Remove ALL_PSPACE_OBJFILES
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
42a4f53d 3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
76727919 49#include "observable.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
47fd17cd 61#include "cli/cli-style.h"
c906108c 62
c906108c
SS
63#include <sys/types.h>
64#include <fcntl.h>
53ce3c39 65#include <sys/stat.h>
c906108c 66#include <ctype.h>
dcb07cfa 67#include <chrono>
37e136b1 68#include <algorithm>
c906108c 69
ccefe4c4 70#include "psymtab.h"
c906108c 71
3e43a32a
MS
72int (*deprecated_ui_load_progress_hook) (const char *section,
73 unsigned long num);
9a4105ab 74void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
c2d11a7d 78 unsigned long total_size);
769d7dc4
AC
79void (*deprecated_pre_add_symbol_hook) (const char *);
80void (*deprecated_post_add_symbol_hook) (void);
c906108c 81
74b7792f
AC
82static void clear_symtab_users_cleanup (void *ignore);
83
c378eb4e
MS
84/* Global variables owned by this file. */
85int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 86int readnever_symbol_files; /* Never read full symbols. */
c906108c 87
c378eb4e 88/* Functions this file defines. */
c906108c 89
ecf45d2c 90static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 91 objfile_flags flags, CORE_ADDR reloff);
d7db6da9 92
00b5771c 93static const struct sym_fns *find_sym_fns (bfd *);
c906108c 94
a14ed312 95static void overlay_invalidate_all (void);
c906108c 96
a14ed312 97static void simple_free_overlay_table (void);
c906108c 98
e17a4113
UW
99static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
100 enum bfd_endian);
c906108c 101
a14ed312 102static int simple_read_overlay_table (void);
c906108c 103
a14ed312 104static int simple_overlay_update_1 (struct obj_section *);
c906108c 105
31d99776
DJ
106static void symfile_find_segment_sections (struct objfile *objfile);
107
c906108c
SS
108/* List of all available sym_fns. On gdb startup, each object file reader
109 calls add_symtab_fns() to register information on each format it is
c378eb4e 110 prepared to read. */
c906108c 111
905014d7 112struct registered_sym_fns
c256e171 113{
905014d7
SM
114 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
115 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
116 {}
117
c256e171
DE
118 /* BFD flavour that we handle. */
119 enum bfd_flavour sym_flavour;
120
121 /* The "vtable" of symbol functions. */
122 const struct sym_fns *sym_fns;
905014d7 123};
c256e171 124
905014d7 125static std::vector<registered_sym_fns> symtab_fns;
c906108c 126
770e7fc7
DE
127/* Values for "set print symbol-loading". */
128
129const char print_symbol_loading_off[] = "off";
130const char print_symbol_loading_brief[] = "brief";
131const char print_symbol_loading_full[] = "full";
132static const char *print_symbol_loading_enums[] =
133{
134 print_symbol_loading_off,
135 print_symbol_loading_brief,
136 print_symbol_loading_full,
137 NULL
138};
139static const char *print_symbol_loading = print_symbol_loading_full;
140
b7209cb4
FF
141/* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
c906108c 148 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 149 report all the functions that are actually present. */
c906108c
SS
150
151int auto_solib_add = 1;
c906108c 152\f
c5aa993b 153
770e7fc7
DE
154/* Return non-zero if symbol-loading messages should be printed.
155 FROM_TTY is the standard from_tty argument to gdb commands.
156 If EXEC is non-zero the messages are for the executable.
157 Otherwise, messages are for shared libraries.
158 If FULL is non-zero then the caller is printing a detailed message.
159 E.g., the message includes the shared library name.
160 Otherwise, the caller is printing a brief "summary" message. */
161
162int
163print_symbol_loading_p (int from_tty, int exec, int full)
164{
165 if (!from_tty && !info_verbose)
166 return 0;
167
168 if (exec)
169 {
170 /* We don't check FULL for executables, there are few such
171 messages, therefore brief == full. */
172 return print_symbol_loading != print_symbol_loading_off;
173 }
174 if (full)
175 return print_symbol_loading == print_symbol_loading_full;
176 return print_symbol_loading == print_symbol_loading_brief;
177}
178
0d14a781 179/* True if we are reading a symbol table. */
c906108c
SS
180
181int currently_reading_symtab = 0;
182
ccefe4c4
TT
183/* Increment currently_reading_symtab and return a cleanup that can be
184 used to decrement it. */
3b7bacac 185
c83dd867 186scoped_restore_tmpl<int>
ccefe4c4 187increment_reading_symtab (void)
c906108c 188{
c83dd867
TT
189 gdb_assert (currently_reading_symtab >= 0);
190 return make_scoped_restore (&currently_reading_symtab,
191 currently_reading_symtab + 1);
c906108c
SS
192}
193
5417f6dc
RM
194/* Remember the lowest-addressed loadable section we've seen.
195 This function is called via bfd_map_over_sections.
c906108c
SS
196
197 In case of equal vmas, the section with the largest size becomes the
198 lowest-addressed loadable section.
199
200 If the vmas and sizes are equal, the last section is considered the
201 lowest-addressed loadable section. */
202
203void
4efb68b1 204find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 205{
c5aa993b 206 asection **lowest = (asection **) obj;
c906108c 207
eb73e134 208 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
209 return;
210 if (!*lowest)
211 *lowest = sect; /* First loadable section */
212 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
213 *lowest = sect; /* A lower loadable section */
214 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
215 && (bfd_section_size (abfd, (*lowest))
216 <= bfd_section_size (abfd, sect)))
217 *lowest = sect;
218}
219
62557bbc 220/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 221 an existing section table. */
62557bbc 222
37e136b1 223section_addr_info
0542c86d
PA
224build_section_addr_info_from_section_table (const struct target_section *start,
225 const struct target_section *end)
62557bbc 226{
0542c86d 227 const struct target_section *stp;
62557bbc 228
37e136b1 229 section_addr_info sap;
62557bbc 230
37e136b1 231 for (stp = start; stp != end; stp++)
62557bbc 232 {
2b2848e2
DE
233 struct bfd_section *asect = stp->the_bfd_section;
234 bfd *abfd = asect->owner;
235
236 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
37e136b1
TT
237 && sap.size () < end - start)
238 sap.emplace_back (stp->addr,
239 bfd_section_name (abfd, asect),
240 gdb_bfd_section_index (abfd, asect));
62557bbc
KB
241 }
242
243 return sap;
244}
245
82ccf5a5 246/* Create a section_addr_info from section offsets in ABFD. */
089b4803 247
37e136b1 248static section_addr_info
82ccf5a5 249build_section_addr_info_from_bfd (bfd *abfd)
089b4803 250{
089b4803
TG
251 struct bfd_section *sec;
252
37e136b1
TT
253 section_addr_info sap;
254 for (sec = abfd->sections; sec != NULL; sec = sec->next)
82ccf5a5 255 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
37e136b1
TT
256 sap.emplace_back (bfd_get_section_vma (abfd, sec),
257 bfd_get_section_name (abfd, sec),
258 gdb_bfd_section_index (abfd, sec));
d76488d8 259
089b4803
TG
260 return sap;
261}
262
82ccf5a5
JK
263/* Create a section_addr_info from section offsets in OBJFILE. */
264
37e136b1 265section_addr_info
82ccf5a5
JK
266build_section_addr_info_from_objfile (const struct objfile *objfile)
267{
82ccf5a5
JK
268 int i;
269
270 /* Before reread_symbols gets rewritten it is not safe to call:
271 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
272 */
37e136b1
TT
273 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
274 for (i = 0; i < sap.size (); i++)
82ccf5a5 275 {
37e136b1 276 int sectindex = sap[i].sectindex;
82ccf5a5 277
37e136b1 278 sap[i].addr += objfile->section_offsets->offsets[sectindex];
82ccf5a5
JK
279 }
280 return sap;
281}
62557bbc 282
e8289572 283/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 284
e8289572
JB
285static void
286init_objfile_sect_indices (struct objfile *objfile)
c906108c 287{
e8289572 288 asection *sect;
c906108c 289 int i;
5417f6dc 290
b8fbeb18 291 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 292 if (sect)
b8fbeb18
EZ
293 objfile->sect_index_text = sect->index;
294
295 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 296 if (sect)
b8fbeb18
EZ
297 objfile->sect_index_data = sect->index;
298
299 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 300 if (sect)
b8fbeb18
EZ
301 objfile->sect_index_bss = sect->index;
302
303 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 304 if (sect)
b8fbeb18
EZ
305 objfile->sect_index_rodata = sect->index;
306
bbcd32ad
FF
307 /* This is where things get really weird... We MUST have valid
308 indices for the various sect_index_* members or gdb will abort.
309 So if for example, there is no ".text" section, we have to
31d99776
DJ
310 accomodate that. First, check for a file with the standard
311 one or two segments. */
312
313 symfile_find_segment_sections (objfile);
314
315 /* Except when explicitly adding symbol files at some address,
316 section_offsets contains nothing but zeros, so it doesn't matter
317 which slot in section_offsets the individual sect_index_* members
318 index into. So if they are all zero, it is safe to just point
319 all the currently uninitialized indices to the first slot. But
320 beware: if this is the main executable, it may be relocated
321 later, e.g. by the remote qOffsets packet, and then this will
322 be wrong! That's why we try segments first. */
bbcd32ad
FF
323
324 for (i = 0; i < objfile->num_sections; i++)
325 {
326 if (ANOFFSET (objfile->section_offsets, i) != 0)
327 {
328 break;
329 }
330 }
331 if (i == objfile->num_sections)
332 {
333 if (objfile->sect_index_text == -1)
334 objfile->sect_index_text = 0;
335 if (objfile->sect_index_data == -1)
336 objfile->sect_index_data = 0;
337 if (objfile->sect_index_bss == -1)
338 objfile->sect_index_bss = 0;
339 if (objfile->sect_index_rodata == -1)
340 objfile->sect_index_rodata = 0;
341 }
b8fbeb18 342}
c906108c 343
c1bd25fd
DJ
344/* The arguments to place_section. */
345
346struct place_section_arg
347{
348 struct section_offsets *offsets;
349 CORE_ADDR lowest;
350};
351
352/* Find a unique offset to use for loadable section SECT if
353 the user did not provide an offset. */
354
2c0b251b 355static void
c1bd25fd
DJ
356place_section (bfd *abfd, asection *sect, void *obj)
357{
19ba03f4 358 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
359 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
360 int done;
3bd72c6f 361 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 362
2711e456
DJ
363 /* We are only interested in allocated sections. */
364 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
365 return;
366
367 /* If the user specified an offset, honor it. */
65cf3563 368 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
369 return;
370
371 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
372 start_addr = (arg->lowest + align - 1) & -align;
373
c1bd25fd
DJ
374 do {
375 asection *cur_sec;
c1bd25fd 376
c1bd25fd
DJ
377 done = 1;
378
379 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
380 {
381 int indx = cur_sec->index;
c1bd25fd
DJ
382
383 /* We don't need to compare against ourself. */
384 if (cur_sec == sect)
385 continue;
386
2711e456
DJ
387 /* We can only conflict with allocated sections. */
388 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
389 continue;
390
391 /* If the section offset is 0, either the section has not been placed
392 yet, or it was the lowest section placed (in which case LOWEST
393 will be past its end). */
394 if (offsets[indx] == 0)
395 continue;
396
397 /* If this section would overlap us, then we must move up. */
398 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
399 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
400 {
401 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
402 start_addr = (start_addr + align - 1) & -align;
403 done = 0;
3bd72c6f 404 break;
c1bd25fd
DJ
405 }
406
407 /* Otherwise, we appear to be OK. So far. */
408 }
409 }
410 while (!done);
411
65cf3563 412 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 413 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 414}
e8289572 415
4f7ae6f5 416/* Store section_addr_info as prepared (made relative and with SECTINDEX
75242ef4
JK
417 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
418 entries. */
e8289572
JB
419
420void
75242ef4
JK
421relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
422 int num_sections,
37e136b1 423 const section_addr_info &addrs)
e8289572
JB
424{
425 int i;
426
75242ef4 427 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 428
c378eb4e 429 /* Now calculate offsets for section that were specified by the caller. */
37e136b1 430 for (i = 0; i < addrs.size (); i++)
e8289572 431 {
3189cb12 432 const struct other_sections *osp;
e8289572 433
37e136b1 434 osp = &addrs[i];
5488dafb 435 if (osp->sectindex == -1)
e8289572
JB
436 continue;
437
c378eb4e 438 /* Record all sections in offsets. */
e8289572 439 /* The section_offsets in the objfile are here filled in using
c378eb4e 440 the BFD index. */
75242ef4
JK
441 section_offsets->offsets[osp->sectindex] = osp->addr;
442 }
443}
444
1276c759
JK
445/* Transform section name S for a name comparison. prelink can split section
446 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
447 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
448 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
449 (`.sbss') section has invalid (increased) virtual address. */
450
451static const char *
452addr_section_name (const char *s)
453{
454 if (strcmp (s, ".dynbss") == 0)
455 return ".bss";
456 if (strcmp (s, ".sdynbss") == 0)
457 return ".sbss";
458
459 return s;
460}
461
37e136b1
TT
462/* std::sort comparator for addrs_section_sort. Sort entries in
463 ascending order by their (name, sectindex) pair. sectindex makes
464 the sort by name stable. */
82ccf5a5 465
37e136b1
TT
466static bool
467addrs_section_compar (const struct other_sections *a,
468 const struct other_sections *b)
82ccf5a5 469{
22e048c9 470 int retval;
82ccf5a5 471
37e136b1
TT
472 retval = strcmp (addr_section_name (a->name.c_str ()),
473 addr_section_name (b->name.c_str ()));
474 if (retval != 0)
475 return retval < 0;
82ccf5a5 476
37e136b1 477 return a->sectindex < b->sectindex;
82ccf5a5
JK
478}
479
37e136b1 480/* Provide sorted array of pointers to sections of ADDRS. */
82ccf5a5 481
37e136b1
TT
482static std::vector<const struct other_sections *>
483addrs_section_sort (const section_addr_info &addrs)
82ccf5a5 484{
82ccf5a5
JK
485 int i;
486
37e136b1
TT
487 std::vector<const struct other_sections *> array (addrs.size ());
488 for (i = 0; i < addrs.size (); i++)
489 array[i] = &addrs[i];
82ccf5a5 490
37e136b1 491 std::sort (array.begin (), array.end (), addrs_section_compar);
82ccf5a5
JK
492
493 return array;
494}
495
75242ef4 496/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
497 also SECTINDEXes specific to ABFD there. This function can be used to
498 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
499
500void
37e136b1 501addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
75242ef4
JK
502{
503 asection *lower_sect;
75242ef4
JK
504 CORE_ADDR lower_offset;
505 int i;
506
507 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
508 continguous sections. */
509 lower_sect = NULL;
510 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
511 if (lower_sect == NULL)
512 {
513 warning (_("no loadable sections found in added symbol-file %s"),
514 bfd_get_filename (abfd));
515 lower_offset = 0;
e8289572 516 }
75242ef4
JK
517 else
518 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
519
82ccf5a5
JK
520 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
521 in ABFD. Section names are not unique - there can be multiple sections of
522 the same name. Also the sections of the same name do not have to be
523 adjacent to each other. Some sections may be present only in one of the
524 files. Even sections present in both files do not have to be in the same
525 order.
526
527 Use stable sort by name for the sections in both files. Then linearly
528 scan both lists matching as most of the entries as possible. */
529
37e136b1
TT
530 std::vector<const struct other_sections *> addrs_sorted
531 = addrs_section_sort (*addrs);
82ccf5a5 532
37e136b1
TT
533 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
534 std::vector<const struct other_sections *> abfd_addrs_sorted
535 = addrs_section_sort (abfd_addrs);
82ccf5a5 536
c378eb4e
MS
537 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
538 ABFD_ADDRS_SORTED. */
82ccf5a5 539
37e136b1
TT
540 std::vector<const struct other_sections *>
541 addrs_to_abfd_addrs (addrs->size (), nullptr);
82ccf5a5 542
37e136b1
TT
543 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
544 = abfd_addrs_sorted.begin ();
52941706 545 for (const other_sections *sect : addrs_sorted)
82ccf5a5 546 {
37e136b1 547 const char *sect_name = addr_section_name (sect->name.c_str ());
82ccf5a5 548
37e136b1
TT
549 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
550 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 551 sect_name) < 0)
37e136b1 552 abfd_sorted_iter++;
82ccf5a5 553
37e136b1
TT
554 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
555 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 556 sect_name) == 0)
82ccf5a5
JK
557 {
558 int index_in_addrs;
559
560 /* Make the found item directly addressable from ADDRS. */
37e136b1 561 index_in_addrs = sect - addrs->data ();
82ccf5a5 562 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
37e136b1 563 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
82ccf5a5
JK
564
565 /* Never use the same ABFD entry twice. */
37e136b1 566 abfd_sorted_iter++;
82ccf5a5 567 }
82ccf5a5
JK
568 }
569
75242ef4
JK
570 /* Calculate offsets for the loadable sections.
571 FIXME! Sections must be in order of increasing loadable section
572 so that contiguous sections can use the lower-offset!!!
573
574 Adjust offsets if the segments are not contiguous.
575 If the section is contiguous, its offset should be set to
576 the offset of the highest loadable section lower than it
577 (the loadable section directly below it in memory).
