Add support for the Rust language
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
618f726f 3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
53ce3c39 62#include <sys/stat.h>
c906108c
SS
63#include <ctype.h>
64#include <time.h>
438e1e42 65#include "gdb_sys_time.h"
c906108c 66
ccefe4c4 67#include "psymtab.h"
c906108c 68
3e43a32a
MS
69int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
9a4105ab 71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c378eb4e
MS
81/* Global variables owned by this file. */
82int readnow_symbol_files; /* Read full symbols immediately. */
c906108c 83
c378eb4e 84/* Functions this file defines. */
c906108c 85
a14ed312 86static void load_command (char *, int);
c906108c 87
69150c3d 88static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
d7db6da9 89
a14ed312 90static void add_symbol_file_command (char *, int);
c906108c 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void decrement_reading_symtab (void *);
c906108c 95
a14ed312 96static void overlay_invalidate_all (void);
c906108c 97
a14ed312 98static void overlay_auto_command (char *, int);
c906108c 99
a14ed312 100static void overlay_manual_command (char *, int);
c906108c 101
a14ed312 102static void overlay_off_command (char *, int);
c906108c 103
a14ed312 104static void overlay_load_command (char *, int);
c906108c 105
a14ed312 106static void overlay_command (char *, int);
c906108c 107
a14ed312 108static void simple_free_overlay_table (void);
c906108c 109
e17a4113
UW
110static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
c906108c 112
a14ed312 113static int simple_read_overlay_table (void);
c906108c 114
a14ed312 115static int simple_overlay_update_1 (struct obj_section *);
c906108c 116
a14ed312 117static void add_filename_language (char *ext, enum language lang);
392a587b 118
a14ed312 119static void info_ext_lang_command (char *args, int from_tty);
392a587b 120
a14ed312 121static void init_filename_language_table (void);
392a587b 122
31d99776
DJ
123static void symfile_find_segment_sections (struct objfile *objfile);
124
a14ed312 125void _initialize_symfile (void);
c906108c
SS
126
127/* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
c378eb4e 129 prepared to read. */
c906108c 130
c256e171
DE
131typedef struct
132{
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138} registered_sym_fns;
00b5771c 139
c256e171
DE
140DEF_VEC_O (registered_sym_fns);
141
142static VEC (registered_sym_fns) *symtab_fns = NULL;
c906108c 143
770e7fc7
DE
144/* Values for "set print symbol-loading". */
145
146const char print_symbol_loading_off[] = "off";
147const char print_symbol_loading_brief[] = "brief";
148const char print_symbol_loading_full[] = "full";
149static const char *print_symbol_loading_enums[] =
150{
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155};
156static const char *print_symbol_loading = print_symbol_loading_full;
157
b7209cb4
FF
158/* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
c906108c 165 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 166 report all the functions that are actually present. */
c906108c
SS
167
168int auto_solib_add = 1;
c906108c 169\f
c5aa993b 170
770e7fc7
DE
171/* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179int
180print_symbol_loading_p (int from_tty, int exec, int full)
181{
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194}
195
0d14a781 196/* True if we are reading a symbol table. */
c906108c
SS
197
198int currently_reading_symtab = 0;
199
200static void
fba45db2 201decrement_reading_symtab (void *dummy)
c906108c
SS
202{
203 currently_reading_symtab--;
2cb9c859 204 gdb_assert (currently_reading_symtab >= 0);
c906108c
SS
205}
206
ccefe4c4
TT
207/* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
3b7bacac 209
ccefe4c4
TT
210struct cleanup *
211increment_reading_symtab (void)
c906108c 212{
ccefe4c4 213 ++currently_reading_symtab;
2cb9c859 214 gdb_assert (currently_reading_symtab > 0);
ccefe4c4 215 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
216}
217
5417f6dc
RM
218/* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
c906108c
SS
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227void
4efb68b1 228find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 229{
c5aa993b 230 asection **lowest = (asection **) obj;
c906108c 231
eb73e134 232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242}
243
d76488d8
TT
244/* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
a39a16c4
MM
247
248struct section_addr_info *
249alloc_section_addr_info (size_t num_sections)
250{
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
a39a16c4
MM
258
259 return sap;
260}
62557bbc
KB
261
262/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 263 an existing section table. */
62557bbc
KB
264
265extern struct section_addr_info *
0542c86d
PA
266build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
62557bbc
KB
268{
269 struct section_addr_info *sap;
0542c86d 270 const struct target_section *stp;
62557bbc
KB
271 int oidx;
272
a39a16c4 273 sap = alloc_section_addr_info (end - start);
62557bbc
KB
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
2b2848e2
DE
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 281 && oidx < end - start)
62557bbc
KB
282 {
283 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
286 oidx++;
287 }
288 }
289
d76488d8
TT
290 sap->num_sections = oidx;
291
62557bbc
KB
292 return sap;
293}
294
82ccf5a5 295/* Create a section_addr_info from section offsets in ABFD. */
089b4803 296
82ccf5a5
JK
297static struct section_addr_info *
298build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
299{
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
82ccf5a5
JK
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 307 {
82ccf5a5
JK
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
311 i++;
312 }
d76488d8
TT
313
314 sap->num_sections = i;
315
089b4803
TG
316 return sap;
317}
318
82ccf5a5
JK
319/* Create a section_addr_info from section offsets in OBJFILE. */
320
321struct section_addr_info *
322build_section_addr_info_from_objfile (const struct objfile *objfile)
323{
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 331 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338}
62557bbc 339
c378eb4e 340/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
341
342extern void
343free_section_addr_info (struct section_addr_info *sap)
344{
345 int idx;
346
a39a16c4 347 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 348 xfree (sap->other[idx].name);
b8c9b27d 349 xfree (sap);
62557bbc
KB
350}
351
e8289572 352/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 353
e8289572
JB
354static void
355init_objfile_sect_indices (struct objfile *objfile)
c906108c 356{
e8289572 357 asection *sect;
c906108c 358 int i;
5417f6dc 359
b8fbeb18 360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 361 if (sect)
b8fbeb18
EZ
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 365 if (sect)
b8fbeb18
EZ
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 369 if (sect)
b8fbeb18
EZ
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 373 if (sect)
b8fbeb18
EZ
374 objfile->sect_index_rodata = sect->index;
375
bbcd32ad
FF
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
31d99776
DJ
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
bbcd32ad
FF
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
b8fbeb18 411}
c906108c 412
c1bd25fd
DJ
413/* The arguments to place_section. */
414
415struct place_section_arg
416{
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419};
420
421/* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
2c0b251b 424static void
c1bd25fd
DJ
425place_section (bfd *abfd, asection *sect, void *obj)
426{
19ba03f4 427 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
3bd72c6f 430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 431
2711e456
DJ
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
434 return;
435
436 /* If the user specified an offset, honor it. */
65cf3563 437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
441 start_addr = (arg->lowest + align - 1) & -align;
442
c1bd25fd
DJ
443 do {
444 asection *cur_sec;
c1bd25fd 445
c1bd25fd
DJ
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
c1bd25fd
DJ
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
2711e456
DJ
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
3bd72c6f 473 break;
c1bd25fd
DJ
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
65cf3563 481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 482 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 483}
e8289572 484
75242ef4
JK
485/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
e8289572
JB
488
489void
75242ef4
JK
490relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
3189cb12 492 const struct section_addr_info *addrs)
e8289572
JB
493{
494 int i;
495
75242ef4 496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 497
c378eb4e 498 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 499 for (i = 0; i < addrs->num_sections; i++)
e8289572 500 {
3189cb12 501 const struct other_sections *osp;
e8289572 502
75242ef4 503 osp = &addrs->other[i];
5488dafb 504 if (osp->sectindex == -1)
e8289572
JB
505 continue;
506
c378eb4e 507 /* Record all sections in offsets. */
e8289572 508 /* The section_offsets in the objfile are here filled in using
c378eb4e 509 the BFD index. */
75242ef4
JK
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512}
513
1276c759
JK
514/* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520static const char *
521addr_section_name (const char *s)
522{
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529}
530
82ccf5a5
JK
531/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534static int
535addrs_section_compar (const void *ap, const void *bp)
536{
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 539 int retval;
82ccf5a5 540
1276c759 541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
542 if (retval)
543 return retval;
544
5488dafb 545 return a->sectindex - b->sectindex;
82ccf5a5
JK
546}
547
548/* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551static struct other_sections **
552addrs_section_sort (struct section_addr_info *addrs)
553{
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
8d749320 558 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 559 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566}
567
75242ef4 568/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
571
572void
573addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574{
575 asection *lower_sect;
75242ef4
JK
576 CORE_ADDR lower_offset;
577 int i;
82ccf5a5
JK
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
582
583 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
e8289572 592 }
75242ef4
JK
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
82ccf5a5
JK
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
c378eb4e
MS
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
82ccf5a5 616
8d749320 617 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
618 make_cleanup (xfree, addrs_to_abfd_addrs);
619
620 while (*addrs_sorted)
621 {
1276c759 622 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
623
624 while (*abfd_addrs_sorted
1276c759
JK
625 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
626 sect_name) < 0)
82ccf5a5
JK
627 abfd_addrs_sorted++;
628
629 if (*abfd_addrs_sorted
1276c759
JK
630 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
631 sect_name) == 0)
82ccf5a5
JK
632 {
633 int index_in_addrs;
634
635 /* Make the found item directly addressable from ADDRS. */
636 index_in_addrs = *addrs_sorted - addrs->other;
637 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
638 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
639
640 /* Never use the same ABFD entry twice. */
641 abfd_addrs_sorted++;
642 }
643
644 addrs_sorted++;
645 }
646
75242ef4
JK
647 /* Calculate offsets for the loadable sections.
648 FIXME! Sections must be in order of increasing loadable section
649 so that contiguous sections can use the lower-offset!!!
650
651 Adjust offsets if the segments are not contiguous.
652 If the section is contiguous, its offset should be set to
653 the offset of the highest loadable section lower than it
654 (the loadable section directly below it in memory).
655 this_offset = lower_offset = lower_addr - lower_orig_addr */
656
d76488d8 657 for (i = 0; i < addrs->num_sections; i++)
75242ef4 658 {
82ccf5a5 659 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
660
661 if (sect)
75242ef4 662 {
c378eb4e 663 /* This is the index used by BFD. */
82ccf5a5 664 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
665
666 if (addrs->other[i].addr != 0)
75242ef4 667 {
82ccf5a5 668 addrs->other[i].addr -= sect->addr;
75242ef4 669 lower_offset = addrs->other[i].addr;
75242ef4
JK
670 }
671 else
672d9c23 672 addrs->other[i].addr = lower_offset;
75242ef4
JK
673 }
674 else
672d9c23 675 {
1276c759
JK
676 /* addr_section_name transformation is not used for SECT_NAME. */
677 const char *sect_name = addrs->other[i].name;
678
b0fcb67f
JK
679 /* This section does not exist in ABFD, which is normally
680 unexpected and we want to issue a warning.
681
4d9743af
JK
682 However, the ELF prelinker does create a few sections which are
683 marked in the main executable as loadable (they are loaded in
684 memory from the DYNAMIC segment) and yet are not present in
685 separate debug info files. This is fine, and should not cause
686 a warning. Shared libraries contain just the section
687 ".gnu.liblist" but it is not marked as loadable there. There is
688 no other way to identify them than by their name as the sections
1276c759
JK
689 created by prelink have no special flags.
690
691 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
692
693 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 694 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
695 || (strcmp (sect_name, ".bss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)
699 || (strcmp (sect_name, ".sbss") == 0
700 && i > 0
701 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
702 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
672d9c23 706 addrs->other[i].addr = 0;
5488dafb 707 addrs->other[i].sectindex = -1;
672d9c23 708 }
75242ef4 709 }
82ccf5a5
JK
710
711 do_cleanups (my_cleanup);
75242ef4
JK
712}
713
714/* Parse the user's idea of an offset for dynamic linking, into our idea
715 of how to represent it for fast symbol reading. This is the default
716 version of the sym_fns.sym_offsets function for symbol readers that
717 don't need to do anything special. It allocates a section_offsets table
718 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
719
720void
721default_symfile_offsets (struct objfile *objfile,
3189cb12 722 const struct section_addr_info *addrs)
75242ef4 723{
d445b2f6 724 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
725 objfile->section_offsets = (struct section_offsets *)
726 obstack_alloc (&objfile->objfile_obstack,
727 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
728 relative_addr_info_to_section_offsets (objfile->section_offsets,
729 objfile->num_sections, addrs);
e8289572 730
c1bd25fd
DJ
731 /* For relocatable files, all loadable sections will start at zero.
732 The zero is meaningless, so try to pick arbitrary addresses such
733 that no loadable sections overlap. This algorithm is quadratic,
734 but the number of sections in a single object file is generally
735 small. */
736 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
737 {
738 struct place_section_arg arg;
2711e456
DJ
739 bfd *abfd = objfile->obfd;
740 asection *cur_sec;
2711e456
DJ
741
742 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
743 /* We do not expect this to happen; just skip this step if the
744 relocatable file has a section with an assigned VMA. */
745 if (bfd_section_vma (abfd, cur_sec) != 0)
746 break;
747
748 if (cur_sec == NULL)
749 {
750 CORE_ADDR *offsets = objfile->section_offsets->offsets;
751
752 /* Pick non-overlapping offsets for sections the user did not
753 place explicitly. */
754 arg.offsets = objfile->section_offsets;
755 arg.lowest = 0;
756 bfd_map_over_sections (objfile->obfd, place_section, &arg);
757
758 /* Correctly filling in the section offsets is not quite
759 enough. Relocatable files have two properties that
760 (most) shared objects do not:
761
762 - Their debug information will contain relocations. Some
763 shared libraries do also, but many do not, so this can not
764 be assumed.
765
766 - If there are multiple code sections they will be loaded
767 at different relative addresses in memory than they are
768 in the objfile, since all sections in the file will start
769 at address zero.
770
771 Because GDB has very limited ability to map from an
772 address in debug info to the correct code section,
773 it relies on adding SECT_OFF_TEXT to things which might be
774 code. If we clear all the section offsets, and set the
775 section VMAs instead, then symfile_relocate_debug_section
776 will return meaningful debug information pointing at the
777 correct sections.
