (symtab_create_debug)
2827 {
2828 fprintf_unfiltered (gdb_stdlog,
2829 "Created compunit symtab %s for %s.\n",
2830 host_address_to_string (cu),
2831 cu->name);
2832 }
2833
2834 return cu;
2835}
2836
2837/* Hook CU to the objfile it comes from. */
2838
2839void
2840add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2841{
2842 cu->next = cu->objfile->compunit_symtabs;
2843 cu->objfile->compunit_symtabs = cu;
c906108c 2844}
c906108c 2845\f
c5aa993b 2846
b15cc25c
PA
2847/* Reset all data structures in gdb which may contain references to
2848 symbol table data. */
c906108c
SS
2849
2850void
b15cc25c 2851clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2852{
2853 /* Someday, we should do better than this, by only blowing away
2854 the things that really need to be blown. */
c0501be5
DJ
2855
2856 /* Clear the "current" symtab first, because it is no longer valid.
2857 breakpoint_re_set may try to access the current symtab. */
2858 clear_current_source_symtab_and_line ();
2859
c906108c 2860 clear_displays ();
1bfeeb0f 2861 clear_last_displayed_sal ();
c906108c 2862 clear_pc_function_cache ();
06d3b283 2863 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2864
2865 /* Clear globals which might have pointed into a removed objfile.
2866 FIXME: It's not clear which of these are supposed to persist
2867 between expressions and which ought to be reset each time. */
2868 expression_context_block = NULL;
2869 innermost_block = NULL;
8756216b
DP
2870
2871 /* Varobj may refer to old symbols, perform a cleanup. */
2872 varobj_invalidate ();
2873
e700d1b2
JB
2874 /* Now that the various caches have been cleared, we can re_set
2875 our breakpoints without risking it using stale data. */
2876 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2877 breakpoint_re_set ();
c906108c
SS
2878}
2879
74b7792f
AC
2880static void
2881clear_symtab_users_cleanup (void *ignore)
2882{
c1e56572 2883 clear_symtab_users (0);
74b7792f 2884}
c906108c 2885\f
c906108c
SS
2886/* OVERLAYS:
2887 The following code implements an abstraction for debugging overlay sections.
2888
2889 The target model is as follows:
2890 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2891 same VMA, each with its own unique LMA (or load address).
c906108c 2892 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2893 sections, one by one, from the load address into the VMA address.
5417f6dc 2894 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2895 sections should be considered to be mapped from the VMA to the LMA.
2896 This information is used for symbol lookup, and memory read/write.
5417f6dc 2897 For instance, if a section has been mapped then its contents
c5aa993b 2898 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2899
2900 Two levels of debugger support for overlays are available. One is
2901 "manual", in which the debugger relies on the user to tell it which
2902 overlays are currently mapped. This level of support is
2903 implemented entirely in the core debugger, and the information about
2904 whether a section is mapped is kept in the objfile->obj_section table.
2905
2906 The second level of support is "automatic", and is only available if
2907 the target-specific code provides functionality to read the target's
2908 overlay mapping table, and translate its contents for the debugger
2909 (by updating the mapped state information in the obj_section tables).
2910
2911 The interface is as follows:
c5aa993b
JM
2912 User commands:
2913 overlay map <name> -- tell gdb to consider this section mapped
2914 overlay unmap <name> -- tell gdb to consider this section unmapped
2915 overlay list -- list the sections that GDB thinks are mapped
2916 overlay read-target -- get the target's state of what's mapped
2917 overlay off/manual/auto -- set overlay debugging state
2918 Functional interface:
2919 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2920 section, return that section.
5417f6dc 2921 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2922 the pc, either in its VMA or its LMA
714835d5 2923 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2924 section_is_overlay(sect): true if section's VMA != LMA
2925 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2926 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2927 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2928 overlay_mapped_address(...): map an address from section's LMA to VMA
2929 overlay_unmapped_address(...): map an address from section's VMA to LMA
2930 symbol_overlayed_address(...): Return a "current" address for symbol:
2931 either in VMA or LMA depending on whether
c378eb4e 2932 the symbol's section is currently mapped. */
c906108c
SS
2933
2934/* Overlay debugging state: */
2935
d874f1e2 2936enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2937int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2938
c906108c 2939/* Function: section_is_overlay (SECTION)
5417f6dc 2940 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2941 SECTION is loaded at an address different from where it will "run". */
2942
2943int
714835d5 2944section_is_overlay (struct obj_section *section)
c906108c 2945{
714835d5
UW
2946 if (overlay_debugging && section)
2947 {
2948 bfd *abfd = section->objfile->obfd;
2949 asection *bfd_section = section->the_bfd_section;
f888f159 2950
714835d5
UW
2951 if (bfd_section_lma (abfd, bfd_section) != 0
2952 && bfd_section_lma (abfd, bfd_section)
2953 != bfd_section_vma (abfd, bfd_section))
2954 return 1;
2955 }
c906108c
SS
2956
2957 return 0;
2958}
2959
2960/* Function: overlay_invalidate_all (void)
2961 Invalidate the mapped state of all overlay sections (mark it as stale). */
