Make symfile_add_flags and objfile->flags strongly typed
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
438e1e42 65#include "gdb_sys_time.h"
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
b15cc25c
PA
88static void symbol_file_add_main_1 (const char *args, int from_tty,
89 objfile_flags flags);
d7db6da9 90
a14ed312 91static void add_symbol_file_command (char *, int);
c906108c 92
00b5771c 93static const struct sym_fns *find_sym_fns (bfd *);
c906108c 94
a14ed312 95static void decrement_reading_symtab (void *);
c906108c 96
a14ed312 97static void overlay_invalidate_all (void);
c906108c 98
a14ed312 99static void overlay_auto_command (char *, int);
c906108c 100
a14ed312 101static void overlay_manual_command (char *, int);
c906108c 102
a14ed312 103static void overlay_off_command (char *, int);
c906108c 104
a14ed312 105static void overlay_load_command (char *, int);
c906108c 106
a14ed312 107static void overlay_command (char *, int);
c906108c 108
a14ed312 109static void simple_free_overlay_table (void);
c906108c 110
e17a4113
UW
111static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
112 enum bfd_endian);
c906108c 113
a14ed312 114static int simple_read_overlay_table (void);
c906108c 115
a14ed312 116static int simple_overlay_update_1 (struct obj_section *);
c906108c 117
a14ed312 118static void info_ext_lang_command (char *args, int from_tty);
392a587b 119
31d99776
DJ
120static void symfile_find_segment_sections (struct objfile *objfile);
121
a14ed312 122void _initialize_symfile (void);
c906108c
SS
123
124/* List of all available sym_fns. On gdb startup, each object file reader
125 calls add_symtab_fns() to register information on each format it is
c378eb4e 126 prepared to read. */
c906108c 127
c256e171
DE
128typedef struct
129{
130 /* BFD flavour that we handle. */
131 enum bfd_flavour sym_flavour;
132
133 /* The "vtable" of symbol functions. */
134 const struct sym_fns *sym_fns;
135} registered_sym_fns;
00b5771c 136
c256e171
DE
137DEF_VEC_O (registered_sym_fns);
138
139static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 140
770e7fc7
DE
141/* Values for "set print symbol-loading". */
142
143const char print_symbol_loading_off[] = "off";
144const char print_symbol_loading_brief[] = "brief";
145const char print_symbol_loading_full[] = "full";
146static const char *print_symbol_loading_enums[] =
147{
148 print_symbol_loading_off,
149 print_symbol_loading_brief,
150 print_symbol_loading_full,
151 NULL
152};
153static const char *print_symbol_loading = print_symbol_loading_full;
154
b7209cb4
FF
155/* If non-zero, shared library symbols will be added automatically
156 when the inferior is created, new libraries are loaded, or when
157 attaching to the inferior. This is almost always what users will
158 want to have happen; but for very large programs, the startup time
159 will be excessive, and so if this is a problem, the user can clear
160 this flag and then add the shared library symbols as needed. Note
161 that there is a potential for confusion, since if the shared
c906108c 162 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 163 report all the functions that are actually present. */
c906108c
SS
164
165int auto_solib_add = 1;
c906108c 166\f
c5aa993b 167
770e7fc7
DE
168/* Return non-zero if symbol-loading messages should be printed.
169 FROM_TTY is the standard from_tty argument to gdb commands.
170 If EXEC is non-zero the messages are for the executable.
171 Otherwise, messages are for shared libraries.
172 If FULL is non-zero then the caller is printing a detailed message.
173 E.g., the message includes the shared library name.
174 Otherwise, the caller is printing a brief "summary" message. */
175
176int
177print_symbol_loading_p (int from_tty, int exec, int full)
178{
179 if (!from_tty && !info_verbose)
180 return 0;
181
182 if (exec)
183 {
184 /* We don't check FULL for executables, there are few such
185 messages, therefore brief == full. */
186 return print_symbol_loading != print_symbol_loading_off;
187 }
188 if (full)
189 return print_symbol_loading == print_symbol_loading_full;
190 return print_symbol_loading == print_symbol_loading_brief;
191}
192
0d14a781 193/* True if we are reading a symbol table. */
c906108c
SS
194
195int currently_reading_symtab = 0;
196
197static void
fba45db2 198decrement_reading_symtab (void *dummy)
c906108c
SS
199{
200 currently_reading_symtab--;
2cb9c859 201 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
202}
203
ccefe4c4
TT
204/* Increment currently_reading_symtab and return a cleanup that can be
205 used to decrement it. */
3b7bacac 206
ccefe4c4
TT
207struct cleanup *
208increment_reading_symtab (void)
c906108c 209{
ccefe4c4 210 ++currently_reading_symtab;
2cb9c859 211 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 212 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
213}
214
5417f6dc
RM
215/* Remember the lowest-addressed loadable section we've seen.
216 This function is called via bfd_map_over_sections.
c906108c
SS
217
218 In case of equal vmas, the section with the largest size becomes the
219 lowest-addressed loadable section.
220
221 If the vmas and sizes are equal, the last section is considered the
222 lowest-addressed loadable section. */
223
224void
4efb68b1 225find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 226{
c5aa993b 227 asection **lowest = (asection **) obj;
c906108c 228
eb73e134 229 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
230 return;
231 if (!*lowest)
232 *lowest = sect; /* First loadable section */
233 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
234 *lowest = sect; /* A lower loadable section */
235 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
236 && (bfd_section_size (abfd, (*lowest))
237 <= bfd_section_size (abfd, sect)))
238 *lowest = sect;
239}
240
d76488d8
TT
241/* Create a new section_addr_info, with room for NUM_SECTIONS. The
242 new object's 'num_sections' field is set to 0; it must be updated
243 by the caller. */
a39a16c4
MM
244
245struct section_addr_info *
246alloc_section_addr_info (size_t num_sections)
247{
248 struct section_addr_info *sap;
249 size_t size;
250
251 size = (sizeof (struct section_addr_info)
252 + sizeof (struct other_sections) * (num_sections - 1));
253 sap = (struct section_addr_info *) xmalloc (size);
254 memset (sap, 0, size);
a39a16c4
MM
255
256 return sap;
257}
62557bbc
KB
258
259/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 260 an existing section table. */
62557bbc
KB
261
262extern struct section_addr_info *
0542c86d
PA
263build_section_addr_info_from_section_table (const struct target_section *start,
264 const struct target_section *end)
62557bbc
KB
265{
266 struct section_addr_info *sap;
0542c86d 267 const struct target_section *stp;
62557bbc
KB
268 int oidx;
269
a39a16c4 270 sap = alloc_section_addr_info (end - start);
62557bbc
KB
271
272 for (stp = start, oidx = 0; stp != end; stp++)
273 {
2b2848e2
DE
274 struct bfd_section *asect = stp->the_bfd_section;
275 bfd *abfd = asect->owner;
276
277 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 278 && oidx < end - start)
62557bbc
KB
279 {
280 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
281 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
282 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
283 oidx++;
284 }
285 }
286
d76488d8
TT
287 sap->num_sections = oidx;
288
62557bbc
KB
289 return sap;
290}
291
82ccf5a5 292/* Create a section_addr_info from section offsets in ABFD. */
089b4803 293
82ccf5a5
JK
294static struct section_addr_info *
295build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
296{
297 struct section_addr_info *sap;
298 int i;
299 struct bfd_section *sec;
300
82ccf5a5
JK
301 sap = alloc_section_addr_info (bfd_count_sections (abfd));
302 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
303 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 304 {
82ccf5a5
JK
305 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
306 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 307 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
308 i++;
309 }
d76488d8
TT
310
311 sap->num_sections = i;
312
089b4803
TG
313 return sap;
314}
315
82ccf5a5
JK
316/* Create a section_addr_info from section offsets in OBJFILE. */
317
318struct section_addr_info *
319build_section_addr_info_from_objfile (const struct objfile *objfile)
320{
321 struct section_addr_info *sap;
322 int i;
323
324 /* Before reread_symbols gets rewritten it is not safe to call:
325 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
326 */
327 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 328 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
329 {
330 int sectindex = sap->other[i].sectindex;
331
332 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
333 }
334 return sap;
335}
62557bbc 336
c378eb4e 337/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
338
339extern void
340free_section_addr_info (struct section_addr_info *sap)
341{
342 int idx;
343
a39a16c4 344 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 345 xfree (sap->other[idx].name);
b8c9b27d 346 xfree (sap);
62557bbc
KB
347}
348
e8289572 349/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 350
e8289572
JB
351static void
352init_objfile_sect_indices (struct objfile *objfile)
c906108c 353{
e8289572 354 asection *sect;
c906108c 355 int i;
5417f6dc 356
b8fbeb18 357 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 358 if (sect)
b8fbeb18
EZ
359 objfile->sect_index_text = sect->index;
360
361 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 362 if (sect)
b8fbeb18
EZ
363 objfile->sect_index_data = sect->index;
364
365 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 366 if (sect)
b8fbeb18
EZ
367 objfile->sect_index_bss = sect->index;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 370 if (sect)
b8fbeb18
EZ
371 objfile->sect_index_rodata = sect->index;
372
bbcd32ad
FF
373 /* This is where things get really weird... We MUST have valid
374 indices for the various sect_index_* members or gdb will abort.
375 So if for example, there is no ".text" section, we have to
31d99776
DJ
376 accomodate that. First, check for a file with the standard
377 one or two segments. */
378
379 symfile_find_segment_sections (objfile);
380
381 /* Except when explicitly adding symbol files at some address,
382 section_offsets contains nothing but zeros, so it doesn't matter
383 which slot in section_offsets the individual sect_index_* members
384 index into. So if they are all zero, it is safe to just point
385 all the currently uninitialized indices to the first slot. But
386 beware: if this is the main executable, it may be relocated
387 later, e.g. by the remote qOffsets packet, and then this will
388 be wrong! That's why we try segments first. */
bbcd32ad
FF
389
390 for (i = 0; i < objfile->num_sections; i++)
391 {
392 if (ANOFFSET (objfile->section_offsets, i) != 0)
393 {
394 break;
395 }
396 }
397 if (i == objfile->num_sections)
398 {
399 if (objfile->sect_index_text == -1)
400 objfile->sect_index_text = 0;
401 if (objfile->sect_index_data == -1)
402 objfile->sect_index_data = 0;
403 if (objfile->sect_index_bss == -1)
404 objfile->sect_index_bss = 0;
405 if (objfile->sect_index_rodata == -1)
406 objfile->sect_index_rodata = 0;
407 }
b8fbeb18 408}
c906108c 409
c1bd25fd
DJ
410/* The arguments to place_section. */
411
412struct place_section_arg
413{
414 struct section_offsets *offsets;
415 CORE_ADDR lowest;
416};
417
418/* Find a unique offset to use for loadable section SECT if
419 the user did not provide an offset. */
420
2c0b251b 421static void
c1bd25fd
DJ
422place_section (bfd *abfd, asection *sect, void *obj)
423{
19ba03f4 424 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
425 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
426 int done;
3bd72c6f 427 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 428
2711e456
DJ
429 /* We are only interested in allocated sections. */
430 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
431 return;
432
433 /* If the user specified an offset, honor it. */
65cf3563 434 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
435 return;
436
437 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
438 start_addr = (arg->lowest + align - 1) & -align;
439
c1bd25fd
DJ
440 do {
441 asection *cur_sec;
c1bd25fd 442
c1bd25fd
DJ
443 done = 1;
444
445 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
446 {
447 int indx = cur_sec->index;
c1bd25fd
DJ
448
449 /* We don't need to compare against ourself. */
450 if (cur_sec == sect)
451 continue;
452
2711e456
DJ
453 /* We can only conflict with allocated sections. */
454 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
455 continue;
456
457 /* If the section offset is 0, either the section has not been placed
458 yet, or it was the lowest section placed (in which case LOWEST
459 will be past its end). */
460 if (offsets[indx] == 0)
461 continue;
462
463 /* If this section would overlap us, then we must move up. */
464 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
465 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
466 {
467 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
468 start_addr = (start_addr + align - 1) & -align;
469 done = 0;
3bd72c6f 470 break;
c1bd25fd
DJ
471 }
472
473 /* Otherwise, we appear to be OK. So far. */
474 }
475 }
476 while (!done);
477
65cf3563 478 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 479 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 480}
e8289572 481
75242ef4
JK
482/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
483 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
484 entries. */
e8289572
JB
485
486void
75242ef4
JK
487relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
488 int num_sections,
3189cb12 489 const struct section_addr_info *addrs)
e8289572
JB
490{
491 int i;
492
75242ef4 493 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 494
c378eb4e 495 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 496 for (i = 0; i < addrs->num_sections; i++)
e8289572 497 {
3189cb12 498 const struct other_sections *osp;
e8289572 499
75242ef4 500 osp = &addrs->other[i];
5488dafb 501 if (osp->sectindex == -1)
e8289572
JB
502 continue;
503
c378eb4e 504 /* Record all sections in offsets. */
e8289572 505 /* The section_offsets in the objfile are here filled in using
c378eb4e 506 the BFD index. */
75242ef4
JK
507 section_offsets->offsets[osp->sectindex] = osp->addr;
508 }
509}
510
1276c759
JK
511/* Transform section name S for a name comparison. prelink can split section
512 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
513 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
514 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
515 (`.sbss') section has invalid (increased) virtual address. */
516
517static const char *
518addr_section_name (const char *s)
519{
520 if (strcmp (s, ".dynbss") == 0)
521 return ".bss";
522 if (strcmp (s, ".sdynbss") == 0)
523 return ".sbss";
524
525 return s;
526}
527
82ccf5a5
JK
528/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
529 their (name, sectindex) pair. sectindex makes the sort by name stable. */
530
531static int
532addrs_section_compar (const void *ap, const void *bp)
533{
534 const struct other_sections *a = *((struct other_sections **) ap);
535 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 536 int retval;
82ccf5a5 537
1276c759 538 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
539 if (retval)
540 return retval;
541
5488dafb 542 return a->sectindex - b->sectindex;
82ccf5a5
JK
543}
544
545/* Provide sorted array of pointers to sections of ADDRS. The array is
546 terminated by NULL. Caller is responsible to call xfree for it. */
547
548static struct other_sections **
549addrs_section_sort (struct section_addr_info *addrs)
550{
551 struct other_sections **array;
552 int i;
553
554 /* `+ 1' for the NULL terminator. */
8d749320 555 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 556 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
557 array[i] = &addrs->other[i];
558 array[i] = NULL;
559
560 qsort (array, i, sizeof (*array), addrs_section_compar);
561
562 return array;
563}
564
75242ef4 565/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
566 also SECTINDEXes specific to ABFD there. This function can be used to
567 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
568
569void
570addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
571{
572 asection *lower_sect;
75242ef4
JK
573 CORE_ADDR lower_offset;
574 int i;
82ccf5a5
JK
575 struct cleanup *my_cleanup;
576 struct section_addr_info *abfd_addrs;
577 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
578 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
579
580 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
581 continguous sections. */
582 lower_sect = NULL;
583 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
584 if (lower_sect == NULL)
585 {
586 warning (_("no loadable sections found in added symbol-file %s"),
587 bfd_get_filename (abfd));
588 lower_offset = 0;
e8289572 589 }
75242ef4
JK
590 else
591 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
592
82ccf5a5
JK
593 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
594 in ABFD. Section names are not unique - there can be multiple sections of
595 the same name. Also the sections of the same name do not have to be
596 adjacent to each other. Some sections may be present only in one of the
597 files. Even sections present in both files do not have to be in the same
598 order.
599
600 Use stable sort by name for the sections in both files. Then linearly
601 scan both lists matching as most of the entries as possible. */
602
603 addrs_sorted = addrs_section_sort (addrs);
604 my_cleanup = make_cleanup (xfree, addrs_sorted);
605
606 abfd_addrs = build_section_addr_info_from_bfd (abfd);
607 make_cleanup_free_section_addr_info (abfd_addrs);
608 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
609 make_cleanup (xfree, abfd_addrs_sorted);
610
c378eb4e
MS
611 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
612 ABFD_ADDRS_SORTED. */
82ccf5a5 613
8d749320 614 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
615 make_cleanup (xfree, addrs_to_abfd_addrs);
616
617 while (*addrs_sorted)
618 {
1276c759 619 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
620
621 while (*abfd_addrs_sorted
1276c759
JK
622 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
623 sect_name) < 0)
82ccf5a5
JK
624 abfd_addrs_sorted++;
625
626 if (*abfd_addrs_sorted
1276c759
JK
627 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
628 sect_name) == 0)
82ccf5a5
JK
629 {
630 int index_in_addrs;
631
632 /* Make the found item directly addressable from ADDRS. */
633 index_in_addrs = *addrs_sorted - addrs->other;
634 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
635 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
636
637 /* Never use the same ABFD entry twice. */
638 abfd_addrs_sorted++;
639 }
640
641 addrs_sorted++;
642 }
643
75242ef4
JK
644 /* Calculate offsets for the loadable sections.
