Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
438e1e42 65#include "gdb_sys_time.h"
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void add_filename_language (char *ext, enum language lang);
392a587b 118
a14ed312 119static void info_ext_lang_command (char *args, int from_tty);
392a587b 120
a14ed312 121static void init_filename_language_table (void);
392a587b 122
31d99776
DJ
123static void symfile_find_segment_sections (struct objfile *objfile);
124
a14ed312 125void _initialize_symfile (void);
c906108c
SS
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
c378eb4e 129 prepared to read. */
c906108c 130
c256e171
DE
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
00b5771c 139
c256e171
DE
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 143
770e7fc7
DE
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
b7209cb4
FF
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
c906108c 165 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 166 report all the functions that are actually present. */
c906108c
SS
167
168int auto_solib_add = 1;
c906108c 169\f
c5aa993b 170
770e7fc7
DE
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
0d14a781 196/* True if we are reading a symbol table. */
c906108c
SS
197
198int currently_reading_symtab = 0;
199
200static void
fba45db2 201decrement_reading_symtab (void *dummy)
c906108c
SS
202{
203 currently_reading_symtab--;
2cb9c859 204 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
205}
206
ccefe4c4
TT
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
3b7bacac 209
ccefe4c4
TT
210struct cleanup *
211increment_reading_symtab (void)
c906108c 212{
ccefe4c4 213 ++currently_reading_symtab;
2cb9c859 214 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 215 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
216}
217
5417f6dc
RM
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
c906108c
SS
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
4efb68b1 228find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 229{
c5aa993b 230 asection **lowest = (asection **) obj;
c906108c 231
eb73e134 232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
d76488d8
TT
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
a39a16c4
MM
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
a39a16c4
MM
258
259 return sap;
260}
62557bbc
KB
261
262/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 263 an existing section table. */
62557bbc
KB
264
265extern struct section_addr_info *
0542c86d
PA
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
62557bbc
KB
268{
269 struct section_addr_info *sap;
0542c86d 270 const struct target_section *stp;
62557bbc
KB
271 int oidx;
272
a39a16c4 273 sap = alloc_section_addr_info (end - start);
62557bbc
KB
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
2b2848e2
DE
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 281 && oidx < end - start)
62557bbc
KB
282 {
283 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
286 oidx++;
287 }
288 }
289
d76488d8
TT
290 sap->num_sections = oidx;
291
62557bbc
KB
292 return sap;
293}
294
82ccf5a5 295/* Create a section_addr_info from section offsets in ABFD. */
089b4803 296
82ccf5a5
JK
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
82ccf5a5
JK
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 307 {
82ccf5a5
JK
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
311 i++;
312 }
d76488d8
TT
313
314 sap->num_sections = i;
315
089b4803
TG
316 return sap;
317}
318
82ccf5a5
JK
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 331 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
62557bbc 339
c378eb4e 340/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
a39a16c4 347 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 348 xfree (sap->other[idx].name);
b8c9b27d 349 xfree (sap);
62557bbc
KB
350}
351
e8289572 352/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 353
e8289572
JB
354static void
355init_objfile_sect_indices (struct objfile *objfile)
c906108c 356{
e8289572 357 asection *sect;
c906108c 358 int i;
5417f6dc 359
b8fbeb18 360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_rodata = sect->index;
375
bbcd32ad
FF
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
31d99776
DJ
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
bbcd32ad
FF
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
b8fbeb18 411}
c906108c 412
c1bd25fd
DJ
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
2c0b251b 424static void
c1bd25fd
DJ
425place_section (bfd *abfd, asection *sect, void *obj)
426{
19ba03f4 427 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
3bd72c6f 430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 431
2711e456
DJ
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 return;
435
436 /* If the user specified an offset, honor it. */
65cf3563 437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
441 start_addr = (arg->lowest + align - 1) & -align;
442
c1bd25fd
DJ
443 do {
444 asection *cur_sec;
c1bd25fd 445
c1bd25fd
DJ
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
c1bd25fd
DJ
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
2711e456
DJ
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
3bd72c6f 473 break;
c1bd25fd
DJ
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
65cf3563 481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 482 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 483}
e8289572 484
75242ef4
JK
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
e8289572
JB
488
489void
75242ef4
JK
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
3189cb12 492 const struct section_addr_info *addrs)
e8289572
JB
493{
494 int i;
495
75242ef4 496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 497
c378eb4e 498 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 499 for (i = 0; i < addrs->num_sections; i++)
e8289572 500 {
3189cb12 501 const struct other_sections *osp;
e8289572 502
75242ef4 503 osp = &addrs->other[i];
5488dafb 504 if (osp->sectindex == -1)
e8289572
JB
505 continue;
506
c378eb4e 507 /* Record all sections in offsets. */
e8289572 508 /* The section_offsets in the objfile are here filled in using
c378eb4e 509 the BFD index. */
75242ef4
JK
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
1276c759
JK
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
82ccf5a5
JK
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 539 int retval;
82ccf5a5 540
1276c759 541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
542 if (retval)
543 return retval;
544
5488dafb 545 return a->sectindex - b->sectindex;
82ccf5a5
JK
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
8d749320 558 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 559 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
75242ef4 568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
75242ef4
JK
576 CORE_ADDR lower_offset;
577 int i;
82ccf5a5
JK
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
582
583 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
e8289572 592 }
75242ef4
JK
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
82ccf5a5
JK
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
c378eb4e
MS
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
82ccf5a5 616
8d749320 617 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
618 make_cleanup (xfree, addrs_to_abfd_addrs);
619
620 while (*addrs_sorted)
621 {
1276c759 622 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
623
624 while (*abfd_addrs_sorted
1276c759
JK
625 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
626 sect_name) < 0)
82ccf5a5
JK
627 abfd_addrs_sorted++;
628
629 if (*abfd_addrs_sorted
1276c759
JK
630 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
631 sect_name) == 0)
82ccf5a5
JK
632 {
633 int index_in_addrs;
634
635 /* Make the found item directly addressable from ADDRS. */
636 index_in_addrs = *addrs_sorted - addrs->other;
637 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
638 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
639
640 /* Never use the same ABFD entry twice. */
641 abfd_addrs_sorted++;
642 }
643
644 addrs_sorted++;
645 }
646
75242ef4
JK
647 /* Calculate offsets for the loadable sections.
648 FIXME! Sections must be in order of increasing loadable section
649 so that contiguous sections can use the lower-offset!!!
650
651 Adjust offsets if the segments are not contiguous.
652 If the section is contiguous, its offset should be set to
653 the offset of the highest loadable section lower than it
654 (the loadable section directly below it in memory).
655 this_offset = lower_offset = lower_addr - lower_orig_addr */
656
d76488d8 657 for (i = 0; i < addrs->num_sections; i++)
75242ef4 658 {
82ccf5a5 659 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
660
661 if (sect)
75242ef4 662 {
c378eb4e 663 /* This is the index used by BFD. */
82ccf5a5 664 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
665
666 if (addrs->other[i].addr != 0)
75242ef4 667 {
82ccf5a5 668 addrs->other[i].addr -= sect->addr;
75242ef4 669 lower_offset = addrs->other[i].addr;
75242ef4
JK
670 }
671 else
672d9c23 672 addrs->other[i].addr = lower_offset;
75242ef4
JK
673 }
674 else
672d9c23 675 {
1276c759
JK
676 /* addr_section_name transformation is not used for SECT_NAME. */
677 const char *sect_name = addrs->other[i].name;
678
b0fcb67f
JK
679 /* This section does not exist in ABFD, which is normally
680 unexpected and we want to issue a warning.
681
4d9743af
JK
682 However, the ELF prelinker does create a few sections which are
683 marked in the main executable as loadable (they are loaded in
684 memory from the DYNAMIC segment) and yet are not present in
685 separate debug info files. This is fine, and should not cause
686 a warning. Shared libraries contain just the section
687 ".gnu.liblist" but it is not marked as loadable there. There is
688 no other way to identify them than by their name as the sections
1276c759
JK
689 created by prelink have no special flags.
690
691 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
692
693 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 694 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
695 || (strcmp (sect_name, ".bss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)
699 || (strcmp (sect_name, ".sbss") == 0
700 && i > 0
701 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
702 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
672d9c23 706 addrs->other[i].addr = 0;
5488dafb 707 addrs->other[i].sectindex = -1;
672d9c23 708 }
75242ef4 709 }
82ccf5a5
JK
710
711 do_cleanups (my_cleanup);
75242ef4
JK
712}
713
714/* Parse the user's idea of an offset for dynamic linking, into our idea
715 of how to represent it for fast symbol reading. This is the default
716 version of the sym_fns.sym_offsets function for symbol readers that
717 don't need to do anything special. It allocates a section_offsets table
718 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
719
720void
721default_symfile_offsets (struct objfile *objfile,
3189cb12 722 const struct section_addr_info *addrs)
75242ef4 723{
d445b2f6 724 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
725 objfile->section_offsets = (struct section_offsets *)
726 obstack_alloc (&objfile->objfile_obstack,
727 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
728 relative_addr_info_to_section_offsets (objfile->section_offsets,
729 objfile->num_sections, addrs);
e8289572 730
c1bd25fd
DJ
731 /* For relocatable files, all loadable sections will start at zero.
732 The zero is meaningless, so try to pick arbitrary addresses such
733 that no loadable sections overlap. This algorithm is quadratic,
734 but the number of sections in a single object file is generally
735 small. */
736 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
737 {
738 struct place_section_arg arg;
2711e456
DJ
739 bfd *abfd = objfile->obfd;
740 asection *cur_sec;
2711e456
DJ
741
742 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
743 /* We do not expect this to happen; just skip this step if the
744 relocatable file has a section with an assigned VMA. */
745 if (bfd_section_vma (abfd, cur_sec) != 0)
746 break;
747
748 if (cur_sec == NULL)
749 {
750 CORE_ADDR *offsets = objfile->section_offsets->offsets;
751
752 /* Pick non-overlapping offsets for sections the user did not
753 place explicitly. */
754 arg.offsets = objfile->section_offsets;
755 arg.lowest = 0;
756 bfd_map_over_sections (objfile->obfd, place_section, &arg);
757
758 /* Correctly filling in the section offsets is not quite
759 enough. Relocatable files have two properties that
760 (most) shared objects do not:
761
762 - Their debug information will contain relocations. Some
763 shared libraries do also, but many do not, so this can not
764 be assumed.
765
766 - If there are multiple code sections they will be loaded
767 at different relative addresses in memory than they are
768 in the objfile, since all sections in the file will start
769 at address zero.
770
771 Because GDB has very limited ability to map from an
772 address in debug info to the correct code section,
773 it relies on adding SECT_OFF_TEXT to things which might be
774 code. If we clear all the section offsets, and set the
775 section VMAs instead, then symfile_relocate_debug_section
776 will return meaningful debug information pointing at the
777 correct sections.
778
779 GDB has too many different data structures for section
780 addresses - a bfd, objfile, and so_list all have section
781 tables, as does exec_ops. Some of these could probably
782 be eliminated. */
783
784 for (cur_sec = abfd->sections; cur_sec != NULL;
785 cur_sec = cur_sec->next)
786 {
787 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
788 continue;
789
790 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
791 exec_set_section_address (bfd_get_filename (abfd),
792 cur_sec->index,
30510692 793 offsets[cur_sec->index]);
2711e456
DJ
794 offsets[cur_sec->index] = 0;
795 }
796 }
c1bd25fd
DJ
797 }
798
e8289572 799 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 800 .rodata sections. */
e8289572
JB
801 init_objfile_sect_indices (objfile);
802}
803
31d99776
DJ
804/* Divide the file into segments, which are individual relocatable units.
805 This is the default version of the sym_fns.sym_segments function for
806 symbol readers that do not have an explicit representation of segments.
807 It assumes that object files do not have segments, and fully linked
808 files have a single segment. */
809
810struct symfile_segment_data *
811default_symfile_segments (bfd *abfd)
812{
813 int num_sections, i;
814 asection *sect;
815 struct symfile_segment_data *data;
816 CORE_ADDR low, high;
817
818 /* Relocatable files contain enough information to position each
819 loadable section independently; they should not be relocated
820 in segments. */
821 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
822 return NULL;
823
824 /* Make sure there is at least one loadable section in the file. */
825 for (sect = abfd->sections; sect != NULL; sect = sect->next)
826 {
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 break;
831 }
832 if (sect == NULL)
833 return NULL;
834
835 low = bfd_get_section_vma (abfd, sect);
836 high = low + bfd_get_section_size (sect);
837
41bf6aca 838 data = XCNEW (struct symfile_segment_data);
31d99776 839 data->num_segments = 1;
fc270c35
TT
840 data->segment_bases = XCNEW (CORE_ADDR);
841 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
842
843 num_sections = bfd_count_sections (abfd);
fc270c35 844 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
845
846 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
847 {
848 CORE_ADDR vma;
849
850 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
851 continue;
852
853 vma = bfd_get_section_vma (abfd, sect);
854 if (vma < low)
855 low = vma;
856 if (vma + bfd_get_section_size (sect) > high)
857 high = vma + bfd_get_section_size (sect);
858
859 data->segment_info[i] = 1;
860 }
861
862 data->segment_bases[0] = low;
863 data->segment_sizes[0] = high - low;
864
865 return data;
866}
867
608e2dbb
TT
868/* This is a convenience function to call sym_read for OBJFILE and
869 possibly force the partial symbols to be read. */
870
871static void
872read_symbols (struct objfile *objfile, int add_flags)
873{
874 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 875 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
876
877 /* find_separate_debug_file_in_section should be called only if there is
878 single binary with no existing separate debug info file. */
879 if (!objfile_has_partial_symbols (objfile)
880 && objfile->separate_debug_objfile == NULL
881 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
882 {
883 bfd *abfd = find_separate_debug_file_in_section (objfile);
884 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
885
886 if (abfd != NULL)
24ba069a
JK
887 {
888 /* find_separate_debug_file_in_section uses the same filename for the
889 virtual section-as-bfd like the bfd filename containing the
890 section. Therefore use also non-canonical name form for the same
891 file containing the section. */
892 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
893 objfile);
894 }
608e2dbb
TT
895
896 do_cleanups (cleanup);
897 }
898 if ((add_flags & SYMFILE_NO_READ) == 0)
899 require_partial_symbols (objfile, 0);
900}
901
3d6e24f0
JB
902/* Initialize entry point information for this objfile. */
903
904static void
905init_entry_point_info (struct objfile *objfile)
906{
6ef55de7
TT
907 struct entry_info *ei = &objfile->per_bfd->ei;
908
909 if (ei->initialized)
910 return;
911 ei->initialized = 1;
912
3d6e24f0
JB
913 /* Save startup file's range of PC addresses to help blockframe.c
914 decide where the bottom of the stack is. */
915
916 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
917 {
918 /* Executable file -- record its entry point so we'll recognize
919 the startup file because it contains the entry point. */
6ef55de7
TT
920 ei->entry_point = bfd_get_start_address (objfile->obfd);
921 ei->entry_point_p = 1;
3d6e24f0
JB
922 }
923 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
924 && bfd_get_start_address (objfile->obfd) != 0)
925 {
926 /* Some shared libraries may have entry points set and be
927 runnable. There's no clear way to indicate this, so just check
928 for values other than zero. */
6ef55de7
TT
929 ei->entry_point = bfd_get_start_address (objfile->obfd);
930 ei->entry_point_p = 1;
3d6e24f0
JB
931 }
932 else
933 {
934 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 935 ei->entry_point_p = 0;
3d6e24f0
JB
936 }
937
6ef55de7 938 if (ei->entry_point_p)
3d6e24f0 939 {
53eddfa6 940 struct obj_section *osect;
6ef55de7 941 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 942 int found;
3d6e24f0
JB
943
944 /* Make certain that the address points at real code, and not a
945 function descriptor. */
946 entry_point
df6d5441 947 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
948 entry_point,
949 &current_target);
950
951 /* Remove any ISA markers, so that this matches entries in the
952 symbol table. */
6ef55de7 953 ei->entry_point
df6d5441 954 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
955
956 found = 0;
957 ALL_OBJFILE_OSECTIONS (objfile, osect)
958 {
959 struct bfd_section *sect = osect->the_bfd_section;
960
961 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
962 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
963 + bfd_get_section_size (sect)))
964 {
6ef55de7 965 ei->the_bfd_section_index
53eddfa6
TT
966 = gdb_bfd_section_index (objfile->obfd, sect);
967 found = 1;
968 break;
969 }
970 }
971
972 if (!found)
6ef55de7 973 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
974 }
975}
976
c906108c
SS
977/* Process a symbol file, as either the main file or as a dynamically
978 loaded file.
