2002-01-07 Michael Snyder <msnyder@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
b6ba6518
KB
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "target.h"
29#include "value.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdbcmd.h"
33#include "breakpoint.h"
34#include "language.h"
35#include "complaints.h"
36#include "demangle.h"
c5aa993b 37#include "inferior.h" /* for write_pc */
c906108c
SS
38#include "gdb-stabs.h"
39#include "obstack.h"
d75b5104 40#include "completer.h"
c906108c 41
c906108c
SS
42#include <sys/types.h>
43#include <fcntl.h>
44#include "gdb_string.h"
45#include "gdb_stat.h"
46#include <ctype.h>
47#include <time.h>
c906108c
SS
48
49#ifndef O_BINARY
50#define O_BINARY 0
51#endif
52
53#ifdef HPUXHPPA
54
55/* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58extern int hp_som_som_object_present;
59extern int hp_cxx_exception_support_initialized;
60#define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64#endif
65
917317f4 66int (*ui_load_progress_hook) (const char *section, unsigned long num);
c2d11a7d
JM
67void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
507f3c78
KB
72void (*pre_add_symbol_hook) (char *);
73void (*post_add_symbol_hook) (void);
74void (*target_new_objfile_hook) (struct objfile *);
c906108c 75
74b7792f
AC
76static void clear_symtab_users_cleanup (void *ignore);
77
c906108c 78/* Global variables owned by this file */
c5aa993b 79int readnow_symbol_files; /* Read full symbols immediately */
c906108c 80
c5aa993b
JM
81struct complaint oldsyms_complaint =
82{
c906108c
SS
83 "Replacing old symbols for `%s'", 0, 0
84};
85
c5aa993b
JM
86struct complaint empty_symtab_complaint =
87{
c906108c
SS
88 "Empty symbol table found for `%s'", 0, 0
89};
90
2acceee2
JM
91struct complaint unknown_option_complaint =
92{
93 "Unknown option `%s' ignored", 0, 0
94};
95
c906108c
SS
96/* External variables and functions referenced. */
97
a14ed312 98extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
99
100/* Functions this file defines */
101
102#if 0
a14ed312
KB
103static int simple_read_overlay_region_table (void);
104static void simple_free_overlay_region_table (void);
c906108c
SS
105#endif
106
a14ed312 107static void set_initial_language (void);
c906108c 108
a14ed312 109static void load_command (char *, int);
c906108c 110
d7db6da9
FN
111static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
112
a14ed312 113static void add_symbol_file_command (char *, int);
c906108c 114
a14ed312 115static void add_shared_symbol_files_command (char *, int);
c906108c 116
a14ed312 117static void cashier_psymtab (struct partial_symtab *);
c906108c 118
a14ed312 119bfd *symfile_bfd_open (char *);
c906108c 120
a14ed312 121static void find_sym_fns (struct objfile *);
c906108c 122
a14ed312 123static void decrement_reading_symtab (void *);
c906108c 124
a14ed312 125static void overlay_invalidate_all (void);
c906108c 126
a14ed312 127static int overlay_is_mapped (struct obj_section *);
c906108c 128
a14ed312 129void list_overlays_command (char *, int);
c906108c 130
a14ed312 131void map_overlay_command (char *, int);
c906108c 132
a14ed312 133void unmap_overlay_command (char *, int);
c906108c 134
a14ed312 135static void overlay_auto_command (char *, int);
c906108c 136
a14ed312 137static void overlay_manual_command (char *, int);
c906108c 138
a14ed312 139static void overlay_off_command (char *, int);
c906108c 140
a14ed312 141static void overlay_load_command (char *, int);
c906108c 142
a14ed312 143static void overlay_command (char *, int);
c906108c 144
a14ed312 145static void simple_free_overlay_table (void);
c906108c 146
a14ed312 147static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 148
a14ed312 149static int simple_read_overlay_table (void);
c906108c 150
a14ed312 151static int simple_overlay_update_1 (struct obj_section *);
c906108c 152
a14ed312 153static void add_filename_language (char *ext, enum language lang);
392a587b 154
a14ed312 155static void set_ext_lang_command (char *args, int from_tty);
392a587b 156
a14ed312 157static void info_ext_lang_command (char *args, int from_tty);
392a587b 158
a14ed312 159static void init_filename_language_table (void);
392a587b 160
a14ed312 161void _initialize_symfile (void);
c906108c
SS
162
163/* List of all available sym_fns. On gdb startup, each object file reader
164 calls add_symtab_fns() to register information on each format it is
165 prepared to read. */
166
167static struct sym_fns *symtab_fns = NULL;
168
169/* Flag for whether user will be reloading symbols multiple times.
170 Defaults to ON for VxWorks, otherwise OFF. */
171
172#ifdef SYMBOL_RELOADING_DEFAULT
173int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
174#else
175int symbol_reloading = 0;
176#endif
177
b7209cb4
FF
178/* If non-zero, shared library symbols will be added automatically
179 when the inferior is created, new libraries are loaded, or when
180 attaching to the inferior. This is almost always what users will
181 want to have happen; but for very large programs, the startup time
182 will be excessive, and so if this is a problem, the user can clear
183 this flag and then add the shared library symbols as needed. Note
184 that there is a potential for confusion, since if the shared
c906108c 185 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 186 report all the functions that are actually present. */
c906108c
SS
187
188int auto_solib_add = 1;
b7209cb4
FF
189
190/* For systems that support it, a threshold size in megabytes. If
191 automatically adding a new library's symbol table to those already
192 known to the debugger would cause the total shared library symbol
193 size to exceed this threshhold, then the shlib's symbols are not
194 added. The threshold is ignored if the user explicitly asks for a
195 shlib to be added, such as when using the "sharedlibrary"
196 command. */
197
198int auto_solib_limit;
c906108c 199\f
c5aa993b 200
c906108c
SS
201/* Since this function is called from within qsort, in an ANSI environment
202 it must conform to the prototype for qsort, which specifies that the
203 comparison function takes two "void *" pointers. */
204
205static int
0cd64fe2 206compare_symbols (const void *s1p, const void *s2p)
c906108c
SS
207{
208 register struct symbol **s1, **s2;
209
210 s1 = (struct symbol **) s1p;
211 s2 = (struct symbol **) s2p;
494b7ec9 212 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
c906108c
SS
213}
214
215/*
216
c5aa993b 217 LOCAL FUNCTION
c906108c 218
c5aa993b 219 compare_psymbols -- compare two partial symbols by name
c906108c 220
c5aa993b 221 DESCRIPTION
c906108c 222
c5aa993b
JM
223 Given pointers to pointers to two partial symbol table entries,
224 compare them by name and return -N, 0, or +N (ala strcmp).
225 Typically used by sorting routines like qsort().
c906108c 226
c5aa993b 227 NOTES
c906108c 228
c5aa993b
JM
229 Does direct compare of first two characters before punting
230 and passing to strcmp for longer compares. Note that the
231 original version had a bug whereby two null strings or two
232 identically named one character strings would return the
233 comparison of memory following the null byte.
c906108c
SS
234
235 */
236
237static int
0cd64fe2 238compare_psymbols (const void *s1p, const void *s2p)
c906108c 239{
fba7f19c
EZ
240 register struct partial_symbol **s1, **s2;
241 register char *st1, *st2;
242
243 s1 = (struct partial_symbol **) s1p;
244 s2 = (struct partial_symbol **) s2p;
245 st1 = SYMBOL_SOURCE_NAME (*s1);
246 st2 = SYMBOL_SOURCE_NAME (*s2);
247
c906108c
SS
248
249 if ((st1[0] - st2[0]) || !st1[0])
250 {
251 return (st1[0] - st2[0]);
252 }
253 else if ((st1[1] - st2[1]) || !st1[1])
254 {
255 return (st1[1] - st2[1]);
256 }
257 else
258 {
c5aa993b 259 return (strcmp (st1, st2));
c906108c
SS
260 }
261}
262
263void
fba45db2 264sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
265{
266 /* Sort the global list; don't sort the static list */
267
c5aa993b
JM
268 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
269 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
270 compare_psymbols);
271}
272
273/* Call sort_block_syms to sort alphabetically the symbols of one block. */
274
275void
fba45db2 276sort_block_syms (register struct block *b)
c906108c
SS
277{
278 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
279 sizeof (struct symbol *), compare_symbols);
280}
281
282/* Call sort_symtab_syms to sort alphabetically
283 the symbols of each block of one symtab. */
284
285void
fba45db2 286sort_symtab_syms (register struct symtab *s)
c906108c
SS
287{
288 register struct blockvector *bv;
289 int nbl;
290 int i;
291 register struct block *b;
292
293 if (s == 0)
294 return;
295 bv = BLOCKVECTOR (s);
296 nbl = BLOCKVECTOR_NBLOCKS (bv);
297 for (i = 0; i < nbl; i++)
298 {
299 b = BLOCKVECTOR_BLOCK (bv, i);
300 if (BLOCK_SHOULD_SORT (b))
301 sort_block_syms (b);
302 }
303}
304
305/* Make a null terminated copy of the string at PTR with SIZE characters in
306 the obstack pointed to by OBSTACKP . Returns the address of the copy.
307 Note that the string at PTR does not have to be null terminated, I.E. it
308 may be part of a larger string and we are only saving a substring. */
309
310char *
fba45db2 311obsavestring (char *ptr, int size, struct obstack *obstackp)
c906108c
SS
312{
313 register char *p = (char *) obstack_alloc (obstackp, size + 1);
314 /* Open-coded memcpy--saves function call time. These strings are usually
315 short. FIXME: Is this really still true with a compiler that can
316 inline memcpy? */
317 {
318 register char *p1 = ptr;
319 register char *p2 = p;
320 char *end = ptr + size;
321 while (p1 != end)
322 *p2++ = *p1++;
323 }
324 p[size] = 0;
325 return p;
326}
327
328/* Concatenate strings S1, S2 and S3; return the new string. Space is found
329 in the obstack pointed to by OBSTACKP. */
330
331char *
fba45db2
KB
332obconcat (struct obstack *obstackp, const char *s1, const char *s2,
333 const char *s3)
c906108c
SS
334{
335 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
336 register char *val = (char *) obstack_alloc (obstackp, len);
337 strcpy (val, s1);
338 strcat (val, s2);
339 strcat (val, s3);
340 return val;
341}
342
343/* True if we are nested inside psymtab_to_symtab. */
344
345int currently_reading_symtab = 0;
346
347static void
fba45db2 348decrement_reading_symtab (void *dummy)
c906108c
SS
349{
350 currently_reading_symtab--;
351}
352
353/* Get the symbol table that corresponds to a partial_symtab.
354 This is fast after the first time you do it. In fact, there
355 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
356 case inline. */
357
358struct symtab *
fba45db2 359psymtab_to_symtab (register struct partial_symtab *pst)
c906108c
SS
360{
361 /* If it's been looked up before, return it. */
362 if (pst->symtab)
363 return pst->symtab;
364
365 /* If it has not yet been read in, read it. */
366 if (!pst->readin)
c5aa993b 367 {
c906108c
SS
368 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
369 currently_reading_symtab++;
370 (*pst->read_symtab) (pst);
371 do_cleanups (back_to);
372 }
373
374 return pst->symtab;
375}
376
377/* Initialize entry point information for this objfile. */
378
379void
fba45db2 380init_entry_point_info (struct objfile *objfile)
c906108c
SS
381{
382 /* Save startup file's range of PC addresses to help blockframe.c
383 decide where the bottom of the stack is. */
384
c5aa993b 385 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
c906108c
SS
386 {
387 /* Executable file -- record its entry point so we'll recognize
c5aa993b
JM
388 the startup file because it contains the entry point. */
389 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
c906108c
SS
390 }
391 else
392 {
393 /* Examination of non-executable.o files. Short-circuit this stuff. */
c5aa993b 394 objfile->ei.entry_point = INVALID_ENTRY_POINT;
c906108c 395 }
c5aa993b
JM
396 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
397 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
398 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
400 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
c906108c
SS
402}
403
404/* Get current entry point address. */
405
406CORE_ADDR
fba45db2 407entry_point_address (void)
c906108c
SS
408{
409 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
410}
411
412/* Remember the lowest-addressed loadable section we've seen.
413 This function is called via bfd_map_over_sections.
414
415 In case of equal vmas, the section with the largest size becomes the
416 lowest-addressed loadable section.