645 FIXME! Sections must be in order of increasing loadable section
646 so that contiguous sections can use the lower-offset!!!
647
648 Adjust offsets if the segments are not contiguous.
649 If the section is contiguous, its offset should be set to
650 the offset of the highest loadable section lower than it
651 (the loadable section directly below it in memory).
652 this_offset = lower_offset = lower_addr - lower_orig_addr */
653
d76488d8 654 for (i = 0; i < addrs->num_sections; i++)
75242ef4 655 {
82ccf5a5 656 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
657
658 if (sect)
75242ef4 659 {
c378eb4e 660 /* This is the index used by BFD. */
82ccf5a5 661 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
662
663 if (addrs->other[i].addr != 0)
75242ef4 664 {
82ccf5a5 665 addrs->other[i].addr -= sect->addr;
75242ef4 666 lower_offset = addrs->other[i].addr;
75242ef4
JK
667 }
668 else
672d9c23 669 addrs->other[i].addr = lower_offset;
75242ef4
JK
670 }
671 else
672d9c23 672 {
1276c759
JK
673 /* addr_section_name transformation is not used for SECT_NAME. */
674 const char *sect_name = addrs->other[i].name;
675
b0fcb67f
JK
676 /* This section does not exist in ABFD, which is normally
677 unexpected and we want to issue a warning.
678
4d9743af
JK
679 However, the ELF prelinker does create a few sections which are
680 marked in the main executable as loadable (they are loaded in
681 memory from the DYNAMIC segment) and yet are not present in
682 separate debug info files. This is fine, and should not cause
683 a warning. Shared libraries contain just the section
684 ".gnu.liblist" but it is not marked as loadable there. There is
685 no other way to identify them than by their name as the sections
1276c759
JK
686 created by prelink have no special flags.
687
688 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
689
690 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 691 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
692 || (strcmp (sect_name, ".bss") == 0
693 && i > 0
694 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
695 && addrs_to_abfd_addrs[i - 1] != NULL)
696 || (strcmp (sect_name, ".sbss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
700 warning (_("section %s not found in %s"), sect_name,
701 bfd_get_filename (abfd));
702
672d9c23 703 addrs->other[i].addr = 0;
5488dafb 704 addrs->other[i].sectindex = -1;
672d9c23 705 }
75242ef4 706 }
82ccf5a5
JK
707
708 do_cleanups (my_cleanup);
75242ef4
JK
709}
710
711/* Parse the user's idea of an offset for dynamic linking, into our idea
712 of how to represent it for fast symbol reading. This is the default
713 version of the sym_fns.sym_offsets function for symbol readers that
714 don't need to do anything special. It allocates a section_offsets table
715 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
716
717void
718default_symfile_offsets (struct objfile *objfile,
3189cb12 719 const struct section_addr_info *addrs)
75242ef4 720{
d445b2f6 721 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
722 objfile->section_offsets = (struct section_offsets *)
723 obstack_alloc (&objfile->objfile_obstack,
724 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
725 relative_addr_info_to_section_offsets (objfile->section_offsets,
726 objfile->num_sections, addrs);
e8289572 727
c1bd25fd
DJ
728 /* For relocatable files, all loadable sections will start at zero.
729 The zero is meaningless, so try to pick arbitrary addresses such
730 that no loadable sections overlap. This algorithm is quadratic,
731 but the number of sections in a single object file is generally
732 small. */
733 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
734 {
735 struct place_section_arg arg;
2711e456
DJ
736 bfd *abfd = objfile->obfd;
737 asection *cur_sec;
2711e456
DJ
738
739 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
740 /* We do not expect this to happen; just skip this step if the
741 relocatable file has a section with an assigned VMA. */
742 if (bfd_section_vma (abfd, cur_sec) != 0)
743 break;
744
745 if (cur_sec == NULL)
746 {
747 CORE_ADDR *offsets = objfile->section_offsets->offsets;
748
749 /* Pick non-overlapping offsets for sections the user did not
750 place explicitly. */
751 arg.offsets = objfile->section_offsets;
752 arg.lowest = 0;
753 bfd_map_over_sections (objfile->obfd, place_section, &arg);
754
755 /* Correctly filling in the section offsets is not quite
756 enough. Relocatable files have two properties that
757 (most) shared objects do not:
758
759 - Their debug information will contain relocations. Some
760 shared libraries do also, but many do not, so this can not
761 be assumed.
762
763 - If there are multiple code sections they will be loaded
764 at different relative addresses in memory than they are
765 in the objfile, since all sections in the file will start
766 at address zero.
767
768 Because GDB has very limited ability to map from an
769 address in debug info to the correct code section,
770 it relies on adding SECT_OFF_TEXT to things which might be
771 code. If we clear all the section offsets, and set the
772 section VMAs instead, then symfile_relocate_debug_section
773 will return meaningful debug information pointing at the
774 correct sections.
775
776 GDB has too many different data structures for section
777 addresses - a bfd, objfile, and so_list all have section
778 tables, as does exec_ops. Some of these could probably
779 be eliminated. */
780
781 for (cur_sec = abfd->sections; cur_sec != NULL;
782 cur_sec = cur_sec->next)
783 {
784 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
785 continue;
786
787 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
788 exec_set_section_address (bfd_get_filename (abfd),
789 cur_sec->index,
30510692 790 offsets[cur_sec->index]);
2711e456
DJ
791 offsets[cur_sec->index] = 0;
792 }
793 }
c1bd25fd
DJ
794 }
795
e8289572 796 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 797 .rodata sections. */
e8289572
JB
798 init_objfile_sect_indices (objfile);
799}
800
31d99776
DJ
801/* Divide the file into segments, which are individual relocatable units.
802 This is the default version of the sym_fns.sym_segments function for
803 symbol readers that do not have an explicit representation of segments.
804 It assumes that object files do not have segments, and fully linked
805 files have a single segment. */
806
807struct symfile_segment_data *
808default_symfile_segments (bfd *abfd)
809{
810 int num_sections, i;
811 asection *sect;
812 struct symfile_segment_data *data;
813 CORE_ADDR low, high;
814
815 /* Relocatable files contain enough information to position each
816 loadable section independently; they should not be relocated
817 in segments. */
818 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
819 return NULL;
820
821 /* Make sure there is at least one loadable section in the file. */
822 for (sect = abfd->sections; sect != NULL; sect = sect->next)
823 {
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 break;
828 }
829 if (sect == NULL)
830 return NULL;
831
832 low = bfd_get_section_vma (abfd, sect);
833 high = low + bfd_get_section_size (sect);
834
41bf6aca 835 data = XCNEW (struct symfile_segment_data);
31d99776 836 data->num_segments = 1;
fc270c35
TT
837 data->segment_bases = XCNEW (CORE_ADDR);
838 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
839
840 num_sections = bfd_count_sections (abfd);
fc270c35 841 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
842
843 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
844 {
845 CORE_ADDR vma;
846
847 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
848 continue;
849
850 vma = bfd_get_section_vma (abfd, sect);
851 if (vma < low)
852 low = vma;
853 if (vma + bfd_get_section_size (sect) > high)
854 high = vma + bfd_get_section_size (sect);
855
856 data->segment_info[i] = 1;
857 }
858
859 data->segment_bases[0] = low;
860 data->segment_sizes[0] = high - low;
861
862 return data;
863}
864
608e2dbb
TT
865/* This is a convenience function to call sym_read for OBJFILE and
866 possibly force the partial symbols to be read. */
867
868static void
b15cc25c 869read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
870{
871 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 872 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
873
874 /* find_separate_debug_file_in_section should be called only if there is
875 single binary with no existing separate debug info file. */
876 if (!objfile_has_partial_symbols (objfile)
877 && objfile->separate_debug_objfile == NULL
878 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
879 {
880 bfd *abfd = find_separate_debug_file_in_section (objfile);
881 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
882
883 if (abfd != NULL)
24ba069a
JK
884 {
885 /* find_separate_debug_file_in_section uses the same filename for the
886 virtual section-as-bfd like the bfd filename containing the
887 section. Therefore use also non-canonical name form for the same
888 file containing the section. */
889 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
890 objfile);
891 }
608e2dbb
TT
892
893 do_cleanups (cleanup);
894 }
895 if ((add_flags & SYMFILE_NO_READ) == 0)
896 require_partial_symbols (objfile, 0);
897}
898
3d6e24f0
JB
899/* Initialize entry point information for this objfile. */
900
901static void
902init_entry_point_info (struct objfile *objfile)
903{
6ef55de7
TT
904 struct entry_info *ei = &objfile->per_bfd->ei;
905
906 if (ei->initialized)
907 return;
908 ei->initialized = 1;
909
3d6e24f0
JB
910 /* Save startup file's range of PC addresses to help blockframe.c
911 decide where the bottom of the stack is. */
912
913 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
914 {
915 /* Executable file -- record its entry point so we'll recognize
916 the startup file because it contains the entry point. */
6ef55de7
TT
917 ei->entry_point = bfd_get_start_address (objfile->obfd);
918 ei->entry_point_p = 1;
3d6e24f0
JB
919 }
920 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
921 && bfd_get_start_address (objfile->obfd) != 0)
922 {
923 /* Some shared libraries may have entry points set and be
924 runnable. There's no clear way to indicate this, so just check
925 for values other than zero. */
6ef55de7
TT
926 ei->entry_point = bfd_get_start_address (objfile->obfd);
927 ei->entry_point_p = 1;
3d6e24f0
JB
928 }
929 else
930 {
931 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 932 ei->entry_point_p = 0;
3d6e24f0
JB
933 }
934
6ef55de7 935 if (ei->entry_point_p)
3d6e24f0 936 {
53eddfa6 937 struct obj_section *osect;
6ef55de7 938 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 939 int found;
3d6e24f0
JB
940
941 /* Make certain that the address points at real code, and not a
942 function descriptor. */
943 entry_point
df6d5441 944 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
945 entry_point,
946 &current_target);
947
948 /* Remove any ISA markers, so that this matches entries in the
949 symbol table. */
6ef55de7 950 ei->entry_point
df6d5441 951 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
952
953 found = 0;
954 ALL_OBJFILE_OSECTIONS (objfile, osect)
955 {
956 struct bfd_section *sect = osect->the_bfd_section;
957
958 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
959 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
960 + bfd_get_section_size (sect)))
961 {
6ef55de7 962 ei->the_bfd_section_index
53eddfa6
TT
963 = gdb_bfd_section_index (objfile->obfd, sect);
964 found = 1;
965 break;
966 }
967 }
968
969 if (!found)
6ef55de7 970 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
971 }
972}
973
c906108c
SS
974/* Process a symbol file, as either the main file or as a dynamically
975 loaded file.
976
36e4d068
JB
977 This function does not set the OBJFILE's entry-point info.
978
96baa820
JM
979 OBJFILE is where the symbols are to be read from.
980
7e8580c1
JB
981 ADDRS is the list of section load addresses. If the user has given
982 an 'add-symbol-file' command, then this is the list of offsets and
983 addresses he or she provided as arguments to the command; or, if
984 we're handling a shared library, these are the actual addresses the
985 sections are loaded at, according to the inferior's dynamic linker
986 (as gleaned by GDB's shared library code). We convert each address
987 into an offset from the section VMA's as it appears in the object
988 file, and then call the file's sym_offsets function to convert this
989 into a format-specific offset table --- a `struct section_offsets'.
96baa820 990
7eedccfa
PP
991 ADD_FLAGS encodes verbosity level, whether this is main symbol or
992 an extra symbol file such as dynamically loaded code, and wether
993 breakpoint reset should be deferred. */
c906108c 994
36e4d068
JB
995static void
996syms_from_objfile_1 (struct objfile *objfile,
997 struct section_addr_info *addrs,
b15cc25c 998 symfile_add_flags add_flags)
c906108c 999{
a39a16c4 1000 struct section_addr_info *local_addr = NULL;
c906108c 1001 struct cleanup *old_chain;
7eedccfa 1002 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1003
8fb8eb5c 1004 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1005
75245b24 1006 if (objfile->sf == NULL)
36e4d068
JB
1007 {
1008 /* No symbols to load, but we still need to make sure
1009 that the section_offsets table is allocated. */
d445b2f6 1010 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1011 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1012
1013 objfile->num_sections = num_sections;
1014 objfile->section_offsets
224c3ddb
SM
1015 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1016 size);
36e4d068
JB
1017 memset (objfile->section_offsets, 0, size);
1018 return;
1019 }
75245b24 1020
c906108c
SS
1021 /* Make sure that partially constructed symbol tables will be cleaned up
1022 if an error occurs during symbol reading. */
74b7792f 1023 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1024
6bf667bb
DE
1025 /* If ADDRS is NULL, put together a dummy address list.
1026 We now establish the convention that an addr of zero means
c378eb4e 1027 no load address was specified. */
6bf667bb 1028 if (! addrs)
a39a16c4 1029 {
d445b2f6 1030 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1031 make_cleanup (xfree, local_addr);
1032 addrs = local_addr;
1033 }
1034
c5aa993b 1035 if (mainline)
c906108c
SS
1036 {
1037 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1038 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1039 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1040
1041 /* Since no error yet, throw away the old symbol table. */
1042
1043 if (symfile_objfile != NULL)
1044 {
1045 free_objfile (symfile_objfile);
adb7f338 1046 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1047 }
1048
1049 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1050 If the user wants to get rid of them, they should do "symbol-file"
1051 without arguments first. Not sure this is the best behavior
1052 (PR 2207). */
c906108c 1053
c5aa993b 1054 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1055 }
1056
1057 /* Convert addr into an offset rather than an absolute address.
1058 We find the lowest address of a loaded segment in the objfile,
53a5351d 1059 and assume that <addr> is where that got loaded.
c906108c 1060
53a5351d
JM
1061 We no longer warn if the lowest section is not a text segment (as
1062 happens for the PA64 port. */
6bf667bb 1063 if (addrs->num_sections > 0)
75242ef4 1064 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1065
1066 /* Initialize symbol reading routines for this objfile, allow complaints to
1067 appear for this new file, and record how verbose to be, then do the
c378eb4e 1068 initial symbol reading for this file. */
c906108c 1069
c5aa993b 1070 (*objfile->sf->sym_init) (objfile);
7eedccfa 1071 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1072
6bf667bb 1073 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1074
608e2dbb 1075 read_symbols (objfile, add_flags);
b11896a5 1076
c906108c
SS
1077 /* Discard cleanups as symbol reading was successful. */
1078
1079 discard_cleanups (old_chain);
f7545552 1080 xfree (local_addr);
c906108c
SS
1081}
1082
36e4d068
JB
1083/* Same as syms_from_objfile_1, but also initializes the objfile
1084 entry-point info. */
1085
6bf667bb 1086static void
36e4d068
JB
1087syms_from_objfile (struct objfile *objfile,
1088 struct section_addr_info *addrs,
b15cc25c 1089 symfile_add_flags add_flags)
36e4d068 1090{
6bf667bb 1091 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1092 init_entry_point_info (objfile);
1093}
1094
c906108c
SS
1095/* Perform required actions after either reading in the initial
1096 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1097 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1098
e7d52ed3 1099static void
b15cc25c 1100finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1101{
c906108c 1102 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1103 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1104 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1105 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1106 {
1107 /* OK, make it the "real" symbol file. */
1108 symfile_objfile = objfile;
1109
c1e56572 1110 clear_symtab_users (add_flags);
c906108c 1111 }
7eedccfa 1112 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1113 {
69de3c6a 1114 breakpoint_re_set ();
c906108c
SS
1115 }
1116
1117 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1118 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1119}
1120
1121/* Process a symbol file, as either the main file or as a dynamically
1122 loaded file.
