gdb/
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
7b6bb8da 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 84
c378eb4e 85/* External variables and functions referenced. */
c906108c 86
a14ed312 87extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c 88
c378eb4e 89/* Functions this file defines. */
c906108c 90
a14ed312 91static void load_command (char *, int);
c906108c 92
d7db6da9
FN
93static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
a14ed312 95static void add_symbol_file_command (char *, int);
c906108c 96
a14ed312 97bfd *symfile_bfd_open (char *);
c906108c 98
0e931cf0
JB
99int get_section_index (struct objfile *, char *);
100
00b5771c 101static const struct sym_fns *find_sym_fns (bfd *);
c906108c 102
a14ed312 103static void decrement_reading_symtab (void *);
c906108c 104
a14ed312 105static void overlay_invalidate_all (void);
c906108c 106
a14ed312 107void list_overlays_command (char *, int);
c906108c 108
a14ed312 109void map_overlay_command (char *, int);
c906108c 110
a14ed312 111void unmap_overlay_command (char *, int);
c906108c 112
a14ed312 113static void overlay_auto_command (char *, int);
c906108c 114
a14ed312 115static void overlay_manual_command (char *, int);
c906108c 116
a14ed312 117static void overlay_off_command (char *, int);
c906108c 118
a14ed312 119static void overlay_load_command (char *, int);
c906108c 120
a14ed312 121static void overlay_command (char *, int);
c906108c 122
a14ed312 123static void simple_free_overlay_table (void);
c906108c 124
e17a4113
UW
125static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
c906108c 127
a14ed312 128static int simple_read_overlay_table (void);
c906108c 129
a14ed312 130static int simple_overlay_update_1 (struct obj_section *);
c906108c 131
a14ed312 132static void add_filename_language (char *ext, enum language lang);
392a587b 133
a14ed312 134static void info_ext_lang_command (char *args, int from_tty);
392a587b 135
a14ed312 136static void init_filename_language_table (void);
392a587b 137
31d99776
DJ
138static void symfile_find_segment_sections (struct objfile *objfile);
139
a14ed312 140void _initialize_symfile (void);
c906108c
SS
141
142/* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
c378eb4e 144 prepared to read. */
c906108c 145
00b5771c
TT
146typedef const struct sym_fns *sym_fns_ptr;
147DEF_VEC_P (sym_fns_ptr);
148
149static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c
SS
150
151/* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154#ifdef SYMBOL_RELOADING_DEFAULT
155int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156#else
157int symbol_reloading = 0;
158#endif
920d2a44
AC
159static void
160show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
3e43a32a
MS
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
920d2a44
AC
165 value);
166}
167
b7209cb4
FF
168/* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
c906108c 175 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 176 report all the functions that are actually present. */
c906108c
SS
177
178int auto_solib_add = 1;
c906108c 179\f
c5aa993b 180
c906108c
SS
181/* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
c378eb4e 183 Note that the string at PTR does not have to be null terminated, I.e. it
0d14a781 184 may be part of a larger string and we are only saving a substring. */
c906108c
SS
185
186char *
63ca651f 187obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 188{
52f0bd74 189 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
c378eb4e 192 inline memcpy? */
c906108c 193 {
aa1ee363
AC
194 const char *p1 = ptr;
195 char *p2 = p;
63ca651f 196 const char *end = ptr + size;
433759f7 197
c906108c
SS
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203}
204
3e43a32a
MS
205/* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
c906108c
SS
209
210char *
48cb83fd 211obconcat (struct obstack *obstackp, ...)
c906108c 212{
48cb83fd
JK
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
c906108c
SS
229}
230
0d14a781 231/* True if we are reading a symbol table. */
c906108c
SS
232
233int currently_reading_symtab = 0;
234
235static void
fba45db2 236decrement_reading_symtab (void *dummy)
c906108c
SS
237{
238 currently_reading_symtab--;
239}
240
ccefe4c4
TT
241/* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243struct cleanup *
244increment_reading_symtab (void)
c906108c 245{
ccefe4c4
TT
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
248}
249
5417f6dc
RM
250/* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
c906108c
SS
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259void
4efb68b1 260find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 261{
c5aa993b 262 asection **lowest = (asection **) obj;
c906108c 263
eb73e134 264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274}
275
a39a16c4
MM
276/* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278struct section_addr_info *
279alloc_section_addr_info (size_t num_sections)
280{
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291}
62557bbc
KB
292
293/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 294 an existing section table. */
62557bbc
KB
295
296extern struct section_addr_info *
0542c86d
PA
297build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
62557bbc
KB
299{
300 struct section_addr_info *sap;
0542c86d 301 const struct target_section *stp;
62557bbc
KB
302 int oidx;
303
a39a16c4 304 sap = alloc_section_addr_info (end - start);
62557bbc
KB
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
5417f6dc 308 if (bfd_get_section_flags (stp->bfd,
fbd35540 309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 310 && oidx < end - start)
62557bbc
KB
311 {
312 sap->other[oidx].addr = stp->addr;
5417f6dc 313 sap->other[oidx].name
fbd35540 314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321}
322
82ccf5a5 323/* Create a section_addr_info from section offsets in ABFD. */
089b4803 324
82ccf5a5
JK
325static struct section_addr_info *
326build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
327{
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
82ccf5a5
JK
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 335 {
82ccf5a5
JK
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
089b4803
TG
341 return sap;
342}
343
82ccf5a5
JK
344/* Create a section_addr_info from section offsets in OBJFILE. */
345
346struct section_addr_info *
347build_section_addr_info_from_objfile (const struct objfile *objfile)
348{
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363}
62557bbc 364
c378eb4e 365/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
366
367extern void
368free_section_addr_info (struct section_addr_info *sap)
369{
370 int idx;
371
a39a16c4 372 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 373 if (sap->other[idx].name)
b8c9b27d
KB
374 xfree (sap->other[idx].name);
375 xfree (sap);
62557bbc
KB
376}
377
378
e8289572
JB
379/* Initialize OBJFILE's sect_index_* members. */
380static void
381init_objfile_sect_indices (struct objfile *objfile)
c906108c 382{
e8289572 383 asection *sect;
c906108c 384 int i;
5417f6dc 385
b8fbeb18 386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 387 if (sect)
b8fbeb18
EZ
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 391 if (sect)
b8fbeb18
EZ
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 395 if (sect)
b8fbeb18
EZ
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 399 if (sect)
b8fbeb18
EZ
400 objfile->sect_index_rodata = sect->index;
401
bbcd32ad
FF
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
31d99776
DJ
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
bbcd32ad
FF
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
b8fbeb18 437}
c906108c 438
c1bd25fd
DJ
439/* The arguments to place_section. */
440
441struct place_section_arg
442{
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445};
446
447/* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
2c0b251b 450static void
c1bd25fd
DJ
451place_section (bfd *abfd, asection *sect, void *obj)
452{
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
3bd72c6f 456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 457
2711e456
DJ
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
467 start_addr = (arg->lowest + align - 1) & -align;
468
c1bd25fd
DJ
469 do {
470 asection *cur_sec;
c1bd25fd 471
c1bd25fd
DJ
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
c1bd25fd
DJ
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
2711e456
DJ
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
3bd72c6f 499 break;
c1bd25fd
DJ
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 509}
e8289572 510
75242ef4
JK
511/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
e8289572
JB
514
515void
75242ef4
JK
516relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
e8289572
JB
519{
520 int i;
521
75242ef4 522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 523
c378eb4e 524 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 526 {
75242ef4 527 struct other_sections *osp;
e8289572 528
75242ef4 529 osp = &addrs->other[i];
e8289572
JB
530 if (osp->addr == 0)
531 continue;
532
c378eb4e 533 /* Record all sections in offsets. */
e8289572 534 /* The section_offsets in the objfile are here filled in using
c378eb4e 535 the BFD index. */
75242ef4
JK
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538}
539
1276c759
JK
540/* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546static const char *
547addr_section_name (const char *s)
548{
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555}
556
82ccf5a5
JK
557/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560static int
561addrs_section_compar (const void *ap, const void *bp)
562{
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
1276c759 567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
568 if (retval)
569 return retval;
570
571 /* SECTINDEX is undefined iff ADDR is zero. */
572 a_idx = a->addr == 0 ? 0 : a->sectindex;
573 b_idx = b->addr == 0 ? 0 : b->sectindex;
574 return a_idx - b_idx;
575}
576
577/* Provide sorted array of pointers to sections of ADDRS. The array is
578 terminated by NULL. Caller is responsible to call xfree for it. */
579
580static struct other_sections **
581addrs_section_sort (struct section_addr_info *addrs)
582{
583 struct other_sections **array;
584 int i;
585
586 /* `+ 1' for the NULL terminator. */
587 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
588 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
589 array[i] = &addrs->other[i];
590 array[i] = NULL;
591
592 qsort (array, i, sizeof (*array), addrs_section_compar);
593
594 return array;
595}
596
75242ef4 597/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
598 also SECTINDEXes specific to ABFD there. This function can be used to
599 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
600
601void
602addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
603{
604 asection *lower_sect;
75242ef4
JK
605 CORE_ADDR lower_offset;
606 int i;
82ccf5a5
JK
607 struct cleanup *my_cleanup;
608 struct section_addr_info *abfd_addrs;
609 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
610 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
611
612 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
613 continguous sections. */
614 lower_sect = NULL;
615 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
616 if (lower_sect == NULL)
617 {
618 warning (_("no loadable sections found in added symbol-file %s"),
619 bfd_get_filename (abfd));
620 lower_offset = 0;
e8289572 621 }
75242ef4
JK
622 else
623 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
624
82ccf5a5
JK
625 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
626 in ABFD. Section names are not unique - there can be multiple sections of
627 the same name. Also the sections of the same name do not have to be
628 adjacent to each other. Some sections may be present only in one of the
629 files. Even sections present in both files do not have to be in the same
630 order.
631
632 Use stable sort by name for the sections in both files. Then linearly
633 scan both lists matching as most of the entries as possible. */
634
635 addrs_sorted = addrs_section_sort (addrs);
636 my_cleanup = make_cleanup (xfree, addrs_sorted);
637
638 abfd_addrs = build_section_addr_info_from_bfd (abfd);
639 make_cleanup_free_section_addr_info (abfd_addrs);
640 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
641 make_cleanup (xfree, abfd_addrs_sorted);
642
c378eb4e
MS
643 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
644 ABFD_ADDRS_SORTED. */
82ccf5a5
JK
645
646 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
647 * addrs->num_sections);
648 make_cleanup (xfree, addrs_to_abfd_addrs);
649
650 while (*addrs_sorted)
651 {
1276c759 652 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
653
654 while (*abfd_addrs_sorted
1276c759
JK
655 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
656 sect_name) < 0)
82ccf5a5
JK
657 abfd_addrs_sorted++;
658
659 if (*abfd_addrs_sorted
1276c759
JK
660 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
661 sect_name) == 0)
82ccf5a5
JK
662 {
663 int index_in_addrs;
664
665 /* Make the found item directly addressable from ADDRS. */
666 index_in_addrs = *addrs_sorted - addrs->other;
667 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
668 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
669
670 /* Never use the same ABFD entry twice. */
671 abfd_addrs_sorted++;
672 }
673
674 addrs_sorted++;
675 }
676
75242ef4
JK
677 /* Calculate offsets for the loadable sections.
678 FIXME! Sections must be in order of increasing loadable section
679 so that contiguous sections can use the lower-offset!!!
680
681 Adjust offsets if the segments are not contiguous.
682 If the section is contiguous, its offset should be set to
683 the offset of the highest loadable section lower than it
684 (the loadable section directly below it in memory).
685 this_offset = lower_offset = lower_addr - lower_orig_addr */
686
687 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
688 {
82ccf5a5 689 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
690
691 if (sect)
75242ef4 692 {
c378eb4e 693 /* This is the index used by BFD. */
82ccf5a5 694 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
695
696 if (addrs->other[i].addr != 0)
75242ef4 697 {
82ccf5a5 698 addrs->other[i].addr -= sect->addr;
75242ef4 699 lower_offset = addrs->other[i].addr;
75242ef4
JK
700 }
701 else
672d9c23 702 addrs->other[i].addr = lower_offset;
75242ef4
JK
703 }
704 else
672d9c23 705 {
1276c759
JK
706 /* addr_section_name transformation is not used for SECT_NAME. */
707 const char *sect_name = addrs->other[i].name;
708
b0fcb67f
JK
709 /* This section does not exist in ABFD, which is normally
710 unexpected and we want to issue a warning.
711
4d9743af
JK
712 However, the ELF prelinker does create a few sections which are
713 marked in the main executable as loadable (they are loaded in
714 memory from the DYNAMIC segment) and yet are not present in
715 separate debug info files. This is fine, and should not cause
716 a warning. Shared libraries contain just the section
717 ".gnu.liblist" but it is not marked as loadable there. There is
718 no other way to identify them than by their name as the sections
1276c759
JK
719 created by prelink have no special flags.
720
721 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
722
723 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 724 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
725 || (strcmp (sect_name, ".bss") == 0
726 && i > 0
727 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
728 && addrs_to_abfd_addrs[i - 1] != NULL)
729 || (strcmp (sect_name, ".sbss") == 0
730 && i > 0
731 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
732 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
733 warning (_("section %s not found in %s"), sect_name,
734 bfd_get_filename (abfd));
735
672d9c23
JK
736 addrs->other[i].addr = 0;
737
738 /* SECTINDEX is invalid if ADDR is zero. */
739 }
75242ef4 740 }
82ccf5a5
JK
741
742 do_cleanups (my_cleanup);
75242ef4
JK
743}
744
745/* Parse the user's idea of an offset for dynamic linking, into our idea
746 of how to represent it for fast symbol reading. This is the default
747 version of the sym_fns.sym_offsets function for symbol readers that
748 don't need to do anything special. It allocates a section_offsets table
749 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
750
751void
752default_symfile_offsets (struct objfile *objfile,
753 struct section_addr_info *addrs)
754{
755 objfile->num_sections = bfd_count_sections (objfile->obfd);
756 objfile->section_offsets = (struct section_offsets *)
757 obstack_alloc (&objfile->objfile_obstack,
758 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
759 relative_addr_info_to_section_offsets (objfile->section_offsets,
760 objfile->num_sections, addrs);
e8289572 761
c1bd25fd
DJ
762 /* For relocatable files, all loadable sections will start at zero.