417
418 If the vmas and sizes are equal, the last section is considered the
419 lowest-addressed loadable section. */
420
421void
fba45db2 422find_lowest_section (bfd *abfd, asection *sect, PTR obj)
c906108c 423{
c5aa993b 424 asection **lowest = (asection **) obj;
c906108c
SS
425
426 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
427 return;
428 if (!*lowest)
429 *lowest = sect; /* First loadable section */
430 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
431 *lowest = sect; /* A lower loadable section */
432 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
433 && (bfd_section_size (abfd, (*lowest))
434 <= bfd_section_size (abfd, sect)))
435 *lowest = sect;
436}
437
62557bbc
KB
438
439/* Build (allocate and populate) a section_addr_info struct from
440 an existing section table. */
441
442extern struct section_addr_info *
443build_section_addr_info_from_section_table (const struct section_table *start,
444 const struct section_table *end)
445{
446 struct section_addr_info *sap;
447 const struct section_table *stp;
448 int oidx;
449
450 sap = xmalloc (sizeof (struct section_addr_info));
451 memset (sap, 0, sizeof (struct section_addr_info));
452
453 for (stp = start, oidx = 0; stp != end; stp++)
454 {
62557bbc
KB
455 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
456 && oidx < MAX_SECTIONS)
457 {
458 sap->other[oidx].addr = stp->addr;
459 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
460 sap->other[oidx].sectindex = stp->the_bfd_section->index;
461 oidx++;
462 }
463 }
464
465 return sap;
466}
467
468
469/* Free all memory allocated by build_section_addr_info_from_section_table. */
470
471extern void
472free_section_addr_info (struct section_addr_info *sap)
473{
474 int idx;
475
476 for (idx = 0; idx < MAX_SECTIONS; idx++)
477 if (sap->other[idx].name)
b8c9b27d
KB
478 xfree (sap->other[idx].name);
479 xfree (sap);
62557bbc
KB
480}
481
482
c906108c
SS
483/* Parse the user's idea of an offset for dynamic linking, into our idea
484 of how to represent it for fast symbol reading. This is the default
485 version of the sym_fns.sym_offsets function for symbol readers that
486 don't need to do anything special. It allocates a section_offsets table
487 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
488
d4f3574e 489void
fba45db2
KB
490default_symfile_offsets (struct objfile *objfile,
491 struct section_addr_info *addrs)
c906108c 492{
c906108c 493 int i;
b8fbeb18 494 asection *sect = NULL;
c906108c
SS
495
496 objfile->num_sections = SECT_OFF_MAX;
d4f3574e 497 objfile->section_offsets = (struct section_offsets *)
c5aa993b 498 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
d4f3574e 499 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
c906108c 500
b8fbeb18
EZ
501 /* Now calculate offsets for section that were specified by the
502 caller. */
2acceee2
JM
503 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
504 {
505 struct other_sections *osp ;
506
507 osp = &addrs->other[i] ;
b8fbeb18 508 if (osp->addr == 0)
2acceee2 509 continue;
b8fbeb18 510
2acceee2 511 /* Record all sections in offsets */
b8fbeb18
EZ
512 /* The section_offsets in the objfile are here filled in using
513 the BFD index. */
a4c8257b 514 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
2acceee2 515 }
c906108c 516
b8fbeb18
EZ
517 /* Remember the bfd indexes for the .text, .data, .bss and
518 .rodata sections. */
519
520 sect = bfd_get_section_by_name (objfile->obfd, ".text");
521 if (sect)
522 objfile->sect_index_text = sect->index;
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".data");
525 if (sect)
526 objfile->sect_index_data = sect->index;
527
528 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
529 if (sect)
530 objfile->sect_index_bss = sect->index;
531
532 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
533 if (sect)
534 objfile->sect_index_rodata = sect->index;
535
536}
c906108c
SS
537
538/* Process a symbol file, as either the main file or as a dynamically
539 loaded file.
540
96baa820
JM
541 OBJFILE is where the symbols are to be read from.
542
543 ADDR is the address where the text segment was loaded, unless the
544 objfile is the main symbol file, in which case it is zero.
545
546 MAINLINE is nonzero if this is the main symbol file, or zero if
547 it's an extra symbol file such as dynamically loaded code.
548
549 VERBO is nonzero if the caller has printed a verbose message about
550 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
551
552void
fba45db2
KB
553syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
554 int mainline, int verbo)
c906108c 555{
2acceee2
JM
556 asection *lower_sect;
557 asection *sect;
558 CORE_ADDR lower_offset;
559 struct section_addr_info local_addr;
c906108c 560 struct cleanup *old_chain;
2acceee2
JM
561 int i;
562
563 /* If ADDRS is NULL, initialize the local section_addr_info struct and
564 point ADDRS to it. We now establish the convention that an addr of
565 zero means no load address was specified. */
566
567 if (addrs == NULL)
568 {
569 memset (&local_addr, 0, sizeof (local_addr));
570 addrs = &local_addr;
571 }
c906108c
SS
572
573 init_entry_point_info (objfile);
574 find_sym_fns (objfile);
575
576 /* Make sure that partially constructed symbol tables will be cleaned up
577 if an error occurs during symbol reading. */
74b7792f 578 old_chain = make_cleanup_free_objfile (objfile);
c906108c 579
c5aa993b 580 if (mainline)
c906108c
SS
581 {
582 /* We will modify the main symbol table, make sure that all its users
c5aa993b 583 will be cleaned up if an error occurs during symbol reading. */
74b7792f 584 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
585
586 /* Since no error yet, throw away the old symbol table. */
587
588 if (symfile_objfile != NULL)
589 {
590 free_objfile (symfile_objfile);
591 symfile_objfile = NULL;
592 }
593
594 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
595 If the user wants to get rid of them, they should do "symbol-file"
596 without arguments first. Not sure this is the best behavior
597 (PR 2207). */
c906108c 598
c5aa993b 599 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
600 }
601
602 /* Convert addr into an offset rather than an absolute address.
603 We find the lowest address of a loaded segment in the objfile,
53a5351d 604 and assume that <addr> is where that got loaded.
c906108c 605
53a5351d
JM
606 We no longer warn if the lowest section is not a text segment (as
607 happens for the PA64 port. */
e7cf9df1 608 if (!mainline)
c906108c 609 {
2acceee2
JM
610 /* Find lowest loadable section to be used as starting point for
611 continguous sections. FIXME!! won't work without call to find
612 .text first, but this assumes text is lowest section. */
613 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
614 if (lower_sect == NULL)
c906108c 615 bfd_map_over_sections (objfile->obfd, find_lowest_section,
2acceee2
JM
616 (PTR) &lower_sect);
617 if (lower_sect == NULL)
c906108c
SS
618 warning ("no loadable sections found in added symbol-file %s",
619 objfile->name);
b8fbeb18
EZ
620 else
621 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
622 warning ("Lowest section in %s is %s at %s",
623 objfile->name,
624 bfd_section_name (objfile->obfd, lower_sect),
625 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
2acceee2
JM
626 if (lower_sect != NULL)
627 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
628 else
629 lower_offset = 0;
630
631 /* Calculate offsets for the loadable sections.
632 FIXME! Sections must be in order of increasing loadable section
633 so that contiguous sections can use the lower-offset!!!
634
635 Adjust offsets if the segments are not contiguous.
636 If the section is contiguous, its offset should be set to
637 the offset of the highest loadable section lower than it
638 (the loadable section directly below it in memory).
639 this_offset = lower_offset = lower_addr - lower_orig_addr */
640
e7cf9df1 641 /* Calculate offsets for sections. */
2acceee2
JM
642 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
643 {
e7cf9df1 644 if (addrs->other[i].addr != 0)
2acceee2 645 {
e7cf9df1 646 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
2acceee2
JM
647 if (sect)
648 {
649 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
650 lower_offset = addrs->other[i].addr;
e7cf9df1 651 /* This is the index used by BFD. */
2acceee2
JM
652 addrs->other[i].sectindex = sect->index ;
653 }
654 else
655 {
656 warning ("section %s not found in %s", addrs->other[i].name,
657 objfile->name);
658 addrs->other[i].addr = 0;
659 }
660 }
661 else
662 addrs->other[i].addr = lower_offset;
663 }
c906108c
SS
664 }
665
666 /* Initialize symbol reading routines for this objfile, allow complaints to
667 appear for this new file, and record how verbose to be, then do the
668 initial symbol reading for this file. */
669
c5aa993b 670 (*objfile->sf->sym_init) (objfile);
c906108c
SS
671 clear_complaints (1, verbo);
672
2acceee2 673 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c
SS
674
675#ifndef IBM6000_TARGET
676 /* This is a SVR4/SunOS specific hack, I think. In any event, it
677 screws RS/6000. sym_offsets should be doing this sort of thing,
678 because it knows the mapping between bfd sections and
679 section_offsets. */
680 /* This is a hack. As far as I can tell, section offsets are not
681 target dependent. They are all set to addr with a couple of
682 exceptions. The exceptions are sysvr4 shared libraries, whose
683 offsets are kept in solib structures anyway and rs6000 xcoff
684 which handles shared libraries in a completely unique way.
685
686 Section offsets are built similarly, except that they are built
687 by adding addr in all cases because there is no clear mapping
688 from section_offsets into actual sections. Note that solib.c
96baa820 689 has a different algorithm for finding section offsets.
c906108c
SS
690
691 These should probably all be collapsed into some target
692 independent form of shared library support. FIXME. */
693
2acceee2 694 if (addrs)
c906108c
SS
695 {
696 struct obj_section *s;
697
2acceee2
JM
698 /* Map section offsets in "addr" back to the object's
699 sections by comparing the section names with bfd's
700 section names. Then adjust the section address by
701 the offset. */ /* for gdb/13815 */
702
96baa820 703 ALL_OBJFILE_OSECTIONS (objfile, s)
c906108c 704 {
2acceee2
JM
705 CORE_ADDR s_addr = 0;
706 int i;
707
62557bbc
KB
708 for (i = 0;
709 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
710 i++)
2acceee2
JM
711 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
712 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
713
c906108c 714 s->addr -= s->offset;
2acceee2 715 s->addr += s_addr;
c906108c 716 s->endaddr -= s->offset;
2acceee2
JM
717 s->endaddr += s_addr;
718 s->offset += s_addr;
c906108c
SS
719 }
720 }
721#endif /* not IBM6000_TARGET */
722
96baa820 723 (*objfile->sf->sym_read) (objfile, mainline);
c906108c
SS
724
725 if (!have_partial_symbols () && !have_full_symbols ())
726 {
727 wrap_here ("");
728 printf_filtered ("(no debugging symbols found)...");
729 wrap_here ("");
730 }
731
732 /* Don't allow char * to have a typename (else would get caddr_t).
733 Ditto void *. FIXME: Check whether this is now done by all the
734 symbol readers themselves (many of them now do), and if so remove
735 it from here. */
736
737 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
738 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
739
740 /* Mark the objfile has having had initial symbol read attempted. Note
741 that this does not mean we found any symbols... */
742
c5aa993b 743 objfile->flags |= OBJF_SYMS;
c906108c
SS
744
745 /* Discard cleanups as symbol reading was successful. */
746
747 discard_cleanups (old_chain);
748
96baa820 749 /* Call this after reading in a new symbol table to give target
38c2ef12 750 dependent code a crack at the new symbols. For instance, this
96baa820
JM
751 could be used to update the values of target-specific symbols GDB
752 needs to keep track of (such as _sigtramp, or whatever). */
c906108c
SS
753
754 TARGET_SYMFILE_POSTREAD (objfile);
755}
756
757/* Perform required actions after either reading in the initial
758 symbols for a new objfile, or mapping in the symbols from a reusable
759 objfile. */
c5aa993b 760
c906108c 761void
fba45db2 762new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
763{
764
765 /* If this is the main symbol file we have to clean up all users of the
766 old main symbol file. Otherwise it is sufficient to fixup all the
767 breakpoints that may have been redefined by this symbol file. */
768 if (mainline)
769 {
770 /* OK, make it the "real" symbol file. */
771 symfile_objfile = objfile;
772
773 clear_symtab_users ();
774 }
775 else
776 {
777 breakpoint_re_set ();
778 }
779
780 /* We're done reading the symbol file; finish off complaints. */
781 clear_complaints (0, verbo);
782}
783
784/* Process a symbol file, as either the main file or as a dynamically
785 loaded file.
786
787 NAME is the file name (which will be tilde-expanded and made
788 absolute herein) (but we don't free or modify NAME itself).
789 FROM_TTY says how verbose to be. MAINLINE specifies whether this
790 is the main symbol file, or whether it's an extra symbol file such
791 as dynamically loaded code. If !mainline, ADDR is the address
792 where the text segment was loaded.
793
c906108c
SS
794 Upon success, returns a pointer to the objfile that was added.
795 Upon failure, jumps back to command level (never returns). */
796
797struct objfile *
fba45db2
KB
798symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
799 int mainline, int flags)
c906108c
SS
800{
801 struct objfile *objfile;
802 struct partial_symtab *psymtab;
803 bfd *abfd;
804
805 /* Open a bfd for the file, and give user a chance to burp if we'd be
806 interactively wiping out any existing symbols. */
807
808 abfd = symfile_bfd_open (name);
809
810 if ((have_full_symbols () || have_partial_symbols ())
811 && mainline
812 && from_tty
813 && !query ("Load new symbol table from \"%s\"? ", name))
c5aa993b 814 error ("Not confirmed.");
c906108c 815
2df3850c 816 objfile = allocate_objfile (abfd, flags);
c906108c
SS
817
818 /* If the objfile uses a mapped symbol file, and we have a psymtab for
819 it, then skip reading any symbols at this time. */
820
c5aa993b 821 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
c906108c
SS
822 {
823 /* We mapped in an existing symbol table file that already has had
c5aa993b
JM
824 initial symbol reading performed, so we can skip that part. Notify
825 the user that instead of reading the symbols, they have been mapped.