578 this_offset = lower_offset = lower_addr - lower_orig_addr */
579
37e136b1 580 for (i = 0; i < addrs->size (); i++)
75242ef4 581 {
37e136b1 582 const struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
583
584 if (sect)
75242ef4 585 {
c378eb4e 586 /* This is the index used by BFD. */
37e136b1 587 (*addrs)[i].sectindex = sect->sectindex;
672d9c23 588
37e136b1 589 if ((*addrs)[i].addr != 0)
75242ef4 590 {
37e136b1
TT
591 (*addrs)[i].addr -= sect->addr;
592 lower_offset = (*addrs)[i].addr;
75242ef4
JK
593 }
594 else
37e136b1 595 (*addrs)[i].addr = lower_offset;
75242ef4
JK
596 }
597 else
672d9c23 598 {
1276c759 599 /* addr_section_name transformation is not used for SECT_NAME. */
37e136b1 600 const std::string &sect_name = (*addrs)[i].name;
1276c759 601
b0fcb67f
JK
602 /* This section does not exist in ABFD, which is normally
603 unexpected and we want to issue a warning.
604
4d9743af
JK
605 However, the ELF prelinker does create a few sections which are
606 marked in the main executable as loadable (they are loaded in
607 memory from the DYNAMIC segment) and yet are not present in
608 separate debug info files. This is fine, and should not cause
609 a warning. Shared libraries contain just the section
610 ".gnu.liblist" but it is not marked as loadable there. There is
611 no other way to identify them than by their name as the sections
1276c759
JK
612 created by prelink have no special flags.
613
614 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f 615
37e136b1
TT
616 if (!(sect_name == ".gnu.liblist"
617 || sect_name == ".gnu.conflict"
618 || (sect_name == ".bss"
1276c759 619 && i > 0
37e136b1 620 && (*addrs)[i - 1].name == ".dynbss"
1276c759 621 && addrs_to_abfd_addrs[i - 1] != NULL)
37e136b1 622 || (sect_name == ".sbss"
1276c759 623 && i > 0
37e136b1 624 && (*addrs)[i - 1].name == ".sdynbss"
1276c759 625 && addrs_to_abfd_addrs[i - 1] != NULL)))
37e136b1 626 warning (_("section %s not found in %s"), sect_name.c_str (),
b0fcb67f
JK
627 bfd_get_filename (abfd));
628
37e136b1
TT
629 (*addrs)[i].addr = 0;
630 (*addrs)[i].sectindex = -1;
672d9c23 631 }
75242ef4
JK
632 }
633}
634
635/* Parse the user's idea of an offset for dynamic linking, into our idea
636 of how to represent it for fast symbol reading. This is the default
637 version of the sym_fns.sym_offsets function for symbol readers that
638 don't need to do anything special. It allocates a section_offsets table
639 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
640
641void
642default_symfile_offsets (struct objfile *objfile,
37e136b1 643 const section_addr_info &addrs)
75242ef4 644{
d445b2f6 645 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
646 objfile->section_offsets = (struct section_offsets *)
647 obstack_alloc (&objfile->objfile_obstack,
648 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
649 relative_addr_info_to_section_offsets (objfile->section_offsets,
650 objfile->num_sections, addrs);
e8289572 651
c1bd25fd
DJ
652 /* For relocatable files, all loadable sections will start at zero.
653 The zero is meaningless, so try to pick arbitrary addresses such
654 that no loadable sections overlap. This algorithm is quadratic,
655 but the number of sections in a single object file is generally
656 small. */
657 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
658 {
659 struct place_section_arg arg;
2711e456
DJ
660 bfd *abfd = objfile->obfd;
661 asection *cur_sec;
2711e456
DJ
662
663 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
664 /* We do not expect this to happen; just skip this step if the
665 relocatable file has a section with an assigned VMA. */
666 if (bfd_section_vma (abfd, cur_sec) != 0)
667 break;
668
669 if (cur_sec == NULL)
670 {
671 CORE_ADDR *offsets = objfile->section_offsets->offsets;
672
673 /* Pick non-overlapping offsets for sections the user did not
674 place explicitly. */
675 arg.offsets = objfile->section_offsets;
676 arg.lowest = 0;
677 bfd_map_over_sections (objfile->obfd, place_section, &arg);
678
679 /* Correctly filling in the section offsets is not quite
680 enough. Relocatable files have two properties that
681 (most) shared objects do not:
682
683 - Their debug information will contain relocations. Some
684 shared libraries do also, but many do not, so this can not
685 be assumed.
686
687 - If there are multiple code sections they will be loaded
688 at different relative addresses in memory than they are
689 in the objfile, since all sections in the file will start
690 at address zero.
691
692 Because GDB has very limited ability to map from an
693 address in debug info to the correct code section,
694 it relies on adding SECT_OFF_TEXT to things which might be
695 code. If we clear all the section offsets, and set the
696 section VMAs instead, then symfile_relocate_debug_section
697 will return meaningful debug information pointing at the
698 correct sections.
699
700 GDB has too many different data structures for section
701 addresses - a bfd, objfile, and so_list all have section
702 tables, as does exec_ops. Some of these could probably
703 be eliminated. */
704
705 for (cur_sec = abfd->sections; cur_sec != NULL;
706 cur_sec = cur_sec->next)
707 {
708 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
709 continue;
710
711 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
712 exec_set_section_address (bfd_get_filename (abfd),
713 cur_sec->index,
30510692 714 offsets[cur_sec->index]);
2711e456
DJ
715 offsets[cur_sec->index] = 0;
716 }
717 }
c1bd25fd
DJ
718 }
719
e8289572 720 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 721 .rodata sections. */
e8289572
JB
722 init_objfile_sect_indices (objfile);
723}
724
31d99776
DJ
725/* Divide the file into segments, which are individual relocatable units.
726 This is the default version of the sym_fns.sym_segments function for
727 symbol readers that do not have an explicit representation of segments.
728 It assumes that object files do not have segments, and fully linked
729 files have a single segment. */
730
731struct symfile_segment_data *
732default_symfile_segments (bfd *abfd)
733{
734 int num_sections, i;
735 asection *sect;
736 struct symfile_segment_data *data;
737 CORE_ADDR low, high;
738
739 /* Relocatable files contain enough information to position each
740 loadable section independently; they should not be relocated
741 in segments. */
742 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
743 return NULL;
744
745 /* Make sure there is at least one loadable section in the file. */
746 for (sect = abfd->sections; sect != NULL; sect = sect->next)
747 {
748 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
749 continue;
750
751 break;
752 }
753 if (sect == NULL)
754 return NULL;
755
756 low = bfd_get_section_vma (abfd, sect);
757 high = low + bfd_get_section_size (sect);
758
41bf6aca 759 data = XCNEW (struct symfile_segment_data);
31d99776 760 data->num_segments = 1;
fc270c35
TT
761 data->segment_bases = XCNEW (CORE_ADDR);
762 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
763
764 num_sections = bfd_count_sections (abfd);
fc270c35 765 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
766
767 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
768 {
769 CORE_ADDR vma;
770
771 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
772 continue;
773
774 vma = bfd_get_section_vma (abfd, sect);
775 if (vma < low)
776 low = vma;
777 if (vma + bfd_get_section_size (sect) > high)
778 high = vma + bfd_get_section_size (sect);
779
780 data->segment_info[i] = 1;
781 }
782
783 data->segment_bases[0] = low;
784 data->segment_sizes[0] = high - low;
785
786 return data;
787}
788
608e2dbb
TT
789/* This is a convenience function to call sym_read for OBJFILE and
790 possibly force the partial symbols to be read. */
791
792static void
b15cc25c 793read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
794{
795 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 796 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
797
798 /* find_separate_debug_file_in_section should be called only if there is
799 single binary with no existing separate debug info file. */
800 if (!objfile_has_partial_symbols (objfile)
801 && objfile->separate_debug_objfile == NULL
802 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 803 {
192b62ce 804 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
805
806 if (abfd != NULL)
24ba069a
JK
807 {
808 /* find_separate_debug_file_in_section uses the same filename for the
809 virtual section-as-bfd like the bfd filename containing the
810 section. Therefore use also non-canonical name form for the same
811 file containing the section. */
921222e2
TT
812 symbol_file_add_separate (abfd.get (),
813 bfd_get_filename (abfd.get ()),
814 add_flags | SYMFILE_NOT_FILENAME, objfile);
24ba069a 815 }
608e2dbb
TT
816 }
817 if ((add_flags & SYMFILE_NO_READ) == 0)
818 require_partial_symbols (objfile, 0);
819}
820
3d6e24f0
JB
821/* Initialize entry point information for this objfile. */
822
823static void
824init_entry_point_info (struct objfile *objfile)
825{
6ef55de7
TT
826 struct entry_info *ei = &objfile->per_bfd->ei;
827
828 if (ei->initialized)
829 return;
830 ei->initialized = 1;
831
3d6e24f0
JB
832 /* Save startup file's range of PC addresses to help blockframe.c
833 decide where the bottom of the stack is. */
834
835 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
836 {
837 /* Executable file -- record its entry point so we'll recognize
838 the startup file because it contains the entry point. */
6ef55de7
TT
839 ei->entry_point = bfd_get_start_address (objfile->obfd);
840 ei->entry_point_p = 1;
3d6e24f0
JB
841 }
842 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
843 && bfd_get_start_address (objfile->obfd) != 0)
844 {
845 /* Some shared libraries may have entry points set and be
846 runnable. There's no clear way to indicate this, so just check
847 for values other than zero. */
6ef55de7
TT
848 ei->entry_point = bfd_get_start_address (objfile->obfd);
849 ei->entry_point_p = 1;
3d6e24f0
JB
850 }
851 else
852 {
853 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 854 ei->entry_point_p = 0;
3d6e24f0
JB
855 }
856
6ef55de7 857 if (ei->entry_point_p)
3d6e24f0 858 {
53eddfa6 859 struct obj_section *osect;
6ef55de7 860 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 861 int found;
3d6e24f0
JB
862
863 /* Make certain that the address points at real code, and not a
864 function descriptor. */
865 entry_point
df6d5441 866 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0 867 entry_point,
8b88a78e 868 current_top_target ());
3d6e24f0
JB
869
870 /* Remove any ISA markers, so that this matches entries in the
871 symbol table. */
6ef55de7 872 ei->entry_point
df6d5441 873 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
874
875 found = 0;
876 ALL_OBJFILE_OSECTIONS (objfile, osect)
877 {
878 struct bfd_section *sect = osect->the_bfd_section;
879
880 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
881 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
882 + bfd_get_section_size (sect)))
883 {
6ef55de7 884 ei->the_bfd_section_index
53eddfa6
TT
885 = gdb_bfd_section_index (objfile->obfd, sect);
886 found = 1;
887 break;
888 }
889 }
890
891 if (!found)
6ef55de7 892 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
893 }
894}
895
c906108c
SS
896/* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
36e4d068
JB
899 This function does not set the OBJFILE's entry-point info.
900
96baa820
JM
901 OBJFILE is where the symbols are to be read from.
902
7e8580c1
JB
903 ADDRS is the list of section load addresses. If the user has given
904 an 'add-symbol-file' command, then this is the list of offsets and
905 addresses he or she provided as arguments to the command; or, if
906 we're handling a shared library, these are the actual addresses the
907 sections are loaded at, according to the inferior's dynamic linker
908 (as gleaned by GDB's shared library code). We convert each address
909 into an offset from the section VMA's as it appears in the object
910 file, and then call the file's sym_offsets function to convert this
911 into a format-specific offset table --- a `struct section_offsets'.
d81a3eaf
PT
912 The sectindex field is used to control the ordering of sections
913 with the same name. Upon return, it is updated to contain the
914 correspondig BFD section index, or -1 if the section was not found.
96baa820 915
7eedccfa
PP
916 ADD_FLAGS encodes verbosity level, whether this is main symbol or
917 an extra symbol file such as dynamically loaded code, and wether
918 breakpoint reset should be deferred. */
c906108c 919
36e4d068
JB
920static void
921syms_from_objfile_1 (struct objfile *objfile,
37e136b1 922 section_addr_info *addrs,
b15cc25c 923 symfile_add_flags add_flags)
c906108c 924{
37e136b1 925 section_addr_info local_addr;
c906108c 926 struct cleanup *old_chain;
7eedccfa 927 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 928
8fb8eb5c 929 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 930
75245b24 931 if (objfile->sf == NULL)
36e4d068
JB
932 {
933 /* No symbols to load, but we still need to make sure
934 that the section_offsets table is allocated. */
d445b2f6 935 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 936 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
937
938 objfile->num_sections = num_sections;
939 objfile->section_offsets
224c3ddb
SM
940 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
941 size);
36e4d068
JB
942 memset (objfile->section_offsets, 0, size);
943 return;
944 }
75245b24 945
c906108c
SS
946 /* Make sure that partially constructed symbol tables will be cleaned up
947 if an error occurs during symbol reading. */
ed2b3126
TT
948 old_chain = make_cleanup (null_cleanup, NULL);
949 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 950
6bf667bb
DE
951 /* If ADDRS is NULL, put together a dummy address list.
952 We now establish the convention that an addr of zero means
c378eb4e 953 no load address was specified. */
6bf667bb 954 if (! addrs)
37e136b1 955 addrs = &local_addr;
a39a16c4 956
c5aa993b 957 if (mainline)
c906108c
SS
958 {
959 /* We will modify the main symbol table, make sure that all its users
c5aa993b 960 will be cleaned up if an error occurs during symbol reading. */
74b7792f 961 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
962
963 /* Since no error yet, throw away the old symbol table. */
964
965 if (symfile_objfile != NULL)
966 {
9e86da07 967 delete symfile_objfile;
adb7f338 968 gdb_assert (symfile_objfile == NULL);
c906108c
SS
969 }
970
971 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
972 If the user wants to get rid of them, they should do "symbol-file"
973 without arguments first. Not sure this is the best behavior
974 (PR 2207). */
c906108c 975
c5aa993b 976 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
977 }
978
979 /* Convert addr into an offset rather than an absolute address.
980 We find the lowest address of a loaded segment in the objfile,
53a5351d 981 and assume that <addr> is where that got loaded.
c906108c 982
53a5351d
JM
983 We no longer warn if the lowest section is not a text segment (as
984 happens for the PA64 port. */
37e136b1 985 if (addrs->size () > 0)
75242ef4 986 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
987
988 /* Initialize symbol reading routines for this objfile, allow complaints to
989 appear for this new file, and record how verbose to be, then do the
c378eb4e 990 initial symbol reading for this file. */
c906108c 991
c5aa993b 992 (*objfile->sf->sym_init) (objfile);
5ca8c39f 993 clear_complaints ();
c906108c 994
37e136b1 995 (*objfile->sf->sym_offsets) (objfile, *addrs);
c906108c 996
608e2dbb 997 read_symbols (objfile, add_flags);
b11896a5 998
c906108c
SS
999 /* Discard cleanups as symbol reading was successful. */
1000
ed2b3126 1001 objfile_holder.release ();
c906108c 1002 discard_cleanups (old_chain);
c906108c
SS
1003}
1004
36e4d068
JB
1005/* Same as syms_from_objfile_1, but also initializes the objfile
1006 entry-point info. */
1007
6bf667bb 1008static void
36e4d068 1009syms_from_objfile (struct objfile *objfile,
37e136b1 1010 section_addr_info *addrs,
b15cc25c 1011 symfile_add_flags add_flags)
36e4d068 1012{
6bf667bb 1013 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1014 init_entry_point_info (objfile);
1015}
1016
c906108c
SS
1017/* Perform required actions after either reading in the initial
1018 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1019 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1020
e7d52ed3 1021static void
b15cc25c 1022finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1023{
c906108c 1024 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1025 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1026 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1027 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1028 {
1029 /* OK, make it the "real" symbol file. */
1030 symfile_objfile = objfile;
1031
c1e56572 1032 clear_symtab_users (add_flags);
c906108c 1033 }
7eedccfa 1034 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1035 {
69de3c6a 1036 breakpoint_re_set ();
c906108c
SS
1037 }
1038
1039 /* We're done reading the symbol file; finish off complaints. */
5ca8c39f 1040 clear_complaints ();
c906108c
SS
1041}
1042
1043/* Process a symbol file, as either the main file or as a dynamically
1044 loaded file.
1045
5417f6dc 1046 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1047 A new reference is acquired by this function.
7904e09f 1048
9e86da07 1049 For NAME description see the objfile constructor.