763 The zero is meaningless, so try to pick arbitrary addresses such
764 that no loadable sections overlap. This algorithm is quadratic,
765 but the number of sections in a single object file is generally
766 small. */
767 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
768 {
769 struct place_section_arg arg;
2711e456
DJ
770 bfd *abfd = objfile->obfd;
771 asection *cur_sec;
2711e456
DJ
772
773 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
774 /* We do not expect this to happen; just skip this step if the
775 relocatable file has a section with an assigned VMA. */
776 if (bfd_section_vma (abfd, cur_sec) != 0)
777 break;
778
779 if (cur_sec == NULL)
780 {
781 CORE_ADDR *offsets = objfile->section_offsets->offsets;
782
783 /* Pick non-overlapping offsets for sections the user did not
784 place explicitly. */
785 arg.offsets = objfile->section_offsets;
786 arg.lowest = 0;
787 bfd_map_over_sections (objfile->obfd, place_section, &arg);
788
789 /* Correctly filling in the section offsets is not quite
790 enough. Relocatable files have two properties that
791 (most) shared objects do not:
792
793 - Their debug information will contain relocations. Some
794 shared libraries do also, but many do not, so this can not
795 be assumed.
796
797 - If there are multiple code sections they will be loaded
798 at different relative addresses in memory than they are
799 in the objfile, since all sections in the file will start
800 at address zero.
801
802 Because GDB has very limited ability to map from an
803 address in debug info to the correct code section,
804 it relies on adding SECT_OFF_TEXT to things which might be
805 code. If we clear all the section offsets, and set the
806 section VMAs instead, then symfile_relocate_debug_section
807 will return meaningful debug information pointing at the
808 correct sections.
809
810 GDB has too many different data structures for section
811 addresses - a bfd, objfile, and so_list all have section
812 tables, as does exec_ops. Some of these could probably
813 be eliminated. */
814
815 for (cur_sec = abfd->sections; cur_sec != NULL;
816 cur_sec = cur_sec->next)
817 {
818 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
819 continue;
820
821 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
822 exec_set_section_address (bfd_get_filename (abfd),
823 cur_sec->index,
30510692 824 offsets[cur_sec->index]);
2711e456
DJ
825 offsets[cur_sec->index] = 0;
826 }
827 }
c1bd25fd
DJ
828 }
829
e8289572 830 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 831 .rodata sections. */
e8289572
JB
832 init_objfile_sect_indices (objfile);
833}
834
835
31d99776
DJ
836/* Divide the file into segments, which are individual relocatable units.
837 This is the default version of the sym_fns.sym_segments function for
838 symbol readers that do not have an explicit representation of segments.
839 It assumes that object files do not have segments, and fully linked
840 files have a single segment. */
841
842struct symfile_segment_data *
843default_symfile_segments (bfd *abfd)
844{
845 int num_sections, i;
846 asection *sect;
847 struct symfile_segment_data *data;
848 CORE_ADDR low, high;
849
850 /* Relocatable files contain enough information to position each
851 loadable section independently; they should not be relocated
852 in segments. */
853 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
854 return NULL;
855
856 /* Make sure there is at least one loadable section in the file. */
857 for (sect = abfd->sections; sect != NULL; sect = sect->next)
858 {
859 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
860 continue;
861
862 break;
863 }
864 if (sect == NULL)
865 return NULL;
866
867 low = bfd_get_section_vma (abfd, sect);
868 high = low + bfd_get_section_size (sect);
869
870 data = XZALLOC (struct symfile_segment_data);
871 data->num_segments = 1;
872 data->segment_bases = XCALLOC (1, CORE_ADDR);
873 data->segment_sizes = XCALLOC (1, CORE_ADDR);
874
875 num_sections = bfd_count_sections (abfd);
876 data->segment_info = XCALLOC (num_sections, int);
877
878 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
879 {
880 CORE_ADDR vma;
881
882 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
883 continue;
884
885 vma = bfd_get_section_vma (abfd, sect);
886 if (vma < low)
887 low = vma;
888 if (vma + bfd_get_section_size (sect) > high)
889 high = vma + bfd_get_section_size (sect);
890
891 data->segment_info[i] = 1;
892 }
893
894 data->segment_bases[0] = low;
895 data->segment_sizes[0] = high - low;
896
897 return data;
898}
899
c906108c
SS
900/* Process a symbol file, as either the main file or as a dynamically
901 loaded file.
902
96baa820
JM
903 OBJFILE is where the symbols are to be read from.
904
7e8580c1
JB
905 ADDRS is the list of section load addresses. If the user has given
906 an 'add-symbol-file' command, then this is the list of offsets and
907 addresses he or she provided as arguments to the command; or, if
908 we're handling a shared library, these are the actual addresses the
909 sections are loaded at, according to the inferior's dynamic linker
910 (as gleaned by GDB's shared library code). We convert each address
911 into an offset from the section VMA's as it appears in the object
912 file, and then call the file's sym_offsets function to convert this
913 into a format-specific offset table --- a `struct section_offsets'.
914 If ADDRS is non-zero, OFFSETS must be zero.
915
916 OFFSETS is a table of section offsets already in the right
917 format-specific representation. NUM_OFFSETS is the number of
918 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
919 assume this is the proper table the call to sym_offsets described
920 above would produce. Instead of calling sym_offsets, we just dump
921 it right into objfile->section_offsets. (When we're re-reading
922 symbols from an objfile, we don't have the original load address
923 list any more; all we have is the section offset table.) If
924 OFFSETS is non-zero, ADDRS must be zero.
96baa820 925
7eedccfa
PP
926 ADD_FLAGS encodes verbosity level, whether this is main symbol or
927 an extra symbol file such as dynamically loaded code, and wether
928 breakpoint reset should be deferred. */
c906108c
SS
929
930void
7e8580c1
JB
931syms_from_objfile (struct objfile *objfile,
932 struct section_addr_info *addrs,
933 struct section_offsets *offsets,
934 int num_offsets,
7eedccfa 935 int add_flags)
c906108c 936{
a39a16c4 937 struct section_addr_info *local_addr = NULL;
c906108c 938 struct cleanup *old_chain;
7eedccfa 939 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 940
7e8580c1 941 gdb_assert (! (addrs && offsets));
2acceee2 942
c906108c 943 init_entry_point_info (objfile);
31d99776 944 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 945
75245b24 946 if (objfile->sf == NULL)
c378eb4e 947 return; /* No symbols. */
75245b24 948
c906108c
SS
949 /* Make sure that partially constructed symbol tables will be cleaned up
950 if an error occurs during symbol reading. */
74b7792f 951 old_chain = make_cleanup_free_objfile (objfile);
c906108c 952
a39a16c4
MM
953 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
954 list. We now establish the convention that an addr of zero means
c378eb4e 955 no load address was specified. */
a39a16c4
MM
956 if (! addrs && ! offsets)
957 {
5417f6dc 958 local_addr
a39a16c4
MM
959 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
960 make_cleanup (xfree, local_addr);
961 addrs = local_addr;
962 }
963
964 /* Now either addrs or offsets is non-zero. */
965
c5aa993b 966 if (mainline)
c906108c
SS
967 {
968 /* We will modify the main symbol table, make sure that all its users
c5aa993b 969 will be cleaned up if an error occurs during symbol reading. */
74b7792f 970 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
971
972 /* Since no error yet, throw away the old symbol table. */
973
974 if (symfile_objfile != NULL)
975 {
976 free_objfile (symfile_objfile);
adb7f338 977 gdb_assert (symfile_objfile == NULL);
c906108c
SS
978 }
979
980 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
981 If the user wants to get rid of them, they should do "symbol-file"
982 without arguments first. Not sure this is the best behavior
983 (PR 2207). */
c906108c 984
c5aa993b 985 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
986 }
987
988 /* Convert addr into an offset rather than an absolute address.
989 We find the lowest address of a loaded segment in the objfile,
53a5351d 990 and assume that <addr> is where that got loaded.
c906108c 991
53a5351d
JM
992 We no longer warn if the lowest section is not a text segment (as
993 happens for the PA64 port. */
0d15807d 994 if (addrs && addrs->other[0].name)
75242ef4 995 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
996
997 /* Initialize symbol reading routines for this objfile, allow complaints to
998 appear for this new file, and record how verbose to be, then do the
c378eb4e 999 initial symbol reading for this file. */
c906108c 1000
c5aa993b 1001 (*objfile->sf->sym_init) (objfile);
7eedccfa 1002 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1003
7e8580c1
JB
1004 if (addrs)
1005 (*objfile->sf->sym_offsets) (objfile, addrs);
1006 else
1007 {
1008 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1009
1010 /* Just copy in the offset table directly as given to us. */
1011 objfile->num_sections = num_offsets;
1012 objfile->section_offsets
1013 = ((struct section_offsets *)
8b92e4d5 1014 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1015 memcpy (objfile->section_offsets, offsets, size);
1016
1017 init_objfile_sect_indices (objfile);
1018 }
c906108c 1019
f4352531 1020 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1021
b11896a5
TT
1022 if ((add_flags & SYMFILE_NO_READ) == 0)
1023 require_partial_symbols (objfile, 0);
1024
c906108c
SS
1025 /* Discard cleanups as symbol reading was successful. */
1026
1027 discard_cleanups (old_chain);
f7545552 1028 xfree (local_addr);
c906108c
SS
1029}
1030
1031/* Perform required actions after either reading in the initial
1032 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1033 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1034
c906108c 1035void
7eedccfa 1036new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1037{
c906108c 1038 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1039 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1040 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1041 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1042 {
1043 /* OK, make it the "real" symbol file. */
1044 symfile_objfile = objfile;
1045
c1e56572 1046 clear_symtab_users (add_flags);
c906108c 1047 }
7eedccfa 1048 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1049 {
69de3c6a 1050 breakpoint_re_set ();
c906108c
SS
1051 }
1052
1053 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1054 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1055}
1056
1057/* Process a symbol file, as either the main file or as a dynamically
1058 loaded file.
1059
5417f6dc
RM
1060 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1061 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1062
7eedccfa
PP
1063 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1064 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1065
1066 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1067 syms_from_objfile, above.
1068 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1069
c906108c 1070 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1071 Upon failure, jumps back to command level (never returns). */
7eedccfa 1072
7904e09f 1073static struct objfile *
7eedccfa
PP
1074symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1075 int add_flags,
7904e09f
JB
1076 struct section_addr_info *addrs,
1077 struct section_offsets *offsets,
1078 int num_offsets,
7eedccfa 1079 int flags)
c906108c
SS
1080{
1081 struct objfile *objfile;
a39a16c4 1082 struct cleanup *my_cleanups;
5417f6dc 1083 const char *name = bfd_get_filename (abfd);
7eedccfa 1084 const int from_tty = add_flags & SYMFILE_VERBOSE;
b11896a5
TT
1085 const int should_print = ((from_tty || info_verbose)
1086 && (readnow_symbol_files
1087 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1088
9291a0cd 1089 if (readnow_symbol_files)
b11896a5
TT
1090 {
1091 flags |= OBJF_READNOW;
1092 add_flags &= ~SYMFILE_NO_READ;
1093 }
9291a0cd 1094
5417f6dc 1095 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1096
5417f6dc
RM
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
c906108c
SS
1099
1100 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1101 && (add_flags & SYMFILE_MAINLINE)
c906108c 1102 && from_tty
9e2f0ad4 1103 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1104 error (_("Not confirmed."));
c906108c 1105
2df3850c 1106 objfile = allocate_objfile (abfd, flags);
5417f6dc 1107 discard_cleanups (my_cleanups);
c906108c 1108
78a4a9b9
AC
1109 /* We either created a new mapped symbol table, mapped an existing
1110 symbol table file which has not had initial symbol reading
c378eb4e 1111 performed, or need to read an unmapped symbol table. */
b11896a5 1112 if (should_print)
c906108c 1113 {
769d7dc4
AC
1114 if (deprecated_pre_add_symbol_hook)
1115 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1116 else
c906108c 1117 {
55333a84
DE
1118 printf_unfiltered (_("Reading symbols from %s..."), name);
1119 wrap_here ("");
1120 gdb_flush (gdb_stdout);
c906108c 1121 }
c906108c 1122 }
78a4a9b9 1123 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1124 add_flags);
c906108c
SS
1125
1126 /* We now have at least a partial symbol table. Check to see if the
1127 user requested that all symbols be read on initial access via either
1128 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1129 all partial symbol tables for this objfile if so. */
c906108c 1130
9291a0cd 1131 if ((flags & OBJF_READNOW))
c906108c 1132 {
b11896a5 1133 if (should_print)
c906108c 1134 {
a3f17187 1135 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1136 wrap_here ("");
1137 gdb_flush (gdb_stdout);
1138 }
1139
ccefe4c4
TT
1140 if (objfile->sf)
1141 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1142 }
1143
b11896a5 1144 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1145 {
1146 wrap_here ("");
55333a84 1147 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1148 wrap_here ("");
1149 }
1150
b11896a5 1151 if (should_print)
c906108c 1152 {
769d7dc4
AC
1153 if (deprecated_post_add_symbol_hook)
1154 deprecated_post_add_symbol_hook ();
c906108c 1155 else
55333a84 1156 printf_unfiltered (_("done.\n"));
c906108c
SS
1157 }
1158
481d0f41
JB
1159 /* We print some messages regardless of whether 'from_tty ||
1160 info_verbose' is true, so make sure they go out at the right
1161 time. */
1162 gdb_flush (gdb_stdout);
1163
a39a16c4
MM
1164 do_cleanups (my_cleanups);
1165
109f874e 1166 if (objfile->sf == NULL)
8caee43b
PP
1167 {
1168 observer_notify_new_objfile (objfile);
c378eb4e 1169 return objfile; /* No symbols. */
8caee43b 1170 }
109f874e 1171
7eedccfa 1172 new_symfile_objfile (objfile, add_flags);
c906108c 1173
06d3b283 1174 observer_notify_new_objfile (objfile);
c906108c 1175
ce7d4522 1176 bfd_cache_close_all ();
c906108c
SS
1177 return (objfile);
1178}
1179
9cce227f
TG
1180/* Add BFD as a separate debug file for OBJFILE. */
1181
1182void
1183symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1184{
15d123c9 1185 struct objfile *new_objfile;
089b4803
TG
1186 struct section_addr_info *sap;
1187 struct cleanup *my_cleanup;
1188
1189 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1190 because sections of BFD may not match sections of OBJFILE and because
1191 vma may have been modified by tools such as prelink. */
1192 sap = build_section_addr_info_from_objfile (objfile);
1193 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1194
15d123c9 1195 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1196 (bfd, symfile_flags,
089b4803 1197 sap, NULL, 0,
9cce227f
TG
1198 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1199 | OBJF_USERLOADED));
089b4803
TG
1200
1201 do_cleanups (my_cleanup);
9cce227f 1202
15d123c9 1203 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1204}
7904e09f 1205
eb4556d7
JB
1206/* Process the symbol file ABFD, as either the main file or as a
1207 dynamically loaded file.