826 */
c906108c
SS
827 if (from_tty || info_verbose)
828 {
829 printf_filtered ("Mapped symbols for %s...", name);
830 wrap_here ("");
831 gdb_flush (gdb_stdout);
832 }
833 init_entry_point_info (objfile);
834 find_sym_fns (objfile);
835 }
836 else
837 {
838 /* We either created a new mapped symbol table, mapped an existing
c5aa993b
JM
839 symbol table file which has not had initial symbol reading
840 performed, or need to read an unmapped symbol table. */
c906108c
SS
841 if (from_tty || info_verbose)
842 {
843 if (pre_add_symbol_hook)
844 pre_add_symbol_hook (name);
845 else
846 {
847 printf_filtered ("Reading symbols from %s...", name);
848 wrap_here ("");
849 gdb_flush (gdb_stdout);
850 }
851 }
2acceee2 852 syms_from_objfile (objfile, addrs, mainline, from_tty);
c906108c
SS
853 }
854
855 /* We now have at least a partial symbol table. Check to see if the
856 user requested that all symbols be read on initial access via either
857 the gdb startup command line or on a per symbol file basis. Expand
858 all partial symbol tables for this objfile if so. */
859
2acceee2 860 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c
SS
861 {
862 if (from_tty || info_verbose)
863 {
864 printf_filtered ("expanding to full symbols...");
865 wrap_here ("");
866 gdb_flush (gdb_stdout);
867 }
868
c5aa993b 869 for (psymtab = objfile->psymtabs;
c906108c 870 psymtab != NULL;
c5aa993b 871 psymtab = psymtab->next)
c906108c
SS
872 {
873 psymtab_to_symtab (psymtab);
874 }
875 }
876
877 if (from_tty || info_verbose)
878 {
879 if (post_add_symbol_hook)
c5aa993b 880 post_add_symbol_hook ();
c906108c 881 else
c5aa993b
JM
882 {
883 printf_filtered ("done.\n");
884 gdb_flush (gdb_stdout);
885 }
c906108c
SS
886 }
887
888 new_symfile_objfile (objfile, mainline, from_tty);
889
11cf8741
JM
890 if (target_new_objfile_hook)
891 target_new_objfile_hook (objfile);
c906108c
SS
892
893 return (objfile);
894}
895
d7db6da9
FN
896/* Call symbol_file_add() with default values and update whatever is
897 affected by the loading of a new main().
898 Used when the file is supplied in the gdb command line
899 and by some targets with special loading requirements.
900 The auxiliary function, symbol_file_add_main_1(), has the flags
901 argument for the switches that can only be specified in the symbol_file
902 command itself. */
1adeb98a
FN
903
904void
905symbol_file_add_main (char *args, int from_tty)
906{
d7db6da9
FN
907 symbol_file_add_main_1 (args, from_tty, 0);
908}
909
910static void
911symbol_file_add_main_1 (char *args, int from_tty, int flags)
912{
913 symbol_file_add (args, from_tty, NULL, 1, flags);
914
915#ifdef HPUXHPPA
916 RESET_HP_UX_GLOBALS ();
917#endif
918
919 /* Getting new symbols may change our opinion about
920 what is frameless. */
921 reinit_frame_cache ();
922
923 set_initial_language ();
1adeb98a
FN
924}
925
926void
927symbol_file_clear (int from_tty)
928{
929 if ((have_full_symbols () || have_partial_symbols ())
930 && from_tty
931 && !query ("Discard symbol table from `%s'? ",
932 symfile_objfile->name))
933 error ("Not confirmed.");
934 free_all_objfiles ();
935
936 /* solib descriptors may have handles to objfiles. Since their
937 storage has just been released, we'd better wipe the solib
938 descriptors as well.
939 */
940#if defined(SOLIB_RESTART)
941 SOLIB_RESTART ();
942#endif
943
944 symfile_objfile = NULL;
945 if (from_tty)
946 printf_unfiltered ("No symbol file now.\n");
947#ifdef HPUXHPPA
948 RESET_HP_UX_GLOBALS ();
949#endif
950}
951
c906108c
SS
952/* This is the symbol-file command. Read the file, analyze its
953 symbols, and add a struct symtab to a symtab list. The syntax of
954 the command is rather bizarre--(1) buildargv implements various
955 quoting conventions which are undocumented and have little or
956 nothing in common with the way things are quoted (or not quoted)
957 elsewhere in GDB, (2) options are used, which are not generally
958 used in GDB (perhaps "set mapped on", "set readnow on" would be
959 better), (3) the order of options matters, which is contrary to GNU
960 conventions (because it is confusing and inconvenient). */
4da95fc4
EZ
961/* Note: ezannoni 2000-04-17. This function used to have support for
962 rombug (see remote-os9k.c). It consisted of a call to target_link()
963 (target.c) to get the address of the text segment from the target,
964 and pass that to symbol_file_add(). This is no longer supported. */
c906108c
SS
965
966void
fba45db2 967symbol_file_command (char *args, int from_tty)
c906108c
SS
968{
969 char **argv;
970 char *name = NULL;
c906108c 971 struct cleanup *cleanups;
2df3850c 972 int flags = OBJF_USERLOADED;
c906108c
SS
973
974 dont_repeat ();
975
976 if (args == NULL)
977 {
1adeb98a 978 symbol_file_clear (from_tty);
c906108c
SS
979 }
980 else
981 {
982 if ((argv = buildargv (args)) == NULL)
983 {
984 nomem (0);
985 }
7a292a7a 986 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
987 while (*argv != NULL)
988 {
989 if (STREQ (*argv, "-mapped"))
4da95fc4
EZ
990 flags |= OBJF_MAPPED;
991 else
992 if (STREQ (*argv, "-readnow"))
2acceee2 993 flags |= OBJF_READNOW;
4da95fc4
EZ
994 else
995 if (**argv == '-')
996 error ("unknown option `%s'", *argv);
c5aa993b 997 else
c5aa993b 998 {
4da95fc4 999 name = *argv;
c906108c 1000
d7db6da9 1001 symbol_file_add_main_1 (name, from_tty, flags);
4da95fc4 1002 }
c906108c
SS
1003 argv++;
1004 }
1005
1006 if (name == NULL)
1007 {
1008 error ("no symbol file name was specified");
1009 }
c906108c
SS
1010 do_cleanups (cleanups);
1011 }
1012}
1013
1014/* Set the initial language.
1015
1016 A better solution would be to record the language in the psymtab when reading
1017 partial symbols, and then use it (if known) to set the language. This would
1018 be a win for formats that encode the language in an easily discoverable place,
1019 such as DWARF. For stabs, we can jump through hoops looking for specially
1020 named symbols or try to intuit the language from the specific type of stabs
1021 we find, but we can't do that until later when we read in full symbols.
1022 FIXME. */
1023
1024static void
fba45db2 1025set_initial_language (void)
c906108c
SS
1026{
1027 struct partial_symtab *pst;
c5aa993b 1028 enum language lang = language_unknown;
c906108c
SS
1029
1030 pst = find_main_psymtab ();
1031 if (pst != NULL)
1032 {
c5aa993b 1033 if (pst->filename != NULL)
c906108c 1034 {
c5aa993b
JM
1035 lang = deduce_language_from_filename (pst->filename);
1036 }
c906108c
SS
1037 if (lang == language_unknown)
1038 {
c5aa993b
JM
1039 /* Make C the default language */
1040 lang = language_c;
c906108c
SS
1041 }
1042 set_language (lang);
1043 expected_language = current_language; /* Don't warn the user */
1044 }
1045}
1046
1047/* Open file specified by NAME and hand it off to BFD for preliminary
1048 analysis. Result is a newly initialized bfd *, which includes a newly
1049 malloc'd` copy of NAME (tilde-expanded and made absolute).
1050 In case of trouble, error() is called. */
1051
1052bfd *
fba45db2 1053symfile_bfd_open (char *name)
c906108c
SS
1054{
1055 bfd *sym_bfd;
1056 int desc;
1057 char *absolute_name;
1058
1059
1060
1061 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1062
1063 /* Look down path for it, allocate 2nd new malloc'd copy. */
1064 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1065#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1066 if (desc < 0)
1067 {
1068 char *exename = alloca (strlen (name) + 5);
1069 strcat (strcpy (exename, name), ".exe");
1070 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
c5aa993b 1071 0, &absolute_name);
c906108c
SS
1072 }
1073#endif
1074 if (desc < 0)
1075 {
b8c9b27d 1076 make_cleanup (xfree, name);
c906108c
SS
1077 perror_with_name (name);
1078 }
b8c9b27d 1079 xfree (name); /* Free 1st new malloc'd copy */
c906108c 1080 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
c5aa993b 1081 /* It'll be freed in free_objfile(). */
c906108c
SS
1082
1083 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1084 if (!sym_bfd)
1085 {
1086 close (desc);
b8c9b27d 1087 make_cleanup (xfree, name);
c906108c
SS
1088 error ("\"%s\": can't open to read symbols: %s.", name,
1089 bfd_errmsg (bfd_get_error ()));
1090 }
1091 sym_bfd->cacheable = true;
1092
1093 if (!bfd_check_format (sym_bfd, bfd_object))
1094 {
1095 /* FIXME: should be checking for errors from bfd_close (for one thing,
c5aa993b
JM
1096 on error it does not free all the storage associated with the
1097 bfd). */
c906108c 1098 bfd_close (sym_bfd); /* This also closes desc */
b8c9b27d 1099 make_cleanup (xfree, name);
c906108c
SS
1100 error ("\"%s\": can't read symbols: %s.", name,
1101 bfd_errmsg (bfd_get_error ()));
1102 }
1103 return (sym_bfd);
1104}
1105
1106/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1107 startup by the _initialize routine in each object file format reader,
1108 to register information about each format the the reader is prepared
1109 to handle. */
1110
1111void
fba45db2 1112add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1113{
1114 sf->next = symtab_fns;
1115 symtab_fns = sf;
1116}
1117
1118
1119/* Initialize to read symbols from the symbol file sym_bfd. It either
1120 returns or calls error(). The result is an initialized struct sym_fns
1121 in the objfile structure, that contains cached information about the
1122 symbol file. */
1123
1124static void
fba45db2 1125find_sym_fns (struct objfile *objfile)
c906108c
SS
1126{
1127 struct sym_fns *sf;
c5aa993b
JM
1128 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1129 char *our_target = bfd_get_target (objfile->obfd);
c906108c 1130
c906108c
SS
1131 /* Special kludge for apollo. See dstread.c. */
1132 if (STREQN (our_target, "apollo", 6))
c5aa993b 1133 our_flavour = (enum bfd_flavour) -2;
c906108c 1134
c5aa993b 1135 for (sf = symtab_fns; sf != NULL; sf = sf->next)
c906108c 1136 {
c5aa993b 1137 if (our_flavour == sf->sym_flavour)
c906108c 1138 {
c5aa993b 1139 objfile->sf = sf;
c906108c
SS
1140 return;
1141 }
1142 }
1143 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
c5aa993b 1144 bfd_get_target (objfile->obfd));
c906108c
SS
1145}
1146\f
1147/* This function runs the load command of our current target. */
1148
1149static void
fba45db2 1150load_command (char *arg, int from_tty)
c906108c
SS
1151{
1152 if (arg == NULL)
1153 arg = get_exec_file (1);
1154 target_load (arg, from_tty);
2889e661
JB
1155
1156 /* After re-loading the executable, we don't really know which
1157 overlays are mapped any more. */
1158 overlay_cache_invalid = 1;
c906108c
SS
1159}
1160
1161/* This version of "load" should be usable for any target. Currently
1162 it is just used for remote targets, not inftarg.c or core files,
1163 on the theory that only in that case is it useful.