24ba069a 1050
7eedccfa
PP
1051 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1052 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1053
6bf667bb 1054 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1055 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1056
63524580
JK
1057 PARENT is the original objfile if ABFD is a separate debug info file.
1058 Otherwise PARENT is NULL.
1059
c906108c 1060 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1061 Upon failure, jumps back to command level (never returns). */
7eedccfa 1062
7904e09f 1063static struct objfile *
b15cc25c
PA
1064symbol_file_add_with_addrs (bfd *abfd, const char *name,
1065 symfile_add_flags add_flags,
37e136b1 1066 section_addr_info *addrs,
b15cc25c 1067 objfile_flags flags, struct objfile *parent)
c906108c
SS
1068{
1069 struct objfile *objfile;
7eedccfa 1070 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1071 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1072 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1073 && (readnow_symbol_files
1074 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1075
9291a0cd 1076 if (readnow_symbol_files)
b11896a5
TT
1077 {
1078 flags |= OBJF_READNOW;
1079 add_flags &= ~SYMFILE_NO_READ;
1080 }
97cbe998
SDJ
1081 else if (readnever_symbol_files
1082 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1083 {
1084 flags |= OBJF_READNEVER;
1085 add_flags |= SYMFILE_NO_READ;
1086 }
921222e2
TT
1087 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1088 flags |= OBJF_NOT_FILENAME;
9291a0cd 1089
5417f6dc
RM
1090 /* Give user a chance to burp if we'd be
1091 interactively wiping out any existing symbols. */
c906108c
SS
1092
1093 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1094 && mainline
c906108c 1095 && from_tty
9e2f0ad4 1096 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1097 error (_("Not confirmed."));
c906108c 1098
b15cc25c
PA
1099 if (mainline)
1100 flags |= OBJF_MAINLINE;
9e86da07 1101 objfile = new struct objfile (abfd, name, flags);
c906108c 1102
63524580
JK
1103 if (parent)
1104 add_separate_debug_objfile (objfile, parent);
1105
78a4a9b9
AC
1106 /* We either created a new mapped symbol table, mapped an existing
1107 symbol table file which has not had initial symbol reading
c378eb4e 1108 performed, or need to read an unmapped symbol table. */
b11896a5 1109 if (should_print)
c906108c 1110 {
769d7dc4
AC
1111 if (deprecated_pre_add_symbol_hook)
1112 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1113 else
47fd17cd
TT
1114 {
1115 puts_filtered (_("Reading symbols from "));
1116 fputs_styled (name, file_name_style.style (), gdb_stdout);
1117 puts_filtered ("...\n");
1118 }
c906108c 1119 }
6bf667bb 1120 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1121
1122 /* We now have at least a partial symbol table. Check to see if the
1123 user requested that all symbols be read on initial access via either
1124 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1125 all partial symbol tables for this objfile if so. */
c906108c 1126
9291a0cd 1127 if ((flags & OBJF_READNOW))
c906108c 1128 {
b11896a5 1129 if (should_print)
3453e7e4 1130 printf_filtered (_("Expanding full symbols from %s...\n"), name);
c906108c 1131
ccefe4c4
TT
1132 if (objfile->sf)
1133 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1134 }
1135
e79497a1
TT
1136 /* Note that we only print a message if we have no symbols and have
1137 no separate debug file. If there is a separate debug file which
1138 does not have symbols, we'll have emitted this message for that
1139 file, and so printing it twice is just redundant. */
1140 if (should_print && !objfile_has_symbols (objfile)
1141 && objfile->separate_debug_objfile == nullptr)
3453e7e4 1142 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
cb3c37b2 1143
b11896a5 1144 if (should_print)
c906108c 1145 {
769d7dc4
AC
1146 if (deprecated_post_add_symbol_hook)
1147 deprecated_post_add_symbol_hook ();
c906108c
SS
1148 }
1149
481d0f41
JB
1150 /* We print some messages regardless of whether 'from_tty ||
1151 info_verbose' is true, so make sure they go out at the right
1152 time. */
1153 gdb_flush (gdb_stdout);
1154
109f874e 1155 if (objfile->sf == NULL)
8caee43b 1156 {
76727919 1157 gdb::observers::new_objfile.notify (objfile);
c378eb4e 1158 return objfile; /* No symbols. */
8caee43b 1159 }
109f874e 1160
e7d52ed3 1161 finish_new_objfile (objfile, add_flags);
c906108c 1162
76727919 1163 gdb::observers::new_objfile.notify (objfile);
c906108c 1164
ce7d4522 1165 bfd_cache_close_all ();
c906108c
SS
1166 return (objfile);
1167}
1168
24ba069a 1169/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1170 see the objfile constructor. */
9cce227f
TG
1171
1172void
b15cc25c
PA
1173symbol_file_add_separate (bfd *bfd, const char *name,
1174 symfile_add_flags symfile_flags,
24ba069a 1175 struct objfile *objfile)
9cce227f 1176{
089b4803
TG
1177 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1178 because sections of BFD may not match sections of OBJFILE and because
1179 vma may have been modified by tools such as prelink. */
37e136b1 1180 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
9cce227f 1181
870f88f7 1182 symbol_file_add_with_addrs
37e136b1 1183 (bfd, name, symfile_flags, &sap,
9cce227f 1184 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1185 | OBJF_USERLOADED),
1186 objfile);
9cce227f 1187}
7904e09f 1188
eb4556d7
JB
1189/* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
6bf667bb 1191 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1192
eb4556d7 1193struct objfile *
b15cc25c
PA
1194symbol_file_add_from_bfd (bfd *abfd, const char *name,
1195 symfile_add_flags add_flags,
37e136b1 1196 section_addr_info *addrs,
b15cc25c 1197 objfile_flags flags, struct objfile *parent)
eb4556d7 1198{
24ba069a
JK
1199 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1200 parent);
eb4556d7
JB
1201}
1202
7904e09f 1203/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1204 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1205
7904e09f 1206struct objfile *
b15cc25c 1207symbol_file_add (const char *name, symfile_add_flags add_flags,
37e136b1 1208 section_addr_info *addrs, objfile_flags flags)
7904e09f 1209{
192b62ce 1210 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1211
192b62ce
TT
1212 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1213 flags, NULL);
7904e09f
JB
1214}
1215
d7db6da9
FN
1216/* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
5417f6dc 1223
1adeb98a 1224void
ecf45d2c 1225symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1226{
d4d429d5 1227 symbol_file_add_main_1 (args, add_flags, 0, 0);
d7db6da9
FN
1228}
1229
1230static void
ecf45d2c 1231symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 1232 objfile_flags flags, CORE_ADDR reloff)
d7db6da9 1233{
ecf45d2c 1234 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1235
d4d429d5
PT
1236 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1237 if (reloff != 0)
1238 objfile_rebase (objfile, reloff);
d7db6da9 1239
d7db6da9
FN
1240 /* Getting new symbols may change our opinion about
1241 what is frameless. */
1242 reinit_frame_cache ();
1243
b15cc25c 1244 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1245 set_initial_language ();
1adeb98a
FN
1246}
1247
1248void
1249symbol_file_clear (int from_tty)
1250{
1251 if ((have_full_symbols () || have_partial_symbols ())
1252 && from_tty
0430b0d6
AS
1253 && (symfile_objfile
1254 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1255 objfile_name (symfile_objfile))
0430b0d6 1256 : !query (_("Discard symbol table? "))))
8a3fe4f8 1257 error (_("Not confirmed."));
1adeb98a 1258
0133421a
JK
1259 /* solib descriptors may have handles to objfiles. Wipe them before their
1260 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1261 no_shared_libraries (NULL, from_tty);
1262
0133421a
JK
1263 free_all_objfiles ();
1264
adb7f338 1265 gdb_assert (symfile_objfile == NULL);
d10c338d 1266 if (from_tty)
22068491 1267 printf_filtered (_("No symbol file now.\n"));
1adeb98a
FN
1268}
1269
c4dcb155
SM
1270/* See symfile.h. */
1271
1272int separate_debug_file_debug = 0;
1273
5b5d99cf 1274static int
a8dbfd58 1275separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1276 struct objfile *parent_objfile)
5b5d99cf 1277{
904578ed
JK
1278 unsigned long file_crc;
1279 int file_crc_p;
32a0e547 1280 struct stat parent_stat, abfd_stat;
904578ed 1281 int verified_as_different;
32a0e547
JK
1282
1283 /* Find a separate debug info file as if symbols would be present in
1284 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1285 section can contain just the basename of PARENT_OBJFILE without any
1286 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1287 the separate debug infos with the same basename can exist. */
32a0e547 1288
a8dbfd58 1289 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1290 return 0;
5b5d99cf 1291
c4dcb155 1292 if (separate_debug_file_debug)
50794b45
SM
1293 {
1294 printf_filtered (_(" Trying %s..."), name.c_str ());
1295 gdb_flush (gdb_stdout);
1296 }
c4dcb155 1297
a8dbfd58 1298 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1299
192b62ce 1300 if (abfd == NULL)
50794b45
SM
1301 {
1302 if (separate_debug_file_debug)
1303 printf_filtered (_(" no, unable to open.\n"));
1304
1305 return 0;
1306 }
5b5d99cf 1307
0ba1096a 1308 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1309
1310 Some operating systems, e.g. Windows, do not provide a meaningful
1311 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1312 meaningful st_dev.) Files accessed from gdbservers that do not
1313 support the vFile:fstat packet will also have st_ino set to zero.
1314 Do not indicate a duplicate library in either case. While there
1315 is no guarantee that a system that provides meaningful inode
1316 numbers will never set st_ino to zero, this is merely an
1317 optimization, so we do not need to worry about false negatives. */
32a0e547 1318
192b62ce 1319 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1320 && abfd_stat.st_ino != 0
1321 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1322 {
904578ed
JK
1323 if (abfd_stat.st_dev == parent_stat.st_dev
1324 && abfd_stat.st_ino == parent_stat.st_ino)
50794b45
SM
1325 {
1326 if (separate_debug_file_debug)
1327 printf_filtered (_(" no, same file as the objfile.\n"));
1328
1329 return 0;
1330 }
904578ed 1331 verified_as_different = 1;
32a0e547 1332 }
904578ed
JK
1333 else
1334 verified_as_different = 0;
32a0e547 1335
192b62ce 1336 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1337
904578ed 1338 if (!file_crc_p)
50794b45
SM
1339 {
1340 if (separate_debug_file_debug)
1341 printf_filtered (_(" no, error computing CRC.\n"));
1342
1343 return 0;
1344 }
904578ed 1345
287ccc17
JK
1346 if (crc != file_crc)
1347 {
dccee2de
TT
1348 unsigned long parent_crc;
1349
0a93529c
GB
1350 /* If the files could not be verified as different with
1351 bfd_stat then we need to calculate the parent's CRC
1352 to verify whether the files are different or not. */
904578ed 1353
dccee2de 1354 if (!verified_as_different)
904578ed 1355 {
dccee2de 1356 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
50794b45
SM
1357 {
1358 if (separate_debug_file_debug)
1359 printf_filtered (_(" no, error computing CRC.\n"));
1360
1361 return 0;
1362 }
904578ed
JK
1363 }
1364
dccee2de 1365 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1366 warning (_("the debug information found in \"%s\""
1367 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1368 name.c_str (), objfile_name (parent_objfile));
904578ed 1369
50794b45
SM
1370 if (separate_debug_file_debug)
1371 printf_filtered (_(" no, CRC doesn't match.\n"));
1372
287ccc17
JK
1373 return 0;
1374 }
1375
50794b45
SM
1376 if (separate_debug_file_debug)
1377 printf_filtered (_(" yes!\n"));
1378
287ccc17 1379 return 1;
5b5d99cf
JB
1380}
1381
aa28a74e 1382char *debug_file_directory = NULL;
920d2a44
AC
1383static void
1384show_debug_file_directory (struct ui_file *file, int from_tty,
1385 struct cmd_list_element *c, const char *value)
1386{
3e43a32a
MS
1387 fprintf_filtered (file,
1388 _("The directory where separate debug "
1389 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1390 value);
1391}
5b5d99cf
JB
1392
1393#if ! defined (DEBUG_SUBDIRECTORY)
1394#define DEBUG_SUBDIRECTORY ".debug"
1395#endif
1396
1db33378
PP
1397/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1398 where the original file resides (may not be the same as
1399 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1400 looking for. CANON_DIR is the "realpath" form of DIR.
1401 DIR must contain a trailing '/'.
a8dbfd58
SM
1402 Returns the path of the file with separate debug info, or an empty
1403 string. */
1db33378 1404
a8dbfd58 1405static std::string
1db33378
PP
1406find_separate_debug_file (const char *dir,
1407 const char *canon_dir,
1408 const char *debuglink,
1409 unsigned long crc32, struct objfile *objfile)
9cce227f 1410{
c4dcb155 1411 if (separate_debug_file_debug)
22068491
TT
1412 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1413 "%s\n"), objfile_name (objfile));
c4dcb155 1414
5b5d99cf 1415 /* First try in the same directory as the original file. */
a8dbfd58
SM
1416 std::string debugfile = dir;
1417 debugfile += debuglink;
5b5d99cf 1418
32a0e547 1419 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1420 return debugfile;
5417f6dc 1421
5b5d99cf 1422 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1423 debugfile = dir;
1424 debugfile += DEBUG_SUBDIRECTORY;
1425 debugfile += "/";
1426 debugfile += debuglink;
5b5d99cf 1427
32a0e547 1428 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1429 return debugfile;
5417f6dc 1430
24ddea62 1431 /* Then try in the global debugfile directories.
f888f159 1432
24ddea62
JK
1433 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1434 cause "/..." lookups. */
5417f6dc 1435
5d36dfb9
AU
1436 bool target_prefix = startswith (dir, "target:");
1437 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
e80aaf61
SM
1438 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1439 = dirnames_to_char_ptr_vec (debug_file_directory);
24ddea62 1440
e80aaf61 1441 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1442 {
5d36dfb9
AU
1443 debugfile = target_prefix ? "target:" : "";
1444 debugfile += debugdir.get ();
a8dbfd58 1445 debugfile += "/";
5d36dfb9 1446 debugfile += dir_notarget;
a8dbfd58 1447 debugfile += debuglink;
aa28a74e 1448
32a0e547 1449 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1450 return debugfile;
24ddea62
JK
1451
1452 /* If the file is in the sysroot, try using its base path in the
1453 global debugfile directory. */
1db33378
PP
1454 if (canon_dir != NULL
1455 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1456 strlen (gdb_sysroot)) == 0
1db33378 1457 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1458 {
5d36dfb9
AU
1459 debugfile = target_prefix ? "target:" : "";
1460 debugfile += debugdir.get ();
a8dbfd58
SM
1461 debugfile += (canon_dir + strlen (gdb_sysroot));
1462 debugfile += "/";
1463 debugfile += debuglink;
24ddea62 1464
32a0e547 1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1466 return debugfile;
24ddea62 1467 }
aa28a74e 1468 }
f888f159 1469
a8dbfd58 1470 return std::string ();
1db33378
PP
1471}
1472
7edbb660 1473/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1474 If there were no directory separators in PATH, PATH will be empty
1475 string on return. */
1476
1477static void
1478terminate_after_last_dir_separator (char *path)
1479{
1480 int i;
1481
1482 /* Strip off the final filename part, leaving the directory name,
1483 followed by a slash. The directory can be relative or absolute. */
1484 for (i = strlen(path) - 1; i >= 0; i--)
1485 if (IS_DIR_SEPARATOR (path[i]))
1486 break;
1487
1488 /* If I is -1 then no directory is present there and DIR will be "". */
1489 path[i + 1] = '\0';
1490}
1491
1492/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1493 Returns pathname, or an empty string. */
1db33378 1494
a8dbfd58 1495std::string
1db33378
PP
1496find_separate_debug_file_by_debuglink (struct objfile *objfile)
1497{
1db33378 1498 unsigned long crc32;
1db33378 1499
5eae7aea
TT
1500 gdb::unique_xmalloc_ptr<char> debuglink
1501 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1502
1503 if (debuglink == NULL)
1504 {
1505 /* There's no separate debug info, hence there's no way we could
1506 load it => no warning. */
a8dbfd58 1507 return std::string ();
1db33378
PP
1508 }
1509
5eae7aea
TT
1510 std::string dir = objfile_name (objfile);
1511 terminate_after_last_dir_separator (&dir[0]);
1512 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1513
a8dbfd58
SM
1514 std::string debugfile
1515 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1516 debuglink.get (), crc32, objfile);
1db33378 1517
a8dbfd58 1518 if (debugfile.empty ())
1db33378 1519 {
1db33378
PP
1520 /* For PR gdb/9538, try again with realpath (if different from the
1521 original). */
1522
1523 struct stat st_buf;
1524
4262abfb
JK
1525 if (lstat (objfile_name (objfile), &st_buf) == 0
1526 && S_ISLNK (st_buf.st_mode))
1db33378 1527 {
5eae7aea
TT
1528 gdb::unique_xmalloc_ptr<char> symlink_dir
1529 (lrealpath (objfile_name (objfile)));
1db33378
PP
1530 if (symlink_dir != NULL)
1531 {
5eae7aea
TT
1532 terminate_after_last_dir_separator (symlink_dir.get ());
1533 if (dir != symlink_dir.get ())
1db33378
PP
1534 {
1535 /* Different directory, so try using it. */
5eae7aea
TT
1536 debugfile = find_separate_debug_file (symlink_dir.get (),
1537 symlink_dir.get (),
1538 debuglink.get (),
1db33378
PP
1539 crc32,
1540 objfile);
1541 }
1542 }
1543 }
1db33378 1544 }
aa28a74e 1545
25522fae 1546 return debugfile;
5b5d99cf
JB
1547}
1548
97cbe998
SDJ
1549/* Make sure that OBJF_{READNOW,READNEVER} are not set
1550 simultaneously. */
1551
1552static void
1553validate_readnow_readnever (objfile_flags flags)
1554{
1555 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1556 error (_("-readnow and -readnever cannot be used simultaneously"));
1557}
1558
c906108c
SS
1559/* This is the symbol-file command. Read the file, analyze its
1560 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1561 the command is rather bizarre:
1562
1563 1. The function buildargv implements various quoting conventions
1564 which are undocumented and have little or nothing in common with
1565 the way things are quoted (or not quoted) elsewhere in GDB.