1208
1209 See symbol_file_add_with_addrs_or_offsets's comments for
1210 details. */
1211struct objfile *
7eedccfa 1212symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1213 struct section_addr_info *addrs,
7eedccfa 1214 int flags)
eb4556d7 1215{
7eedccfa
PP
1216 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1217 flags);
eb4556d7
JB
1218}
1219
1220
7904e09f
JB
1221/* Process a symbol file, as either the main file or as a dynamically
1222 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1223 for details. */
1224struct objfile *
7eedccfa
PP
1225symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1226 int flags)
7904e09f 1227{
7eedccfa
PP
1228 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1229 flags);
7904e09f
JB
1230}
1231
1232
d7db6da9
FN
1233/* Call symbol_file_add() with default values and update whatever is
1234 affected by the loading of a new main().
1235 Used when the file is supplied in the gdb command line
1236 and by some targets with special loading requirements.
1237 The auxiliary function, symbol_file_add_main_1(), has the flags
1238 argument for the switches that can only be specified in the symbol_file
1239 command itself. */
5417f6dc 1240
1adeb98a
FN
1241void
1242symbol_file_add_main (char *args, int from_tty)
1243{
d7db6da9
FN
1244 symbol_file_add_main_1 (args, from_tty, 0);
1245}
1246
1247static void
1248symbol_file_add_main_1 (char *args, int from_tty, int flags)
1249{
7eedccfa
PP
1250 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1251 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1252
d7db6da9
FN
1253 /* Getting new symbols may change our opinion about
1254 what is frameless. */
1255 reinit_frame_cache ();
1256
1257 set_initial_language ();
1adeb98a
FN
1258}
1259
1260void
1261symbol_file_clear (int from_tty)
1262{
1263 if ((have_full_symbols () || have_partial_symbols ())
1264 && from_tty
0430b0d6
AS
1265 && (symfile_objfile
1266 ? !query (_("Discard symbol table from `%s'? "),
1267 symfile_objfile->name)
1268 : !query (_("Discard symbol table? "))))
8a3fe4f8 1269 error (_("Not confirmed."));
1adeb98a 1270
0133421a
JK
1271 /* solib descriptors may have handles to objfiles. Wipe them before their
1272 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1273 no_shared_libraries (NULL, from_tty);
1274
0133421a
JK
1275 free_all_objfiles ();
1276
adb7f338 1277 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1278 if (from_tty)
1279 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1280}
1281
5b5d99cf
JB
1282static char *
1283get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1284{
1285 asection *sect;
1286 bfd_size_type debuglink_size;
1287 unsigned long crc32;
1288 char *contents;
1289 int crc_offset;
5417f6dc 1290
5b5d99cf
JB
1291 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1292
1293 if (sect == NULL)
1294 return NULL;
1295
1296 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1297
5b5d99cf
JB
1298 contents = xmalloc (debuglink_size);
1299 bfd_get_section_contents (objfile->obfd, sect, contents,
1300 (file_ptr)0, (bfd_size_type)debuglink_size);
1301
c378eb4e 1302 /* Crc value is stored after the filename, aligned up to 4 bytes. */
5b5d99cf
JB
1303 crc_offset = strlen (contents) + 1;
1304 crc_offset = (crc_offset + 3) & ~3;
1305
1306 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1307
5b5d99cf
JB
1308 *crc32_out = crc32;
1309 return contents;
1310}
1311
1312static int
287ccc17 1313separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1314 struct objfile *parent_objfile)
5b5d99cf
JB
1315{
1316 unsigned long file_crc = 0;
f1838a98 1317 bfd *abfd;
777ea8f1 1318 gdb_byte buffer[8*1024];
5b5d99cf 1319 int count;
32a0e547
JK
1320 struct stat parent_stat, abfd_stat;
1321
1322 /* Find a separate debug info file as if symbols would be present in
1323 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1324 section can contain just the basename of PARENT_OBJFILE without any
1325 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1326 the separate debug infos with the same basename can exist. */
32a0e547 1327
0ba1096a 1328 if (filename_cmp (name, parent_objfile->name) == 0)
32a0e547 1329 return 0;
5b5d99cf 1330
874f5765 1331 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1332
1333 if (!abfd)
5b5d99cf
JB
1334 return 0;
1335
0ba1096a 1336 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1337
1338 Some operating systems, e.g. Windows, do not provide a meaningful
1339 st_ino; they always set it to zero. (Windows does provide a
1340 meaningful st_dev.) Do not indicate a duplicate library in that
1341 case. While there is no guarantee that a system that provides
1342 meaningful inode numbers will never set st_ino to zero, this is
1343 merely an optimization, so we do not need to worry about false
1344 negatives. */
1345
1346 if (bfd_stat (abfd, &abfd_stat) == 0
1347 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1348 && abfd_stat.st_dev == parent_stat.st_dev
1349 && abfd_stat.st_ino == parent_stat.st_ino
1350 && abfd_stat.st_ino != 0)
1351 {
1352 bfd_close (abfd);
1353 return 0;
1354 }
1355
f1838a98 1356 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1357 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1358
f1838a98 1359 bfd_close (abfd);
5b5d99cf 1360
287ccc17
JK
1361 if (crc != file_crc)
1362 {
1363 warning (_("the debug information found in \"%s\""
1364 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1365 name, parent_objfile->name);
287ccc17
JK
1366 return 0;
1367 }
1368
1369 return 1;
5b5d99cf
JB
1370}
1371
aa28a74e 1372char *debug_file_directory = NULL;
920d2a44
AC
1373static void
1374show_debug_file_directory (struct ui_file *file, int from_tty,
1375 struct cmd_list_element *c, const char *value)
1376{
3e43a32a
MS
1377 fprintf_filtered (file,
1378 _("The directory where separate debug "
1379 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1380 value);
1381}
5b5d99cf
JB
1382
1383#if ! defined (DEBUG_SUBDIRECTORY)
1384#define DEBUG_SUBDIRECTORY ".debug"
1385#endif
1386
9cce227f
TG
1387char *
1388find_separate_debug_file_by_debuglink (struct objfile *objfile)
1389{
952a6d41 1390 char *basename, *debugdir;
9cce227f
TG
1391 char *dir = NULL;
1392 char *debugfile = NULL;
1393 char *canon_name = NULL;
9cce227f
TG
1394 unsigned long crc32;
1395 int i;
5b5d99cf
JB
1396
1397 basename = get_debug_link_info (objfile, &crc32);
1398
1399 if (basename == NULL)
287ccc17
JK
1400 /* There's no separate debug info, hence there's no way we could
1401 load it => no warning. */
25522fae 1402 goto cleanup_return_debugfile;
5417f6dc 1403
5b5d99cf
JB
1404 dir = xstrdup (objfile->name);
1405
fe36c4f4 1406 /* Strip off the final filename part, leaving the directory name,
569b05a5 1407 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1408 for (i = strlen(dir) - 1; i >= 0; i--)
1409 {
1410 if (IS_DIR_SEPARATOR (dir[i]))
1411 break;
1412 }
569b05a5 1413 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1414 dir[i+1] = '\0';
5417f6dc 1415
c378eb4e 1416 /* Set I to max (strlen (canon_name), strlen (dir)). */
1ffa32ee
JK
1417 canon_name = lrealpath (dir);
1418 i = strlen (dir);
1419 if (canon_name && strlen (canon_name) > i)
1420 i = strlen (canon_name);
1421
25522fae
JK
1422 debugfile = xmalloc (strlen (debug_file_directory) + 1
1423 + i
1424 + strlen (DEBUG_SUBDIRECTORY)
1425 + strlen ("/")
1426 + strlen (basename)
1427 + 1);
5b5d99cf
JB
1428
1429 /* First try in the same directory as the original file. */
1430 strcpy (debugfile, dir);
1431 strcat (debugfile, basename);
1432
32a0e547 1433 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1434 goto cleanup_return_debugfile;
5417f6dc 1435
5b5d99cf
JB
1436 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1437 strcpy (debugfile, dir);
1438 strcat (debugfile, DEBUG_SUBDIRECTORY);
1439 strcat (debugfile, "/");
1440 strcat (debugfile, basename);
1441
32a0e547 1442 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1443 goto cleanup_return_debugfile;
5417f6dc 1444
24ddea62
JK
1445 /* Then try in the global debugfile directories.
1446
1447 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1448 cause "/..." lookups. */
5417f6dc 1449
24ddea62
JK
1450 debugdir = debug_file_directory;
1451 do
aa28a74e 1452 {
24ddea62
JK
1453 char *debugdir_end;
1454
1455 while (*debugdir == DIRNAME_SEPARATOR)
1456 debugdir++;
1457
1458 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1459 if (debugdir_end == NULL)
1460 debugdir_end = &debugdir[strlen (debugdir)];
1461
1462 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1463 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1464 strcat (debugfile, "/");
24ddea62 1465 strcat (debugfile, dir);
aa28a74e
DJ
1466 strcat (debugfile, basename);
1467
32a0e547 1468 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1469 goto cleanup_return_debugfile;
24ddea62
JK
1470
1471 /* If the file is in the sysroot, try using its base path in the
1472 global debugfile directory. */
1473 if (canon_name
0ba1096a
KT
1474 && filename_ncmp (canon_name, gdb_sysroot,
1475 strlen (gdb_sysroot)) == 0
24ddea62
JK
1476 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1477 {
1478 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1479 debugfile[debugdir_end - debugdir] = 0;
1480 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1481 strcat (debugfile, "/");
1482 strcat (debugfile, basename);
1483
32a0e547 1484 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1485 goto cleanup_return_debugfile;
1486 }
1487
1488 debugdir = debugdir_end;
aa28a74e 1489 }
24ddea62 1490 while (*debugdir != 0);
aa28a74e 1491
25522fae
JK
1492 xfree (debugfile);
1493 debugfile = NULL;
aa28a74e 1494
25522fae
JK
1495cleanup_return_debugfile:
1496 xfree (canon_name);
5b5d99cf
JB
1497 xfree (basename);
1498 xfree (dir);
25522fae 1499 return debugfile;
5b5d99cf
JB
1500}
1501
1502
c906108c
SS
1503/* This is the symbol-file command. Read the file, analyze its
1504 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1505 the command is rather bizarre:
1506
1507 1. The function buildargv implements various quoting conventions
1508 which are undocumented and have little or nothing in common with
1509 the way things are quoted (or not quoted) elsewhere in GDB.
1510
1511 2. Options are used, which are not generally used in GDB (perhaps
1512 "set mapped on", "set readnow on" would be better)
1513
1514 3. The order of options matters, which is contrary to GNU
c906108c
SS
1515 conventions (because it is confusing and inconvenient). */
1516
1517void
fba45db2 1518symbol_file_command (char *args, int from_tty)
c906108c 1519{
c906108c
SS
1520 dont_repeat ();
1521
1522 if (args == NULL)
1523 {
1adeb98a 1524 symbol_file_clear (from_tty);
c906108c
SS
1525 }
1526 else
1527 {
d1a41061 1528 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1529 int flags = OBJF_USERLOADED;
1530 struct cleanup *cleanups;
1531 char *name = NULL;
1532
7a292a7a 1533 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1534 while (*argv != NULL)
1535 {
78a4a9b9
AC
1536 if (strcmp (*argv, "-readnow") == 0)
1537 flags |= OBJF_READNOW;
1538 else if (**argv == '-')
8a3fe4f8 1539 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1540 else
1541 {
cb2f3a29 1542 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1543 name = *argv;
78a4a9b9 1544 }
cb2f3a29 1545
c906108c
SS
1546 argv++;
1547 }
1548
1549 if (name == NULL)
cb2f3a29
MK
1550 error (_("no symbol file name was specified"));
1551
c906108c
SS
1552 do_cleanups (cleanups);
1553 }
1554}
1555
1556/* Set the initial language.