778
779 GDB has too many different data structures for section
780 addresses - a bfd, objfile, and so_list all have section
781 tables, as does exec_ops. Some of these could probably
782 be eliminated. */
783
784 for (cur_sec = abfd->sections; cur_sec != NULL;
785 cur_sec = cur_sec->next)
786 {
787 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
788 continue;
789
790 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
791 exec_set_section_address (bfd_get_filename (abfd),
792 cur_sec->index,
30510692 793 offsets[cur_sec->index]);
2711e456
DJ
794 offsets[cur_sec->index] = 0;
795 }
796 }
c1bd25fd
DJ
797 }
798
e8289572 799 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 800 .rodata sections. */
e8289572
JB
801 init_objfile_sect_indices (objfile);
802}
803
31d99776
DJ
804/* Divide the file into segments, which are individual relocatable units.
805 This is the default version of the sym_fns.sym_segments function for
806 symbol readers that do not have an explicit representation of segments.
807 It assumes that object files do not have segments, and fully linked
808 files have a single segment. */
809
810struct symfile_segment_data *
811default_symfile_segments (bfd *abfd)
812{
813 int num_sections, i;
814 asection *sect;
815 struct symfile_segment_data *data;
816 CORE_ADDR low, high;
817
818 /* Relocatable files contain enough information to position each
819 loadable section independently; they should not be relocated
820 in segments. */
821 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
822 return NULL;
823
824 /* Make sure there is at least one loadable section in the file. */
825 for (sect = abfd->sections; sect != NULL; sect = sect->next)
826 {
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 break;
831 }
832 if (sect == NULL)
833 return NULL;
834
835 low = bfd_get_section_vma (abfd, sect);
836 high = low + bfd_get_section_size (sect);
837
41bf6aca 838 data = XCNEW (struct symfile_segment_data);
31d99776 839 data->num_segments = 1;
fc270c35
TT
840 data->segment_bases = XCNEW (CORE_ADDR);
841 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
842
843 num_sections = bfd_count_sections (abfd);
fc270c35 844 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
845
846 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
847 {
848 CORE_ADDR vma;
849
850 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
851 continue;
852
853 vma = bfd_get_section_vma (abfd, sect);
854 if (vma < low)
855 low = vma;
856 if (vma + bfd_get_section_size (sect) > high)
857 high = vma + bfd_get_section_size (sect);
858
859 data->segment_info[i] = 1;
860 }
861
862 data->segment_bases[0] = low;
863 data->segment_sizes[0] = high - low;
864
865 return data;
866}
867
608e2dbb
TT
868/* This is a convenience function to call sym_read for OBJFILE and
869 possibly force the partial symbols to be read. */
870
871static void
872read_symbols (struct objfile *objfile, int add_flags)
873{
874 (*objfile->sf->sym_read) (objfile, add_flags);
34643a32 875 objfile->per_bfd->minsyms_read = 1;
8a92335b
JK
876
877 /* find_separate_debug_file_in_section should be called only if there is
878 single binary with no existing separate debug info file. */
879 if (!objfile_has_partial_symbols (objfile)
880 && objfile->separate_debug_objfile == NULL
881 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb
TT
882 {
883 bfd *abfd = find_separate_debug_file_in_section (objfile);
884 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
885
886 if (abfd != NULL)
24ba069a
JK
887 {
888 /* find_separate_debug_file_in_section uses the same filename for the
889 virtual section-as-bfd like the bfd filename containing the
890 section. Therefore use also non-canonical name form for the same
891 file containing the section. */
892 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
893 objfile);
894 }
608e2dbb
TT
895
896 do_cleanups (cleanup);
897 }
898 if ((add_flags & SYMFILE_NO_READ) == 0)
899 require_partial_symbols (objfile, 0);
900}
901
3d6e24f0
JB
902/* Initialize entry point information for this objfile. */
903
904static void
905init_entry_point_info (struct objfile *objfile)
906{
6ef55de7
TT
907 struct entry_info *ei = &objfile->per_bfd->ei;
908
909 if (ei->initialized)
910 return;
911 ei->initialized = 1;
912
3d6e24f0
JB
913 /* Save startup file's range of PC addresses to help blockframe.c
914 decide where the bottom of the stack is. */
915
916 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
917 {
918 /* Executable file -- record its entry point so we'll recognize
919 the startup file because it contains the entry point. */
6ef55de7
TT
920 ei->entry_point = bfd_get_start_address (objfile->obfd);
921 ei->entry_point_p = 1;
3d6e24f0
JB
922 }
923 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
924 && bfd_get_start_address (objfile->obfd) != 0)
925 {
926 /* Some shared libraries may have entry points set and be
927 runnable. There's no clear way to indicate this, so just check
928 for values other than zero. */
6ef55de7
TT
929 ei->entry_point = bfd_get_start_address (objfile->obfd);
930 ei->entry_point_p = 1;
3d6e24f0
JB
931 }
932 else
933 {
934 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 935 ei->entry_point_p = 0;
3d6e24f0
JB
936 }
937
6ef55de7 938 if (ei->entry_point_p)
3d6e24f0 939 {
53eddfa6 940 struct obj_section *osect;
6ef55de7 941 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 942 int found;
3d6e24f0
JB
943
944 /* Make certain that the address points at real code, and not a
945 function descriptor. */
946 entry_point
df6d5441 947 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
948 entry_point,
949 &current_target);
950
951 /* Remove any ISA markers, so that this matches entries in the
952 symbol table. */
6ef55de7 953 ei->entry_point
df6d5441 954 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
955
956 found = 0;
957 ALL_OBJFILE_OSECTIONS (objfile, osect)
958 {
959 struct bfd_section *sect = osect->the_bfd_section;
960
961 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
962 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
963 + bfd_get_section_size (sect)))
964 {
6ef55de7 965 ei->the_bfd_section_index
53eddfa6
TT
966 = gdb_bfd_section_index (objfile->obfd, sect);
967 found = 1;
968 break;
969 }
970 }
971
972 if (!found)
6ef55de7 973 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
974 }
975}
976
c906108c
SS
977/* Process a symbol file, as either the main file or as a dynamically
978 loaded file.
979
36e4d068
JB
980 This function does not set the OBJFILE's entry-point info.
981
96baa820
JM
982 OBJFILE is where the symbols are to be read from.
983
7e8580c1
JB
984 ADDRS is the list of section load addresses. If the user has given
985 an 'add-symbol-file' command, then this is the list of offsets and
986 addresses he or she provided as arguments to the command; or, if
987 we're handling a shared library, these are the actual addresses the
988 sections are loaded at, according to the inferior's dynamic linker
989 (as gleaned by GDB's shared library code). We convert each address
990 into an offset from the section VMA's as it appears in the object
991 file, and then call the file's sym_offsets function to convert this
992 into a format-specific offset table --- a `struct section_offsets'.
96baa820 993
7eedccfa
PP
994 ADD_FLAGS encodes verbosity level, whether this is main symbol or
995 an extra symbol file such as dynamically loaded code, and wether
996 breakpoint reset should be deferred. */
c906108c 997
36e4d068
JB
998static void
999syms_from_objfile_1 (struct objfile *objfile,
1000 struct section_addr_info *addrs,
36e4d068 1001 int add_flags)
c906108c 1002{
a39a16c4 1003 struct section_addr_info *local_addr = NULL;
c906108c 1004 struct cleanup *old_chain;
7eedccfa 1005 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 1006
8fb8eb5c 1007 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 1008
75245b24 1009 if (objfile->sf == NULL)
36e4d068
JB
1010 {
1011 /* No symbols to load, but we still need to make sure
1012 that the section_offsets table is allocated. */
d445b2f6 1013 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
1015
1016 objfile->num_sections = num_sections;
1017 objfile->section_offsets
224c3ddb
SM
1018 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1019 size);
36e4d068
JB
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
75245b24 1023
c906108c
SS
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
74b7792f 1026 old_chain = make_cleanup_free_objfile (objfile);
c906108c 1027
6bf667bb
DE
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
c378eb4e 1030 no load address was specified. */
6bf667bb 1031 if (! addrs)
a39a16c4 1032 {
d445b2f6 1033 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
c5aa993b 1038 if (mainline)
c906108c
SS
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1041 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
adb7f338 1049 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
c906108c 1056
c5aa993b 1057 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
53a5351d 1062 and assume that <addr> is where that got loaded.
c906108c 1063
53a5351d
JM
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
6bf667bb 1066 if (addrs->num_sections > 0)
75242ef4 1067 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
c378eb4e 1071 initial symbol reading for this file. */
c906108c 1072
c5aa993b 1073 (*objfile->sf->sym_init) (objfile);
7eedccfa 1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1075
6bf667bb 1076 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1077
608e2dbb 1078 read_symbols (objfile, add_flags);
b11896a5 1079
c906108c
SS
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
f7545552 1083 xfree (local_addr);
c906108c
SS
1084}
1085
36e4d068
JB
1086/* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
6bf667bb 1089static void
36e4d068
JB
1090syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
36e4d068
JB
1092 int add_flags)
1093{
6bf667bb 1094 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1095 init_entry_point_info (objfile);
1096}
1097
c906108c
SS
1098/* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1101
e7d52ed3
DE
1102static void
1103finish_new_objfile (struct objfile *objfile, int add_flags)
c906108c 1104{
c906108c 1105 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1106 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1107 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1108 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
c1e56572 1113 clear_symtab_users (add_flags);
c906108c 1114 }
7eedccfa 1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1116 {
69de3c6a 1117 breakpoint_re_set ();
c906108c
SS
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1122}
1123
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
5417f6dc 1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1128 A new reference is acquired by this function.
7904e09f 1129
24ba069a
JK
1130 For NAME description see allocate_objfile's definition.
1131
7eedccfa
PP
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1134
6bf667bb 1135 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1137
63524580
JK
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
c906108c 1141 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1142 Upon failure, jumps back to command level (never returns). */
7eedccfa 1143
7904e09f 1144static struct objfile *
24ba069a 1145symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
6bf667bb
DE
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
c906108c
SS
1148{
1149 struct objfile *objfile;
7eedccfa 1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1151 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1155
9291a0cd 1156 if (readnow_symbol_files)
b11896a5
TT
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
9291a0cd 1161
5417f6dc
RM
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
c906108c
SS
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1166 && mainline
c906108c 1167 && from_tty
9e2f0ad4 1168 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1169 error (_("Not confirmed."));
c906108c 1170
24ba069a
JK
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
c906108c 1173
63524580
JK
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
78a4a9b9
AC
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
c378eb4e 1179 performed, or need to read an unmapped symbol table. */
b11896a5 1180 if (should_print)
c906108c 1181 {
769d7dc4
AC
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1184 else
c906108c 1185 {
55333a84
DE
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
c906108c 1189 }
c906108c 1190 }
6bf667bb 1191 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1196 all partial symbol tables for this objfile if so. */
c906108c 1197
9291a0cd 1198 if ((flags & OBJF_READNOW))
c906108c 1199 {
b11896a5 1200 if (should_print)
c906108c 1201 {
a3f17187 1202 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
ccefe4c4
TT
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1209 }
1210
b11896a5 1211 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1212 {
1213 wrap_here ("");
55333a84 1214 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1215 wrap_here ("");
1216 }
1217
b11896a5 1218 if (should_print)
c906108c 1219 {
769d7dc4
AC
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
c906108c 1222 else
55333a84 1223 printf_unfiltered (_("done.\n"));
c906108c
SS
1224 }
1225
481d0f41
JB
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
109f874e 1231 if (objfile->sf == NULL)
8caee43b
PP
1232 {
1233 observer_notify_new_objfile (objfile);
c378eb4e 1234 return objfile; /* No symbols. */
8caee43b 1235 }
109f874e 1236
e7d52ed3 1237 finish_new_objfile (objfile, add_flags);
c906108c 1238
06d3b283 1239 observer_notify_new_objfile (objfile);
c906108c 1240
ce7d4522 1241 bfd_cache_close_all ();
c906108c
SS
1242 return (objfile);
1243}
1244
24ba069a
JK
1245/* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
9cce227f
TG
1247
1248void
24ba069a
JK
1249symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
9cce227f 1251{
089b4803
TG
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1260
870f88f7 1261 symbol_file_add_with_addrs
24ba069a 1262 (bfd, name, symfile_flags, sap,
9cce227f 1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1264 | OBJF_USERLOADED),
1265 objfile);
089b4803
TG
1266
1267 do_cleanups (my_cleanup);
9cce227f 1268}
7904e09f 1269
eb4556d7
JB
1270/* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
6bf667bb 1272 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1273
eb4556d7 1274struct objfile *
24ba069a 1275symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
eb4556d7 1276 struct section_addr_info *addrs,
63524580 1277 int flags, struct objfile *parent)
eb4556d7 1278{
24ba069a
JK
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1280 parent);
eb4556d7
JB
1281}
1282
7904e09f 1283/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1285
7904e09f 1286struct objfile *
69150c3d
JK
1287symbol_file_add (const char *name, int add_flags,
1288 struct section_addr_info *addrs, int flags)
7904e09f 1289{
8ac244b4
TT
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1293
24ba069a 1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
8ac244b4
TT
1295 do_cleanups (cleanup);
1296 return objf;
7904e09f
JB
1297}
1298
d7db6da9
FN
1299/* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1305 command itself. */
5417f6dc 1306
1adeb98a 1307void
69150c3d 1308symbol_file_add_main (const char *args, int from_tty)
1adeb98a 1309{
d7db6da9
FN
1310 symbol_file_add_main_1 (args, from_tty, 0);
1311}
1312
1313static void
69150c3d 1314symbol_file_add_main_1 (const char *args, int from_tty, int flags)
d7db6da9 1315{
7dcd53a0
TT
1316 const int add_flags = (current_inferior ()->symfile_flags
1317 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1318
7eedccfa 1319 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1320
d7db6da9
FN
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1324
7dcd53a0
TT
1325 if ((flags & SYMFILE_NO_READ) == 0)
1326 set_initial_language ();
1adeb98a
FN
1327}
1328
1329void
1330symbol_file_clear (int from_tty)
1331{
1332 if ((have_full_symbols () || have_partial_symbols ())
1333 && from_tty
0430b0d6
AS
1334 && (symfile_objfile
1335 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1336 objfile_name (symfile_objfile))
0430b0d6 1337 : !query (_("Discard symbol table? "))))
8a3fe4f8 1338 error (_("Not confirmed."));
1adeb98a 1339
0133421a
JK
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1342 no_shared_libraries (NULL, from_tty);
1343
0133421a
JK
1344 free_all_objfiles ();
1345
adb7f338 1346 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1347 if (from_tty)
1348 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1349}
1350
5b5d99cf 1351static int
287ccc17 1352separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1353 struct objfile *parent_objfile)
5b5d99cf 1354{
904578ed
JK
1355 unsigned long file_crc;
1356 int file_crc_p;
f1838a98 1357 bfd *abfd;
32a0e547 1358 struct stat parent_stat, abfd_stat;
904578ed 1359 int verified_as_different;
32a0e547
JK
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1365 the separate debug infos with the same basename can exist. */
32a0e547 1366
4262abfb 1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1368 return 0;
5b5d99cf 1369
2938e6cf 1370 abfd = gdb_bfd_open (name, gnutarget, -1);
f1838a98
UW
1371
1372 if (!abfd)
5b5d99cf
JB
1373 return 0;
1374
0ba1096a 1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
32a0e547
JK
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
904578ed
JK
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1389 {
904578ed
JK
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
cbb099e8 1393 gdb_bfd_unref (abfd);
904578ed
JK
1394 return 0;
1395 }
1396 verified_as_different = 1;
32a0e547 1397 }
904578ed
JK
1398 else
1399 verified_as_different = 0;
32a0e547 1400
dccee2de 1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
5b5d99cf 1402
cbb099e8 1403 gdb_bfd_unref (abfd);
5b5d99cf 1404
904578ed
JK
1405 if (!file_crc_p)
1406 return 0;
1407
287ccc17
JK
1408 if (crc != file_crc)
1409 {
dccee2de
TT
1410 unsigned long parent_crc;
1411
0a93529c
GB
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
904578ed 1415
dccee2de 1416 if (!verified_as_different)
904578ed 1417 {
dccee2de 1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1419 return 0;
1420 }
1421
dccee2de 1422 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1425 name, objfile_name (parent_objfile));
904578ed 1426
287ccc17
JK
1427 return 0;
1428 }
1429
1430 return 1;
5b5d99cf
JB
1431}
1432
aa28a74e 1433char *debug_file_directory = NULL;
920d2a44
AC
1434static void
1435show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437{
3e43a32a
MS
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1441 value);
1442}
5b5d99cf
JB
1443
1444#if ! defined (DEBUG_SUBDIRECTORY)
1445#define DEBUG_SUBDIRECTORY ".debug"
1446#endif
1447
1db33378
PP
1448/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1454
1455static char *
1456find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
9cce227f 1460{
1db33378
PP
1461 char *debugdir;
1462 char *debugfile;
9cce227f 1463 int i;
e4ab2fad
JK
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
5b5d99cf 1467
1db33378 1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1469 i = strlen (dir);
1db33378
PP
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1ffa32ee 1472
224c3ddb
SM
1473 debugfile
1474 = (char *) xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
5b5d99cf
JB
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1db33378 1483 strcat (debugfile, debuglink);
5b5d99cf 1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1486 return debugfile;
5417f6dc 1487
5b5d99cf
JB
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1db33378 1492 strcat (debugfile, debuglink);
5b5d99cf 1493
32a0e547 1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1495 return debugfile;
5417f6dc 1496
24ddea62 1497 /* Then try in the global debugfile directories.