1123
5417f6dc 1124 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1125 A new reference is acquired by this function.
7904e09f 1126
24ba069a
JK
1127 For NAME description see allocate_objfile's definition.
1128
7eedccfa
PP
1129 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1130 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1131
6bf667bb 1132 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1133 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1134
63524580
JK
1135 PARENT is the original objfile if ABFD is a separate debug info file.
1136 Otherwise PARENT is NULL.
1137
c906108c 1138 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1139 Upon failure, jumps back to command level (never returns). */
7eedccfa 1140
7904e09f 1141static struct objfile *
b15cc25c
PA
1142symbol_file_add_with_addrs (bfd *abfd, const char *name,
1143 symfile_add_flags add_flags,
6bf667bb 1144 struct section_addr_info *addrs,
b15cc25c 1145 objfile_flags flags, struct objfile *parent)
c906108c
SS
1146{
1147 struct objfile *objfile;
7eedccfa 1148 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1149 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1150 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1151 && (readnow_symbol_files
1152 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1153
9291a0cd 1154 if (readnow_symbol_files)
b11896a5
TT
1155 {
1156 flags |= OBJF_READNOW;
1157 add_flags &= ~SYMFILE_NO_READ;
1158 }
9291a0cd 1159
5417f6dc
RM
1160 /* Give user a chance to burp if we'd be
1161 interactively wiping out any existing symbols. */
c906108c
SS
1162
1163 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1164 && mainline
c906108c 1165 && from_tty
9e2f0ad4 1166 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1167 error (_("Not confirmed."));
c906108c 1168
b15cc25c
PA
1169 if (mainline)
1170 flags |= OBJF_MAINLINE;
1171 objfile = allocate_objfile (abfd, name, flags);
c906108c 1172
63524580
JK
1173 if (parent)
1174 add_separate_debug_objfile (objfile, parent);
1175
78a4a9b9
AC
1176 /* We either created a new mapped symbol table, mapped an existing
1177 symbol table file which has not had initial symbol reading
c378eb4e 1178 performed, or need to read an unmapped symbol table. */
b11896a5 1179 if (should_print)
c906108c 1180 {
769d7dc4
AC
1181 if (deprecated_pre_add_symbol_hook)
1182 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1183 else
c906108c 1184 {
55333a84
DE
1185 printf_unfiltered (_("Reading symbols from %s..."), name);
1186 wrap_here ("");
1187 gdb_flush (gdb_stdout);
c906108c 1188 }
c906108c 1189 }
6bf667bb 1190 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1191
1192 /* We now have at least a partial symbol table. Check to see if the
1193 user requested that all symbols be read on initial access via either
1194 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1195 all partial symbol tables for this objfile if so. */
c906108c 1196
9291a0cd 1197 if ((flags & OBJF_READNOW))
c906108c 1198 {
b11896a5 1199 if (should_print)
c906108c 1200 {
a3f17187 1201 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1202 wrap_here ("");
1203 gdb_flush (gdb_stdout);
1204 }
1205
ccefe4c4
TT
1206 if (objfile->sf)
1207 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1208 }
1209
b11896a5 1210 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1211 {
1212 wrap_here ("");
55333a84 1213 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1214 wrap_here ("");
1215 }
1216
b11896a5 1217 if (should_print)
c906108c 1218 {
769d7dc4
AC
1219 if (deprecated_post_add_symbol_hook)
1220 deprecated_post_add_symbol_hook ();
c906108c 1221 else
55333a84 1222 printf_unfiltered (_("done.\n"));
c906108c
SS
1223 }
1224
481d0f41
JB
1225 /* We print some messages regardless of whether 'from_tty ||
1226 info_verbose' is true, so make sure they go out at the right
1227 time. */
1228 gdb_flush (gdb_stdout);
1229
109f874e 1230 if (objfile->sf == NULL)
8caee43b
PP
1231 {
1232 observer_notify_new_objfile (objfile);
c378eb4e 1233 return objfile; /* No symbols. */
8caee43b 1234 }
109f874e 1235
e7d52ed3 1236 finish_new_objfile (objfile, add_flags);
c906108c 1237
06d3b283 1238 observer_notify_new_objfile (objfile);
c906108c 1239
ce7d4522 1240 bfd_cache_close_all ();
c906108c
SS
1241 return (objfile);
1242}
1243
24ba069a
JK
1244/* Add BFD as a separate debug file for OBJFILE. For NAME description
1245 see allocate_objfile's definition. */
9cce227f
TG
1246
1247void
b15cc25c
PA
1248symbol_file_add_separate (bfd *bfd, const char *name,
1249 symfile_add_flags symfile_flags,
24ba069a 1250 struct objfile *objfile)
9cce227f 1251{
089b4803
TG
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1260
870f88f7 1261 symbol_file_add_with_addrs
24ba069a 1262 (bfd, name, symfile_flags, sap,
9cce227f 1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1264 | OBJF_USERLOADED),
1265 objfile);
089b4803
TG
1266
1267 do_cleanups (my_cleanup);
9cce227f 1268}
7904e09f 1269
eb4556d7
JB
1270/* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
6bf667bb 1272 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
eb4556d7 1274struct objfile *
b15cc25c
PA
1275symbol_file_add_from_bfd (bfd *abfd, const char *name,
1276 symfile_add_flags add_flags,
eb4556d7 1277 struct section_addr_info *addrs,
b15cc25c 1278 objfile_flags flags, struct objfile *parent)
eb4556d7 1279{
24ba069a
JK
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
eb4556d7
JB
1282}
1283
7904e09f 1284/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1286
7904e09f 1287struct objfile *
b15cc25c
PA
1288symbol_file_add (const char *name, symfile_add_flags add_flags,
1289 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1290{
8ac244b4
TT
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
24ba069a 1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1296 do_cleanups (cleanup);
1297 return objf;
7904e09f
JB
1298}
1299
d7db6da9
FN
1300/* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
5417f6dc 1307
1adeb98a 1308void
69150c3d 1309symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1310{
d7db6da9
FN
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312}
1313
1314static void
b15cc25c 1315symbol_file_add_main_1 (const char *args, int from_tty, objfile_flags flags)
d7db6da9 1316{
b15cc25c
PA
1317 symfile_add_flags add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE);
1319
1320 if (from_tty)
1321 add_flags |= SYMFILE_VERBOSE;
7dcd53a0 1322
7eedccfa 1323 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1324
d7db6da9
FN
1325 /* Getting new symbols may change our opinion about
1326 what is frameless. */
1327 reinit_frame_cache ();
1328
b15cc25c 1329 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1330 set_initial_language ();
1adeb98a
FN
1331}
1332
1333void
1334symbol_file_clear (int from_tty)
1335{
1336 if ((have_full_symbols () || have_partial_symbols ())
1337 && from_tty
0430b0d6
AS
1338 && (symfile_objfile
1339 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1340 objfile_name (symfile_objfile))
0430b0d6 1341 : !query (_("Discard symbol table? "))))
8a3fe4f8 1342 error (_("Not confirmed."));
1adeb98a 1343
0133421a
JK
1344 /* solib descriptors may have handles to objfiles. Wipe them before their
1345 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1346 no_shared_libraries (NULL, from_tty);
1347
0133421a
JK
1348 free_all_objfiles ();
1349
adb7f338 1350 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1351 if (from_tty)
1352 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1353}
1354
5b5d99cf 1355static int
287ccc17 1356separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1357 struct objfile *parent_objfile)
5b5d99cf 1358{
904578ed
JK
1359 unsigned long file_crc;
1360 int file_crc_p;
f1838a98 1361 bfd *abfd;
32a0e547 1362 struct stat parent_stat, abfd_stat;
904578ed 1363 int verified_as_different;
32a0e547
JK
1364
1365 /* Find a separate debug info file as if symbols would be present in
1366 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1367 section can contain just the basename of PARENT_OBJFILE without any
1368 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1369 the separate debug infos with the same basename can exist. */
32a0e547 1370
4262abfb 1371 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1372 return 0;
5b5d99cf 1373
2938e6cf 1374 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1375
1376 if (!abfd)
5b5d99cf
JB
1377 return 0;
1378
0ba1096a 1379 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1380
1381 Some operating systems, e.g. Windows, do not provide a meaningful
1382 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1383 meaningful st_dev.) Files accessed from gdbservers that do not
1384 support the vFile:fstat packet will also have st_ino set to zero.
1385 Do not indicate a duplicate library in either case. While there
1386 is no guarantee that a system that provides meaningful inode
1387 numbers will never set st_ino to zero, this is merely an
1388 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1389
1390 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1391 && abfd_stat.st_ino != 0
1392 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1393 {
904578ed
JK
1394 if (abfd_stat.st_dev == parent_stat.st_dev
1395 && abfd_stat.st_ino == parent_stat.st_ino)
1396 {
cbb099e8 1397 gdb_bfd_unref (abfd);
904578ed
JK
1398 return 0;
1399 }
1400 verified_as_different = 1;
32a0e547 1401 }
904578ed
JK
1402 else
1403 verified_as_different = 0;
32a0e547 1404
dccee2de 1405 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1406
cbb099e8 1407 gdb_bfd_unref (abfd);
5b5d99cf 1408
904578ed
JK
1409 if (!file_crc_p)
1410 return 0;
1411
287ccc17
JK
1412 if (crc != file_crc)
1413 {
dccee2de
TT
1414 unsigned long parent_crc;
1415
0a93529c
GB
1416 /* If the files could not be verified as different with
1417 bfd_stat then we need to calculate the parent's CRC
1418 to verify whether the files are different or not. */
904578ed 1419
dccee2de 1420 if (!verified_as_different)
904578ed 1421 {
dccee2de 1422 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1423 return 0;
1424 }
1425
dccee2de 1426 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1427 warning (_("the debug information found in \"%s\""
1428 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1429 name, objfile_name (parent_objfile));
904578ed 1430
287ccc17
JK
1431 return 0;
1432 }
1433
1434 return 1;
5b5d99cf
JB
1435}
1436
aa28a74e 1437char *debug_file_directory = NULL;
920d2a44
AC
1438static void
1439show_debug_file_directory (struct ui_file *file, int from_tty,
1440 struct cmd_list_element *c, const char *value)
1441{
3e43a32a
MS
1442 fprintf_filtered (file,
1443 _("The directory where separate debug "
1444 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1445 value);
1446}
5b5d99cf
JB
1447
1448#if ! defined (DEBUG_SUBDIRECTORY)
1449#define DEBUG_SUBDIRECTORY ".debug"
1450#endif
1451
1db33378
PP
1452/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1453 where the original file resides (may not be the same as
1454 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1455 looking for. CANON_DIR is the "realpath" form of DIR.
1456 DIR must contain a trailing '/'.
1457 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1458
1459static char *
1460find_separate_debug_file (const char *dir,
1461 const char *canon_dir,
1462 const char *debuglink,
1463 unsigned long crc32, struct objfile *objfile)
9cce227f 1464{
1db33378
PP
1465 char *debugdir;
1466 char *debugfile;
9cce227f 1467 int i;
e4ab2fad
JK
1468 VEC (char_ptr) *debugdir_vec;
1469 struct cleanup *back_to;
1470 int ix;
5b5d99cf 1471
325fac50 1472 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1473 i = strlen (dir);
1db33378
PP
1474 if (canon_dir != NULL && strlen (canon_dir) > i)
1475 i = strlen (canon_dir);
1ffa32ee 1476
224c3ddb
SM
1477 debugfile
1478 = (char *) xmalloc (strlen (debug_file_directory) + 1
1479 + i
1480 + strlen (DEBUG_SUBDIRECTORY)
1481 + strlen ("/")
1482 + strlen (debuglink)
1483 + 1);
5b5d99cf
JB
1484
1485 /* First try in the same directory as the original file. */
1486 strcpy (debugfile, dir);
1db33378 1487 strcat (debugfile, debuglink);
5b5d99cf 1488
32a0e547 1489 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1490 return debugfile;
5417f6dc 1491
5b5d99cf
JB
1492 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1493 strcpy (debugfile, dir);
1494 strcat (debugfile, DEBUG_SUBDIRECTORY);
1495 strcat (debugfile, "/");
1db33378 1496 strcat (debugfile, debuglink);
5b5d99cf 1497
32a0e547 1498 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1499 return debugfile;
5417f6dc 1500
24ddea62 1501 /* Then try in the global debugfile directories.
f888f159 1502
24ddea62
JK
1503 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1504 cause "/..." lookups. */
5417f6dc 1505
e4ab2fad
JK
1506 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1507 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1508
e4ab2fad
JK
1509 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1510 {
1511 strcpy (debugfile, debugdir);
aa28a74e 1512 strcat (debugfile, "/");
24ddea62 1513 strcat (debugfile, dir);
1db33378 1514 strcat (debugfile, debuglink);
aa28a74e 1515
32a0e547 1516 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1517 {
1518 do_cleanups (back_to);
1519 return debugfile;
1520 }
24ddea62
JK
1521
1522 /* If the file is in the sysroot, try using its base path in the
1523 global debugfile directory. */
1db33378
PP
1524 if (canon_dir != NULL
1525 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1526 strlen (gdb_sysroot)) == 0
1db33378 1527 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1528 {
e4ab2fad 1529 strcpy (debugfile, debugdir);
1db33378 1530 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1531 strcat (debugfile, "/");
1db33378 1532 strcat (debugfile, debuglink);
24ddea62 1533
32a0e547 1534 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1535 {
1536 do_cleanups (back_to);
1537 return debugfile;
1538 }
24ddea62 1539 }
aa28a74e 1540 }
f888f159 1541
e4ab2fad 1542 do_cleanups (back_to);
25522fae 1543 xfree (debugfile);
1db33378
PP
1544 return NULL;
1545}
1546
7edbb660 1547/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1548 If there were no directory separators in PATH, PATH will be empty
1549 string on return. */
1550
1551static void
1552terminate_after_last_dir_separator (char *path)
1553{
1554 int i;
1555
1556 /* Strip off the final filename part, leaving the directory name,
1557 followed by a slash. The directory can be relative or absolute. */
1558 for (i = strlen(path) - 1; i >= 0; i--)
1559 if (IS_DIR_SEPARATOR (path[i]))
1560 break;
1561
1562 /* If I is -1 then no directory is present there and DIR will be "". */
1563 path[i + 1] = '\0';
1564}
1565
1566/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1567 Returns pathname, or NULL. */
1568
1569char *
1570find_separate_debug_file_by_debuglink (struct objfile *objfile)
1571{
1572 char *debuglink;
1573 char *dir, *canon_dir;
1574 char *debugfile;
1575 unsigned long crc32;
1576 struct cleanup *cleanups;
1577
cc0ea93c 1578 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1579
1580 if (debuglink == NULL)
1581 {
1582 /* There's no separate debug info, hence there's no way we could
1583 load it => no warning. */
1584 return NULL;
1585 }
1586
71bdabee 1587 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1588 dir = xstrdup (objfile_name (objfile));
71bdabee 1589 make_cleanup (xfree, dir);
1db33378
PP
1590 terminate_after_last_dir_separator (dir);
1591 canon_dir = lrealpath (dir);
1592
1593 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1594 crc32, objfile);
1595 xfree (canon_dir);
1596
1597 if (debugfile == NULL)
1598 {
1db33378
PP
1599 /* For PR gdb/9538, try again with realpath (if different from the
1600 original). */
1601
1602 struct stat st_buf;
1603
4262abfb
JK
1604 if (lstat (objfile_name (objfile), &st_buf) == 0
1605 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1606 {
1607 char *symlink_dir;
1608
4262abfb 1609 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1610 if (symlink_dir != NULL)
1611 {
1612 make_cleanup (xfree, symlink_dir);
1613 terminate_after_last_dir_separator (symlink_dir);
1614 if (strcmp (dir, symlink_dir) != 0)
1615 {
1616 /* Different directory, so try using it. */
1617 debugfile = find_separate_debug_file (symlink_dir,
1618 symlink_dir,
1619 debuglink,
1620 crc32,
1621 objfile);
1622 }
1623 }
1624 }
1db33378 1625 }
aa28a74e 1626
1db33378 1627 do_cleanups (cleanups);
25522fae 1628 return debugfile;
5b5d99cf
JB
1629}
1630
c906108c
SS
1631/* This is the symbol-file command. Read the file, analyze its
1632 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1633 the command is rather bizarre:
1634
1635 1. The function buildargv implements various quoting conventions
1636 which are undocumented and have little or nothing in common with
1637 the way things are quoted (or not quoted) elsewhere in GDB.