979
36e4d068
JB
980 This function does not set the OBJFILE's entry-point info.
981
96baa820
JM
982 OBJFILE is where the symbols are to be read from.
983
7e8580c1
JB
984 ADDRS is the list of section load addresses. If the user has given
985 an 'add-symbol-file' command, then this is the list of offsets and
986 addresses he or she provided as arguments to the command; or, if
987 we're handling a shared library, these are the actual addresses the
988 sections are loaded at, according to the inferior's dynamic linker
989 (as gleaned by GDB's shared library code). We convert each address
990 into an offset from the section VMA's as it appears in the object
991 file, and then call the file's sym_offsets function to convert this
992 into a format-specific offset table --- a `struct section_offsets'.
96baa820 993
7eedccfa
PP
994 ADD_FLAGS encodes verbosity level, whether this is main symbol or
995 an extra symbol file such as dynamically loaded code, and wether
996 breakpoint reset should be deferred. */
c906108c 997
36e4d068
JB
998static void
999syms_from_objfile_1 (struct objfile *objfile,
1000 struct section_addr_info *addrs,
36e4d068 1001 int add_flags)
c906108c 1002{
a39a16c4 1003 struct section_addr_info *local_addr = NULL;
c906108c 1004 struct cleanup *old_chain;
7eedccfa 1005 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1006
8fb8eb5c 1007 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1008
75245b24 1009 if (objfile->sf == NULL)
36e4d068
JB
1010 {
1011 /* No symbols to load, but we still need to make sure
1012 that the section_offsets table is allocated. */
d445b2f6 1013 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1015
1016 objfile->num_sections = num_sections;
1017 objfile->section_offsets
224c3ddb
SM
1018 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1019 size);
36e4d068
JB
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
75245b24 1023
c906108c
SS
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
74b7792f 1026 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1027
6bf667bb
DE
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
c378eb4e 1030 no load address was specified. */
6bf667bb 1031 if (! addrs)
a39a16c4 1032 {
d445b2f6 1033 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
c5aa993b 1038 if (mainline)
c906108c
SS
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1041 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
adb7f338 1049 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
53a5351d 1062 and assume that <addr> is where that got loaded.
c906108c 1063
53a5351d
JM
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
6bf667bb 1066 if (addrs->num_sections > 0)
75242ef4 1067 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
c378eb4e 1071 initial symbol reading for this file. */
c906108c 1072
c5aa993b 1073 (*objfile->sf->sym_init) (objfile);
7eedccfa 1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1075
6bf667bb 1076 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1077
608e2dbb 1078 read_symbols (objfile, add_flags);
b11896a5 1079
c906108c
SS
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
f7545552 1083 xfree (local_addr);
c906108c
SS
1084}
1085
36e4d068
JB
1086/* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
6bf667bb 1089static void
36e4d068
JB
1090syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
36e4d068
JB
1092 int add_flags)
1093{
6bf667bb 1094 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1095 init_entry_point_info (objfile);
1096}
1097
c906108c
SS
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1101
e7d52ed3
DE
1102static void
1103finish_new_objfile (struct objfile *objfile, int add_flags)
c906108c 1104{
c906108c 1105 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1106 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1107 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1108 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
c1e56572 1113 clear_symtab_users (add_flags);
c906108c 1114 }
7eedccfa 1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1116 {
69de3c6a 1117 breakpoint_re_set ();
c906108c
SS
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
5417f6dc 1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1128 A new reference is acquired by this function.
7904e09f 1129
24ba069a
JK
1130 For NAME description see allocate_objfile's definition.
1131
7eedccfa
PP
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1134
6bf667bb 1135 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1137
63524580
JK
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
c906108c 1141 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1142 Upon failure, jumps back to command level (never returns). */
7eedccfa 1143
7904e09f 1144static struct objfile *
24ba069a 1145symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
c906108c
SS
1148{
1149 struct objfile *objfile;
7eedccfa 1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1151 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1155
9291a0cd 1156 if (readnow_symbol_files)
b11896a5
TT
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
9291a0cd 1161
5417f6dc
RM
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
c906108c
SS
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1166 && mainline
c906108c 1167 && from_tty
9e2f0ad4 1168 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1169 error (_("Not confirmed."));
c906108c 1170
24ba069a
JK
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1173
63524580
JK
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
78a4a9b9
AC
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
c378eb4e 1179 performed, or need to read an unmapped symbol table. */
b11896a5 1180 if (should_print)
c906108c 1181 {
769d7dc4
AC
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1184 else
c906108c 1185 {
55333a84
DE
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
c906108c 1189 }
c906108c 1190 }
6bf667bb 1191 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1196 all partial symbol tables for this objfile if so. */
c906108c 1197
9291a0cd 1198 if ((flags & OBJF_READNOW))
c906108c 1199 {
b11896a5 1200 if (should_print)
c906108c 1201 {
a3f17187 1202 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
ccefe4c4
TT
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1209 }
1210
b11896a5 1211 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1212 {
1213 wrap_here ("");
55333a84 1214 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1215 wrap_here ("");
1216 }
1217
b11896a5 1218 if (should_print)
c906108c 1219 {
769d7dc4
AC
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
c906108c 1222 else
55333a84 1223 printf_unfiltered (_("done.\n"));
c906108c
SS
1224 }
1225
481d0f41
JB
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
109f874e 1231 if (objfile->sf == NULL)
8caee43b
PP
1232 {
1233 observer_notify_new_objfile (objfile);
c378eb4e 1234 return objfile; /* No symbols. */
8caee43b 1235 }
109f874e 1236
e7d52ed3 1237 finish_new_objfile (objfile, add_flags);
c906108c 1238
06d3b283 1239 observer_notify_new_objfile (objfile);
c906108c 1240
ce7d4522 1241 bfd_cache_close_all ();
c906108c
SS
1242 return (objfile);
1243}
1244
24ba069a
JK
1245/* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
9cce227f
TG
1247
1248void
24ba069a
JK
1249symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
9cce227f 1251{
15d123c9 1252 struct objfile *new_objfile;
089b4803
TG
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1261
6bf667bb 1262 new_objfile = symbol_file_add_with_addrs
24ba069a 1263 (bfd, name, symfile_flags, sap,
9cce227f 1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1265 | OBJF_USERLOADED),
1266 objfile);
089b4803
TG
1267
1268 do_cleanups (my_cleanup);
9cce227f 1269}
7904e09f 1270
eb4556d7
JB
1271/* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
6bf667bb 1273 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1274
eb4556d7 1275struct objfile *
24ba069a 1276symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1277 struct section_addr_info *addrs,
63524580 1278 int flags, struct objfile *parent)
eb4556d7 1279{
24ba069a
JK
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
eb4556d7
JB
1282}
1283
7904e09f 1284/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1286
7904e09f 1287struct objfile *
69150c3d
JK
1288symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
7904e09f 1290{
8ac244b4
TT
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
24ba069a 1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1296 do_cleanups (cleanup);
1297 return objf;
7904e09f
JB
1298}
1299
d7db6da9
FN
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
5417f6dc 1307
1adeb98a 1308void
69150c3d 1309symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1310{
d7db6da9
FN
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312}
1313
1314static void
69150c3d 1315symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1316{
7dcd53a0
TT
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
7eedccfa 1320 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1321
d7db6da9
FN
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
7dcd53a0
TT
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1adeb98a
FN
1328}
1329
1330void
1331symbol_file_clear (int from_tty)
1332{
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
0430b0d6
AS
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1337 objfile_name (symfile_objfile))
0430b0d6 1338 : !query (_("Discard symbol table? "))))
8a3fe4f8 1339 error (_("Not confirmed."));
1adeb98a 1340
0133421a
JK
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1343 no_shared_libraries (NULL, from_tty);
1344
0133421a
JK
1345 free_all_objfiles ();
1346
adb7f338 1347 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1350}
1351
5b5d99cf 1352static int
287ccc17 1353separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1354 struct objfile *parent_objfile)
5b5d99cf 1355{
904578ed
JK
1356 unsigned long file_crc;
1357 int file_crc_p;
f1838a98 1358 bfd *abfd;
32a0e547 1359 struct stat parent_stat, abfd_stat;
904578ed 1360 int verified_as_different;
32a0e547
JK
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1366 the separate debug infos with the same basename can exist. */
32a0e547 1367
4262abfb 1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1369 return 0;
5b5d99cf 1370
2938e6cf 1371 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1372
1373 if (!abfd)
5b5d99cf
JB
1374 return 0;
1375
0ba1096a 1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1390 {
904578ed
JK
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
cbb099e8 1394 gdb_bfd_unref (abfd);
904578ed
JK
1395 return 0;
1396 }
1397 verified_as_different = 1;
32a0e547 1398 }
904578ed
JK
1399 else
1400 verified_as_different = 0;
32a0e547 1401
dccee2de 1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1403
cbb099e8 1404 gdb_bfd_unref (abfd);
5b5d99cf 1405
904578ed
JK
1406 if (!file_crc_p)
1407 return 0;
1408
287ccc17
JK
1409 if (crc != file_crc)
1410 {
dccee2de
TT
1411 unsigned long parent_crc;
1412
0a93529c
GB
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
904578ed 1416
dccee2de 1417 if (!verified_as_different)
904578ed 1418 {
dccee2de 1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1420 return 0;
1421 }
1422
dccee2de 1423 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1426 name, objfile_name (parent_objfile));
904578ed 1427
287ccc17
JK
1428 return 0;
1429 }
1430
1431 return 1;
5b5d99cf
JB
1432}
1433
aa28a74e 1434char *debug_file_directory = NULL;
920d2a44
AC
1435static void
1436show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438{
3e43a32a
MS
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1442 value);
1443}
5b5d99cf
JB
1444
1445#if ! defined (DEBUG_SUBDIRECTORY)
1446#define DEBUG_SUBDIRECTORY ".debug"
1447#endif
1448
1db33378
PP
1449/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1455
1456static char *
1457find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
9cce227f 1461{
1db33378
PP
1462 char *debugdir;
1463 char *debugfile;
9cce227f 1464 int i;
e4ab2fad
JK
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
5b5d99cf 1468
1db33378 1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1470 i = strlen (dir);
1db33378
PP
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1ffa32ee 1473
224c3ddb
SM
1474 debugfile
1475 = (char *) xmalloc (strlen (debug_file_directory) + 1
1476 + i
1477 + strlen (DEBUG_SUBDIRECTORY)
1478 + strlen ("/")
1479 + strlen (debuglink)
1480 + 1);
5b5d99cf
JB
1481
1482 /* First try in the same directory as the original file. */
1483 strcpy (debugfile, dir);
1db33378 1484 strcat (debugfile, debuglink);
5b5d99cf 1485
32a0e547 1486 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1487 return debugfile;
5417f6dc 1488
5b5d99cf
JB
1489 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1490 strcpy (debugfile, dir);
1491 strcat (debugfile, DEBUG_SUBDIRECTORY);
1492 strcat (debugfile, "/");
1db33378 1493 strcat (debugfile, debuglink);
5b5d99cf 1494
32a0e547 1495 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1496 return debugfile;
5417f6dc 1497
24ddea62 1498 /* Then try in the global debugfile directories.