1164
1165 Avoiding xmodem and the like seems like a win (a) because we don't have
1166 to worry about finding it, and (b) On VMS, fork() is very slow and so
1167 we don't want to run a subprocess. On the other hand, I'm not sure how
1168 performance compares. */
917317f4
JM
1169
1170static int download_write_size = 512;
1171static int validate_download = 0;
1172
c906108c 1173void
917317f4 1174generic_load (char *args, int from_tty)
c906108c 1175{
c906108c
SS
1176 asection *s;
1177 bfd *loadfile_bfd;
1178 time_t start_time, end_time; /* Start and end times of download */
1179 unsigned long data_count = 0; /* Number of bytes transferred to memory */
917317f4
JM
1180 unsigned long write_count = 0; /* Number of writes needed. */
1181 unsigned long load_offset; /* offset to add to vma for each section */
1182 char *filename;
1183 struct cleanup *old_cleanups;
1184 char *offptr;
c2d11a7d
JM
1185 CORE_ADDR total_size = 0;
1186 CORE_ADDR total_sent = 0;
917317f4
JM
1187
1188 /* Parse the input argument - the user can specify a load offset as
1189 a second argument. */
1190 filename = xmalloc (strlen (args) + 1);
b8c9b27d 1191 old_cleanups = make_cleanup (xfree, filename);
917317f4
JM
1192 strcpy (filename, args);
1193 offptr = strchr (filename, ' ');
1194 if (offptr != NULL)
1195 {
1196 char *endptr;
1197 load_offset = strtoul (offptr, &endptr, 0);
1198 if (offptr == endptr)
1199 error ("Invalid download offset:%s\n", offptr);
1200 *offptr = '\0';
1201 }
c906108c
SS
1202 else
1203 load_offset = 0;
1204
917317f4 1205 /* Open the file for loading. */
c906108c
SS
1206 loadfile_bfd = bfd_openr (filename, gnutarget);
1207 if (loadfile_bfd == NULL)
1208 {
1209 perror_with_name (filename);
1210 return;
1211 }
917317f4 1212
c906108c
SS
1213 /* FIXME: should be checking for errors from bfd_close (for one thing,
1214 on error it does not free all the storage associated with the
1215 bfd). */
5c65bbb6 1216 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1217
c5aa993b 1218 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c
SS
1219 {
1220 error ("\"%s\" is not an object file: %s", filename,
1221 bfd_errmsg (bfd_get_error ()));
1222 }
c5aa993b 1223
c2d11a7d
JM
1224 for (s = loadfile_bfd->sections; s; s = s->next)
1225 if (s->flags & SEC_LOAD)
1226 total_size += bfd_get_section_size_before_reloc (s);
1227
c906108c
SS
1228 start_time = time (NULL);
1229
c5aa993b
JM
1230 for (s = loadfile_bfd->sections; s; s = s->next)
1231 {
1232 if (s->flags & SEC_LOAD)
1233 {
917317f4 1234 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
c5aa993b
JM
1235 if (size > 0)
1236 {
1237 char *buffer;
1238 struct cleanup *old_chain;
917317f4
JM
1239 CORE_ADDR lma = s->lma + load_offset;
1240 CORE_ADDR block_size;
c5aa993b 1241 int err;
917317f4
JM
1242 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1243 CORE_ADDR sent;
c5aa993b 1244
917317f4
JM
1245 if (download_write_size > 0 && size > download_write_size)
1246 block_size = download_write_size;
1247 else
1248 block_size = size;
c5aa993b
JM
1249
1250 buffer = xmalloc (size);
b8c9b27d 1251 old_chain = make_cleanup (xfree, buffer);
c5aa993b 1252
c5aa993b
JM
1253 /* Is this really necessary? I guess it gives the user something
1254 to look at during a long download. */
8b93c638
JM
1255#ifdef UI_OUT
1256 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1257 sect_name, paddr_nz (size), paddr_nz (lma));
1258#else
917317f4
JM
1259 fprintf_unfiltered (gdb_stdout,
1260 "Loading section %s, size 0x%s lma 0x%s\n",
1261 sect_name, paddr_nz (size), paddr_nz (lma));
8b93c638 1262#endif
c5aa993b
JM
1263
1264 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1265
c5aa993b
JM
1266 sent = 0;
1267 do
1268 {
917317f4
JM
1269 CORE_ADDR len;
1270 CORE_ADDR this_transfer = size - sent;
1271 if (this_transfer >= block_size)
1272 this_transfer = block_size;
1273 len = target_write_memory_partial (lma, buffer,
1274 this_transfer, &err);
c5aa993b
JM
1275 if (err)
1276 break;
917317f4
JM
1277 if (validate_download)
1278 {
1279 /* Broken memories and broken monitors manifest
1280 themselves here when bring new computers to
1281 life. This doubles already slow downloads. */
1282 /* NOTE: cagney/1999-10-18: A more efficient
1283 implementation might add a verify_memory()
1284 method to the target vector and then use
1285 that. remote.c could implement that method
1286 using the ``qCRC'' packet. */
1287 char *check = xmalloc (len);
b8c9b27d 1288 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
917317f4
JM
1289 if (target_read_memory (lma, check, len) != 0)
1290 error ("Download verify read failed at 0x%s",
1291 paddr (lma));
1292 if (memcmp (buffer, check, len) != 0)
1293 error ("Download verify compare failed at 0x%s",
1294 paddr (lma));
1295 do_cleanups (verify_cleanups);
1296 }
c5aa993b
JM
1297 data_count += len;
1298 lma += len;
1299 buffer += len;
917317f4
JM
1300 write_count += 1;
1301 sent += len;
c2d11a7d 1302 total_sent += len;
917317f4
JM
1303 if (quit_flag
1304 || (ui_load_progress_hook != NULL
1305 && ui_load_progress_hook (sect_name, sent)))
1306 error ("Canceled the download");
c2d11a7d
JM
1307
1308 if (show_load_progress != NULL)
1309 show_load_progress (sect_name, sent, size, total_sent, total_size);
917317f4
JM
1310 }
1311 while (sent < size);
c5aa993b
JM
1312
1313 if (err != 0)
917317f4 1314 error ("Memory access error while loading section %s.", sect_name);
c906108c 1315
c5aa993b
JM
1316 do_cleanups (old_chain);
1317 }
1318 }
c906108c
SS
1319 }
1320
1321 end_time = time (NULL);
1322 {
917317f4 1323 CORE_ADDR entry;
c5aa993b 1324 entry = bfd_get_start_address (loadfile_bfd);
8b93c638
JM
1325#ifdef UI_OUT
1326 ui_out_text (uiout, "Start address ");
1327 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1328 ui_out_text (uiout, ", load size ");
1329 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1330 ui_out_text (uiout, "\n");
1331
1332#else
917317f4
JM
1333 fprintf_unfiltered (gdb_stdout,
1334 "Start address 0x%s , load size %ld\n",
1335 paddr_nz (entry), data_count);
8b93c638 1336#endif
c906108c
SS
1337 /* We were doing this in remote-mips.c, I suspect it is right
1338 for other targets too. */
1339 write_pc (entry);
1340 }
1341
1342 /* FIXME: are we supposed to call symbol_file_add or not? According to
1343 a comment from remote-mips.c (where a call to symbol_file_add was
1344 commented out), making the call confuses GDB if more than one file is
1345 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1346 does. */
1347
917317f4
JM
1348 print_transfer_performance (gdb_stdout, data_count, write_count,
1349 end_time - start_time);
c906108c
SS
1350
1351 do_cleanups (old_cleanups);
1352}
1353
1354/* Report how fast the transfer went. */
1355
917317f4
JM
1356/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1357 replaced by print_transfer_performance (with a very different
1358 function signature). */
1359
c906108c 1360void
fba45db2
KB
1361report_transfer_performance (unsigned long data_count, time_t start_time,
1362 time_t end_time)
c906108c 1363{
917317f4
JM
1364 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1365}
1366
1367void
d9fcf2fb 1368print_transfer_performance (struct ui_file *stream,
917317f4
JM
1369 unsigned long data_count,
1370 unsigned long write_count,
1371 unsigned long time_count)
1372{
8b93c638
JM
1373#ifdef UI_OUT
1374 ui_out_text (uiout, "Transfer rate: ");
1375 if (time_count > 0)
1376 {
1377 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1378 (data_count * 8) / time_count);
1379 ui_out_text (uiout, " bits/sec");
1380 }
1381 else
1382 {
1383 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1384 ui_out_text (uiout, " bits in <1 sec");
1385 }
1386 if (write_count > 0)
1387 {
1388 ui_out_text (uiout, ", ");
1389 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1390 ui_out_text (uiout, " bytes/write");
1391 }
1392 ui_out_text (uiout, ".\n");
1393#else
917317f4
JM
1394 fprintf_unfiltered (stream, "Transfer rate: ");
1395 if (time_count > 0)
1396 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
c906108c 1397 else
917317f4
JM
1398 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1399 if (write_count > 0)
1400 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1401 fprintf_unfiltered (stream, ".\n");
8b93c638 1402#endif
c906108c
SS
1403}
1404
1405/* This function allows the addition of incrementally linked object files.
1406 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
1407/* Note: ezannoni 2000-04-13 This function/command used to have a
1408 special case syntax for the rombug target (Rombug is the boot
1409 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1410 rombug case, the user doesn't need to supply a text address,
1411 instead a call to target_link() (in target.c) would supply the
1412 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c
SS
1413
1414/* ARGSUSED */
1415static void
fba45db2 1416add_symbol_file_command (char *args, int from_tty)
c906108c 1417{
db162d44 1418 char *filename = NULL;
2df3850c 1419 int flags = OBJF_USERLOADED;
c906108c 1420 char *arg;
2acceee2 1421 int expecting_option = 0;
db162d44 1422 int section_index = 0;
2acceee2
JM
1423 int argcnt = 0;
1424 int sec_num = 0;
1425 int i;
db162d44
EZ
1426 int expecting_sec_name = 0;
1427 int expecting_sec_addr = 0;
1428
2acceee2
JM
1429 struct
1430 {
2acceee2
JM
1431 char *name;
1432 char *value;
db162d44
EZ
1433 } sect_opts[SECT_OFF_MAX];
1434
2acceee2 1435 struct section_addr_info section_addrs;
3017564a 1436 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 1437
c906108c
SS
1438 dont_repeat ();
1439
1440 if (args == NULL)
db162d44 1441 error ("add-symbol-file takes a file name and an address");
c906108c
SS
1442
1443 /* Make a copy of the string that we can safely write into. */
c2d11a7d 1444 args = xstrdup (args);
c906108c 1445
2acceee2
JM
1446 /* Ensure section_addrs is initialized */
1447 memset (&section_addrs, 0, sizeof (section_addrs));
1448
2acceee2 1449 while (*args != '\000')
c906108c 1450 {
db162d44 1451 /* Any leading spaces? */
c5aa993b 1452 while (isspace (*args))
db162d44
EZ
1453 args++;
1454
1455 /* Point arg to the beginning of the argument. */
c906108c 1456 arg = args;
db162d44
EZ
1457
1458 /* Move args pointer over the argument. */
c5aa993b 1459 while ((*args != '\000') && !isspace (*args))
db162d44
EZ
1460 args++;
1461
1462 /* If there are more arguments, terminate arg and
1463 proceed past it. */
c906108c 1464 if (*args != '\000')
db162d44
EZ
1465 *args++ = '\000';
1466
1467 /* Now process the argument. */
1468 if (argcnt == 0)
c906108c 1469 {
db162d44
EZ
1470 /* The first argument is the file name. */
1471 filename = tilde_expand (arg);
3017564a 1472 make_cleanup (xfree, filename);
c906108c 1473 }
db162d44 1474 else
7a78ae4e
ND
1475 if (argcnt == 1)
1476 {
1477 /* The second argument is always the text address at which
1478 to load the program. */
1479 sect_opts[section_index].name = ".text";
1480 sect_opts[section_index].value = arg;
1481 section_index++;
1482 }
1483 else
1484 {
1485 /* It's an option (starting with '-') or it's an argument
1486 to an option */
1487
1488 if (*arg == '-')
1489 {
1490 if (strcmp (arg, "-mapped") == 0)
1491 flags |= OBJF_MAPPED;
1492 else
1493 if (strcmp (arg, "-readnow") == 0)
1494 flags |= OBJF_READNOW;
1495 else
1496 if (strcmp (arg, "-s") == 0)
1497 {
1498 if (section_index >= SECT_OFF_MAX)
1499 error ("Too many sections specified.");
1500 expecting_sec_name = 1;
1501 expecting_sec_addr = 1;
1502 }
1503 }
1504 else
1505 {
1506 if (expecting_sec_name)
db162d44 1507 {
7a78ae4e
ND
1508 sect_opts[section_index].name = arg;
1509 expecting_sec_name = 0;
db162d44
EZ
1510 }
1511 else
7a78ae4e
ND
1512 if (expecting_sec_addr)
1513 {
1514 sect_opts[section_index].value = arg;
1515 expecting_sec_addr = 0;
1516 section_index++;
1517 }
1518 else
1519 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1520 }
1521 }
db162d44 1522 argcnt++;
c906108c 1523 }
c906108c 1524
db162d44
EZ
1525 /* Print the prompt for the query below. And save the arguments into
1526 a sect_addr_info structure to be passed around to other
1527 functions. We have to split this up into separate print
1528 statements because local_hex_string returns a local static
1529 string. */
2acceee2 1530
db162d44
EZ
1531 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1532 for (i = 0; i < section_index; i++)
c906108c 1533 {
db162d44
EZ
1534 CORE_ADDR addr;
1535 char *val = sect_opts[i].value;
1536 char *sec = sect_opts[i].name;
1537
1538 val = sect_opts[i].value;
1539 if (val[0] == '0' && val[1] == 'x')
1540 addr = strtoul (val+2, NULL, 16);
1541 else
1542 addr = strtoul (val, NULL, 10);
1543
db162d44
EZ
1544 /* Here we store the section offsets in the order they were
1545 entered on the command line. */
1546 section_addrs.other[sec_num].name = sec;
1547 section_addrs.other[sec_num].addr = addr;
1548 printf_filtered ("\t%s_addr = %s\n",
1549 sec,
1550 local_hex_string ((unsigned long)addr));
1551 sec_num++;
1552
1553 /* The object's sections are initialized when a
1554 call is made to build_objfile_section_table (objfile).
1555 This happens in reread_symbols.
1556 At this point, we don't know what file type this is,
1557 so we can't determine what section names are valid. */
2acceee2 1558 }
db162d44 1559
2acceee2 1560 if (from_tty && (!query ("%s", "")))
c906108c
SS
1561 error ("Not confirmed.");
1562
db162d44 1563 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
c906108c
SS
1564
1565 /* Getting new symbols may change our opinion about what is
1566 frameless. */
1567 reinit_frame_cache ();
db162d44 1568 do_cleanups (my_cleanups);
c906108c
SS
1569}
1570\f
1571static void
fba45db2 1572add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
1573{
1574#ifdef ADD_SHARED_SYMBOL_FILES
1575 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1576#else
1577 error ("This command is not available in this configuration of GDB.");
c5aa993b 1578#endif
c906108c
SS
1579}
1580\f
1581/* Re-read symbols if a symbol-file has changed. */
1582void
fba45db2 1583reread_symbols (void)
c906108c
SS
1584{
1585 struct objfile *objfile;
1586 long new_modtime;
1587 int reread_one = 0;
1588 struct stat new_statbuf;
1589 int res;
1590
1591 /* With the addition of shared libraries, this should be modified,
1592 the load time should be saved in the partial symbol tables, since
1593 different tables may come from different source files. FIXME.