1566
1567 2. Options are used, which are not generally used in GDB (perhaps
1568 "set mapped on", "set readnow on" would be better)
1569
1570 3. The order of options matters, which is contrary to GNU
c906108c
SS
1571 conventions (because it is confusing and inconvenient). */
1572
1573void
1d8b34a7 1574symbol_file_command (const char *args, int from_tty)
c906108c 1575{
c906108c
SS
1576 dont_repeat ();
1577
1578 if (args == NULL)
1579 {
1adeb98a 1580 symbol_file_clear (from_tty);
c906108c
SS
1581 }
1582 else
1583 {
b15cc25c 1584 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1585 symfile_add_flags add_flags = 0;
cb2f3a29 1586 char *name = NULL;
40fc416f 1587 bool stop_processing_options = false;
d4d429d5 1588 CORE_ADDR offset = 0;
40fc416f
SDJ
1589 int idx;
1590 char *arg;
cb2f3a29 1591
ecf45d2c
SL
1592 if (from_tty)
1593 add_flags |= SYMFILE_VERBOSE;
1594
773a1edc 1595 gdb_argv built_argv (args);
40fc416f 1596 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1597 {
40fc416f 1598 if (stop_processing_options || *arg != '-')
7f0f8ac8 1599 {
40fc416f
SDJ
1600 if (name == NULL)
1601 name = arg;
1602 else
1603 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1604 }
40fc416f
SDJ
1605 else if (strcmp (arg, "-readnow") == 0)
1606 flags |= OBJF_READNOW;
97cbe998
SDJ
1607 else if (strcmp (arg, "-readnever") == 0)
1608 flags |= OBJF_READNEVER;
d4d429d5
PT
1609 else if (strcmp (arg, "-o") == 0)
1610 {
1611 arg = built_argv[++idx];
1612 if (arg == NULL)
1613 error (_("Missing argument to -o"));
1614
1615 offset = parse_and_eval_address (arg);
1616 }
40fc416f
SDJ
1617 else if (strcmp (arg, "--") == 0)
1618 stop_processing_options = true;
1619 else
1620 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1621 }
1622
1623 if (name == NULL)
cb2f3a29 1624 error (_("no symbol file name was specified"));
40fc416f 1625
97cbe998
SDJ
1626 validate_readnow_readnever (flags);
1627
d4d429d5 1628 symbol_file_add_main_1 (name, add_flags, flags, offset);
c906108c
SS
1629 }
1630}
1631
1632/* Set the initial language.
1633
cb2f3a29
MK
1634 FIXME: A better solution would be to record the language in the
1635 psymtab when reading partial symbols, and then use it (if known) to
1636 set the language. This would be a win for formats that encode the
1637 language in an easily discoverable place, such as DWARF. For
1638 stabs, we can jump through hoops looking for specially named
1639 symbols or try to intuit the language from the specific type of
1640 stabs we find, but we can't do that until later when we read in
1641 full symbols. */
c906108c 1642
8b60591b 1643void
fba45db2 1644set_initial_language (void)
c906108c 1645{
9e6c82ad 1646 enum language lang = main_language ();
c906108c 1647
9e6c82ad 1648 if (lang == language_unknown)
01f8c46d 1649 {
bf6d8a91 1650 char *name = main_name ();
d12307c1 1651 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1652
bf6d8a91
TT
1653 if (sym != NULL)
1654 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1655 }
cb2f3a29 1656
ccefe4c4
TT
1657 if (lang == language_unknown)
1658 {
1659 /* Make C the default language */
1660 lang = language_c;
c906108c 1661 }
ccefe4c4
TT
1662
1663 set_language (lang);
1664 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1665}
1666
cb2f3a29
MK
1667/* Open the file specified by NAME and hand it off to BFD for
1668 preliminary analysis. Return a newly initialized bfd *, which
1669 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1670 absolute). In case of trouble, error() is called. */
c906108c 1671
192b62ce 1672gdb_bfd_ref_ptr
97a41605 1673symfile_bfd_open (const char *name)
c906108c 1674{
97a41605 1675 int desc = -1;
c906108c 1676
e0cc99a6 1677 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1678 if (!is_target_filename (name))
f1838a98 1679 {
ee0c3293 1680 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1681
97a41605
GB
1682 /* Look down path for it, allocate 2nd new malloc'd copy. */
1683 desc = openp (getenv ("PATH"),
1684 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1685 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1686#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1687 if (desc < 0)
1688 {
ee0c3293 1689 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1690
ee0c3293 1691 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1692 desc = openp (getenv ("PATH"),
1693 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1694 exename, O_RDONLY | O_BINARY, &absolute_name);
1695 }
c906108c 1696#endif
97a41605 1697 if (desc < 0)
ee0c3293 1698 perror_with_name (expanded_name.get ());
cb2f3a29 1699
e0cc99a6 1700 name = absolute_name.get ();
97a41605 1701 }
c906108c 1702
192b62ce
TT
1703 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1704 if (sym_bfd == NULL)
faab9922
JK
1705 error (_("`%s': can't open to read symbols: %s."), name,
1706 bfd_errmsg (bfd_get_error ()));
97a41605 1707
192b62ce
TT
1708 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1709 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1710
192b62ce
TT
1711 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1712 error (_("`%s': can't read symbols: %s."), name,
1713 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1714
1715 return sym_bfd;
c906108c
SS
1716}
1717
cb2f3a29
MK
1718/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1719 the section was not found. */
1720
0e931cf0 1721int
a121b7c1 1722get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1723{
1724 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1725
0e931cf0
JB
1726 if (sect)
1727 return sect->index;
1728 else
1729 return -1;
1730}
1731
c256e171
DE
1732/* Link SF into the global symtab_fns list.
1733 FLAVOUR is the file format that SF handles.
1734 Called on startup by the _initialize routine in each object file format
1735 reader, to register information about each format the reader is prepared
1736 to handle. */
c906108c
SS
1737
1738void
c256e171 1739add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1740{
905014d7 1741 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1742}
1743
cb2f3a29
MK
1744/* Initialize OBJFILE to read symbols from its associated BFD. It
1745 either returns or calls error(). The result is an initialized
1746 struct sym_fns in the objfile structure, that contains cached
1747 information about the symbol file. */
c906108c 1748
00b5771c 1749static const struct sym_fns *
31d99776 1750find_sym_fns (bfd *abfd)
c906108c 1751{
31d99776 1752 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1753
75245b24
MS
1754 if (our_flavour == bfd_target_srec_flavour
1755 || our_flavour == bfd_target_ihex_flavour
1756 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1757 return NULL; /* No symbols. */
75245b24 1758
905014d7
SM
1759 for (const registered_sym_fns &rsf : symtab_fns)
1760 if (our_flavour == rsf.sym_flavour)
1761 return rsf.sym_fns;
cb2f3a29 1762
8a3fe4f8 1763 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1764 bfd_get_target (abfd));
c906108c
SS
1765}
1766\f
cb2f3a29 1767
c906108c
SS
1768/* This function runs the load command of our current target. */
1769
1770static void
5fed81ff 1771load_command (const char *arg, int from_tty)
c906108c 1772{
e5cc9f32
JB
1773 dont_repeat ();
1774
4487aabf
PA
1775 /* The user might be reloading because the binary has changed. Take
1776 this opportunity to check. */
1777 reopen_exec_file ();
1778 reread_symbols ();
1779
b577b6af 1780 std::string temp;
c906108c 1781 if (arg == NULL)
1986bccd 1782 {
b577b6af 1783 const char *parg, *prev;
1986bccd 1784
b577b6af 1785 arg = get_exec_file (1);
1986bccd 1786
b577b6af
TT
1787 /* We may need to quote this string so buildargv can pull it
1788 apart. */
1789 prev = parg = arg;
1986bccd
AS
1790 while ((parg = strpbrk (parg, "\\\"'\t ")))
1791 {
b577b6af
TT
1792 temp.append (prev, parg - prev);
1793 prev = parg++;
1794 temp.push_back ('\\');
1986bccd 1795 }
b577b6af
TT
1796 /* If we have not copied anything yet, then we didn't see a
1797 character to quote, and we can just leave ARG unchanged. */
1798 if (!temp.empty ())
1986bccd 1799 {
b577b6af
TT
1800 temp.append (prev);
1801 arg = temp.c_str ();
1986bccd
AS
1802 }
1803 }
1804
c906108c 1805 target_load (arg, from_tty);
2889e661
JB
1806
1807 /* After re-loading the executable, we don't really know which
1808 overlays are mapped any more. */
1809 overlay_cache_invalid = 1;
c906108c
SS
1810}
1811
1812/* This version of "load" should be usable for any target. Currently
1813 it is just used for remote targets, not inftarg.c or core files,
1814 on the theory that only in that case is it useful.
1815
1816 Avoiding xmodem and the like seems like a win (a) because we don't have
1817 to worry about finding it, and (b) On VMS, fork() is very slow and so
1818 we don't want to run a subprocess. On the other hand, I'm not sure how
1819 performance compares. */
917317f4 1820
917317f4
JM
1821static int validate_download = 0;
1822
e4f9b4d5
MS
1823/* Callback service function for generic_load (bfd_map_over_sections). */
1824
1825static void
1826add_section_size_callback (bfd *abfd, asection *asec, void *data)
1827{
19ba03f4 1828 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1829
2c500098 1830 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1831}
1832
a76d924d 1833/* Opaque data for load_progress. */
55089490
TT
1834struct load_progress_data
1835{
a76d924d 1836 /* Cumulative data. */
55089490
TT
1837 unsigned long write_count = 0;
1838 unsigned long data_count = 0;
1839 bfd_size_type total_size = 0;
a76d924d
DJ
1840};
1841
1842/* Opaque data for load_progress for a single section. */
55089490
TT
1843struct load_progress_section_data
1844{
1845 load_progress_section_data (load_progress_data *cumulative_,
1846 const char *section_name_, ULONGEST section_size_,
1847 CORE_ADDR lma_, gdb_byte *buffer_)
1848 : cumulative (cumulative_), section_name (section_name_),
1849 section_size (section_size_), lma (lma_), buffer (buffer_)
1850 {}
1851
a76d924d 1852 struct load_progress_data *cumulative;
cf7a04e8 1853
a76d924d 1854 /* Per-section data. */
cf7a04e8 1855 const char *section_name;
55089490 1856 ULONGEST section_sent = 0;
cf7a04e8
DJ
1857 ULONGEST section_size;
1858 CORE_ADDR lma;
1859 gdb_byte *buffer;
e4f9b4d5
MS
1860};
1861
55089490
TT
1862/* Opaque data for load_section_callback. */
1863struct load_section_data
1864{
1865 load_section_data (load_progress_data *progress_data_)
1866 : progress_data (progress_data_)
1867 {}
1868
1869 ~load_section_data ()
1870 {
1871 for (auto &&request : requests)
1872 {
1873 xfree (request.data);
1874 delete ((load_progress_section_data *) request.baton);
1875 }
1876 }
1877
1878 CORE_ADDR load_offset = 0;
1879 struct load_progress_data *progress_data;
1880 std::vector<struct memory_write_request> requests;
1881};
1882
a76d924d 1883/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1884
1885static void
1886load_progress (ULONGEST bytes, void *untyped_arg)
1887{
19ba03f4
SM
1888 struct load_progress_section_data *args
1889 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1890 struct load_progress_data *totals;
1891
1892 if (args == NULL)
1893 /* Writing padding data. No easy way to get at the cumulative
1894 stats, so just ignore this. */
1895 return;
1896
1897 totals = args->cumulative;
1898
1899 if (bytes == 0 && args->section_sent == 0)
1900 {
1901 /* The write is just starting. Let the user know we've started
1902 this section. */
112e8700
SM
1903 current_uiout->message ("Loading section %s, size %s lma %s\n",
1904 args->section_name,
1905 hex_string (args->section_size),
1906 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1907 return;
1908 }
cf7a04e8
DJ
1909
1910 if (validate_download)
1911 {
1912 /* Broken memories and broken monitors manifest themselves here
1913 when bring new computers to life. This doubles already slow
1914 downloads. */
1915 /* NOTE: cagney/1999-10-18: A more efficient implementation
1916 might add a verify_memory() method to the target vector and
1917 then use that. remote.c could implement that method using
1918 the ``qCRC'' packet. */
0efef640 1919 gdb::byte_vector check (bytes);
cf7a04e8 1920
0efef640 1921 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1922 error (_("Download verify read failed at %s"),
f5656ead 1923 paddress (target_gdbarch (), args->lma));
0efef640 1924 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1925 error (_("Download verify compare failed at %s"),
f5656ead 1926 paddress (target_gdbarch (), args->lma));
cf7a04e8 1927 }
a76d924d 1928 totals->data_count += bytes;
cf7a04e8
DJ
1929 args->lma += bytes;
1930 args->buffer += bytes;
a76d924d 1931 totals->write_count += 1;
cf7a04e8 1932 args->section_sent += bytes;
522002f9 1933 if (check_quit_flag ()
cf7a04e8
DJ
1934 || (deprecated_ui_load_progress_hook != NULL
1935 && deprecated_ui_load_progress_hook (args->section_name,
1936 args->section_sent)))
1937 error (_("Canceled the download"));
1938
1939 if (deprecated_show_load_progress != NULL)
1940 deprecated_show_load_progress (args->section_name,
1941 args->section_sent,
1942 args->section_size,
a76d924d
DJ
1943 totals->data_count,
1944 totals->total_size);
cf7a04e8
DJ
1945}
1946
e4f9b4d5
MS
1947/* Callback service function for generic_load (bfd_map_over_sections). */
1948
1949static void
1950load_section_callback (bfd *abfd, asection *asec, void *data)
1951{
19ba03f4 1952 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1953 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1954 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1955
cf7a04e8
DJ
1956 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1957 return;
e4f9b4d5 1958
cf7a04e8
DJ
1959 if (size == 0)
1960 return;
e4f9b4d5 1961
55089490
TT
1962 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1963 ULONGEST end = begin + size;
1964 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 1965 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 1966
55089490
TT
1967 load_progress_section_data *section_data
1968 = new load_progress_section_data (args->progress_data, sect_name, size,
1969 begin, buffer);
cf7a04e8 1970
55089490 1971 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
1972}
1973
dcb07cfa
PA
1974static void print_transfer_performance (struct ui_file *stream,
1975 unsigned long data_count,
1976 unsigned long write_count,
1977 std::chrono::steady_clock::duration d);
1978
c906108c 1979void
9cbe5fff 1980generic_load (const char *args, int from_tty)
c906108c 1981{
a76d924d 1982 struct load_progress_data total_progress;
55089490 1983 struct load_section_data cbdata (&total_progress);
79a45e25 1984 struct ui_out *uiout = current_uiout;
a76d924d 1985
d1a41061
PP
1986 if (args == NULL)
1987 error_no_arg (_("file to load"));
1986bccd 1988
773a1edc 1989 gdb_argv argv (args);
1986bccd 1990
ee0c3293 1991 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
1992
1993 if (argv[1] != NULL)
917317f4 1994 {
f698ca8e 1995 const char *endptr;
ba5f2f8a 1996
f698ca8e 1997 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
1998
1999 /* If the last word was not a valid number then
2000 treat it as a file name with spaces in. */
2001 if (argv[1] == endptr)
2002 error (_("Invalid download offset:%s."), argv[1]);
2003
2004 if (argv[2] != NULL)
2005 error (_("Too many parameters."));
917317f4 2006 }
c906108c 2007
c378eb4e 2008 /* Open the file for loading. */
ee0c3293 2009 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2010 if (loadfile_bfd == NULL)
ee0c3293 2011 perror_with_name (filename.get ());
917317f4 2012
192b62ce 2013 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2014 {
ee0c3293 2015 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2016 bfd_errmsg (bfd_get_error ()));
2017 }
c5aa993b 2018
192b62ce 2019 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2020 (void *) &total_progress.total_size);
2021
192b62ce 2022 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2023
dcb07cfa
PA
2024 using namespace std::chrono;
2025
2026 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2027
a76d924d
DJ
2028 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2029 load_progress) != 0)
2030 error (_("Load failed"));
c906108c 2031
dcb07cfa 2032 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2033
55089490 2034 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2035 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2036 uiout->text ("Start address ");
2037 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2038 uiout->text (", load size ");
2039 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2040 uiout->text ("\n");
fb14de7b 2041 regcache_write_pc (get_current_regcache (), entry);
c906108c 2042
38963c97
DJ
2043 /* Reset breakpoints, now that we have changed the load image. For
2044 instance, breakpoints may have been set (or reset, by
2045 post_create_inferior) while connected to the target but before we
2046 loaded the program. In that case, the prologue analyzer could
2047 have read instructions from the target to find the right
2048 breakpoint locations. Loading has changed the contents of that
2049 memory. */
2050
2051 breakpoint_re_set ();
2052
a76d924d
DJ
2053 print_transfer_performance (gdb_stdout, total_progress.data_count,
2054 total_progress.write_count,
dcb07cfa 2055 end_time - start_time);
c906108c
SS
2056}
2057
dcb07cfa
PA
2058/* Report on STREAM the performance of a memory transfer operation,
2059 such as 'load'. DATA_COUNT is the number of bytes transferred.