2962
2963static void
fba45db2 2964overlay_invalidate_all (void)
c906108c 2965{
c5aa993b 2966 struct objfile *objfile;
c906108c
SS
2967 struct obj_section *sect;
2968
2969 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2970 if (section_is_overlay (sect))
2971 sect->ovly_mapped = -1;
c906108c
SS
2972}
2973
714835d5 2974/* Function: section_is_mapped (SECTION)
5417f6dc 2975 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2976
2977 Access to the ovly_mapped flag is restricted to this function, so
2978 that we can do automatic update. If the global flag
2979 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2980 overlay_invalidate_all. If the mapped state of the particular
2981 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2982
714835d5
UW
2983int
2984section_is_mapped (struct obj_section *osect)
c906108c 2985{
9216df95
UW
2986 struct gdbarch *gdbarch;
2987
714835d5 2988 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2989 return 0;
2990
c5aa993b 2991 switch (overlay_debugging)
c906108c
SS
2992 {
2993 default:
d874f1e2 2994 case ovly_off:
c5aa993b 2995 return 0; /* overlay debugging off */
d874f1e2 2996 case ovly_auto: /* overlay debugging automatic */
1c772458 2997 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2998 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2999 gdbarch = get_objfile_arch (osect->objfile);
3000 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3001 {
3002 if (overlay_cache_invalid)
3003 {
3004 overlay_invalidate_all ();
3005 overlay_cache_invalid = 0;
3006 }
3007 if (osect->ovly_mapped == -1)
9216df95 3008 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3009 }
3010 /* fall thru to manual case */
d874f1e2 3011 case ovly_on: /* overlay debugging manual */
c906108c
SS
3012 return osect->ovly_mapped == 1;
3013 }
3014}
3015
c906108c
SS
3016/* Function: pc_in_unmapped_range
3017 If PC falls into the lma range of SECTION, return true, else false. */
3018
3019CORE_ADDR
714835d5 3020pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3021{
714835d5
UW
3022 if (section_is_overlay (section))
3023 {
3024 bfd *abfd = section->objfile->obfd;
3025 asection *bfd_section = section->the_bfd_section;
fbd35540 3026
714835d5
UW
3027 /* We assume the LMA is relocated by the same offset as the VMA. */
3028 bfd_vma size = bfd_get_section_size (bfd_section);
3029 CORE_ADDR offset = obj_section_offset (section);
3030
3031 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3032 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3033 return 1;
3034 }
c906108c 3035
c906108c
SS
3036 return 0;
3037}
3038
3039/* Function: pc_in_mapped_range
3040 If PC falls into the vma range of SECTION, return true, else false. */
3041
3042CORE_ADDR
714835d5 3043pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3044{
714835d5
UW
3045 if (section_is_overlay (section))
3046 {
3047 if (obj_section_addr (section) <= pc
3048 && pc < obj_section_endaddr (section))
3049 return 1;
3050 }
c906108c 3051
c906108c
SS
3052 return 0;
3053}
3054
9ec8e6a0
JB
3055/* Return true if the mapped ranges of sections A and B overlap, false
3056 otherwise. */
3b7bacac 3057
b9362cc7 3058static int
714835d5 3059sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3060{
714835d5
UW
3061 CORE_ADDR a_start = obj_section_addr (a);
3062 CORE_ADDR a_end = obj_section_endaddr (a);
3063 CORE_ADDR b_start = obj_section_addr (b);
3064 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3065
3066 return (a_start < b_end && b_start < a_end);
3067}
3068
c906108c
SS
3069/* Function: overlay_unmapped_address (PC, SECTION)
3070 Returns the address corresponding to PC in the unmapped (load) range.
3071 May be the same as PC. */
3072
3073CORE_ADDR
714835d5 3074overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3075{
714835d5
UW
3076 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3077 {
3078 bfd *abfd = section->objfile->obfd;
3079 asection *bfd_section = section->the_bfd_section;
fbd35540 3080
714835d5
UW
3081 return pc + bfd_section_lma (abfd, bfd_section)
3082 - bfd_section_vma (abfd, bfd_section);
3083 }
c906108c
SS
3084
3085 return pc;
3086}
3087
3088/* Function: overlay_mapped_address (PC, SECTION)
3089 Returns the address corresponding to PC in the mapped (runtime) range.
3090 May be the same as PC. */
3091
3092CORE_ADDR
714835d5 3093overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3094{
714835d5
UW
3095 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3096 {
3097 bfd *abfd = section->objfile->obfd;
3098 asection *bfd_section = section->the_bfd_section;
fbd35540 3099
714835d5
UW
3100 return pc + bfd_section_vma (abfd, bfd_section)
3101 - bfd_section_lma (abfd, bfd_section);
3102 }
c906108c
SS
3103
3104 return pc;
3105}
3106
5417f6dc 3107/* Function: symbol_overlayed_address
c906108c
SS
3108 Return one of two addresses (relative to the VMA or to the LMA),
3109 depending on whether the section is mapped or not. */
3110
c5aa993b 3111CORE_ADDR
714835d5 3112symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3113{
3114 if (overlay_debugging)
3115 {
c378eb4e 3116 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3117 if (section == 0)
3118 return address;
c378eb4e
MS
3119 /* If the symbol's section is not an overlay, just return its
3120 address. */
c906108c
SS
3121 if (!section_is_overlay (section))
3122 return address;
c378eb4e 3123 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3124 if (section_is_mapped (section))
3125 return address;
3126 /*
3127 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3128 * then return its LOADED address rather than its vma address!!