1594 This routine should then walk down each partial symbol table
1595 and see if the symbol table that it originates from has been changed */
1596
c5aa993b
JM
1597 for (objfile = object_files; objfile; objfile = objfile->next)
1598 {
1599 if (objfile->obfd)
1600 {
c906108c 1601#ifdef IBM6000_TARGET
c5aa993b
JM
1602 /* If this object is from a shared library, then you should
1603 stat on the library name, not member name. */
c906108c 1604
c5aa993b
JM
1605 if (objfile->obfd->my_archive)
1606 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1607 else
c906108c 1608#endif
c5aa993b
JM
1609 res = stat (objfile->name, &new_statbuf);
1610 if (res != 0)
c906108c 1611 {
c5aa993b
JM
1612 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1613 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1614 objfile->name);
1615 continue;
c906108c 1616 }
c5aa993b
JM
1617 new_modtime = new_statbuf.st_mtime;
1618 if (new_modtime != objfile->mtime)
c906108c 1619 {
c5aa993b
JM
1620 struct cleanup *old_cleanups;
1621 struct section_offsets *offsets;
1622 int num_offsets;
c5aa993b
JM
1623 char *obfd_filename;
1624
1625 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1626 objfile->name);
1627
1628 /* There are various functions like symbol_file_add,
1629 symfile_bfd_open, syms_from_objfile, etc., which might
1630 appear to do what we want. But they have various other
1631 effects which we *don't* want. So we just do stuff
1632 ourselves. We don't worry about mapped files (for one thing,
1633 any mapped file will be out of date). */
1634
1635 /* If we get an error, blow away this objfile (not sure if
1636 that is the correct response for things like shared
1637 libraries). */
74b7792f 1638 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 1639 /* We need to do this whenever any symbols go away. */
74b7792f 1640 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b
JM
1641
1642 /* Clean up any state BFD has sitting around. We don't need
1643 to close the descriptor but BFD lacks a way of closing the
1644 BFD without closing the descriptor. */
1645 obfd_filename = bfd_get_filename (objfile->obfd);
1646 if (!bfd_close (objfile->obfd))
1647 error ("Can't close BFD for %s: %s", objfile->name,
1648 bfd_errmsg (bfd_get_error ()));
1649 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1650 if (objfile->obfd == NULL)
1651 error ("Can't open %s to read symbols.", objfile->name);
1652 /* bfd_openr sets cacheable to true, which is what we want. */
1653 if (!bfd_check_format (objfile->obfd, bfd_object))
1654 error ("Can't read symbols from %s: %s.", objfile->name,
1655 bfd_errmsg (bfd_get_error ()));
1656
1657 /* Save the offsets, we will nuke them with the rest of the
1658 psymbol_obstack. */
1659 num_offsets = objfile->num_sections;
d4f3574e
SS
1660 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1661 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1662
1663 /* Nuke all the state that we will re-read. Much of the following
1664 code which sets things to NULL really is necessary to tell
1665 other parts of GDB that there is nothing currently there. */
1666
1667 /* FIXME: Do we have to free a whole linked list, or is this
1668 enough? */
1669 if (objfile->global_psymbols.list)
aac7f4ea 1670 xmfree (objfile->md, objfile->global_psymbols.list);
c5aa993b
JM
1671 memset (&objfile->global_psymbols, 0,
1672 sizeof (objfile->global_psymbols));
1673 if (objfile->static_psymbols.list)
aac7f4ea 1674 xmfree (objfile->md, objfile->static_psymbols.list);
c5aa993b
JM
1675 memset (&objfile->static_psymbols, 0,
1676 sizeof (objfile->static_psymbols));
1677
1678 /* Free the obstacks for non-reusable objfiles */
c2d11a7d 1679 free_bcache (&objfile->psymbol_cache);
c5aa993b
JM
1680 obstack_free (&objfile->psymbol_obstack, 0);
1681 obstack_free (&objfile->symbol_obstack, 0);
1682 obstack_free (&objfile->type_obstack, 0);
1683 objfile->sections = NULL;
1684 objfile->symtabs = NULL;
1685 objfile->psymtabs = NULL;
1686 objfile->free_psymtabs = NULL;
1687 objfile->msymbols = NULL;
1688 objfile->minimal_symbol_count = 0;
0a83117a
MS
1689 memset (&objfile->msymbol_hash, 0,
1690 sizeof (objfile->msymbol_hash));
1691 memset (&objfile->msymbol_demangled_hash, 0,
1692 sizeof (objfile->msymbol_demangled_hash));
c5aa993b
JM
1693 objfile->fundamental_types = NULL;
1694 if (objfile->sf != NULL)
1695 {
1696 (*objfile->sf->sym_finish) (objfile);
1697 }
1698
1699 /* We never make this a mapped file. */
1700 objfile->md = NULL;
1701 /* obstack_specify_allocation also initializes the obstack so
1702 it is empty. */
1703 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
b8c9b27d 1704 xmalloc, xfree);
c5aa993b 1705 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
b8c9b27d 1706 xmalloc, xfree);
c5aa993b 1707 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
b8c9b27d 1708 xmalloc, xfree);
c5aa993b 1709 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
b8c9b27d 1710 xmalloc, xfree);
c5aa993b
JM
1711 if (build_objfile_section_table (objfile))
1712 {
1713 error ("Can't find the file sections in `%s': %s",
1714 objfile->name, bfd_errmsg (bfd_get_error ()));
1715 }
1716
1717 /* We use the same section offsets as from last time. I'm not
1718 sure whether that is always correct for shared libraries. */
1719 objfile->section_offsets = (struct section_offsets *)
d4f3574e
SS
1720 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1721 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
c5aa993b
JM
1722 objfile->num_sections = num_offsets;
1723
1724 /* What the hell is sym_new_init for, anyway? The concept of
1725 distinguishing between the main file and additional files
1726 in this way seems rather dubious. */
1727 if (objfile == symfile_objfile)
1728 {
1729 (*objfile->sf->sym_new_init) (objfile);
c906108c 1730#ifdef HPUXHPPA
c5aa993b 1731 RESET_HP_UX_GLOBALS ();
c906108c 1732#endif
c5aa993b
JM
1733 }
1734
1735 (*objfile->sf->sym_init) (objfile);
1736 clear_complaints (1, 1);
1737 /* The "mainline" parameter is a hideous hack; I think leaving it
1738 zero is OK since dbxread.c also does what it needs to do if
1739 objfile->global_psymbols.size is 0. */
96baa820 1740 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
1741 if (!have_partial_symbols () && !have_full_symbols ())
1742 {
1743 wrap_here ("");
1744 printf_filtered ("(no debugging symbols found)\n");
1745 wrap_here ("");
1746 }
1747 objfile->flags |= OBJF_SYMS;
1748
1749 /* We're done reading the symbol file; finish off complaints. */
1750 clear_complaints (0, 1);
c906108c 1751
c5aa993b
JM
1752 /* Getting new symbols may change our opinion about what is
1753 frameless. */
c906108c 1754
c5aa993b 1755 reinit_frame_cache ();
c906108c 1756
c5aa993b
JM
1757 /* Discard cleanups as symbol reading was successful. */
1758 discard_cleanups (old_cleanups);
c906108c 1759
c5aa993b
JM
1760 /* If the mtime has changed between the time we set new_modtime
1761 and now, we *want* this to be out of date, so don't call stat
1762 again now. */
1763 objfile->mtime = new_modtime;
1764 reread_one = 1;
c906108c 1765
c5aa993b 1766 /* Call this after reading in a new symbol table to give target
38c2ef12 1767 dependent code a crack at the new symbols. For instance, this
c5aa993b
JM
1768 could be used to update the values of target-specific symbols GDB
1769 needs to keep track of (such as _sigtramp, or whatever). */
c906108c 1770
c5aa993b
JM
1771 TARGET_SYMFILE_POSTREAD (objfile);
1772 }
c906108c
SS
1773 }
1774 }
c906108c
SS
1775
1776 if (reread_one)
1777 clear_symtab_users ();
1778}
c906108c
SS
1779\f
1780
c5aa993b
JM
1781
1782typedef struct
1783{
1784 char *ext;
c906108c 1785 enum language lang;
c5aa993b
JM
1786}
1787filename_language;
c906108c 1788
c5aa993b 1789static filename_language *filename_language_table;
c906108c
SS
1790static int fl_table_size, fl_table_next;
1791
1792static void
fba45db2 1793add_filename_language (char *ext, enum language lang)
c906108c
SS
1794{
1795 if (fl_table_next >= fl_table_size)
1796 {
1797 fl_table_size += 10;
0e52036f
AC
1798 filename_language_table = xrealloc (filename_language_table,
1799 fl_table_size);
c906108c
SS
1800 }
1801
4fcf66da 1802 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
1803 filename_language_table[fl_table_next].lang = lang;
1804 fl_table_next++;
1805}
1806
1807static char *ext_args;
1808
1809static void
fba45db2 1810set_ext_lang_command (char *args, int from_tty)
c906108c
SS
1811{
1812 int i;
1813 char *cp = ext_args;
1814 enum language lang;
1815
1816 /* First arg is filename extension, starting with '.' */
1817 if (*cp != '.')
1818 error ("'%s': Filename extension must begin with '.'", ext_args);
1819
1820 /* Find end of first arg. */
c5aa993b 1821 while (*cp && !isspace (*cp))
c906108c
SS
1822 cp++;
1823
1824 if (*cp == '\0')
1825 error ("'%s': two arguments required -- filename extension and language",
1826 ext_args);
1827
1828 /* Null-terminate first arg */
c5aa993b 1829 *cp++ = '\0';
c906108c
SS
1830
1831 /* Find beginning of second arg, which should be a source language. */
1832 while (*cp && isspace (*cp))
1833 cp++;
1834
1835 if (*cp == '\0')
1836 error ("'%s': two arguments required -- filename extension and language",
1837 ext_args);
1838
1839 /* Lookup the language from among those we know. */
1840 lang = language_enum (cp);
1841
1842 /* Now lookup the filename extension: do we already know it? */
1843 for (i = 0; i < fl_table_next; i++)
1844 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1845 break;
1846
1847 if (i >= fl_table_next)
1848 {
1849 /* new file extension */
1850 add_filename_language (ext_args, lang);
1851 }
1852 else
1853 {
1854 /* redefining a previously known filename extension */
1855
1856 /* if (from_tty) */
1857 /* query ("Really make files of type %s '%s'?", */
1858 /* ext_args, language_str (lang)); */
1859
b8c9b27d 1860 xfree (filename_language_table[i].ext);
4fcf66da 1861 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
1862 filename_language_table[i].lang = lang;
1863 }
1864}
1865
1866static void
fba45db2 1867info_ext_lang_command (char *args, int from_tty)
c906108c
SS
1868{
1869 int i;
1870
1871 printf_filtered ("Filename extensions and the languages they represent:");
1872 printf_filtered ("\n\n");
1873 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
1874 printf_filtered ("\t%s\t- %s\n",
1875 filename_language_table[i].ext,
c906108c
SS
1876 language_str (filename_language_table[i].lang));
1877}
1878
1879static void
fba45db2 1880init_filename_language_table (void)
c906108c
SS
1881{
1882 if (fl_table_size == 0) /* protect against repetition */
1883 {
1884 fl_table_size = 20;
1885 fl_table_next = 0;
c5aa993b 1886 filename_language_table =
c906108c 1887 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
1888 add_filename_language (".c", language_c);
1889 add_filename_language (".C", language_cplus);
1890 add_filename_language (".cc", language_cplus);
1891 add_filename_language (".cp", language_cplus);
1892 add_filename_language (".cpp", language_cplus);
1893 add_filename_language (".cxx", language_cplus);
1894 add_filename_language (".c++", language_cplus);
1895 add_filename_language (".java", language_java);
c906108c 1896 add_filename_language (".class", language_java);
c5aa993b
JM
1897 add_filename_language (".ch", language_chill);
1898 add_filename_language (".c186", language_chill);
1899 add_filename_language (".c286", language_chill);
1900 add_filename_language (".f", language_fortran);
1901 add_filename_language (".F", language_fortran);
1902 add_filename_language (".s", language_asm);
1903 add_filename_language (".S", language_asm);
c6fd39cd
PM
1904 add_filename_language (".pas", language_pascal);
1905 add_filename_language (".p", language_pascal);
1906 add_filename_language (".pp", language_pascal);
c906108c
SS
1907 }
1908}
1909
1910enum language
fba45db2 1911deduce_language_from_filename (char *filename)
c906108c
SS
1912{
1913 int i;
1914 char *cp;
1915
1916 if (filename != NULL)
1917 if ((cp = strrchr (filename, '.')) != NULL)
1918 for (i = 0; i < fl_table_next; i++)
1919 if (strcmp (cp, filename_language_table[i].ext) == 0)
1920 return filename_language_table[i].lang;
1921
1922 return language_unknown;
1923}
1924\f
1925/* allocate_symtab:
1926
1927 Allocate and partly initialize a new symbol table. Return a pointer
1928 to it. error() if no space.