1557
cb2f3a29
MK
1558 FIXME: A better solution would be to record the language in the
1559 psymtab when reading partial symbols, and then use it (if known) to
1560 set the language. This would be a win for formats that encode the
1561 language in an easily discoverable place, such as DWARF. For
1562 stabs, we can jump through hoops looking for specially named
1563 symbols or try to intuit the language from the specific type of
1564 stabs we find, but we can't do that until later when we read in
1565 full symbols. */
c906108c 1566
8b60591b 1567void
fba45db2 1568set_initial_language (void)
c906108c 1569{
c5aa993b 1570 enum language lang = language_unknown;
c906108c 1571
01f8c46d
JK
1572 if (language_of_main != language_unknown)
1573 lang = language_of_main;
1574 else
1575 {
1576 const char *filename;
1577
1578 filename = find_main_filename ();
1579 if (filename != NULL)
1580 lang = deduce_language_from_filename (filename);
1581 }
cb2f3a29 1582
ccefe4c4
TT
1583 if (lang == language_unknown)
1584 {
1585 /* Make C the default language */
1586 lang = language_c;
c906108c 1587 }
ccefe4c4
TT
1588
1589 set_language (lang);
1590 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1591}
1592
874f5765
TG
1593/* If NAME is a remote name open the file using remote protocol, otherwise
1594 open it normally. */
1595
1596bfd *
1597bfd_open_maybe_remote (const char *name)
1598{
1599 if (remote_filename_p (name))
1600 return remote_bfd_open (name, gnutarget);
1601 else
1602 return bfd_openr (name, gnutarget);
1603}
1604
1605
cb2f3a29
MK
1606/* Open the file specified by NAME and hand it off to BFD for
1607 preliminary analysis. Return a newly initialized bfd *, which
1608 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1609 absolute). In case of trouble, error() is called. */
c906108c
SS
1610
1611bfd *
fba45db2 1612symfile_bfd_open (char *name)
c906108c
SS
1613{
1614 bfd *sym_bfd;
1615 int desc;
1616 char *absolute_name;
1617
f1838a98
UW
1618 if (remote_filename_p (name))
1619 {
1620 name = xstrdup (name);
1621 sym_bfd = remote_bfd_open (name, gnutarget);
1622 if (!sym_bfd)
1623 {
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't open to read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628
1629 if (!bfd_check_format (sym_bfd, bfd_object))
1630 {
1631 bfd_close (sym_bfd);
1632 make_cleanup (xfree, name);
1633 error (_("`%s': can't read symbols: %s."), name,
1634 bfd_errmsg (bfd_get_error ()));
1635 }
1636
1637 return sym_bfd;
1638 }
1639
cb2f3a29 1640 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1641
1642 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1643 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1644 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1645#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1646 if (desc < 0)
1647 {
1648 char *exename = alloca (strlen (name) + 5);
433759f7 1649
c906108c 1650 strcat (strcpy (exename, name), ".exe");
014d698b 1651 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1652 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1653 }
1654#endif
1655 if (desc < 0)
1656 {
b8c9b27d 1657 make_cleanup (xfree, name);
c906108c
SS
1658 perror_with_name (name);
1659 }
cb2f3a29
MK
1660
1661 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
c378eb4e 1662 bfd. It'll be freed in free_objfile(). */
cb2f3a29
MK
1663 xfree (name);
1664 name = absolute_name;
c906108c 1665
9f76c2cd 1666 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1667 if (!sym_bfd)
1668 {
1669 close (desc);
b8c9b27d 1670 make_cleanup (xfree, name);
f1838a98 1671 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1672 bfd_errmsg (bfd_get_error ()));
1673 }
549c1eea 1674 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1675
1676 if (!bfd_check_format (sym_bfd, bfd_object))
1677 {
cb2f3a29
MK
1678 /* FIXME: should be checking for errors from bfd_close (for one
1679 thing, on error it does not free all the storage associated
1680 with the bfd). */
1681 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1682 make_cleanup (xfree, name);
f1838a98 1683 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1684 bfd_errmsg (bfd_get_error ()));
1685 }
cb2f3a29 1686
4f6f9936
JK
1687 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1688 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1689
cb2f3a29 1690 return sym_bfd;
c906108c
SS
1691}
1692
cb2f3a29
MK
1693/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1694 the section was not found. */
1695
0e931cf0
JB
1696int
1697get_section_index (struct objfile *objfile, char *section_name)
1698{
1699 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1700
0e931cf0
JB
1701 if (sect)
1702 return sect->index;
1703 else
1704 return -1;
1705}
1706
cb2f3a29
MK
1707/* Link SF into the global symtab_fns list. Called on startup by the
1708 _initialize routine in each object file format reader, to register
b021a221 1709 information about each format the reader is prepared to handle. */
c906108c
SS
1710
1711void
00b5771c 1712add_symtab_fns (const struct sym_fns *sf)
c906108c 1713{
00b5771c 1714 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1715}
1716
cb2f3a29
MK
1717/* Initialize OBJFILE to read symbols from its associated BFD. It
1718 either returns or calls error(). The result is an initialized
1719 struct sym_fns in the objfile structure, that contains cached
1720 information about the symbol file. */
c906108c 1721
00b5771c 1722static const struct sym_fns *
31d99776 1723find_sym_fns (bfd *abfd)
c906108c 1724{
00b5771c 1725 const struct sym_fns *sf;
31d99776 1726 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1727 int i;
c906108c 1728
75245b24
MS
1729 if (our_flavour == bfd_target_srec_flavour
1730 || our_flavour == bfd_target_ihex_flavour
1731 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1732 return NULL; /* No symbols. */
75245b24 1733
00b5771c 1734 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1735 if (our_flavour == sf->sym_flavour)
1736 return sf;
cb2f3a29 1737
8a3fe4f8 1738 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1739 bfd_get_target (abfd));
c906108c
SS
1740}
1741\f
cb2f3a29 1742
c906108c
SS
1743/* This function runs the load command of our current target. */
1744
1745static void
fba45db2 1746load_command (char *arg, int from_tty)
c906108c 1747{
e5cc9f32
JB
1748 dont_repeat ();
1749
4487aabf
PA
1750 /* The user might be reloading because the binary has changed. Take
1751 this opportunity to check. */
1752 reopen_exec_file ();
1753 reread_symbols ();
1754
c906108c 1755 if (arg == NULL)
1986bccd
AS
1756 {
1757 char *parg;
1758 int count = 0;
1759
1760 parg = arg = get_exec_file (1);
1761
1762 /* Count how many \ " ' tab space there are in the name. */
1763 while ((parg = strpbrk (parg, "\\\"'\t ")))
1764 {
1765 parg++;
1766 count++;
1767 }
1768
1769 if (count)
1770 {
1771 /* We need to quote this string so buildargv can pull it apart. */
1772 char *temp = xmalloc (strlen (arg) + count + 1 );
1773 char *ptemp = temp;
1774 char *prev;
1775
1776 make_cleanup (xfree, temp);
1777
1778 prev = parg = arg;
1779 while ((parg = strpbrk (parg, "\\\"'\t ")))
1780 {
1781 strncpy (ptemp, prev, parg - prev);
1782 ptemp += parg - prev;
1783 prev = parg++;
1784 *ptemp++ = '\\';
1785 }
1786 strcpy (ptemp, prev);
1787
1788 arg = temp;
1789 }
1790 }
1791
c906108c 1792 target_load (arg, from_tty);
2889e661
JB
1793
1794 /* After re-loading the executable, we don't really know which
1795 overlays are mapped any more. */
1796 overlay_cache_invalid = 1;
c906108c
SS
1797}
1798
1799/* This version of "load" should be usable for any target. Currently
1800 it is just used for remote targets, not inftarg.c or core files,
1801 on the theory that only in that case is it useful.
1802
1803 Avoiding xmodem and the like seems like a win (a) because we don't have
1804 to worry about finding it, and (b) On VMS, fork() is very slow and so
1805 we don't want to run a subprocess. On the other hand, I'm not sure how
1806 performance compares. */
917317f4 1807
917317f4
JM
1808static int validate_download = 0;
1809
e4f9b4d5
MS
1810/* Callback service function for generic_load (bfd_map_over_sections). */
1811
1812static void
1813add_section_size_callback (bfd *abfd, asection *asec, void *data)
1814{
1815 bfd_size_type *sum = data;
1816
2c500098 1817 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1818}
1819
1820/* Opaque data for load_section_callback. */
1821struct load_section_data {
1822 unsigned long load_offset;
a76d924d
DJ
1823 struct load_progress_data *progress_data;
1824 VEC(memory_write_request_s) *requests;
1825};
1826
1827/* Opaque data for load_progress. */
1828struct load_progress_data {
1829 /* Cumulative data. */
e4f9b4d5
MS
1830 unsigned long write_count;
1831 unsigned long data_count;
1832 bfd_size_type total_size;
a76d924d
DJ
1833};
1834
1835/* Opaque data for load_progress for a single section. */
1836struct load_progress_section_data {
1837 struct load_progress_data *cumulative;
cf7a04e8 1838
a76d924d 1839 /* Per-section data. */
cf7a04e8
DJ
1840 const char *section_name;
1841 ULONGEST section_sent;
1842 ULONGEST section_size;
1843 CORE_ADDR lma;
1844 gdb_byte *buffer;
e4f9b4d5
MS
1845};
1846
a76d924d 1847/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1848
1849static void
1850load_progress (ULONGEST bytes, void *untyped_arg)
1851{
a76d924d
DJ
1852 struct load_progress_section_data *args = untyped_arg;
1853 struct load_progress_data *totals;
1854
1855 if (args == NULL)
1856 /* Writing padding data. No easy way to get at the cumulative
1857 stats, so just ignore this. */
1858 return;
1859
1860 totals = args->cumulative;
1861
1862 if (bytes == 0 && args->section_sent == 0)
1863 {
1864 /* The write is just starting. Let the user know we've started
1865 this section. */
5af949e3
UW
1866 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1867 args->section_name, hex_string (args->section_size),
1868 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1869 return;
1870 }
cf7a04e8
DJ
1871
1872 if (validate_download)
1873 {
1874 /* Broken memories and broken monitors manifest themselves here
1875 when bring new computers to life. This doubles already slow
1876 downloads. */
1877 /* NOTE: cagney/1999-10-18: A more efficient implementation
1878 might add a verify_memory() method to the target vector and
1879 then use that. remote.c could implement that method using
1880 the ``qCRC'' packet. */
1881 gdb_byte *check = xmalloc (bytes);
1882 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1883
1884 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1885 error (_("Download verify read failed at %s"),
1886 paddress (target_gdbarch, args->lma));
cf7a04e8 1887 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1888 error (_("Download verify compare failed at %s"),
1889 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1890 do_cleanups (verify_cleanups);
1891 }
a76d924d 1892 totals->data_count += bytes;
cf7a04e8
DJ
1893 args->lma += bytes;
1894 args->buffer += bytes;
a76d924d 1895 totals->write_count += 1;
cf7a04e8
DJ
1896 args->section_sent += bytes;
1897 if (quit_flag
1898 || (deprecated_ui_load_progress_hook != NULL
1899 && deprecated_ui_load_progress_hook (args->section_name,
1900 args->section_sent)))
1901 error (_("Canceled the download"));
1902
1903 if (deprecated_show_load_progress != NULL)
1904 deprecated_show_load_progress (args->section_name,
1905 args->section_sent,
1906 args->section_size,
a76d924d
DJ
1907 totals->data_count,
1908 totals->total_size);
cf7a04e8
DJ
1909}
1910
e4f9b4d5
MS
1911/* Callback service function for generic_load (bfd_map_over_sections). */
1912
1913static void
1914load_section_callback (bfd *abfd, asection *asec, void *data)
1915{
a76d924d 1916 struct memory_write_request *new_request;
e4f9b4d5 1917 struct load_section_data *args = data;
a76d924d 1918 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1919 bfd_size_type size = bfd_get_section_size (asec);
1920 gdb_byte *buffer;
cf7a04e8 1921 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1922
cf7a04e8
DJ
1923 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1924 return;
e4f9b4d5 1925
cf7a04e8
DJ
1926 if (size == 0)
1927 return;
e4f9b4d5 1928
a76d924d
DJ
1929 new_request = VEC_safe_push (memory_write_request_s,
1930 args->requests, NULL);
1931 memset (new_request, 0, sizeof (struct memory_write_request));
1932 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1933 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
1934 new_request->end = new_request->begin + size; /* FIXME Should size
1935 be in instead? */
a76d924d
DJ
1936 new_request->data = xmalloc (size);
1937 new_request->baton = section_data;
cf7a04e8 1938
a76d924d 1939 buffer = new_request->data;
cf7a04e8 1940
a76d924d
DJ
1941 section_data->cumulative = args->progress_data;
1942 section_data->section_name = sect_name;
1943 section_data->section_size = size;
1944 section_data->lma = new_request->begin;
1945 section_data->buffer = buffer;
cf7a04e8
DJ
1946
1947 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1948}
1949
1950/* Clean up an entire memory request vector, including load
1951 data and progress records. */
cf7a04e8 1952
a76d924d
DJ
1953static void
1954clear_memory_write_data (void *arg)
1955{
1956 VEC(memory_write_request_s) **vec_p = arg;
1957 VEC(memory_write_request_s) *vec = *vec_p;
1958 int i;
1959 struct memory_write_request *mr;
cf7a04e8 1960
a76d924d
DJ
1961 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1962 {
1963 xfree (mr->data);
1964 xfree (mr->baton);
1965 }
1966 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1967}
1968
c906108c 1969void
917317f4 1970generic_load (char *args, int from_tty)
c906108c 1971{
c906108c 1972 bfd *loadfile_bfd;
2b71414d 1973 struct timeval start_time, end_time;
917317f4 1974 char *filename;
1986bccd 1975 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1976 struct load_section_data cbdata;
a76d924d
DJ
1977 struct load_progress_data total_progress;
1978
e4f9b4d5 1979 CORE_ADDR entry;
1986bccd 1980 char **argv;
e4f9b4d5 1981
a76d924d
DJ
1982 memset (&cbdata, 0, sizeof (cbdata));
1983 memset (&total_progress, 0, sizeof (total_progress));
1984 cbdata.progress_data = &total_progress;
1985
1986 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1987
d1a41061
PP
1988 if (args == NULL)
1989 error_no_arg (_("file to load"));
1986bccd 1990
d1a41061 1991 argv = gdb_buildargv (args);
1986bccd
AS
1992 make_cleanup_freeargv (argv);
1993
1994 filename = tilde_expand (argv[0]);
1995 make_cleanup (xfree, filename);
1996
1997 if (argv[1] != NULL)
917317f4
JM
1998 {
1999 char *endptr;
ba5f2f8a 2000
1986bccd
AS
2001 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2002
2003 /* If the last word was not a valid number then
2004 treat it as a file name with spaces in. */
2005 if (argv[1] == endptr)
2006 error (_("Invalid download offset:%s."), argv[1]);
2007
2008 if (argv[2] != NULL)
2009 error (_("Too many parameters."));
917317f4 2010 }
c906108c 2011
c378eb4e 2012 /* Open the file for loading. */
c906108c
SS
2013 loadfile_bfd = bfd_openr (filename, gnutarget);
2014 if (loadfile_bfd == NULL)
2015 {
2016 perror_with_name (filename);
2017 return;
2018 }
917317f4 2019
c906108c
SS
2020 /* FIXME: should be checking for errors from bfd_close (for one thing,
2021 on error it does not free all the storage associated with the
2022 bfd). */
5c65bbb6 2023 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2024
c5aa993b 2025 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2026 {
8a3fe4f8 2027 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2028 bfd_errmsg (bfd_get_error ()));
2029 }
c5aa993b 2030
5417f6dc 2031 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2032 (void *) &total_progress.total_size);
2033
2034 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2035
2b71414d 2036 gettimeofday (&start_time, NULL);
c906108c 2037
a76d924d
DJ
2038 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2039 load_progress) != 0)
2040 error (_("Load failed"));
c906108c 2041
2b71414d 2042 gettimeofday (&end_time, NULL);
ba5f2f8a 2043
e4f9b4d5 2044 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2045 ui_out_text (uiout, "Start address ");
5af949e3 2046 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2047 ui_out_text (uiout, ", load size ");
a76d924d 2048 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2049 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2050 /* We were doing this in remote-mips.c, I suspect it is right
2051 for other targets too. */
fb14de7b 2052 regcache_write_pc (get_current_regcache (), entry);
c906108c 2053
38963c97
DJ
2054 /* Reset breakpoints, now that we have changed the load image. For
2055 instance, breakpoints may have been set (or reset, by
2056 post_create_inferior) while connected to the target but before we
2057 loaded the program. In that case, the prologue analyzer could
2058 have read instructions from the target to find the right
2059 breakpoint locations. Loading has changed the contents of that
2060 memory. */
2061
2062 breakpoint_re_set ();
2063
7ca9f392
AC
2064 /* FIXME: are we supposed to call symbol_file_add or not? According
2065 to a comment from remote-mips.c (where a call to symbol_file_add
2066 was commented out), making the call confuses GDB if more than one
2067 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2068 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2069
a76d924d
DJ
2070 print_transfer_performance (gdb_stdout, total_progress.data_count,
2071 total_progress.write_count,
2072 &start_time, &end_time);
c906108c
SS
2073
2074 do_cleanups (old_cleanups);
2075}
2076
c378eb4e 2077/* Report how fast the transfer went. */
c906108c 2078
917317f4
JM
2079/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2080 replaced by print_transfer_performance (with a very different
c378eb4e 2081 function signature). */
917317f4 2082
c906108c 2083void
fba45db2
KB
2084report_transfer_performance (unsigned long data_count, time_t start_time,
2085 time_t end_time)
c906108c 2086{
2b71414d
DJ
2087 struct timeval start, end;
2088
2089 start.tv_sec = start_time;
2090 start.tv_usec = 0;
2091 end.tv_sec = end_time;
2092 end.tv_usec = 0;
2093
2094 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2095}
2096
2097void
d9fcf2fb 2098print_transfer_performance (struct ui_file *stream,
917317f4
JM
2099 unsigned long data_count,
2100 unsigned long write_count,
2b71414d
DJ
2101 const struct timeval *start_time,
2102 const struct timeval *end_time)
917317f4 2103{
9f43d28c 2104 ULONGEST time_count;
2b71414d
DJ
2105
2106 /* Compute the elapsed time in milliseconds, as a tradeoff between
2107 accuracy and overflow. */
2108 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2109 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2110
8b93c638
JM
2111 ui_out_text (uiout, "Transfer rate: ");
2112 if (time_count > 0)
2113 {
9f43d28c
DJ
2114 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2115
2116 if (ui_out_is_mi_like_p (uiout))
2117 {
2118 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2119 ui_out_text (uiout, " bits/sec");
2120 }
2121 else if (rate < 1024)
2122 {
2123 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2124 ui_out_text (uiout, " bytes/sec");
2125 }
2126 else
2127 {
2128 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2129 ui_out_text (uiout, " KB/sec");
2130 }
8b93c638
JM
2131 }
2132 else
2133 {
ba5f2f8a 2134 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2135 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2136 }
2137 if (write_count > 0)
2138 {
2139 ui_out_text (uiout, ", ");
ba5f2f8a 2140 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2141 ui_out_text (uiout, " bytes/write");
2142 }
2143 ui_out_text (uiout, ".\n");
c906108c
SS
2144}
2145
2146/* This function allows the addition of incrementally linked object files.