3129 */
3130 return overlay_unmapped_address (address, section);
3131 }
3132 return address;
3133}
3134
5417f6dc 3135/* Function: find_pc_overlay (PC)
c906108c
SS
3136 Return the best-match overlay section for PC:
3137 If PC matches a mapped overlay section's VMA, return that section.
3138 Else if PC matches an unmapped section's VMA, return that section.
3139 Else if PC matches an unmapped section's LMA, return that section. */
3140
714835d5 3141struct obj_section *
fba45db2 3142find_pc_overlay (CORE_ADDR pc)
c906108c 3143{
c5aa993b 3144 struct objfile *objfile;
c906108c
SS
3145 struct obj_section *osect, *best_match = NULL;
3146
3147 if (overlay_debugging)
b631e59b
KT
3148 {
3149 ALL_OBJSECTIONS (objfile, osect)
3150 if (section_is_overlay (osect))
c5aa993b 3151 {
b631e59b
KT
3152 if (pc_in_mapped_range (pc, osect))
3153 {
3154 if (section_is_mapped (osect))
3155 return osect;
3156 else
3157 best_match = osect;
3158 }
3159 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3160 best_match = osect;
3161 }
b631e59b 3162 }
714835d5 3163 return best_match;
c906108c
SS
3164}
3165
3166/* Function: find_pc_mapped_section (PC)
5417f6dc 3167 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3168 currently marked as MAPPED, return that section. Else return NULL. */
3169
714835d5 3170struct obj_section *
fba45db2 3171find_pc_mapped_section (CORE_ADDR pc)
c906108c 3172{
c5aa993b 3173 struct objfile *objfile;
c906108c
SS
3174 struct obj_section *osect;
3175
3176 if (overlay_debugging)
b631e59b
KT
3177 {
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3180 return osect;
3181 }
c906108c
SS
3182
3183 return NULL;
3184}
3185
3186/* Function: list_overlays_command
c378eb4e 3187 Print a list of mapped sections and their PC ranges. */
c906108c 3188
5d3055ad 3189static void
2cf311eb 3190list_overlays_command (const char *args, int from_tty)
c906108c 3191{
c5aa993b
JM
3192 int nmapped = 0;
3193 struct objfile *objfile;
c906108c
SS
3194 struct obj_section *osect;
3195
3196 if (overlay_debugging)
b631e59b
KT
3197 {
3198 ALL_OBJSECTIONS (objfile, osect)
714835d5 3199 if (section_is_mapped (osect))
b631e59b
KT
3200 {
3201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3202 const char *name;
3203 bfd_vma lma, vma;
3204 int size;
3205
3206 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3207 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3208 size = bfd_get_section_size (osect->the_bfd_section);
3209 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3210
3211 printf_filtered ("Section %s, loaded at ", name);
3212 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3213 puts_filtered (" - ");
3214 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3215 printf_filtered (", mapped at ");
3216 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3217 puts_filtered (" - ");
3218 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3219 puts_filtered ("\n");
3220
3221 nmapped++;
3222 }
3223 }
c906108c 3224 if (nmapped == 0)
a3f17187 3225 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3226}
3227
3228/* Function: map_overlay_command
3229 Mark the named section as mapped (ie. residing at its VMA address). */
3230
5d3055ad 3231static void
2cf311eb 3232map_overlay_command (const char *args, int from_tty)
c906108c 3233{
c5aa993b
JM
3234 struct objfile *objfile, *objfile2;
3235 struct obj_section *sec, *sec2;
c906108c
SS
3236
3237 if (!overlay_debugging)
3e43a32a
MS
3238 error (_("Overlay debugging not enabled. Use "
3239 "either the 'overlay auto' or\n"
3240 "the 'overlay manual' command."));
c906108c
SS
3241
3242 if (args == 0 || *args == 0)
8a3fe4f8 3243 error (_("Argument required: name of an overlay section"));
c906108c 3244
c378eb4e 3245 /* First, find a section matching the user supplied argument. */
c906108c
SS
3246 ALL_OBJSECTIONS (objfile, sec)
3247 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3248 {
c378eb4e 3249 /* Now, check to see if the section is an overlay. */
714835d5 3250 if (!section_is_overlay (sec))
c5aa993b
JM
3251 continue; /* not an overlay section */
3252
c378eb4e 3253 /* Mark the overlay as "mapped". */
c5aa993b
JM
3254 sec->ovly_mapped = 1;
3255
3256 /* Next, make a pass and unmap any sections that are
3257 overlapped by this new section: */
3258 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3259 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3260 {
3261 if (info_verbose)
a3f17187 3262 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3263 bfd_section_name (objfile->obfd,
3264 sec2->the_bfd_section));
c378eb4e 3265 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3266 }
3267 return;
3268 }
8a3fe4f8 3269 error (_("No overlay section called %s"), args);
c906108c
SS
3270}
3271
3272/* Function: unmap_overlay_command
5417f6dc 3273 Mark the overlay section as unmapped
c906108c
SS
3274 (ie. resident in its LMA address range, rather than the VMA range). */
3275
5d3055ad 3276static void
2cf311eb 3277unmap_overlay_command (const char *args, int from_tty)
c906108c 3278{
c5aa993b 3279 struct objfile *objfile;
7a270e0c 3280 struct obj_section *sec = NULL;
c906108c
SS
3281
3282 if (!overlay_debugging)
3e43a32a
MS
3283 error (_("Overlay debugging not enabled. "
3284 "Use either the 'overlay auto' or\n"
3285 "the 'overlay manual' command."));
c906108c
SS
3286
3287 if (args == 0 || *args == 0)
8a3fe4f8 3288 error (_("Argument required: name of an overlay section"));
c906108c 3289
c378eb4e 3290 /* First, find a section matching the user supplied argument. */
c906108c
SS
3291 ALL_OBJSECTIONS (objfile, sec)
3292 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3293 {
3294 if (!sec->ovly_mapped)
8a3fe4f8 3295 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3296 sec->ovly_mapped = 0;
3297 return;
3298 }
8a3fe4f8 3299 error (_("No overlay section called %s"), args);