f888f159 1498
24ddea62
JK
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
5417f6dc 1501
e4ab2fad
JK
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1504
e4ab2fad
JK
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
aa28a74e 1508 strcat (debugfile, "/");
24ddea62 1509 strcat (debugfile, dir);
1db33378 1510 strcat (debugfile, debuglink);
aa28a74e 1511
32a0e547 1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
24ddea62
JK
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1db33378
PP
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1522 strlen (gdb_sysroot)) == 0
1db33378 1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1524 {
e4ab2fad 1525 strcpy (debugfile, debugdir);
1db33378 1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1527 strcat (debugfile, "/");
1db33378 1528 strcat (debugfile, debuglink);
24ddea62 1529
32a0e547 1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
24ddea62 1535 }
aa28a74e 1536 }
f888f159 1537
e4ab2fad 1538 do_cleanups (back_to);
25522fae 1539 xfree (debugfile);
1db33378
PP
1540 return NULL;
1541}
1542
7edbb660 1543/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547static void
1548terminate_after_last_dir_separator (char *path)
1549{
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560}
1561
1562/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565char *
1566find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567{
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
cc0ea93c 1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1db33378
PP
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
71bdabee 1583 cleanups = make_cleanup (xfree, debuglink);
4262abfb 1584 dir = xstrdup (objfile_name (objfile));
71bdabee 1585 make_cleanup (xfree, dir);
1db33378
PP
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1db33378
PP
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
4262abfb
JK
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1db33378
PP
1602 {
1603 char *symlink_dir;
1604
4262abfb 1605 symlink_dir = lrealpath (objfile_name (objfile));
1db33378
PP
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1db33378 1621 }
aa28a74e 1622
1db33378 1623 do_cleanups (cleanups);
25522fae 1624 return debugfile;
5b5d99cf
JB
1625}
1626
c906108c
SS
1627/* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
c906108c
SS
1639 conventions (because it is confusing and inconvenient). */
1640
1641void
fba45db2 1642symbol_file_command (char *args, int from_tty)
c906108c 1643{
c906108c
SS
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1adeb98a 1648 symbol_file_clear (from_tty);
c906108c
SS
1649 }
1650 else
1651 {
d1a41061 1652 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1655 char *name = NULL;
1656
7a292a7a 1657 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1658 while (*argv != NULL)
1659 {
78a4a9b9
AC
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
8a3fe4f8 1663 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1664 else
1665 {
cb2f3a29 1666 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1667 name = *argv;
78a4a9b9 1668 }
cb2f3a29 1669
c906108c
SS
1670 argv++;
1671 }
1672
1673 if (name == NULL)
cb2f3a29
MK
1674 error (_("no symbol file name was specified"));
1675
c906108c
SS
1676 do_cleanups (cleanups);
1677 }
1678}
1679
1680/* Set the initial language.
1681
cb2f3a29
MK
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1689 full symbols. */
c906108c 1690
8b60591b 1691void
fba45db2 1692set_initial_language (void)
c906108c 1693{
9e6c82ad 1694 enum language lang = main_language ();
c906108c 1695
9e6c82ad 1696 if (lang == language_unknown)
01f8c46d 1697 {
bf6d8a91 1698 char *name = main_name ();
d12307c1 1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1700
bf6d8a91
TT
1701 if (sym != NULL)
1702 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1703 }
cb2f3a29 1704
ccefe4c4
TT
1705 if (lang == language_unknown)
1706 {
1707 /* Make C the default language */
1708 lang = language_c;
c906108c 1709 }
ccefe4c4
TT
1710
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1713}
1714
cb2f3a29
MK
1715/* Open the file specified by NAME and hand it off to BFD for
1716 preliminary analysis. Return a newly initialized bfd *, which
1717 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1718 absolute). In case of trouble, error() is called. */
c906108c
SS
1719
1720bfd *
97a41605 1721symfile_bfd_open (const char *name)
c906108c
SS
1722{
1723 bfd *sym_bfd;
97a41605
GB
1724 int desc = -1;
1725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1726
97a41605 1727 if (!is_target_filename (name))
f1838a98 1728 {
97a41605 1729 char *expanded_name, *absolute_name;
f1838a98 1730
97a41605 1731 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c 1732
97a41605
GB
1733 /* Look down path for it, allocate 2nd new malloc'd copy. */
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
608506ed 1737#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1738 if (desc < 0)
1739 {
0ae1c716 1740 char *exename = (char *) alloca (strlen (expanded_name) + 5);
433759f7 1741
97a41605
GB
1742 strcat (strcpy (exename, expanded_name), ".exe");
1743 desc = openp (getenv ("PATH"),
1744 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1745 exename, O_RDONLY | O_BINARY, &absolute_name);
1746 }
c906108c 1747#endif
97a41605
GB
1748 if (desc < 0)
1749 {
1750 make_cleanup (xfree, expanded_name);
1751 perror_with_name (expanded_name);
1752 }
cb2f3a29 1753
97a41605
GB
1754 xfree (expanded_name);
1755 make_cleanup (xfree, absolute_name);
1756 name = absolute_name;
1757 }
c906108c 1758
1c00ec6b 1759 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
c906108c 1760 if (!sym_bfd)
faab9922
JK
1761 error (_("`%s': can't open to read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
97a41605
GB
1763
1764 if (!gdb_bfd_has_target_filename (sym_bfd))
1765 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1766
1767 if (!bfd_check_format (sym_bfd, bfd_object))
1768 {
f9a062ff 1769 make_cleanup_bfd_unref (sym_bfd);
f1838a98 1770 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1771 bfd_errmsg (bfd_get_error ()));
1772 }
cb2f3a29 1773
faab9922
JK
1774 do_cleanups (back_to);
1775
cb2f3a29 1776 return sym_bfd;
c906108c
SS
1777}
1778
cb2f3a29
MK
1779/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1780 the section was not found. */
1781
0e931cf0
JB
1782int
1783get_section_index (struct objfile *objfile, char *section_name)
1784{
1785 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1786
0e931cf0
JB
1787 if (sect)
1788 return sect->index;
1789 else
1790 return -1;
1791}
1792
c256e171
DE
1793/* Link SF into the global symtab_fns list.
1794 FLAVOUR is the file format that SF handles.
1795 Called on startup by the _initialize routine in each object file format
1796 reader, to register information about each format the reader is prepared
1797 to handle. */
c906108c
SS
1798
1799void
c256e171 1800add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1801{
c256e171
DE
1802 registered_sym_fns fns = { flavour, sf };
1803
1804 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
c906108c
SS
1805}
1806
cb2f3a29
MK
1807/* Initialize OBJFILE to read symbols from its associated BFD. It
1808 either returns or calls error(). The result is an initialized
1809 struct sym_fns in the objfile structure, that contains cached
1810 information about the symbol file. */
c906108c 1811
00b5771c 1812static const struct sym_fns *
31d99776 1813find_sym_fns (bfd *abfd)
c906108c 1814{
c256e171 1815 registered_sym_fns *rsf;
31d99776 1816 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1817 int i;
c906108c 1818
75245b24
MS
1819 if (our_flavour == bfd_target_srec_flavour
1820 || our_flavour == bfd_target_ihex_flavour
1821 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1822 return NULL; /* No symbols. */
75245b24 1823
c256e171
DE
1824 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1825 if (our_flavour == rsf->sym_flavour)
1826 return rsf->sym_fns;
cb2f3a29 1827
8a3fe4f8 1828 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1829 bfd_get_target (abfd));
c906108c
SS
1830}
1831\f
cb2f3a29 1832
c906108c
SS
1833/* This function runs the load command of our current target. */
1834
1835static void
fba45db2 1836load_command (char *arg, int from_tty)
c906108c 1837{
5b3fca71
TT
1838 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1839
e5cc9f32
JB
1840 dont_repeat ();
1841
4487aabf
PA
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1845 reread_symbols ();
1846
c906108c 1847 if (arg == NULL)
1986bccd
AS
1848 {
1849 char *parg;
1850 int count = 0;
1851
1852 parg = arg = get_exec_file (1);
1853
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1856 {
1857 parg++;
1858 count++;
1859 }
1860
1861 if (count)
1862 {
1863 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1864 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd
AS
1865 char *ptemp = temp;
1866 char *prev;
1867
1868 make_cleanup (xfree, temp);
1869
1870 prev = parg = arg;
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1872 {
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1875 prev = parg++;
1876 *ptemp++ = '\\';
1877 }
1878 strcpy (ptemp, prev);
1879
1880 arg = temp;
1881 }
1882 }
1883
c906108c 1884 target_load (arg, from_tty);
2889e661
JB
1885
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
5b3fca71
TT
1889
1890 do_cleanups (cleanup);
c906108c
SS
1891}
1892
1893/* This version of "load" should be usable for any target. Currently
1894 it is just used for remote targets, not inftarg.c or core files,
1895 on the theory that only in that case is it useful.