2147 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2148/* Note: ezannoni 2000-04-13 This function/command used to have a
2149 special case syntax for the rombug target (Rombug is the boot
2150 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2151 rombug case, the user doesn't need to supply a text address,
2152 instead a call to target_link() (in target.c) would supply the
c378eb4e 2153 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2154
c906108c 2155static void
fba45db2 2156add_symbol_file_command (char *args, int from_tty)
c906108c 2157{
5af949e3 2158 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2159 char *filename = NULL;
2df3850c 2160 int flags = OBJF_USERLOADED;
c906108c 2161 char *arg;
db162d44 2162 int section_index = 0;
2acceee2
JM
2163 int argcnt = 0;
2164 int sec_num = 0;
2165 int i;
db162d44
EZ
2166 int expecting_sec_name = 0;
2167 int expecting_sec_addr = 0;
5b96932b 2168 char **argv;
db162d44 2169
a39a16c4 2170 struct sect_opt
2acceee2 2171 {
2acceee2
JM
2172 char *name;
2173 char *value;
a39a16c4 2174 };
db162d44 2175
a39a16c4
MM
2176 struct section_addr_info *section_addrs;
2177 struct sect_opt *sect_opts = NULL;
2178 size_t num_sect_opts = 0;
3017564a 2179 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2180
a39a16c4 2181 num_sect_opts = 16;
5417f6dc 2182 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2183 * sizeof (struct sect_opt));
2184
c906108c
SS
2185 dont_repeat ();
2186
2187 if (args == NULL)
8a3fe4f8 2188 error (_("add-symbol-file takes a file name and an address"));
c906108c 2189
d1a41061 2190 argv = gdb_buildargv (args);
5b96932b 2191 make_cleanup_freeargv (argv);
db162d44 2192
5b96932b
AS
2193 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2194 {
c378eb4e 2195 /* Process the argument. */
db162d44 2196 if (argcnt == 0)
c906108c 2197 {
c378eb4e 2198 /* The first argument is the file name. */
db162d44 2199 filename = tilde_expand (arg);
3017564a 2200 make_cleanup (xfree, filename);
c906108c 2201 }
db162d44 2202 else
7a78ae4e
ND
2203 if (argcnt == 1)
2204 {
2205 /* The second argument is always the text address at which
c378eb4e 2206 to load the program. */
7a78ae4e
ND
2207 sect_opts[section_index].name = ".text";
2208 sect_opts[section_index].value = arg;
f414f22f 2209 if (++section_index >= num_sect_opts)
a39a16c4
MM
2210 {
2211 num_sect_opts *= 2;
5417f6dc 2212 sect_opts = ((struct sect_opt *)
a39a16c4 2213 xrealloc (sect_opts,
5417f6dc 2214 num_sect_opts
a39a16c4
MM
2215 * sizeof (struct sect_opt)));
2216 }
7a78ae4e
ND
2217 }
2218 else
2219 {
2220 /* It's an option (starting with '-') or it's an argument
c378eb4e 2221 to an option. */
7a78ae4e
ND
2222
2223 if (*arg == '-')
2224 {
78a4a9b9
AC
2225 if (strcmp (arg, "-readnow") == 0)
2226 flags |= OBJF_READNOW;
2227 else if (strcmp (arg, "-s") == 0)
2228 {
2229 expecting_sec_name = 1;
2230 expecting_sec_addr = 1;
2231 }
7a78ae4e
ND
2232 }
2233 else
2234 {
2235 if (expecting_sec_name)
db162d44 2236 {
7a78ae4e
ND
2237 sect_opts[section_index].name = arg;
2238 expecting_sec_name = 0;
db162d44
EZ
2239 }
2240 else
7a78ae4e
ND
2241 if (expecting_sec_addr)
2242 {
2243 sect_opts[section_index].value = arg;
2244 expecting_sec_addr = 0;
f414f22f 2245 if (++section_index >= num_sect_opts)
a39a16c4
MM
2246 {
2247 num_sect_opts *= 2;
5417f6dc 2248 sect_opts = ((struct sect_opt *)
a39a16c4 2249 xrealloc (sect_opts,
5417f6dc 2250 num_sect_opts
a39a16c4
MM
2251 * sizeof (struct sect_opt)));
2252 }
7a78ae4e
ND
2253 }
2254 else
3e43a32a
MS
2255 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2256 " [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2257 }
2258 }
c906108c 2259 }
c906108c 2260
927890d0
JB
2261 /* This command takes at least two arguments. The first one is a
2262 filename, and the second is the address where this file has been
2263 loaded. Abort now if this address hasn't been provided by the
2264 user. */
2265 if (section_index < 1)
2266 error (_("The address where %s has been loaded is missing"), filename);
2267
c378eb4e 2268 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2269 a sect_addr_info structure to be passed around to other
2270 functions. We have to split this up into separate print
bb599908 2271 statements because hex_string returns a local static
c378eb4e 2272 string. */
5417f6dc 2273
a3f17187 2274 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2275 section_addrs = alloc_section_addr_info (section_index);
2276 make_cleanup (xfree, section_addrs);
db162d44 2277 for (i = 0; i < section_index; i++)
c906108c 2278 {
db162d44
EZ
2279 CORE_ADDR addr;
2280 char *val = sect_opts[i].value;
2281 char *sec = sect_opts[i].name;
5417f6dc 2282
ae822768 2283 addr = parse_and_eval_address (val);
db162d44 2284
db162d44 2285 /* Here we store the section offsets in the order they were
c378eb4e 2286 entered on the command line. */
a39a16c4
MM
2287 section_addrs->other[sec_num].name = sec;
2288 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2289 printf_unfiltered ("\t%s_addr = %s\n", sec,
2290 paddress (gdbarch, addr));
db162d44
EZ
2291 sec_num++;
2292
5417f6dc 2293 /* The object's sections are initialized when a
db162d44 2294 call is made to build_objfile_section_table (objfile).
5417f6dc 2295 This happens in reread_symbols.
db162d44
EZ
2296 At this point, we don't know what file type this is,
2297 so we can't determine what section names are valid. */
2acceee2 2298 }
db162d44 2299
2acceee2 2300 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2301 error (_("Not confirmed."));
c906108c 2302
7eedccfa
PP
2303 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2304 section_addrs, flags);
c906108c
SS
2305
2306 /* Getting new symbols may change our opinion about what is
2307 frameless. */
2308 reinit_frame_cache ();
db162d44 2309 do_cleanups (my_cleanups);
c906108c
SS
2310}
2311\f
70992597 2312
c906108c
SS
2313/* Re-read symbols if a symbol-file has changed. */
2314void
fba45db2 2315reread_symbols (void)
c906108c
SS
2316{
2317 struct objfile *objfile;
2318 long new_modtime;
2319 int reread_one = 0;
2320 struct stat new_statbuf;
2321 int res;
2322
2323 /* With the addition of shared libraries, this should be modified,
2324 the load time should be saved in the partial symbol tables, since
2325 different tables may come from different source files. FIXME.
2326 This routine should then walk down each partial symbol table
c378eb4e 2327 and see if the symbol table that it originates from has been changed. */
c906108c 2328
c5aa993b
JM
2329 for (objfile = object_files; objfile; objfile = objfile->next)
2330 {
9cce227f
TG
2331 /* solib-sunos.c creates one objfile with obfd. */
2332 if (objfile->obfd == NULL)
2333 continue;
2334
2335 /* Separate debug objfiles are handled in the main objfile. */
2336 if (objfile->separate_debug_objfile_backlink)
2337 continue;
2338
02aeec7b
JB
2339 /* If this object is from an archive (what you usually create with
2340 `ar', often called a `static library' on most systems, though
2341 a `shared library' on AIX is also an archive), then you should
2342 stat on the archive name, not member name. */
9cce227f
TG
2343 if (objfile->obfd->my_archive)
2344 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2345 else
9cce227f
TG
2346 res = stat (objfile->name, &new_statbuf);
2347 if (res != 0)
2348 {
c378eb4e 2349 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f
TG
2350 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2351 objfile->name);
2352 continue;
2353 }
2354 new_modtime = new_statbuf.st_mtime;
2355 if (new_modtime != objfile->mtime)
2356 {
2357 struct cleanup *old_cleanups;
2358 struct section_offsets *offsets;
2359 int num_offsets;
2360 char *obfd_filename;
2361
2362 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2363 objfile->name);
2364
2365 /* There are various functions like symbol_file_add,
2366 symfile_bfd_open, syms_from_objfile, etc., which might
2367 appear to do what we want. But they have various other
2368 effects which we *don't* want. So we just do stuff
2369 ourselves. We don't worry about mapped files (for one thing,
2370 any mapped file will be out of date). */
2371
2372 /* If we get an error, blow away this objfile (not sure if
2373 that is the correct response for things like shared
2374 libraries). */
2375 old_cleanups = make_cleanup_free_objfile (objfile);
2376 /* We need to do this whenever any symbols go away. */
2377 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2378
0ba1096a
KT
2379 if (exec_bfd != NULL
2380 && filename_cmp (bfd_get_filename (objfile->obfd),
2381 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2382 {
2383 /* Reload EXEC_BFD without asking anything. */
2384
2385 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2386 }
2387
2388 /* Clean up any state BFD has sitting around. We don't need
2389 to close the descriptor but BFD lacks a way of closing the
2390 BFD without closing the descriptor. */
2391 obfd_filename = bfd_get_filename (objfile->obfd);
2392 if (!bfd_close (objfile->obfd))
2393 error (_("Can't close BFD for %s: %s"), objfile->name,
2394 bfd_errmsg (bfd_get_error ()));
874f5765 2395 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2396 if (objfile->obfd == NULL)
2397 error (_("Can't open %s to read symbols."), objfile->name);
2398 else
2399 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2400 /* bfd_openr sets cacheable to true, which is what we want. */
2401 if (!bfd_check_format (objfile->obfd, bfd_object))
2402 error (_("Can't read symbols from %s: %s."), objfile->name,
2403 bfd_errmsg (bfd_get_error ()));
2404
2405 /* Save the offsets, we will nuke them with the rest of the
2406 objfile_obstack. */
2407 num_offsets = objfile->num_sections;
2408 offsets = ((struct section_offsets *)
2409 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2410 memcpy (offsets, objfile->section_offsets,
2411 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2412
2413 /* Remove any references to this objfile in the global
2414 value lists. */
2415 preserve_values (objfile);
2416
2417 /* Nuke all the state that we will re-read. Much of the following
2418 code which sets things to NULL really is necessary to tell
2419 other parts of GDB that there is nothing currently there.