1638
1639 2. Options are used, which are not generally used in GDB (perhaps
1640 "set mapped on", "set readnow on" would be better)
1641
1642 3. The order of options matters, which is contrary to GNU
c906108c
SS
1643 conventions (because it is confusing and inconvenient). */
1644
1645void
fba45db2 1646symbol_file_command (char *args, int from_tty)
c906108c 1647{
c906108c
SS
1648 dont_repeat ();
1649
1650 if (args == NULL)
1651 {
1adeb98a 1652 symbol_file_clear (from_tty);
c906108c
SS
1653 }
1654 else
1655 {
d1a41061 1656 char **argv = gdb_buildargv (args);
b15cc25c 1657 objfile_flags flags = OBJF_USERLOADED;
cb2f3a29
MK
1658 struct cleanup *cleanups;
1659 char *name = NULL;
1660
7a292a7a 1661 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1662 while (*argv != NULL)
1663 {
78a4a9b9
AC
1664 if (strcmp (*argv, "-readnow") == 0)
1665 flags |= OBJF_READNOW;
1666 else if (**argv == '-')
8a3fe4f8 1667 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1668 else
1669 {
cb2f3a29 1670 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1671 name = *argv;
78a4a9b9 1672 }
cb2f3a29 1673
c906108c
SS
1674 argv++;
1675 }
1676
1677 if (name == NULL)
cb2f3a29
MK
1678 error (_("no symbol file name was specified"));
1679
c906108c
SS
1680 do_cleanups (cleanups);
1681 }
1682}
1683
1684/* Set the initial language.
1685
cb2f3a29
MK
1686 FIXME: A better solution would be to record the language in the
1687 psymtab when reading partial symbols, and then use it (if known) to
1688 set the language. This would be a win for formats that encode the
1689 language in an easily discoverable place, such as DWARF. For
1690 stabs, we can jump through hoops looking for specially named
1691 symbols or try to intuit the language from the specific type of
1692 stabs we find, but we can't do that until later when we read in
1693 full symbols. */
c906108c 1694
8b60591b 1695void
fba45db2 1696set_initial_language (void)
c906108c 1697{
9e6c82ad 1698 enum language lang = main_language ();
c906108c 1699
9e6c82ad 1700 if (lang == language_unknown)
01f8c46d 1701 {
bf6d8a91 1702 char *name = main_name ();
d12307c1 1703 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1704
bf6d8a91
TT
1705 if (sym != NULL)
1706 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1707 }
cb2f3a29 1708
ccefe4c4
TT
1709 if (lang == language_unknown)
1710 {
1711 /* Make C the default language */
1712 lang = language_c;
c906108c 1713 }
ccefe4c4
TT
1714
1715 set_language (lang);
1716 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1717}
1718
cb2f3a29
MK
1719/* Open the file specified by NAME and hand it off to BFD for
1720 preliminary analysis. Return a newly initialized bfd *, which
1721 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1722 absolute). In case of trouble, error() is called. */
c906108c
SS
1723
1724bfd *
97a41605 1725symfile_bfd_open (const char *name)
c906108c
SS
1726{
1727 bfd *sym_bfd;
97a41605
GB
1728 int desc = -1;
1729 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1730
97a41605 1731 if (!is_target_filename (name))
f1838a98 1732 {
97a41605 1733 char *expanded_name, *absolute_name;
f1838a98 1734
97a41605 1735 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1736
97a41605
GB
1737 /* Look down path for it, allocate 2nd new malloc'd copy. */
1738 desc = openp (getenv ("PATH"),
1739 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1740 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1741#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1742 if (desc < 0)
1743 {
0ae1c716 1744 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1745
97a41605
GB
1746 strcat (strcpy (exename, expanded_name), ".exe");
1747 desc = openp (getenv ("PATH"),
1748 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1749 exename, O_RDONLY | O_BINARY, &absolute_name);
1750 }
c906108c 1751#endif
97a41605
GB
1752 if (desc < 0)
1753 {
1754 make_cleanup (xfree, expanded_name);
1755 perror_with_name (expanded_name);
1756 }
cb2f3a29 1757
97a41605
GB
1758 xfree (expanded_name);
1759 make_cleanup (xfree, absolute_name);
1760 name = absolute_name;
1761 }
c906108c 1762
1c00ec6b 1763 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1764 if (!sym_bfd)
faab9922
JK
1765 error (_("`%s': can't open to read symbols: %s."), name,
1766 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1767
1768 if (!gdb_bfd_has_target_filename (sym_bfd))
1769 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1770
1771 if (!bfd_check_format (sym_bfd, bfd_object))
1772 {
f9a062ff 1773 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1774 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1775 bfd_errmsg (bfd_get_error ()));
1776 }
cb2f3a29 1777
faab9922
JK
1778 do_cleanups (back_to);
1779
cb2f3a29 1780 return sym_bfd;
c906108c
SS
1781}
1782
cb2f3a29
MK
1783/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1784 the section was not found. */
1785
0e931cf0
JB
1786int
1787get_section_index (struct objfile *objfile, char *section_name)
1788{
1789 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1790
0e931cf0
JB
1791 if (sect)
1792 return sect->index;
1793 else
1794 return -1;
1795}
1796
c256e171
DE
1797/* Link SF into the global symtab_fns list.
1798 FLAVOUR is the file format that SF handles.
1799 Called on startup by the _initialize routine in each object file format
1800 reader, to register information about each format the reader is prepared
1801 to handle. */
c906108c
SS
1802
1803void
c256e171 1804add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1805{
c256e171
DE
1806 registered_sym_fns fns = { flavour, sf };
1807
1808 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1809}
1810
cb2f3a29
MK
1811/* Initialize OBJFILE to read symbols from its associated BFD. It
1812 either returns or calls error(). The result is an initialized
1813 struct sym_fns in the objfile structure, that contains cached
1814 information about the symbol file. */
c906108c 1815
00b5771c 1816static const struct sym_fns *
31d99776 1817find_sym_fns (bfd *abfd)
c906108c 1818{
c256e171 1819 registered_sym_fns *rsf;
31d99776 1820 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1821 int i;
c906108c 1822
75245b24
MS
1823 if (our_flavour == bfd_target_srec_flavour
1824 || our_flavour == bfd_target_ihex_flavour
1825 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1826 return NULL; /* No symbols. */
75245b24 1827
c256e171
DE
1828 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1829 if (our_flavour == rsf->sym_flavour)
1830 return rsf->sym_fns;
cb2f3a29 1831
8a3fe4f8 1832 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1833 bfd_get_target (abfd));
c906108c
SS
1834}
1835\f
cb2f3a29 1836
c906108c
SS
1837/* This function runs the load command of our current target. */
1838
1839static void
fba45db2 1840load_command (char *arg, int from_tty)
c906108c 1841{
5b3fca71
TT
1842 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1843
e5cc9f32
JB
1844 dont_repeat ();
1845
4487aabf
PA
1846 /* The user might be reloading because the binary has changed. Take
1847 this opportunity to check. */
1848 reopen_exec_file ();
1849 reread_symbols ();
1850
c906108c 1851 if (arg == NULL)
1986bccd
AS
1852 {
1853 char *parg;
1854 int count = 0;
1855
1856 parg = arg = get_exec_file (1);
1857
1858 /* Count how many \ " ' tab space there are in the name. */
1859 while ((parg = strpbrk (parg, "\\\"'\t ")))
1860 {
1861 parg++;
1862 count++;
1863 }
1864
1865 if (count)
1866 {
1867 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1868 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1869 char *ptemp = temp;
1870 char *prev;
1871
1872 make_cleanup (xfree, temp);
1873
1874 prev = parg = arg;
1875 while ((parg = strpbrk (parg, "\\\"'\t ")))
1876 {
1877 strncpy (ptemp, prev, parg - prev);
1878 ptemp += parg - prev;
1879 prev = parg++;
1880 *ptemp++ = '\\';
1881 }
1882 strcpy (ptemp, prev);
1883
1884 arg = temp;
1885 }
1886 }
1887
c906108c 1888 target_load (arg, from_tty);
2889e661
JB
1889
1890 /* After re-loading the executable, we don't really know which
1891 overlays are mapped any more. */
1892 overlay_cache_invalid = 1;
5b3fca71
TT
1893
1894 do_cleanups (cleanup);
c906108c
SS
1895}
1896
1897/* This version of "load" should be usable for any target. Currently
1898 it is just used for remote targets, not inftarg.c or core files,
1899 on the theory that only in that case is it useful.
1900
1901 Avoiding xmodem and the like seems like a win (a) because we don't have
1902 to worry about finding it, and (b) On VMS, fork() is very slow and so
1903 we don't want to run a subprocess. On the other hand, I'm not sure how
1904 performance compares. */
917317f4 1905
917317f4
JM
1906static int validate_download = 0;
1907
e4f9b4d5
MS
1908/* Callback service function for generic_load (bfd_map_over_sections). */
1909
1910static void
1911add_section_size_callback (bfd *abfd, asection *asec, void *data)
1912{
19ba03f4 1913 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1914
2c500098 1915 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1916}
1917
1918/* Opaque data for load_section_callback. */
1919struct load_section_data {
f698ca8e 1920 CORE_ADDR load_offset;
a76d924d
DJ
1921 struct load_progress_data *progress_data;
1922 VEC(memory_write_request_s) *requests;
1923};
1924
1925/* Opaque data for load_progress. */
1926struct load_progress_data {
1927 /* Cumulative data. */
e4f9b4d5
MS
1928 unsigned long write_count;
1929 unsigned long data_count;
1930 bfd_size_type total_size;
a76d924d
DJ
1931};
1932
1933/* Opaque data for load_progress for a single section. */
1934struct load_progress_section_data {
1935 struct load_progress_data *cumulative;
cf7a04e8 1936
a76d924d 1937 /* Per-section data. */
cf7a04e8
DJ
1938 const char *section_name;
1939 ULONGEST section_sent;
1940 ULONGEST section_size;
1941 CORE_ADDR lma;
1942 gdb_byte *buffer;
e4f9b4d5
MS
1943};
1944
a76d924d 1945/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1946
1947static void
1948load_progress (ULONGEST bytes, void *untyped_arg)
1949{
19ba03f4
SM
1950 struct load_progress_section_data *args
1951 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1952 struct load_progress_data *totals;
1953
1954 if (args == NULL)
1955 /* Writing padding data. No easy way to get at the cumulative
1956 stats, so just ignore this. */
1957 return;
1958
1959 totals = args->cumulative;
1960
1961 if (bytes == 0 && args->section_sent == 0)
1962 {
1963 /* The write is just starting. Let the user know we've started
1964 this section. */
79a45e25 1965 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1966 args->section_name, hex_string (args->section_size),
f5656ead 1967 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1968 return;
1969 }
cf7a04e8
DJ
1970
1971 if (validate_download)
1972 {
1973 /* Broken memories and broken monitors manifest themselves here
1974 when bring new computers to life. This doubles already slow
1975 downloads. */
1976 /* NOTE: cagney/1999-10-18: A more efficient implementation
1977 might add a verify_memory() method to the target vector and
1978 then use that. remote.c could implement that method using
1979 the ``qCRC'' packet. */
224c3ddb 1980 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1981 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1982
1983 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1984 error (_("Download verify read failed at %s"),
f5656ead 1985 paddress (target_gdbarch (), args->lma));
cf7a04e8 1986 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1987 error (_("Download verify compare failed at %s"),
f5656ead 1988 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1989 do_cleanups (verify_cleanups);
1990 }
a76d924d 1991 totals->data_count += bytes;
cf7a04e8
DJ
1992 args->lma += bytes;
1993 args->buffer += bytes;
a76d924d 1994 totals->write_count += 1;
cf7a04e8 1995 args->section_sent += bytes;
522002f9 1996 if (check_quit_flag ()
cf7a04e8
DJ
1997 || (deprecated_ui_load_progress_hook != NULL
1998 && deprecated_ui_load_progress_hook (args->section_name,
1999 args->section_sent)))
2000 error (_("Canceled the download"));
2001
2002 if (deprecated_show_load_progress != NULL)
2003 deprecated_show_load_progress (args->section_name,
2004 args->section_sent,
2005 args->section_size,
a76d924d
DJ
2006 totals->data_count,
2007 totals->total_size);
cf7a04e8
DJ
2008}
2009
e4f9b4d5
MS
2010/* Callback service function for generic_load (bfd_map_over_sections). */
2011
2012static void
2013load_section_callback (bfd *abfd, asection *asec, void *data)
2014{
a76d924d 2015 struct memory_write_request *new_request;
19ba03f4 2016 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2017 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2018 bfd_size_type size = bfd_get_section_size (asec);
2019 gdb_byte *buffer;
cf7a04e8 2020 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2021
cf7a04e8
DJ
2022 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2023 return;
e4f9b4d5 2024
cf7a04e8
DJ
2025 if (size == 0)
2026 return;
e4f9b4d5 2027
a76d924d
DJ
2028 new_request = VEC_safe_push (memory_write_request_s,
2029 args->requests, NULL);
2030 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2031 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2032 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2033 new_request->end = new_request->begin + size; /* FIXME Should size
2034 be in instead? */
224c3ddb 2035 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2036 new_request->baton = section_data;
cf7a04e8 2037
a76d924d 2038 buffer = new_request->data;
cf7a04e8 2039
a76d924d
DJ
2040 section_data->cumulative = args->progress_data;
2041 section_data->section_name = sect_name;
2042 section_data->section_size = size;
2043 section_data->lma = new_request->begin;
2044 section_data->buffer = buffer;
cf7a04e8
DJ
2045
2046 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2047}
2048
2049/* Clean up an entire memory request vector, including load
2050 data and progress records. */
cf7a04e8 2051
a76d924d
DJ
2052static void
2053clear_memory_write_data (void *arg)
2054{
19ba03f4 2055 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2056 VEC(memory_write_request_s) *vec = *vec_p;
2057 int i;
2058 struct memory_write_request *mr;
cf7a04e8 2059
a76d924d
DJ
2060 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2061 {
2062 xfree (mr->data);
2063 xfree (mr->baton);
2064 }
2065 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2066}
2067
c906108c 2068void
9cbe5fff 2069generic_load (const char *args, int from_tty)
c906108c 2070{
c906108c 2071 bfd *loadfile_bfd;
2b71414d 2072 struct timeval start_time, end_time;
917317f4 2073 char *filename;
1986bccd 2074 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2075 struct load_section_data cbdata;
a76d924d 2076 struct load_progress_data total_progress;
79a45e25 2077 struct ui_out *uiout = current_uiout;
a76d924d 2078
e4f9b4d5 2079 CORE_ADDR entry;
1986bccd 2080 char **argv;
e4f9b4d5 2081
a76d924d
DJ
2082 memset (&cbdata, 0, sizeof (cbdata));
2083 memset (&total_progress, 0, sizeof (total_progress));
2084 cbdata.progress_data = &total_progress;
2085
2086 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2087
d1a41061
PP
2088 if (args == NULL)
2089 error_no_arg (_("file to load"));
1986bccd 2090
d1a41061 2091 argv = gdb_buildargv (args);
1986bccd
AS
2092 make_cleanup_freeargv (argv);
2093
2094 filename = tilde_expand (argv[0]);
2095 make_cleanup (xfree, filename);
2096
2097 if (argv[1] != NULL)
917317f4 2098 {
f698ca8e 2099 const char *endptr;
ba5f2f8a 2100
f698ca8e 2101 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2102
2103 /* If the last word was not a valid number then
2104 treat it as a file name with spaces in. */
2105 if (argv[1] == endptr)
2106 error (_("Invalid download offset:%s."), argv[1]);
2107
2108 if (argv[2] != NULL)
2109 error (_("Too many parameters."));
917317f4 2110 }
c906108c 2111
c378eb4e 2112 /* Open the file for loading. */
1c00ec6b 2113 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2114 if (loadfile_bfd == NULL)
2115 {
2116 perror_with_name (filename);
2117 return;
2118 }
917317f4 2119
f9a062ff 2120 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2121
c5aa993b 2122 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2123 {
8a3fe4f8 2124 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2125 bfd_errmsg (bfd_get_error ()));
2126 }
c5aa993b 2127
5417f6dc 2128 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2129 (void *) &total_progress.total_size);
2130
2131 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2132
2b71414d 2133 gettimeofday (&start_time, NULL);
c906108c 2134
a76d924d
DJ
2135 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2136 load_progress) != 0)
2137 error (_("Load failed"));
c906108c 2138
2b71414d 2139 gettimeofday (&end_time, NULL);
ba5f2f8a 2140
e4f9b4d5 2141 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2142 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2143 ui_out_text (uiout, "Start address ");
f5656ead 2144 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2145 ui_out_text (uiout, ", load size ");
a76d924d 2146 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2147 ui_out_text (uiout, "\n");
fb14de7b 2148 regcache_write_pc (get_current_regcache (), entry);
c906108c 2149
38963c97
DJ
2150 /* Reset breakpoints, now that we have changed the load image. For
2151 instance, breakpoints may have been set (or reset, by
2152 post_create_inferior) while connected to the target but before we
2153 loaded the program. In that case, the prologue analyzer could
2154 have read instructions from the target to find the right
2155 breakpoint locations. Loading has changed the contents of that
2156 memory. */
2157
2158 breakpoint_re_set ();
2159
a76d924d
DJ
2160 print_transfer_performance (gdb_stdout, total_progress.data_count,
2161 total_progress.write_count,
2162 &start_time, &end_time);
c906108c
SS
2163
2164 do_cleanups (old_cleanups);
2165}
2166
c378eb4e 2167/* Report how fast the transfer went. */
c906108c 2168
917317f4 2169void
d9fcf2fb 2170print_transfer_performance (struct ui_file *stream,
917317f4
JM
2171 unsigned long data_count,
2172 unsigned long write_count,
2b71414d
DJ
2173 const struct timeval *start_time,
2174 const struct timeval *end_time)
917317f4 2175{
9f43d28c 2176 ULONGEST time_count;
79a45e25 2177 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2178
2179 /* Compute the elapsed time in milliseconds, as a tradeoff between
2180 accuracy and overflow. */
2181 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2182 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2183
8b93c638
JM
2184 ui_out_text (uiout, "Transfer rate: ");
2185 if (time_count > 0)
2186 {
9f43d28c
DJ
2187 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2188
2189 if (ui_out_is_mi_like_p (uiout))
2190 {
2191 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2192 ui_out_text (uiout, " bits/sec");
2193 }
2194 else if (rate < 1024)
2195 {
2196 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2197 ui_out_text (uiout, " bytes/sec");
2198 }
2199 else
2200 {
2201 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2202 ui_out_text (uiout, " KB/sec");
2203 }
8b93c638
JM
2204 }
2205 else
2206 {
ba5f2f8a 2207 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2208 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2209 }
2210 if (write_count > 0)
2211 {
2212 ui_out_text (uiout, ", ");
ba5f2f8a 2213 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2214 ui_out_text (uiout, " bytes/write");
2215 }
2216 ui_out_text (uiout, ".\n");
c906108c
SS
2217}
2218
2219/* This function allows the addition of incrementally linked object files.