1896
1897 Avoiding xmodem and the like seems like a win (a) because we don't have
1898 to worry about finding it, and (b) On VMS, fork() is very slow and so
1899 we don't want to run a subprocess. On the other hand, I'm not sure how
1900 performance compares. */
917317f4 1901
917317f4
JM
1902static int validate_download = 0;
1903
e4f9b4d5
MS
1904/* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906static void
1907add_section_size_callback (bfd *abfd, asection *asec, void *data)
1908{
19ba03f4 1909 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1910
2c500098 1911 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1912}
1913
1914/* Opaque data for load_section_callback. */
1915struct load_section_data {
f698ca8e 1916 CORE_ADDR load_offset;
a76d924d
DJ
1917 struct load_progress_data *progress_data;
1918 VEC(memory_write_request_s) *requests;
1919};
1920
1921/* Opaque data for load_progress. */
1922struct load_progress_data {
1923 /* Cumulative data. */
e4f9b4d5
MS
1924 unsigned long write_count;
1925 unsigned long data_count;
1926 bfd_size_type total_size;
a76d924d
DJ
1927};
1928
1929/* Opaque data for load_progress for a single section. */
1930struct load_progress_section_data {
1931 struct load_progress_data *cumulative;
cf7a04e8 1932
a76d924d 1933 /* Per-section data. */
cf7a04e8
DJ
1934 const char *section_name;
1935 ULONGEST section_sent;
1936 ULONGEST section_size;
1937 CORE_ADDR lma;
1938 gdb_byte *buffer;
e4f9b4d5
MS
1939};
1940
a76d924d 1941/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1942
1943static void
1944load_progress (ULONGEST bytes, void *untyped_arg)
1945{
19ba03f4
SM
1946 struct load_progress_section_data *args
1947 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1948 struct load_progress_data *totals;
1949
1950 if (args == NULL)
1951 /* Writing padding data. No easy way to get at the cumulative
1952 stats, so just ignore this. */
1953 return;
1954
1955 totals = args->cumulative;
1956
1957 if (bytes == 0 && args->section_sent == 0)
1958 {
1959 /* The write is just starting. Let the user know we've started
1960 this section. */
79a45e25 1961 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
5af949e3 1962 args->section_name, hex_string (args->section_size),
f5656ead 1963 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1964 return;
1965 }
cf7a04e8
DJ
1966
1967 if (validate_download)
1968 {
1969 /* Broken memories and broken monitors manifest themselves here
1970 when bring new computers to life. This doubles already slow
1971 downloads. */
1972 /* NOTE: cagney/1999-10-18: A more efficient implementation
1973 might add a verify_memory() method to the target vector and
1974 then use that. remote.c could implement that method using
1975 the ``qCRC'' packet. */
224c3ddb 1976 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
cf7a04e8
DJ
1977 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1978
1979 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3 1980 error (_("Download verify read failed at %s"),
f5656ead 1981 paddress (target_gdbarch (), args->lma));
cf7a04e8 1982 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3 1983 error (_("Download verify compare failed at %s"),
f5656ead 1984 paddress (target_gdbarch (), args->lma));
cf7a04e8
DJ
1985 do_cleanups (verify_cleanups);
1986 }
a76d924d 1987 totals->data_count += bytes;
cf7a04e8
DJ
1988 args->lma += bytes;
1989 args->buffer += bytes;
a76d924d 1990 totals->write_count += 1;
cf7a04e8 1991 args->section_sent += bytes;
522002f9 1992 if (check_quit_flag ()
cf7a04e8
DJ
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1997
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2000 args->section_sent,
2001 args->section_size,
a76d924d
DJ
2002 totals->data_count,
2003 totals->total_size);
cf7a04e8
DJ
2004}
2005
e4f9b4d5
MS
2006/* Callback service function for generic_load (bfd_map_over_sections). */
2007
2008static void
2009load_section_callback (bfd *abfd, asection *asec, void *data)
2010{
a76d924d 2011 struct memory_write_request *new_request;
19ba03f4 2012 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 2013 struct load_progress_section_data *section_data;
cf7a04e8
DJ
2014 bfd_size_type size = bfd_get_section_size (asec);
2015 gdb_byte *buffer;
cf7a04e8 2016 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 2017
cf7a04e8
DJ
2018 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2019 return;
e4f9b4d5 2020
cf7a04e8
DJ
2021 if (size == 0)
2022 return;
e4f9b4d5 2023
a76d924d
DJ
2024 new_request = VEC_safe_push (memory_write_request_s,
2025 args->requests, NULL);
2026 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2027 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2028 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2029 new_request->end = new_request->begin + size; /* FIXME Should size
2030 be in instead? */
224c3ddb 2031 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2032 new_request->baton = section_data;
cf7a04e8 2033
a76d924d 2034 buffer = new_request->data;
cf7a04e8 2035
a76d924d
DJ
2036 section_data->cumulative = args->progress_data;
2037 section_data->section_name = sect_name;
2038 section_data->section_size = size;
2039 section_data->lma = new_request->begin;
2040 section_data->buffer = buffer;
cf7a04e8
DJ
2041
2042 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2043}
2044
2045/* Clean up an entire memory request vector, including load
2046 data and progress records. */
cf7a04e8 2047
a76d924d
DJ
2048static void
2049clear_memory_write_data (void *arg)
2050{
19ba03f4 2051 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2052 VEC(memory_write_request_s) *vec = *vec_p;
2053 int i;
2054 struct memory_write_request *mr;
cf7a04e8 2055
a76d924d
DJ
2056 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2057 {
2058 xfree (mr->data);
2059 xfree (mr->baton);
2060 }
2061 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2062}
2063
c906108c 2064void
9cbe5fff 2065generic_load (const char *args, int from_tty)
c906108c 2066{
c906108c 2067 bfd *loadfile_bfd;
2b71414d 2068 struct timeval start_time, end_time;
917317f4 2069 char *filename;
1986bccd 2070 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 2071 struct load_section_data cbdata;
a76d924d 2072 struct load_progress_data total_progress;
79a45e25 2073 struct ui_out *uiout = current_uiout;
a76d924d 2074
e4f9b4d5 2075 CORE_ADDR entry;
1986bccd 2076 char **argv;
e4f9b4d5 2077
a76d924d
DJ
2078 memset (&cbdata, 0, sizeof (cbdata));
2079 memset (&total_progress, 0, sizeof (total_progress));
2080 cbdata.progress_data = &total_progress;
2081
2082 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2083
d1a41061
PP
2084 if (args == NULL)
2085 error_no_arg (_("file to load"));
1986bccd 2086
d1a41061 2087 argv = gdb_buildargv (args);
1986bccd
AS
2088 make_cleanup_freeargv (argv);
2089
2090 filename = tilde_expand (argv[0]);
2091 make_cleanup (xfree, filename);
2092
2093 if (argv[1] != NULL)
917317f4 2094 {
f698ca8e 2095 const char *endptr;
ba5f2f8a 2096
f698ca8e 2097 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2098
2099 /* If the last word was not a valid number then
2100 treat it as a file name with spaces in. */
2101 if (argv[1] == endptr)
2102 error (_("Invalid download offset:%s."), argv[1]);
2103
2104 if (argv[2] != NULL)
2105 error (_("Too many parameters."));
917317f4 2106 }
c906108c 2107
c378eb4e 2108 /* Open the file for loading. */
1c00ec6b 2109 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
c906108c
SS
2110 if (loadfile_bfd == NULL)
2111 {
2112 perror_with_name (filename);
2113 return;
2114 }
917317f4 2115
f9a062ff 2116 make_cleanup_bfd_unref (loadfile_bfd);
c906108c 2117
c5aa993b 2118 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2119 {
8a3fe4f8 2120 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2121 bfd_errmsg (bfd_get_error ()));
2122 }
c5aa993b 2123
5417f6dc 2124 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2125 (void *) &total_progress.total_size);
2126
2127 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2128
2b71414d 2129 gettimeofday (&start_time, NULL);
c906108c 2130
a76d924d
DJ
2131 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2132 load_progress) != 0)
2133 error (_("Load failed"));
c906108c 2134
2b71414d 2135 gettimeofday (&end_time, NULL);
ba5f2f8a 2136
e4f9b4d5 2137 entry = bfd_get_start_address (loadfile_bfd);
8c2b9656 2138 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
e4f9b4d5 2139 ui_out_text (uiout, "Start address ");
f5656ead 2140 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
e4f9b4d5 2141 ui_out_text (uiout, ", load size ");
a76d924d 2142 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2143 ui_out_text (uiout, "\n");
fb14de7b 2144 regcache_write_pc (get_current_regcache (), entry);
c906108c 2145
38963c97
DJ
2146 /* Reset breakpoints, now that we have changed the load image. For
2147 instance, breakpoints may have been set (or reset, by
2148 post_create_inferior) while connected to the target but before we
2149 loaded the program. In that case, the prologue analyzer could
2150 have read instructions from the target to find the right
2151 breakpoint locations. Loading has changed the contents of that
2152 memory. */
2153
2154 breakpoint_re_set ();
2155
a76d924d
DJ
2156 print_transfer_performance (gdb_stdout, total_progress.data_count,
2157 total_progress.write_count,
2158 &start_time, &end_time);
c906108c
SS
2159
2160 do_cleanups (old_cleanups);
2161}
2162
c378eb4e 2163/* Report how fast the transfer went. */
c906108c 2164
917317f4 2165void
d9fcf2fb 2166print_transfer_performance (struct ui_file *stream,
917317f4
JM
2167 unsigned long data_count,
2168 unsigned long write_count,
2b71414d
DJ
2169 const struct timeval *start_time,
2170 const struct timeval *end_time)
917317f4 2171{
9f43d28c 2172 ULONGEST time_count;
79a45e25 2173 struct ui_out *uiout = current_uiout;
2b71414d
DJ
2174
2175 /* Compute the elapsed time in milliseconds, as a tradeoff between
2176 accuracy and overflow. */
2177 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2178 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2179
8b93c638
JM
2180 ui_out_text (uiout, "Transfer rate: ");
2181 if (time_count > 0)
2182 {
9f43d28c
DJ
2183 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2184
2185 if (ui_out_is_mi_like_p (uiout))
2186 {
2187 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2188 ui_out_text (uiout, " bits/sec");
2189 }
2190 else if (rate < 1024)
2191 {
2192 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2193 ui_out_text (uiout, " bytes/sec");
2194 }
2195 else
2196 {
2197 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2198 ui_out_text (uiout, " KB/sec");
2199 }
8b93c638
JM
2200 }
2201 else
2202 {
ba5f2f8a 2203 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2204 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2205 }
2206 if (write_count > 0)
2207 {
2208 ui_out_text (uiout, ", ");
ba5f2f8a 2209 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2210 ui_out_text (uiout, " bytes/write");
2211 }
2212 ui_out_text (uiout, ".\n");
c906108c
SS
2213}
2214
2215/* This function allows the addition of incrementally linked object files.
2216 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2217/* Note: ezannoni 2000-04-13 This function/command used to have a
2218 special case syntax for the rombug target (Rombug is the boot
2219 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2220 rombug case, the user doesn't need to supply a text address,
2221 instead a call to target_link() (in target.c) would supply the
c378eb4e 2222 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2223
c906108c 2224static void
fba45db2 2225add_symbol_file_command (char *args, int from_tty)
c906108c 2226{
5af949e3 2227 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2228 char *filename = NULL;
d03de421 2229 int flags = OBJF_USERLOADED | OBJF_SHARED;
c906108c 2230 char *arg;
db162d44 2231 int section_index = 0;
2acceee2
JM
2232 int argcnt = 0;
2233 int sec_num = 0;
2234 int i;
db162d44
EZ
2235 int expecting_sec_name = 0;
2236 int expecting_sec_addr = 0;
5b96932b 2237 char **argv;
76ad5e1e 2238 struct objfile *objf;
db162d44 2239
a39a16c4 2240 struct sect_opt
2acceee2 2241 {
2acceee2
JM
2242 char *name;
2243 char *value;
a39a16c4 2244 };
db162d44 2245
a39a16c4
MM
2246 struct section_addr_info *section_addrs;
2247 struct sect_opt *sect_opts = NULL;
2248 size_t num_sect_opts = 0;
3017564a 2249 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2250
a39a16c4 2251 num_sect_opts = 16;
8d749320 2252 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
a39a16c4 2253
c906108c
SS
2254 dont_repeat ();
2255
2256 if (args == NULL)
8a3fe4f8 2257 error (_("add-symbol-file takes a file name and an address"));
c906108c 2258
d1a41061 2259 argv = gdb_buildargv (args);
5b96932b 2260 make_cleanup_freeargv (argv);
db162d44 2261
5b96932b
AS
2262 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2263 {
c378eb4e 2264 /* Process the argument. */
db162d44 2265 if (argcnt == 0)
c906108c 2266 {
c378eb4e 2267 /* The first argument is the file name. */
db162d44 2268 filename = tilde_expand (arg);
3017564a 2269 make_cleanup (xfree, filename);
c906108c 2270 }
41dc8db8
MB
2271 else if (argcnt == 1)
2272 {
2273 /* The second argument is always the text address at which
2274 to load the program. */
2275 sect_opts[section_index].name = ".text";
2276 sect_opts[section_index].value = arg;
2277 if (++section_index >= num_sect_opts)
2278 {
2279 num_sect_opts *= 2;
2280 sect_opts = ((struct sect_opt *)
2281 xrealloc (sect_opts,
2282 num_sect_opts
2283 * sizeof (struct sect_opt)));
2284 }
2285 }
db162d44 2286 else
41dc8db8
MB
2287 {
2288 /* It's an option (starting with '-') or it's an argument
2289 to an option. */
41dc8db8
MB
2290 if (expecting_sec_name)
2291 {
2292 sect_opts[section_index].name = arg;
2293 expecting_sec_name = 0;
2294 }
2295 else if (expecting_sec_addr)
2296 {
2297 sect_opts[section_index].value = arg;
2298 expecting_sec_addr = 0;
2299 if (++section_index >= num_sect_opts)
2300 {
2301 num_sect_opts *= 2;
2302 sect_opts = ((struct sect_opt *)
2303 xrealloc (sect_opts,
2304 num_sect_opts
2305 * sizeof (struct sect_opt)));
2306 }
2307 }
2308 else if (strcmp (arg, "-readnow") == 0)
2309 flags |= OBJF_READNOW;
2310 else if (strcmp (arg, "-s") == 0)
2311 {
2312 expecting_sec_name = 1;
2313 expecting_sec_addr = 1;
2314 }
2315 else
2316 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2317 " [-readnow] [-s <secname> <addr>]*"));
2318 }
c906108c 2319 }
c906108c 2320
927890d0
JB
2321 /* This command takes at least two arguments. The first one is a
2322 filename, and the second is the address where this file has been
2323 loaded. Abort now if this address hasn't been provided by the
2324 user. */
2325 if (section_index < 1)
2326 error (_("The address where %s has been loaded is missing"), filename);
2327
c378eb4e 2328 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2329 a sect_addr_info structure to be passed around to other
2330 functions. We have to split this up into separate print
bb599908 2331 statements because hex_string returns a local static
c378eb4e 2332 string. */
5417f6dc 2333
a3f17187 2334 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2335 section_addrs = alloc_section_addr_info (section_index);
2336 make_cleanup (xfree, section_addrs);
db162d44 2337 for (i = 0; i < section_index; i++)
c906108c 2338 {
db162d44
EZ
2339 CORE_ADDR addr;
2340 char *val = sect_opts[i].value;
2341 char *sec = sect_opts[i].name;
5417f6dc 2342
ae822768 2343 addr = parse_and_eval_address (val);
db162d44 2344
db162d44 2345 /* Here we store the section offsets in the order they were
c378eb4e 2346 entered on the command line. */
a39a16c4
MM
2347 section_addrs->other[sec_num].name = sec;
2348 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2349 printf_unfiltered ("\t%s_addr = %s\n", sec,
2350 paddress (gdbarch, addr));
db162d44
EZ
2351 sec_num++;
2352
5417f6dc 2353 /* The object's sections are initialized when a
db162d44 2354 call is made to build_objfile_section_table (objfile).