1929
1930 Caller must set these fields:
c5aa993b
JM
1931 LINETABLE(symtab)
1932 symtab->blockvector
1933 symtab->dirname
1934 symtab->free_code
1935 symtab->free_ptr
1936 possibly free_named_symtabs (symtab->filename);
c906108c
SS
1937 */
1938
1939struct symtab *
fba45db2 1940allocate_symtab (char *filename, struct objfile *objfile)
c906108c
SS
1941{
1942 register struct symtab *symtab;
1943
1944 symtab = (struct symtab *)
c5aa993b 1945 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
c906108c 1946 memset (symtab, 0, sizeof (*symtab));
c5aa993b
JM
1947 symtab->filename = obsavestring (filename, strlen (filename),
1948 &objfile->symbol_obstack);
1949 symtab->fullname = NULL;
1950 symtab->language = deduce_language_from_filename (filename);
1951 symtab->debugformat = obsavestring ("unknown", 7,
1952 &objfile->symbol_obstack);
c906108c
SS
1953
1954 /* Hook it to the objfile it comes from */
1955
c5aa993b
JM
1956 symtab->objfile = objfile;
1957 symtab->next = objfile->symtabs;
1958 objfile->symtabs = symtab;
c906108c
SS
1959
1960 /* FIXME: This should go away. It is only defined for the Z8000,
1961 and the Z8000 definition of this macro doesn't have anything to
1962 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1963 here for convenience. */
1964#ifdef INIT_EXTRA_SYMTAB_INFO
1965 INIT_EXTRA_SYMTAB_INFO (symtab);
1966#endif
1967
1968 return (symtab);
1969}
1970
1971struct partial_symtab *
fba45db2 1972allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
1973{
1974 struct partial_symtab *psymtab;
1975
c5aa993b 1976 if (objfile->free_psymtabs)
c906108c 1977 {
c5aa993b
JM
1978 psymtab = objfile->free_psymtabs;
1979 objfile->free_psymtabs = psymtab->next;
c906108c
SS
1980 }
1981 else
1982 psymtab = (struct partial_symtab *)
c5aa993b 1983 obstack_alloc (&objfile->psymbol_obstack,
c906108c
SS
1984 sizeof (struct partial_symtab));
1985
1986 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b
JM
1987 psymtab->filename = obsavestring (filename, strlen (filename),
1988 &objfile->psymbol_obstack);
1989 psymtab->symtab = NULL;
c906108c
SS
1990
1991 /* Prepend it to the psymtab list for the objfile it belongs to.
1992 Psymtabs are searched in most recent inserted -> least recent
1993 inserted order. */
1994
c5aa993b
JM
1995 psymtab->objfile = objfile;
1996 psymtab->next = objfile->psymtabs;
1997 objfile->psymtabs = psymtab;
c906108c
SS
1998#if 0
1999 {
2000 struct partial_symtab **prev_pst;
c5aa993b
JM
2001 psymtab->objfile = objfile;
2002 psymtab->next = NULL;
2003 prev_pst = &(objfile->psymtabs);
c906108c 2004 while ((*prev_pst) != NULL)
c5aa993b 2005 prev_pst = &((*prev_pst)->next);
c906108c 2006 (*prev_pst) = psymtab;
c5aa993b 2007 }
c906108c 2008#endif
c5aa993b 2009
c906108c
SS
2010 return (psymtab);
2011}
2012
2013void
fba45db2 2014discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2015{
2016 struct partial_symtab **prev_pst;
2017
2018 /* From dbxread.c:
2019 Empty psymtabs happen as a result of header files which don't
2020 have any symbols in them. There can be a lot of them. But this
2021 check is wrong, in that a psymtab with N_SLINE entries but
2022 nothing else is not empty, but we don't realize that. Fixing
2023 that without slowing things down might be tricky. */
2024
2025 /* First, snip it out of the psymtab chain */
2026
2027 prev_pst = &(pst->objfile->psymtabs);
2028 while ((*prev_pst) != pst)
2029 prev_pst = &((*prev_pst)->next);
2030 (*prev_pst) = pst->next;
2031
2032 /* Next, put it on a free list for recycling */
2033
2034 pst->next = pst->objfile->free_psymtabs;
2035 pst->objfile->free_psymtabs = pst;
2036}
c906108c 2037\f
c5aa993b 2038
c906108c
SS
2039/* Reset all data structures in gdb which may contain references to symbol
2040 table data. */
2041
2042void
fba45db2 2043clear_symtab_users (void)
c906108c
SS
2044{
2045 /* Someday, we should do better than this, by only blowing away
2046 the things that really need to be blown. */
2047 clear_value_history ();
2048 clear_displays ();
2049 clear_internalvars ();
2050 breakpoint_re_set ();
2051 set_default_breakpoint (0, 0, 0, 0);
2052 current_source_symtab = 0;
2053 current_source_line = 0;
2054 clear_pc_function_cache ();
11cf8741
JM
2055 if (target_new_objfile_hook)
2056 target_new_objfile_hook (NULL);
c906108c
SS
2057}
2058
74b7792f
AC
2059static void
2060clear_symtab_users_cleanup (void *ignore)
2061{
2062 clear_symtab_users ();
2063}
2064
c906108c
SS
2065/* clear_symtab_users_once:
2066
2067 This function is run after symbol reading, or from a cleanup.
2068 If an old symbol table was obsoleted, the old symbol table
2069 has been blown away, but the other GDB data structures that may
2070 reference it have not yet been cleared or re-directed. (The old
2071 symtab was zapped, and the cleanup queued, in free_named_symtab()
2072 below.)
2073
2074 This function can be queued N times as a cleanup, or called
2075 directly; it will do all the work the first time, and then will be a
2076 no-op until the next time it is queued. This works by bumping a
2077 counter at queueing time. Much later when the cleanup is run, or at
2078 the end of symbol processing (in case the cleanup is discarded), if
2079 the queued count is greater than the "done-count", we do the work
2080 and set the done-count to the queued count. If the queued count is
2081 less than or equal to the done-count, we just ignore the call. This
2082 is needed because reading a single .o file will often replace many
2083 symtabs (one per .h file, for example), and we don't want to reset
2084 the breakpoints N times in the user's face.
2085
2086 The reason we both queue a cleanup, and call it directly after symbol
2087 reading, is because the cleanup protects us in case of errors, but is
2088 discarded if symbol reading is successful. */
2089
2090#if 0
2091/* FIXME: As free_named_symtabs is currently a big noop this function
2092 is no longer needed. */
a14ed312 2093static void clear_symtab_users_once (void);
c906108c
SS
2094
2095static int clear_symtab_users_queued;
2096static int clear_symtab_users_done;
2097
2098static void
fba45db2 2099clear_symtab_users_once (void)
c906108c
SS
2100{
2101 /* Enforce once-per-`do_cleanups'-semantics */
2102 if (clear_symtab_users_queued <= clear_symtab_users_done)
2103 return;
2104 clear_symtab_users_done = clear_symtab_users_queued;
2105
2106 clear_symtab_users ();
2107}
2108#endif
2109
2110/* Delete the specified psymtab, and any others that reference it. */
2111
2112static void
fba45db2 2113cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2114{
2115 struct partial_symtab *ps, *pprev = NULL;
2116 int i;
2117
2118 /* Find its previous psymtab in the chain */
c5aa993b
JM
2119 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2120 {
2121 if (ps == pst)
2122 break;
2123 pprev = ps;
2124 }
c906108c 2125
c5aa993b
JM
2126 if (ps)
2127 {
2128 /* Unhook it from the chain. */
2129 if (ps == pst->objfile->psymtabs)
2130 pst->objfile->psymtabs = ps->next;
2131 else
2132 pprev->next = ps->next;
2133
2134 /* FIXME, we can't conveniently deallocate the entries in the
2135 partial_symbol lists (global_psymbols/static_psymbols) that
2136 this psymtab points to. These just take up space until all
2137 the psymtabs are reclaimed. Ditto the dependencies list and
2138 filename, which are all in the psymbol_obstack. */
2139
2140 /* We need to cashier any psymtab that has this one as a dependency... */
2141 again:
2142 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2143 {
2144 for (i = 0; i < ps->number_of_dependencies; i++)
2145 {
2146 if (ps->dependencies[i] == pst)
2147 {
2148 cashier_psymtab (ps);
2149 goto again; /* Must restart, chain has been munged. */
2150 }
2151 }
c906108c 2152 }
c906108c 2153 }
c906108c
SS
2154}
2155
2156/* If a symtab or psymtab for filename NAME is found, free it along
2157 with any dependent breakpoints, displays, etc.
2158 Used when loading new versions of object modules with the "add-file"
2159 command. This is only called on the top-level symtab or psymtab's name;
2160 it is not called for subsidiary files such as .h files.
2161
2162 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2163 FIXME. The return value appears to never be used.
c906108c
SS
2164
2165 FIXME. I think this is not the best way to do this. We should
2166 work on being gentler to the environment while still cleaning up
2167 all stray pointers into the freed symtab. */
2168
2169int
fba45db2 2170free_named_symtabs (char *name)
c906108c
SS
2171{
2172#if 0
2173 /* FIXME: With the new method of each objfile having it's own
2174 psymtab list, this function needs serious rethinking. In particular,
2175 why was it ever necessary to toss psymtabs with specific compilation
2176 unit filenames, as opposed to all psymtabs from a particular symbol
2177 file? -- fnf
2178 Well, the answer is that some systems permit reloading of particular
2179 compilation units. We want to blow away any old info about these
2180 compilation units, regardless of which objfiles they arrived in. --gnu. */
2181
2182 register struct symtab *s;
2183 register struct symtab *prev;
2184 register struct partial_symtab *ps;
2185 struct blockvector *bv;
2186 int blewit = 0;
2187
2188 /* We only wack things if the symbol-reload switch is set. */
2189 if (!symbol_reloading)
2190 return 0;
2191
2192 /* Some symbol formats have trouble providing file names... */
2193 if (name == 0 || *name == '\0')
2194 return 0;
2195
2196 /* Look for a psymtab with the specified name. */
2197
2198again2:
c5aa993b
JM
2199 for (ps = partial_symtab_list; ps; ps = ps->next)
2200 {
2201 if (STREQ (name, ps->filename))
2202 {
2203 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2204 goto again2; /* Must restart, chain has been munged */
2205 }
c906108c 2206 }
c906108c
SS
2207
2208 /* Look for a symtab with the specified name. */
2209
2210 for (s = symtab_list; s; s = s->next)
2211 {
2212 if (STREQ (name, s->filename))
2213 break;
2214 prev = s;
2215 }
2216
2217 if (s)
2218 {
2219 if (s == symtab_list)
2220 symtab_list = s->next;
2221 else
2222 prev->next = s->next;
2223
2224 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
2225 or not they depend on the symtab being freed. This should be
2226 changed so that only those data structures affected are deleted. */
c906108c
SS
2227
2228 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
2229 This test is necessary due to a bug in "dbxread.c" that
2230 causes empty symtabs to be created for N_SO symbols that
2231 contain the pathname of the object file. (This problem
2232 has been fixed in GDB 3.9x). */
c906108c
SS
2233
2234 bv = BLOCKVECTOR (s);
2235 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2236 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2237 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2238 {
2239 complain (&oldsyms_complaint, name);
2240
2241 clear_symtab_users_queued++;
2242 make_cleanup (clear_symtab_users_once, 0);
2243 blewit = 1;
c5aa993b
JM
2244 }
2245 else
2246 {
c906108c
SS
2247 complain (&empty_symtab_complaint, name);
2248 }
2249
2250 free_symtab (s);
2251 }
2252 else
2253 {
2254 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
2255 even though no symtab was found, since the file might have
2256 been compiled without debugging, and hence not be associated
2257 with a symtab. In order to handle this correctly, we would need
2258 to keep a list of text address ranges for undebuggable files.
2259 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
2260 ;
2261 }
2262
2263 /* FIXME, what about the minimal symbol table? */
2264 return blewit;
2265#else
2266 return (0);
2267#endif
2268}
2269\f
2270/* Allocate and partially fill a partial symtab. It will be
2271 completely filled at the end of the symbol list.
2272
d4f3574e 2273 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
2274
2275struct partial_symtab *
fba45db2
KB
2276start_psymtab_common (struct objfile *objfile,
2277 struct section_offsets *section_offsets, char *filename,
2278 CORE_ADDR textlow, struct partial_symbol **global_syms,
2279 struct partial_symbol **static_syms)
c906108c
SS
2280{
2281 struct partial_symtab *psymtab;
2282
2283 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
2284 psymtab->section_offsets = section_offsets;
2285 psymtab->textlow = textlow;
2286 psymtab->texthigh = psymtab->textlow; /* default */
2287 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2288 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
2289 return (psymtab);
2290}
2291\f
2292/* Add a symbol with a long value to a psymtab.