2220 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2221/* Note: ezannoni 2000-04-13 This function/command used to have a
2222 special case syntax for the rombug target (Rombug is the boot
2223 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2224 rombug case, the user doesn't need to supply a text address,
2225 instead a call to target_link() (in target.c) would supply the
c378eb4e 2226 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2227
c906108c 2228static void
fba45db2 2229add_symbol_file_command (char *args, int from_tty)
c906108c 2230{
5af949e3 2231 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2232 char *filename = NULL;
c906108c 2233 char *arg;
db162d44 2234 int section_index = 0;
2acceee2
JM
2235 int argcnt = 0;
2236 int sec_num = 0;
2237 int i;
db162d44
EZ
2238 int expecting_sec_name = 0;
2239 int expecting_sec_addr = 0;
5b96932b 2240 char **argv;
76ad5e1e 2241 struct objfile *objf;
b15cc25c
PA
2242 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2243 symfile_add_flags add_flags = 0;
2244
2245 if (from_tty)
2246 add_flags |= SYMFILE_VERBOSE;
db162d44 2247
a39a16c4 2248 struct sect_opt
2acceee2 2249 {
2acceee2
JM
2250 char *name;
2251 char *value;
a39a16c4 2252 };
db162d44 2253
a39a16c4
MM
2254 struct section_addr_info *section_addrs;
2255 struct sect_opt *sect_opts = NULL;
2256 size_t num_sect_opts = 0;
3017564a 2257 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2258
a39a16c4 2259 num_sect_opts = 16;
8d749320 2260 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2261
c906108c
SS
2262 dont_repeat ();
2263
2264 if (args == NULL)
8a3fe4f8 2265 error (_("add-symbol-file takes a file name and an address"));
c906108c 2266
d1a41061 2267 argv = gdb_buildargv (args);
5b96932b 2268 make_cleanup_freeargv (argv);
db162d44 2269
5b96932b
AS
2270 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2271 {
c378eb4e 2272 /* Process the argument. */
db162d44 2273 if (argcnt == 0)
c906108c 2274 {
c378eb4e 2275 /* The first argument is the file name. */
db162d44 2276 filename = tilde_expand (arg);
3017564a 2277 make_cleanup (xfree, filename);
c906108c 2278 }
41dc8db8
MB
2279 else if (argcnt == 1)
2280 {
2281 /* The second argument is always the text address at which
2282 to load the program. */
2283 sect_opts[section_index].name = ".text";
2284 sect_opts[section_index].value = arg;
2285 if (++section_index >= num_sect_opts)
2286 {
2287 num_sect_opts *= 2;
2288 sect_opts = ((struct sect_opt *)
2289 xrealloc (sect_opts,
2290 num_sect_opts
2291 * sizeof (struct sect_opt)));
2292 }
2293 }
db162d44 2294 else
41dc8db8
MB
2295 {
2296 /* It's an option (starting with '-') or it's an argument
2297 to an option. */
41dc8db8
MB
2298 if (expecting_sec_name)
2299 {
2300 sect_opts[section_index].name = arg;
2301 expecting_sec_name = 0;
2302 }
2303 else if (expecting_sec_addr)
2304 {
2305 sect_opts[section_index].value = arg;
2306 expecting_sec_addr = 0;
2307 if (++section_index >= num_sect_opts)
2308 {
2309 num_sect_opts *= 2;
2310 sect_opts = ((struct sect_opt *)
2311 xrealloc (sect_opts,
2312 num_sect_opts
2313 * sizeof (struct sect_opt)));
2314 }
2315 }
2316 else if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
2323 else
2324 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2325 " [-readnow] [-s <secname> <addr>]*"));
2326 }
c906108c 2327 }
c906108c 2328
927890d0
JB
2329 /* This command takes at least two arguments. The first one is a
2330 filename, and the second is the address where this file has been
2331 loaded. Abort now if this address hasn't been provided by the
2332 user. */
2333 if (section_index < 1)
2334 error (_("The address where %s has been loaded is missing"), filename);
2335
c378eb4e 2336 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2337 a sect_addr_info structure to be passed around to other
2338 functions. We have to split this up into separate print
bb599908 2339 statements because hex_string returns a local static
c378eb4e 2340 string. */
5417f6dc 2341
a3f17187 2342 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2343 section_addrs = alloc_section_addr_info (section_index);
2344 make_cleanup (xfree, section_addrs);
db162d44 2345 for (i = 0; i < section_index; i++)
c906108c 2346 {
db162d44
EZ
2347 CORE_ADDR addr;
2348 char *val = sect_opts[i].value;
2349 char *sec = sect_opts[i].name;
5417f6dc 2350
ae822768 2351 addr = parse_and_eval_address (val);
db162d44 2352
db162d44 2353 /* Here we store the section offsets in the order they were
c378eb4e 2354 entered on the command line. */
a39a16c4
MM
2355 section_addrs->other[sec_num].name = sec;
2356 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2357 printf_unfiltered ("\t%s_addr = %s\n", sec,
2358 paddress (gdbarch, addr));
db162d44
EZ
2359 sec_num++;
2360
5417f6dc 2361 /* The object's sections are initialized when a
db162d44 2362 call is made to build_objfile_section_table (objfile).
5417f6dc 2363 This happens in reread_symbols.
db162d44
EZ
2364 At this point, we don't know what file type this is,
2365 so we can't determine what section names are valid. */
2acceee2 2366 }
d76488d8 2367 section_addrs->num_sections = sec_num;
db162d44 2368
2acceee2 2369 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2370 error (_("Not confirmed."));
c906108c 2371
b15cc25c 2372 objf = symbol_file_add (filename, add_flags, section_addrs, flags);
76ad5e1e
NB
2373
2374 add_target_sections_of_objfile (objf);
c906108c
SS
2375
2376 /* Getting new symbols may change our opinion about what is
2377 frameless. */
2378 reinit_frame_cache ();
db162d44 2379 do_cleanups (my_cleanups);
c906108c
SS
2380}
2381\f
70992597 2382
63644780
NB
2383/* This function removes a symbol file that was added via add-symbol-file. */
2384
2385static void
2386remove_symbol_file_command (char *args, int from_tty)
2387{
2388 char **argv;
2389 struct objfile *objf = NULL;
2390 struct cleanup *my_cleanups;
2391 struct program_space *pspace = current_program_space;
63644780
NB
2392
2393 dont_repeat ();
2394
2395 if (args == NULL)
2396 error (_("remove-symbol-file: no symbol file provided"));
2397
2398 my_cleanups = make_cleanup (null_cleanup, NULL);
2399
2400 argv = gdb_buildargv (args);
2401
2402 if (strcmp (argv[0], "-a") == 0)
2403 {
2404 /* Interpret the next argument as an address. */
2405 CORE_ADDR addr;
2406
2407 if (argv[1] == NULL)
2408 error (_("Missing address argument"));
2409
2410 if (argv[2] != NULL)
2411 error (_("Junk after %s"), argv[1]);
2412
2413 addr = parse_and_eval_address (argv[1]);
2414
2415 ALL_OBJFILES (objf)
2416 {
d03de421
PA
2417 if ((objf->flags & OBJF_USERLOADED) != 0
2418 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2419 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2420 break;
2421 }
2422 }
2423 else if (argv[0] != NULL)
2424 {
2425 /* Interpret the current argument as a file name. */
2426 char *filename;
2427
2428 if (argv[1] != NULL)
2429 error (_("Junk after %s"), argv[0]);
2430
2431 filename = tilde_expand (argv[0]);
2432 make_cleanup (xfree, filename);
2433
2434 ALL_OBJFILES (objf)
2435 {
d03de421
PA
2436 if ((objf->flags & OBJF_USERLOADED) != 0
2437 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2438 && objf->pspace == pspace
2439 && filename_cmp (filename, objfile_name (objf)) == 0)
2440 break;
2441 }
2442 }
2443
2444 if (objf == NULL)
2445 error (_("No symbol file found"));
2446
2447 if (from_tty
2448 && !query (_("Remove symbol table from file \"%s\"? "),
2449 objfile_name (objf)))
2450 error (_("Not confirmed."));
2451
2452 free_objfile (objf);
2453 clear_symtab_users (0);
2454
2455 do_cleanups (my_cleanups);
2456}
2457
4ac39b97
JK
2458typedef struct objfile *objfilep;
2459
2460DEF_VEC_P (objfilep);
2461
c906108c 2462/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2463
c906108c 2464void
fba45db2 2465reread_symbols (void)
c906108c
SS
2466{
2467 struct objfile *objfile;
2468 long new_modtime;
c906108c
SS
2469 struct stat new_statbuf;
2470 int res;
4ac39b97
JK
2471 VEC (objfilep) *new_objfiles = NULL;
2472 struct cleanup *all_cleanups;
2473
2474 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2475
2476 /* With the addition of shared libraries, this should be modified,
2477 the load time should be saved in the partial symbol tables, since
2478 different tables may come from different source files. FIXME.
2479 This routine should then walk down each partial symbol table
c378eb4e 2480 and see if the symbol table that it originates from has been changed. */
c906108c 2481
c5aa993b
JM
2482 for (objfile = object_files; objfile; objfile = objfile->next)
2483 {
9cce227f
TG
2484 if (objfile->obfd == NULL)
2485 continue;
2486
2487 /* Separate debug objfiles are handled in the main objfile. */
2488 if (objfile->separate_debug_objfile_backlink)
2489 continue;
2490
02aeec7b
JB
2491 /* If this object is from an archive (what you usually create with
2492 `ar', often called a `static library' on most systems, though
2493 a `shared library' on AIX is also an archive), then you should
2494 stat on the archive name, not member name. */
9cce227f
TG
2495 if (objfile->obfd->my_archive)
2496 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2497 else
4262abfb 2498 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2499 if (res != 0)
2500 {
c378eb4e 2501 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2502 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2503 objfile_name (objfile));
9cce227f
TG
2504 continue;
2505 }
2506 new_modtime = new_statbuf.st_mtime;
2507 if (new_modtime != objfile->mtime)
2508 {
2509 struct cleanup *old_cleanups;
2510 struct section_offsets *offsets;
2511 int num_offsets;
24ba069a 2512 char *original_name;
9cce227f
TG
2513
2514 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2515 objfile_name (objfile));
9cce227f
TG
2516
2517 /* There are various functions like symbol_file_add,
2518 symfile_bfd_open, syms_from_objfile, etc., which might
2519 appear to do what we want. But they have various other
2520 effects which we *don't* want. So we just do stuff
2521 ourselves. We don't worry about mapped files (for one thing,
2522 any mapped file will be out of date). */
2523
2524 /* If we get an error, blow away this objfile (not sure if
2525 that is the correct response for things like shared
2526 libraries). */
2527 old_cleanups = make_cleanup_free_objfile (objfile);
2528 /* We need to do this whenever any symbols go away. */
2529 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2530
0ba1096a
KT
2531 if (exec_bfd != NULL
2532 && filename_cmp (bfd_get_filename (objfile->obfd),
2533 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2534 {
2535 /* Reload EXEC_BFD without asking anything. */
2536
2537 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2538 }
2539
f6eeced0
JK
2540 /* Keep the calls order approx. the same as in free_objfile. */
2541
2542 /* Free the separate debug objfiles. It will be
2543 automatically recreated by sym_read. */
2544 free_objfile_separate_debug (objfile);
2545
2546 /* Remove any references to this objfile in the global
2547 value lists. */
2548 preserve_values (objfile);
2549
2550 /* Nuke all the state that we will re-read. Much of the following
2551 code which sets things to NULL really is necessary to tell
2552 other parts of GDB that there is nothing currently there.