2420
2421 Try to keep the freeing order compatible with free_objfile. */
2422
2423 if (objfile->sf != NULL)
2424 {
2425 (*objfile->sf->sym_finish) (objfile);
2426 }
2427
2428 clear_objfile_data (objfile);
2429
15d123c9 2430 /* Free the separate debug objfiles. It will be
9cce227f 2431 automatically recreated by sym_read. */
15d123c9 2432 free_objfile_separate_debug (objfile);
9cce227f
TG
2433
2434 /* FIXME: Do we have to free a whole linked list, or is this
2435 enough? */
2436 if (objfile->global_psymbols.list)
2437 xfree (objfile->global_psymbols.list);
2438 memset (&objfile->global_psymbols, 0,
2439 sizeof (objfile->global_psymbols));
2440 if (objfile->static_psymbols.list)
2441 xfree (objfile->static_psymbols.list);
2442 memset (&objfile->static_psymbols, 0,
2443 sizeof (objfile->static_psymbols));
2444
c378eb4e 2445 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2446 psymbol_bcache_free (objfile->psymbol_cache);
2447 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2448 bcache_xfree (objfile->macro_cache);
cbd70537 2449 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2450 bcache_xfree (objfile->filename_cache);
cbd70537 2451 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2452 if (objfile->demangled_names_hash != NULL)
2453 {
2454 htab_delete (objfile->demangled_names_hash);
2455 objfile->demangled_names_hash = NULL;
2456 }
2457 obstack_free (&objfile->objfile_obstack, 0);
2458 objfile->sections = NULL;
2459 objfile->symtabs = NULL;
2460 objfile->psymtabs = NULL;
2461 objfile->psymtabs_addrmap = NULL;
2462 objfile->free_psymtabs = NULL;
34eaf542 2463 objfile->template_symbols = NULL;
9cce227f
TG
2464 objfile->msymbols = NULL;
2465 objfile->deprecated_sym_private = NULL;
2466 objfile->minimal_symbol_count = 0;
2467 memset (&objfile->msymbol_hash, 0,
2468 sizeof (objfile->msymbol_hash));
2469 memset (&objfile->msymbol_demangled_hash, 0,
2470 sizeof (objfile->msymbol_demangled_hash));
2471
710e1a31 2472 objfile->psymbol_cache = psymbol_bcache_init ();
cbd70537
SW
2473 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2474 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
9cce227f
TG
2475 /* obstack_init also initializes the obstack so it is
2476 empty. We could use obstack_specify_allocation but
2477 gdb_obstack.h specifies the alloc/dealloc
2478 functions. */
2479 obstack_init (&objfile->objfile_obstack);
2480 if (build_objfile_section_table (objfile))
2481 {
2482 error (_("Can't find the file sections in `%s': %s"),
2483 objfile->name, bfd_errmsg (bfd_get_error ()));
2484 }
2485 terminate_minimal_symbol_table (objfile);
2486
2487 /* We use the same section offsets as from last time. I'm not
2488 sure whether that is always correct for shared libraries. */
2489 objfile->section_offsets = (struct section_offsets *)
2490 obstack_alloc (&objfile->objfile_obstack,
2491 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2492 memcpy (objfile->section_offsets, offsets,
2493 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2494 objfile->num_sections = num_offsets;
2495
2496 /* What the hell is sym_new_init for, anyway? The concept of
2497 distinguishing between the main file and additional files
2498 in this way seems rather dubious. */
2499 if (objfile == symfile_objfile)
c906108c 2500 {
9cce227f 2501 (*objfile->sf->sym_new_init) (objfile);
c906108c 2502 }
9cce227f
TG
2503
2504 (*objfile->sf->sym_init) (objfile);
2505 clear_complaints (&symfile_complaints, 1, 1);
2506 /* Do not set flags as this is safe and we don't want to be
2507 verbose. */
2508 (*objfile->sf->sym_read) (objfile, 0);
b11896a5
TT
2509 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2510 {
2511 objfile->flags &= ~OBJF_PSYMTABS_READ;
2512 require_partial_symbols (objfile, 0);
2513 }
2514
9cce227f 2515 if (!objfile_has_symbols (objfile))
c906108c 2516 {
9cce227f
TG
2517 wrap_here ("");
2518 printf_unfiltered (_("(no debugging symbols found)\n"));
2519 wrap_here ("");
c5aa993b 2520 }
9cce227f
TG
2521
2522 /* We're done reading the symbol file; finish off complaints. */
2523 clear_complaints (&symfile_complaints, 0, 1);
2524
2525 /* Getting new symbols may change our opinion about what is
2526 frameless. */
2527
2528 reinit_frame_cache ();
2529
2530 /* Discard cleanups as symbol reading was successful. */
2531 discard_cleanups (old_cleanups);
2532
2533 /* If the mtime has changed between the time we set new_modtime
2534 and now, we *want* this to be out of date, so don't call stat
2535 again now. */
2536 objfile->mtime = new_modtime;
2537 reread_one = 1;
2538 init_entry_point_info (objfile);
c906108c
SS
2539 }
2540 }
c906108c
SS
2541
2542 if (reread_one)
ea53e89f 2543 {
ff3536bc
UW
2544 /* Notify objfiles that we've modified objfile sections. */
2545 objfiles_changed ();
2546
c1e56572 2547 clear_symtab_users (0);
ea53e89f
JB
2548 /* At least one objfile has changed, so we can consider that
2549 the executable we're debugging has changed too. */
781b42b0 2550 observer_notify_executable_changed ();
ea53e89f 2551 }
c906108c 2552}
c906108c
SS
2553\f
2554
c5aa993b
JM
2555
2556typedef struct
2557{
2558 char *ext;
c906108c 2559 enum language lang;
c5aa993b
JM
2560}
2561filename_language;
c906108c 2562
c5aa993b 2563static filename_language *filename_language_table;
c906108c
SS
2564static int fl_table_size, fl_table_next;
2565
2566static void
fba45db2 2567add_filename_language (char *ext, enum language lang)
c906108c
SS
2568{
2569 if (fl_table_next >= fl_table_size)
2570 {
2571 fl_table_size += 10;
5417f6dc 2572 filename_language_table =
25bf3106
PM
2573 xrealloc (filename_language_table,
2574 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2575 }
2576
4fcf66da 2577 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2578 filename_language_table[fl_table_next].lang = lang;
2579 fl_table_next++;
2580}
2581
2582static char *ext_args;
920d2a44
AC
2583static void
2584show_ext_args (struct ui_file *file, int from_tty,
2585 struct cmd_list_element *c, const char *value)
2586{
3e43a32a
MS
2587 fprintf_filtered (file,
2588 _("Mapping between filename extension "
2589 "and source language is \"%s\".\n"),
920d2a44
AC
2590 value);
2591}
c906108c
SS
2592
2593static void
26c41df3 2594set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2595{
2596 int i;
2597 char *cp = ext_args;
2598 enum language lang;
2599
c378eb4e 2600 /* First arg is filename extension, starting with '.' */
c906108c 2601 if (*cp != '.')
8a3fe4f8 2602 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2603
2604 /* Find end of first arg. */
c5aa993b 2605 while (*cp && !isspace (*cp))
c906108c
SS
2606 cp++;
2607
2608 if (*cp == '\0')
3e43a32a
MS
2609 error (_("'%s': two arguments required -- "
2610 "filename extension and language"),
c906108c
SS
2611 ext_args);
2612
c378eb4e 2613 /* Null-terminate first arg. */
c5aa993b 2614 *cp++ = '\0';
c906108c
SS
2615
2616 /* Find beginning of second arg, which should be a source language. */
2617 while (*cp && isspace (*cp))
2618 cp++;
2619
2620 if (*cp == '\0')
3e43a32a
MS
2621 error (_("'%s': two arguments required -- "
2622 "filename extension and language"),
c906108c
SS
2623 ext_args);
2624
2625 /* Lookup the language from among those we know. */
2626 lang = language_enum (cp);
2627
2628 /* Now lookup the filename extension: do we already know it? */
2629 for (i = 0; i < fl_table_next; i++)
2630 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2631 break;
2632
2633 if (i >= fl_table_next)
2634 {
c378eb4e 2635 /* New file extension. */
c906108c
SS
2636 add_filename_language (ext_args, lang);
2637 }
2638 else
2639 {
c378eb4e 2640 /* Redefining a previously known filename extension. */
c906108c
SS
2641
2642 /* if (from_tty) */
2643 /* query ("Really make files of type %s '%s'?", */
2644 /* ext_args, language_str (lang)); */
2645
b8c9b27d 2646 xfree (filename_language_table[i].ext);
4fcf66da 2647 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2648 filename_language_table[i].lang = lang;
2649 }
2650}
2651
2652static void
fba45db2 2653info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2654{
2655 int i;
2656
a3f17187 2657 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2658 printf_filtered ("\n\n");
2659 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2660 printf_filtered ("\t%s\t- %s\n",
2661 filename_language_table[i].ext,
c906108c
SS
2662 language_str (filename_language_table[i].lang));
2663}
2664
2665static void
fba45db2 2666init_filename_language_table (void)
c906108c 2667{
c378eb4e 2668 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2669 {
2670 fl_table_size = 20;
2671 fl_table_next = 0;
c5aa993b 2672 filename_language_table =
c906108c 2673 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2674 add_filename_language (".c", language_c);
6aecb9c2 2675 add_filename_language (".d", language_d);
c5aa993b
JM
2676 add_filename_language (".C", language_cplus);
2677 add_filename_language (".cc", language_cplus);
2678 add_filename_language (".cp", language_cplus);
2679 add_filename_language (".cpp", language_cplus);
2680 add_filename_language (".cxx", language_cplus);
2681 add_filename_language (".c++", language_cplus);
2682 add_filename_language (".java", language_java);
c906108c 2683 add_filename_language (".class", language_java);
da2cf7e0 2684 add_filename_language (".m", language_objc);
c5aa993b
JM
2685 add_filename_language (".f", language_fortran);
2686 add_filename_language (".F", language_fortran);
fd5700c7
JK
2687 add_filename_language (".for", language_fortran);
2688 add_filename_language (".FOR", language_fortran);
2689 add_filename_language (".ftn", language_fortran);
2690 add_filename_language (".FTN", language_fortran);
2691 add_filename_language (".fpp", language_fortran);
2692 add_filename_language (".FPP", language_fortran);
2693 add_filename_language (".f90", language_fortran);
2694 add_filename_language (".F90", language_fortran);
2695 add_filename_language (".f95", language_fortran);
2696 add_filename_language (".F95", language_fortran);
2697 add_filename_language (".f03", language_fortran);
2698 add_filename_language (".F03", language_fortran);
2699 add_filename_language (".f08", language_fortran);
2700 add_filename_language (".F08", language_fortran);
c5aa993b 2701 add_filename_language (".s", language_asm);
aa707ed0 2702 add_filename_language (".sx", language_asm);
c5aa993b 2703 add_filename_language (".S", language_asm);
c6fd39cd
PM
2704 add_filename_language (".pas", language_pascal);
2705 add_filename_language (".p", language_pascal);
2706 add_filename_language (".pp", language_pascal);
963a6417
PH
2707 add_filename_language (".adb", language_ada);
2708 add_filename_language (".ads", language_ada);
2709 add_filename_language (".a", language_ada);
2710 add_filename_language (".ada", language_ada);
dde59185 2711 add_filename_language (".dg", language_ada);
c906108c
SS
2712 }
2713}
2714
2715enum language
dd786858 2716deduce_language_from_filename (const char *filename)
c906108c
SS
2717{
2718 int i;
2719 char *cp;
2720
2721 if (filename != NULL)
2722 if ((cp = strrchr (filename, '.')) != NULL)
2723 for (i = 0; i < fl_table_next; i++)
2724 if (strcmp (cp, filename_language_table[i].ext) == 0)
2725 return filename_language_table[i].lang;
2726
2727 return language_unknown;
2728}
2729\f
2730/* allocate_symtab:
2731
2732 Allocate and partly initialize a new symbol table. Return a pointer
2733 to it. error() if no space.
2734
2735 Caller must set these fields:
c5aa993b
JM
2736 LINETABLE(symtab)
2737 symtab->blockvector
2738 symtab->dirname
2739 symtab->free_code
2740 symtab->free_ptr
c906108c
SS
2741 */
2742
2743struct symtab *
72b9f47f 2744allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2745{
52f0bd74 2746 struct symtab *symtab;
c906108c
SS
2747
2748 symtab = (struct symtab *)
4a146b47 2749 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2750 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2751 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2752 objfile->filename_cache);
c5aa993b
JM
2753 symtab->fullname = NULL;
2754 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2755 symtab->debugformat = "unknown";
c906108c 2756
c378eb4e 2757 /* Hook it to the objfile it comes from. */
c906108c 2758
c5aa993b
JM
2759 symtab->objfile = objfile;
2760 symtab->next = objfile->symtabs;
2761 objfile->symtabs = symtab;
c906108c 2762
c906108c
SS
2763 return (symtab);
2764}
c906108c 2765\f
c5aa993b 2766
c906108c 2767/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2768 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2769
2770void
c1e56572 2771clear_symtab_users (int add_flags)
c906108c
SS
2772{
2773 /* Someday, we should do better than this, by only blowing away
2774 the things that really need to be blown. */
c0501be5
DJ
2775
2776 /* Clear the "current" symtab first, because it is no longer valid.
2777 breakpoint_re_set may try to access the current symtab. */
2778 clear_current_source_symtab_and_line ();
2779
c906108c 2780 clear_displays ();
c1e56572
JK
2781 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2782 breakpoint_re_set ();
6c95b8df 2783 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2784 clear_pc_function_cache ();
06d3b283 2785 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2786
2787 /* Clear globals which might have pointed into a removed objfile.
2788 FIXME: It's not clear which of these are supposed to persist
2789 between expressions and which ought to be reset each time. */
2790 expression_context_block = NULL;
2791 innermost_block = NULL;
8756216b
DP
2792
2793 /* Varobj may refer to old symbols, perform a cleanup. */
2794 varobj_invalidate ();
2795
c906108c
SS
2796}
2797
74b7792f
AC
2798static void
2799clear_symtab_users_cleanup (void *ignore)
2800{
c1e56572 2801 clear_symtab_users (0);
74b7792f 2802}
c906108c 2803\f
c906108c
SS
2804/* OVERLAYS:
2805 The following code implements an abstraction for debugging overlay sections.
2806
2807 The target model is as follows:
2808 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2809 same VMA, each with its own unique LMA (or load address).
c906108c 2810 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2811 sections, one by one, from the load address into the VMA address.
5417f6dc 2812 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2813 sections should be considered to be mapped from the VMA to the LMA.
2814 This information is used for symbol lookup, and memory read/write.
5417f6dc 2815 For instance, if a section has been mapped then its contents
c5aa993b 2816 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2817
2818 Two levels of debugger support for overlays are available. One is
2819 "manual", in which the debugger relies on the user to tell it which
2820 overlays are currently mapped. This level of support is
2821 implemented entirely in the core debugger, and the information about
2822 whether a section is mapped is kept in the objfile->obj_section table.
2823
2824 The second level of support is "automatic", and is only available if
2825 the target-specific code provides functionality to read the target's
2826 overlay mapping table, and translate its contents for the debugger
2827 (by updating the mapped state information in the obj_section tables).
2828
2829 The interface is as follows:
c5aa993b
JM
2830 User commands:
2831 overlay map <name> -- tell gdb to consider this section mapped
2832 overlay unmap <name> -- tell gdb to consider this section unmapped
2833 overlay list -- list the sections that GDB thinks are mapped
2834 overlay read-target -- get the target's state of what's mapped
2835 overlay off/manual/auto -- set overlay debugging state
2836 Functional interface:
2837 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2838 section, return that section.