f888f159 1499
24ddea62
JK
1500 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1501 cause "/..." lookups. */
5417f6dc 1502
e4ab2fad
JK
1503 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1504 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1505
e4ab2fad
JK
1506 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1507 {
1508 strcpy (debugfile, debugdir);
aa28a74e 1509 strcat (debugfile, "/");
24ddea62 1510 strcat (debugfile, dir);
1db33378 1511 strcat (debugfile, debuglink);
aa28a74e 1512
32a0e547 1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1514 {
1515 do_cleanups (back_to);
1516 return debugfile;
1517 }
24ddea62
JK
1518
1519 /* If the file is in the sysroot, try using its base path in the
1520 global debugfile directory. */
1db33378
PP
1521 if (canon_dir != NULL
1522 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1523 strlen (gdb_sysroot)) == 0
1db33378 1524 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1525 {
e4ab2fad 1526 strcpy (debugfile, debugdir);
1db33378 1527 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1528 strcat (debugfile, "/");
1db33378 1529 strcat (debugfile, debuglink);
24ddea62 1530
32a0e547 1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1532 {
1533 do_cleanups (back_to);
1534 return debugfile;
1535 }
24ddea62 1536 }
aa28a74e 1537 }
f888f159 1538
e4ab2fad 1539 do_cleanups (back_to);
25522fae 1540 xfree (debugfile);
1db33378
PP
1541 return NULL;
1542}
1543
7edbb660 1544/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1545 If there were no directory separators in PATH, PATH will be empty
1546 string on return. */
1547
1548static void
1549terminate_after_last_dir_separator (char *path)
1550{
1551 int i;
1552
1553 /* Strip off the final filename part, leaving the directory name,
1554 followed by a slash. The directory can be relative or absolute. */
1555 for (i = strlen(path) - 1; i >= 0; i--)
1556 if (IS_DIR_SEPARATOR (path[i]))
1557 break;
1558
1559 /* If I is -1 then no directory is present there and DIR will be "". */
1560 path[i + 1] = '\0';
1561}
1562
1563/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1564 Returns pathname, or NULL. */
1565
1566char *
1567find_separate_debug_file_by_debuglink (struct objfile *objfile)
1568{
1569 char *debuglink;
1570 char *dir, *canon_dir;
1571 char *debugfile;
1572 unsigned long crc32;
1573 struct cleanup *cleanups;
1574
cc0ea93c 1575 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1576
1577 if (debuglink == NULL)
1578 {
1579 /* There's no separate debug info, hence there's no way we could
1580 load it => no warning. */
1581 return NULL;
1582 }
1583
71bdabee 1584 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1585 dir = xstrdup (objfile_name (objfile));
71bdabee 1586 make_cleanup (xfree, dir);
1db33378
PP
1587 terminate_after_last_dir_separator (dir);
1588 canon_dir = lrealpath (dir);
1589
1590 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1591 crc32, objfile);
1592 xfree (canon_dir);
1593
1594 if (debugfile == NULL)
1595 {
1db33378
PP
1596 /* For PR gdb/9538, try again with realpath (if different from the
1597 original). */
1598
1599 struct stat st_buf;
1600
4262abfb
JK
1601 if (lstat (objfile_name (objfile), &st_buf) == 0
1602 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1603 {
1604 char *symlink_dir;
1605
4262abfb 1606 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1607 if (symlink_dir != NULL)
1608 {
1609 make_cleanup (xfree, symlink_dir);
1610 terminate_after_last_dir_separator (symlink_dir);
1611 if (strcmp (dir, symlink_dir) != 0)
1612 {
1613 /* Different directory, so try using it. */
1614 debugfile = find_separate_debug_file (symlink_dir,
1615 symlink_dir,
1616 debuglink,
1617 crc32,
1618 objfile);
1619 }
1620 }
1621 }
1db33378 1622 }
aa28a74e 1623
1db33378 1624 do_cleanups (cleanups);
25522fae 1625 return debugfile;
5b5d99cf
JB
1626}
1627
c906108c
SS
1628/* This is the symbol-file command. Read the file, analyze its
1629 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1630 the command is rather bizarre:
1631
1632 1. The function buildargv implements various quoting conventions
1633 which are undocumented and have little or nothing in common with
1634 the way things are quoted (or not quoted) elsewhere in GDB.
1635
1636 2. Options are used, which are not generally used in GDB (perhaps
1637 "set mapped on", "set readnow on" would be better)
1638
1639 3. The order of options matters, which is contrary to GNU
c906108c
SS
1640 conventions (because it is confusing and inconvenient). */
1641
1642void
fba45db2 1643symbol_file_command (char *args, int from_tty)
c906108c 1644{
c906108c
SS
1645 dont_repeat ();
1646
1647 if (args == NULL)
1648 {
1adeb98a 1649 symbol_file_clear (from_tty);
c906108c
SS
1650 }
1651 else
1652 {
d1a41061 1653 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1654 int flags = OBJF_USERLOADED;
1655 struct cleanup *cleanups;
1656 char *name = NULL;
1657
7a292a7a 1658 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1659 while (*argv != NULL)
1660 {
78a4a9b9
AC
1661 if (strcmp (*argv, "-readnow") == 0)
1662 flags |= OBJF_READNOW;
1663 else if (**argv == '-')
8a3fe4f8 1664 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1665 else
1666 {
cb2f3a29 1667 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1668 name = *argv;
78a4a9b9 1669 }
cb2f3a29 1670
c906108c
SS
1671 argv++;
1672 }
1673
1674 if (name == NULL)
cb2f3a29
MK
1675 error (_("no symbol file name was specified"));
1676
c906108c
SS
1677 do_cleanups (cleanups);
1678 }
1679}
1680
1681/* Set the initial language.
1682
cb2f3a29
MK
1683 FIXME: A better solution would be to record the language in the
1684 psymtab when reading partial symbols, and then use it (if known) to
1685 set the language. This would be a win for formats that encode the
1686 language in an easily discoverable place, such as DWARF. For
1687 stabs, we can jump through hoops looking for specially named
1688 symbols or try to intuit the language from the specific type of
1689 stabs we find, but we can't do that until later when we read in
1690 full symbols. */
c906108c 1691
8b60591b 1692void
fba45db2 1693set_initial_language (void)
c906108c 1694{
9e6c82ad 1695 enum language lang = main_language ();
c906108c 1696
9e6c82ad 1697 if (lang == language_unknown)
01f8c46d 1698 {
bf6d8a91 1699 char *name = main_name ();
d12307c1 1700 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1701
bf6d8a91
TT
1702 if (sym != NULL)
1703 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1704 }
cb2f3a29 1705
ccefe4c4
TT
1706 if (lang == language_unknown)
1707 {
1708 /* Make C the default language */
1709 lang = language_c;
c906108c 1710 }
ccefe4c4
TT
1711
1712 set_language (lang);
1713 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1714}
1715
cb2f3a29
MK
1716/* Open the file specified by NAME and hand it off to BFD for
1717 preliminary analysis. Return a newly initialized bfd *, which
1718 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1719 absolute). In case of trouble, error() is called. */
c906108c
SS
1720
1721bfd *
97a41605 1722symfile_bfd_open (const char *name)
c906108c
SS
1723{
1724 bfd *sym_bfd;
97a41605
GB
1725 int desc = -1;
1726 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1727
97a41605 1728 if (!is_target_filename (name))
f1838a98 1729 {
97a41605 1730 char *expanded_name, *absolute_name;
f1838a98 1731
97a41605 1732 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1733
97a41605
GB
1734 /* Look down path for it, allocate 2nd new malloc'd copy. */
1735 desc = openp (getenv ("PATH"),
1736 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1737 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1738#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1739 if (desc < 0)
1740 {
0ae1c716 1741 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1742
97a41605
GB
1743 strcat (strcpy (exename, expanded_name), ".exe");
1744 desc = openp (getenv ("PATH"),
1745 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1746 exename, O_RDONLY | O_BINARY, &absolute_name);
1747 }
c906108c 1748#endif
97a41605
GB
1749 if (desc < 0)
1750 {
1751 make_cleanup (xfree, expanded_name);
1752 perror_with_name (expanded_name);
1753 }
cb2f3a29 1754
97a41605
GB
1755 xfree (expanded_name);
1756 make_cleanup (xfree, absolute_name);
1757 name = absolute_name;
1758 }
c906108c 1759
1c00ec6b 1760 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1761 if (!sym_bfd)
faab9922
JK
1762 error (_("`%s': can't open to read symbols: %s."), name,
1763 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1764
1765 if (!gdb_bfd_has_target_filename (sym_bfd))
1766 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1767
1768 if (!bfd_check_format (sym_bfd, bfd_object))
1769 {
f9a062ff 1770 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1771 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1772 bfd_errmsg (bfd_get_error ()));
1773 }
cb2f3a29 1774
faab9922
JK
1775 do_cleanups (back_to);
1776
cb2f3a29 1777 return sym_bfd;
c906108c
SS
1778}
1779
cb2f3a29
MK
1780/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1781 the section was not found. */
1782
0e931cf0
JB
1783int
1784get_section_index (struct objfile *objfile, char *section_name)
1785{
1786 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1787
0e931cf0
JB
1788 if (sect)
1789 return sect->index;
1790 else
1791 return -1;
1792}
1793
c256e171
DE
1794/* Link SF into the global symtab_fns list.
1795 FLAVOUR is the file format that SF handles.
1796 Called on startup by the _initialize routine in each object file format
1797 reader, to register information about each format the reader is prepared
1798 to handle. */
c906108c
SS
1799
1800void
c256e171 1801add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1802{
c256e171
DE
1803 registered_sym_fns fns = { flavour, sf };
1804
1805 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1806}
1807
cb2f3a29
MK
1808/* Initialize OBJFILE to read symbols from its associated BFD. It
1809 either returns or calls error(). The result is an initialized
1810 struct sym_fns in the objfile structure, that contains cached
1811 information about the symbol file. */
c906108c 1812
00b5771c 1813static const struct sym_fns *
31d99776 1814find_sym_fns (bfd *abfd)
c906108c 1815{
c256e171 1816 registered_sym_fns *rsf;
31d99776 1817 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1818 int i;
c906108c 1819
75245b24
MS
1820 if (our_flavour == bfd_target_srec_flavour
1821 || our_flavour == bfd_target_ihex_flavour
1822 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1823 return NULL; /* No symbols. */
75245b24 1824
c256e171
DE
1825 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1826 if (our_flavour == rsf->sym_flavour)
1827 return rsf->sym_fns;
cb2f3a29 1828
8a3fe4f8 1829 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1830 bfd_get_target (abfd));
c906108c
SS
1831}
1832\f
cb2f3a29 1833
c906108c
SS
1834/* This function runs the load command of our current target. */
1835
1836static void
fba45db2 1837load_command (char *arg, int from_tty)
c906108c 1838{
5b3fca71
TT
1839 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1840
e5cc9f32
JB
1841 dont_repeat ();
1842
4487aabf
PA
1843 /* The user might be reloading because the binary has changed. Take
1844 this opportunity to check. */
1845 reopen_exec_file ();
1846 reread_symbols ();
1847
c906108c 1848 if (arg == NULL)
1986bccd
AS
1849 {
1850 char *parg;
1851 int count = 0;
1852
1853 parg = arg = get_exec_file (1);
1854
1855 /* Count how many \ " ' tab space there are in the name. */
1856 while ((parg = strpbrk (parg, "\\\"'\t ")))
1857 {
1858 parg++;
1859 count++;
1860 }
1861
1862 if (count)
1863 {
1864 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1865 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1866 char *ptemp = temp;
1867 char *prev;
1868
1869 make_cleanup (xfree, temp);
1870
1871 prev = parg = arg;
1872 while ((parg = strpbrk (parg, "\\\"'\t ")))
1873 {
1874 strncpy (ptemp, prev, parg - prev);
1875 ptemp += parg - prev;
1876 prev = parg++;
1877 *ptemp++ = '\\';
1878 }
1879 strcpy (ptemp, prev);
1880
1881 arg = temp;
1882 }
1883 }
1884
c906108c 1885 target_load (arg, from_tty);
2889e661
JB
1886
1887 /* After re-loading the executable, we don't really know which
1888 overlays are mapped any more. */
1889 overlay_cache_invalid = 1;
5b3fca71
TT
1890
1891 do_cleanups (cleanup);
c906108c
SS
1892}
1893
1894/* This version of "load" should be usable for any target. Currently
1895 it is just used for remote targets, not inftarg.c or core files,
1896 on the theory that only in that case is it useful.