2553
2554 Try to keep the freeing order compatible with free_objfile. */
2555
2556 if (objfile->sf != NULL)
2557 {
2558 (*objfile->sf->sym_finish) (objfile);
2559 }
2560
2561 clear_objfile_data (objfile);
2562
e1507e95 2563 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2564 {
2565 struct bfd *obfd = objfile->obfd;
d3846e71 2566 char *obfd_filename;
a4453b7e
TT
2567
2568 obfd_filename = bfd_get_filename (objfile->obfd);
2569 /* Open the new BFD before freeing the old one, so that
2570 the filename remains live. */
2938e6cf 2571 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2572 if (objfile->obfd == NULL)
2573 {
2574 /* We have to make a cleanup and error here, rather
2575 than erroring later, because once we unref OBFD,
2576 OBFD_FILENAME will be freed. */
2577 make_cleanup_bfd_unref (obfd);
2578 error (_("Can't open %s to read symbols."), obfd_filename);
2579 }
a4453b7e
TT
2580 gdb_bfd_unref (obfd);
2581 }
2582
24ba069a
JK
2583 original_name = xstrdup (objfile->original_name);
2584 make_cleanup (xfree, original_name);
2585
9cce227f
TG
2586 /* bfd_openr sets cacheable to true, which is what we want. */
2587 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2588 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2589 bfd_errmsg (bfd_get_error ()));
2590
2591 /* Save the offsets, we will nuke them with the rest of the
2592 objfile_obstack. */
2593 num_offsets = objfile->num_sections;
2594 offsets = ((struct section_offsets *)
2595 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2596 memcpy (offsets, objfile->section_offsets,
2597 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2598
9cce227f
TG
2599 /* FIXME: Do we have to free a whole linked list, or is this
2600 enough? */
2601 if (objfile->global_psymbols.list)
2602 xfree (objfile->global_psymbols.list);
2603 memset (&objfile->global_psymbols, 0,
2604 sizeof (objfile->global_psymbols));
2605 if (objfile->static_psymbols.list)
2606 xfree (objfile->static_psymbols.list);
2607 memset (&objfile->static_psymbols, 0,
2608 sizeof (objfile->static_psymbols));
2609
c378eb4e 2610 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2611 psymbol_bcache_free (objfile->psymbol_cache);
2612 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2613 obstack_free (&objfile->objfile_obstack, 0);
2614 objfile->sections = NULL;
43f3e411 2615 objfile->compunit_symtabs = NULL;
9cce227f
TG
2616 objfile->psymtabs = NULL;
2617 objfile->psymtabs_addrmap = NULL;
2618 objfile->free_psymtabs = NULL;
34eaf542 2619 objfile->template_symbols = NULL;
9cce227f 2620
9cce227f
TG
2621 /* obstack_init also initializes the obstack so it is
2622 empty. We could use obstack_specify_allocation but
d82ea6a8 2623 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2624 obstack_init (&objfile->objfile_obstack);
779bd270 2625
846060df
JB
2626 /* set_objfile_per_bfd potentially allocates the per-bfd
2627 data on the objfile's obstack (if sharing data across
2628 multiple users is not possible), so it's important to
2629 do it *after* the obstack has been initialized. */
2630 set_objfile_per_bfd (objfile);
2631
224c3ddb
SM
2632 objfile->original_name
2633 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2634 strlen (original_name));
24ba069a 2635
779bd270
DE
2636 /* Reset the sym_fns pointer. The ELF reader can change it
2637 based on whether .gdb_index is present, and we need it to
2638 start over. PR symtab/15885 */
8fb8eb5c 2639 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2640
d82ea6a8 2641 build_objfile_section_table (objfile);
9cce227f
TG
2642 terminate_minimal_symbol_table (objfile);
2643
2644 /* We use the same section offsets as from last time. I'm not
2645 sure whether that is always correct for shared libraries. */
2646 objfile->section_offsets = (struct section_offsets *)
2647 obstack_alloc (&objfile->objfile_obstack,
2648 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2649 memcpy (objfile->section_offsets, offsets,
2650 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2651 objfile->num_sections = num_offsets;
2652
2653 /* What the hell is sym_new_init for, anyway? The concept of
2654 distinguishing between the main file and additional files
2655 in this way seems rather dubious. */
2656 if (objfile == symfile_objfile)
c906108c 2657 {
9cce227f 2658 (*objfile->sf->sym_new_init) (objfile);
c906108c 2659 }
9cce227f
TG
2660
2661 (*objfile->sf->sym_init) (objfile);
2662 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2663
2664 objfile->flags &= ~OBJF_PSYMTABS_READ;
2665 read_symbols (objfile, 0);
b11896a5 2666
9cce227f 2667 if (!objfile_has_symbols (objfile))
c906108c 2668 {
9cce227f
TG
2669 wrap_here ("");
2670 printf_unfiltered (_("(no debugging symbols found)\n"));
2671 wrap_here ("");
c5aa993b 2672 }
9cce227f
TG
2673
2674 /* We're done reading the symbol file; finish off complaints. */
2675 clear_complaints (&symfile_complaints, 0, 1);
2676
2677 /* Getting new symbols may change our opinion about what is
2678 frameless. */
2679
2680 reinit_frame_cache ();
2681
2682 /* Discard cleanups as symbol reading was successful. */
2683 discard_cleanups (old_cleanups);
2684
2685 /* If the mtime has changed between the time we set new_modtime
2686 and now, we *want* this to be out of date, so don't call stat
2687 again now. */
2688 objfile->mtime = new_modtime;
9cce227f 2689 init_entry_point_info (objfile);
4ac39b97
JK
2690
2691 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2692 }
2693 }
c906108c 2694
4ac39b97 2695 if (new_objfiles)
ea53e89f 2696 {
4ac39b97
JK
2697 int ix;
2698
ff3536bc
UW
2699 /* Notify objfiles that we've modified objfile sections. */
2700 objfiles_changed ();
2701
c1e56572 2702 clear_symtab_users (0);
4ac39b97
JK
2703
2704 /* clear_objfile_data for each objfile was called before freeing it and
2705 observer_notify_new_objfile (NULL) has been called by
2706 clear_symtab_users above. Notify the new files now. */
2707 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2708 observer_notify_new_objfile (objfile);
2709
ea53e89f
JB
2710 /* At least one objfile has changed, so we can consider that
2711 the executable we're debugging has changed too. */
781b42b0 2712 observer_notify_executable_changed ();
ea53e89f 2713 }
4ac39b97
JK
2714
2715 do_cleanups (all_cleanups);
c906108c 2716}
c906108c
SS
2717\f
2718
c5aa993b
JM
2719typedef struct
2720{
2721 char *ext;
c906108c 2722 enum language lang;
3fcf0b0d
TT
2723} filename_language;
2724
2725DEF_VEC_O (filename_language);
c906108c 2726
3fcf0b0d 2727static VEC (filename_language) *filename_language_table;
c906108c 2728
56618e20
TT
2729/* See symfile.h. */
2730
2731void
2732add_filename_language (const char *ext, enum language lang)
c906108c 2733{
3fcf0b0d
TT
2734 filename_language entry;
2735
2736 entry.ext = xstrdup (ext);
2737 entry.lang = lang;
c906108c 2738
3fcf0b0d 2739 VEC_safe_push (filename_language, filename_language_table, &entry);
c906108c
SS
2740}
2741
2742static char *ext_args;
920d2a44
AC
2743static void
2744show_ext_args (struct ui_file *file, int from_tty,
2745 struct cmd_list_element *c, const char *value)
2746{
3e43a32a
MS
2747 fprintf_filtered (file,
2748 _("Mapping between filename extension "
2749 "and source language is \"%s\".\n"),
920d2a44
AC
2750 value);
2751}
c906108c
SS
2752
2753static void
26c41df3 2754set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2755{
2756 int i;
2757 char *cp = ext_args;
2758 enum language lang;
3fcf0b0d 2759 filename_language *entry;
c906108c 2760
c378eb4e 2761 /* First arg is filename extension, starting with '.' */
c906108c 2762 if (*cp != '.')
8a3fe4f8 2763 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2764
2765 /* Find end of first arg. */
c5aa993b 2766 while (*cp && !isspace (*cp))
c906108c
SS
2767 cp++;
2768
2769 if (*cp == '\0')
3e43a32a
MS
2770 error (_("'%s': two arguments required -- "
2771 "filename extension and language"),
c906108c
SS
2772 ext_args);
2773
c378eb4e 2774 /* Null-terminate first arg. */
c5aa993b 2775 *cp++ = '\0';
c906108c
SS
2776
2777 /* Find beginning of second arg, which should be a source language. */
529480d0 2778 cp = skip_spaces (cp);
c906108c
SS
2779
2780 if (*cp == '\0')
3e43a32a
MS
2781 error (_("'%s': two arguments required -- "
2782 "filename extension and language"),
c906108c
SS
2783 ext_args);
2784
2785 /* Lookup the language from among those we know. */
2786 lang = language_enum (cp);
2787
2788 /* Now lookup the filename extension: do we already know it? */
3fcf0b0d
TT
2789 for (i = 0;
2790 VEC_iterate (filename_language, filename_language_table, i, entry);
2791 ++i)
2792 {
2793 if (0 == strcmp (ext_args, entry->ext))
2794 break;
2795 }
c906108c 2796
3fcf0b0d 2797 if (entry == NULL)
c906108c 2798 {
c378eb4e 2799 /* New file extension. */
c906108c
SS
2800 add_filename_language (ext_args, lang);
2801 }
2802 else
2803 {
c378eb4e 2804 /* Redefining a previously known filename extension. */
c906108c
SS
2805
2806 /* if (from_tty) */
2807 /* query ("Really make files of type %s '%s'?", */
2808 /* ext_args, language_str (lang)); */
2809
3fcf0b0d
TT
2810 xfree (entry->ext);
2811 entry->ext = xstrdup (ext_args);
2812 entry->lang = lang;
c906108c
SS
2813 }
2814}
2815
2816static void
fba45db2 2817info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2818{
2819 int i;
3fcf0b0d 2820 filename_language *entry;
c906108c 2821
a3f17187 2822 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2823 printf_filtered ("\n\n");
3fcf0b0d
TT
2824 for (i = 0;
2825 VEC_iterate (filename_language, filename_language_table, i, entry);
2826 ++i)
2827 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
c906108c
SS
2828}
2829
c906108c 2830enum language
dd786858 2831deduce_language_from_filename (const char *filename)
c906108c
SS
2832{
2833 int i;
e6a959d6 2834 const char *cp;
c906108c
SS
2835
2836 if (filename != NULL)
2837 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d
TT
2838 {
2839 filename_language *entry;
2840
2841 for (i = 0;
2842 VEC_iterate (filename_language, filename_language_table, i, entry);
2843 ++i)
2844 if (strcmp (cp, entry->ext) == 0)
2845 return entry->lang;
2846 }
c906108c
SS
2847
2848 return language_unknown;
2849}
2850\f
43f3e411
DE
2851/* Allocate and initialize a new symbol table.
2852 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2853
2854struct symtab *
43f3e411 2855allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2856{
43f3e411
DE
2857 struct objfile *objfile = cust->objfile;
2858 struct symtab *symtab
2859 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2860
19ba03f4
SM
2861 symtab->filename
2862 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2863 objfile->per_bfd->filename_cache);
c5aa993b
JM
2864 symtab->fullname = NULL;
2865 symtab->language = deduce_language_from_filename (filename);
c906108c 2866
db0fec5c
DE
2867 /* This can be very verbose with lots of headers.
2868 Only print at higher debug levels. */
2869 if (symtab_create_debug >= 2)
45cfd468
DE
2870 {
2871 /* Be a bit clever with debugging messages, and don't print objfile
2872 every time, only when it changes. */
2873 static char *last_objfile_name = NULL;
2874
2875 if (last_objfile_name == NULL
4262abfb 2876 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2877 {
2878 xfree (last_objfile_name);
4262abfb 2879 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2880 fprintf_unfiltered (gdb_stdlog,
2881 "Creating one or more symtabs for objfile %s ...\n",
2882 last_objfile_name);
2883 }
2884 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2885 "Created symtab %s for module %s.\n",
2886 host_address_to_string (symtab), filename);
45cfd468
DE
2887 }
2888
43f3e411
DE
2889 /* Add it to CUST's list of symtabs. */
2890 if (cust->filetabs == NULL)
2891 {
2892 cust->filetabs = symtab;
2893 cust->last_filetab = symtab;
2894 }
2895 else
2896 {
2897 cust->last_filetab->next = symtab;
2898 cust->last_filetab = symtab;
2899 }
2900
2901 /* Backlink to the containing compunit symtab. */
2902 symtab->compunit_symtab = cust;
2903
2904 return symtab;
2905}
2906
2907/* Allocate and initialize a new compunit.
2908 NAME is the name of the main source file, if there is one, or some
2909 descriptive text if there are no source files. */
2910
2911struct compunit_symtab *
2912allocate_compunit_symtab (struct objfile *objfile, const char *name)
2913{
2914 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2915 struct compunit_symtab);
2916 const char *saved_name;
2917
2918 cu->objfile = objfile;
2919
2920 /* The name we record here is only for display/debugging purposes.
2921 Just save the basename to avoid path issues (too long for display,
2922 relative vs absolute, etc.). */
2923 saved_name = lbasename (name);
224c3ddb
SM
2924 cu->name
2925 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2926 strlen (saved_name));
43f3e411
DE
2927
2928 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2929
2930 if (symtab_create_debug)
2931 {
2932 fprintf_unfiltered (gdb_stdlog,
2933 "Created compunit symtab %s for %s.\n",
2934 host_address_to_string (cu),
2935 cu->name);
2936 }
2937
2938 return cu;
2939}
2940
2941/* Hook CU to the objfile it comes from. */
2942
2943void
2944add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2945{
2946 cu->next = cu->objfile->compunit_symtabs;
2947 cu->objfile->compunit_symtabs = cu;
c906108c 2948}
c906108c 2949\f
c5aa993b 2950
b15cc25c
PA
2951/* Reset all data structures in gdb which may contain references to
2952 symbol table data. */
c906108c
SS
2953
2954void
b15cc25c 2955clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2956{
2957 /* Someday, we should do better than this, by only blowing away
2958 the things that really need to be blown. */
c0501be5
DJ
2959
2960 /* Clear the "current" symtab first, because it is no longer valid.
2961 breakpoint_re_set may try to access the current symtab. */
2962 clear_current_source_symtab_and_line ();
2963
c906108c 2964 clear_displays ();
1bfeeb0f 2965 clear_last_displayed_sal ();
c906108c 2966 clear_pc_function_cache ();
06d3b283 2967 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2968
2969 /* Clear globals which might have pointed into a removed objfile.
2970 FIXME: It's not clear which of these are supposed to persist
2971 between expressions and which ought to be reset each time. */
2972 expression_context_block = NULL;
2973 innermost_block = NULL;
8756216b
DP
2974
2975 /* Varobj may refer to old symbols, perform a cleanup. */
2976 varobj_invalidate ();
2977
e700d1b2
JB
2978 /* Now that the various caches have been cleared, we can re_set
2979 our breakpoints without risking it using stale data. */
2980 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2981 breakpoint_re_set ();
c906108c
SS
2982}
2983
74b7792f
AC
2984static void
2985clear_symtab_users_cleanup (void *ignore)
2986{
c1e56572 2987 clear_symtab_users (0);
74b7792f 2988}
c906108c 2989\f
c906108c
SS
2990/* OVERLAYS:
2991 The following code implements an abstraction for debugging overlay sections.
2992
2993 The target model is as follows:
2994 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2995 same VMA, each with its own unique LMA (or load address).
c906108c 2996 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2997 sections, one by one, from the load address into the VMA address.
5417f6dc 2998 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2999 sections should be considered to be mapped from the VMA to the LMA.
3000 This information is used for symbol lookup, and memory read/write.
5417f6dc 3001 For instance, if a section has been mapped then its contents
c5aa993b 3002 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3003
3004 Two levels of debugger support for overlays are available. One is
3005 "manual", in which the debugger relies on the user to tell it which
3006 overlays are currently mapped. This level of support is
3007 implemented entirely in the core debugger, and the information about
3008 whether a section is mapped is kept in the objfile->obj_section table.
3009
3010 The second level of support is "automatic", and is only available if
3011 the target-specific code provides functionality to read the target's
3012 overlay mapping table, and translate its contents for the debugger
3013 (by updating the mapped state information in the obj_section tables).
3014
3015 The interface is as follows:
c5aa993b
JM
3016 User commands:
3017 overlay map <name> -- tell gdb to consider this section mapped
3018 overlay unmap <name> -- tell gdb to consider this section unmapped
3019 overlay list -- list the sections that GDB thinks are mapped
3020 overlay read-target -- get the target's state of what's mapped
3021 overlay off/manual/auto -- set overlay debugging state
3022 Functional interface:
3023 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3024 section, return that section.