5417f6dc 2839 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2840 the pc, either in its VMA or its LMA
714835d5 2841 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2842 section_is_overlay(sect): true if section's VMA != LMA
2843 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2844 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2845 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2846 overlay_mapped_address(...): map an address from section's LMA to VMA
2847 overlay_unmapped_address(...): map an address from section's VMA to LMA
2848 symbol_overlayed_address(...): Return a "current" address for symbol:
2849 either in VMA or LMA depending on whether
c378eb4e 2850 the symbol's section is currently mapped. */
c906108c
SS
2851
2852/* Overlay debugging state: */
2853
d874f1e2 2854enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2855int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2856
c906108c 2857/* Function: section_is_overlay (SECTION)
5417f6dc 2858 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2859 SECTION is loaded at an address different from where it will "run". */
2860
2861int
714835d5 2862section_is_overlay (struct obj_section *section)
c906108c 2863{
714835d5
UW
2864 if (overlay_debugging && section)
2865 {
2866 bfd *abfd = section->objfile->obfd;
2867 asection *bfd_section = section->the_bfd_section;
2868
2869 if (bfd_section_lma (abfd, bfd_section) != 0
2870 && bfd_section_lma (abfd, bfd_section)
2871 != bfd_section_vma (abfd, bfd_section))
2872 return 1;
2873 }
c906108c
SS
2874
2875 return 0;
2876}
2877
2878/* Function: overlay_invalidate_all (void)
2879 Invalidate the mapped state of all overlay sections (mark it as stale). */
2880
2881static void
fba45db2 2882overlay_invalidate_all (void)
c906108c 2883{
c5aa993b 2884 struct objfile *objfile;
c906108c
SS
2885 struct obj_section *sect;
2886
2887 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2888 if (section_is_overlay (sect))
2889 sect->ovly_mapped = -1;
c906108c
SS
2890}
2891
714835d5 2892/* Function: section_is_mapped (SECTION)
5417f6dc 2893 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2894
2895 Access to the ovly_mapped flag is restricted to this function, so
2896 that we can do automatic update. If the global flag
2897 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2898 overlay_invalidate_all. If the mapped state of the particular
2899 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2900
714835d5
UW
2901int
2902section_is_mapped (struct obj_section *osect)
c906108c 2903{
9216df95
UW
2904 struct gdbarch *gdbarch;
2905
714835d5 2906 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2907 return 0;
2908
c5aa993b 2909 switch (overlay_debugging)
c906108c
SS
2910 {
2911 default:
d874f1e2 2912 case ovly_off:
c5aa993b 2913 return 0; /* overlay debugging off */
d874f1e2 2914 case ovly_auto: /* overlay debugging automatic */
1c772458 2915 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2916 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2917 gdbarch = get_objfile_arch (osect->objfile);
2918 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2919 {
2920 if (overlay_cache_invalid)
2921 {
2922 overlay_invalidate_all ();
2923 overlay_cache_invalid = 0;
2924 }
2925 if (osect->ovly_mapped == -1)
9216df95 2926 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2927 }
2928 /* fall thru to manual case */
d874f1e2 2929 case ovly_on: /* overlay debugging manual */
c906108c
SS
2930 return osect->ovly_mapped == 1;
2931 }
2932}
2933
c906108c
SS
2934/* Function: pc_in_unmapped_range
2935 If PC falls into the lma range of SECTION, return true, else false. */
2936
2937CORE_ADDR
714835d5 2938pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2939{
714835d5
UW
2940 if (section_is_overlay (section))
2941 {
2942 bfd *abfd = section->objfile->obfd;
2943 asection *bfd_section = section->the_bfd_section;
fbd35540 2944
714835d5
UW
2945 /* We assume the LMA is relocated by the same offset as the VMA. */
2946 bfd_vma size = bfd_get_section_size (bfd_section);
2947 CORE_ADDR offset = obj_section_offset (section);
2948
2949 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2950 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2951 return 1;
2952 }
c906108c 2953
c906108c
SS
2954 return 0;
2955}
2956
2957/* Function: pc_in_mapped_range
2958 If PC falls into the vma range of SECTION, return true, else false. */
2959
2960CORE_ADDR
714835d5 2961pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2962{
714835d5
UW
2963 if (section_is_overlay (section))
2964 {
2965 if (obj_section_addr (section) <= pc
2966 && pc < obj_section_endaddr (section))
2967 return 1;
2968 }
c906108c 2969
c906108c
SS
2970 return 0;
2971}
2972
9ec8e6a0
JB
2973
2974/* Return true if the mapped ranges of sections A and B overlap, false
2975 otherwise. */
b9362cc7 2976static int
714835d5 2977sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2978{
714835d5
UW
2979 CORE_ADDR a_start = obj_section_addr (a);
2980 CORE_ADDR a_end = obj_section_endaddr (a);
2981 CORE_ADDR b_start = obj_section_addr (b);
2982 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2983
2984 return (a_start < b_end && b_start < a_end);
2985}
2986
c906108c
SS
2987/* Function: overlay_unmapped_address (PC, SECTION)
2988 Returns the address corresponding to PC in the unmapped (load) range.
2989 May be the same as PC. */
2990
2991CORE_ADDR
714835d5 2992overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2993{
714835d5
UW
2994 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2995 {
2996 bfd *abfd = section->objfile->obfd;
2997 asection *bfd_section = section->the_bfd_section;
fbd35540 2998
714835d5
UW
2999 return pc + bfd_section_lma (abfd, bfd_section)
3000 - bfd_section_vma (abfd, bfd_section);
3001 }
c906108c
SS
3002
3003 return pc;
3004}
3005
3006/* Function: overlay_mapped_address (PC, SECTION)
3007 Returns the address corresponding to PC in the mapped (runtime) range.
3008 May be the same as PC. */
3009
3010CORE_ADDR
714835d5 3011overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3012{
714835d5
UW
3013 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3014 {
3015 bfd *abfd = section->objfile->obfd;
3016 asection *bfd_section = section->the_bfd_section;
fbd35540 3017
714835d5
UW
3018 return pc + bfd_section_vma (abfd, bfd_section)
3019 - bfd_section_lma (abfd, bfd_section);
3020 }
c906108c
SS
3021
3022 return pc;
3023}
3024
3025
5417f6dc 3026/* Function: symbol_overlayed_address
c906108c
SS
3027 Return one of two addresses (relative to the VMA or to the LMA),
3028 depending on whether the section is mapped or not. */
3029
c5aa993b 3030CORE_ADDR
714835d5 3031symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3032{
3033 if (overlay_debugging)
3034 {
c378eb4e 3035 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3036 if (section == 0)
3037 return address;
c378eb4e
MS
3038 /* If the symbol's section is not an overlay, just return its
3039 address. */
c906108c
SS
3040 if (!section_is_overlay (section))
3041 return address;
c378eb4e 3042 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3043 if (section_is_mapped (section))
3044 return address;
3045 /*
3046 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3047 * then return its LOADED address rather than its vma address!!
3048 */
3049 return overlay_unmapped_address (address, section);
3050 }
3051 return address;
3052}
3053
5417f6dc 3054/* Function: find_pc_overlay (PC)
c906108c
SS
3055 Return the best-match overlay section for PC:
3056 If PC matches a mapped overlay section's VMA, return that section.
3057 Else if PC matches an unmapped section's VMA, return that section.
3058 Else if PC matches an unmapped section's LMA, return that section. */
3059
714835d5 3060struct obj_section *
fba45db2 3061find_pc_overlay (CORE_ADDR pc)
c906108c 3062{
c5aa993b 3063 struct objfile *objfile;
c906108c
SS
3064 struct obj_section *osect, *best_match = NULL;
3065
3066 if (overlay_debugging)
3067 ALL_OBJSECTIONS (objfile, osect)
714835d5 3068 if (section_is_overlay (osect))
c5aa993b 3069 {
714835d5 3070 if (pc_in_mapped_range (pc, osect))
c5aa993b 3071 {
714835d5
UW
3072 if (section_is_mapped (osect))
3073 return osect;
c5aa993b
JM
3074 else
3075 best_match = osect;
3076 }
714835d5 3077 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3078 best_match = osect;
3079 }
714835d5 3080 return best_match;
c906108c
SS
3081}
3082
3083/* Function: find_pc_mapped_section (PC)
5417f6dc 3084 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3085 currently marked as MAPPED, return that section. Else return NULL. */
3086
714835d5 3087struct obj_section *
fba45db2 3088find_pc_mapped_section (CORE_ADDR pc)
c906108c 3089{
c5aa993b 3090 struct objfile *objfile;
c906108c
SS
3091 struct obj_section *osect;
3092
3093 if (overlay_debugging)
3094 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3095 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3096 return osect;
c906108c
SS
3097
3098 return NULL;
3099}
3100
3101/* Function: list_overlays_command
c378eb4e 3102 Print a list of mapped sections and their PC ranges. */
c906108c
SS
3103
3104void
fba45db2 3105list_overlays_command (char *args, int from_tty)
c906108c 3106{
c5aa993b
JM
3107 int nmapped = 0;
3108 struct objfile *objfile;
c906108c
SS
3109 struct obj_section *osect;
3110
3111 if (overlay_debugging)
3112 ALL_OBJSECTIONS (objfile, osect)
714835d5 3113 if (section_is_mapped (osect))
c5aa993b 3114 {
5af949e3 3115 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3116 const char *name;
3117 bfd_vma lma, vma;
3118 int size;
3119
3120 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3121 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3122 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3123 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3124
3125 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3126 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3127 puts_filtered (" - ");
5af949e3 3128 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3129 printf_filtered (", mapped at ");
5af949e3 3130 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3131 puts_filtered (" - ");
5af949e3 3132 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3133 puts_filtered ("\n");
3134
3135 nmapped++;
3136 }
c906108c 3137 if (nmapped == 0)
a3f17187 3138 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3139}
3140
3141/* Function: map_overlay_command
3142 Mark the named section as mapped (ie. residing at its VMA address). */
3143
3144void
fba45db2 3145map_overlay_command (char *args, int from_tty)
c906108c 3146{
c5aa993b
JM
3147 struct objfile *objfile, *objfile2;
3148 struct obj_section *sec, *sec2;
c906108c
SS
3149
3150 if (!overlay_debugging)
3e43a32a
MS
3151 error (_("Overlay debugging not enabled. Use "
3152 "either the 'overlay auto' or\n"
3153 "the 'overlay manual' command."));
c906108c
SS
3154
3155 if (args == 0 || *args == 0)
8a3fe4f8 3156 error (_("Argument required: name of an overlay section"));
c906108c 3157
c378eb4e 3158 /* First, find a section matching the user supplied argument. */
c906108c
SS
3159 ALL_OBJSECTIONS (objfile, sec)
3160 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3161 {
c378eb4e 3162 /* Now, check to see if the section is an overlay. */
714835d5 3163 if (!section_is_overlay (sec))
c5aa993b
JM
3164 continue; /* not an overlay section */
3165
c378eb4e 3166 /* Mark the overlay as "mapped". */
c5aa993b
JM
3167 sec->ovly_mapped = 1;
3168
3169 /* Next, make a pass and unmap any sections that are
3170 overlapped by this new section: */
3171 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3172 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3173 {
3174 if (info_verbose)
a3f17187 3175 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3176 bfd_section_name (objfile->obfd,
3177 sec2->the_bfd_section));
c378eb4e 3178 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3179 }
3180 return;
3181 }
8a3fe4f8 3182 error (_("No overlay section called %s"), args);
c906108c
SS
3183}
3184
3185/* Function: unmap_overlay_command
5417f6dc 3186 Mark the overlay section as unmapped
c906108c
SS
3187 (ie. resident in its LMA address range, rather than the VMA range). */
3188
3189void
fba45db2 3190unmap_overlay_command (char *args, int from_tty)
c906108c 3191{
c5aa993b 3192 struct objfile *objfile;
c906108c
SS
3193 struct obj_section *sec;
3194
3195 if (!overlay_debugging)
3e43a32a
MS
3196 error (_("Overlay debugging not enabled. "
3197 "Use either the 'overlay auto' or\n"
3198 "the 'overlay manual' command."));
c906108c
SS
3199
3200 if (args == 0 || *args == 0)
8a3fe4f8 3201 error (_("Argument required: name of an overlay section"));
c906108c 3202
c378eb4e 3203 /* First, find a section matching the user supplied argument. */
c906108c
SS
3204 ALL_OBJSECTIONS (objfile, sec)
3205 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3206 {
3207 if (!sec->ovly_mapped)
8a3fe4f8 3208 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3209 sec->ovly_mapped = 0;
3210 return;
3211 }
8a3fe4f8 3212 error (_("No overlay section called %s"), args);
c906108c
SS
3213}
3214
3215/* Function: overlay_auto_command
3216 A utility command to turn on overlay debugging.
c378eb4e 3217 Possibly this should be done via a set/show command. */
c906108c
SS
3218
3219static void
fba45db2 3220overlay_auto_command (char *args, int from_tty)
c906108c 3221{
d874f1e2 3222 overlay_debugging = ovly_auto;
1900040c 3223 enable_overlay_breakpoints ();
c906108c 3224 if (info_verbose)
a3f17187 3225 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3226}
3227
3228/* Function: overlay_manual_command
3229 A utility command to turn on overlay debugging.
c378eb4e 3230 Possibly this should be done via a set/show command. */
c906108c
SS
3231
3232static void
fba45db2 3233overlay_manual_command (char *args, int from_tty)
c906108c 3234{
d874f1e2 3235 overlay_debugging = ovly_on;
1900040c 3236 disable_overlay_breakpoints ();
c906108c 3237 if (info_verbose)
a3f17187 3238 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3239}
3240
3241/* Function: overlay_off_command
3242 A utility command to turn on overlay debugging.
c378eb4e 3243 Possibly this should be done via a set/show command. */
c906108c
SS
3244
3245static void
fba45db2 3246overlay_off_command (char *args, int from_tty)
c906108c 3247{
d874f1e2 3248 overlay_debugging = ovly_off;
1900040c 3249 disable_overlay_breakpoints ();
c906108c 3250 if (info_verbose)
a3f17187 3251 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3252}
3253
3254static void
fba45db2 3255overlay_load_command (char *args, int from_tty)
c906108c 3256{
e17c207e
UW
3257 struct gdbarch *gdbarch = get_current_arch ();
3258
3259 if (gdbarch_overlay_update_p (gdbarch))
3260 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3261 else
8a3fe4f8 3262 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3263}
3264
3265/* Function: overlay_command
c378eb4e 3266 A place-holder for a mis-typed command. */
c906108c 3267
c378eb4e 3268/* Command list chain containing all defined "overlay" subcommands. */
c906108c
SS
3269struct cmd_list_element *overlaylist;
3270
3271static void
fba45db2 3272overlay_command (char *args, int from_tty)
c906108c 3273{
c5aa993b 3274 printf_unfiltered
c906108c
SS
3275 ("\"overlay\" must be followed by the name of an overlay command.\n");
3276 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3277}
3278
3279
3280/* Target Overlays for the "Simplest" overlay manager:
3281
5417f6dc
RM
3282 This is GDB's default target overlay layer. It works with the
3283 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3284 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3285 so targets that use a different runtime overlay manager can
c906108c
SS
3286 substitute their own overlay_update function and take over the
3287 function pointer.
3288
3289 The overlay_update function pokes around in the target's data structures
3290 to see what overlays are mapped, and updates GDB's overlay mapping with
3291 this information.
3292
3293 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3294 unsigned _novlys; /# number of overlay sections #/
3295 unsigned _ovly_table[_novlys][4] = {
3296 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3297 {..., ..., ..., ...},
3298 }
3299 unsigned _novly_regions; /# number of overlay regions #/
3300 unsigned _ovly_region_table[_novly_regions][3] = {
3301 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3302 {..., ..., ...},
3303 }
c906108c
SS
3304 These functions will attempt to update GDB's mappedness state in the
3305 symbol section table, based on the target's mappedness state.