1897
1898 Avoiding xmodem and the like seems like a win (a) because we don't have
1899 to worry about finding it, and (b) On VMS, fork() is very slow and so
1900 we don't want to run a subprocess. On the other hand, I'm not sure how
1901 performance compares. */
917317f4 1902
917317f4
JM
1903static int validate_download = 0;
1904
e4f9b4d5
MS
1905/* Callback service function for generic_load (bfd_map_over_sections). */
1906
1907static void
1908add_section_size_callback (bfd *abfd, asection *asec, void *data)
1909{
19ba03f4 1910 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1911
2c500098 1912 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1913}
1914
1915/* Opaque data for load_section_callback. */
1916struct load_section_data {
f698ca8e 1917 CORE_ADDR load_offset;
a76d924d
DJ
1918 struct load_progress_data *progress_data;
1919 VEC(memory_write_request_s) *requests;
1920};
1921
1922/* Opaque data for load_progress. */
1923struct load_progress_data {
1924 /* Cumulative data. */
e4f9b4d5
MS
1925 unsigned long write_count;
1926 unsigned long data_count;
1927 bfd_size_type total_size;
a76d924d
DJ
1928};
1929
1930/* Opaque data for load_progress for a single section. */
1931struct load_progress_section_data {
1932 struct load_progress_data *cumulative;
cf7a04e8 1933
a76d924d 1934 /* Per-section data. */
cf7a04e8
DJ
1935 const char *section_name;
1936 ULONGEST section_sent;
1937 ULONGEST section_size;
1938 CORE_ADDR lma;
1939 gdb_byte *buffer;
e4f9b4d5
MS
1940};
1941
a76d924d 1942/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1943
1944static void
1945load_progress (ULONGEST bytes, void *untyped_arg)
1946{
19ba03f4
SM
1947 struct load_progress_section_data *args
1948 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1949 struct load_progress_data *totals;
1950
1951 if (args == NULL)
1952 /* Writing padding data. No easy way to get at the cumulative
1953 stats, so just ignore this. */
1954 return;
1955
1956 totals = args->cumulative;
1957
1958 if (bytes == 0 && args->section_sent == 0)
1959 {
1960 /* The write is just starting. Let the user know we've started
1961 this section. */
79a45e25 1962 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1963 args->section_name, hex_string (args->section_size),
f5656ead 1964 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1965 return;
1966 }
cf7a04e8
DJ
1967
1968 if (validate_download)
1969 {
1970 /* Broken memories and broken monitors manifest themselves here
1971 when bring new computers to life. This doubles already slow
1972 downloads. */
1973 /* NOTE: cagney/1999-10-18: A more efficient implementation
1974 might add a verify_memory() method to the target vector and
1975 then use that. remote.c could implement that method using
1976 the ``qCRC'' packet. */
224c3ddb 1977 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1978 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1979
1980 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1981 error (_("Download verify read failed at %s"),
f5656ead 1982 paddress (target_gdbarch (), args->lma));
cf7a04e8 1983 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1984 error (_("Download verify compare failed at %s"),
f5656ead 1985 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1986 do_cleanups (verify_cleanups);
1987 }
a76d924d 1988 totals->data_count += bytes;
cf7a04e8
DJ
1989 args->lma += bytes;
1990 args->buffer += bytes;
a76d924d 1991 totals->write_count += 1;
cf7a04e8 1992 args->section_sent += bytes;
522002f9 1993 if (check_quit_flag ()
cf7a04e8
DJ
1994 || (deprecated_ui_load_progress_hook != NULL
1995 && deprecated_ui_load_progress_hook (args->section_name,
1996 args->section_sent)))
1997 error (_("Canceled the download"));
1998
1999 if (deprecated_show_load_progress != NULL)
2000 deprecated_show_load_progress (args->section_name,
2001 args->section_sent,
2002 args->section_size,
a76d924d
DJ
2003 totals->data_count,
2004 totals->total_size);
cf7a04e8
DJ
2005}
2006
e4f9b4d5
MS
2007/* Callback service function for generic_load (bfd_map_over_sections). */
2008
2009static void
2010load_section_callback (bfd *abfd, asection *asec, void *data)
2011{
a76d924d 2012 struct memory_write_request *new_request;
19ba03f4 2013 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2014 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2015 bfd_size_type size = bfd_get_section_size (asec);
2016 gdb_byte *buffer;
cf7a04e8 2017 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2018
cf7a04e8
DJ
2019 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2020 return;
e4f9b4d5 2021
cf7a04e8
DJ
2022 if (size == 0)
2023 return;
e4f9b4d5 2024
a76d924d
DJ
2025 new_request = VEC_safe_push (memory_write_request_s,
2026 args->requests, NULL);
2027 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2028 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2029 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2030 new_request->end = new_request->begin + size; /* FIXME Should size
2031 be in instead? */
224c3ddb 2032 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2033 new_request->baton = section_data;
cf7a04e8 2034
a76d924d 2035 buffer = new_request->data;
cf7a04e8 2036
a76d924d
DJ
2037 section_data->cumulative = args->progress_data;
2038 section_data->section_name = sect_name;
2039 section_data->section_size = size;
2040 section_data->lma = new_request->begin;
2041 section_data->buffer = buffer;
cf7a04e8
DJ
2042
2043 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2044}
2045
2046/* Clean up an entire memory request vector, including load
2047 data and progress records. */
cf7a04e8 2048
a76d924d
DJ
2049static void
2050clear_memory_write_data (void *arg)
2051{
19ba03f4 2052 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2053 VEC(memory_write_request_s) *vec = *vec_p;
2054 int i;
2055 struct memory_write_request *mr;
cf7a04e8 2056
a76d924d
DJ
2057 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2058 {
2059 xfree (mr->data);
2060 xfree (mr->baton);
2061 }
2062 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2063}
2064
c906108c 2065void
9cbe5fff 2066generic_load (const char *args, int from_tty)
c906108c 2067{
c906108c 2068 bfd *loadfile_bfd;
2b71414d 2069 struct timeval start_time, end_time;
917317f4 2070 char *filename;
1986bccd 2071 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2072 struct load_section_data cbdata;
a76d924d 2073 struct load_progress_data total_progress;
79a45e25 2074 struct ui_out *uiout = current_uiout;
a76d924d 2075
e4f9b4d5 2076 CORE_ADDR entry;
1986bccd 2077 char **argv;
e4f9b4d5 2078
a76d924d
DJ
2079 memset (&cbdata, 0, sizeof (cbdata));
2080 memset (&total_progress, 0, sizeof (total_progress));
2081 cbdata.progress_data = &total_progress;
2082
2083 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2084
d1a41061
PP
2085 if (args == NULL)
2086 error_no_arg (_("file to load"));
1986bccd 2087
d1a41061 2088 argv = gdb_buildargv (args);
1986bccd
AS
2089 make_cleanup_freeargv (argv);
2090
2091 filename = tilde_expand (argv[0]);
2092 make_cleanup (xfree, filename);
2093
2094 if (argv[1] != NULL)
917317f4 2095 {
f698ca8e 2096 const char *endptr;
ba5f2f8a 2097
f698ca8e 2098 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2099
2100 /* If the last word was not a valid number then
2101 treat it as a file name with spaces in. */
2102 if (argv[1] == endptr)
2103 error (_("Invalid download offset:%s."), argv[1]);
2104
2105 if (argv[2] != NULL)
2106 error (_("Too many parameters."));
917317f4 2107 }
c906108c 2108
c378eb4e 2109 /* Open the file for loading. */
1c00ec6b 2110 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2111 if (loadfile_bfd == NULL)
2112 {
2113 perror_with_name (filename);
2114 return;
2115 }
917317f4 2116
f9a062ff 2117 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2118
c5aa993b 2119 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2120 {
8a3fe4f8 2121 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2122 bfd_errmsg (bfd_get_error ()));
2123 }
c5aa993b 2124
5417f6dc 2125 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2126 (void *) &total_progress.total_size);
2127
2128 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2129
2b71414d 2130 gettimeofday (&start_time, NULL);
c906108c 2131
a76d924d
DJ
2132 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2133 load_progress) != 0)
2134 error (_("Load failed"));
c906108c 2135
2b71414d 2136 gettimeofday (&end_time, NULL);
ba5f2f8a 2137
e4f9b4d5 2138 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2139 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2140 ui_out_text (uiout, "Start address ");
f5656ead 2141 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2142 ui_out_text (uiout, ", load size ");
a76d924d 2143 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2144 ui_out_text (uiout, "\n");
fb14de7b 2145 regcache_write_pc (get_current_regcache (), entry);
c906108c 2146
38963c97
DJ
2147 /* Reset breakpoints, now that we have changed the load image. For
2148 instance, breakpoints may have been set (or reset, by
2149 post_create_inferior) while connected to the target but before we
2150 loaded the program. In that case, the prologue analyzer could
2151 have read instructions from the target to find the right
2152 breakpoint locations. Loading has changed the contents of that
2153 memory. */
2154
2155 breakpoint_re_set ();
2156
a76d924d
DJ
2157 print_transfer_performance (gdb_stdout, total_progress.data_count,
2158 total_progress.write_count,
2159 &start_time, &end_time);
c906108c
SS
2160
2161 do_cleanups (old_cleanups);
2162}
2163
c378eb4e 2164/* Report how fast the transfer went. */
c906108c 2165
917317f4 2166void
d9fcf2fb 2167print_transfer_performance (struct ui_file *stream,
917317f4
JM
2168 unsigned long data_count,
2169 unsigned long write_count,
2b71414d
DJ
2170 const struct timeval *start_time,
2171 const struct timeval *end_time)
917317f4 2172{
9f43d28c 2173 ULONGEST time_count;
79a45e25 2174 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2175
2176 /* Compute the elapsed time in milliseconds, as a tradeoff between
2177 accuracy and overflow. */
2178 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2179 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2180
8b93c638
JM
2181 ui_out_text (uiout, "Transfer rate: ");
2182 if (time_count > 0)
2183 {
9f43d28c
DJ
2184 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2185
2186 if (ui_out_is_mi_like_p (uiout))
2187 {
2188 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2189 ui_out_text (uiout, " bits/sec");
2190 }
2191 else if (rate < 1024)
2192 {
2193 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2194 ui_out_text (uiout, " bytes/sec");
2195 }
2196 else
2197 {
2198 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2199 ui_out_text (uiout, " KB/sec");
2200 }
8b93c638
JM
2201 }
2202 else
2203 {
ba5f2f8a 2204 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2205 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2206 }
2207 if (write_count > 0)
2208 {
2209 ui_out_text (uiout, ", ");
ba5f2f8a 2210 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2211 ui_out_text (uiout, " bytes/write");
2212 }
2213 ui_out_text (uiout, ".\n");
c906108c
SS
2214}
2215
2216/* This function allows the addition of incrementally linked object files.
2217 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2218/* Note: ezannoni 2000-04-13 This function/command used to have a
2219 special case syntax for the rombug target (Rombug is the boot
2220 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2221 rombug case, the user doesn't need to supply a text address,
2222 instead a call to target_link() (in target.c) would supply the
c378eb4e 2223 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2224
c906108c 2225static void
fba45db2 2226add_symbol_file_command (char *args, int from_tty)
c906108c 2227{
5af949e3 2228 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2229 char *filename = NULL;
d03de421 2230 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2231 char *arg;
db162d44 2232 int section_index = 0;
2acceee2
JM
2233 int argcnt = 0;
2234 int sec_num = 0;
2235 int i;
db162d44
EZ
2236 int expecting_sec_name = 0;
2237 int expecting_sec_addr = 0;
5b96932b 2238 char **argv;
76ad5e1e 2239 struct objfile *objf;
db162d44 2240
a39a16c4 2241 struct sect_opt
2acceee2 2242 {
2acceee2
JM
2243 char *name;
2244 char *value;
a39a16c4 2245 };
db162d44 2246
a39a16c4
MM
2247 struct section_addr_info *section_addrs;
2248 struct sect_opt *sect_opts = NULL;
2249 size_t num_sect_opts = 0;
3017564a 2250 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2251
a39a16c4 2252 num_sect_opts = 16;
8d749320 2253 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2254
c906108c
SS
2255 dont_repeat ();
2256
2257 if (args == NULL)
8a3fe4f8 2258 error (_("add-symbol-file takes a file name and an address"));
c906108c 2259
d1a41061 2260 argv = gdb_buildargv (args);
5b96932b 2261 make_cleanup_freeargv (argv);
db162d44 2262
5b96932b
AS
2263 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2264 {
c378eb4e 2265 /* Process the argument. */
db162d44 2266 if (argcnt == 0)
c906108c 2267 {
c378eb4e 2268 /* The first argument is the file name. */
db162d44 2269 filename = tilde_expand (arg);
3017564a 2270 make_cleanup (xfree, filename);
c906108c 2271 }
41dc8db8
MB
2272 else if (argcnt == 1)
2273 {
2274 /* The second argument is always the text address at which
2275 to load the program. */
2276 sect_opts[section_index].name = ".text";
2277 sect_opts[section_index].value = arg;
2278 if (++section_index >= num_sect_opts)
2279 {
2280 num_sect_opts *= 2;
2281 sect_opts = ((struct sect_opt *)
2282 xrealloc (sect_opts,
2283 num_sect_opts
2284 * sizeof (struct sect_opt)));
2285 }
2286 }
db162d44 2287 else
41dc8db8
MB
2288 {
2289 /* It's an option (starting with '-') or it's an argument
2290 to an option. */
41dc8db8
MB
2291 if (expecting_sec_name)
2292 {
2293 sect_opts[section_index].name = arg;
2294 expecting_sec_name = 0;
2295 }
2296 else if (expecting_sec_addr)
2297 {
2298 sect_opts[section_index].value = arg;
2299 expecting_sec_addr = 0;
2300 if (++section_index >= num_sect_opts)
2301 {
2302 num_sect_opts *= 2;
2303 sect_opts = ((struct sect_opt *)
2304 xrealloc (sect_opts,
2305 num_sect_opts
2306 * sizeof (struct sect_opt)));
2307 }
2308 }
2309 else if (strcmp (arg, "-readnow") == 0)
2310 flags |= OBJF_READNOW;
2311 else if (strcmp (arg, "-s") == 0)
2312 {
2313 expecting_sec_name = 1;
2314 expecting_sec_addr = 1;
2315 }
2316 else
2317 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2318 " [-readnow] [-s <secname> <addr>]*"));
2319 }
c906108c 2320 }
c906108c 2321
927890d0
JB
2322 /* This command takes at least two arguments. The first one is a
2323 filename, and the second is the address where this file has been
2324 loaded. Abort now if this address hasn't been provided by the
2325 user. */
2326 if (section_index < 1)
2327 error (_("The address where %s has been loaded is missing"), filename);
2328
c378eb4e 2329 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2330 a sect_addr_info structure to be passed around to other
2331 functions. We have to split this up into separate print
bb599908 2332 statements because hex_string returns a local static
c378eb4e 2333 string. */
5417f6dc 2334
a3f17187 2335 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2336 section_addrs = alloc_section_addr_info (section_index);
2337 make_cleanup (xfree, section_addrs);
db162d44 2338 for (i = 0; i < section_index; i++)
c906108c 2339 {
db162d44
EZ
2340 CORE_ADDR addr;
2341 char *val = sect_opts[i].value;
2342 char *sec = sect_opts[i].name;
5417f6dc 2343
ae822768 2344 addr = parse_and_eval_address (val);
db162d44 2345
db162d44 2346 /* Here we store the section offsets in the order they were
c378eb4e 2347 entered on the command line. */
a39a16c4
MM
2348 section_addrs->other[sec_num].name = sec;
2349 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2350 printf_unfiltered ("\t%s_addr = %s\n", sec,
2351 paddress (gdbarch, addr));
db162d44
EZ
2352 sec_num++;
2353
5417f6dc 2354 /* The object's sections are initialized when a
db162d44 2355 call is made to build_objfile_section_table (objfile).