5417f6dc 2355 This happens in reread_symbols.
db162d44
EZ
2356 At this point, we don't know what file type this is,
2357 so we can't determine what section names are valid. */
2acceee2 2358 }
d76488d8 2359 section_addrs->num_sections = sec_num;
db162d44 2360
2acceee2 2361 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2362 error (_("Not confirmed."));
c906108c 2363
76ad5e1e
NB
2364 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2365 section_addrs, flags);
2366
2367 add_target_sections_of_objfile (objf);
c906108c
SS
2368
2369 /* Getting new symbols may change our opinion about what is
2370 frameless. */
2371 reinit_frame_cache ();
db162d44 2372 do_cleanups (my_cleanups);
c906108c
SS
2373}
2374\f
70992597 2375
63644780
NB
2376/* This function removes a symbol file that was added via add-symbol-file. */
2377
2378static void
2379remove_symbol_file_command (char *args, int from_tty)
2380{
2381 char **argv;
2382 struct objfile *objf = NULL;
2383 struct cleanup *my_cleanups;
2384 struct program_space *pspace = current_program_space;
63644780
NB
2385
2386 dont_repeat ();
2387
2388 if (args == NULL)
2389 error (_("remove-symbol-file: no symbol file provided"));
2390
2391 my_cleanups = make_cleanup (null_cleanup, NULL);
2392
2393 argv = gdb_buildargv (args);
2394
2395 if (strcmp (argv[0], "-a") == 0)
2396 {
2397 /* Interpret the next argument as an address. */
2398 CORE_ADDR addr;
2399
2400 if (argv[1] == NULL)
2401 error (_("Missing address argument"));
2402
2403 if (argv[2] != NULL)
2404 error (_("Junk after %s"), argv[1]);
2405
2406 addr = parse_and_eval_address (argv[1]);
2407
2408 ALL_OBJFILES (objf)
2409 {
d03de421
PA
2410 if ((objf->flags & OBJF_USERLOADED) != 0
2411 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2412 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2413 break;
2414 }
2415 }
2416 else if (argv[0] != NULL)
2417 {
2418 /* Interpret the current argument as a file name. */
2419 char *filename;
2420
2421 if (argv[1] != NULL)
2422 error (_("Junk after %s"), argv[0]);
2423
2424 filename = tilde_expand (argv[0]);
2425 make_cleanup (xfree, filename);
2426
2427 ALL_OBJFILES (objf)
2428 {
d03de421
PA
2429 if ((objf->flags & OBJF_USERLOADED) != 0
2430 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2431 && objf->pspace == pspace
2432 && filename_cmp (filename, objfile_name (objf)) == 0)
2433 break;
2434 }
2435 }
2436
2437 if (objf == NULL)
2438 error (_("No symbol file found"));
2439
2440 if (from_tty
2441 && !query (_("Remove symbol table from file \"%s\"? "),
2442 objfile_name (objf)))
2443 error (_("Not confirmed."));
2444
2445 free_objfile (objf);
2446 clear_symtab_users (0);
2447
2448 do_cleanups (my_cleanups);
2449}
2450
4ac39b97
JK
2451typedef struct objfile *objfilep;
2452
2453DEF_VEC_P (objfilep);
2454
c906108c 2455/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2456
c906108c 2457void
fba45db2 2458reread_symbols (void)
c906108c
SS
2459{
2460 struct objfile *objfile;
2461 long new_modtime;
c906108c
SS
2462 struct stat new_statbuf;
2463 int res;
4ac39b97
JK
2464 VEC (objfilep) *new_objfiles = NULL;
2465 struct cleanup *all_cleanups;
2466
2467 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
c906108c
SS
2468
2469 /* With the addition of shared libraries, this should be modified,
2470 the load time should be saved in the partial symbol tables, since
2471 different tables may come from different source files. FIXME.
2472 This routine should then walk down each partial symbol table
c378eb4e 2473 and see if the symbol table that it originates from has been changed. */
c906108c 2474
c5aa993b
JM
2475 for (objfile = object_files; objfile; objfile = objfile->next)
2476 {
9cce227f
TG
2477 if (objfile->obfd == NULL)
2478 continue;
2479
2480 /* Separate debug objfiles are handled in the main objfile. */
2481 if (objfile->separate_debug_objfile_backlink)
2482 continue;
2483
02aeec7b
JB
2484 /* If this object is from an archive (what you usually create with
2485 `ar', often called a `static library' on most systems, though
2486 a `shared library' on AIX is also an archive), then you should
2487 stat on the archive name, not member name. */
9cce227f
TG
2488 if (objfile->obfd->my_archive)
2489 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2490 else
4262abfb 2491 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2492 if (res != 0)
2493 {
c378eb4e 2494 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2495 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2496 objfile_name (objfile));
9cce227f
TG
2497 continue;
2498 }
2499 new_modtime = new_statbuf.st_mtime;
2500 if (new_modtime != objfile->mtime)
2501 {
2502 struct cleanup *old_cleanups;
2503 struct section_offsets *offsets;
2504 int num_offsets;
24ba069a 2505 char *original_name;
9cce227f
TG
2506
2507 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2508 objfile_name (objfile));
9cce227f
TG
2509
2510 /* There are various functions like symbol_file_add,
2511 symfile_bfd_open, syms_from_objfile, etc., which might
2512 appear to do what we want. But they have various other
2513 effects which we *don't* want. So we just do stuff
2514 ourselves. We don't worry about mapped files (for one thing,
2515 any mapped file will be out of date). */
2516
2517 /* If we get an error, blow away this objfile (not sure if
2518 that is the correct response for things like shared
2519 libraries). */
2520 old_cleanups = make_cleanup_free_objfile (objfile);
2521 /* We need to do this whenever any symbols go away. */
2522 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2523
0ba1096a
KT
2524 if (exec_bfd != NULL
2525 && filename_cmp (bfd_get_filename (objfile->obfd),
2526 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2527 {
2528 /* Reload EXEC_BFD without asking anything. */
2529
2530 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2531 }
2532
f6eeced0
JK
2533 /* Keep the calls order approx. the same as in free_objfile. */
2534
2535 /* Free the separate debug objfiles. It will be
2536 automatically recreated by sym_read. */
2537 free_objfile_separate_debug (objfile);
2538
2539 /* Remove any references to this objfile in the global
2540 value lists. */
2541 preserve_values (objfile);
2542
2543 /* Nuke all the state that we will re-read. Much of the following
2544 code which sets things to NULL really is necessary to tell
2545 other parts of GDB that there is nothing currently there.
2546
2547 Try to keep the freeing order compatible with free_objfile. */
2548
2549 if (objfile->sf != NULL)
2550 {
2551 (*objfile->sf->sym_finish) (objfile);
2552 }
2553
2554 clear_objfile_data (objfile);
2555
e1507e95 2556 /* Clean up any state BFD has sitting around. */
a4453b7e
TT
2557 {
2558 struct bfd *obfd = objfile->obfd;
d3846e71 2559 char *obfd_filename;
a4453b7e
TT
2560
2561 obfd_filename = bfd_get_filename (objfile->obfd);
2562 /* Open the new BFD before freeing the old one, so that
2563 the filename remains live. */
2938e6cf 2564 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
e1507e95
TT
2565 if (objfile->obfd == NULL)
2566 {
2567 /* We have to make a cleanup and error here, rather
2568 than erroring later, because once we unref OBFD,
2569 OBFD_FILENAME will be freed. */
2570 make_cleanup_bfd_unref (obfd);
2571 error (_("Can't open %s to read symbols."), obfd_filename);
2572 }
a4453b7e
TT
2573 gdb_bfd_unref (obfd);
2574 }
2575
24ba069a
JK
2576 original_name = xstrdup (objfile->original_name);
2577 make_cleanup (xfree, original_name);
2578
9cce227f
TG
2579 /* bfd_openr sets cacheable to true, which is what we want. */
2580 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2581 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2582 bfd_errmsg (bfd_get_error ()));
2583
2584 /* Save the offsets, we will nuke them with the rest of the
2585 objfile_obstack. */
2586 num_offsets = objfile->num_sections;
2587 offsets = ((struct section_offsets *)
2588 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2589 memcpy (offsets, objfile->section_offsets,
2590 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2591
9cce227f
TG
2592 /* FIXME: Do we have to free a whole linked list, or is this
2593 enough? */
2594 if (objfile->global_psymbols.list)
2595 xfree (objfile->global_psymbols.list);
2596 memset (&objfile->global_psymbols, 0,
2597 sizeof (objfile->global_psymbols));
2598 if (objfile->static_psymbols.list)
2599 xfree (objfile->static_psymbols.list);
2600 memset (&objfile->static_psymbols, 0,
2601 sizeof (objfile->static_psymbols));
2602
c378eb4e 2603 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2604 psymbol_bcache_free (objfile->psymbol_cache);
2605 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f
TG
2606 obstack_free (&objfile->objfile_obstack, 0);
2607 objfile->sections = NULL;
43f3e411 2608 objfile->compunit_symtabs = NULL;
9cce227f
TG
2609 objfile->psymtabs = NULL;
2610 objfile->psymtabs_addrmap = NULL;
2611 objfile->free_psymtabs = NULL;
34eaf542 2612 objfile->template_symbols = NULL;
9cce227f 2613
9cce227f
TG
2614 /* obstack_init also initializes the obstack so it is
2615 empty. We could use obstack_specify_allocation but
d82ea6a8 2616 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2617 obstack_init (&objfile->objfile_obstack);
779bd270 2618
846060df
JB
2619 /* set_objfile_per_bfd potentially allocates the per-bfd
2620 data on the objfile's obstack (if sharing data across
2621 multiple users is not possible), so it's important to
2622 do it *after* the obstack has been initialized. */
2623 set_objfile_per_bfd (objfile);
2624
224c3ddb
SM
2625 objfile->original_name
2626 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2627 strlen (original_name));
24ba069a 2628
779bd270
DE
2629 /* Reset the sym_fns pointer. The ELF reader can change it
2630 based on whether .gdb_index is present, and we need it to
2631 start over. PR symtab/15885 */
8fb8eb5c 2632 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2633
d82ea6a8 2634 build_objfile_section_table (objfile);
9cce227f
TG
2635 terminate_minimal_symbol_table (objfile);
2636
2637 /* We use the same section offsets as from last time. I'm not
2638 sure whether that is always correct for shared libraries. */
2639 objfile->section_offsets = (struct section_offsets *)
2640 obstack_alloc (&objfile->objfile_obstack,
2641 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2642 memcpy (objfile->section_offsets, offsets,
2643 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2644 objfile->num_sections = num_offsets;
2645
2646 /* What the hell is sym_new_init for, anyway? The concept of
2647 distinguishing between the main file and additional files
2648 in this way seems rather dubious. */
2649 if (objfile == symfile_objfile)
c906108c 2650 {
9cce227f 2651 (*objfile->sf->sym_new_init) (objfile);
c906108c 2652 }
9cce227f
TG
2653
2654 (*objfile->sf->sym_init) (objfile);
2655 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2656
2657 objfile->flags &= ~OBJF_PSYMTABS_READ;
2658 read_symbols (objfile, 0);
b11896a5 2659
9cce227f 2660 if (!objfile_has_symbols (objfile))
c906108c 2661 {
9cce227f
TG
2662 wrap_here ("");
2663 printf_unfiltered (_("(no debugging symbols found)\n"));
2664 wrap_here ("");
c5aa993b 2665 }
9cce227f
TG
2666
2667 /* We're done reading the symbol file; finish off complaints. */
2668 clear_complaints (&symfile_complaints, 0, 1);
2669
2670 /* Getting new symbols may change our opinion about what is
2671 frameless. */
2672
2673 reinit_frame_cache ();
2674
2675 /* Discard cleanups as symbol reading was successful. */
2676 discard_cleanups (old_cleanups);
2677
2678 /* If the mtime has changed between the time we set new_modtime
2679 and now, we *want* this to be out of date, so don't call stat
2680 again now. */
2681 objfile->mtime = new_modtime;
9cce227f 2682 init_entry_point_info (objfile);
4ac39b97
JK
2683
2684 VEC_safe_push (objfilep, new_objfiles, objfile);
c906108c
SS
2685 }
2686 }
c906108c 2687
4ac39b97 2688 if (new_objfiles)
ea53e89f 2689 {
4ac39b97
JK
2690 int ix;
2691
ff3536bc
UW
2692 /* Notify objfiles that we've modified objfile sections. */
2693 objfiles_changed ();
2694
c1e56572 2695 clear_symtab_users (0);
4ac39b97
JK
2696
2697 /* clear_objfile_data for each objfile was called before freeing it and
2698 observer_notify_new_objfile (NULL) has been called by
2699 clear_symtab_users above. Notify the new files now. */
2700 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2701 observer_notify_new_objfile (objfile);
2702
ea53e89f
JB
2703 /* At least one objfile has changed, so we can consider that
2704 the executable we're debugging has changed too. */
781b42b0 2705 observer_notify_executable_changed ();
ea53e89f 2706 }
4ac39b97
JK
2707
2708 do_cleanups (all_cleanups);
c906108c 2709}
c906108c
SS
2710\f
2711
c5aa993b
JM
2712typedef struct
2713{
2714 char *ext;
c906108c 2715 enum language lang;
c5aa993b
JM
2716}
2717filename_language;
c906108c 2718
c5aa993b 2719static filename_language *filename_language_table;
c906108c
SS
2720static int fl_table_size, fl_table_next;
2721
2722static void
fba45db2 2723add_filename_language (char *ext, enum language lang)
c906108c
SS
2724{
2725 if (fl_table_next >= fl_table_size)
2726 {
2727 fl_table_size += 10;
224c3ddb
SM
2728 filename_language_table = XRESIZEVEC (filename_language,
2729 filename_language_table,
2730 fl_table_size);
c906108c
SS
2731 }
2732
4fcf66da 2733 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2734 filename_language_table[fl_table_next].lang = lang;
2735 fl_table_next++;
2736}
2737
2738static char *ext_args;
920d2a44
AC
2739static void
2740show_ext_args (struct ui_file *file, int from_tty,
2741 struct cmd_list_element *c, const char *value)
2742{
3e43a32a
MS
2743 fprintf_filtered (file,
2744 _("Mapping between filename extension "
2745 "and source language is \"%s\".\n"),
920d2a44
AC
2746 value);
2747}
c906108c
SS
2748
2749static void
26c41df3 2750set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2751{
2752 int i;
2753 char *cp = ext_args;
2754 enum language lang;
2755
c378eb4e 2756 /* First arg is filename extension, starting with '.' */
c906108c 2757 if (*cp != '.')