2293 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2294
2295void
fba45db2
KB
2296add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2297 enum address_class class,
2298 struct psymbol_allocation_list *list, long val, /* Value as a long */
2299 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2300 enum language language, struct objfile *objfile)
c906108c
SS
2301{
2302 register struct partial_symbol *psym;
2303 char *buf = alloca (namelength + 1);
2304 /* psymbol is static so that there will be no uninitialized gaps in the
2305 structure which might contain random data, causing cache misses in
2306 bcache. */
2307 static struct partial_symbol psymbol;
2308
2309 /* Create local copy of the partial symbol */
2310 memcpy (buf, name, namelength);
2311 buf[namelength] = '\0';
2312 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2313 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2314 if (val != 0)
2315 {
2316 SYMBOL_VALUE (&psymbol) = val;
2317 }
2318 else
2319 {
2320 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2321 }
2322 SYMBOL_SECTION (&psymbol) = 0;
2323 SYMBOL_LANGUAGE (&psymbol) = language;
2324 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2325 PSYMBOL_CLASS (&psymbol) = class;
2326 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2327
2328 /* Stash the partial symbol away in the cache */
2329 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2330
2331 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2332 if (list->next >= list->list + list->size)
2333 {
2334 extend_psymbol_list (list, objfile);
2335 }
2336 *list->next++ = psym;
2337 OBJSTAT (objfile, n_psyms++);
2338}
2339
2340/* Add a symbol with a long value to a psymtab. This differs from
2341 * add_psymbol_to_list above in taking both a mangled and a demangled
2342 * name. */
2343
2344void
fba45db2
KB
2345add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2346 int dem_namelength, namespace_enum namespace,
2347 enum address_class class,
2348 struct psymbol_allocation_list *list, long val, /* Value as a long */
2349 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2350 enum language language,
2351 struct objfile *objfile)
c906108c
SS
2352{
2353 register struct partial_symbol *psym;
2354 char *buf = alloca (namelength + 1);
2355 /* psymbol is static so that there will be no uninitialized gaps in the
2356 structure which might contain random data, causing cache misses in
2357 bcache. */
2358 static struct partial_symbol psymbol;
2359
2360 /* Create local copy of the partial symbol */
2361
2362 memcpy (buf, name, namelength);
2363 buf[namelength] = '\0';
2364 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2365
2366 buf = alloca (dem_namelength + 1);
2367 memcpy (buf, dem_name, dem_namelength);
2368 buf[dem_namelength] = '\0';
c5aa993b 2369
c906108c
SS
2370 switch (language)
2371 {
c5aa993b
JM
2372 case language_c:
2373 case language_cplus:
2374 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2375 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2376 break;
2377 case language_chill:
2378 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2379 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2380
c906108c
SS
2381 /* FIXME What should be done for the default case? Ignoring for now. */
2382 }
2383
2384 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2385 if (val != 0)
2386 {
2387 SYMBOL_VALUE (&psymbol) = val;
2388 }
2389 else
2390 {
2391 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2392 }
2393 SYMBOL_SECTION (&psymbol) = 0;
2394 SYMBOL_LANGUAGE (&psymbol) = language;
2395 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2396 PSYMBOL_CLASS (&psymbol) = class;
2397 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2398
2399 /* Stash the partial symbol away in the cache */
2400 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2401
2402 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2403 if (list->next >= list->list + list->size)
2404 {
2405 extend_psymbol_list (list, objfile);
2406 }
2407 *list->next++ = psym;
2408 OBJSTAT (objfile, n_psyms++);
2409}
2410
2411/* Initialize storage for partial symbols. */
2412
2413void
fba45db2 2414init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
2415{
2416 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
2417
2418 if (objfile->global_psymbols.list)
c906108c 2419 {
aac7f4ea 2420 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
c906108c 2421 }
c5aa993b 2422 if (objfile->static_psymbols.list)
c906108c 2423 {
aac7f4ea 2424 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
c906108c 2425 }
c5aa993b 2426
c906108c
SS
2427 /* Current best guess is that approximately a twentieth
2428 of the total symbols (in a debugging file) are global or static
2429 oriented symbols */
c906108c 2430
c5aa993b
JM
2431 objfile->global_psymbols.size = total_symbols / 10;
2432 objfile->static_psymbols.size = total_symbols / 10;
2433
2434 if (objfile->global_psymbols.size > 0)
c906108c 2435 {
c5aa993b
JM
2436 objfile->global_psymbols.next =
2437 objfile->global_psymbols.list = (struct partial_symbol **)
2438 xmmalloc (objfile->md, (objfile->global_psymbols.size
2439 * sizeof (struct partial_symbol *)));
c906108c 2440 }
c5aa993b 2441 if (objfile->static_psymbols.size > 0)
c906108c 2442 {
c5aa993b
JM
2443 objfile->static_psymbols.next =
2444 objfile->static_psymbols.list = (struct partial_symbol **)
2445 xmmalloc (objfile->md, (objfile->static_psymbols.size
2446 * sizeof (struct partial_symbol *)));
c906108c
SS
2447 }
2448}
2449
2450/* OVERLAYS:
2451 The following code implements an abstraction for debugging overlay sections.
2452
2453 The target model is as follows:
2454 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2455 same VMA, each with its own unique LMA (or load address).
c906108c 2456 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2457 sections, one by one, from the load address into the VMA address.
c906108c 2458 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2459 sections should be considered to be mapped from the VMA to the LMA.
2460 This information is used for symbol lookup, and memory read/write.
2461 For instance, if a section has been mapped then its contents
2462 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2463
2464 Two levels of debugger support for overlays are available. One is
2465 "manual", in which the debugger relies on the user to tell it which
2466 overlays are currently mapped. This level of support is
2467 implemented entirely in the core debugger, and the information about
2468 whether a section is mapped is kept in the objfile->obj_section table.
2469
2470 The second level of support is "automatic", and is only available if
2471 the target-specific code provides functionality to read the target's
2472 overlay mapping table, and translate its contents for the debugger
2473 (by updating the mapped state information in the obj_section tables).
2474
2475 The interface is as follows:
c5aa993b
JM
2476 User commands:
2477 overlay map <name> -- tell gdb to consider this section mapped
2478 overlay unmap <name> -- tell gdb to consider this section unmapped
2479 overlay list -- list the sections that GDB thinks are mapped
2480 overlay read-target -- get the target's state of what's mapped
2481 overlay off/manual/auto -- set overlay debugging state
2482 Functional interface:
2483 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2484 section, return that section.
2485 find_pc_overlay(pc): find any overlay section that contains
2486 the pc, either in its VMA or its LMA
2487 overlay_is_mapped(sect): true if overlay is marked as mapped
2488 section_is_overlay(sect): true if section's VMA != LMA
2489 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2490 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2491 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2492 overlay_mapped_address(...): map an address from section's LMA to VMA
2493 overlay_unmapped_address(...): map an address from section's VMA to LMA
2494 symbol_overlayed_address(...): Return a "current" address for symbol:
2495 either in VMA or LMA depending on whether
2496 the symbol's section is currently mapped
c906108c
SS
2497 */
2498
2499/* Overlay debugging state: */
2500
2501int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2502int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2503
2504/* Target vector for refreshing overlay mapped state */
a14ed312 2505static void simple_overlay_update (struct obj_section *);
507f3c78 2506void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
c906108c
SS
2507
2508/* Function: section_is_overlay (SECTION)
2509 Returns true if SECTION has VMA not equal to LMA, ie.
2510 SECTION is loaded at an address different from where it will "run". */
2511
2512int
fba45db2 2513section_is_overlay (asection *section)
c906108c
SS
2514{
2515 if (overlay_debugging)
2516 if (section && section->lma != 0 &&
2517 section->vma != section->lma)
2518 return 1;
2519
2520 return 0;
2521}
2522
2523/* Function: overlay_invalidate_all (void)
2524 Invalidate the mapped state of all overlay sections (mark it as stale). */
2525
2526static void
fba45db2 2527overlay_invalidate_all (void)
c906108c 2528{
c5aa993b 2529 struct objfile *objfile;
c906108c
SS
2530 struct obj_section *sect;
2531
2532 ALL_OBJSECTIONS (objfile, sect)
2533 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 2534 sect->ovly_mapped = -1;
c906108c
SS
2535}
2536
2537/* Function: overlay_is_mapped (SECTION)
2538 Returns true if section is an overlay, and is currently mapped.
2539 Private: public access is thru function section_is_mapped.
2540
2541 Access to the ovly_mapped flag is restricted to this function, so
2542 that we can do automatic update. If the global flag
2543 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2544 overlay_invalidate_all. If the mapped state of the particular
2545 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2546
c5aa993b 2547static int
fba45db2 2548overlay_is_mapped (struct obj_section *osect)
c906108c
SS
2549{
2550 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2551 return 0;
2552
c5aa993b 2553 switch (overlay_debugging)
c906108c
SS
2554 {
2555 default:
c5aa993b
JM
2556 case 0:
2557 return 0; /* overlay debugging off */
c906108c
SS
2558 case -1: /* overlay debugging automatic */
2559 /* Unles there is a target_overlay_update function,
c5aa993b 2560 there's really nothing useful to do here (can't really go auto) */
c906108c
SS
2561 if (target_overlay_update)
2562 {
2563 if (overlay_cache_invalid)
2564 {
2565 overlay_invalidate_all ();
2566 overlay_cache_invalid = 0;
2567 }
2568 if (osect->ovly_mapped == -1)
2569 (*target_overlay_update) (osect);
2570 }
2571 /* fall thru to manual case */
2572 case 1: /* overlay debugging manual */
2573 return osect->ovly_mapped == 1;
2574 }
2575}
2576
2577/* Function: section_is_mapped
2578 Returns true if section is an overlay, and is currently mapped. */
2579
2580int
fba45db2 2581section_is_mapped (asection *section)
c906108c 2582{
c5aa993b 2583 struct objfile *objfile;
c906108c
SS
2584 struct obj_section *osect;
2585
2586 if (overlay_debugging)
2587 if (section && section_is_overlay (section))
2588 ALL_OBJSECTIONS (objfile, osect)
2589 if (osect->the_bfd_section == section)
c5aa993b 2590 return overlay_is_mapped (osect);
c906108c
SS
2591
2592 return 0;
2593}
2594
2595/* Function: pc_in_unmapped_range
2596 If PC falls into the lma range of SECTION, return true, else false. */
2597
2598CORE_ADDR
fba45db2 2599pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2600{
2601 int size;
2602
2603 if (overlay_debugging)
2604 if (section && section_is_overlay (section))
2605 {
2606 size = bfd_get_section_size_before_reloc (section);
2607 if (section->lma <= pc && pc < section->lma + size)
2608 return 1;
2609 }
2610 return 0;
2611}
2612
2613/* Function: pc_in_mapped_range
2614 If PC falls into the vma range of SECTION, return true, else false. */
2615
2616CORE_ADDR
fba45db2 2617pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c
SS
2618{
2619 int size;
2620
2621 if (overlay_debugging)
2622 if (section && section_is_overlay (section))
2623 {
2624 size = bfd_get_section_size_before_reloc (section);
2625 if (section->vma <= pc && pc < section->vma + size)
2626 return 1;
2627 }
2628 return 0;
2629}
2630
9ec8e6a0
JB
2631
2632/* Return true if the mapped ranges of sections A and B overlap, false
2633 otherwise. */
2634int
2635sections_overlap (asection *a, asection *b)
2636{
2637 CORE_ADDR a_start = a->vma;
2638 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2639 CORE_ADDR b_start = b->vma;
2640 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2641
2642 return (a_start < b_end && b_start < a_end);
2643}
2644
c906108c
SS
2645/* Function: overlay_unmapped_address (PC, SECTION)
2646 Returns the address corresponding to PC in the unmapped (load) range.
2647 May be the same as PC. */
2648
2649CORE_ADDR
fba45db2 2650overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2651{
2652 if (overlay_debugging)
2653 if (section && section_is_overlay (section) &&
2654 pc_in_mapped_range (pc, section))
2655 return pc + section->lma - section->vma;
2656
2657 return pc;
2658}
2659
2660/* Function: overlay_mapped_address (PC, SECTION)
2661 Returns the address corresponding to PC in the mapped (runtime) range.
2662 May be the same as PC. */
2663
2664CORE_ADDR
fba45db2 2665overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c
SS
2666{
2667 if (overlay_debugging)
2668 if (section && section_is_overlay (section) &&
2669 pc_in_unmapped_range (pc, section))
2670 return pc + section->vma - section->lma;
2671
2672 return pc;
2673}
2674
2675
2676/* Function: symbol_overlayed_address
2677 Return one of two addresses (relative to the VMA or to the LMA),
2678 depending on whether the section is mapped or not. */
2679
c5aa993b 2680CORE_ADDR
fba45db2 2681symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
2682{
2683 if (overlay_debugging)
2684 {
2685 /* If the symbol has no section, just return its regular address. */
2686 if (section == 0)
2687 return address;
2688 /* If the symbol's section is not an overlay, just return its address */
2689 if (!section_is_overlay (section))
2690 return address;
2691 /* If the symbol's section is mapped, just return its address */
2692 if (section_is_mapped (section))
2693 return address;
2694 /*
2695 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2696 * then return its LOADED address rather than its vma address!!