5417f6dc 2356 This happens in reread_symbols.
db162d44
EZ
2357 At this point, we don't know what file type this is,
2358 so we can't determine what section names are valid. */
2acceee2 2359 }
d76488d8 2360 section_addrs->num_sections = sec_num;
db162d44 2361
2acceee2 2362 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2363 error (_("Not confirmed."));
c906108c 2364
76ad5e1e
NB
2365 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2366 section_addrs, flags);
2367
2368 add_target_sections_of_objfile (objf);
c906108c
SS
2369
2370 /* Getting new symbols may change our opinion about what is
2371 frameless. */
2372 reinit_frame_cache ();
db162d44 2373 do_cleanups (my_cleanups);
c906108c
SS
2374}
2375\f
70992597 2376
63644780
NB
2377/* This function removes a symbol file that was added via add-symbol-file. */
2378
2379static void
2380remove_symbol_file_command (char *args, int from_tty)
2381{
2382 char **argv;
2383 struct objfile *objf = NULL;
2384 struct cleanup *my_cleanups;
2385 struct program_space *pspace = current_program_space;
2386 struct gdbarch *gdbarch = get_current_arch ();
2387
2388 dont_repeat ();
2389
2390 if (args == NULL)
2391 error (_("remove-symbol-file: no symbol file provided"));
2392
2393 my_cleanups = make_cleanup (null_cleanup, NULL);
2394
2395 argv = gdb_buildargv (args);
2396
2397 if (strcmp (argv[0], "-a") == 0)
2398 {
2399 /* Interpret the next argument as an address. */
2400 CORE_ADDR addr;
2401
2402 if (argv[1] == NULL)
2403 error (_("Missing address argument"));
2404
2405 if (argv[2] != NULL)
2406 error (_("Junk after %s"), argv[1]);
2407
2408 addr = parse_and_eval_address (argv[1]);
2409
2410 ALL_OBJFILES (objf)
2411 {
d03de421
PA
2412 if ((objf->flags & OBJF_USERLOADED) != 0
2413 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2414 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2415 break;
2416 }
2417 }
2418 else if (argv[0] != NULL)
2419 {
2420 /* Interpret the current argument as a file name. */
2421 char *filename;
2422
2423 if (argv[1] != NULL)
2424 error (_("Junk after %s"), argv[0]);
2425
2426 filename = tilde_expand (argv[0]);
2427 make_cleanup (xfree, filename);
2428
2429 ALL_OBJFILES (objf)
2430 {
d03de421
PA
2431 if ((objf->flags & OBJF_USERLOADED) != 0
2432 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2433 && objf->pspace == pspace
2434 && filename_cmp (filename, objfile_name (objf)) == 0)
2435 break;
2436 }
2437 }
2438
2439 if (objf == NULL)
2440 error (_("No symbol file found"));
2441
2442 if (from_tty
2443 && !query (_("Remove symbol table from file \"%s\"? "),
2444 objfile_name (objf)))
2445 error (_("Not confirmed."));
2446
2447 free_objfile (objf);
2448 clear_symtab_users (0);
2449
2450 do_cleanups (my_cleanups);
2451}
2452
4ac39b97
JK
2453typedef struct objfile *objfilep;
2454
2455DEF_VEC_P (objfilep);
2456
c906108c 2457/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2458
c906108c 2459void
fba45db2 2460reread_symbols (void)
c906108c
SS
2461{
2462 struct objfile *objfile;
2463 long new_modtime;
c906108c
SS
2464 struct stat new_statbuf;
2465 int res;
4ac39b97
JK
2466 VEC (objfilep) *new_objfiles = NULL;
2467 struct cleanup *all_cleanups;
2468
2469 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2470
2471 /* With the addition of shared libraries, this should be modified,
2472 the load time should be saved in the partial symbol tables, since
2473 different tables may come from different source files. FIXME.
2474 This routine should then walk down each partial symbol table
c378eb4e 2475 and see if the symbol table that it originates from has been changed. */
c906108c 2476
c5aa993b
JM
2477 for (objfile = object_files; objfile; objfile = objfile->next)
2478 {
9cce227f
TG
2479 if (objfile->obfd == NULL)
2480 continue;
2481
2482 /* Separate debug objfiles are handled in the main objfile. */
2483 if (objfile->separate_debug_objfile_backlink)
2484 continue;
2485
02aeec7b
JB
2486 /* If this object is from an archive (what you usually create with
2487 `ar', often called a `static library' on most systems, though
2488 a `shared library' on AIX is also an archive), then you should
2489 stat on the archive name, not member name. */
9cce227f
TG
2490 if (objfile->obfd->my_archive)
2491 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2492 else
4262abfb 2493 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2494 if (res != 0)
2495 {
c378eb4e 2496 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2497 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2498 objfile_name (objfile));
9cce227f
TG
2499 continue;
2500 }
2501 new_modtime = new_statbuf.st_mtime;
2502 if (new_modtime != objfile->mtime)
2503 {
2504 struct cleanup *old_cleanups;
2505 struct section_offsets *offsets;
2506 int num_offsets;
24ba069a 2507 char *original_name;
9cce227f
TG
2508
2509 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2510 objfile_name (objfile));
9cce227f
TG
2511
2512 /* There are various functions like symbol_file_add,
2513 symfile_bfd_open, syms_from_objfile, etc., which might
2514 appear to do what we want. But they have various other
2515 effects which we *don't* want. So we just do stuff
2516 ourselves. We don't worry about mapped files (for one thing,
2517 any mapped file will be out of date). */
2518
2519 /* If we get an error, blow away this objfile (not sure if
2520 that is the correct response for things like shared
2521 libraries). */
2522 old_cleanups = make_cleanup_free_objfile (objfile);
2523 /* We need to do this whenever any symbols go away. */
2524 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2525
0ba1096a
KT
2526 if (exec_bfd != NULL
2527 && filename_cmp (bfd_get_filename (objfile->obfd),
2528 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2529 {
2530 /* Reload EXEC_BFD without asking anything. */
2531
2532 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2533 }
2534
f6eeced0
JK
2535 /* Keep the calls order approx. the same as in free_objfile. */
2536
2537 /* Free the separate debug objfiles. It will be
2538 automatically recreated by sym_read. */
2539 free_objfile_separate_debug (objfile);
2540
2541 /* Remove any references to this objfile in the global
2542 value lists. */
2543 preserve_values (objfile);
2544
2545 /* Nuke all the state that we will re-read. Much of the following
2546 code which sets things to NULL really is necessary to tell
2547 other parts of GDB that there is nothing currently there.
2548
2549 Try to keep the freeing order compatible with free_objfile. */
2550
2551 if (objfile->sf != NULL)
2552 {
2553 (*objfile->sf->sym_finish) (objfile);
2554 }
2555
2556 clear_objfile_data (objfile);
2557
e1507e95 2558 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2559 {
2560 struct bfd *obfd = objfile->obfd;
d3846e71 2561 char *obfd_filename;
a4453b7e
TT
2562
2563 obfd_filename = bfd_get_filename (objfile->obfd);
2564 /* Open the new BFD before freeing the old one, so that
2565 the filename remains live. */
2938e6cf 2566 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2567 if (objfile->obfd == NULL)
2568 {
2569 /* We have to make a cleanup and error here, rather
2570 than erroring later, because once we unref OBFD,
2571 OBFD_FILENAME will be freed. */
2572 make_cleanup_bfd_unref (obfd);
2573 error (_("Can't open %s to read symbols."), obfd_filename);
2574 }
a4453b7e
TT
2575 gdb_bfd_unref (obfd);
2576 }
2577
24ba069a
JK
2578 original_name = xstrdup (objfile->original_name);
2579 make_cleanup (xfree, original_name);
2580
9cce227f
TG
2581 /* bfd_openr sets cacheable to true, which is what we want. */
2582 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2583 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2584 bfd_errmsg (bfd_get_error ()));
2585
2586 /* Save the offsets, we will nuke them with the rest of the
2587 objfile_obstack. */
2588 num_offsets = objfile->num_sections;
2589 offsets = ((struct section_offsets *)
2590 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2591 memcpy (offsets, objfile->section_offsets,
2592 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2593
9cce227f
TG
2594 /* FIXME: Do we have to free a whole linked list, or is this
2595 enough? */
2596 if (objfile->global_psymbols.list)
2597 xfree (objfile->global_psymbols.list);
2598 memset (&objfile->global_psymbols, 0,
2599 sizeof (objfile->global_psymbols));
2600 if (objfile->static_psymbols.list)
2601 xfree (objfile->static_psymbols.list);
2602 memset (&objfile->static_psymbols, 0,
2603 sizeof (objfile->static_psymbols));
2604
c378eb4e 2605 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2606 psymbol_bcache_free (objfile->psymbol_cache);
2607 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2608 obstack_free (&objfile->objfile_obstack, 0);
2609 objfile->sections = NULL;
43f3e411 2610 objfile->compunit_symtabs = NULL;
9cce227f
TG
2611 objfile->psymtabs = NULL;
2612 objfile->psymtabs_addrmap = NULL;
2613 objfile->free_psymtabs = NULL;
34eaf542 2614 objfile->template_symbols = NULL;
9cce227f 2615
9cce227f
TG
2616 /* obstack_init also initializes the obstack so it is
2617 empty. We could use obstack_specify_allocation but
d82ea6a8 2618 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2619 obstack_init (&objfile->objfile_obstack);
779bd270 2620
846060df
JB
2621 /* set_objfile_per_bfd potentially allocates the per-bfd
2622 data on the objfile's obstack (if sharing data across
2623 multiple users is not possible), so it's important to
2624 do it *after* the obstack has been initialized. */
2625 set_objfile_per_bfd (objfile);
2626
224c3ddb
SM
2627 objfile->original_name
2628 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2629 strlen (original_name));
24ba069a 2630
779bd270
DE
2631 /* Reset the sym_fns pointer. The ELF reader can change it
2632 based on whether .gdb_index is present, and we need it to
2633 start over. PR symtab/15885 */
8fb8eb5c 2634 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2635
d82ea6a8 2636 build_objfile_section_table (objfile);
9cce227f
TG
2637 terminate_minimal_symbol_table (objfile);
2638
2639 /* We use the same section offsets as from last time. I'm not
2640 sure whether that is always correct for shared libraries. */
2641 objfile->section_offsets = (struct section_offsets *)
2642 obstack_alloc (&objfile->objfile_obstack,
2643 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2644 memcpy (objfile->section_offsets, offsets,
2645 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2646 objfile->num_sections = num_offsets;
2647
2648 /* What the hell is sym_new_init for, anyway? The concept of
2649 distinguishing between the main file and additional files
2650 in this way seems rather dubious. */
2651 if (objfile == symfile_objfile)
c906108c 2652 {
9cce227f 2653 (*objfile->sf->sym_new_init) (objfile);
c906108c 2654 }
9cce227f
TG
2655
2656 (*objfile->sf->sym_init) (objfile);
2657 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2658
2659 objfile->flags &= ~OBJF_PSYMTABS_READ;
2660 read_symbols (objfile, 0);
b11896a5 2661
9cce227f 2662 if (!objfile_has_symbols (objfile))
c906108c 2663 {
9cce227f
TG
2664 wrap_here ("");
2665 printf_unfiltered (_("(no debugging symbols found)\n"));
2666 wrap_here ("");
c5aa993b 2667 }
9cce227f
TG
2668
2669 /* We're done reading the symbol file; finish off complaints. */
2670 clear_complaints (&symfile_complaints, 0, 1);
2671
2672 /* Getting new symbols may change our opinion about what is
2673 frameless. */
2674
2675 reinit_frame_cache ();
2676
2677 /* Discard cleanups as symbol reading was successful. */
2678 discard_cleanups (old_cleanups);
2679
2680 /* If the mtime has changed between the time we set new_modtime
2681 and now, we *want* this to be out of date, so don't call stat
2682 again now. */
2683 objfile->mtime = new_modtime;
9cce227f 2684 init_entry_point_info (objfile);
4ac39b97
JK
2685
2686 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2687 }
2688 }
c906108c 2689
4ac39b97 2690 if (new_objfiles)
ea53e89f 2691 {
4ac39b97
JK
2692 int ix;
2693
ff3536bc
UW
2694 /* Notify objfiles that we've modified objfile sections. */
2695 objfiles_changed ();
2696
c1e56572 2697 clear_symtab_users (0);
4ac39b97
JK
2698
2699 /* clear_objfile_data for each objfile was called before freeing it and
2700 observer_notify_new_objfile (NULL) has been called by
2701 clear_symtab_users above. Notify the new files now. */
2702 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2703 observer_notify_new_objfile (objfile);
2704
ea53e89f
JB
2705 /* At least one objfile has changed, so we can consider that
2706 the executable we're debugging has changed too. */
781b42b0 2707 observer_notify_executable_changed ();
ea53e89f 2708 }
4ac39b97
JK
2709
2710 do_cleanups (all_cleanups);
c906108c 2711}
c906108c
SS
2712\f
2713
c5aa993b
JM
2714typedef struct
2715{
2716 char *ext;
c906108c 2717 enum language lang;
c5aa993b
JM
2718}
2719filename_language;
c906108c 2720
c5aa993b 2721static filename_language *filename_language_table;
c906108c
SS
2722static int fl_table_size, fl_table_next;
2723
2724static void
fba45db2 2725add_filename_language (char *ext, enum language lang)
c906108c
SS
2726{
2727 if (fl_table_next >= fl_table_size)
2728 {
2729 fl_table_size += 10;
224c3ddb
SM
2730 filename_language_table = XRESIZEVEC (filename_language,
2731 filename_language_table,
2732 fl_table_size);
c906108c
SS
2733 }
2734
4fcf66da 2735 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2736 filename_language_table[fl_table_next].lang = lang;
2737 fl_table_next++;
2738}
2739
2740static char *ext_args;
920d2a44
AC
2741static void
2742show_ext_args (struct ui_file *file, int from_tty,
2743 struct cmd_list_element *c, const char *value)
2744{
3e43a32a
MS
2745 fprintf_filtered (file,
2746 _("Mapping between filename extension "
2747 "and source language is \"%s\".\n"),
920d2a44
AC
2748 value);
2749}
c906108c
SS
2750
2751static void
26c41df3 2752set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2753{
2754 int i;
2755 char *cp = ext_args;
2756 enum language lang;
2757
c378eb4e 2758 /* First arg is filename extension, starting with '.' */
c906108c 2759 if (*cp != '.')