2060 WRITE_COUNT is the number of separate write operations, or 0, if
2061 that information is not available. TIME is how long the operation
2062 lasted. */
c906108c 2063
dcb07cfa 2064static void
d9fcf2fb 2065print_transfer_performance (struct ui_file *stream,
917317f4
JM
2066 unsigned long data_count,
2067 unsigned long write_count,
dcb07cfa 2068 std::chrono::steady_clock::duration time)
917317f4 2069{
dcb07cfa 2070 using namespace std::chrono;
79a45e25 2071 struct ui_out *uiout = current_uiout;
2b71414d 2072
dcb07cfa 2073 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2074
112e8700 2075 uiout->text ("Transfer rate: ");
dcb07cfa 2076 if (ms.count () > 0)
8b93c638 2077 {
dcb07cfa 2078 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2079
112e8700 2080 if (uiout->is_mi_like_p ())
9f43d28c 2081 {
112e8700
SM
2082 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2083 uiout->text (" bits/sec");
9f43d28c
DJ
2084 }
2085 else if (rate < 1024)
2086 {
112e8700
SM
2087 uiout->field_fmt ("transfer-rate", "%lu", rate);
2088 uiout->text (" bytes/sec");
9f43d28c
DJ
2089 }
2090 else
2091 {
112e8700
SM
2092 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2093 uiout->text (" KB/sec");
9f43d28c 2094 }
8b93c638
JM
2095 }
2096 else
2097 {
112e8700
SM
2098 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2099 uiout->text (" bits in <1 sec");
8b93c638
JM
2100 }
2101 if (write_count > 0)
2102 {
112e8700
SM
2103 uiout->text (", ");
2104 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2105 uiout->text (" bytes/write");
8b93c638 2106 }
112e8700 2107 uiout->text (".\n");
c906108c
SS
2108}
2109
291f9a96
PT
2110/* Add an OFFSET to the start address of each section in OBJF, except
2111 sections that were specified in ADDRS. */
2112
2113static void
2114set_objfile_default_section_offset (struct objfile *objf,
2115 const section_addr_info &addrs,
2116 CORE_ADDR offset)
2117{
2118 /* Add OFFSET to all sections by default. */
2119 std::vector<struct section_offsets> offsets (objf->num_sections,
027a4c30 2120 { { offset } });
291f9a96
PT
2121
2122 /* Create sorted lists of all sections in ADDRS as well as all
2123 sections in OBJF. */
2124
2125 std::vector<const struct other_sections *> addrs_sorted
2126 = addrs_section_sort (addrs);
2127
2128 section_addr_info objf_addrs
2129 = build_section_addr_info_from_objfile (objf);
2130 std::vector<const struct other_sections *> objf_addrs_sorted
2131 = addrs_section_sort (objf_addrs);
2132
2133 /* Walk the BFD section list, and if a matching section is found in
2134 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2135 unchanged.
2136
2137 Note that both lists may contain multiple sections with the same
2138 name, and then the sections from ADDRS are matched in BFD order
2139 (thanks to sectindex). */
2140
2141 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2142 = addrs_sorted.begin ();
ff27d073 2143 for (const other_sections *objf_sect : objf_addrs_sorted)
291f9a96
PT
2144 {
2145 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2146 int cmp = -1;
2147
2148 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2149 {
2150 const struct other_sections *sect = *addrs_sorted_iter;
2151 const char *sect_name = addr_section_name (sect->name.c_str ());
2152 cmp = strcmp (sect_name, objf_name);
2153 if (cmp <= 0)
2154 ++addrs_sorted_iter;
2155 }
2156
2157 if (cmp == 0)
2158 offsets[objf_sect->sectindex].offsets[0] = 0;
2159 }
2160
2161 /* Apply the new section offsets. */
2162 objfile_relocate (objf, offsets.data ());
2163}
2164
c906108c
SS
2165/* This function allows the addition of incrementally linked object files.
2166 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2167/* Note: ezannoni 2000-04-13 This function/command used to have a
2168 special case syntax for the rombug target (Rombug is the boot
2169 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2170 rombug case, the user doesn't need to supply a text address,
2171 instead a call to target_link() (in target.c) would supply the
c378eb4e 2172 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2173
c906108c 2174static void
2cf311eb 2175add_symbol_file_command (const char *args, int from_tty)
c906108c 2176{
5af949e3 2177 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2178 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2179 char *arg;
2acceee2 2180 int argcnt = 0;
76ad5e1e 2181 struct objfile *objf;
b15cc25c
PA
2182 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2183 symfile_add_flags add_flags = 0;
2184
2185 if (from_tty)
2186 add_flags |= SYMFILE_VERBOSE;
db162d44 2187
a39a16c4 2188 struct sect_opt
2acceee2 2189 {
a121b7c1
PA
2190 const char *name;
2191 const char *value;
a39a16c4 2192 };
db162d44 2193
40fc416f
SDJ
2194 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2195 bool stop_processing_options = false;
291f9a96 2196 CORE_ADDR offset = 0;
c5aa993b 2197
c906108c
SS
2198 dont_repeat ();
2199
2200 if (args == NULL)
8a3fe4f8 2201 error (_("add-symbol-file takes a file name and an address"));
c906108c 2202
40fc416f 2203 bool seen_addr = false;
291f9a96 2204 bool seen_offset = false;
773a1edc 2205 gdb_argv argv (args);
db162d44 2206
5b96932b
AS
2207 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2208 {
40fc416f 2209 if (stop_processing_options || *arg != '-')
41dc8db8 2210 {
40fc416f 2211 if (filename == NULL)
41dc8db8 2212 {
40fc416f
SDJ
2213 /* First non-option argument is always the filename. */
2214 filename.reset (tilde_expand (arg));
41dc8db8 2215 }
40fc416f 2216 else if (!seen_addr)
41dc8db8 2217 {
40fc416f
SDJ
2218 /* The second non-option argument is always the text
2219 address at which to load the program. */
2220 sect_opts[0].value = arg;
2221 seen_addr = true;
41dc8db8
MB
2222 }
2223 else
02ca603a 2224 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2225 }
40fc416f
SDJ
2226 else if (strcmp (arg, "-readnow") == 0)
2227 flags |= OBJF_READNOW;
97cbe998
SDJ
2228 else if (strcmp (arg, "-readnever") == 0)
2229 flags |= OBJF_READNEVER;
40fc416f
SDJ
2230 else if (strcmp (arg, "-s") == 0)
2231 {
2232 if (argv[argcnt + 1] == NULL)
2233 error (_("Missing section name after \"-s\""));
2234 else if (argv[argcnt + 2] == NULL)
2235 error (_("Missing section address after \"-s\""));
2236
2237 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2238
2239 sect_opts.push_back (sect);
2240 argcnt += 2;
2241 }
291f9a96
PT
2242 else if (strcmp (arg, "-o") == 0)
2243 {
2244 arg = argv[++argcnt];
2245 if (arg == NULL)
2246 error (_("Missing argument to -o"));
2247
2248 offset = parse_and_eval_address (arg);
2249 seen_offset = true;
2250 }
40fc416f
SDJ
2251 else if (strcmp (arg, "--") == 0)
2252 stop_processing_options = true;
2253 else
2254 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2255 }
c906108c 2256
40fc416f
SDJ
2257 if (filename == NULL)
2258 error (_("You must provide a filename to be loaded."));
2259
97cbe998
SDJ
2260 validate_readnow_readnever (flags);
2261
c378eb4e 2262 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2263 a sect_addr_info structure to be passed around to other
2264 functions. We have to split this up into separate print
bb599908 2265 statements because hex_string returns a local static
c378eb4e 2266 string. */
5417f6dc 2267
ed6dfe51 2268 printf_unfiltered (_("add symbol table from file \"%s\""),
ee0c3293 2269 filename.get ());
37e136b1 2270 section_addr_info section_addrs;
ed6dfe51
PT
2271 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2272 if (!seen_addr)
2273 ++it;
2274 for (; it != sect_opts.end (); ++it)
c906108c 2275 {
db162d44 2276 CORE_ADDR addr;
ed6dfe51
PT
2277 const char *val = it->value;
2278 const char *sec = it->name;
5417f6dc 2279
ed6dfe51
PT
2280 if (section_addrs.empty ())
2281 printf_unfiltered (_(" at\n"));
ae822768 2282 addr = parse_and_eval_address (val);
db162d44 2283
db162d44 2284 /* Here we store the section offsets in the order they were
d81a3eaf
PT
2285 entered on the command line. Every array element is
2286 assigned an ascending section index to preserve the above
2287 order over an unstable sorting algorithm. This dummy
2288 index is not used for any other purpose.
2289 */
2290 section_addrs.emplace_back (addr, sec, section_addrs.size ());
22068491
TT
2291 printf_filtered ("\t%s_addr = %s\n", sec,
2292 paddress (gdbarch, addr));
db162d44 2293
5417f6dc 2294 /* The object's sections are initialized when a
db162d44 2295 call is made to build_objfile_section_table (objfile).
5417f6dc 2296 This happens in reread_symbols.
db162d44
EZ
2297 At this point, we don't know what file type this is,
2298 so we can't determine what section names are valid. */
2acceee2 2299 }
291f9a96
PT
2300 if (seen_offset)
2301 printf_unfiltered (_("%s offset by %s\n"),
2302 (section_addrs.empty ()
2303 ? _(" with all sections")
2304 : _("with other sections")),
2305 paddress (gdbarch, offset));
2306 else if (section_addrs.empty ())
ed6dfe51 2307 printf_unfiltered ("\n");
db162d44 2308
2acceee2 2309 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2310 error (_("Not confirmed."));
c906108c 2311
37e136b1
TT
2312 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2313 flags);
76ad5e1e 2314
291f9a96
PT
2315 if (seen_offset)
2316 set_objfile_default_section_offset (objf, section_addrs, offset);
2317
76ad5e1e 2318 add_target_sections_of_objfile (objf);
c906108c
SS
2319
2320 /* Getting new symbols may change our opinion about what is
2321 frameless. */
2322 reinit_frame_cache ();
2323}
2324\f
70992597 2325
63644780
NB
2326/* This function removes a symbol file that was added via add-symbol-file. */
2327
2328static void
2cf311eb 2329remove_symbol_file_command (const char *args, int from_tty)
63644780 2330{
63644780 2331 struct objfile *objf = NULL;
63644780 2332 struct program_space *pspace = current_program_space;
63644780
NB
2333
2334 dont_repeat ();
2335
2336 if (args == NULL)
2337 error (_("remove-symbol-file: no symbol file provided"));
2338
773a1edc 2339 gdb_argv argv (args);
63644780
NB
2340
2341 if (strcmp (argv[0], "-a") == 0)
2342 {
2343 /* Interpret the next argument as an address. */
2344 CORE_ADDR addr;
2345
2346 if (argv[1] == NULL)
2347 error (_("Missing address argument"));
2348
2349 if (argv[2] != NULL)
2350 error (_("Junk after %s"), argv[1]);
2351
2352 addr = parse_and_eval_address (argv[1]);
2353
2354 ALL_OBJFILES (objf)
2355 {
d03de421
PA
2356 if ((objf->flags & OBJF_USERLOADED) != 0
2357 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2358 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2359 break;
2360 }
2361 }
2362 else if (argv[0] != NULL)
2363 {
2364 /* Interpret the current argument as a file name. */
63644780
NB
2365
2366 if (argv[1] != NULL)
2367 error (_("Junk after %s"), argv[0]);
2368
ee0c3293 2369 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2370
2371 ALL_OBJFILES (objf)
2372 {
d03de421
PA
2373 if ((objf->flags & OBJF_USERLOADED) != 0
2374 && (objf->flags & OBJF_SHARED) != 0
63644780 2375 && objf->pspace == pspace
ee0c3293 2376 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2377 break;
2378 }
2379 }
2380
2381 if (objf == NULL)
2382 error (_("No symbol file found"));
2383
2384 if (from_tty
2385 && !query (_("Remove symbol table from file \"%s\"? "),
2386 objfile_name (objf)))
2387 error (_("Not confirmed."));
2388
9e86da07 2389 delete objf;
63644780 2390 clear_symtab_users (0);
63644780
NB
2391}
2392
c906108c 2393/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2394
c906108c 2395void
fba45db2 2396reread_symbols (void)
c906108c
SS
2397{
2398 struct objfile *objfile;
2399 long new_modtime;
c906108c
SS
2400 struct stat new_statbuf;
2401 int res;
4c404b8b 2402 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2403
2404 /* With the addition of shared libraries, this should be modified,
2405 the load time should be saved in the partial symbol tables, since
2406 different tables may come from different source files. FIXME.
2407 This routine should then walk down each partial symbol table
c378eb4e 2408 and see if the symbol table that it originates from has been changed. */
c906108c 2409
c5aa993b
JM
2410 for (objfile = object_files; objfile; objfile = objfile->next)
2411 {
9cce227f
TG
2412 if (objfile->obfd == NULL)
2413 continue;
2414
2415 /* Separate debug objfiles are handled in the main objfile. */
2416 if (objfile->separate_debug_objfile_backlink)
2417 continue;
2418
02aeec7b
JB
2419 /* If this object is from an archive (what you usually create with
2420 `ar', often called a `static library' on most systems, though
2421 a `shared library' on AIX is also an archive), then you should
2422 stat on the archive name, not member name. */
9cce227f
TG
2423 if (objfile->obfd->my_archive)
2424 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2425 else
4262abfb 2426 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2427 if (res != 0)
2428 {
c378eb4e 2429 /* FIXME, should use print_sys_errmsg but it's not filtered. */
22068491
TT
2430 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2431 objfile_name (objfile));
9cce227f
TG
2432 continue;
2433 }
2434 new_modtime = new_statbuf.st_mtime;
2435 if (new_modtime != objfile->mtime)
2436 {
2437 struct cleanup *old_cleanups;
2438 struct section_offsets *offsets;
2439 int num_offsets;
9cce227f 2440
22068491
TT
2441 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2442 objfile_name (objfile));
9cce227f
TG
2443
2444 /* There are various functions like symbol_file_add,
2445 symfile_bfd_open, syms_from_objfile, etc., which might
2446 appear to do what we want. But they have various other
2447 effects which we *don't* want. So we just do stuff
2448 ourselves. We don't worry about mapped files (for one thing,
2449 any mapped file will be out of date). */
2450
2451 /* If we get an error, blow away this objfile (not sure if
2452 that is the correct response for things like shared
2453 libraries). */
ed2b3126
TT
2454 std::unique_ptr<struct objfile> objfile_holder (objfile);
2455
9cce227f 2456 /* We need to do this whenever any symbols go away. */
ed2b3126 2457 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2458
0ba1096a
KT
2459 if (exec_bfd != NULL
2460 && filename_cmp (bfd_get_filename (objfile->obfd),
2461 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2462 {
2463 /* Reload EXEC_BFD without asking anything. */
2464
2465 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2466 }
2467
f6eeced0
JK
2468 /* Keep the calls order approx. the same as in free_objfile. */
2469
2470 /* Free the separate debug objfiles. It will be
2471 automatically recreated by sym_read. */
2472 free_objfile_separate_debug (objfile);
2473
2474 /* Remove any references to this objfile in the global
2475 value lists. */
2476 preserve_values (objfile);
2477
2478 /* Nuke all the state that we will re-read. Much of the following
2479 code which sets things to NULL really is necessary to tell
2480 other parts of GDB that there is nothing currently there.