c906108c
SS
3300}
3301
3302/* Function: overlay_auto_command
3303 A utility command to turn on overlay debugging.
c378eb4e 3304 Possibly this should be done via a set/show command. */
c906108c
SS
3305
3306static void
2cf311eb 3307overlay_auto_command (const char *args, int from_tty)
c906108c 3308{
d874f1e2 3309 overlay_debugging = ovly_auto;
1900040c 3310 enable_overlay_breakpoints ();
c906108c 3311 if (info_verbose)
a3f17187 3312 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3313}
3314
3315/* Function: overlay_manual_command
3316 A utility command to turn on overlay debugging.
c378eb4e 3317 Possibly this should be done via a set/show command. */
c906108c
SS
3318
3319static void
2cf311eb 3320overlay_manual_command (const char *args, int from_tty)
c906108c 3321{
d874f1e2 3322 overlay_debugging = ovly_on;
1900040c 3323 disable_overlay_breakpoints ();
c906108c 3324 if (info_verbose)
a3f17187 3325 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3326}
3327
3328/* Function: overlay_off_command
3329 A utility command to turn on overlay debugging.
c378eb4e 3330 Possibly this should be done via a set/show command. */
c906108c
SS
3331
3332static void
2cf311eb 3333overlay_off_command (const char *args, int from_tty)
c906108c 3334{
d874f1e2 3335 overlay_debugging = ovly_off;
1900040c 3336 disable_overlay_breakpoints ();
c906108c 3337 if (info_verbose)
a3f17187 3338 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3339}
3340
3341static void
2cf311eb 3342overlay_load_command (const char *args, int from_tty)
c906108c 3343{
e17c207e
UW
3344 struct gdbarch *gdbarch = get_current_arch ();
3345
3346 if (gdbarch_overlay_update_p (gdbarch))
3347 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3348 else
8a3fe4f8 3349 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3350}
3351
3352/* Function: overlay_command
c378eb4e 3353 A place-holder for a mis-typed command. */
c906108c 3354
c378eb4e 3355/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3356static struct cmd_list_element *overlaylist;
c906108c
SS
3357
3358static void
981a3fb3 3359overlay_command (const char *args, int from_tty)
c906108c 3360{
c5aa993b 3361 printf_unfiltered
c906108c 3362 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3363 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3364}
3365
c906108c
SS
3366/* Target Overlays for the "Simplest" overlay manager:
3367
5417f6dc
RM
3368 This is GDB's default target overlay layer. It works with the
3369 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3370 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3371 so targets that use a different runtime overlay manager can
c906108c
SS
3372 substitute their own overlay_update function and take over the
3373 function pointer.
3374
3375 The overlay_update function pokes around in the target's data structures
3376 to see what overlays are mapped, and updates GDB's overlay mapping with
3377 this information.
3378
3379 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3380 unsigned _novlys; /# number of overlay sections #/
3381 unsigned _ovly_table[_novlys][4] = {
438e1e42 3382 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3383 {..., ..., ..., ...},
3384 }
3385 unsigned _novly_regions; /# number of overlay regions #/
3386 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3387 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3388 {..., ..., ...},
3389 }
c906108c
SS
3390 These functions will attempt to update GDB's mappedness state in the
3391 symbol section table, based on the target's mappedness state.