8a3fe4f8 2758 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2759
2760 /* Find end of first arg. */
c5aa993b 2761 while (*cp && !isspace (*cp))
c906108c
SS
2762 cp++;
2763
2764 if (*cp == '\0')
3e43a32a
MS
2765 error (_("'%s': two arguments required -- "
2766 "filename extension and language"),
c906108c
SS
2767 ext_args);
2768
c378eb4e 2769 /* Null-terminate first arg. */
c5aa993b 2770 *cp++ = '\0';
c906108c
SS
2771
2772 /* Find beginning of second arg, which should be a source language. */
529480d0 2773 cp = skip_spaces (cp);
c906108c
SS
2774
2775 if (*cp == '\0')
3e43a32a
MS
2776 error (_("'%s': two arguments required -- "
2777 "filename extension and language"),
c906108c
SS
2778 ext_args);
2779
2780 /* Lookup the language from among those we know. */
2781 lang = language_enum (cp);
2782
2783 /* Now lookup the filename extension: do we already know it? */
2784 for (i = 0; i < fl_table_next; i++)
2785 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2786 break;
2787
2788 if (i >= fl_table_next)
2789 {
c378eb4e 2790 /* New file extension. */
c906108c
SS
2791 add_filename_language (ext_args, lang);
2792 }
2793 else
2794 {
c378eb4e 2795 /* Redefining a previously known filename extension. */
c906108c
SS
2796
2797 /* if (from_tty) */
2798 /* query ("Really make files of type %s '%s'?", */
2799 /* ext_args, language_str (lang)); */
2800
b8c9b27d 2801 xfree (filename_language_table[i].ext);
4fcf66da 2802 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2803 filename_language_table[i].lang = lang;
2804 }
2805}
2806
2807static void
fba45db2 2808info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2809{
2810 int i;
2811
a3f17187 2812 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2813 printf_filtered ("\n\n");
2814 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2815 printf_filtered ("\t%s\t- %s\n",
2816 filename_language_table[i].ext,
c906108c
SS
2817 language_str (filename_language_table[i].lang));
2818}
2819
2820static void
fba45db2 2821init_filename_language_table (void)
c906108c 2822{
c378eb4e 2823 if (fl_table_size == 0) /* Protect against repetition. */
c906108c
SS
2824 {
2825 fl_table_size = 20;
2826 fl_table_next = 0;
8d749320
SM
2827 filename_language_table = XNEWVEC (filename_language, fl_table_size);
2828
c5aa993b 2829 add_filename_language (".c", language_c);
6aecb9c2 2830 add_filename_language (".d", language_d);
c5aa993b
JM
2831 add_filename_language (".C", language_cplus);
2832 add_filename_language (".cc", language_cplus);
2833 add_filename_language (".cp", language_cplus);
2834 add_filename_language (".cpp", language_cplus);
2835 add_filename_language (".cxx", language_cplus);
2836 add_filename_language (".c++", language_cplus);
2837 add_filename_language (".java", language_java);
c906108c 2838 add_filename_language (".class", language_java);
da2cf7e0 2839 add_filename_language (".m", language_objc);
c5aa993b
JM
2840 add_filename_language (".f", language_fortran);
2841 add_filename_language (".F", language_fortran);
fd5700c7
JK
2842 add_filename_language (".for", language_fortran);
2843 add_filename_language (".FOR", language_fortran);
2844 add_filename_language (".ftn", language_fortran);
2845 add_filename_language (".FTN", language_fortran);
2846 add_filename_language (".fpp", language_fortran);
2847 add_filename_language (".FPP", language_fortran);
2848 add_filename_language (".f90", language_fortran);
2849 add_filename_language (".F90", language_fortran);
2850 add_filename_language (".f95", language_fortran);
2851 add_filename_language (".F95", language_fortran);
2852 add_filename_language (".f03", language_fortran);
2853 add_filename_language (".F03", language_fortran);
2854 add_filename_language (".f08", language_fortran);
2855 add_filename_language (".F08", language_fortran);
c5aa993b 2856 add_filename_language (".s", language_asm);
aa707ed0 2857 add_filename_language (".sx", language_asm);
c5aa993b 2858 add_filename_language (".S", language_asm);
c6fd39cd
PM
2859 add_filename_language (".pas", language_pascal);
2860 add_filename_language (".p", language_pascal);
2861 add_filename_language (".pp", language_pascal);
963a6417
PH
2862 add_filename_language (".adb", language_ada);
2863 add_filename_language (".ads", language_ada);
2864 add_filename_language (".a", language_ada);
2865 add_filename_language (".ada", language_ada);
dde59185 2866 add_filename_language (".dg", language_ada);
c44af4eb 2867 add_filename_language (".rs", language_rust);
c906108c
SS
2868 }
2869}
2870
2871enum language
dd786858 2872deduce_language_from_filename (const char *filename)
c906108c
SS
2873{
2874 int i;
e6a959d6 2875 const char *cp;
c906108c
SS
2876
2877 if (filename != NULL)
2878 if ((cp = strrchr (filename, '.')) != NULL)
2879 for (i = 0; i < fl_table_next; i++)
2880 if (strcmp (cp, filename_language_table[i].ext) == 0)
2881 return filename_language_table[i].lang;
2882
2883 return language_unknown;
2884}
2885\f
43f3e411
DE
2886/* Allocate and initialize a new symbol table.
2887 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2888
2889struct symtab *
43f3e411 2890allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2891{
43f3e411
DE
2892 struct objfile *objfile = cust->objfile;
2893 struct symtab *symtab
2894 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2895
19ba03f4
SM
2896 symtab->filename
2897 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2898 objfile->per_bfd->filename_cache);
c5aa993b
JM
2899 symtab->fullname = NULL;
2900 symtab->language = deduce_language_from_filename (filename);
c906108c 2901
db0fec5c
DE
2902 /* This can be very verbose with lots of headers.
2903 Only print at higher debug levels. */
2904 if (symtab_create_debug >= 2)
45cfd468
DE
2905 {
2906 /* Be a bit clever with debugging messages, and don't print objfile
2907 every time, only when it changes. */
2908 static char *last_objfile_name = NULL;
2909
2910 if (last_objfile_name == NULL
4262abfb 2911 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2912 {
2913 xfree (last_objfile_name);
4262abfb 2914 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2915 fprintf_unfiltered (gdb_stdlog,
2916 "Creating one or more symtabs for objfile %s ...\n",
2917 last_objfile_name);
2918 }
2919 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2920 "Created symtab %s for module %s.\n",
2921 host_address_to_string (symtab), filename);
45cfd468
DE
2922 }
2923
43f3e411
DE
2924 /* Add it to CUST's list of symtabs. */
2925 if (cust->filetabs == NULL)
2926 {
2927 cust->filetabs = symtab;
2928 cust->last_filetab = symtab;
2929 }
2930 else
2931 {
2932 cust->last_filetab->next = symtab;
2933 cust->last_filetab = symtab;
2934 }
2935
2936 /* Backlink to the containing compunit symtab. */
2937 symtab->compunit_symtab = cust;
2938
2939 return symtab;
2940}
2941
2942/* Allocate and initialize a new compunit.
2943 NAME is the name of the main source file, if there is one, or some
2944 descriptive text if there are no source files. */
2945
2946struct compunit_symtab *
2947allocate_compunit_symtab (struct objfile *objfile, const char *name)
2948{
2949 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2950 struct compunit_symtab);
2951 const char *saved_name;
2952
2953 cu->objfile = objfile;
2954
2955 /* The name we record here is only for display/debugging purposes.
2956 Just save the basename to avoid path issues (too long for display,
2957 relative vs absolute, etc.). */
2958 saved_name = lbasename (name);
224c3ddb
SM
2959 cu->name
2960 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2961 strlen (saved_name));
43f3e411
DE
2962
2963 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2964
2965 if (symtab_create_debug)
2966 {
2967 fprintf_unfiltered (gdb_stdlog,
2968 "Created compunit symtab %s for %s.\n",
2969 host_address_to_string (cu),
2970 cu->name);
2971 }
2972
2973 return cu;
2974}
2975
2976/* Hook CU to the objfile it comes from. */
2977
2978void
2979add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2980{
2981 cu->next = cu->objfile->compunit_symtabs;
2982 cu->objfile->compunit_symtabs = cu;
c906108c 2983}
c906108c 2984\f
c5aa993b 2985
c906108c 2986/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2987 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2988
2989void
c1e56572 2990clear_symtab_users (int add_flags)
c906108c
SS
2991{
2992 /* Someday, we should do better than this, by only blowing away
2993 the things that really need to be blown. */
c0501be5
DJ
2994
2995 /* Clear the "current" symtab first, because it is no longer valid.
2996 breakpoint_re_set may try to access the current symtab. */
2997 clear_current_source_symtab_and_line ();
2998
c906108c 2999 clear_displays ();
1bfeeb0f 3000 clear_last_displayed_sal ();
c906108c 3001 clear_pc_function_cache ();
06d3b283 3002 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
3003
3004 /* Clear globals which might have pointed into a removed objfile.
3005 FIXME: It's not clear which of these are supposed to persist
3006 between expressions and which ought to be reset each time. */
3007 expression_context_block = NULL;
3008 innermost_block = NULL;
8756216b
DP
3009
3010 /* Varobj may refer to old symbols, perform a cleanup. */
3011 varobj_invalidate ();
3012
e700d1b2
JB
3013 /* Now that the various caches have been cleared, we can re_set
3014 our breakpoints without risking it using stale data. */
3015 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3016 breakpoint_re_set ();
c906108c
SS
3017}
3018
74b7792f
AC
3019static void
3020clear_symtab_users_cleanup (void *ignore)
3021{
c1e56572 3022 clear_symtab_users (0);
74b7792f 3023}
c906108c 3024\f
c906108c
SS
3025/* OVERLAYS:
3026 The following code implements an abstraction for debugging overlay sections.
3027
3028 The target model is as follows:
3029 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3030 same VMA, each with its own unique LMA (or load address).
c906108c 3031 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3032 sections, one by one, from the load address into the VMA address.
5417f6dc 3033 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3034 sections should be considered to be mapped from the VMA to the LMA.
3035 This information is used for symbol lookup, and memory read/write.
5417f6dc 3036 For instance, if a section has been mapped then its contents
c5aa993b 3037 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3038
3039 Two levels of debugger support for overlays are available. One is
3040 "manual", in which the debugger relies on the user to tell it which
3041 overlays are currently mapped. This level of support is
3042 implemented entirely in the core debugger, and the information about
3043 whether a section is mapped is kept in the objfile->obj_section table.
3044
3045 The second level of support is "automatic", and is only available if
3046 the target-specific code provides functionality to read the target's
3047 overlay mapping table, and translate its contents for the debugger
3048 (by updating the mapped state information in the obj_section tables).
3049
3050 The interface is as follows:
c5aa993b
JM
3051 User commands:
3052 overlay map <name> -- tell gdb to consider this section mapped
3053 overlay unmap <name> -- tell gdb to consider this section unmapped
3054 overlay list -- list the sections that GDB thinks are mapped
3055 overlay read-target -- get the target's state of what's mapped
3056 overlay off/manual/auto -- set overlay debugging state
3057 Functional interface:
3058 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3059 section, return that section.
5417f6dc 3060 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 3061 the pc, either in its VMA or its LMA
714835d5 3062 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
3063 section_is_overlay(sect): true if section's VMA != LMA
3064 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3065 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3066 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3067 overlay_mapped_address(...): map an address from section's LMA to VMA
3068 overlay_unmapped_address(...): map an address from section's VMA to LMA
3069 symbol_overlayed_address(...): Return a "current" address for symbol:
3070 either in VMA or LMA depending on whether
c378eb4e 3071 the symbol's section is currently mapped. */
c906108c
SS
3072
3073/* Overlay debugging state: */
3074
d874f1e2 3075enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 3076int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 3077
c906108c 3078/* Function: section_is_overlay (SECTION)
5417f6dc 3079 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3080 SECTION is loaded at an address different from where it will "run". */
3081
3082int
714835d5 3083section_is_overlay (struct obj_section *section)
c906108c 3084{
714835d5
UW
3085 if (overlay_debugging && section)
3086 {
3087 bfd *abfd = section->objfile->obfd;
3088 asection *bfd_section = section->the_bfd_section;
f888f159 3089
714835d5
UW
3090 if (bfd_section_lma (abfd, bfd_section) != 0
3091 && bfd_section_lma (abfd, bfd_section)
3092 != bfd_section_vma (abfd, bfd_section))
3093 return 1;
3094 }
c906108c
SS
3095
3096 return 0;
3097}
3098
3099/* Function: overlay_invalidate_all (void)
3100 Invalidate the mapped state of all overlay sections (mark it as stale). */
3101
3102static void
fba45db2 3103overlay_invalidate_all (void)
c906108c 3104{
c5aa993b 3105 struct objfile *objfile;
c906108c
SS
3106 struct obj_section *sect;
3107
3108 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
3109 if (section_is_overlay (sect))
3110 sect->ovly_mapped = -1;
c906108c
SS
3111}
3112
714835d5 3113/* Function: section_is_mapped (SECTION)
5417f6dc 3114 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3115
3116 Access to the ovly_mapped flag is restricted to this function, so
3117 that we can do automatic update. If the global flag
3118 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3119 overlay_invalidate_all. If the mapped state of the particular
3120 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3121
714835d5
UW
3122int
3123section_is_mapped (struct obj_section *osect)
c906108c 3124{
9216df95
UW
3125 struct gdbarch *gdbarch;
3126
714835d5 3127 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3128 return 0;
3129
c5aa993b 3130 switch (overlay_debugging)
c906108c
SS
3131 {
3132 default:
d874f1e2 3133 case ovly_off:
c5aa993b 3134 return 0; /* overlay debugging off */
d874f1e2 3135 case ovly_auto: /* overlay debugging automatic */
1c772458 3136 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3137 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3138 gdbarch = get_objfile_arch (osect->objfile);
3139 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3140 {
3141 if (overlay_cache_invalid)
3142 {
3143 overlay_invalidate_all ();
3144 overlay_cache_invalid = 0;
3145 }
3146 if (osect->ovly_mapped == -1)
9216df95 3147 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3148 }
3149 /* fall thru to manual case */
d874f1e2 3150 case ovly_on: /* overlay debugging manual */
c906108c
SS
3151 return osect->ovly_mapped == 1;
3152 }
3153}
3154
c906108c
SS
3155/* Function: pc_in_unmapped_range
3156 If PC falls into the lma range of SECTION, return true, else false. */
3157
3158CORE_ADDR
714835d5 3159pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3160{
714835d5
UW
3161 if (section_is_overlay (section))
3162 {
3163 bfd *abfd = section->objfile->obfd;
3164 asection *bfd_section = section->the_bfd_section;
fbd35540 3165
714835d5
UW
3166 /* We assume the LMA is relocated by the same offset as the VMA. */
3167 bfd_vma size = bfd_get_section_size (bfd_section);
3168 CORE_ADDR offset = obj_section_offset (section);
3169
3170 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3171 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3172 return 1;
3173 }
c906108c 3174
c906108c
SS
3175 return 0;
3176}
3177
3178/* Function: pc_in_mapped_range
3179 If PC falls into the vma range of SECTION, return true, else false. */
3180
3181CORE_ADDR
714835d5 3182pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3183{
714835d5
UW
3184 if (section_is_overlay (section))
3185 {
3186 if (obj_section_addr (section) <= pc
3187 && pc < obj_section_endaddr (section))
3188 return 1;
3189 }
c906108c 3190
c906108c
SS
3191 return 0;
3192}
3193
9ec8e6a0
JB
3194/* Return true if the mapped ranges of sections A and B overlap, false
3195 otherwise. */
3b7bacac 3196
b9362cc7 3197static int
714835d5 3198sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3199{
714835d5
UW
3200 CORE_ADDR a_start = obj_section_addr (a);
3201 CORE_ADDR a_end = obj_section_endaddr (a);
3202 CORE_ADDR b_start = obj_section_addr (b);
3203 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3204
3205 return (a_start < b_end && b_start < a_end);
3206}
3207
c906108c
SS
3208/* Function: overlay_unmapped_address (PC, SECTION)
3209 Returns the address corresponding to PC in the unmapped (load) range.
3210 May be the same as PC. */
3211
3212CORE_ADDR
714835d5 3213overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3214{
714835d5
UW
3215 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3216 {
3217 bfd *abfd = section->objfile->obfd;
3218 asection *bfd_section = section->the_bfd_section;
fbd35540 3219
714835d5
UW
3220 return pc + bfd_section_lma (abfd, bfd_section)
3221 - bfd_section_vma (abfd, bfd_section);
3222 }
c906108c
SS
3223
3224 return pc;
3225}
3226
3227/* Function: overlay_mapped_address (PC, SECTION)
3228 Returns the address corresponding to PC in the mapped (runtime) range.
3229 May be the same as PC. */
3230
3231CORE_ADDR
714835d5 3232overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3233{
714835d5
UW
3234 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3235 {
3236 bfd *abfd = section->objfile->obfd;
3237 asection *bfd_section = section->the_bfd_section;
fbd35540 3238
714835d5
UW
3239 return pc + bfd_section_vma (abfd, bfd_section)
3240 - bfd_section_lma (abfd, bfd_section);
3241 }
c906108c
SS
3242
3243 return pc;
3244}
3245
5417f6dc 3246/* Function: symbol_overlayed_address
c906108c
SS
3247 Return one of two addresses (relative to the VMA or to the LMA),
3248 depending on whether the section is mapped or not. */
3249
c5aa993b 3250CORE_ADDR
714835d5 3251symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3252{
3253 if (overlay_debugging)
3254 {
c378eb4e 3255 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3256 if (section == 0)
3257 return address;
c378eb4e
MS
3258 /* If the symbol's section is not an overlay, just return its
3259 address. */
c906108c
SS
3260 if (!section_is_overlay (section))
3261 return address;
c378eb4e 3262 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3263 if (section_is_mapped (section))
3264 return address;
3265 /*
3266 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3267 * then return its LOADED address rather than its vma address!!