8a3fe4f8 2760 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2761
2762 /* Find end of first arg. */
c5aa993b 2763 while (*cp && !isspace (*cp))
c906108c
SS
2764 cp++;
2765
2766 if (*cp == '\0')
3e43a32a
MS
2767 error (_("'%s': two arguments required -- "
2768 "filename extension and language"),
c906108c
SS
2769 ext_args);
2770
c378eb4e 2771 /* Null-terminate first arg. */
c5aa993b 2772 *cp++ = '\0';
c906108c
SS
2773
2774 /* Find beginning of second arg, which should be a source language. */
529480d0 2775 cp = skip_spaces (cp);
c906108c
SS
2776
2777 if (*cp == '\0')
3e43a32a
MS
2778 error (_("'%s': two arguments required -- "
2779 "filename extension and language"),
c906108c
SS
2780 ext_args);
2781
2782 /* Lookup the language from among those we know. */
2783 lang = language_enum (cp);
2784
2785 /* Now lookup the filename extension: do we already know it? */
2786 for (i = 0; i < fl_table_next; i++)
2787 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2788 break;
2789
2790 if (i >= fl_table_next)
2791 {
c378eb4e 2792 /* New file extension. */
c906108c
SS
2793 add_filename_language (ext_args, lang);
2794 }
2795 else
2796 {
c378eb4e 2797 /* Redefining a previously known filename extension. */
c906108c
SS
2798
2799 /* if (from_tty) */
2800 /* query ("Really make files of type %s '%s'?", */
2801 /* ext_args, language_str (lang)); */
2802
b8c9b27d 2803 xfree (filename_language_table[i].ext);
4fcf66da 2804 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2805 filename_language_table[i].lang = lang;
2806 }
2807}
2808
2809static void
fba45db2 2810info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2811{
2812 int i;
2813
a3f17187 2814 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2815 printf_filtered ("\n\n");
2816 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2817 printf_filtered ("\t%s\t- %s\n",
2818 filename_language_table[i].ext,
c906108c
SS
2819 language_str (filename_language_table[i].lang));
2820}
2821
2822static void
fba45db2 2823init_filename_language_table (void)
c906108c 2824{
c378eb4e 2825 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2826 {
2827 fl_table_size = 20;
2828 fl_table_next = 0;
8d749320
SM
2829 filename_language_table = XNEWVEC (filename_language, fl_table_size);
2830
c5aa993b 2831 add_filename_language (".c", language_c);
6aecb9c2 2832 add_filename_language (".d", language_d);
c5aa993b
JM
2833 add_filename_language (".C", language_cplus);
2834 add_filename_language (".cc", language_cplus);
2835 add_filename_language (".cp", language_cplus);
2836 add_filename_language (".cpp", language_cplus);
2837 add_filename_language (".cxx", language_cplus);
2838 add_filename_language (".c++", language_cplus);
2839 add_filename_language (".java", language_java);
c906108c 2840 add_filename_language (".class", language_java);
da2cf7e0 2841 add_filename_language (".m", language_objc);
c5aa993b
JM
2842 add_filename_language (".f", language_fortran);
2843 add_filename_language (".F", language_fortran);
fd5700c7
JK
2844 add_filename_language (".for", language_fortran);
2845 add_filename_language (".FOR", language_fortran);
2846 add_filename_language (".ftn", language_fortran);
2847 add_filename_language (".FTN", language_fortran);
2848 add_filename_language (".fpp", language_fortran);
2849 add_filename_language (".FPP", language_fortran);
2850 add_filename_language (".f90", language_fortran);
2851 add_filename_language (".F90", language_fortran);
2852 add_filename_language (".f95", language_fortran);
2853 add_filename_language (".F95", language_fortran);
2854 add_filename_language (".f03", language_fortran);
2855 add_filename_language (".F03", language_fortran);
2856 add_filename_language (".f08", language_fortran);
2857 add_filename_language (".F08", language_fortran);
c5aa993b 2858 add_filename_language (".s", language_asm);
aa707ed0 2859 add_filename_language (".sx", language_asm);
c5aa993b 2860 add_filename_language (".S", language_asm);
c6fd39cd
PM
2861 add_filename_language (".pas", language_pascal);
2862 add_filename_language (".p", language_pascal);
2863 add_filename_language (".pp", language_pascal);
963a6417
PH
2864 add_filename_language (".adb", language_ada);
2865 add_filename_language (".ads", language_ada);
2866 add_filename_language (".a", language_ada);
2867 add_filename_language (".ada", language_ada);
dde59185 2868 add_filename_language (".dg", language_ada);
c906108c
SS
2869 }
2870}
2871
2872enum language
dd786858 2873deduce_language_from_filename (const char *filename)
c906108c
SS
2874{
2875 int i;
e6a959d6 2876 const char *cp;
c906108c
SS
2877
2878 if (filename != NULL)
2879 if ((cp = strrchr (filename, '.')) != NULL)
2880 for (i = 0; i < fl_table_next; i++)
2881 if (strcmp (cp, filename_language_table[i].ext) == 0)
2882 return filename_language_table[i].lang;
2883
2884 return language_unknown;
2885}
2886\f
43f3e411
DE
2887/* Allocate and initialize a new symbol table.
2888 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2889
2890struct symtab *
43f3e411 2891allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2892{
43f3e411
DE
2893 struct objfile *objfile = cust->objfile;
2894 struct symtab *symtab
2895 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2896
19ba03f4
SM
2897 symtab->filename
2898 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2899 objfile->per_bfd->filename_cache);
c5aa993b
JM
2900 symtab->fullname = NULL;
2901 symtab->language = deduce_language_from_filename (filename);
c906108c 2902
db0fec5c
DE
2903 /* This can be very verbose with lots of headers.
2904 Only print at higher debug levels. */
2905 if (symtab_create_debug >= 2)
45cfd468
DE
2906 {
2907 /* Be a bit clever with debugging messages, and don't print objfile
2908 every time, only when it changes. */
2909 static char *last_objfile_name = NULL;
2910
2911 if (last_objfile_name == NULL
4262abfb 2912 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2913 {
2914 xfree (last_objfile_name);
4262abfb 2915 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2916 fprintf_unfiltered (gdb_stdlog,
2917 "Creating one or more symtabs for objfile %s ...\n",
2918 last_objfile_name);
2919 }
2920 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2921 "Created symtab %s for module %s.\n",
2922 host_address_to_string (symtab), filename);
45cfd468
DE
2923 }
2924
43f3e411
DE
2925 /* Add it to CUST's list of symtabs. */
2926 if (cust->filetabs == NULL)
2927 {
2928 cust->filetabs = symtab;
2929 cust->last_filetab = symtab;
2930 }
2931 else
2932 {
2933 cust->last_filetab->next = symtab;
2934 cust->last_filetab = symtab;
2935 }
2936
2937 /* Backlink to the containing compunit symtab. */
2938 symtab->compunit_symtab = cust;
2939
2940 return symtab;
2941}
2942
2943/* Allocate and initialize a new compunit.
2944 NAME is the name of the main source file, if there is one, or some
2945 descriptive text if there are no source files. */
2946
2947struct compunit_symtab *
2948allocate_compunit_symtab (struct objfile *objfile, const char *name)
2949{
2950 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2951 struct compunit_symtab);
2952 const char *saved_name;
2953
2954 cu->objfile = objfile;
2955
2956 /* The name we record here is only for display/debugging purposes.
2957 Just save the basename to avoid path issues (too long for display,
2958 relative vs absolute, etc.). */
2959 saved_name = lbasename (name);
224c3ddb
SM
2960 cu->name
2961 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2962 strlen (saved_name));
43f3e411
DE
2963
2964 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2965
2966 if (symtab_create_debug)
2967 {
2968 fprintf_unfiltered (gdb_stdlog,
2969 "Created compunit symtab %s for %s.\n",
2970 host_address_to_string (cu),
2971 cu->name);
2972 }
2973
2974 return cu;
2975}
2976
2977/* Hook CU to the objfile it comes from. */
2978
2979void
2980add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2981{
2982 cu->next = cu->objfile->compunit_symtabs;
2983 cu->objfile->compunit_symtabs = cu;
c906108c 2984}
c906108c 2985\f
c5aa993b 2986
c906108c 2987/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2988 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2989
2990void
c1e56572 2991clear_symtab_users (int add_flags)
c906108c
SS
2992{
2993 /* Someday, we should do better than this, by only blowing away
2994 the things that really need to be blown. */
c0501be5
DJ
2995
2996 /* Clear the "current" symtab first, because it is no longer valid.
2997 breakpoint_re_set may try to access the current symtab. */
2998 clear_current_source_symtab_and_line ();
2999
c906108c 3000 clear_displays ();
1bfeeb0f 3001 clear_last_displayed_sal ();
c906108c 3002 clear_pc_function_cache ();
06d3b283 3003 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
3004
3005 /* Clear globals which might have pointed into a removed objfile.
3006 FIXME: It's not clear which of these are supposed to persist
3007 between expressions and which ought to be reset each time. */
3008 expression_context_block = NULL;
3009 innermost_block = NULL;
8756216b
DP
3010
3011 /* Varobj may refer to old symbols, perform a cleanup. */
3012 varobj_invalidate ();
3013
e700d1b2
JB
3014 /* Now that the various caches have been cleared, we can re_set
3015 our breakpoints without risking it using stale data. */
3016 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3017 breakpoint_re_set ();
c906108c
SS
3018}
3019
74b7792f
AC
3020static void
3021clear_symtab_users_cleanup (void *ignore)
3022{
c1e56572 3023 clear_symtab_users (0);
74b7792f 3024}
c906108c 3025\f
c906108c
SS
3026/* OVERLAYS:
3027 The following code implements an abstraction for debugging overlay sections.
3028
3029 The target model is as follows:
3030 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3031 same VMA, each with its own unique LMA (or load address).
c906108c 3032 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3033 sections, one by one, from the load address into the VMA address.
5417f6dc 3034 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3035 sections should be considered to be mapped from the VMA to the LMA.
3036 This information is used for symbol lookup, and memory read/write.
5417f6dc 3037 For instance, if a section has been mapped then its contents
c5aa993b 3038 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3039
3040 Two levels of debugger support for overlays are available. One is
3041 "manual", in which the debugger relies on the user to tell it which
3042 overlays are currently mapped. This level of support is
3043 implemented entirely in the core debugger, and the information about
3044 whether a section is mapped is kept in the objfile->obj_section table.
3045
3046 The second level of support is "automatic", and is only available if
3047 the target-specific code provides functionality to read the target's
3048 overlay mapping table, and translate its contents for the debugger
3049 (by updating the mapped state information in the obj_section tables).
3050
3051 The interface is as follows:
c5aa993b
JM
3052 User commands:
3053 overlay map <name> -- tell gdb to consider this section mapped
3054 overlay unmap <name> -- tell gdb to consider this section unmapped
3055 overlay list -- list the sections that GDB thinks are mapped
3056 overlay read-target -- get the target's state of what's mapped
3057 overlay off/manual/auto -- set overlay debugging state
3058 Functional interface:
3059 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3060 section, return that section.
5417f6dc 3061 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3062 the pc, either in its VMA or its LMA
714835d5 3063 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3064 section_is_overlay(sect): true if section's VMA != LMA
3065 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3066 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3067 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3068 overlay_mapped_address(...): map an address from section's LMA to VMA
3069 overlay_unmapped_address(...): map an address from section's VMA to LMA
3070 symbol_overlayed_address(...): Return a "current" address for symbol:
3071 either in VMA or LMA depending on whether
c378eb4e 3072 the symbol's section is currently mapped. */
c906108c
SS
3073
3074/* Overlay debugging state: */
3075
d874f1e2 3076enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3077int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3078
c906108c 3079/* Function: section_is_overlay (SECTION)
5417f6dc 3080 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3081 SECTION is loaded at an address different from where it will "run". */
3082
3083int
714835d5 3084section_is_overlay (struct obj_section *section)
c906108c 3085{
714835d5
UW
3086 if (overlay_debugging && section)
3087 {
3088 bfd *abfd = section->objfile->obfd;
3089 asection *bfd_section = section->the_bfd_section;
f888f159 3090
714835d5
UW
3091 if (bfd_section_lma (abfd, bfd_section) != 0
3092 && bfd_section_lma (abfd, bfd_section)
3093 != bfd_section_vma (abfd, bfd_section))
3094 return 1;
3095 }
c906108c
SS
3096
3097 return 0;
3098}
3099
3100/* Function: overlay_invalidate_all (void)
3101 Invalidate the mapped state of all overlay sections (mark it as stale). */
3102
3103static void
fba45db2 3104overlay_invalidate_all (void)
c906108c 3105{
c5aa993b 3106 struct objfile *objfile;
c906108c
SS
3107 struct obj_section *sect;
3108
3109 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3110 if (section_is_overlay (sect))
3111 sect->ovly_mapped = -1;
c906108c
SS
3112}
3113
714835d5 3114/* Function: section_is_mapped (SECTION)
5417f6dc 3115 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3116
3117 Access to the ovly_mapped flag is restricted to this function, so
3118 that we can do automatic update. If the global flag
3119 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3120 overlay_invalidate_all. If the mapped state of the particular
3121 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3122
714835d5
UW
3123int
3124section_is_mapped (struct obj_section *osect)
c906108c 3125{
9216df95
UW
3126 struct gdbarch *gdbarch;
3127
714835d5 3128 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3129 return 0;
3130
c5aa993b 3131 switch (overlay_debugging)
c906108c
SS
3132 {
3133 default:
d874f1e2 3134 case ovly_off:
c5aa993b 3135 return 0; /* overlay debugging off */
d874f1e2 3136 case ovly_auto: /* overlay debugging automatic */
1c772458 3137 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3138 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3139 gdbarch = get_objfile_arch (osect->objfile);
3140 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3141 {
3142 if (overlay_cache_invalid)
3143 {
3144 overlay_invalidate_all ();
3145 overlay_cache_invalid = 0;
3146 }
3147 if (osect->ovly_mapped == -1)
9216df95 3148 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3149 }
3150 /* fall thru to manual case */
d874f1e2 3151 case ovly_on: /* overlay debugging manual */
c906108c
SS
3152 return osect->ovly_mapped == 1;
3153 }
3154}
3155
c906108c
SS
3156/* Function: pc_in_unmapped_range
3157 If PC falls into the lma range of SECTION, return true, else false. */
3158
3159CORE_ADDR
714835d5 3160pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3161{
714835d5
UW
3162 if (section_is_overlay (section))
3163 {
3164 bfd *abfd = section->objfile->obfd;
3165 asection *bfd_section = section->the_bfd_section;
fbd35540 3166
714835d5
UW
3167 /* We assume the LMA is relocated by the same offset as the VMA. */
3168 bfd_vma size = bfd_get_section_size (bfd_section);
3169 CORE_ADDR offset = obj_section_offset (section);
3170
3171 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3172 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3173 return 1;
3174 }
c906108c 3175
c906108c
SS
3176 return 0;
3177}
3178
3179/* Function: pc_in_mapped_range
3180 If PC falls into the vma range of SECTION, return true, else false. */
3181
3182CORE_ADDR
714835d5 3183pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3184{
714835d5
UW
3185 if (section_is_overlay (section))
3186 {
3187 if (obj_section_addr (section) <= pc
3188 && pc < obj_section_endaddr (section))
3189 return 1;
3190 }
c906108c 3191
c906108c
SS
3192 return 0;
3193}
3194
9ec8e6a0
JB
3195/* Return true if the mapped ranges of sections A and B overlap, false
3196 otherwise. */
3b7bacac 3197
b9362cc7 3198static int
714835d5 3199sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3200{
714835d5
UW
3201 CORE_ADDR a_start = obj_section_addr (a);
3202 CORE_ADDR a_end = obj_section_endaddr (a);
3203 CORE_ADDR b_start = obj_section_addr (b);
3204 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3205
3206 return (a_start < b_end && b_start < a_end);
3207}
3208
c906108c
SS
3209/* Function: overlay_unmapped_address (PC, SECTION)
3210 Returns the address corresponding to PC in the unmapped (load) range.
3211 May be the same as PC. */
3212
3213CORE_ADDR
714835d5 3214overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3215{
714835d5
UW
3216 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3217 {
3218 bfd *abfd = section->objfile->obfd;
3219 asection *bfd_section = section->the_bfd_section;
fbd35540 3220
714835d5
UW
3221 return pc + bfd_section_lma (abfd, bfd_section)
3222 - bfd_section_vma (abfd, bfd_section);
3223 }
c906108c
SS
3224
3225 return pc;
3226}
3227
3228/* Function: overlay_mapped_address (PC, SECTION)
3229 Returns the address corresponding to PC in the mapped (runtime) range.
3230 May be the same as PC. */
3231
3232CORE_ADDR
714835d5 3233overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3234{
714835d5
UW
3235 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3236 {
3237 bfd *abfd = section->objfile->obfd;
3238 asection *bfd_section = section->the_bfd_section;
fbd35540 3239
714835d5
UW
3240 return pc + bfd_section_vma (abfd, bfd_section)
3241 - bfd_section_lma (abfd, bfd_section);
3242 }
c906108c
SS
3243
3244 return pc;
3245}
3246
5417f6dc 3247/* Function: symbol_overlayed_address
c906108c
SS
3248 Return one of two addresses (relative to the VMA or to the LMA),
3249 depending on whether the section is mapped or not. */
3250
c5aa993b 3251CORE_ADDR
714835d5 3252symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3253{
3254 if (overlay_debugging)
3255 {
c378eb4e 3256 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3257 if (section == 0)
3258 return address;
c378eb4e
MS
3259 /* If the symbol's section is not an overlay, just return its
3260 address. */
c906108c
SS
3261 if (!section_is_overlay (section))
3262 return address;
c378eb4e 3263 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3264 if (section_is_mapped (section))
3265 return address;
3266 /*
3267 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3268 * then return its LOADED address rather than its vma address!!