3392
3393 To do this, we keep a cached copy of the target's _ovly_table, and
3394 attempt to detect when the cached copy is invalidated. The main
3395 entry point is "simple_overlay_update(SECT), which looks up SECT in
3396 the cached table and re-reads only the entry for that section from
c378eb4e 3397 the target (whenever possible). */
c906108c
SS
3398
3399/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3400static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3401static unsigned cache_novlys = 0;
c906108c 3402static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3403enum ovly_index
3404 {
438e1e42 3405 VMA, OSIZE, LMA, MAPPED
c5aa993b 3406 };
c906108c 3407
c378eb4e 3408/* Throw away the cached copy of _ovly_table. */
3b7bacac 3409
c906108c 3410static void
fba45db2 3411simple_free_overlay_table (void)
c906108c
SS
3412{
3413 if (cache_ovly_table)
b8c9b27d 3414 xfree (cache_ovly_table);
c5aa993b 3415 cache_novlys = 0;
c906108c
SS
3416 cache_ovly_table = NULL;
3417 cache_ovly_table_base = 0;
3418}
3419
9216df95 3420/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3421 Convert to host order. int LEN is number of ints. */
3b7bacac 3422
c906108c 3423static void
9216df95 3424read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3425 int len, int size, enum bfd_endian byte_order)
c906108c 3426{
c378eb4e 3427 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3428 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3429 int i;
c906108c 3430
9216df95 3431 read_memory (memaddr, buf, len * size);
c906108c 3432 for (i = 0; i < len; i++)
e17a4113 3433 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3434}
3435
3436/* Find and grab a copy of the target _ovly_table
c378eb4e 3437 (and _novlys, which is needed for the table's size). */
3b7bacac 3438
c5aa993b 3439static int
fba45db2 3440simple_read_overlay_table (void)
c906108c 3441{
3b7344d5 3442 struct bound_minimal_symbol novlys_msym;
7c7b6655 3443 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3444 struct gdbarch *gdbarch;
3445 int word_size;
e17a4113 3446 enum bfd_endian byte_order;
c906108c
SS
3447
3448 simple_free_overlay_table ();
9b27852e 3449 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3450 if (! novlys_msym.minsym)
c906108c 3451 {
8a3fe4f8 3452 error (_("Error reading inferior's overlay table: "
0d43edd1 3453 "couldn't find `_novlys' variable\n"
8a3fe4f8 3454 "in inferior. Use `overlay manual' mode."));
0d43edd1 3455 return 0;
c906108c 3456 }
0d43edd1 3457
7c7b6655
TT
3458 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3459 if (! ovly_table_msym.minsym)
0d43edd1 3460 {
8a3fe4f8 3461 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3462 "`_ovly_table' array\n"
8a3fe4f8 3463 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3464 return 0;
3465 }
3466
7c7b6655 3467 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3468 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3469 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3470
77e371c0
TT
3471 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3472 4, byte_order);
0d43edd1 3473 cache_ovly_table
224c3ddb 3474 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3475 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3476 read_target_long_array (cache_ovly_table_base,
777ea8f1 3477 (unsigned int *) cache_ovly_table,
e17a4113 3478 cache_novlys * 4, word_size, byte_order);
0d43edd1 3479
c5aa993b 3480 return 1; /* SUCCESS */
c906108c
SS
3481}
3482
5417f6dc 3483/* Function: simple_overlay_update_1
c906108c
SS
3484 A helper function for simple_overlay_update. Assuming a cached copy
3485 of _ovly_table exists, look through it to find an entry whose vma,
3486 lma and size match those of OSECT. Re-read the entry and make sure
3487 it still matches OSECT (else the table may no longer be valid).
3488 Set OSECT's mapped state to match the entry. Return: 1 for
3489 success, 0 for failure. */
3490
3491static int
fba45db2 3492simple_overlay_update_1 (struct obj_section *osect)
c906108c 3493{
764c99c1 3494 int i;
fbd35540
MS
3495 bfd *obfd = osect->objfile->obfd;
3496 asection *bsect = osect->the_bfd_section;
9216df95
UW
3497 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3498 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3499 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3500
c906108c 3501 for (i = 0; i < cache_novlys; i++)
fbd35540 3502 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3503 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3504 {
9216df95
UW
3505 read_target_long_array (cache_ovly_table_base + i * word_size,
3506 (unsigned int *) cache_ovly_table[i],
e17a4113 3507 4, word_size, byte_order);
fbd35540 3508 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3509 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3510 {
3511 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3512 return 1;
3513 }
c378eb4e 3514 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3515 return 0;
3516 }
3517 return 0;
3518}
3519
3520/* Function: simple_overlay_update
5417f6dc
RM
3521 If OSECT is NULL, then update all sections' mapped state
3522 (after re-reading the entire target _ovly_table).
3523 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3524 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3525 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3526 re-read the entire cache, and go ahead and update all sections. */
3527
1c772458 3528void
fba45db2 3529simple_overlay_update (struct obj_section *osect)
c906108c 3530{
c5aa993b 3531 struct objfile *objfile;
c906108c 3532
c378eb4e 3533 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3534 if (osect)
c378eb4e 3535 /* Have we got a cached copy of the target's overlay table? */
c906108c 3536 if (cache_ovly_table != NULL)
9cc89665
MS
3537 {
3538 /* Does its cached location match what's currently in the
3539 symtab? */
3b7344d5 3540 struct bound_minimal_symbol minsym
9cc89665
MS
3541 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3542
3b7344d5 3543 if (minsym.minsym == NULL)
9cc89665
MS
3544 error (_("Error reading inferior's overlay table: couldn't "
3545 "find `_ovly_table' array\n"
3546 "in inferior. Use `overlay manual' mode."));
3547
77e371c0 3548 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3549 /* Then go ahead and try to look up this single section in
3550 the cache. */
3551 if (simple_overlay_update_1 (osect))
3552 /* Found it! We're done. */
3553 return;
3554 }
c906108c
SS
3555
3556 /* Cached table no good: need to read the entire table anew.