5417f6dc 3025 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3026 the pc, either in its VMA or its LMA
714835d5 3027 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3028 section_is_overlay(sect): true if section's VMA != LMA
3029 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3030 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3031 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3032 overlay_mapped_address(...): map an address from section's LMA to VMA
3033 overlay_unmapped_address(...): map an address from section's VMA to LMA
3034 symbol_overlayed_address(...): Return a "current" address for symbol:
3035 either in VMA or LMA depending on whether
c378eb4e 3036 the symbol's section is currently mapped. */
c906108c
SS
3037
3038/* Overlay debugging state: */
3039
d874f1e2 3040enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3041int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3042
c906108c 3043/* Function: section_is_overlay (SECTION)
5417f6dc 3044 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3045 SECTION is loaded at an address different from where it will "run". */
3046
3047int
714835d5 3048section_is_overlay (struct obj_section *section)
c906108c 3049{
714835d5
UW
3050 if (overlay_debugging && section)
3051 {
3052 bfd *abfd = section->objfile->obfd;
3053 asection *bfd_section = section->the_bfd_section;
f888f159 3054
714835d5
UW
3055 if (bfd_section_lma (abfd, bfd_section) != 0
3056 && bfd_section_lma (abfd, bfd_section)
3057 != bfd_section_vma (abfd, bfd_section))
3058 return 1;
3059 }
c906108c
SS
3060
3061 return 0;
3062}
3063
3064/* Function: overlay_invalidate_all (void)
3065 Invalidate the mapped state of all overlay sections (mark it as stale). */
3066
3067static void
fba45db2 3068overlay_invalidate_all (void)
c906108c 3069{
c5aa993b 3070 struct objfile *objfile;
c906108c
SS
3071 struct obj_section *sect;
3072
3073 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3074 if (section_is_overlay (sect))
3075 sect->ovly_mapped = -1;
c906108c
SS
3076}
3077
714835d5 3078/* Function: section_is_mapped (SECTION)
5417f6dc 3079 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3080
3081 Access to the ovly_mapped flag is restricted to this function, so
3082 that we can do automatic update. If the global flag
3083 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3084 overlay_invalidate_all. If the mapped state of the particular
3085 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3086
714835d5
UW
3087int
3088section_is_mapped (struct obj_section *osect)
c906108c 3089{
9216df95
UW
3090 struct gdbarch *gdbarch;
3091
714835d5 3092 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3093 return 0;
3094
c5aa993b 3095 switch (overlay_debugging)
c906108c
SS
3096 {
3097 default:
d874f1e2 3098 case ovly_off:
c5aa993b 3099 return 0; /* overlay debugging off */
d874f1e2 3100 case ovly_auto: /* overlay debugging automatic */
1c772458 3101 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3102 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3103 gdbarch = get_objfile_arch (osect->objfile);
3104 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3105 {
3106 if (overlay_cache_invalid)
3107 {
3108 overlay_invalidate_all ();
3109 overlay_cache_invalid = 0;
3110 }
3111 if (osect->ovly_mapped == -1)
9216df95 3112 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3113 }
3114 /* fall thru to manual case */
d874f1e2 3115 case ovly_on: /* overlay debugging manual */
c906108c
SS
3116 return osect->ovly_mapped == 1;
3117 }
3118}
3119
c906108c
SS
3120/* Function: pc_in_unmapped_range
3121 If PC falls into the lma range of SECTION, return true, else false. */
3122
3123CORE_ADDR
714835d5 3124pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3125{
714835d5
UW
3126 if (section_is_overlay (section))
3127 {
3128 bfd *abfd = section->objfile->obfd;
3129 asection *bfd_section = section->the_bfd_section;
fbd35540 3130
714835d5
UW
3131 /* We assume the LMA is relocated by the same offset as the VMA. */
3132 bfd_vma size = bfd_get_section_size (bfd_section);
3133 CORE_ADDR offset = obj_section_offset (section);
3134
3135 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3136 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3137 return 1;
3138 }
c906108c 3139
c906108c
SS
3140 return 0;
3141}
3142
3143/* Function: pc_in_mapped_range
3144 If PC falls into the vma range of SECTION, return true, else false. */
3145
3146CORE_ADDR
714835d5 3147pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3148{
714835d5
UW
3149 if (section_is_overlay (section))
3150 {
3151 if (obj_section_addr (section) <= pc
3152 && pc < obj_section_endaddr (section))
3153 return 1;
3154 }
c906108c 3155
c906108c
SS
3156 return 0;
3157}
3158
9ec8e6a0
JB
3159/* Return true if the mapped ranges of sections A and B overlap, false
3160 otherwise. */
3b7bacac 3161
b9362cc7 3162static int
714835d5 3163sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3164{
714835d5
UW
3165 CORE_ADDR a_start = obj_section_addr (a);
3166 CORE_ADDR a_end = obj_section_endaddr (a);
3167 CORE_ADDR b_start = obj_section_addr (b);
3168 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3169
3170 return (a_start < b_end && b_start < a_end);
3171}
3172
c906108c
SS
3173/* Function: overlay_unmapped_address (PC, SECTION)
3174 Returns the address corresponding to PC in the unmapped (load) range.
3175 May be the same as PC. */
3176
3177CORE_ADDR
714835d5 3178overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3179{
714835d5
UW
3180 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3181 {
3182 bfd *abfd = section->objfile->obfd;
3183 asection *bfd_section = section->the_bfd_section;
fbd35540 3184
714835d5
UW
3185 return pc + bfd_section_lma (abfd, bfd_section)
3186 - bfd_section_vma (abfd, bfd_section);
3187 }
c906108c
SS
3188
3189 return pc;
3190}
3191
3192/* Function: overlay_mapped_address (PC, SECTION)
3193 Returns the address corresponding to PC in the mapped (runtime) range.
3194 May be the same as PC. */
3195
3196CORE_ADDR
714835d5 3197overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3198{
714835d5
UW
3199 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3200 {
3201 bfd *abfd = section->objfile->obfd;
3202 asection *bfd_section = section->the_bfd_section;
fbd35540 3203
714835d5
UW
3204 return pc + bfd_section_vma (abfd, bfd_section)
3205 - bfd_section_lma (abfd, bfd_section);
3206 }
c906108c
SS
3207
3208 return pc;
3209}
3210
5417f6dc 3211/* Function: symbol_overlayed_address
c906108c
SS
3212 Return one of two addresses (relative to the VMA or to the LMA),
3213 depending on whether the section is mapped or not. */
3214
c5aa993b 3215CORE_ADDR
714835d5 3216symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3217{
3218 if (overlay_debugging)
3219 {
c378eb4e 3220 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3221 if (section == 0)
3222 return address;
c378eb4e
MS
3223 /* If the symbol's section is not an overlay, just return its
3224 address. */
c906108c
SS
3225 if (!section_is_overlay (section))
3226 return address;
c378eb4e 3227 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3228 if (section_is_mapped (section))
3229 return address;
3230 /*
3231 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3232 * then return its LOADED address rather than its vma address!!
3233 */
3234 return overlay_unmapped_address (address, section);
3235 }
3236 return address;
3237}
3238
5417f6dc 3239/* Function: find_pc_overlay (PC)
c906108c
SS
3240 Return the best-match overlay section for PC:
3241 If PC matches a mapped overlay section's VMA, return that section.
3242 Else if PC matches an unmapped section's VMA, return that section.
3243 Else if PC matches an unmapped section's LMA, return that section. */
3244
714835d5 3245struct obj_section *
fba45db2 3246find_pc_overlay (CORE_ADDR pc)
c906108c 3247{
c5aa993b 3248 struct objfile *objfile;
c906108c
SS
3249 struct obj_section *osect, *best_match = NULL;
3250
3251 if (overlay_debugging)
b631e59b
KT
3252 {
3253 ALL_OBJSECTIONS (objfile, osect)
3254 if (section_is_overlay (osect))
c5aa993b 3255 {
b631e59b
KT
3256 if (pc_in_mapped_range (pc, osect))
3257 {
3258 if (section_is_mapped (osect))
3259 return osect;
3260 else
3261 best_match = osect;
3262 }
3263 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3264 best_match = osect;
3265 }
b631e59b 3266 }
714835d5 3267 return best_match;
c906108c
SS
3268}
3269
3270/* Function: find_pc_mapped_section (PC)
5417f6dc 3271 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3272 currently marked as MAPPED, return that section. Else return NULL. */
3273
714835d5 3274struct obj_section *
fba45db2 3275find_pc_mapped_section (CORE_ADDR pc)
c906108c 3276{
c5aa993b 3277 struct objfile *objfile;
c906108c
SS
3278 struct obj_section *osect;
3279
3280 if (overlay_debugging)
b631e59b
KT
3281 {
3282 ALL_OBJSECTIONS (objfile, osect)
3283 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3284 return osect;
3285 }
c906108c
SS
3286
3287 return NULL;
3288}
3289
3290/* Function: list_overlays_command
c378eb4e 3291 Print a list of mapped sections and their PC ranges. */
c906108c 3292
5d3055ad 3293static void
fba45db2 3294list_overlays_command (char *args, int from_tty)
c906108c 3295{
c5aa993b
JM
3296 int nmapped = 0;
3297 struct objfile *objfile;
c906108c
SS
3298 struct obj_section *osect;
3299
3300 if (overlay_debugging)
b631e59b
KT
3301 {
3302 ALL_OBJSECTIONS (objfile, osect)
714835d5 3303 if (section_is_mapped (osect))
b631e59b
KT
3304 {
3305 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3306 const char *name;
3307 bfd_vma lma, vma;
3308 int size;
3309
3310 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3311 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3312 size = bfd_get_section_size (osect->the_bfd_section);
3313 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3314
3315 printf_filtered ("Section %s, loaded at ", name);
3316 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3317 puts_filtered (" - ");
3318 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3319 printf_filtered (", mapped at ");
3320 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3321 puts_filtered (" - ");
3322 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3323 puts_filtered ("\n");
3324
3325 nmapped++;
3326 }
3327 }
c906108c 3328 if (nmapped == 0)
a3f17187 3329 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3330}
3331
3332/* Function: map_overlay_command
3333 Mark the named section as mapped (ie. residing at its VMA address). */
3334
5d3055ad 3335static void
fba45db2 3336map_overlay_command (char *args, int from_tty)
c906108c 3337{
c5aa993b
JM
3338 struct objfile *objfile, *objfile2;
3339 struct obj_section *sec, *sec2;
c906108c
SS
3340
3341 if (!overlay_debugging)
3e43a32a
MS
3342 error (_("Overlay debugging not enabled. Use "
3343 "either the 'overlay auto' or\n"
3344 "the 'overlay manual' command."));
c906108c
SS
3345
3346 if (args == 0 || *args == 0)
8a3fe4f8 3347 error (_("Argument required: name of an overlay section"));
c906108c 3348
c378eb4e 3349 /* First, find a section matching the user supplied argument. */
c906108c
SS
3350 ALL_OBJSECTIONS (objfile, sec)
3351 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3352 {
c378eb4e 3353 /* Now, check to see if the section is an overlay. */
714835d5 3354 if (!section_is_overlay (sec))
c5aa993b
JM
3355 continue; /* not an overlay section */
3356
c378eb4e 3357 /* Mark the overlay as "mapped". */
c5aa993b
JM
3358 sec->ovly_mapped = 1;
3359
3360 /* Next, make a pass and unmap any sections that are
3361 overlapped by this new section: */
3362 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3363 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3364 {
3365 if (info_verbose)
a3f17187 3366 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3367 bfd_section_name (objfile->obfd,
3368 sec2->the_bfd_section));
c378eb4e 3369 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3370 }
3371 return;
3372 }
8a3fe4f8 3373 error (_("No overlay section called %s"), args);
c906108c
SS
3374}
3375
3376/* Function: unmap_overlay_command
5417f6dc 3377 Mark the overlay section as unmapped
c906108c
SS
3378 (ie. resident in its LMA address range, rather than the VMA range). */
3379
5d3055ad 3380static void
fba45db2 3381unmap_overlay_command (char *args, int from_tty)
c906108c 3382{
c5aa993b 3383 struct objfile *objfile;
7a270e0c 3384 struct obj_section *sec = NULL;
c906108c
SS
3385
3386 if (!overlay_debugging)
3e43a32a
MS
3387 error (_("Overlay debugging not enabled. "
3388 "Use either the 'overlay auto' or\n"
3389 "the 'overlay manual' command."));
c906108c
SS
3390
3391 if (args == 0 || *args == 0)
8a3fe4f8 3392 error (_("Argument required: name of an overlay section"));
c906108c 3393
c378eb4e 3394 /* First, find a section matching the user supplied argument. */
c906108c
SS
3395 ALL_OBJSECTIONS (objfile, sec)
3396 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3397 {
3398 if (!sec->ovly_mapped)
8a3fe4f8 3399 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3400 sec->ovly_mapped = 0;
3401 return;
3402 }
8a3fe4f8 3403 error (_("No overlay section called %s"), args);
c906108c
SS
3404}
3405
3406/* Function: overlay_auto_command
3407 A utility command to turn on overlay debugging.
c378eb4e 3408 Possibly this should be done via a set/show command. */
c906108c
SS
3409
3410static void
fba45db2 3411overlay_auto_command (char *args, int from_tty)
c906108c 3412{
d874f1e2 3413 overlay_debugging = ovly_auto;
1900040c 3414 enable_overlay_breakpoints ();
c906108c 3415 if (info_verbose)
a3f17187 3416 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3417}
3418
3419/* Function: overlay_manual_command
3420 A utility command to turn on overlay debugging.
c378eb4e 3421 Possibly this should be done via a set/show command. */
c906108c
SS
3422
3423static void
fba45db2 3424overlay_manual_command (char *args, int from_tty)
c906108c 3425{
d874f1e2 3426 overlay_debugging = ovly_on;
1900040c 3427 disable_overlay_breakpoints ();
c906108c 3428 if (info_verbose)
a3f17187 3429 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3430}
3431
3432/* Function: overlay_off_command
3433 A utility command to turn on overlay debugging.
c378eb4e 3434 Possibly this should be done via a set/show command. */
c906108c
SS
3435
3436static void
fba45db2 3437overlay_off_command (char *args, int from_tty)
c906108c 3438{
d874f1e2 3439 overlay_debugging = ovly_off;
1900040c 3440 disable_overlay_breakpoints ();
c906108c 3441 if (info_verbose)
a3f17187 3442 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3443}
3444
3445static void
fba45db2 3446overlay_load_command (char *args, int from_tty)
c906108c 3447{
e17c207e
UW
3448 struct gdbarch *gdbarch = get_current_arch ();
3449
3450 if (gdbarch_overlay_update_p (gdbarch))
3451 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3452 else
8a3fe4f8 3453 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3454}
3455
3456/* Function: overlay_command
c378eb4e 3457 A place-holder for a mis-typed command. */
c906108c 3458
c378eb4e 3459/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3460static struct cmd_list_element *overlaylist;
c906108c
SS
3461
3462static void
fba45db2 3463overlay_command (char *args, int from_tty)
c906108c 3464{
c5aa993b 3465 printf_unfiltered
c906108c 3466 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3467 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3468}
3469
c906108c
SS
3470/* Target Overlays for the "Simplest" overlay manager:
3471
5417f6dc
RM
3472 This is GDB's default target overlay layer. It works with the
3473 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3474 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3475 so targets that use a different runtime overlay manager can
c906108c
SS
3476 substitute their own overlay_update function and take over the
3477 function pointer.
3478
3479 The overlay_update function pokes around in the target's data structures
3480 to see what overlays are mapped, and updates GDB's overlay mapping with
3481 this information.
3482
3483 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3484 unsigned _novlys; /# number of overlay sections #/
3485 unsigned _ovly_table[_novlys][4] = {
438e1e42 3486 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3487 {..., ..., ..., ...},
3488 }
3489 unsigned _novly_regions; /# number of overlay regions #/
3490 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3491 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3492 {..., ..., ...},
3493 }
c906108c
SS
3494 These functions will attempt to update GDB's mappedness state in the
3495 symbol section table, based on the target's mappedness state.