3268 */
3269 return overlay_unmapped_address (address, section);
3270 }
3271 return address;
3272}
3273
5417f6dc 3274/* Function: find_pc_overlay (PC)
c906108c
SS
3275 Return the best-match overlay section for PC:
3276 If PC matches a mapped overlay section's VMA, return that section.
3277 Else if PC matches an unmapped section's VMA, return that section.
3278 Else if PC matches an unmapped section's LMA, return that section. */
3279
714835d5 3280struct obj_section *
fba45db2 3281find_pc_overlay (CORE_ADDR pc)
c906108c 3282{
c5aa993b 3283 struct objfile *objfile;
c906108c
SS
3284 struct obj_section *osect, *best_match = NULL;
3285
3286 if (overlay_debugging)
b631e59b
KT
3287 {
3288 ALL_OBJSECTIONS (objfile, osect)
3289 if (section_is_overlay (osect))
c5aa993b 3290 {
b631e59b
KT
3291 if (pc_in_mapped_range (pc, osect))
3292 {
3293 if (section_is_mapped (osect))
3294 return osect;
3295 else
3296 best_match = osect;
3297 }
3298 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3299 best_match = osect;
3300 }
b631e59b 3301 }
714835d5 3302 return best_match;
c906108c
SS
3303}
3304
3305/* Function: find_pc_mapped_section (PC)
5417f6dc 3306 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3307 currently marked as MAPPED, return that section. Else return NULL. */
3308
714835d5 3309struct obj_section *
fba45db2 3310find_pc_mapped_section (CORE_ADDR pc)
c906108c 3311{
c5aa993b 3312 struct objfile *objfile;
c906108c
SS
3313 struct obj_section *osect;
3314
3315 if (overlay_debugging)
b631e59b
KT
3316 {
3317 ALL_OBJSECTIONS (objfile, osect)
3318 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3319 return osect;
3320 }
c906108c
SS
3321
3322 return NULL;
3323}
3324
3325/* Function: list_overlays_command
c378eb4e 3326 Print a list of mapped sections and their PC ranges. */
c906108c 3327
5d3055ad 3328static void
fba45db2 3329list_overlays_command (char *args, int from_tty)
c906108c 3330{
c5aa993b
JM
3331 int nmapped = 0;
3332 struct objfile *objfile;
c906108c
SS
3333 struct obj_section *osect;
3334
3335 if (overlay_debugging)
b631e59b
KT
3336 {
3337 ALL_OBJSECTIONS (objfile, osect)
714835d5 3338 if (section_is_mapped (osect))
b631e59b
KT
3339 {
3340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3341 const char *name;
3342 bfd_vma lma, vma;
3343 int size;
3344
3345 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3346 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3347 size = bfd_get_section_size (osect->the_bfd_section);
3348 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3349
3350 printf_filtered ("Section %s, loaded at ", name);
3351 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3352 puts_filtered (" - ");
3353 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3354 printf_filtered (", mapped at ");
3355 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3356 puts_filtered (" - ");
3357 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3358 puts_filtered ("\n");
3359
3360 nmapped++;
3361 }
3362 }
c906108c 3363 if (nmapped == 0)
a3f17187 3364 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3365}
3366
3367/* Function: map_overlay_command
3368 Mark the named section as mapped (ie. residing at its VMA address). */
3369
5d3055ad 3370static void
fba45db2 3371map_overlay_command (char *args, int from_tty)
c906108c 3372{
c5aa993b
JM
3373 struct objfile *objfile, *objfile2;
3374 struct obj_section *sec, *sec2;
c906108c
SS
3375
3376 if (!overlay_debugging)
3e43a32a
MS
3377 error (_("Overlay debugging not enabled. Use "
3378 "either the 'overlay auto' or\n"
3379 "the 'overlay manual' command."));
c906108c
SS
3380
3381 if (args == 0 || *args == 0)
8a3fe4f8 3382 error (_("Argument required: name of an overlay section"));
c906108c 3383
c378eb4e 3384 /* First, find a section matching the user supplied argument. */
c906108c
SS
3385 ALL_OBJSECTIONS (objfile, sec)
3386 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3387 {
c378eb4e 3388 /* Now, check to see if the section is an overlay. */
714835d5 3389 if (!section_is_overlay (sec))
c5aa993b
JM
3390 continue; /* not an overlay section */
3391
c378eb4e 3392 /* Mark the overlay as "mapped". */
c5aa993b
JM
3393 sec->ovly_mapped = 1;
3394
3395 /* Next, make a pass and unmap any sections that are
3396 overlapped by this new section: */
3397 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3398 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3399 {
3400 if (info_verbose)
a3f17187 3401 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3402 bfd_section_name (objfile->obfd,
3403 sec2->the_bfd_section));
c378eb4e 3404 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3405 }
3406 return;
3407 }
8a3fe4f8 3408 error (_("No overlay section called %s"), args);
c906108c
SS
3409}
3410
3411/* Function: unmap_overlay_command
5417f6dc 3412 Mark the overlay section as unmapped
c906108c
SS
3413 (ie. resident in its LMA address range, rather than the VMA range). */
3414
5d3055ad 3415static void
fba45db2 3416unmap_overlay_command (char *args, int from_tty)
c906108c 3417{
c5aa993b 3418 struct objfile *objfile;
7a270e0c 3419 struct obj_section *sec = NULL;
c906108c
SS
3420
3421 if (!overlay_debugging)
3e43a32a
MS
3422 error (_("Overlay debugging not enabled. "
3423 "Use either the 'overlay auto' or\n"
3424 "the 'overlay manual' command."));
c906108c
SS
3425
3426 if (args == 0 || *args == 0)
8a3fe4f8 3427 error (_("Argument required: name of an overlay section"));
c906108c 3428
c378eb4e 3429 /* First, find a section matching the user supplied argument. */
c906108c
SS
3430 ALL_OBJSECTIONS (objfile, sec)
3431 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3432 {
3433 if (!sec->ovly_mapped)
8a3fe4f8 3434 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3435 sec->ovly_mapped = 0;
3436 return;
3437 }
8a3fe4f8 3438 error (_("No overlay section called %s"), args);
c906108c
SS
3439}
3440
3441/* Function: overlay_auto_command
3442 A utility command to turn on overlay debugging.
c378eb4e 3443 Possibly this should be done via a set/show command. */
c906108c
SS
3444
3445static void
fba45db2 3446overlay_auto_command (char *args, int from_tty)
c906108c 3447{
d874f1e2 3448 overlay_debugging = ovly_auto;
1900040c 3449 enable_overlay_breakpoints ();
c906108c 3450 if (info_verbose)
a3f17187 3451 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3452}
3453
3454/* Function: overlay_manual_command
3455 A utility command to turn on overlay debugging.
c378eb4e 3456 Possibly this should be done via a set/show command. */
c906108c
SS
3457
3458static void
fba45db2 3459overlay_manual_command (char *args, int from_tty)
c906108c 3460{
d874f1e2 3461 overlay_debugging = ovly_on;
1900040c 3462 disable_overlay_breakpoints ();
c906108c 3463 if (info_verbose)
a3f17187 3464 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3465}
3466
3467/* Function: overlay_off_command
3468 A utility command to turn on overlay debugging.
c378eb4e 3469 Possibly this should be done via a set/show command. */
c906108c
SS
3470
3471static void
fba45db2 3472overlay_off_command (char *args, int from_tty)
c906108c 3473{
d874f1e2 3474 overlay_debugging = ovly_off;
1900040c 3475 disable_overlay_breakpoints ();
c906108c 3476 if (info_verbose)
a3f17187 3477 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3478}
3479
3480static void
fba45db2 3481overlay_load_command (char *args, int from_tty)
c906108c 3482{
e17c207e
UW
3483 struct gdbarch *gdbarch = get_current_arch ();
3484
3485 if (gdbarch_overlay_update_p (gdbarch))
3486 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3487 else
8a3fe4f8 3488 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3489}
3490
3491/* Function: overlay_command
c378eb4e 3492 A place-holder for a mis-typed command. */
c906108c 3493
c378eb4e 3494/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3495static struct cmd_list_element *overlaylist;
c906108c
SS
3496
3497static void
fba45db2 3498overlay_command (char *args, int from_tty)
c906108c 3499{
c5aa993b 3500 printf_unfiltered
c906108c 3501 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3502 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3503}
3504
c906108c
SS
3505/* Target Overlays for the "Simplest" overlay manager:
3506
5417f6dc
RM
3507 This is GDB's default target overlay layer. It works with the
3508 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3509 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3510 so targets that use a different runtime overlay manager can
c906108c
SS
3511 substitute their own overlay_update function and take over the
3512 function pointer.
3513
3514 The overlay_update function pokes around in the target's data structures
3515 to see what overlays are mapped, and updates GDB's overlay mapping with
3516 this information.
3517
3518 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3519 unsigned _novlys; /# number of overlay sections #/
3520 unsigned _ovly_table[_novlys][4] = {
438e1e42 3521 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3522 {..., ..., ..., ...},
3523 }
3524 unsigned _novly_regions; /# number of overlay regions #/
3525 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3526 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3527 {..., ..., ...},
3528 }
c906108c
SS
3529 These functions will attempt to update GDB's mappedness state in the
3530 symbol section table, based on the target's mappedness state.
3531
3532 To do this, we keep a cached copy of the target's _ovly_table, and
3533 attempt to detect when the cached copy is invalidated. The main
3534 entry point is "simple_overlay_update(SECT), which looks up SECT in
3535 the cached table and re-reads only the entry for that section from
c378eb4e 3536 the target (whenever possible). */
c906108c
SS
3537
3538/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3539static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3540static unsigned cache_novlys = 0;
c906108c 3541static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3542enum ovly_index
3543 {
438e1e42 3544 VMA, OSIZE, LMA, MAPPED
c5aa993b 3545 };
c906108c 3546
c378eb4e 3547/* Throw away the cached copy of _ovly_table. */
3b7bacac 3548
c906108c 3549static void
fba45db2 3550simple_free_overlay_table (void)
c906108c
SS
3551{
3552 if (cache_ovly_table)
b8c9b27d 3553 xfree (cache_ovly_table);
c5aa993b 3554 cache_novlys = 0;
c906108c
SS
3555 cache_ovly_table = NULL;
3556 cache_ovly_table_base = 0;
3557}
3558
9216df95 3559/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3560 Convert to host order. int LEN is number of ints. */
3b7bacac 3561
c906108c 3562static void
9216df95 3563read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3564 int len, int size, enum bfd_endian byte_order)
c906108c 3565{
c378eb4e 3566 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3567 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3568 int i;
c906108c 3569
9216df95 3570 read_memory (memaddr, buf, len * size);
c906108c 3571 for (i = 0; i < len; i++)
e17a4113 3572 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3573}
3574
3575/* Find and grab a copy of the target _ovly_table
c378eb4e 3576 (and _novlys, which is needed for the table's size). */
3b7bacac 3577
c5aa993b 3578static int
fba45db2 3579simple_read_overlay_table (void)
c906108c 3580{
3b7344d5 3581 struct bound_minimal_symbol novlys_msym;
7c7b6655 3582 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3583 struct gdbarch *gdbarch;
3584 int word_size;
e17a4113 3585 enum bfd_endian byte_order;
c906108c
SS
3586
3587 simple_free_overlay_table ();
9b27852e 3588 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3589 if (! novlys_msym.minsym)
c906108c 3590 {
8a3fe4f8 3591 error (_("Error reading inferior's overlay table: "
0d43edd1 3592 "couldn't find `_novlys' variable\n"
8a3fe4f8 3593 "in inferior. Use `overlay manual' mode."));
0d43edd1 3594 return 0;
c906108c 3595 }
0d43edd1 3596
7c7b6655
TT
3597 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3598 if (! ovly_table_msym.minsym)
0d43edd1 3599 {
8a3fe4f8 3600 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3601 "`_ovly_table' array\n"
8a3fe4f8 3602 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3603 return 0;
3604 }
3605
7c7b6655 3606 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3607 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3608 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3609
77e371c0
TT
3610 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3611 4, byte_order);
0d43edd1 3612 cache_ovly_table
224c3ddb 3613 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3614 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3615 read_target_long_array (cache_ovly_table_base,
777ea8f1 3616 (unsigned int *) cache_ovly_table,
e17a4113 3617 cache_novlys * 4, word_size, byte_order);
0d43edd1 3618
c5aa993b 3619 return 1; /* SUCCESS */
c906108c
SS
3620}
3621
5417f6dc 3622/* Function: simple_overlay_update_1
c906108c
SS
3623 A helper function for simple_overlay_update. Assuming a cached copy
3624 of _ovly_table exists, look through it to find an entry whose vma,
3625 lma and size match those of OSECT. Re-read the entry and make sure
3626 it still matches OSECT (else the table may no longer be valid).