2481
2482 Try to keep the freeing order compatible with free_objfile. */
2483
2484 if (objfile->sf != NULL)
2485 {
2486 (*objfile->sf->sym_finish) (objfile);
2487 }
2488
2489 clear_objfile_data (objfile);
2490
e1507e95 2491 /* Clean up any state BFD has sitting around. */
a4453b7e 2492 {
192b62ce 2493 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2494 char *obfd_filename;
a4453b7e
TT
2495
2496 obfd_filename = bfd_get_filename (objfile->obfd);
2497 /* Open the new BFD before freeing the old one, so that
2498 the filename remains live. */
192b62ce
TT
2499 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2500 objfile->obfd = temp.release ();
e1507e95 2501 if (objfile->obfd == NULL)
192b62ce 2502 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2503 }
2504
c0c9f665 2505 std::string original_name = objfile->original_name;
24ba069a 2506
9cce227f
TG
2507 /* bfd_openr sets cacheable to true, which is what we want. */
2508 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2509 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2510 bfd_errmsg (bfd_get_error ()));
2511
2512 /* Save the offsets, we will nuke them with the rest of the
2513 objfile_obstack. */
2514 num_offsets = objfile->num_sections;
2515 offsets = ((struct section_offsets *)
2516 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2517 memcpy (offsets, objfile->section_offsets,
2518 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2519
9cce227f
TG
2520 /* FIXME: Do we have to free a whole linked list, or is this
2521 enough? */
af5bf4ad
SM
2522 objfile->global_psymbols.clear ();
2523 objfile->static_psymbols.clear ();
9cce227f 2524
c378eb4e 2525 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2526 psymbol_bcache_free (objfile->psymbol_cache);
2527 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2528
2529 /* NB: after this call to obstack_free, objfiles_changed
2530 will need to be called (see discussion below). */
9cce227f
TG
2531 obstack_free (&objfile->objfile_obstack, 0);
2532 objfile->sections = NULL;
43f3e411 2533 objfile->compunit_symtabs = NULL;
9cce227f
TG
2534 objfile->psymtabs = NULL;
2535 objfile->psymtabs_addrmap = NULL;
2536 objfile->free_psymtabs = NULL;
34eaf542 2537 objfile->template_symbols = NULL;
22ad8107 2538 objfile->static_links = NULL;
9cce227f 2539
9cce227f
TG
2540 /* obstack_init also initializes the obstack so it is
2541 empty. We could use obstack_specify_allocation but
d82ea6a8 2542 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2543 obstack_init (&objfile->objfile_obstack);
779bd270 2544
846060df
JB
2545 /* set_objfile_per_bfd potentially allocates the per-bfd
2546 data on the objfile's obstack (if sharing data across
2547 multiple users is not possible), so it's important to
2548 do it *after* the obstack has been initialized. */
2549 set_objfile_per_bfd (objfile);
2550
224c3ddb 2551 objfile->original_name
c0c9f665
TT
2552 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2553 original_name.c_str (),
2554 original_name.size ());
24ba069a 2555
779bd270
DE
2556 /* Reset the sym_fns pointer. The ELF reader can change it
2557 based on whether .gdb_index is present, and we need it to
2558 start over. PR symtab/15885 */
8fb8eb5c 2559 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2560
d82ea6a8 2561 build_objfile_section_table (objfile);
9cce227f
TG
2562 terminate_minimal_symbol_table (objfile);
2563
2564 /* We use the same section offsets as from last time. I'm not
2565 sure whether that is always correct for shared libraries. */
2566 objfile->section_offsets = (struct section_offsets *)
2567 obstack_alloc (&objfile->objfile_obstack,
2568 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2569 memcpy (objfile->section_offsets, offsets,
2570 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2571 objfile->num_sections = num_offsets;
2572
2573 /* What the hell is sym_new_init for, anyway? The concept of
2574 distinguishing between the main file and additional files
2575 in this way seems rather dubious. */
2576 if (objfile == symfile_objfile)
c906108c 2577 {
9cce227f 2578 (*objfile->sf->sym_new_init) (objfile);
c906108c 2579 }
9cce227f
TG
2580
2581 (*objfile->sf->sym_init) (objfile);
5ca8c39f 2582 clear_complaints ();
608e2dbb
TT
2583
2584 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2585
2586 /* We are about to read new symbols and potentially also
2587 DWARF information. Some targets may want to pass addresses
2588 read from DWARF DIE's through an adjustment function before
2589 saving them, like MIPS, which may call into
2590 "find_pc_section". When called, that function will make
2591 use of per-objfile program space data.
2592
2593 Since we discarded our section information above, we have
2594 dangling pointers in the per-objfile program space data
2595 structure. Force GDB to update the section mapping
2596 information by letting it know the objfile has changed,
2597 making the dangling pointers point to correct data
2598 again. */
2599
2600 objfiles_changed ();
2601
608e2dbb 2602 read_symbols (objfile, 0);
b11896a5 2603
9cce227f 2604 if (!objfile_has_symbols (objfile))
c906108c 2605 {
9cce227f 2606 wrap_here ("");
22068491 2607 printf_filtered (_("(no debugging symbols found)\n"));
9cce227f 2608 wrap_here ("");
c5aa993b 2609 }
9cce227f
TG
2610
2611 /* We're done reading the symbol file; finish off complaints. */
5ca8c39f 2612 clear_complaints ();
9cce227f
TG
2613
2614 /* Getting new symbols may change our opinion about what is
2615 frameless. */
2616
2617 reinit_frame_cache ();
2618
2619 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2620 objfile_holder.release ();
9cce227f
TG
2621 discard_cleanups (old_cleanups);
2622
2623 /* If the mtime has changed between the time we set new_modtime
2624 and now, we *want* this to be out of date, so don't call stat
2625 again now. */
2626 objfile->mtime = new_modtime;
9cce227f 2627 init_entry_point_info (objfile);
4ac39b97 2628
4c404b8b 2629 new_objfiles.push_back (objfile);
c906108c
SS
2630 }
2631 }
c906108c 2632
4c404b8b 2633 if (!new_objfiles.empty ())
ea53e89f 2634 {
c1e56572 2635 clear_symtab_users (0);
4ac39b97
JK
2636
2637 /* clear_objfile_data for each objfile was called before freeing it and
76727919 2638 gdb::observers::new_objfile.notify (NULL) has been called by
4ac39b97 2639 clear_symtab_users above. Notify the new files now. */
4c404b8b 2640 for (auto iter : new_objfiles)
c486b610 2641 gdb::observers::new_objfile.notify (iter);
4ac39b97 2642
ea53e89f
JB
2643 /* At least one objfile has changed, so we can consider that
2644 the executable we're debugging has changed too. */
76727919 2645 gdb::observers::executable_changed.notify ();
ea53e89f 2646 }
c906108c 2647}
c906108c
SS
2648\f
2649
593e3209 2650struct filename_language
c5aa993b 2651{
593e3209
SM
2652 filename_language (const std::string &ext_, enum language lang_)
2653 : ext (ext_), lang (lang_)
2654 {}
3fcf0b0d 2655
593e3209
SM
2656 std::string ext;
2657 enum language lang;
2658};
c906108c 2659
593e3209 2660static std::vector<filename_language> filename_language_table;
c906108c 2661
56618e20
TT
2662/* See symfile.h. */
2663
2664void
2665add_filename_language (const char *ext, enum language lang)
c906108c 2666{
593e3209 2667 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2668}
2669
2670static char *ext_args;
920d2a44
AC
2671static void
2672show_ext_args (struct ui_file *file, int from_tty,
2673 struct cmd_list_element *c, const char *value)
2674{
3e43a32a
MS
2675 fprintf_filtered (file,
2676 _("Mapping between filename extension "
2677 "and source language is \"%s\".\n"),
920d2a44
AC
2678 value);
2679}
c906108c
SS
2680
2681static void
eb4c3f4a
TT
2682set_ext_lang_command (const char *args,
2683 int from_tty, struct cmd_list_element *e)
c906108c 2684{
c906108c
SS
2685 char *cp = ext_args;
2686 enum language lang;
2687
c378eb4e 2688 /* First arg is filename extension, starting with '.' */
c906108c 2689 if (*cp != '.')
8a3fe4f8 2690 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2691
2692 /* Find end of first arg. */
c5aa993b 2693 while (*cp && !isspace (*cp))
c906108c
SS
2694 cp++;
2695
2696 if (*cp == '\0')
3e43a32a
MS
2697 error (_("'%s': two arguments required -- "
2698 "filename extension and language"),
c906108c
SS
2699 ext_args);
2700
c378eb4e 2701 /* Null-terminate first arg. */
c5aa993b 2702 *cp++ = '\0';
c906108c
SS
2703
2704 /* Find beginning of second arg, which should be a source language. */
529480d0 2705 cp = skip_spaces (cp);
c906108c
SS
2706
2707 if (*cp == '\0')
3e43a32a
MS
2708 error (_("'%s': two arguments required -- "
2709 "filename extension and language"),
c906108c
SS
2710 ext_args);
2711
2712 /* Lookup the language from among those we know. */
2713 lang = language_enum (cp);
2714
593e3209 2715 auto it = filename_language_table.begin ();
c906108c 2716 /* Now lookup the filename extension: do we already know it? */
593e3209 2717 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2718 {
593e3209 2719 if (it->ext == ext_args)
3fcf0b0d
TT
2720 break;
2721 }
c906108c 2722
593e3209 2723 if (it == filename_language_table.end ())
c906108c 2724 {
c378eb4e 2725 /* New file extension. */
c906108c
SS
2726 add_filename_language (ext_args, lang);
2727 }
2728 else
2729 {
c378eb4e 2730 /* Redefining a previously known filename extension. */
c906108c
SS
2731
2732 /* if (from_tty) */
2733 /* query ("Really make files of type %s '%s'?", */
2734 /* ext_args, language_str (lang)); */
2735
593e3209 2736 it->lang = lang;
c906108c
SS
2737 }
2738}
2739
2740static void
1d12d88f 2741info_ext_lang_command (const char *args, int from_tty)
c906108c 2742{
a3f17187 2743 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2744 printf_filtered ("\n\n");
593e3209
SM
2745 for (const filename_language &entry : filename_language_table)
2746 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2747 language_str (entry.lang));
c906108c
SS
2748}
2749
c906108c 2750enum language
dd786858 2751deduce_language_from_filename (const char *filename)
c906108c 2752{
e6a959d6 2753 const char *cp;
c906108c
SS
2754
2755 if (filename != NULL)
2756 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2757 {
593e3209
SM
2758 for (const filename_language &entry : filename_language_table)
2759 if (entry.ext == cp)
2760 return entry.lang;
3fcf0b0d 2761 }
c906108c
SS
2762
2763 return language_unknown;
2764}
2765\f
43f3e411
DE
2766/* Allocate and initialize a new symbol table.
2767 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2768
2769struct symtab *
43f3e411 2770allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2771{
43f3e411
DE
2772 struct objfile *objfile = cust->objfile;
2773 struct symtab *symtab
2774 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2775
19ba03f4
SM
2776 symtab->filename
2777 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2778 objfile->per_bfd->filename_cache);
c5aa993b
JM
2779 symtab->fullname = NULL;
2780 symtab->language = deduce_language_from_filename (filename);
c906108c 2781
db0fec5c
DE
2782 /* This can be very verbose with lots of headers.
2783 Only print at higher debug levels. */
2784 if (symtab_create_debug >= 2)
45cfd468
DE
2785 {
2786 /* Be a bit clever with debugging messages, and don't print objfile
2787 every time, only when it changes. */
2788 static char *last_objfile_name = NULL;
2789
2790 if (last_objfile_name == NULL
4262abfb 2791 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2792 {
2793 xfree (last_objfile_name);
4262abfb 2794 last_objfile_name = xstrdup (objfile_name (objfile));
22068491
TT
2795 fprintf_filtered (gdb_stdlog,
2796 "Creating one or more symtabs for objfile %s ...\n",
2797 last_objfile_name);
45cfd468 2798 }
22068491
TT
2799 fprintf_filtered (gdb_stdlog,
2800 "Created symtab %s for module %s.\n",
2801 host_address_to_string (symtab), filename);
45cfd468
DE
2802 }
2803
43f3e411
DE
2804 /* Add it to CUST's list of symtabs. */
2805 if (cust->filetabs == NULL)
2806 {
2807 cust->filetabs = symtab;
2808 cust->last_filetab = symtab;
2809 }
2810 else
2811 {
2812 cust->last_filetab->next = symtab;
2813 cust->last_filetab = symtab;
2814 }
2815
2816 /* Backlink to the containing compunit symtab. */
2817 symtab->compunit_symtab = cust;
2818
2819 return symtab;
2820}
2821
2822/* Allocate and initialize a new compunit.
2823 NAME is the name of the main source file, if there is one, or some
2824 descriptive text if there are no source files. */
2825
2826struct compunit_symtab *
2827allocate_compunit_symtab (struct objfile *objfile, const char *name)
2828{
2829 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2830 struct compunit_symtab);
2831 const char *saved_name;
2832
2833 cu->objfile = objfile;
2834
2835 /* The name we record here is only for display/debugging purposes.
2836 Just save the basename to avoid path issues (too long for display,
2837 relative vs absolute, etc.). */
2838 saved_name = lbasename (name);
224c3ddb
SM
2839 cu->name
2840 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2841 strlen (saved_name));
43f3e411
DE
2842
2843 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2844
2845 if (symtab_create_debug)
2846 {
22068491
TT
2847 fprintf_filtered (gdb_stdlog,
2848 "Created compunit symtab %s for %s.\n",
2849 host_address_to_string (cu),
2850 cu->name);
43f3e411
DE
2851 }
2852
2853 return cu;
2854}
2855
2856/* Hook CU to the objfile it comes from. */
2857
2858void
2859add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2860{
2861 cu->next = cu->objfile->compunit_symtabs;
2862 cu->objfile->compunit_symtabs = cu;
c906108c 2863}
c906108c 2864\f
c5aa993b 2865
b15cc25c
PA
2866/* Reset all data structures in gdb which may contain references to
2867 symbol table data. */
c906108c
SS
2868
2869void
b15cc25c 2870clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2871{
2872 /* Someday, we should do better than this, by only blowing away
2873 the things that really need to be blown. */
c0501be5
DJ
2874
2875 /* Clear the "current" symtab first, because it is no longer valid.
2876 breakpoint_re_set may try to access the current symtab. */
2877 clear_current_source_symtab_and_line ();
2878
c906108c 2879 clear_displays ();
1bfeeb0f 2880 clear_last_displayed_sal ();
c906108c 2881 clear_pc_function_cache ();
76727919 2882 gdb::observers::new_objfile.notify (NULL);
9bdcbae7
DJ
2883
2884 /* Clear globals which might have pointed into a removed objfile.
2885 FIXME: It's not clear which of these are supposed to persist
2886 between expressions and which ought to be reset each time. */
2887 expression_context_block = NULL;
aee1fcdf 2888 innermost_block.reset ();
8756216b
DP
2889
2890 /* Varobj may refer to old symbols, perform a cleanup. */
2891 varobj_invalidate ();
2892
e700d1b2
JB
2893 /* Now that the various caches have been cleared, we can re_set
2894 our breakpoints without risking it using stale data. */
2895 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2896 breakpoint_re_set ();
c906108c
SS
2897}
2898
74b7792f
AC
2899static void
2900clear_symtab_users_cleanup (void *ignore)
2901{
c1e56572 2902 clear_symtab_users (0);
74b7792f 2903}
c906108c 2904\f
c906108c
SS
2905/* OVERLAYS:
2906 The following code implements an abstraction for debugging overlay sections.
2907
2908 The target model is as follows:
2909 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2910 same VMA, each with its own unique LMA (or load address).
c906108c 2911 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2912 sections, one by one, from the load address into the VMA address.
5417f6dc 2913 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2914 sections should be considered to be mapped from the VMA to the LMA.
2915 This information is used for symbol lookup, and memory read/write.
5417f6dc 2916 For instance, if a section has been mapped then its contents
c5aa993b 2917 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2918
2919 Two levels of debugger support for overlays are available. One is
2920 "manual", in which the debugger relies on the user to tell it which
2921 overlays are currently mapped. This level of support is
2922 implemented entirely in the core debugger, and the information about
2923 whether a section is mapped is kept in the objfile->obj_section table.
2924
2925 The second level of support is "automatic", and is only available if
2926 the target-specific code provides functionality to read the target's
2927 overlay mapping table, and translate its contents for the debugger
2928 (by updating the mapped state information in the obj_section tables).
2929
2930 The interface is as follows:
c5aa993b
JM
2931 User commands:
2932 overlay map <name> -- tell gdb to consider this section mapped
2933 overlay unmap <name> -- tell gdb to consider this section unmapped
2934 overlay list -- list the sections that GDB thinks are mapped
2935 overlay read-target -- get the target's state of what's mapped
2936 overlay off/manual/auto -- set overlay debugging state
2937 Functional interface:
2938 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2939 section, return that section.