3306
3307 To do this, we keep a cached copy of the target's _ovly_table, and
3308 attempt to detect when the cached copy is invalidated. The main
3309 entry point is "simple_overlay_update(SECT), which looks up SECT in
3310 the cached table and re-reads only the entry for that section from
c378eb4e 3311 the target (whenever possible). */
c906108c
SS
3312
3313/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3314static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3315static unsigned cache_novlys = 0;
c906108c 3316static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3317enum ovly_index
3318 {
3319 VMA, SIZE, LMA, MAPPED
3320 };
c906108c 3321
c378eb4e 3322/* Throw away the cached copy of _ovly_table. */
c906108c 3323static void
fba45db2 3324simple_free_overlay_table (void)
c906108c
SS
3325{
3326 if (cache_ovly_table)
b8c9b27d 3327 xfree (cache_ovly_table);
c5aa993b 3328 cache_novlys = 0;
c906108c
SS
3329 cache_ovly_table = NULL;
3330 cache_ovly_table_base = 0;
3331}
3332
9216df95 3333/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3334 Convert to host order. int LEN is number of ints. */
c906108c 3335static void
9216df95 3336read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3337 int len, int size, enum bfd_endian byte_order)
c906108c 3338{
c378eb4e 3339 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3340 gdb_byte *buf = alloca (len * size);
c5aa993b 3341 int i;
c906108c 3342
9216df95 3343 read_memory (memaddr, buf, len * size);
c906108c 3344 for (i = 0; i < len; i++)
e17a4113 3345 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3346}
3347
3348/* Find and grab a copy of the target _ovly_table
c378eb4e 3349 (and _novlys, which is needed for the table's size). */
c5aa993b 3350static int
fba45db2 3351simple_read_overlay_table (void)
c906108c 3352{
0d43edd1 3353 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3354 struct gdbarch *gdbarch;
3355 int word_size;
e17a4113 3356 enum bfd_endian byte_order;
c906108c
SS
3357
3358 simple_free_overlay_table ();
9b27852e 3359 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3360 if (! novlys_msym)
c906108c 3361 {
8a3fe4f8 3362 error (_("Error reading inferior's overlay table: "
0d43edd1 3363 "couldn't find `_novlys' variable\n"
8a3fe4f8 3364 "in inferior. Use `overlay manual' mode."));
0d43edd1 3365 return 0;
c906108c 3366 }
0d43edd1 3367
9b27852e 3368 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3369 if (! ovly_table_msym)
3370 {
8a3fe4f8 3371 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3372 "`_ovly_table' array\n"
8a3fe4f8 3373 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3374 return 0;
3375 }
3376
9216df95
UW
3377 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3378 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3379 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3380
e17a4113
UW
3381 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3382 4, byte_order);
0d43edd1
JB
3383 cache_ovly_table
3384 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3385 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3386 read_target_long_array (cache_ovly_table_base,
777ea8f1 3387 (unsigned int *) cache_ovly_table,
e17a4113 3388 cache_novlys * 4, word_size, byte_order);
0d43edd1 3389
c5aa993b 3390 return 1; /* SUCCESS */
c906108c
SS
3391}
3392
5417f6dc 3393/* Function: simple_overlay_update_1
c906108c
SS
3394 A helper function for simple_overlay_update. Assuming a cached copy
3395 of _ovly_table exists, look through it to find an entry whose vma,
3396 lma and size match those of OSECT. Re-read the entry and make sure
3397 it still matches OSECT (else the table may no longer be valid).
3398 Set OSECT's mapped state to match the entry. Return: 1 for
3399 success, 0 for failure. */
3400
3401static int
fba45db2 3402simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3403{
3404 int i, size;
fbd35540
MS
3405 bfd *obfd = osect->objfile->obfd;
3406 asection *bsect = osect->the_bfd_section;
9216df95
UW
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3410
2c500098 3411 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3412 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3413 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3414 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3415 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3416 {
9216df95
UW
3417 read_target_long_array (cache_ovly_table_base + i * word_size,
3418 (unsigned int *) cache_ovly_table[i],
e17a4113 3419 4, word_size, byte_order);
fbd35540
MS
3420 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3421 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3422 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3423 {
3424 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3425 return 1;
3426 }
c378eb4e 3427 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3428 return 0;
3429 }
3430 return 0;
3431}
3432
3433/* Function: simple_overlay_update
5417f6dc
RM
3434 If OSECT is NULL, then update all sections' mapped state
3435 (after re-reading the entire target _ovly_table).
3436 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3437 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3438 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3439 re-read the entire cache, and go ahead and update all sections. */
3440
1c772458 3441void
fba45db2 3442simple_overlay_update (struct obj_section *osect)
c906108c 3443{
c5aa993b 3444 struct objfile *objfile;
c906108c 3445
c378eb4e 3446 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3447 if (osect)
c378eb4e 3448 /* Have we got a cached copy of the target's overlay table? */
c906108c 3449 if (cache_ovly_table != NULL)
9cc89665
MS
3450 {
3451 /* Does its cached location match what's currently in the
3452 symtab? */
3453 struct minimal_symbol *minsym
3454 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3455
3456 if (minsym == NULL)
3457 error (_("Error reading inferior's overlay table: couldn't "
3458 "find `_ovly_table' array\n"
3459 "in inferior. Use `overlay manual' mode."));
3460
3461 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3462 /* Then go ahead and try to look up this single section in
3463 the cache. */
3464 if (simple_overlay_update_1 (osect))
3465 /* Found it! We're done. */
3466 return;
3467 }
c906108c
SS
3468
3469 /* Cached table no good: need to read the entire table anew.
3470 Or else we want all the sections, in which case it's actually
3471 more efficient to read the whole table in one block anyway. */
3472
0d43edd1
JB
3473 if (! simple_read_overlay_table ())
3474 return;
3475
c378eb4e 3476 /* Now may as well update all sections, even if only one was requested. */
c906108c 3477 ALL_OBJSECTIONS (objfile, osect)
714835d5 3478 if (section_is_overlay (osect))
c5aa993b
JM
3479 {
3480 int i, size;
fbd35540
MS
3481 bfd *obfd = osect->objfile->obfd;
3482 asection *bsect = osect->the_bfd_section;
c5aa993b 3483
2c500098 3484 size = bfd_get_section_size (bsect);
c5aa993b 3485 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3486 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3487 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3488 /* && cache_ovly_table[i][SIZE] == size */ )
c378eb4e 3489 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3490 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3491 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3492 }
3493 }
c906108c
SS
3494}
3495
086df311
DJ
3496/* Set the output sections and output offsets for section SECTP in
3497 ABFD. The relocation code in BFD will read these offsets, so we
3498 need to be sure they're initialized. We map each section to itself,
3499 with no offset; this means that SECTP->vma will be honored. */
3500
3501static void
3502symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3503{
3504 sectp->output_section = sectp;
3505 sectp->output_offset = 0;
3506}
3507
ac8035ab
TG
3508/* Default implementation for sym_relocate. */
3509
3510
3511bfd_byte *
3512default_symfile_relocate (struct objfile *objfile, asection *sectp,
3513 bfd_byte *buf)
3514{
3515 bfd *abfd = objfile->obfd;
3516
3517 /* We're only interested in sections with relocation
3518 information. */
3519 if ((sectp->flags & SEC_RELOC) == 0)
3520 return NULL;
3521
3522 /* We will handle section offsets properly elsewhere, so relocate as if
3523 all sections begin at 0. */
3524 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3525
3526 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3527}
3528
086df311
DJ
3529/* Relocate the contents of a debug section SECTP in ABFD. The
3530 contents are stored in BUF if it is non-NULL, or returned in a
3531 malloc'd buffer otherwise.
3532
3533 For some platforms and debug info formats, shared libraries contain
3534 relocations against the debug sections (particularly for DWARF-2;
3535 one affected platform is PowerPC GNU/Linux, although it depends on
3536 the version of the linker in use). Also, ELF object files naturally
3537 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3538 the relocations in order to get the locations of symbols correct.
3539 Another example that may require relocation processing, is the
3540 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3541 debug section. */
086df311
DJ
3542
3543bfd_byte *
ac8035ab
TG
3544symfile_relocate_debug_section (struct objfile *objfile,
3545 asection *sectp, bfd_byte *buf)
086df311 3546{
ac8035ab 3547 gdb_assert (objfile->sf->sym_relocate);
086df311 3548
ac8035ab 3549 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3550}
c906108c 3551
31d99776
DJ
3552struct symfile_segment_data *
3553get_symfile_segment_data (bfd *abfd)
3554{
00b5771c 3555 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3556
3557 if (sf == NULL)
3558 return NULL;
3559
3560 return sf->sym_segments (abfd);
3561}
3562
3563void
3564free_symfile_segment_data (struct symfile_segment_data *data)
3565{
3566 xfree (data->segment_bases);
3567 xfree (data->segment_sizes);
3568 xfree (data->segment_info);
3569 xfree (data);
3570}
3571
28c32713
JB
3572
3573/* Given:
3574 - DATA, containing segment addresses from the object file ABFD, and
3575 the mapping from ABFD's sections onto the segments that own them,
3576 and
3577 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3578 segment addresses reported by the target,
3579 store the appropriate offsets for each section in OFFSETS.
3580
3581 If there are fewer entries in SEGMENT_BASES than there are segments
3582 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3583
8d385431
DJ
3584 If there are more entries, then ignore the extra. The target may
3585 not be able to distinguish between an empty data segment and a
3586 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3587int
3588symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3589 struct section_offsets *offsets,
3590 int num_segment_bases,
3591 const CORE_ADDR *segment_bases)
3592{
3593 int i;
3594 asection *sect;
3595
28c32713
JB
3596 /* It doesn't make sense to call this function unless you have some
3597 segment base addresses. */
202b96c1 3598 gdb_assert (num_segment_bases > 0);
28c32713 3599
31d99776
DJ
3600 /* If we do not have segment mappings for the object file, we
3601 can not relocate it by segments. */
3602 gdb_assert (data != NULL);
3603 gdb_assert (data->num_segments > 0);
3604
31d99776
DJ
3605 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3606 {
31d99776
DJ
3607 int which = data->segment_info[i];
3608
28c32713
JB
3609 gdb_assert (0 <= which && which <= data->num_segments);
3610
3611 /* Don't bother computing offsets for sections that aren't
3612 loaded as part of any segment. */
3613 if (! which)
3614 continue;
3615
3616 /* Use the last SEGMENT_BASES entry as the address of any extra
3617 segments mentioned in DATA->segment_info. */
31d99776 3618 if (which > num_segment_bases)
28c32713 3619 which = num_segment_bases;
31d99776 3620
28c32713
JB
3621 offsets->offsets[i] = (segment_bases[which - 1]
3622 - data->segment_bases[which - 1]);
31d99776
DJ
3623 }
3624
3625 return 1;
3626}
3627
3628static void
3629symfile_find_segment_sections (struct objfile *objfile)
3630{
3631 bfd *abfd = objfile->obfd;
3632 int i;
3633 asection *sect;
3634 struct symfile_segment_data *data;
3635
3636 data = get_symfile_segment_data (objfile->obfd);
3637 if (data == NULL)
3638 return;
3639
3640 if (data->num_segments != 1 && data->num_segments != 2)
3641 {
3642 free_symfile_segment_data (data);
3643 return;
3644 }
3645
3646 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3647 {
31d99776
DJ
3648 int which = data->segment_info[i];
3649
3650 if (which == 1)
3651 {
3652 if (objfile->sect_index_text == -1)
3653 objfile->sect_index_text = sect->index;
3654
3655 if (objfile->sect_index_rodata == -1)
3656 objfile->sect_index_rodata = sect->index;
3657 }
3658 else if (which == 2)
3659 {
3660 if (objfile->sect_index_data == -1)
3661 objfile->sect_index_data = sect->index;
3662
3663 if (objfile->sect_index_bss == -1)
3664 objfile->sect_index_bss = sect->index;
3665 }
3666 }
3667
3668 free_symfile_segment_data (data);
3669}
3670
c906108c 3671void
fba45db2 3672_initialize_symfile (void)
c906108c
SS
3673{
3674 struct cmd_list_element *c;
c5aa993b 3675
1a966eab
AC
3676 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3677Load symbol table from executable file FILE.\n\
c906108c 3678The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3679to execute."), &cmdlist);
5ba2abeb 3680 set_cmd_completer (c, filename_completer);
c906108c 3681
1a966eab 3682 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3683Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3684Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3685 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3686The optional arguments are section-name section-address pairs and\n\
3687should be specified if the data and bss segments are not contiguous\n\
1a966eab 3688with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3689 &cmdlist);
5ba2abeb 3690 set_cmd_completer (c, filename_completer);
c906108c 3691
1a966eab
AC
3692 c = add_cmd ("load", class_files, load_command, _("\
3693Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3694for access from GDB.\n\
3695A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3696 set_cmd_completer (c, filename_completer);
c906108c 3697
5bf193a2
AC
3698 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3699 &symbol_reloading, _("\
3700Set dynamic symbol table reloading multiple times in one run."), _("\
3701Show dynamic symbol table reloading multiple times in one run."), NULL,
3702 NULL,
920d2a44 3703 show_symbol_reloading,
5bf193a2 3704 &setlist, &showlist);
c906108c 3705
c5aa993b 3706 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3707 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3708 "overlay ", 0, &cmdlist);
3709
3710 add_com_alias ("ovly", "overlay", class_alias, 1);
3711 add_com_alias ("ov", "overlay", class_alias, 1);
3712
c5aa993b 3713 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3714 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3715
c5aa993b 3716 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3717 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3718
c5aa993b 3719 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3720 _("List mappings of overlay sections."), &overlaylist);
c906108c 3721
c5aa993b 3722 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3723 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3724 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3725 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3726 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3727 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3728 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3729 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3730
3731 /* Filename extension to source language lookup table: */
3732 init_filename_language_table ();
26c41df3
AC
3733 add_setshow_string_noescape_cmd ("extension-language", class_files,
3734 &ext_args, _("\
3735Set mapping between filename extension and source language."), _("\
3736Show mapping between filename extension and source language."), _("\
3737Usage: set extension-language .foo bar"),
3738 set_ext_lang_command,
920d2a44 3739 show_ext_args,
26c41df3 3740 &setlist, &showlist);
c906108c 3741
c5aa993b 3742 add_info ("extensions", info_ext_lang_command,
1bedd215 3743 _("All filename extensions associated with a source language."));
917317f4 3744
525226b5
AC
3745 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3746 &debug_file_directory, _("\
24ddea62
JK
3747Set the directories where separate debug symbols are searched for."), _("\
3748Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3749Separate debug symbols are first searched for in the same\n\
3750directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3751and lastly at the path of the directory of the binary with\n\
24ddea62 3752each global debug-file-directory component prepended."),
525226b5 3753 NULL,
920d2a44 3754 show_debug_file_directory,
525226b5 3755 &setlist, &showlist);
c906108c 3756}
This page took 1.370079 seconds and 4 git commands to generate.