3269 */
3270 return overlay_unmapped_address (address, section);
3271 }
3272 return address;
3273}
3274
5417f6dc 3275/* Function: find_pc_overlay (PC)
c906108c
SS
3276 Return the best-match overlay section for PC:
3277 If PC matches a mapped overlay section's VMA, return that section.
3278 Else if PC matches an unmapped section's VMA, return that section.
3279 Else if PC matches an unmapped section's LMA, return that section. */
3280
714835d5 3281struct obj_section *
fba45db2 3282find_pc_overlay (CORE_ADDR pc)
c906108c 3283{
c5aa993b 3284 struct objfile *objfile;
c906108c
SS
3285 struct obj_section *osect, *best_match = NULL;
3286
3287 if (overlay_debugging)
3288 ALL_OBJSECTIONS (objfile, osect)
714835d5 3289 if (section_is_overlay (osect))
c5aa993b 3290 {
714835d5 3291 if (pc_in_mapped_range (pc, osect))
c5aa993b 3292 {
714835d5
UW
3293 if (section_is_mapped (osect))
3294 return osect;
c5aa993b
JM
3295 else
3296 best_match = osect;
3297 }
714835d5 3298 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3299 best_match = osect;
3300 }
714835d5 3301 return best_match;
c906108c
SS
3302}
3303
3304/* Function: find_pc_mapped_section (PC)
5417f6dc 3305 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3306 currently marked as MAPPED, return that section. Else return NULL. */
3307
714835d5 3308struct obj_section *
fba45db2 3309find_pc_mapped_section (CORE_ADDR pc)
c906108c 3310{
c5aa993b 3311 struct objfile *objfile;
c906108c
SS
3312 struct obj_section *osect;
3313
3314 if (overlay_debugging)
3315 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3316 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3317 return osect;
c906108c
SS
3318
3319 return NULL;
3320}
3321
3322/* Function: list_overlays_command
c378eb4e 3323 Print a list of mapped sections and their PC ranges. */
c906108c 3324
5d3055ad 3325static void
fba45db2 3326list_overlays_command (char *args, int from_tty)
c906108c 3327{
c5aa993b
JM
3328 int nmapped = 0;
3329 struct objfile *objfile;
c906108c
SS
3330 struct obj_section *osect;
3331
3332 if (overlay_debugging)
3333 ALL_OBJSECTIONS (objfile, osect)
714835d5 3334 if (section_is_mapped (osect))
c5aa993b 3335 {
5af949e3 3336 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3337 const char *name;
3338 bfd_vma lma, vma;
3339 int size;
3340
3341 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3342 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3343 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3344 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3345
3346 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3347 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3348 puts_filtered (" - ");
5af949e3 3349 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3350 printf_filtered (", mapped at ");
5af949e3 3351 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3352 puts_filtered (" - ");
5af949e3 3353 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3354 puts_filtered ("\n");
3355
3356 nmapped++;
3357 }
c906108c 3358 if (nmapped == 0)
a3f17187 3359 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3360}
3361
3362/* Function: map_overlay_command
3363 Mark the named section as mapped (ie. residing at its VMA address). */
3364
5d3055ad 3365static void
fba45db2 3366map_overlay_command (char *args, int from_tty)
c906108c 3367{
c5aa993b
JM
3368 struct objfile *objfile, *objfile2;
3369 struct obj_section *sec, *sec2;
c906108c
SS
3370
3371 if (!overlay_debugging)
3e43a32a
MS
3372 error (_("Overlay debugging not enabled. Use "
3373 "either the 'overlay auto' or\n"
3374 "the 'overlay manual' command."));
c906108c
SS
3375
3376 if (args == 0 || *args == 0)
8a3fe4f8 3377 error (_("Argument required: name of an overlay section"));
c906108c 3378
c378eb4e 3379 /* First, find a section matching the user supplied argument. */
c906108c
SS
3380 ALL_OBJSECTIONS (objfile, sec)
3381 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3382 {
c378eb4e 3383 /* Now, check to see if the section is an overlay. */
714835d5 3384 if (!section_is_overlay (sec))
c5aa993b
JM
3385 continue; /* not an overlay section */
3386
c378eb4e 3387 /* Mark the overlay as "mapped". */
c5aa993b
JM
3388 sec->ovly_mapped = 1;
3389
3390 /* Next, make a pass and unmap any sections that are
3391 overlapped by this new section: */
3392 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3393 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3394 {
3395 if (info_verbose)
a3f17187 3396 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3397 bfd_section_name (objfile->obfd,
3398 sec2->the_bfd_section));
c378eb4e 3399 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3400 }
3401 return;
3402 }
8a3fe4f8 3403 error (_("No overlay section called %s"), args);
c906108c
SS
3404}
3405
3406/* Function: unmap_overlay_command
5417f6dc 3407 Mark the overlay section as unmapped
c906108c
SS
3408 (ie. resident in its LMA address range, rather than the VMA range). */
3409
5d3055ad 3410static void
fba45db2 3411unmap_overlay_command (char *args, int from_tty)
c906108c 3412{
c5aa993b 3413 struct objfile *objfile;
7a270e0c 3414 struct obj_section *sec = NULL;
c906108c
SS
3415
3416 if (!overlay_debugging)
3e43a32a
MS
3417 error (_("Overlay debugging not enabled. "
3418 "Use either the 'overlay auto' or\n"
3419 "the 'overlay manual' command."));
c906108c
SS
3420
3421 if (args == 0 || *args == 0)
8a3fe4f8 3422 error (_("Argument required: name of an overlay section"));
c906108c 3423
c378eb4e 3424 /* First, find a section matching the user supplied argument. */
c906108c
SS
3425 ALL_OBJSECTIONS (objfile, sec)
3426 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3427 {
3428 if (!sec->ovly_mapped)
8a3fe4f8 3429 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3430 sec->ovly_mapped = 0;
3431 return;
3432 }
8a3fe4f8 3433 error (_("No overlay section called %s"), args);
c906108c
SS
3434}
3435
3436/* Function: overlay_auto_command
3437 A utility command to turn on overlay debugging.
c378eb4e 3438 Possibly this should be done via a set/show command. */
c906108c
SS
3439
3440static void
fba45db2 3441overlay_auto_command (char *args, int from_tty)
c906108c 3442{
d874f1e2 3443 overlay_debugging = ovly_auto;
1900040c 3444 enable_overlay_breakpoints ();
c906108c 3445 if (info_verbose)
a3f17187 3446 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3447}
3448
3449/* Function: overlay_manual_command
3450 A utility command to turn on overlay debugging.
c378eb4e 3451 Possibly this should be done via a set/show command. */
c906108c
SS
3452
3453static void
fba45db2 3454overlay_manual_command (char *args, int from_tty)
c906108c 3455{
d874f1e2 3456 overlay_debugging = ovly_on;
1900040c 3457 disable_overlay_breakpoints ();
c906108c 3458 if (info_verbose)
a3f17187 3459 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3460}
3461
3462/* Function: overlay_off_command
3463 A utility command to turn on overlay debugging.
c378eb4e 3464 Possibly this should be done via a set/show command. */
c906108c
SS
3465
3466static void
fba45db2 3467overlay_off_command (char *args, int from_tty)
c906108c 3468{
d874f1e2 3469 overlay_debugging = ovly_off;
1900040c 3470 disable_overlay_breakpoints ();
c906108c 3471 if (info_verbose)
a3f17187 3472 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3473}
3474
3475static void
fba45db2 3476overlay_load_command (char *args, int from_tty)
c906108c 3477{
e17c207e
UW
3478 struct gdbarch *gdbarch = get_current_arch ();
3479
3480 if (gdbarch_overlay_update_p (gdbarch))
3481 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3482 else
8a3fe4f8 3483 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3484}
3485
3486/* Function: overlay_command
c378eb4e 3487 A place-holder for a mis-typed command. */
c906108c 3488
c378eb4e 3489/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3490static struct cmd_list_element *overlaylist;
c906108c
SS
3491
3492static void
fba45db2 3493overlay_command (char *args, int from_tty)
c906108c 3494{
c5aa993b 3495 printf_unfiltered
c906108c 3496 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3497 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3498}
3499
c906108c
SS
3500/* Target Overlays for the "Simplest" overlay manager:
3501
5417f6dc
RM
3502 This is GDB's default target overlay layer. It works with the
3503 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3504 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3505 so targets that use a different runtime overlay manager can
c906108c
SS
3506 substitute their own overlay_update function and take over the
3507 function pointer.
3508
3509 The overlay_update function pokes around in the target's data structures
3510 to see what overlays are mapped, and updates GDB's overlay mapping with
3511 this information.
3512
3513 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3514 unsigned _novlys; /# number of overlay sections #/
3515 unsigned _ovly_table[_novlys][4] = {
438e1e42 3516 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3517 {..., ..., ..., ...},
3518 }
3519 unsigned _novly_regions; /# number of overlay regions #/
3520 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3521 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3522 {..., ..., ...},
3523 }
c906108c
SS
3524 These functions will attempt to update GDB's mappedness state in the
3525 symbol section table, based on the target's mappedness state.
3526
3527 To do this, we keep a cached copy of the target's _ovly_table, and
3528 attempt to detect when the cached copy is invalidated. The main
3529 entry point is "simple_overlay_update(SECT), which looks up SECT in
3530 the cached table and re-reads only the entry for that section from
c378eb4e 3531 the target (whenever possible). */
c906108c
SS
3532
3533/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3534static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3535static unsigned cache_novlys = 0;
c906108c 3536static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3537enum ovly_index
3538 {
438e1e42 3539 VMA, OSIZE, LMA, MAPPED
c5aa993b 3540 };
c906108c 3541
c378eb4e 3542/* Throw away the cached copy of _ovly_table. */
3b7bacac 3543
c906108c 3544static void
fba45db2 3545simple_free_overlay_table (void)
c906108c
SS
3546{
3547 if (cache_ovly_table)
b8c9b27d 3548 xfree (cache_ovly_table);
c5aa993b 3549 cache_novlys = 0;
c906108c
SS
3550 cache_ovly_table = NULL;
3551 cache_ovly_table_base = 0;
3552}
3553
9216df95 3554/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3555 Convert to host order. int LEN is number of ints. */
3b7bacac 3556
c906108c 3557static void
9216df95 3558read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3559 int len, int size, enum bfd_endian byte_order)
c906108c 3560{
c378eb4e 3561 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3562 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3563 int i;
c906108c 3564
9216df95 3565 read_memory (memaddr, buf, len * size);
c906108c 3566 for (i = 0; i < len; i++)
e17a4113 3567 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3568}
3569
3570/* Find and grab a copy of the target _ovly_table
c378eb4e 3571 (and _novlys, which is needed for the table's size). */
3b7bacac 3572
c5aa993b 3573static int
fba45db2 3574simple_read_overlay_table (void)
c906108c 3575{
3b7344d5 3576 struct bound_minimal_symbol novlys_msym;
7c7b6655 3577 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3578 struct gdbarch *gdbarch;
3579 int word_size;
e17a4113 3580 enum bfd_endian byte_order;
c906108c
SS
3581
3582 simple_free_overlay_table ();
9b27852e 3583 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3584 if (! novlys_msym.minsym)
c906108c 3585 {
8a3fe4f8 3586 error (_("Error reading inferior's overlay table: "
0d43edd1 3587 "couldn't find `_novlys' variable\n"
8a3fe4f8 3588 "in inferior. Use `overlay manual' mode."));
0d43edd1 3589 return 0;
c906108c 3590 }
0d43edd1 3591
7c7b6655
TT
3592 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3593 if (! ovly_table_msym.minsym)
0d43edd1 3594 {
8a3fe4f8 3595 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3596 "`_ovly_table' array\n"
8a3fe4f8 3597 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3598 return 0;
3599 }
3600
7c7b6655 3601 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3602 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3603 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3604
77e371c0
TT
3605 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3606 4, byte_order);
0d43edd1 3607 cache_ovly_table
224c3ddb 3608 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3609 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3610 read_target_long_array (cache_ovly_table_base,
777ea8f1 3611 (unsigned int *) cache_ovly_table,
e17a4113 3612 cache_novlys * 4, word_size, byte_order);
0d43edd1 3613
c5aa993b 3614 return 1; /* SUCCESS */
c906108c
SS
3615}
3616
5417f6dc 3617/* Function: simple_overlay_update_1
c906108c
SS
3618 A helper function for simple_overlay_update. Assuming a cached copy
3619 of _ovly_table exists, look through it to find an entry whose vma,
3620 lma and size match those of OSECT. Re-read the entry and make sure
3621 it still matches OSECT (else the table may no longer be valid).