3496
3497 To do this, we keep a cached copy of the target's _ovly_table, and
3498 attempt to detect when the cached copy is invalidated. The main
3499 entry point is "simple_overlay_update(SECT), which looks up SECT in
3500 the cached table and re-reads only the entry for that section from
c378eb4e 3501 the target (whenever possible). */
c906108c
SS
3502
3503/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3504static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3505static unsigned cache_novlys = 0;
c906108c 3506static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3507enum ovly_index
3508 {
438e1e42 3509 VMA, OSIZE, LMA, MAPPED
c5aa993b 3510 };
c906108c 3511
c378eb4e 3512/* Throw away the cached copy of _ovly_table. */
3b7bacac 3513
c906108c 3514static void
fba45db2 3515simple_free_overlay_table (void)
c906108c
SS
3516{
3517 if (cache_ovly_table)
b8c9b27d 3518 xfree (cache_ovly_table);
c5aa993b 3519 cache_novlys = 0;
c906108c
SS
3520 cache_ovly_table = NULL;
3521 cache_ovly_table_base = 0;
3522}
3523
9216df95 3524/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3525 Convert to host order. int LEN is number of ints. */
3b7bacac 3526
c906108c 3527static void
9216df95 3528read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3529 int len, int size, enum bfd_endian byte_order)
c906108c 3530{
c378eb4e 3531 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3532 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3533 int i;
c906108c 3534
9216df95 3535 read_memory (memaddr, buf, len * size);
c906108c 3536 for (i = 0; i < len; i++)
e17a4113 3537 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3538}
3539
3540/* Find and grab a copy of the target _ovly_table
c378eb4e 3541 (and _novlys, which is needed for the table's size). */
3b7bacac 3542
c5aa993b 3543static int
fba45db2 3544simple_read_overlay_table (void)
c906108c 3545{
3b7344d5 3546 struct bound_minimal_symbol novlys_msym;
7c7b6655 3547 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3548 struct gdbarch *gdbarch;
3549 int word_size;
e17a4113 3550 enum bfd_endian byte_order;
c906108c
SS
3551
3552 simple_free_overlay_table ();
9b27852e 3553 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3554 if (! novlys_msym.minsym)
c906108c 3555 {
8a3fe4f8 3556 error (_("Error reading inferior's overlay table: "
0d43edd1 3557 "couldn't find `_novlys' variable\n"
8a3fe4f8 3558 "in inferior. Use `overlay manual' mode."));
0d43edd1 3559 return 0;
c906108c 3560 }
0d43edd1 3561
7c7b6655
TT
3562 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3563 if (! ovly_table_msym.minsym)
0d43edd1 3564 {
8a3fe4f8 3565 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3566 "`_ovly_table' array\n"
8a3fe4f8 3567 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3568 return 0;
3569 }
3570
7c7b6655 3571 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3572 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3573 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3574
77e371c0
TT
3575 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3576 4, byte_order);
0d43edd1 3577 cache_ovly_table
224c3ddb 3578 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3579 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3580 read_target_long_array (cache_ovly_table_base,
777ea8f1 3581 (unsigned int *) cache_ovly_table,
e17a4113 3582 cache_novlys * 4, word_size, byte_order);
0d43edd1 3583
c5aa993b 3584 return 1; /* SUCCESS */
c906108c
SS
3585}
3586
5417f6dc 3587/* Function: simple_overlay_update_1
c906108c
SS
3588 A helper function for simple_overlay_update. Assuming a cached copy
3589 of _ovly_table exists, look through it to find an entry whose vma,
3590 lma and size match those of OSECT. Re-read the entry and make sure
3591 it still matches OSECT (else the table may no longer be valid).
3592 Set OSECT's mapped state to match the entry. Return: 1 for
3593 success, 0 for failure. */
3594
3595static int
fba45db2 3596simple_overlay_update_1 (struct obj_section *osect)
c906108c 3597{
764c99c1 3598 int i;
fbd35540
MS
3599 bfd *obfd = osect->objfile->obfd;
3600 asection *bsect = osect->the_bfd_section;
9216df95
UW
3601 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3602 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3603 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3604
c906108c 3605 for (i = 0; i < cache_novlys; i++)
fbd35540 3606 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3607 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3608 {
9216df95
UW
3609 read_target_long_array (cache_ovly_table_base + i * word_size,
3610 (unsigned int *) cache_ovly_table[i],
e17a4113 3611 4, word_size, byte_order);
fbd35540 3612 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3613 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3614 {
3615 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3616 return 1;
3617 }
c378eb4e 3618 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3619 return 0;
3620 }
3621 return 0;
3622}
3623
3624/* Function: simple_overlay_update
5417f6dc
RM
3625 If OSECT is NULL, then update all sections' mapped state
3626 (after re-reading the entire target _ovly_table).
3627 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3628 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3629 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3630 re-read the entire cache, and go ahead and update all sections. */
3631
1c772458 3632void
fba45db2 3633simple_overlay_update (struct obj_section *osect)
c906108c 3634{
c5aa993b 3635 struct objfile *objfile;
c906108c 3636
c378eb4e 3637 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3638 if (osect)
c378eb4e 3639 /* Have we got a cached copy of the target's overlay table? */
c906108c 3640 if (cache_ovly_table != NULL)
9cc89665
MS
3641 {
3642 /* Does its cached location match what's currently in the
3643 symtab? */
3b7344d5 3644 struct bound_minimal_symbol minsym
9cc89665
MS
3645 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3646
3b7344d5 3647 if (minsym.minsym == NULL)
9cc89665
MS
3648 error (_("Error reading inferior's overlay table: couldn't "
3649 "find `_ovly_table' array\n"
3650 "in inferior. Use `overlay manual' mode."));
3651
77e371c0 3652 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3653 /* Then go ahead and try to look up this single section in
3654 the cache. */
3655 if (simple_overlay_update_1 (osect))
3656 /* Found it! We're done. */
3657 return;
3658 }
c906108c
SS
3659
3660 /* Cached table no good: need to read the entire table anew.
3661 Or else we want all the sections, in which case it's actually
3662 more efficient to read the whole table in one block anyway. */
3663
0d43edd1
JB
3664 if (! simple_read_overlay_table ())
3665 return;
3666
c378eb4e 3667 /* Now may as well update all sections, even if only one was requested. */
c906108c 3668 ALL_OBJSECTIONS (objfile, osect)
714835d5 3669 if (section_is_overlay (osect))
c5aa993b 3670 {
764c99c1 3671 int i;
fbd35540
MS
3672 bfd *obfd = osect->objfile->obfd;
3673 asection *bsect = osect->the_bfd_section;
c5aa993b 3674
c5aa993b 3675 for (i = 0; i < cache_novlys; i++)
fbd35540 3676 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3677 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3678 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3679 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3680 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3681 }
3682 }
c906108c
SS
3683}
3684
086df311
DJ
3685/* Set the output sections and output offsets for section SECTP in
3686 ABFD. The relocation code in BFD will read these offsets, so we
3687 need to be sure they're initialized. We map each section to itself,
3688 with no offset; this means that SECTP->vma will be honored. */
3689
3690static void
3691symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3692{
3693 sectp->output_section = sectp;
3694 sectp->output_offset = 0;
3695}
3696
ac8035ab
TG
3697/* Default implementation for sym_relocate. */
3698
ac8035ab
TG
3699bfd_byte *
3700default_symfile_relocate (struct objfile *objfile, asection *sectp,
3701 bfd_byte *buf)
3702{
3019eac3
DE
3703 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3704 DWO file. */
3705 bfd *abfd = sectp->owner;
ac8035ab
TG
3706
3707 /* We're only interested in sections with relocation
3708 information. */
3709 if ((sectp->flags & SEC_RELOC) == 0)
3710 return NULL;
3711
3712 /* We will handle section offsets properly elsewhere, so relocate as if
3713 all sections begin at 0. */
3714 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3715
3716 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3717}
3718
086df311
DJ
3719/* Relocate the contents of a debug section SECTP in ABFD. The
3720 contents are stored in BUF if it is non-NULL, or returned in a
3721 malloc'd buffer otherwise.
3722
3723 For some platforms and debug info formats, shared libraries contain
3724 relocations against the debug sections (particularly for DWARF-2;
3725 one affected platform is PowerPC GNU/Linux, although it depends on
3726 the version of the linker in use). Also, ELF object files naturally
3727 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3728 the relocations in order to get the locations of symbols correct.
3729 Another example that may require relocation processing, is the
3730 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3731 debug section. */
086df311
DJ
3732
3733bfd_byte *
ac8035ab
TG
3734symfile_relocate_debug_section (struct objfile *objfile,
3735 asection *sectp, bfd_byte *buf)
086df311 3736{
ac8035ab 3737 gdb_assert (objfile->sf->sym_relocate);
086df311 3738
ac8035ab 3739 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3740}
c906108c 3741
31d99776
DJ
3742struct symfile_segment_data *
3743get_symfile_segment_data (bfd *abfd)
3744{
00b5771c 3745 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3746
3747 if (sf == NULL)
3748 return NULL;
3749
3750 return sf->sym_segments (abfd);
3751}
3752
3753void
3754free_symfile_segment_data (struct symfile_segment_data *data)
3755{
3756 xfree (data->segment_bases);
3757 xfree (data->segment_sizes);
3758 xfree (data->segment_info);
3759 xfree (data);
3760}
3761
28c32713
JB
3762/* Given:
3763 - DATA, containing segment addresses from the object file ABFD, and
3764 the mapping from ABFD's sections onto the segments that own them,
3765 and
3766 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3767 segment addresses reported by the target,
3768 store the appropriate offsets for each section in OFFSETS.
3769
3770 If there are fewer entries in SEGMENT_BASES than there are segments
3771 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3772
8d385431
DJ
3773 If there are more entries, then ignore the extra. The target may
3774 not be able to distinguish between an empty data segment and a
3775 missing data segment; a missing text segment is less plausible. */
3b7bacac 3776
31d99776 3777int
3189cb12
DE
3778symfile_map_offsets_to_segments (bfd *abfd,
3779 const struct symfile_segment_data *data,
31d99776
DJ
3780 struct section_offsets *offsets,
3781 int num_segment_bases,
3782 const CORE_ADDR *segment_bases)
3783{
3784 int i;
3785 asection *sect;
3786
28c32713
JB
3787 /* It doesn't make sense to call this function unless you have some
3788 segment base addresses. */
202b96c1 3789 gdb_assert (num_segment_bases > 0);
28c32713 3790
31d99776
DJ
3791 /* If we do not have segment mappings for the object file, we
3792 can not relocate it by segments. */
3793 gdb_assert (data != NULL);
3794 gdb_assert (data->num_segments > 0);
3795
31d99776
DJ
3796 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3797 {
31d99776
DJ
3798 int which = data->segment_info[i];
3799
28c32713
JB
3800 gdb_assert (0 <= which && which <= data->num_segments);
3801
3802 /* Don't bother computing offsets for sections that aren't
3803 loaded as part of any segment. */
3804 if (! which)
3805 continue;
3806
3807 /* Use the last SEGMENT_BASES entry as the address of any extra
3808 segments mentioned in DATA->segment_info. */
31d99776 3809 if (which > num_segment_bases)
28c32713 3810 which = num_segment_bases;
31d99776 3811
28c32713
JB
3812 offsets->offsets[i] = (segment_bases[which - 1]
3813 - data->segment_bases[which - 1]);
31d99776
DJ
3814 }
3815
3816 return 1;
3817}
3818
3819static void
3820symfile_find_segment_sections (struct objfile *objfile)
3821{
3822 bfd *abfd = objfile->obfd;
3823 int i;
3824 asection *sect;
3825 struct symfile_segment_data *data;
3826
3827 data = get_symfile_segment_data (objfile->obfd);
3828 if (data == NULL)
3829 return;
3830
3831 if (data->num_segments != 1 && data->num_segments != 2)
3832 {
3833 free_symfile_segment_data (data);
3834 return;
3835 }
3836
3837 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3838 {
31d99776
DJ
3839 int which = data->segment_info[i];
3840
3841 if (which == 1)
3842 {
3843 if (objfile->sect_index_text == -1)
3844 objfile->sect_index_text = sect->index;
3845
3846 if (objfile->sect_index_rodata == -1)
3847 objfile->sect_index_rodata = sect->index;
3848 }
3849 else if (which == 2)
3850 {
3851 if (objfile->sect_index_data == -1)
3852 objfile->sect_index_data = sect->index;
3853
3854 if (objfile->sect_index_bss == -1)
3855 objfile->sect_index_bss = sect->index;
3856 }
3857 }
3858
3859 free_symfile_segment_data (data);
3860}
3861
76ad5e1e
NB
3862/* Listen for free_objfile events. */
3863
3864static void
3865symfile_free_objfile (struct objfile *objfile)
3866{
c33b2f12
MM
3867 /* Remove the target sections owned by this objfile. */
3868 if (objfile != NULL)
76ad5e1e
NB
3869 remove_target_sections ((void *) objfile);
3870}
3871
540c2971
DE
3872/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3873 Expand all symtabs that match the specified criteria.
3874 See quick_symbol_functions.expand_symtabs_matching for details. */
3875
3876void
bb4142cf
DE
3877expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3878 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3879 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3880 enum search_domain kind,
3881 void *data)
540c2971
DE
3882{
3883 struct objfile *objfile;
3884
3885 ALL_OBJFILES (objfile)
3886 {
3887 if (objfile->sf)
bb4142cf 3888 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3889 symbol_matcher,
3890 expansion_notify, kind,
bb4142cf 3891 data);
540c2971
DE
3892 }
3893}
3894
3895/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3896 Map function FUN over every file.
3897 See quick_symbol_functions.map_symbol_filenames for details. */
3898
3899void
bb4142cf
DE
3900map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3901 int need_fullname)
540c2971
DE
3902{
3903 struct objfile *objfile;
3904
3905 ALL_OBJFILES (objfile)
3906 {
3907 if (objfile->sf)
3908 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3909 need_fullname);
3910 }
3911}
3912
c906108c 3913void
fba45db2 3914_initialize_symfile (void)
c906108c
SS
3915{
3916 struct cmd_list_element *c;
c5aa993b 3917
76ad5e1e
NB
3918 observer_attach_free_objfile (symfile_free_objfile);
3919
1a966eab
AC
3920 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3921Load symbol table from executable file FILE.\n\
c906108c 3922The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3923to execute."), &cmdlist);
5ba2abeb 3924 set_cmd_completer (c, filename_completer);
c906108c 3925
1a966eab 3926 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3927Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3928Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3929 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3930The optional arguments are section-name section-address pairs and\n\
3931should be specified if the data and bss segments are not contiguous\n\
1a966eab 3932with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3933 &cmdlist);
5ba2abeb 3934 set_cmd_completer (c, filename_completer);
c906108c 3935
63644780
NB
3936 c = add_cmd ("remove-symbol-file", class_files,
3937 remove_symbol_file_command, _("\
3938Remove a symbol file added via the add-symbol-file command.\n\
3939Usage: remove-symbol-file FILENAME\n\
3940 remove-symbol-file -a ADDRESS\n\
3941The file to remove can be identified by its filename or by an address\n\
3942that lies within the boundaries of this symbol file in memory."),
3943 &cmdlist);
3944
1a966eab
AC
3945 c = add_cmd ("load", class_files, load_command, _("\
3946Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3947for access from GDB.\n\
3948A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3949 set_cmd_completer (c, filename_completer);
c906108c 3950
c5aa993b 3951 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3952 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3953 "overlay ", 0, &cmdlist);
3954
3955 add_com_alias ("ovly", "overlay", class_alias, 1);
3956 add_com_alias ("ov", "overlay", class_alias, 1);
3957
c5aa993b 3958 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3959 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3960
c5aa993b 3961 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3962 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3963
c5aa993b 3964 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3965 _("List mappings of overlay sections."), &overlaylist);
c906108c 3966
c5aa993b 3967 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3968 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3969 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3970 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3971 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3972 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3973 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3974 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3975
3976 /* Filename extension to source language lookup table: */
26c41df3
AC
3977 add_setshow_string_noescape_cmd ("extension-language", class_files,
3978 &ext_args, _("\
3979Set mapping between filename extension and source language."), _("\
3980Show mapping between filename extension and source language."), _("\
3981Usage: set extension-language .foo bar"),
3982 set_ext_lang_command,
920d2a44 3983 show_ext_args,
26c41df3 3984 &setlist, &showlist);
c906108c 3985
c5aa993b 3986 add_info ("extensions", info_ext_lang_command,
1bedd215 3987 _("All filename extensions associated with a source language."));
917317f4 3988
525226b5
AC
3989 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3990 &debug_file_directory, _("\
24ddea62
JK
3991Set the directories where separate debug symbols are searched for."), _("\
3992Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3993Separate debug symbols are first searched for in the same\n\
3994directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3995and lastly at the path of the directory of the binary with\n\
24ddea62 3996each global debug-file-directory component prepended."),
525226b5 3997 NULL,
920d2a44 3998 show_debug_file_directory,
525226b5 3999 &setlist, &showlist);
770e7fc7
DE
4000
4001 add_setshow_enum_cmd ("symbol-loading", no_class,
4002 print_symbol_loading_enums, &print_symbol_loading,
4003 _("\
4004Set printing of symbol loading messages."), _("\
4005Show printing of symbol loading messages."), _("\
4006off == turn all messages off\n\
4007brief == print messages for the executable,\n\
4008 and brief messages for shared libraries\n\
4009full == print messages for the executable,\n\
4010 and messages for each shared library."),
4011 NULL,
4012 NULL,
4013 &setprintlist, &showprintlist);
c906108c 4014}
This page took 2.075708 seconds and 4 git commands to generate.