5417f6dc 2940 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2941 the pc, either in its VMA or its LMA
714835d5 2942 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2943 section_is_overlay(sect): true if section's VMA != LMA
2944 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2945 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2946 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2947 overlay_mapped_address(...): map an address from section's LMA to VMA
2948 overlay_unmapped_address(...): map an address from section's VMA to LMA
2949 symbol_overlayed_address(...): Return a "current" address for symbol:
2950 either in VMA or LMA depending on whether
c378eb4e 2951 the symbol's section is currently mapped. */
c906108c
SS
2952
2953/* Overlay debugging state: */
2954
d874f1e2 2955enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2956int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2957
c906108c 2958/* Function: section_is_overlay (SECTION)
5417f6dc 2959 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2960 SECTION is loaded at an address different from where it will "run". */
2961
2962int
714835d5 2963section_is_overlay (struct obj_section *section)
c906108c 2964{
714835d5
UW
2965 if (overlay_debugging && section)
2966 {
714835d5 2967 asection *bfd_section = section->the_bfd_section;
f888f159 2968
714835d5
UW
2969 if (bfd_section_lma (abfd, bfd_section) != 0
2970 && bfd_section_lma (abfd, bfd_section)
2971 != bfd_section_vma (abfd, bfd_section))
2972 return 1;
2973 }
c906108c
SS
2974
2975 return 0;
2976}
2977
2978/* Function: overlay_invalidate_all (void)
2979 Invalidate the mapped state of all overlay sections (mark it as stale). */
2980
2981static void
fba45db2 2982overlay_invalidate_all (void)
c906108c 2983{
c5aa993b 2984 struct objfile *objfile;
c906108c
SS
2985 struct obj_section *sect;
2986
2987 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2988 if (section_is_overlay (sect))
2989 sect->ovly_mapped = -1;
c906108c
SS
2990}
2991
714835d5 2992/* Function: section_is_mapped (SECTION)
5417f6dc 2993 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2994
2995 Access to the ovly_mapped flag is restricted to this function, so
2996 that we can do automatic update. If the global flag
2997 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2998 overlay_invalidate_all. If the mapped state of the particular
2999 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3000
714835d5
UW
3001int
3002section_is_mapped (struct obj_section *osect)
c906108c 3003{
9216df95
UW
3004 struct gdbarch *gdbarch;
3005
714835d5 3006 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3007 return 0;
3008
c5aa993b 3009 switch (overlay_debugging)
c906108c
SS
3010 {
3011 default:
d874f1e2 3012 case ovly_off:
c5aa993b 3013 return 0; /* overlay debugging off */
d874f1e2 3014 case ovly_auto: /* overlay debugging automatic */
1c772458 3015 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3016 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3017 gdbarch = get_objfile_arch (osect->objfile);
3018 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3019 {
3020 if (overlay_cache_invalid)
3021 {
3022 overlay_invalidate_all ();
3023 overlay_cache_invalid = 0;
3024 }
3025 if (osect->ovly_mapped == -1)
9216df95 3026 gdbarch_overlay_update (gdbarch, osect);
c906108c 3027 }
86a73007 3028 /* fall thru */
d874f1e2 3029 case ovly_on: /* overlay debugging manual */
c906108c
SS
3030 return osect->ovly_mapped == 1;
3031 }
3032}
3033
c906108c
SS
3034/* Function: pc_in_unmapped_range
3035 If PC falls into the lma range of SECTION, return true, else false. */
3036
3037CORE_ADDR
714835d5 3038pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3039{
714835d5
UW
3040 if (section_is_overlay (section))
3041 {
3042 bfd *abfd = section->objfile->obfd;
3043 asection *bfd_section = section->the_bfd_section;
fbd35540 3044
714835d5
UW
3045 /* We assume the LMA is relocated by the same offset as the VMA. */
3046 bfd_vma size = bfd_get_section_size (bfd_section);
3047 CORE_ADDR offset = obj_section_offset (section);
3048
3049 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3050 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3051 return 1;
3052 }
c906108c 3053
c906108c
SS
3054 return 0;
3055}
3056
3057/* Function: pc_in_mapped_range
3058 If PC falls into the vma range of SECTION, return true, else false. */
3059
3060CORE_ADDR
714835d5 3061pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3062{
714835d5
UW
3063 if (section_is_overlay (section))
3064 {
3065 if (obj_section_addr (section) <= pc
3066 && pc < obj_section_endaddr (section))
3067 return 1;
3068 }
c906108c 3069
c906108c
SS
3070 return 0;
3071}
3072
9ec8e6a0
JB
3073/* Return true if the mapped ranges of sections A and B overlap, false
3074 otherwise. */
3b7bacac 3075
b9362cc7 3076static int
714835d5 3077sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3078{
714835d5
UW
3079 CORE_ADDR a_start = obj_section_addr (a);
3080 CORE_ADDR a_end = obj_section_endaddr (a);
3081 CORE_ADDR b_start = obj_section_addr (b);
3082 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3083
3084 return (a_start < b_end && b_start < a_end);
3085}
3086
c906108c
SS
3087/* Function: overlay_unmapped_address (PC, SECTION)
3088 Returns the address corresponding to PC in the unmapped (load) range.
3089 May be the same as PC. */
3090
3091CORE_ADDR
714835d5 3092overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3093{
714835d5
UW
3094 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3095 {
714835d5 3096 asection *bfd_section = section->the_bfd_section;
fbd35540 3097
714835d5
UW
3098 return pc + bfd_section_lma (abfd, bfd_section)
3099 - bfd_section_vma (abfd, bfd_section);
3100 }
c906108c
SS
3101
3102 return pc;
3103}
3104
3105/* Function: overlay_mapped_address (PC, SECTION)
3106 Returns the address corresponding to PC in the mapped (runtime) range.
3107 May be the same as PC. */
3108
3109CORE_ADDR
714835d5 3110overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3111{
714835d5
UW
3112 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3113 {
714835d5 3114 asection *bfd_section = section->the_bfd_section;
fbd35540 3115
714835d5
UW
3116 return pc + bfd_section_vma (abfd, bfd_section)
3117 - bfd_section_lma (abfd, bfd_section);
3118 }
c906108c
SS
3119
3120 return pc;
3121}
3122
5417f6dc 3123/* Function: symbol_overlayed_address
c906108c
SS
3124 Return one of two addresses (relative to the VMA or to the LMA),
3125 depending on whether the section is mapped or not. */
3126
c5aa993b 3127CORE_ADDR
714835d5 3128symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3129{
3130 if (overlay_debugging)
3131 {
c378eb4e 3132 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3133 if (section == 0)
3134 return address;
c378eb4e
MS
3135 /* If the symbol's section is not an overlay, just return its
3136 address. */
c906108c
SS
3137 if (!section_is_overlay (section))
3138 return address;
c378eb4e 3139 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3140 if (section_is_mapped (section))
3141 return address;
3142 /*
3143 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3144 * then return its LOADED address rather than its vma address!!
3145 */
3146 return overlay_unmapped_address (address, section);
3147 }
3148 return address;
3149}
3150
5417f6dc 3151/* Function: find_pc_overlay (PC)
c906108c
SS
3152 Return the best-match overlay section for PC:
3153 If PC matches a mapped overlay section's VMA, return that section.
3154 Else if PC matches an unmapped section's VMA, return that section.
3155 Else if PC matches an unmapped section's LMA, return that section. */
3156
714835d5 3157struct obj_section *
fba45db2 3158find_pc_overlay (CORE_ADDR pc)
c906108c 3159{
c5aa993b 3160 struct objfile *objfile;
c906108c
SS
3161 struct obj_section *osect, *best_match = NULL;
3162
3163 if (overlay_debugging)
b631e59b
KT
3164 {
3165 ALL_OBJSECTIONS (objfile, osect)
3166 if (section_is_overlay (osect))
c5aa993b 3167 {
b631e59b
KT
3168 if (pc_in_mapped_range (pc, osect))
3169 {
3170 if (section_is_mapped (osect))
3171 return osect;
3172 else
3173 best_match = osect;
3174 }
3175 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3176 best_match = osect;
3177 }
b631e59b 3178 }
714835d5 3179 return best_match;
c906108c
SS
3180}
3181
3182/* Function: find_pc_mapped_section (PC)
5417f6dc 3183 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3184 currently marked as MAPPED, return that section. Else return NULL. */
3185
714835d5 3186struct obj_section *
fba45db2 3187find_pc_mapped_section (CORE_ADDR pc)
c906108c 3188{
c5aa993b 3189 struct objfile *objfile;
c906108c
SS
3190 struct obj_section *osect;
3191
3192 if (overlay_debugging)
b631e59b
KT
3193 {
3194 ALL_OBJSECTIONS (objfile, osect)
3195 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3196 return osect;
3197 }
c906108c
SS
3198
3199 return NULL;
3200}
3201
3202/* Function: list_overlays_command
c378eb4e 3203 Print a list of mapped sections and their PC ranges. */
c906108c 3204
5d3055ad 3205static void
2cf311eb 3206list_overlays_command (const char *args, int from_tty)
c906108c 3207{
c5aa993b
JM
3208 int nmapped = 0;
3209 struct objfile *objfile;
c906108c
SS
3210 struct obj_section *osect;
3211
3212 if (overlay_debugging)
b631e59b
KT
3213 {
3214 ALL_OBJSECTIONS (objfile, osect)
714835d5 3215 if (section_is_mapped (osect))
b631e59b
KT
3216 {
3217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3218 const char *name;
3219 bfd_vma lma, vma;
3220 int size;
3221
3222 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3223 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3224 size = bfd_get_section_size (osect->the_bfd_section);
3225 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3226
3227 printf_filtered ("Section %s, loaded at ", name);
3228 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3229 puts_filtered (" - ");
3230 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3231 printf_filtered (", mapped at ");
3232 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3233 puts_filtered (" - ");
3234 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3235 puts_filtered ("\n");
3236
3237 nmapped++;
3238 }
3239 }
c906108c 3240 if (nmapped == 0)
a3f17187 3241 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3242}
3243
3244/* Function: map_overlay_command
3245 Mark the named section as mapped (ie. residing at its VMA address). */
3246
5d3055ad 3247static void
2cf311eb 3248map_overlay_command (const char *args, int from_tty)
c906108c 3249{
c5aa993b
JM
3250 struct objfile *objfile, *objfile2;
3251 struct obj_section *sec, *sec2;
c906108c
SS
3252
3253 if (!overlay_debugging)
3e43a32a
MS
3254 error (_("Overlay debugging not enabled. Use "
3255 "either the 'overlay auto' or\n"
3256 "the 'overlay manual' command."));
c906108c
SS
3257
3258 if (args == 0 || *args == 0)
8a3fe4f8 3259 error (_("Argument required: name of an overlay section"));
c906108c 3260
c378eb4e 3261 /* First, find a section matching the user supplied argument. */
c906108c
SS
3262 ALL_OBJSECTIONS (objfile, sec)
3263 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3264 {
c378eb4e 3265 /* Now, check to see if the section is an overlay. */
714835d5 3266 if (!section_is_overlay (sec))
c5aa993b
JM
3267 continue; /* not an overlay section */
3268
c378eb4e 3269 /* Mark the overlay as "mapped". */
c5aa993b
JM
3270 sec->ovly_mapped = 1;
3271
3272 /* Next, make a pass and unmap any sections that are
3273 overlapped by this new section: */
3274 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3275 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3276 {
3277 if (info_verbose)
a3f17187 3278 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3279 bfd_section_name (objfile->obfd,
3280 sec2->the_bfd_section));
c378eb4e 3281 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3282 }
3283 return;
3284 }
8a3fe4f8 3285 error (_("No overlay section called %s"), args);
c906108c
SS
3286}
3287
3288/* Function: unmap_overlay_command
5417f6dc 3289 Mark the overlay section as unmapped
c906108c
SS
3290 (ie. resident in its LMA address range, rather than the VMA range). */
3291
5d3055ad 3292static void
2cf311eb 3293unmap_overlay_command (const char *args, int from_tty)
c906108c 3294{
c5aa993b 3295 struct objfile *objfile;
7a270e0c 3296 struct obj_section *sec = NULL;
c906108c
SS
3297
3298 if (!overlay_debugging)
3e43a32a
MS
3299 error (_("Overlay debugging not enabled. "
3300 "Use either the 'overlay auto' or\n"
3301 "the 'overlay manual' command."));
c906108c
SS
3302
3303 if (args == 0 || *args == 0)
8a3fe4f8 3304 error (_("Argument required: name of an overlay section"));
c906108c 3305
c378eb4e 3306 /* First, find a section matching the user supplied argument. */
c906108c
SS
3307 ALL_OBJSECTIONS (objfile, sec)
3308 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3309 {
3310 if (!sec->ovly_mapped)
8a3fe4f8 3311 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3312 sec->ovly_mapped = 0;
3313 return;
3314 }
8a3fe4f8 3315 error (_("No overlay section called %s"), args);
c906108c
SS
3316}
3317
3318/* Function: overlay_auto_command
3319 A utility command to turn on overlay debugging.
c378eb4e 3320 Possibly this should be done via a set/show command. */
c906108c
SS
3321
3322static void
2cf311eb 3323overlay_auto_command (const char *args, int from_tty)
c906108c 3324{
d874f1e2 3325 overlay_debugging = ovly_auto;
1900040c 3326 enable_overlay_breakpoints ();
c906108c 3327 if (info_verbose)
a3f17187 3328 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3329}
3330
3331/* Function: overlay_manual_command
3332 A utility command to turn on overlay debugging.
c378eb4e 3333 Possibly this should be done via a set/show command. */
c906108c
SS
3334
3335static void
2cf311eb 3336overlay_manual_command (const char *args, int from_tty)
c906108c 3337{
d874f1e2 3338 overlay_debugging = ovly_on;
1900040c 3339 disable_overlay_breakpoints ();
c906108c 3340 if (info_verbose)
a3f17187 3341 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3342}
3343
3344/* Function: overlay_off_command
3345 A utility command to turn on overlay debugging.
c378eb4e 3346 Possibly this should be done via a set/show command. */
c906108c
SS
3347
3348static void
2cf311eb 3349overlay_off_command (const char *args, int from_tty)
c906108c 3350{
d874f1e2 3351 overlay_debugging = ovly_off;
1900040c 3352 disable_overlay_breakpoints ();
c906108c 3353 if (info_verbose)
a3f17187 3354 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3355}
3356
3357static void
2cf311eb 3358overlay_load_command (const char *args, int from_tty)
c906108c 3359{
e17c207e
UW
3360 struct gdbarch *gdbarch = get_current_arch ();
3361
3362 if (gdbarch_overlay_update_p (gdbarch))
3363 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3364 else
8a3fe4f8 3365 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3366}
3367
3368/* Function: overlay_command
c378eb4e 3369 A place-holder for a mis-typed command. */
c906108c 3370
c378eb4e 3371/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3372static struct cmd_list_element *overlaylist;
c906108c
SS
3373
3374static void
981a3fb3 3375overlay_command (const char *args, int from_tty)
c906108c 3376{
c5aa993b 3377 printf_unfiltered
c906108c 3378 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3379 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3380}
3381
c906108c
SS
3382/* Target Overlays for the "Simplest" overlay manager:
3383
5417f6dc
RM
3384 This is GDB's default target overlay layer. It works with the
3385 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3386 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3387 so targets that use a different runtime overlay manager can
c906108c
SS
3388 substitute their own overlay_update function and take over the
3389 function pointer.
3390
3391 The overlay_update function pokes around in the target's data structures
3392 to see what overlays are mapped, and updates GDB's overlay mapping with
3393 this information.
3394
3395 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3396 unsigned _novlys; /# number of overlay sections #/
3397 unsigned _ovly_table[_novlys][4] = {
438e1e42 3398 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3399 {..., ..., ..., ...},
3400 }
3401 unsigned _novly_regions; /# number of overlay regions #/
3402 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3403 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3404 {..., ..., ...},
3405 }
c906108c
SS
3406 These functions will attempt to update GDB's mappedness state in the
3407 symbol section table, based on the target's mappedness state.
3408
3409 To do this, we keep a cached copy of the target's _ovly_table, and
3410 attempt to detect when the cached copy is invalidated. The main
3411 entry point is "simple_overlay_update(SECT), which looks up SECT in
3412 the cached table and re-reads only the entry for that section from
c378eb4e 3413 the target (whenever possible). */
c906108c
SS
3414
3415/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3416static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3417static unsigned cache_novlys = 0;
c906108c 3418static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3419enum ovly_index
3420 {
438e1e42 3421 VMA, OSIZE, LMA, MAPPED
c5aa993b 3422 };
c906108c 3423
c378eb4e 3424/* Throw away the cached copy of _ovly_table. */
3b7bacac 3425
c906108c 3426static void
fba45db2 3427simple_free_overlay_table (void)
c906108c
SS
3428{
3429 if (cache_ovly_table)
b8c9b27d 3430 xfree (cache_ovly_table);
c5aa993b 3431 cache_novlys = 0;
c906108c
SS
3432 cache_ovly_table = NULL;
3433 cache_ovly_table_base = 0;
3434}
3435
9216df95 3436/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3437 Convert to host order. int LEN is number of ints. */
3b7bacac 3438
c906108c 3439static void
9216df95 3440read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3441 int len, int size, enum bfd_endian byte_order)
c906108c 3442{
c378eb4e 3443 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3444 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3445 int i;
c906108c 3446
9216df95 3447 read_memory (memaddr, buf, len * size);
c906108c 3448 for (i = 0; i < len; i++)
e17a4113 3449 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3450}
3451
3452/* Find and grab a copy of the target _ovly_table
c378eb4e 3453 (and _novlys, which is needed for the table's size). */
3b7bacac 3454
c5aa993b 3455static int
fba45db2 3456simple_read_overlay_table (void)
c906108c 3457{
3b7344d5 3458 struct bound_minimal_symbol novlys_msym;
7c7b6655 3459 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3460 struct gdbarch *gdbarch;
3461 int word_size;
e17a4113 3462 enum bfd_endian byte_order;
c906108c
SS
3463
3464 simple_free_overlay_table ();
9b27852e 3465 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3466 if (! novlys_msym.minsym)
c906108c 3467 {
8a3fe4f8 3468 error (_("Error reading inferior's overlay table: "
0d43edd1 3469 "couldn't find `_novlys' variable\n"
8a3fe4f8 3470 "in inferior. Use `overlay manual' mode."));
0d43edd1 3471 return 0;
c906108c 3472 }
0d43edd1 3473
7c7b6655
TT
3474 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3475 if (! ovly_table_msym.minsym)
0d43edd1 3476 {
8a3fe4f8 3477 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3478 "`_ovly_table' array\n"
8a3fe4f8 3479 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3480 return 0;
3481 }
3482
7c7b6655 3483 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3484 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3485 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3486
77e371c0
TT
3487 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3488 4, byte_order);
0d43edd1 3489 cache_ovly_table
224c3ddb 3490 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3491 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3492 read_target_long_array (cache_ovly_table_base,
777ea8f1 3493 (unsigned int *) cache_ovly_table,
e17a4113 3494 cache_novlys * 4, word_size, byte_order);
0d43edd1 3495
c5aa993b 3496 return 1; /* SUCCESS */
c906108c
SS
3497}
3498
5417f6dc 3499/* Function: simple_overlay_update_1
c906108c
SS
3500 A helper function for simple_overlay_update. Assuming a cached copy
3501 of _ovly_table exists, look through it to find an entry whose vma,
3502 lma and size match those of OSECT. Re-read the entry and make sure
3503 it still matches OSECT (else the table may no longer be valid).