3622 Set OSECT's mapped state to match the entry. Return: 1 for
3623 success, 0 for failure. */
3624
3625static int
fba45db2 3626simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3627{
3628 int i, size;
fbd35540
MS
3629 bfd *obfd = osect->objfile->obfd;
3630 asection *bsect = osect->the_bfd_section;
9216df95
UW
3631 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3632 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3634
2c500098 3635 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3636 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3637 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3638 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3639 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c 3640 {
9216df95
UW
3641 read_target_long_array (cache_ovly_table_base + i * word_size,
3642 (unsigned int *) cache_ovly_table[i],
e17a4113 3643 4, word_size, byte_order);
fbd35540
MS
3644 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3645 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3646 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c
SS
3647 {
3648 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3649 return 1;
3650 }
c378eb4e 3651 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3652 return 0;
3653 }
3654 return 0;
3655}
3656
3657/* Function: simple_overlay_update
5417f6dc
RM
3658 If OSECT is NULL, then update all sections' mapped state
3659 (after re-reading the entire target _ovly_table).
3660 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3661 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3662 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3663 re-read the entire cache, and go ahead and update all sections. */
3664
1c772458 3665void
fba45db2 3666simple_overlay_update (struct obj_section *osect)
c906108c 3667{
c5aa993b 3668 struct objfile *objfile;
c906108c 3669
c378eb4e 3670 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3671 if (osect)
c378eb4e 3672 /* Have we got a cached copy of the target's overlay table? */
c906108c 3673 if (cache_ovly_table != NULL)
9cc89665
MS
3674 {
3675 /* Does its cached location match what's currently in the
3676 symtab? */
3b7344d5 3677 struct bound_minimal_symbol minsym
9cc89665
MS
3678 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3679
3b7344d5 3680 if (minsym.minsym == NULL)
9cc89665
MS
3681 error (_("Error reading inferior's overlay table: couldn't "
3682 "find `_ovly_table' array\n"
3683 "in inferior. Use `overlay manual' mode."));
3684
77e371c0 3685 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3686 /* Then go ahead and try to look up this single section in
3687 the cache. */
3688 if (simple_overlay_update_1 (osect))
3689 /* Found it! We're done. */
3690 return;
3691 }
c906108c
SS
3692
3693 /* Cached table no good: need to read the entire table anew.
3694 Or else we want all the sections, in which case it's actually
3695 more efficient to read the whole table in one block anyway. */
3696
0d43edd1
JB
3697 if (! simple_read_overlay_table ())
3698 return;
3699
c378eb4e 3700 /* Now may as well update all sections, even if only one was requested. */
c906108c 3701 ALL_OBJSECTIONS (objfile, osect)
714835d5 3702 if (section_is_overlay (osect))
c5aa993b
JM
3703 {
3704 int i, size;
fbd35540
MS
3705 bfd *obfd = osect->objfile->obfd;
3706 asection *bsect = osect->the_bfd_section;
c5aa993b 3707
2c500098 3708 size = bfd_get_section_size (bsect);
c5aa993b 3709 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3710 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3711 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3712 /* && cache_ovly_table[i][OSIZE] == size */ )
c378eb4e 3713 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3714 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3715 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3716 }
3717 }
c906108c
SS
3718}
3719
086df311
DJ
3720/* Set the output sections and output offsets for section SECTP in
3721 ABFD. The relocation code in BFD will read these offsets, so we
3722 need to be sure they're initialized. We map each section to itself,
3723 with no offset; this means that SECTP->vma will be honored. */
3724
3725static void
3726symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3727{
3728 sectp->output_section = sectp;
3729 sectp->output_offset = 0;
3730}
3731
ac8035ab
TG
3732/* Default implementation for sym_relocate. */
3733
ac8035ab
TG
3734bfd_byte *
3735default_symfile_relocate (struct objfile *objfile, asection *sectp,
3736 bfd_byte *buf)
3737{
3019eac3
DE
3738 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3739 DWO file. */
3740 bfd *abfd = sectp->owner;
ac8035ab
TG
3741
3742 /* We're only interested in sections with relocation
3743 information. */
3744 if ((sectp->flags & SEC_RELOC) == 0)
3745 return NULL;
3746
3747 /* We will handle section offsets properly elsewhere, so relocate as if
3748 all sections begin at 0. */
3749 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3750
3751 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3752}
3753
086df311
DJ
3754/* Relocate the contents of a debug section SECTP in ABFD. The
3755 contents are stored in BUF if it is non-NULL, or returned in a
3756 malloc'd buffer otherwise.
3757
3758 For some platforms and debug info formats, shared libraries contain
3759 relocations against the debug sections (particularly for DWARF-2;
3760 one affected platform is PowerPC GNU/Linux, although it depends on
3761 the version of the linker in use). Also, ELF object files naturally
3762 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3763 the relocations in order to get the locations of symbols correct.
3764 Another example that may require relocation processing, is the
3765 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3766 debug section. */
086df311
DJ
3767
3768bfd_byte *
ac8035ab
TG
3769symfile_relocate_debug_section (struct objfile *objfile,
3770 asection *sectp, bfd_byte *buf)
086df311 3771{
ac8035ab 3772 gdb_assert (objfile->sf->sym_relocate);
086df311 3773
ac8035ab 3774 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3775}
c906108c 3776
31d99776
DJ
3777struct symfile_segment_data *
3778get_symfile_segment_data (bfd *abfd)
3779{
00b5771c 3780 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3781
3782 if (sf == NULL)
3783 return NULL;
3784
3785 return sf->sym_segments (abfd);
3786}
3787
3788void
3789free_symfile_segment_data (struct symfile_segment_data *data)
3790{
3791 xfree (data->segment_bases);
3792 xfree (data->segment_sizes);
3793 xfree (data->segment_info);
3794 xfree (data);
3795}
3796
28c32713
JB
3797/* Given:
3798 - DATA, containing segment addresses from the object file ABFD, and
3799 the mapping from ABFD's sections onto the segments that own them,
3800 and
3801 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3802 segment addresses reported by the target,
3803 store the appropriate offsets for each section in OFFSETS.
3804
3805 If there are fewer entries in SEGMENT_BASES than there are segments
3806 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3807
8d385431
DJ
3808 If there are more entries, then ignore the extra. The target may
3809 not be able to distinguish between an empty data segment and a
3810 missing data segment; a missing text segment is less plausible. */
3b7bacac 3811
31d99776 3812int
3189cb12
DE
3813symfile_map_offsets_to_segments (bfd *abfd,
3814 const struct symfile_segment_data *data,
31d99776
DJ
3815 struct section_offsets *offsets,
3816 int num_segment_bases,
3817 const CORE_ADDR *segment_bases)
3818{
3819 int i;
3820 asection *sect;
3821
28c32713
JB
3822 /* It doesn't make sense to call this function unless you have some
3823 segment base addresses. */
202b96c1 3824 gdb_assert (num_segment_bases > 0);
28c32713 3825
31d99776
DJ
3826 /* If we do not have segment mappings for the object file, we
3827 can not relocate it by segments. */
3828 gdb_assert (data != NULL);
3829 gdb_assert (data->num_segments > 0);
3830
31d99776
DJ
3831 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3832 {
31d99776
DJ
3833 int which = data->segment_info[i];
3834
28c32713
JB
3835 gdb_assert (0 <= which && which <= data->num_segments);
3836
3837 /* Don't bother computing offsets for sections that aren't
3838 loaded as part of any segment. */
3839 if (! which)
3840 continue;
3841
3842 /* Use the last SEGMENT_BASES entry as the address of any extra
3843 segments mentioned in DATA->segment_info. */
31d99776 3844 if (which > num_segment_bases)
28c32713 3845 which = num_segment_bases;
31d99776 3846
28c32713
JB
3847 offsets->offsets[i] = (segment_bases[which - 1]
3848 - data->segment_bases[which - 1]);
31d99776
DJ
3849 }
3850
3851 return 1;
3852}
3853
3854static void
3855symfile_find_segment_sections (struct objfile *objfile)
3856{
3857 bfd *abfd = objfile->obfd;
3858 int i;
3859 asection *sect;
3860 struct symfile_segment_data *data;
3861
3862 data = get_symfile_segment_data (objfile->obfd);
3863 if (data == NULL)
3864 return;
3865
3866 if (data->num_segments != 1 && data->num_segments != 2)
3867 {
3868 free_symfile_segment_data (data);
3869 return;
3870 }
3871
3872 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3873 {
31d99776
DJ
3874 int which = data->segment_info[i];
3875
3876 if (which == 1)
3877 {
3878 if (objfile->sect_index_text == -1)
3879 objfile->sect_index_text = sect->index;
3880
3881 if (objfile->sect_index_rodata == -1)
3882 objfile->sect_index_rodata = sect->index;
3883 }
3884 else if (which == 2)
3885 {
3886 if (objfile->sect_index_data == -1)
3887 objfile->sect_index_data = sect->index;
3888
3889 if (objfile->sect_index_bss == -1)
3890 objfile->sect_index_bss = sect->index;
3891 }
3892 }
3893
3894 free_symfile_segment_data (data);
3895}
3896
76ad5e1e
NB
3897/* Listen for free_objfile events. */
3898
3899static void
3900symfile_free_objfile (struct objfile *objfile)
3901{
c33b2f12
MM
3902 /* Remove the target sections owned by this objfile. */
3903 if (objfile != NULL)
76ad5e1e
NB
3904 remove_target_sections ((void *) objfile);
3905}
3906
540c2971
DE
3907/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3908 Expand all symtabs that match the specified criteria.
3909 See quick_symbol_functions.expand_symtabs_matching for details. */
3910
3911void
bb4142cf
DE
3912expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3913 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3914 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3915 enum search_domain kind,
3916 void *data)
540c2971
DE
3917{
3918 struct objfile *objfile;
3919
3920 ALL_OBJFILES (objfile)
3921 {
3922 if (objfile->sf)
bb4142cf 3923 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3924 symbol_matcher,
3925 expansion_notify, kind,
bb4142cf 3926 data);
540c2971
DE
3927 }
3928}
3929
3930/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3931 Map function FUN over every file.
3932 See quick_symbol_functions.map_symbol_filenames for details. */
3933
3934void
bb4142cf
DE
3935map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3936 int need_fullname)
540c2971
DE
3937{
3938 struct objfile *objfile;
3939
3940 ALL_OBJFILES (objfile)
3941 {
3942 if (objfile->sf)
3943 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3944 need_fullname);
3945 }
3946}
3947
c906108c 3948void
fba45db2 3949_initialize_symfile (void)
c906108c
SS
3950{
3951 struct cmd_list_element *c;
c5aa993b 3952
76ad5e1e
NB
3953 observer_attach_free_objfile (symfile_free_objfile);
3954
1a966eab
AC
3955 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3956Load symbol table from executable file FILE.\n\
c906108c 3957The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3958to execute."), &cmdlist);
5ba2abeb 3959 set_cmd_completer (c, filename_completer);
c906108c 3960
1a966eab 3961 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3962Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3963Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3964 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3965The optional arguments are section-name section-address pairs and\n\
3966should be specified if the data and bss segments are not contiguous\n\
1a966eab 3967with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3968 &cmdlist);
5ba2abeb 3969 set_cmd_completer (c, filename_completer);
c906108c 3970
63644780
NB
3971 c = add_cmd ("remove-symbol-file", class_files,
3972 remove_symbol_file_command, _("\
3973Remove a symbol file added via the add-symbol-file command.\n\
3974Usage: remove-symbol-file FILENAME\n\
3975 remove-symbol-file -a ADDRESS\n\
3976The file to remove can be identified by its filename or by an address\n\
3977that lies within the boundaries of this symbol file in memory."),
3978 &cmdlist);
3979
1a966eab
AC
3980 c = add_cmd ("load", class_files, load_command, _("\
3981Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3982for access from GDB.\n\
3983A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3984 set_cmd_completer (c, filename_completer);
c906108c 3985
c5aa993b 3986 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3987 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3988 "overlay ", 0, &cmdlist);
3989
3990 add_com_alias ("ovly", "overlay", class_alias, 1);
3991 add_com_alias ("ov", "overlay", class_alias, 1);
3992
c5aa993b 3993 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3994 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3995
c5aa993b 3996 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3997 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3998
c5aa993b 3999 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4000 _("List mappings of overlay sections."), &overlaylist);
c906108c 4001
c5aa993b 4002 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4003 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4004 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4005 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4006 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4007 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4008 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4009 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4010
4011 /* Filename extension to source language lookup table: */
4012 init_filename_language_table ();
26c41df3
AC
4013 add_setshow_string_noescape_cmd ("extension-language", class_files,
4014 &ext_args, _("\
4015Set mapping between filename extension and source language."), _("\
4016Show mapping between filename extension and source language."), _("\
4017Usage: set extension-language .foo bar"),
4018 set_ext_lang_command,
920d2a44 4019 show_ext_args,
26c41df3 4020 &setlist, &showlist);
c906108c 4021
c5aa993b 4022 add_info ("extensions", info_ext_lang_command,
1bedd215 4023 _("All filename extensions associated with a source language."));
917317f4 4024
525226b5
AC
4025 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4026 &debug_file_directory, _("\
24ddea62
JK
4027Set the directories where separate debug symbols are searched for."), _("\
4028Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4029Separate debug symbols are first searched for in the same\n\
4030directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4031and lastly at the path of the directory of the binary with\n\
24ddea62 4032each global debug-file-directory component prepended."),
525226b5 4033 NULL,
920d2a44 4034 show_debug_file_directory,
525226b5 4035 &setlist, &showlist);
770e7fc7
DE
4036
4037 add_setshow_enum_cmd ("symbol-loading", no_class,
4038 print_symbol_loading_enums, &print_symbol_loading,
4039 _("\
4040Set printing of symbol loading messages."), _("\
4041Show printing of symbol loading messages."), _("\
4042off == turn all messages off\n\
4043brief == print messages for the executable,\n\
4044 and brief messages for shared libraries\n\
4045full == print messages for the executable,\n\
4046 and messages for each shared library."),
4047 NULL,
4048 NULL,
4049 &setprintlist, &showprintlist);
c906108c 4050}
This page took 1.95127 seconds and 4 git commands to generate.