3557 Or else we want all the sections, in which case it's actually
3558 more efficient to read the whole table in one block anyway. */
3559
0d43edd1
JB
3560 if (! simple_read_overlay_table ())
3561 return;
3562
c378eb4e 3563 /* Now may as well update all sections, even if only one was requested. */
c906108c 3564 ALL_OBJSECTIONS (objfile, osect)
714835d5 3565 if (section_is_overlay (osect))
c5aa993b 3566 {
764c99c1 3567 int i;
fbd35540
MS
3568 bfd *obfd = osect->objfile->obfd;
3569 asection *bsect = osect->the_bfd_section;
c5aa993b 3570
c5aa993b 3571 for (i = 0; i < cache_novlys; i++)
fbd35540 3572 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3573 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3574 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3575 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3576 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3577 }
3578 }
c906108c
SS
3579}
3580
086df311
DJ
3581/* Set the output sections and output offsets for section SECTP in
3582 ABFD. The relocation code in BFD will read these offsets, so we
3583 need to be sure they're initialized. We map each section to itself,
3584 with no offset; this means that SECTP->vma will be honored. */
3585
3586static void
3587symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3588{
3589 sectp->output_section = sectp;
3590 sectp->output_offset = 0;
3591}
3592
ac8035ab
TG
3593/* Default implementation for sym_relocate. */
3594
ac8035ab
TG
3595bfd_byte *
3596default_symfile_relocate (struct objfile *objfile, asection *sectp,
3597 bfd_byte *buf)
3598{
3019eac3
DE
3599 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3600 DWO file. */
3601 bfd *abfd = sectp->owner;
ac8035ab
TG
3602
3603 /* We're only interested in sections with relocation
3604 information. */
3605 if ((sectp->flags & SEC_RELOC) == 0)
3606 return NULL;
3607
3608 /* We will handle section offsets properly elsewhere, so relocate as if
3609 all sections begin at 0. */
3610 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3611
3612 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3613}
3614
086df311
DJ
3615/* Relocate the contents of a debug section SECTP in ABFD. The
3616 contents are stored in BUF if it is non-NULL, or returned in a
3617 malloc'd buffer otherwise.
3618
3619 For some platforms and debug info formats, shared libraries contain
3620 relocations against the debug sections (particularly for DWARF-2;
3621 one affected platform is PowerPC GNU/Linux, although it depends on
3622 the version of the linker in use). Also, ELF object files naturally
3623 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3624 the relocations in order to get the locations of symbols correct.
3625 Another example that may require relocation processing, is the
3626 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3627 debug section. */
086df311
DJ
3628
3629bfd_byte *
ac8035ab
TG
3630symfile_relocate_debug_section (struct objfile *objfile,
3631 asection *sectp, bfd_byte *buf)
086df311 3632{
ac8035ab 3633 gdb_assert (objfile->sf->sym_relocate);
086df311 3634
ac8035ab 3635 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3636}
c906108c 3637
31d99776
DJ
3638struct symfile_segment_data *
3639get_symfile_segment_data (bfd *abfd)
3640{
00b5771c 3641 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3642
3643 if (sf == NULL)
3644 return NULL;
3645
3646 return sf->sym_segments (abfd);
3647}
3648
3649void
3650free_symfile_segment_data (struct symfile_segment_data *data)
3651{
3652 xfree (data->segment_bases);
3653 xfree (data->segment_sizes);
3654 xfree (data->segment_info);
3655 xfree (data);
3656}
3657
28c32713
JB
3658/* Given:
3659 - DATA, containing segment addresses from the object file ABFD, and
3660 the mapping from ABFD's sections onto the segments that own them,
3661 and
3662 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3663 segment addresses reported by the target,
3664 store the appropriate offsets for each section in OFFSETS.