3504 Set OSECT's mapped state to match the entry. Return: 1 for
3505 success, 0 for failure. */
3506
3507static int
fba45db2 3508simple_overlay_update_1 (struct obj_section *osect)
c906108c 3509{
764c99c1 3510 int i;
fbd35540 3511 asection *bsect = osect->the_bfd_section;
9216df95
UW
3512 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3513 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3514 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3515
c906108c 3516 for (i = 0; i < cache_novlys; i++)
fbd35540 3517 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3518 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3519 {
9216df95
UW
3520 read_target_long_array (cache_ovly_table_base + i * word_size,
3521 (unsigned int *) cache_ovly_table[i],
e17a4113 3522 4, word_size, byte_order);
fbd35540 3523 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3524 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3525 {
3526 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3527 return 1;
3528 }
c378eb4e 3529 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3530 return 0;
3531 }
3532 return 0;
3533}
3534
3535/* Function: simple_overlay_update
5417f6dc
RM
3536 If OSECT is NULL, then update all sections' mapped state
3537 (after re-reading the entire target _ovly_table).
3538 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3539 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3540 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3541 re-read the entire cache, and go ahead and update all sections. */
3542
1c772458 3543void
fba45db2 3544simple_overlay_update (struct obj_section *osect)
c906108c 3545{
c5aa993b 3546 struct objfile *objfile;
c906108c 3547
c378eb4e 3548 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3549 if (osect)
c378eb4e 3550 /* Have we got a cached copy of the target's overlay table? */
c906108c 3551 if (cache_ovly_table != NULL)
9cc89665
MS
3552 {
3553 /* Does its cached location match what's currently in the
3554 symtab? */
3b7344d5 3555 struct bound_minimal_symbol minsym
9cc89665
MS
3556 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3557
3b7344d5 3558 if (minsym.minsym == NULL)
9cc89665
MS
3559 error (_("Error reading inferior's overlay table: couldn't "
3560 "find `_ovly_table' array\n"
3561 "in inferior. Use `overlay manual' mode."));
3562
77e371c0 3563 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3564 /* Then go ahead and try to look up this single section in
3565 the cache. */
3566 if (simple_overlay_update_1 (osect))
3567 /* Found it! We're done. */
3568 return;
3569 }
c906108c
SS
3570
3571 /* Cached table no good: need to read the entire table anew.
3572 Or else we want all the sections, in which case it's actually
3573 more efficient to read the whole table in one block anyway. */
3574
0d43edd1
JB
3575 if (! simple_read_overlay_table ())
3576 return;
3577
c378eb4e 3578 /* Now may as well update all sections, even if only one was requested. */
c906108c 3579 ALL_OBJSECTIONS (objfile, osect)
714835d5 3580 if (section_is_overlay (osect))
c5aa993b 3581 {
764c99c1 3582 int i;
fbd35540 3583 asection *bsect = osect->the_bfd_section;
c5aa993b 3584
c5aa993b 3585 for (i = 0; i < cache_novlys; i++)
fbd35540 3586 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3587 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3588 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3589 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3590 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3591 }
3592 }
c906108c
SS
3593}
3594
086df311
DJ
3595/* Set the output sections and output offsets for section SECTP in
3596 ABFD. The relocation code in BFD will read these offsets, so we
3597 need to be sure they're initialized. We map each section to itself,
3598 with no offset; this means that SECTP->vma will be honored. */
3599
3600static void
3601symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3602{
3603 sectp->output_section = sectp;
3604 sectp->output_offset = 0;
3605}
3606
ac8035ab
TG
3607/* Default implementation for sym_relocate. */
3608
ac8035ab
TG
3609bfd_byte *
3610default_symfile_relocate (struct objfile *objfile, asection *sectp,
3611 bfd_byte *buf)
3612{
3019eac3
DE
3613 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3614 DWO file. */
3615 bfd *abfd = sectp->owner;
ac8035ab
TG
3616
3617 /* We're only interested in sections with relocation
3618 information. */
3619 if ((sectp->flags & SEC_RELOC) == 0)
3620 return NULL;
3621
3622 /* We will handle section offsets properly elsewhere, so relocate as if
3623 all sections begin at 0. */
3624 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3625
3626 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3627}
3628
086df311
DJ
3629/* Relocate the contents of a debug section SECTP in ABFD. The
3630 contents are stored in BUF if it is non-NULL, or returned in a
3631 malloc'd buffer otherwise.
3632
3633 For some platforms and debug info formats, shared libraries contain
3634 relocations against the debug sections (particularly for DWARF-2;
3635 one affected platform is PowerPC GNU/Linux, although it depends on
3636 the version of the linker in use). Also, ELF object files naturally
3637 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3638 the relocations in order to get the locations of symbols correct.
3639 Another example that may require relocation processing, is the
3640 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3641 debug section. */
086df311
DJ
3642
3643bfd_byte *
ac8035ab
TG
3644symfile_relocate_debug_section (struct objfile *objfile,
3645 asection *sectp, bfd_byte *buf)
086df311 3646{
ac8035ab 3647 gdb_assert (objfile->sf->sym_relocate);
086df311 3648
ac8035ab 3649 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3650}
c906108c 3651
31d99776
DJ
3652struct symfile_segment_data *
3653get_symfile_segment_data (bfd *abfd)
3654{
00b5771c 3655 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3656
3657 if (sf == NULL)
3658 return NULL;
3659
3660 return sf->sym_segments (abfd);
3661}
3662
3663void
3664free_symfile_segment_data (struct symfile_segment_data *data)
3665{
3666 xfree (data->segment_bases);
3667 xfree (data->segment_sizes);
3668 xfree (data->segment_info);
3669 xfree (data);
3670}
3671
28c32713
JB
3672/* Given:
3673 - DATA, containing segment addresses from the object file ABFD, and
3674 the mapping from ABFD's sections onto the segments that own them,
3675 and
3676 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3677 segment addresses reported by the target,
3678 store the appropriate offsets for each section in OFFSETS.
3679
3680 If there are fewer entries in SEGMENT_BASES than there are segments
3681 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3682
8d385431
DJ
3683 If there are more entries, then ignore the extra. The target may
3684 not be able to distinguish between an empty data segment and a
3685 missing data segment; a missing text segment is less plausible. */
3b7bacac 3686
31d99776 3687int
3189cb12
DE
3688symfile_map_offsets_to_segments (bfd *abfd,
3689 const struct symfile_segment_data *data,
31d99776
DJ
3690 struct section_offsets *offsets,
3691 int num_segment_bases,
3692 const CORE_ADDR *segment_bases)
3693{
3694 int i;
3695 asection *sect;
3696
28c32713
JB
3697 /* It doesn't make sense to call this function unless you have some
3698 segment base addresses. */
202b96c1 3699 gdb_assert (num_segment_bases > 0);
28c32713 3700
31d99776
DJ
3701 /* If we do not have segment mappings for the object file, we
3702 can not relocate it by segments. */
3703 gdb_assert (data != NULL);
3704 gdb_assert (data->num_segments > 0);
3705
31d99776
DJ
3706 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3707 {
31d99776
DJ
3708 int which = data->segment_info[i];
3709
28c32713
JB
3710 gdb_assert (0 <= which && which <= data->num_segments);
3711
3712 /* Don't bother computing offsets for sections that aren't
3713 loaded as part of any segment. */
3714 if (! which)
3715 continue;
3716
3717 /* Use the last SEGMENT_BASES entry as the address of any extra
3718 segments mentioned in DATA->segment_info. */
31d99776 3719 if (which > num_segment_bases)
28c32713 3720 which = num_segment_bases;
31d99776 3721
28c32713
JB
3722 offsets->offsets[i] = (segment_bases[which - 1]
3723 - data->segment_bases[which - 1]);
31d99776
DJ
3724 }
3725
3726 return 1;
3727}
3728
3729static void
3730symfile_find_segment_sections (struct objfile *objfile)
3731{
3732 bfd *abfd = objfile->obfd;
3733 int i;
3734 asection *sect;
3735 struct symfile_segment_data *data;
3736
3737 data = get_symfile_segment_data (objfile->obfd);
3738 if (data == NULL)
3739 return;
3740
3741 if (data->num_segments != 1 && data->num_segments != 2)
3742 {
3743 free_symfile_segment_data (data);
3744 return;
3745 }
3746
3747 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3748 {
31d99776
DJ
3749 int which = data->segment_info[i];
3750
3751 if (which == 1)
3752 {
3753 if (objfile->sect_index_text == -1)
3754 objfile->sect_index_text = sect->index;
3755
3756 if (objfile->sect_index_rodata == -1)
3757 objfile->sect_index_rodata = sect->index;
3758 }
3759 else if (which == 2)
3760 {
3761 if (objfile->sect_index_data == -1)
3762 objfile->sect_index_data = sect->index;
3763
3764 if (objfile->sect_index_bss == -1)
3765 objfile->sect_index_bss = sect->index;
3766 }
3767 }
3768
3769 free_symfile_segment_data (data);
3770}
3771
76ad5e1e
NB
3772/* Listen for free_objfile events. */
3773
3774static void
3775symfile_free_objfile (struct objfile *objfile)
3776{
c33b2f12
MM
3777 /* Remove the target sections owned by this objfile. */
3778 if (objfile != NULL)
76ad5e1e
NB
3779 remove_target_sections ((void *) objfile);
3780}
3781
540c2971
DE
3782/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3783 Expand all symtabs that match the specified criteria.
3784 See quick_symbol_functions.expand_symtabs_matching for details. */
3785
3786void
14bc53a8
PA
3787expand_symtabs_matching
3788 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3789 const lookup_name_info &lookup_name,
14bc53a8
PA
3790 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3791 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3792 enum search_domain kind)
540c2971
DE
3793{
3794 struct objfile *objfile;
3795
3796 ALL_OBJFILES (objfile)
3797 {
3798 if (objfile->sf)
bb4142cf 3799 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3800 lookup_name,
276d885b 3801 symbol_matcher,
14bc53a8 3802 expansion_notify, kind);
540c2971
DE
3803 }
3804}
3805
3806/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3807 Map function FUN over every file.
3808 See quick_symbol_functions.map_symbol_filenames for details. */
3809
3810void
bb4142cf
DE
3811map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3812 int need_fullname)
540c2971
DE
3813{
3814 struct objfile *objfile;
3815
3816 ALL_OBJFILES (objfile)
3817 {
3818 if (objfile->sf)
3819 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3820 need_fullname);
3821 }
3822}
3823
32fa66eb
SM
3824#if GDB_SELF_TEST
3825
3826namespace selftests {
3827namespace filename_language {
3828
32fa66eb
SM
3829static void test_filename_language ()
3830{
3831 /* This test messes up the filename_language_table global. */
593e3209 3832 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3833
3834 /* Test deducing an unknown extension. */
3835 language lang = deduce_language_from_filename ("myfile.blah");
3836 SELF_CHECK (lang == language_unknown);
3837
3838 /* Test deducing a known extension. */
3839 lang = deduce_language_from_filename ("myfile.c");
3840 SELF_CHECK (lang == language_c);
3841
3842 /* Test adding a new extension using the internal API. */
3843 add_filename_language (".blah", language_pascal);
3844 lang = deduce_language_from_filename ("myfile.blah");
3845 SELF_CHECK (lang == language_pascal);
3846}
3847
3848static void
3849test_set_ext_lang_command ()
3850{
3851 /* This test messes up the filename_language_table global. */
593e3209 3852 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3853
3854 /* Confirm that the .hello extension is not known. */
3855 language lang = deduce_language_from_filename ("cake.hello");
3856 SELF_CHECK (lang == language_unknown);
3857
3858 /* Test adding a new extension using the CLI command. */
3859 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3860 ext_args = args_holder.get ();
3861 set_ext_lang_command (NULL, 1, NULL);
3862
3863 lang = deduce_language_from_filename ("cake.hello");
3864 SELF_CHECK (lang == language_rust);
3865
3866 /* Test overriding an existing extension using the CLI command. */
593e3209 3867 int size_before = filename_language_table.size ();
32fa66eb
SM
3868 args_holder.reset (xstrdup (".hello pascal"));
3869 ext_args = args_holder.get ();
3870 set_ext_lang_command (NULL, 1, NULL);
593e3209 3871 int size_after = filename_language_table.size ();
32fa66eb
SM
3872
3873 lang = deduce_language_from_filename ("cake.hello");
3874 SELF_CHECK (lang == language_pascal);
3875 SELF_CHECK (size_before == size_after);
3876}
3877
3878} /* namespace filename_language */
3879} /* namespace selftests */
3880
3881#endif /* GDB_SELF_TEST */
3882
c906108c 3883void
fba45db2 3884_initialize_symfile (void)
c906108c
SS
3885{
3886 struct cmd_list_element *c;
c5aa993b 3887
76727919 3888 gdb::observers::free_objfile.attach (symfile_free_objfile);
76ad5e1e 3889
97cbe998 3890#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3891 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3892immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3893faster.\n\
3894The '-readnever' option will prevent GDB from reading the symbol file's\n\
3895symbolic debug information."
8ca2f0b9 3896
1a966eab
AC
3897 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3898Load symbol table from executable file FILE.\n\
d4d429d5
PT
3899Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3900OFF is an optional offset which is added to each section address.\n\
c906108c 3901The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3902to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3903 set_cmd_completer (c, filename_completer);
c906108c 3904
1a966eab 3905 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3906Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
291f9a96 3907Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
ed6dfe51 3908[-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3909ADDR is the starting address of the file's text.\n\
3910Each '-s' argument provides a section name and address, and\n\
db162d44 3911should be specified if the data and bss segments are not contiguous\n\
291f9a96
PT
3912with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3913OFF is an optional offset which is added to the default load addresses\n\
3914of all sections for which no other address was specified.\n"
97cbe998 3915READNOW_READNEVER_HELP),
c906108c 3916 &cmdlist);
5ba2abeb 3917 set_cmd_completer (c, filename_completer);
c906108c 3918
63644780
NB
3919 c = add_cmd ("remove-symbol-file", class_files,
3920 remove_symbol_file_command, _("\
3921Remove a symbol file added via the add-symbol-file command.\n\
3922Usage: remove-symbol-file FILENAME\n\
3923 remove-symbol-file -a ADDRESS\n\
3924The file to remove can be identified by its filename or by an address\n\
3925that lies within the boundaries of this symbol file in memory."),
3926 &cmdlist);
3927
1a966eab
AC
3928 c = add_cmd ("load", class_files, load_command, _("\
3929Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3930for access from GDB.\n\
8ca2f0b9 3931Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3932An optional load OFFSET may also be given as a literal address.\n\
3933When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3934on its own."), &cmdlist);
5ba2abeb 3935 set_cmd_completer (c, filename_completer);
c906108c 3936
c5aa993b 3937 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3938 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3939 "overlay ", 0, &cmdlist);
3940
3941 add_com_alias ("ovly", "overlay", class_alias, 1);
3942 add_com_alias ("ov", "overlay", class_alias, 1);
3943
c5aa993b 3944 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3945 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3946
c5aa993b 3947 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3948 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3949
c5aa993b 3950 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3951 _("List mappings of overlay sections."), &overlaylist);
c906108c 3952
c5aa993b 3953 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3954 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3955 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3956 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3957 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3958 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3959 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3960 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3961
3962 /* Filename extension to source language lookup table: */
26c41df3
AC
3963 add_setshow_string_noescape_cmd ("extension-language", class_files,
3964 &ext_args, _("\
3965Set mapping between filename extension and source language."), _("\
3966Show mapping between filename extension and source language."), _("\
3967Usage: set extension-language .foo bar"),
3968 set_ext_lang_command,
920d2a44 3969 show_ext_args,
26c41df3 3970 &setlist, &showlist);
c906108c 3971
c5aa993b 3972 add_info ("extensions", info_ext_lang_command,
1bedd215 3973 _("All filename extensions associated with a source language."));
917317f4 3974
525226b5
AC
3975 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3976 &debug_file_directory, _("\
24ddea62
JK
3977Set the directories where separate debug symbols are searched for."), _("\
3978Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3979Separate debug symbols are first searched for in the same\n\
3980directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3981and lastly at the path of the directory of the binary with\n\
24ddea62 3982each global debug-file-directory component prepended."),
525226b5 3983 NULL,
920d2a44 3984 show_debug_file_directory,
525226b5 3985 &setlist, &showlist);
770e7fc7
DE
3986
3987 add_setshow_enum_cmd ("symbol-loading", no_class,
3988 print_symbol_loading_enums, &print_symbol_loading,
3989 _("\
3990Set printing of symbol loading messages."), _("\
3991Show printing of symbol loading messages."), _("\
3992off == turn all messages off\n\
3993brief == print messages for the executable,\n\
3994 and brief messages for shared libraries\n\
3995full == print messages for the executable,\n\
3996 and messages for each shared library."),
3997 NULL,
3998 NULL,
3999 &setprintlist, &showprintlist);
c4dcb155
SM
4000
4001 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4002 &separate_debug_file_debug, _("\
4003Set printing of separate debug info file search debug."), _("\
4004Show printing of separate debug info file search debug."), _("\
4005When on, GDB prints the searched locations while looking for separate debug \
4006info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
4007
4008#if GDB_SELF_TEST
4009 selftests::register_test
4010 ("filename_language", selftests::filename_language::test_filename_language);
4011 selftests::register_test
4012 ("set_ext_lang_command",
4013 selftests::filename_language::test_set_ext_lang_command);
4014#endif
c906108c 4015}
This page took 2.357807 seconds and 4 git commands to generate.