3627 Set OSECT's mapped state to match the entry. Return: 1 for
3628 success, 0 for failure. */
3629
3630static int
fba45db2 3631simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3632{
3633 int i, size;
fbd35540
MS
3634 bfd *obfd = osect->objfile->obfd;
3635 asection *bsect = osect->the_bfd_section;
9216df95
UW
3636 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3637 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3638 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3639
2c500098 3640 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3641 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3642 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3643 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3644 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c 3645 {
9216df95
UW
3646 read_target_long_array (cache_ovly_table_base + i * word_size,
3647 (unsigned int *) cache_ovly_table[i],
e17a4113 3648 4, word_size, byte_order);
fbd35540
MS
3649 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3650 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3651 /* && cache_ovly_table[i][OSIZE] == size */ )
c906108c
SS
3652 {
3653 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3654 return 1;
3655 }
c378eb4e 3656 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3657 return 0;
3658 }
3659 return 0;
3660}
3661
3662/* Function: simple_overlay_update
5417f6dc
RM
3663 If OSECT is NULL, then update all sections' mapped state
3664 (after re-reading the entire target _ovly_table).
3665 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3666 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3667 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3668 re-read the entire cache, and go ahead and update all sections. */
3669
1c772458 3670void
fba45db2 3671simple_overlay_update (struct obj_section *osect)
c906108c 3672{
c5aa993b 3673 struct objfile *objfile;
c906108c 3674
c378eb4e 3675 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3676 if (osect)
c378eb4e 3677 /* Have we got a cached copy of the target's overlay table? */
c906108c 3678 if (cache_ovly_table != NULL)
9cc89665
MS
3679 {
3680 /* Does its cached location match what's currently in the
3681 symtab? */
3b7344d5 3682 struct bound_minimal_symbol minsym
9cc89665
MS
3683 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3684
3b7344d5 3685 if (minsym.minsym == NULL)
9cc89665
MS
3686 error (_("Error reading inferior's overlay table: couldn't "
3687 "find `_ovly_table' array\n"
3688 "in inferior. Use `overlay manual' mode."));
3689
77e371c0 3690 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3691 /* Then go ahead and try to look up this single section in
3692 the cache. */
3693 if (simple_overlay_update_1 (osect))
3694 /* Found it! We're done. */
3695 return;
3696 }
c906108c
SS
3697
3698 /* Cached table no good: need to read the entire table anew.
3699 Or else we want all the sections, in which case it's actually
3700 more efficient to read the whole table in one block anyway. */
3701
0d43edd1
JB
3702 if (! simple_read_overlay_table ())
3703 return;
3704
c378eb4e 3705 /* Now may as well update all sections, even if only one was requested. */
c906108c 3706 ALL_OBJSECTIONS (objfile, osect)
714835d5 3707 if (section_is_overlay (osect))
c5aa993b
JM
3708 {
3709 int i, size;
fbd35540
MS
3710 bfd *obfd = osect->objfile->obfd;
3711 asection *bsect = osect->the_bfd_section;
c5aa993b 3712
2c500098 3713 size = bfd_get_section_size (bsect);
c5aa993b 3714 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3715 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3716 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
438e1e42 3717 /* && cache_ovly_table[i][OSIZE] == size */ )
c378eb4e 3718 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3719 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3720 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3721 }
3722 }
c906108c
SS
3723}
3724
086df311
DJ
3725/* Set the output sections and output offsets for section SECTP in
3726 ABFD. The relocation code in BFD will read these offsets, so we
3727 need to be sure they're initialized. We map each section to itself,
3728 with no offset; this means that SECTP->vma will be honored. */
3729
3730static void
3731symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3732{
3733 sectp->output_section = sectp;
3734 sectp->output_offset = 0;
3735}
3736
ac8035ab
TG
3737/* Default implementation for sym_relocate. */
3738
ac8035ab
TG
3739bfd_byte *
3740default_symfile_relocate (struct objfile *objfile, asection *sectp,
3741 bfd_byte *buf)
3742{
3019eac3
DE
3743 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3744 DWO file. */
3745 bfd *abfd = sectp->owner;
ac8035ab
TG
3746
3747 /* We're only interested in sections with relocation
3748 information. */
3749 if ((sectp->flags & SEC_RELOC) == 0)
3750 return NULL;
3751
3752 /* We will handle section offsets properly elsewhere, so relocate as if
3753 all sections begin at 0. */
3754 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3755
3756 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3757}
3758
086df311
DJ
3759/* Relocate the contents of a debug section SECTP in ABFD. The
3760 contents are stored in BUF if it is non-NULL, or returned in a
3761 malloc'd buffer otherwise.
3762
3763 For some platforms and debug info formats, shared libraries contain
3764 relocations against the debug sections (particularly for DWARF-2;
3765 one affected platform is PowerPC GNU/Linux, although it depends on
3766 the version of the linker in use). Also, ELF object files naturally
3767 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3768 the relocations in order to get the locations of symbols correct.
3769 Another example that may require relocation processing, is the
3770 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3771 debug section. */
086df311
DJ
3772
3773bfd_byte *
ac8035ab
TG
3774symfile_relocate_debug_section (struct objfile *objfile,
3775 asection *sectp, bfd_byte *buf)
086df311 3776{
ac8035ab 3777 gdb_assert (objfile->sf->sym_relocate);
086df311 3778
ac8035ab 3779 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3780}
c906108c 3781
31d99776
DJ
3782struct symfile_segment_data *
3783get_symfile_segment_data (bfd *abfd)
3784{
00b5771c 3785 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3786
3787 if (sf == NULL)
3788 return NULL;
3789
3790 return sf->sym_segments (abfd);
3791}
3792
3793void
3794free_symfile_segment_data (struct symfile_segment_data *data)
3795{
3796 xfree (data->segment_bases);
3797 xfree (data->segment_sizes);
3798 xfree (data->segment_info);
3799 xfree (data);
3800}
3801
28c32713
JB
3802/* Given:
3803 - DATA, containing segment addresses from the object file ABFD, and
3804 the mapping from ABFD's sections onto the segments that own them,
3805 and
3806 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3807 segment addresses reported by the target,
3808 store the appropriate offsets for each section in OFFSETS.
3809
3810 If there are fewer entries in SEGMENT_BASES than there are segments
3811 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3812
8d385431
DJ
3813 If there are more entries, then ignore the extra. The target may
3814 not be able to distinguish between an empty data segment and a
3815 missing data segment; a missing text segment is less plausible. */
3b7bacac 3816
31d99776 3817int
3189cb12
DE
3818symfile_map_offsets_to_segments (bfd *abfd,
3819 const struct symfile_segment_data *data,
31d99776
DJ
3820 struct section_offsets *offsets,
3821 int num_segment_bases,
3822 const CORE_ADDR *segment_bases)
3823{
3824 int i;
3825 asection *sect;
3826
28c32713
JB
3827 /* It doesn't make sense to call this function unless you have some
3828 segment base addresses. */
202b96c1 3829 gdb_assert (num_segment_bases > 0);
28c32713 3830
31d99776
DJ
3831 /* If we do not have segment mappings for the object file, we
3832 can not relocate it by segments. */
3833 gdb_assert (data != NULL);
3834 gdb_assert (data->num_segments > 0);
3835
31d99776
DJ
3836 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3837 {
31d99776
DJ
3838 int which = data->segment_info[i];
3839
28c32713
JB
3840 gdb_assert (0 <= which && which <= data->num_segments);
3841
3842 /* Don't bother computing offsets for sections that aren't
3843 loaded as part of any segment. */
3844 if (! which)
3845 continue;
3846
3847 /* Use the last SEGMENT_BASES entry as the address of any extra
3848 segments mentioned in DATA->segment_info. */
31d99776 3849 if (which > num_segment_bases)
28c32713 3850 which = num_segment_bases;
31d99776 3851
28c32713
JB
3852 offsets->offsets[i] = (segment_bases[which - 1]
3853 - data->segment_bases[which - 1]);
31d99776
DJ
3854 }
3855
3856 return 1;
3857}
3858
3859static void
3860symfile_find_segment_sections (struct objfile *objfile)
3861{
3862 bfd *abfd = objfile->obfd;
3863 int i;
3864 asection *sect;
3865 struct symfile_segment_data *data;
3866
3867 data = get_symfile_segment_data (objfile->obfd);
3868 if (data == NULL)
3869 return;
3870
3871 if (data->num_segments != 1 && data->num_segments != 2)
3872 {
3873 free_symfile_segment_data (data);
3874 return;
3875 }
3876
3877 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3878 {
31d99776
DJ
3879 int which = data->segment_info[i];
3880
3881 if (which == 1)
3882 {
3883 if (objfile->sect_index_text == -1)
3884 objfile->sect_index_text = sect->index;
3885
3886 if (objfile->sect_index_rodata == -1)
3887 objfile->sect_index_rodata = sect->index;
3888 }
3889 else if (which == 2)
3890 {
3891 if (objfile->sect_index_data == -1)
3892 objfile->sect_index_data = sect->index;
3893
3894 if (objfile->sect_index_bss == -1)
3895 objfile->sect_index_bss = sect->index;
3896 }
3897 }
3898
3899 free_symfile_segment_data (data);
3900}
3901
76ad5e1e
NB
3902/* Listen for free_objfile events. */
3903
3904static void
3905symfile_free_objfile (struct objfile *objfile)
3906{
c33b2f12
MM
3907 /* Remove the target sections owned by this objfile. */
3908 if (objfile != NULL)
76ad5e1e
NB
3909 remove_target_sections ((void *) objfile);
3910}
3911
540c2971
DE
3912/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3913 Expand all symtabs that match the specified criteria.
3914 See quick_symbol_functions.expand_symtabs_matching for details. */
3915
3916void
bb4142cf
DE
3917expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3918 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3919 expand_symtabs_exp_notify_ftype *expansion_notify,
bb4142cf
DE
3920 enum search_domain kind,
3921 void *data)
540c2971
DE
3922{
3923 struct objfile *objfile;
3924
3925 ALL_OBJFILES (objfile)
3926 {
3927 if (objfile->sf)
bb4142cf 3928 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
276d885b
GB
3929 symbol_matcher,
3930 expansion_notify, kind,
bb4142cf 3931 data);
540c2971
DE
3932 }
3933}
3934
3935/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3936 Map function FUN over every file.
3937 See quick_symbol_functions.map_symbol_filenames for details. */
3938
3939void
bb4142cf
DE
3940map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3941 int need_fullname)
540c2971
DE
3942{
3943 struct objfile *objfile;
3944
3945 ALL_OBJFILES (objfile)
3946 {
3947 if (objfile->sf)
3948 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3949 need_fullname);
3950 }
3951}
3952
c906108c 3953void
fba45db2 3954_initialize_symfile (void)
c906108c
SS
3955{
3956 struct cmd_list_element *c;
c5aa993b 3957
76ad5e1e
NB
3958 observer_attach_free_objfile (symfile_free_objfile);
3959
1a966eab
AC
3960 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3961Load symbol table from executable file FILE.\n\
c906108c 3962The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3963to execute."), &cmdlist);
5ba2abeb 3964 set_cmd_completer (c, filename_completer);
c906108c 3965
1a966eab 3966 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3967Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3e43a32a
MS
3968Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3969 ...]\nADDR is the starting address of the file's text.\n\
db162d44
EZ
3970The optional arguments are section-name section-address pairs and\n\
3971should be specified if the data and bss segments are not contiguous\n\
1a966eab 3972with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3973 &cmdlist);
5ba2abeb 3974 set_cmd_completer (c, filename_completer);
c906108c 3975
63644780
NB
3976 c = add_cmd ("remove-symbol-file", class_files,
3977 remove_symbol_file_command, _("\
3978Remove a symbol file added via the add-symbol-file command.\n\
3979Usage: remove-symbol-file FILENAME\n\
3980 remove-symbol-file -a ADDRESS\n\
3981The file to remove can be identified by its filename or by an address\n\
3982that lies within the boundaries of this symbol file in memory."),
3983 &cmdlist);
3984
1a966eab
AC
3985 c = add_cmd ("load", class_files, load_command, _("\
3986Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3987for access from GDB.\n\
3988A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3989 set_cmd_completer (c, filename_completer);
c906108c 3990
c5aa993b 3991 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3992 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3993 "overlay ", 0, &cmdlist);
3994
3995 add_com_alias ("ovly", "overlay", class_alias, 1);
3996 add_com_alias ("ov", "overlay", class_alias, 1);
3997
c5aa993b 3998 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3999 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4000
c5aa993b 4001 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4002 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4003
c5aa993b 4004 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4005 _("List mappings of overlay sections."), &overlaylist);
c906108c 4006
c5aa993b 4007 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4008 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4009 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4010 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4011 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4012 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4013 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4014 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4015
4016 /* Filename extension to source language lookup table: */
4017 init_filename_language_table ();
26c41df3
AC
4018 add_setshow_string_noescape_cmd ("extension-language", class_files,
4019 &ext_args, _("\
4020Set mapping between filename extension and source language."), _("\
4021Show mapping between filename extension and source language."), _("\
4022Usage: set extension-language .foo bar"),
4023 set_ext_lang_command,
920d2a44 4024 show_ext_args,
26c41df3 4025 &setlist, &showlist);
c906108c 4026
c5aa993b 4027 add_info ("extensions", info_ext_lang_command,
1bedd215 4028 _("All filename extensions associated with a source language."));
917317f4 4029
525226b5
AC
4030 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4031 &debug_file_directory, _("\
24ddea62
JK
4032Set the directories where separate debug symbols are searched for."), _("\
4033Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
4034Separate debug symbols are first searched for in the same\n\
4035directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4036and lastly at the path of the directory of the binary with\n\
24ddea62 4037each global debug-file-directory component prepended."),
525226b5 4038 NULL,
920d2a44 4039 show_debug_file_directory,
525226b5 4040 &setlist, &showlist);
770e7fc7
DE
4041
4042 add_setshow_enum_cmd ("symbol-loading", no_class,
4043 print_symbol_loading_enums, &print_symbol_loading,
4044 _("\
4045Set printing of symbol loading messages."), _("\
4046Show printing of symbol loading messages."), _("\
4047off == turn all messages off\n\
4048brief == print messages for the executable,\n\
4049 and brief messages for shared libraries\n\
4050full == print messages for the executable,\n\
4051 and messages for each shared library."),
4052 NULL,
4053 NULL,
4054 &setprintlist, &showprintlist);
c906108c 4055}
This page took 1.97082 seconds and 4 git commands to generate.