3665
3666 If there are fewer entries in SEGMENT_BASES than there are segments
3667 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3668
8d385431
DJ
3669 If there are more entries, then ignore the extra. The target may
3670 not be able to distinguish between an empty data segment and a
3671 missing data segment; a missing text segment is less plausible. */
3b7bacac 3672
31d99776 3673int
3189cb12
DE
3674symfile_map_offsets_to_segments (bfd *abfd,
3675 const struct symfile_segment_data *data,
31d99776
DJ
3676 struct section_offsets *offsets,
3677 int num_segment_bases,
3678 const CORE_ADDR *segment_bases)
3679{
3680 int i;
3681 asection *sect;
3682
28c32713
JB
3683 /* It doesn't make sense to call this function unless you have some
3684 segment base addresses. */
202b96c1 3685 gdb_assert (num_segment_bases > 0);
28c32713 3686
31d99776
DJ
3687 /* If we do not have segment mappings for the object file, we
3688 can not relocate it by segments. */
3689 gdb_assert (data != NULL);
3690 gdb_assert (data->num_segments > 0);
3691
31d99776
DJ
3692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3693 {
31d99776
DJ
3694 int which = data->segment_info[i];
3695
28c32713
JB
3696 gdb_assert (0 <= which && which <= data->num_segments);
3697
3698 /* Don't bother computing offsets for sections that aren't
3699 loaded as part of any segment. */
3700 if (! which)
3701 continue;
3702
3703 /* Use the last SEGMENT_BASES entry as the address of any extra
3704 segments mentioned in DATA->segment_info. */
31d99776 3705 if (which > num_segment_bases)
28c32713 3706 which = num_segment_bases;
31d99776 3707
28c32713
JB
3708 offsets->offsets[i] = (segment_bases[which - 1]
3709 - data->segment_bases[which - 1]);
31d99776
DJ
3710 }
3711
3712 return 1;
3713}
3714
3715static void
3716symfile_find_segment_sections (struct objfile *objfile)
3717{
3718 bfd *abfd = objfile->obfd;
3719 int i;
3720 asection *sect;
3721 struct symfile_segment_data *data;
3722
3723 data = get_symfile_segment_data (objfile->obfd);
3724 if (data == NULL)
3725 return;
3726
3727 if (data->num_segments != 1 && data->num_segments != 2)
3728 {
3729 free_symfile_segment_data (data);
3730 return;
3731 }
3732
3733 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3734 {
31d99776
DJ
3735 int which = data->segment_info[i];
3736
3737 if (which == 1)
3738 {
3739 if (objfile->sect_index_text == -1)
3740 objfile->sect_index_text = sect->index;
3741
3742 if (objfile->sect_index_rodata == -1)
3743 objfile->sect_index_rodata = sect->index;
3744 }
3745 else if (which == 2)
3746 {
3747 if (objfile->sect_index_data == -1)
3748 objfile->sect_index_data = sect->index;
3749
3750 if (objfile->sect_index_bss == -1)
3751 objfile->sect_index_bss = sect->index;
3752 }
3753 }
3754
3755 free_symfile_segment_data (data);
3756}
3757
76ad5e1e
NB
3758/* Listen for free_objfile events. */
3759
3760static void
3761symfile_free_objfile (struct objfile *objfile)
3762{
c33b2f12
MM
3763 /* Remove the target sections owned by this objfile. */
3764 if (objfile != NULL)
76ad5e1e
NB
3765 remove_target_sections ((void *) objfile);
3766}
3767
540c2971
DE
3768/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3769 Expand all symtabs that match the specified criteria.
3770 See quick_symbol_functions.expand_symtabs_matching for details. */
3771
3772void
14bc53a8
PA
3773expand_symtabs_matching
3774 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3775 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3776 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3777 enum search_domain kind)
540c2971
DE
3778{
3779 struct objfile *objfile;
3780
3781 ALL_OBJFILES (objfile)
3782 {
3783 if (objfile->sf)
bb4142cf 3784 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b 3785 symbol_matcher,
14bc53a8 3786 expansion_notify, kind);
540c2971
DE
3787 }
3788}
3789
3790/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3791 Map function FUN over every file.
3792 See quick_symbol_functions.map_symbol_filenames for details. */
3793
3794void
bb4142cf
DE
3795map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3796 int need_fullname)
540c2971
DE
3797{
3798 struct objfile *objfile;
3799
3800 ALL_OBJFILES (objfile)
3801 {
3802 if (objfile->sf)
3803 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3804 need_fullname);
3805 }
3806}
3807
32fa66eb
SM
3808#if GDB_SELF_TEST
3809
3810namespace selftests {
3811namespace filename_language {
3812
32fa66eb
SM
3813static void test_filename_language ()
3814{
3815 /* This test messes up the filename_language_table global. */
593e3209 3816 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3817
3818 /* Test deducing an unknown extension. */
3819 language lang = deduce_language_from_filename ("myfile.blah");
3820 SELF_CHECK (lang == language_unknown);
3821
3822 /* Test deducing a known extension. */
3823 lang = deduce_language_from_filename ("myfile.c");
3824 SELF_CHECK (lang == language_c);
3825
3826 /* Test adding a new extension using the internal API. */
3827 add_filename_language (".blah", language_pascal);
3828 lang = deduce_language_from_filename ("myfile.blah");
3829 SELF_CHECK (lang == language_pascal);
3830}
3831
3832static void
3833test_set_ext_lang_command ()
3834{
3835 /* This test messes up the filename_language_table global. */
593e3209 3836 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3837
3838 /* Confirm that the .hello extension is not known. */
3839 language lang = deduce_language_from_filename ("cake.hello");
3840 SELF_CHECK (lang == language_unknown);
3841
3842 /* Test adding a new extension using the CLI command. */
3843 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3844 ext_args = args_holder.get ();
3845 set_ext_lang_command (NULL, 1, NULL);
3846
3847 lang = deduce_language_from_filename ("cake.hello");
3848 SELF_CHECK (lang == language_rust);
3849
3850 /* Test overriding an existing extension using the CLI command. */
593e3209 3851 int size_before = filename_language_table.size ();
32fa66eb
SM
3852 args_holder.reset (xstrdup (".hello pascal"));
3853 ext_args = args_holder.get ();
3854 set_ext_lang_command (NULL, 1, NULL);
593e3209 3855 int size_after = filename_language_table.size ();
32fa66eb
SM
3856
3857 lang = deduce_language_from_filename ("cake.hello");
3858 SELF_CHECK (lang == language_pascal);
3859 SELF_CHECK (size_before == size_after);
3860}
3861
3862} /* namespace filename_language */
3863} /* namespace selftests */
3864
3865#endif /* GDB_SELF_TEST */
3866
c906108c 3867void
fba45db2 3868_initialize_symfile (void)
c906108c
SS
3869{
3870 struct cmd_list_element *c;
c5aa993b 3871
76ad5e1e
NB
3872 observer_attach_free_objfile (symfile_free_objfile);
3873
1a966eab
AC
3874 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3875Load symbol table from executable file FILE.\n\
c906108c 3876The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3877to execute."), &cmdlist);
5ba2abeb 3878 set_cmd_completer (c, filename_completer);
c906108c 3879
1a966eab 3880 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3881Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3882Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3883 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3884The optional arguments are section-name section-address pairs and\n\
3885should be specified if the data and bss segments are not contiguous\n\
1a966eab 3886with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3887 &cmdlist);
5ba2abeb 3888 set_cmd_completer (c, filename_completer);
c906108c 3889
63644780
NB
3890 c = add_cmd ("remove-symbol-file", class_files,
3891 remove_symbol_file_command, _("\
3892Remove a symbol file added via the add-symbol-file command.\n\
3893Usage: remove-symbol-file FILENAME\n\
3894 remove-symbol-file -a ADDRESS\n\
3895The file to remove can be identified by its filename or by an address\n\
3896that lies within the boundaries of this symbol file in memory."),
3897 &cmdlist);
3898
1a966eab
AC
3899 c = add_cmd ("load", class_files, load_command, _("\
3900Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3901for access from GDB.\n\
5cf30ebf
LM
3902An optional load OFFSET may also be given as a literal address.\n\
3903When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3904on its own.\n\
3905Usage: load [FILE] [OFFSET]"), &cmdlist);
5ba2abeb 3906 set_cmd_completer (c, filename_completer);
c906108c 3907
c5aa993b 3908 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3909 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3910 "overlay ", 0, &cmdlist);
3911
3912 add_com_alias ("ovly", "overlay", class_alias, 1);
3913 add_com_alias ("ov", "overlay", class_alias, 1);
3914
c5aa993b 3915 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3916 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3917
c5aa993b 3918 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3919 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3920
c5aa993b 3921 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3922 _("List mappings of overlay sections."), &overlaylist);
c906108c 3923
c5aa993b 3924 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3925 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3926 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3927 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3928 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3929 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3930 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3931 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3932
3933 /* Filename extension to source language lookup table: */
26c41df3
AC
3934 add_setshow_string_noescape_cmd ("extension-language", class_files,
3935 &ext_args, _("\
3936Set mapping between filename extension and source language."), _("\
3937Show mapping between filename extension and source language."), _("\
3938Usage: set extension-language .foo bar"),
3939 set_ext_lang_command,
920d2a44 3940 show_ext_args,
26c41df3 3941 &setlist, &showlist);
c906108c 3942
c5aa993b 3943 add_info ("extensions", info_ext_lang_command,
1bedd215 3944 _("All filename extensions associated with a source language."));
917317f4 3945
525226b5
AC
3946 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3947 &debug_file_directory, _("\
24ddea62
JK
3948Set the directories where separate debug symbols are searched for."), _("\
3949Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3950Separate debug symbols are first searched for in the same\n\
3951directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3952and lastly at the path of the directory of the binary with\n\
24ddea62 3953each global debug-file-directory component prepended."),
525226b5 3954 NULL,
920d2a44 3955 show_debug_file_directory,
525226b5 3956 &setlist, &showlist);
770e7fc7
DE
3957
3958 add_setshow_enum_cmd ("symbol-loading", no_class,
3959 print_symbol_loading_enums, &print_symbol_loading,
3960 _("\
3961Set printing of symbol loading messages."), _("\
3962Show printing of symbol loading messages."), _("\
3963off == turn all messages off\n\
3964brief == print messages for the executable,\n\
3965 and brief messages for shared libraries\n\
3966full == print messages for the executable,\n\
3967 and messages for each shared library."),
3968 NULL,
3969 NULL,
3970 &setprintlist, &showprintlist);
c4dcb155
SM
3971
3972 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3973 &separate_debug_file_debug, _("\
3974Set printing of separate debug info file search debug."), _("\
3975Show printing of separate debug info file search debug."), _("\
3976When on, GDB prints the searched locations while looking for separate debug \
3977info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3978
3979#if GDB_SELF_TEST
3980 selftests::register_test
3981 ("filename_language", selftests::filename_language::test_filename_language);
3982 selftests::register_test
3983 ("set_ext_lang_command",
3984 selftests::filename_language::test_set_ext_lang_command);
3985#endif
c906108c 3986}
This page took 2.21489 seconds and 4 git commands to generate.