2697 */
2698 return overlay_unmapped_address (address, section);
2699 }
2700 return address;
2701}
2702
2703/* Function: find_pc_overlay (PC)
2704 Return the best-match overlay section for PC:
2705 If PC matches a mapped overlay section's VMA, return that section.
2706 Else if PC matches an unmapped section's VMA, return that section.
2707 Else if PC matches an unmapped section's LMA, return that section. */
2708
2709asection *
fba45db2 2710find_pc_overlay (CORE_ADDR pc)
c906108c 2711{
c5aa993b 2712 struct objfile *objfile;
c906108c
SS
2713 struct obj_section *osect, *best_match = NULL;
2714
2715 if (overlay_debugging)
2716 ALL_OBJSECTIONS (objfile, osect)
2717 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
2718 {
2719 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2720 {
2721 if (overlay_is_mapped (osect))
2722 return osect->the_bfd_section;
2723 else
2724 best_match = osect;
2725 }
2726 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2727 best_match = osect;
2728 }
c906108c
SS
2729 return best_match ? best_match->the_bfd_section : NULL;
2730}
2731
2732/* Function: find_pc_mapped_section (PC)
2733 If PC falls into the VMA address range of an overlay section that is
2734 currently marked as MAPPED, return that section. Else return NULL. */
2735
2736asection *
fba45db2 2737find_pc_mapped_section (CORE_ADDR pc)
c906108c 2738{
c5aa993b 2739 struct objfile *objfile;
c906108c
SS
2740 struct obj_section *osect;
2741
2742 if (overlay_debugging)
2743 ALL_OBJSECTIONS (objfile, osect)
2744 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2745 overlay_is_mapped (osect))
c5aa993b 2746 return osect->the_bfd_section;
c906108c
SS
2747
2748 return NULL;
2749}
2750
2751/* Function: list_overlays_command
2752 Print a list of mapped sections and their PC ranges */
2753
2754void
fba45db2 2755list_overlays_command (char *args, int from_tty)
c906108c 2756{
c5aa993b
JM
2757 int nmapped = 0;
2758 struct objfile *objfile;
c906108c
SS
2759 struct obj_section *osect;
2760
2761 if (overlay_debugging)
2762 ALL_OBJSECTIONS (objfile, osect)
2763 if (overlay_is_mapped (osect))
c5aa993b
JM
2764 {
2765 const char *name;
2766 bfd_vma lma, vma;
2767 int size;
2768
2769 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2770 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2771 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2772 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2773
2774 printf_filtered ("Section %s, loaded at ", name);
2775 print_address_numeric (lma, 1, gdb_stdout);
2776 puts_filtered (" - ");
2777 print_address_numeric (lma + size, 1, gdb_stdout);
2778 printf_filtered (", mapped at ");
2779 print_address_numeric (vma, 1, gdb_stdout);
2780 puts_filtered (" - ");
2781 print_address_numeric (vma + size, 1, gdb_stdout);
2782 puts_filtered ("\n");
2783
2784 nmapped++;
2785 }
c906108c
SS
2786 if (nmapped == 0)
2787 printf_filtered ("No sections are mapped.\n");
2788}
2789
2790/* Function: map_overlay_command
2791 Mark the named section as mapped (ie. residing at its VMA address). */
2792
2793void
fba45db2 2794map_overlay_command (char *args, int from_tty)
c906108c 2795{
c5aa993b
JM
2796 struct objfile *objfile, *objfile2;
2797 struct obj_section *sec, *sec2;
2798 asection *bfdsec;
c906108c
SS
2799
2800 if (!overlay_debugging)
515ad16c
EZ
2801 error ("\
2802Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2803the 'overlay manual' command.");
c906108c
SS
2804
2805 if (args == 0 || *args == 0)
2806 error ("Argument required: name of an overlay section");
2807
2808 /* First, find a section matching the user supplied argument */
2809 ALL_OBJSECTIONS (objfile, sec)
2810 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2811 {
2812 /* Now, check to see if the section is an overlay. */
2813 bfdsec = sec->the_bfd_section;
2814 if (!section_is_overlay (bfdsec))
2815 continue; /* not an overlay section */
2816
2817 /* Mark the overlay as "mapped" */
2818 sec->ovly_mapped = 1;
2819
2820 /* Next, make a pass and unmap any sections that are
2821 overlapped by this new section: */
2822 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
2823 if (sec2->ovly_mapped
2824 && sec != sec2
2825 && sec->the_bfd_section != sec2->the_bfd_section
2826 && sections_overlap (sec->the_bfd_section,
2827 sec2->the_bfd_section))
c5aa993b
JM
2828 {
2829 if (info_verbose)
2830 printf_filtered ("Note: section %s unmapped by overlap\n",
2831 bfd_section_name (objfile->obfd,
2832 sec2->the_bfd_section));
2833 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2834 }
2835 return;
2836 }
c906108c
SS
2837 error ("No overlay section called %s", args);
2838}
2839
2840/* Function: unmap_overlay_command
2841 Mark the overlay section as unmapped
2842 (ie. resident in its LMA address range, rather than the VMA range). */
2843
2844void
fba45db2 2845unmap_overlay_command (char *args, int from_tty)
c906108c 2846{
c5aa993b 2847 struct objfile *objfile;
c906108c
SS
2848 struct obj_section *sec;
2849
2850 if (!overlay_debugging)
515ad16c
EZ
2851 error ("\
2852Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2853the 'overlay manual' command.");
c906108c
SS
2854
2855 if (args == 0 || *args == 0)
2856 error ("Argument required: name of an overlay section");
2857
2858 /* First, find a section matching the user supplied argument */
2859 ALL_OBJSECTIONS (objfile, sec)
2860 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
2861 {
2862 if (!sec->ovly_mapped)
2863 error ("Section %s is not mapped", args);
2864 sec->ovly_mapped = 0;
2865 return;
2866 }
c906108c
SS
2867 error ("No overlay section called %s", args);
2868}
2869
2870/* Function: overlay_auto_command
2871 A utility command to turn on overlay debugging.
2872 Possibly this should be done via a set/show command. */
2873
2874static void
fba45db2 2875overlay_auto_command (char *args, int from_tty)
c906108c
SS
2876{
2877 overlay_debugging = -1;
2878 if (info_verbose)
2879 printf_filtered ("Automatic overlay debugging enabled.");
2880}
2881
2882/* Function: overlay_manual_command
2883 A utility command to turn on overlay debugging.
2884 Possibly this should be done via a set/show command. */
2885
2886static void
fba45db2 2887overlay_manual_command (char *args, int from_tty)
c906108c
SS
2888{
2889 overlay_debugging = 1;
2890 if (info_verbose)
2891 printf_filtered ("Overlay debugging enabled.");
2892}
2893
2894/* Function: overlay_off_command
2895 A utility command to turn on overlay debugging.
2896 Possibly this should be done via a set/show command. */
2897
2898static void
fba45db2 2899overlay_off_command (char *args, int from_tty)
c906108c 2900{
c5aa993b 2901 overlay_debugging = 0;
c906108c
SS
2902 if (info_verbose)
2903 printf_filtered ("Overlay debugging disabled.");
2904}
2905
2906static void
fba45db2 2907overlay_load_command (char *args, int from_tty)
c906108c
SS
2908{
2909 if (target_overlay_update)
2910 (*target_overlay_update) (NULL);
2911 else
2912 error ("This target does not know how to read its overlay state.");
2913}
2914
2915/* Function: overlay_command
2916 A place-holder for a mis-typed command */
2917
2918/* Command list chain containing all defined "overlay" subcommands. */
2919struct cmd_list_element *overlaylist;
2920
2921static void
fba45db2 2922overlay_command (char *args, int from_tty)
c906108c 2923{
c5aa993b 2924 printf_unfiltered
c906108c
SS
2925 ("\"overlay\" must be followed by the name of an overlay command.\n");
2926 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2927}
2928
2929
2930/* Target Overlays for the "Simplest" overlay manager:
2931
2932 This is GDB's default target overlay layer. It works with the
2933 minimal overlay manager supplied as an example by Cygnus. The
2934 entry point is via a function pointer "target_overlay_update",
2935 so targets that use a different runtime overlay manager can
2936 substitute their own overlay_update function and take over the
2937 function pointer.
2938
2939 The overlay_update function pokes around in the target's data structures
2940 to see what overlays are mapped, and updates GDB's overlay mapping with
2941 this information.
2942
2943 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
2944 unsigned _novlys; /# number of overlay sections #/
2945 unsigned _ovly_table[_novlys][4] = {
2946 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2947 {..., ..., ..., ...},
2948 }
2949 unsigned _novly_regions; /# number of overlay regions #/
2950 unsigned _ovly_region_table[_novly_regions][3] = {
2951 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2952 {..., ..., ...},
2953 }
c906108c
SS
2954 These functions will attempt to update GDB's mappedness state in the
2955 symbol section table, based on the target's mappedness state.
2956
2957 To do this, we keep a cached copy of the target's _ovly_table, and
2958 attempt to detect when the cached copy is invalidated. The main
2959 entry point is "simple_overlay_update(SECT), which looks up SECT in
2960 the cached table and re-reads only the entry for that section from
2961 the target (whenever possible).
2962 */
2963
2964/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 2965static unsigned (*cache_ovly_table)[4] = 0;
c906108c 2966#if 0
c5aa993b 2967static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 2968#endif
c5aa993b 2969static unsigned cache_novlys = 0;
c906108c 2970#if 0
c5aa993b 2971static unsigned cache_novly_regions = 0;
c906108c
SS
2972#endif
2973static CORE_ADDR cache_ovly_table_base = 0;
2974#if 0
2975static CORE_ADDR cache_ovly_region_table_base = 0;
2976#endif
c5aa993b
JM
2977enum ovly_index
2978 {
2979 VMA, SIZE, LMA, MAPPED
2980 };
c906108c
SS
2981#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2982
2983/* Throw away the cached copy of _ovly_table */
2984static void
fba45db2 2985simple_free_overlay_table (void)
c906108c
SS
2986{
2987 if (cache_ovly_table)
b8c9b27d 2988 xfree (cache_ovly_table);
c5aa993b 2989 cache_novlys = 0;
c906108c
SS
2990 cache_ovly_table = NULL;
2991 cache_ovly_table_base = 0;
2992}
2993
2994#if 0
2995/* Throw away the cached copy of _ovly_region_table */
2996static void
fba45db2 2997simple_free_overlay_region_table (void)
c906108c
SS
2998{
2999 if (cache_ovly_region_table)
b8c9b27d 3000 xfree (cache_ovly_region_table);
c5aa993b 3001 cache_novly_regions = 0;
c906108c
SS
3002 cache_ovly_region_table = NULL;
3003 cache_ovly_region_table_base = 0;
3004}
3005#endif
3006
3007/* Read an array of ints from the target into a local buffer.
3008 Convert to host order. int LEN is number of ints */
3009static void
fba45db2 3010read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c
SS
3011{
3012 char *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3013 int i;
c906108c
SS
3014
3015 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3016 for (i = 0; i < len; i++)
c5aa993b 3017 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3018 TARGET_LONG_BYTES);
3019}
3020
3021/* Find and grab a copy of the target _ovly_table
3022 (and _novlys, which is needed for the table's size) */
c5aa993b 3023static int
fba45db2 3024simple_read_overlay_table (void)
c906108c 3025{
0d43edd1 3026 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3027
3028 simple_free_overlay_table ();
9b27852e 3029 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3030 if (! novlys_msym)
c906108c 3031 {
0d43edd1
JB
3032 error ("Error reading inferior's overlay table: "
3033 "couldn't find `_novlys' variable\n"
3034 "in inferior. Use `overlay manual' mode.");
3035 return 0;
c906108c 3036 }
0d43edd1 3037
9b27852e 3038 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3039 if (! ovly_table_msym)
3040 {
3041 error ("Error reading inferior's overlay table: couldn't find "
3042 "`_ovly_table' array\n"
3043 "in inferior. Use `overlay manual' mode.");
3044 return 0;
3045 }
3046
3047 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3048 cache_ovly_table
3049 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3050 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3051 read_target_long_array (cache_ovly_table_base,
3052 (int *) cache_ovly_table,
3053 cache_novlys * 4);
3054
c5aa993b 3055 return 1; /* SUCCESS */
c906108c
SS
3056}
3057
3058#if 0
3059/* Find and grab a copy of the target _ovly_region_table
3060 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3061static int
fba45db2 3062simple_read_overlay_region_table (void)
c906108c
SS
3063{
3064 struct minimal_symbol *msym;
3065
3066 simple_free_overlay_region_table ();
9b27852e 3067 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3068 if (msym != NULL)
3069 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3070 else
3071 return 0; /* failure */
c906108c
SS
3072 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3073 if (cache_ovly_region_table != NULL)
3074 {
9b27852e 3075 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3076 if (msym != NULL)
3077 {
3078 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b
JM
3079 read_target_long_array (cache_ovly_region_table_base,
3080 (int *) cache_ovly_region_table,
c906108c
SS
3081 cache_novly_regions * 3);
3082 }
c5aa993b
JM
3083 else
3084 return 0; /* failure */
c906108c 3085 }
c5aa993b
JM
3086 else
3087 return 0; /* failure */
3088 return 1; /* SUCCESS */
c906108c
SS
3089}
3090#endif
3091
3092/* Function: simple_overlay_update_1
3093 A helper function for simple_overlay_update. Assuming a cached copy
3094 of _ovly_table exists, look through it to find an entry whose vma,
3095 lma and size match those of OSECT. Re-read the entry and make sure
3096 it still matches OSECT (else the table may no longer be valid).
3097 Set OSECT's mapped state to match the entry. Return: 1 for
3098 success, 0 for failure. */
3099
3100static int
fba45db2 3101simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3102{
3103 int i, size;
3104
3105 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3106 for (i = 0; i < cache_novlys; i++)
c5aa993b
JM
3107 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3108 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3109 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3110 {
3111 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3112 (int *) cache_ovly_table[i], 4);
c5aa993b
JM
3113 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3114 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3115 cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3116 {
3117 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3118 return 1;
3119 }
c5aa993b 3120 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3121 return 0;
3122 }
3123 return 0;
3124}
3125
3126/* Function: simple_overlay_update
3127 If OSECT is NULL, then update all sections' mapped state
3128 (after re-reading the entire target _ovly_table).
3129 If OSECT is non-NULL, then try to find a matching entry in the
3130 cached ovly_table and update only OSECT's mapped state.
3131 If a cached entry can't be found or the cache isn't valid, then
3132 re-read the entire cache, and go ahead and update all sections. */
3133
3134static void
fba45db2 3135simple_overlay_update (struct obj_section *osect)
c906108c 3136{
c5aa993b 3137 struct objfile *objfile;
c906108c
SS
3138
3139 /* Were we given an osect to look up? NULL means do all of them. */
3140 if (osect)
3141 /* Have we got a cached copy of the target's overlay table? */
3142 if (cache_ovly_table != NULL)
3143 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3144 if (cache_ovly_table_base ==
9b27852e 3145 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3146 /* Then go ahead and try to look up this single section in the cache */
3147 if (simple_overlay_update_1 (osect))
3148 /* Found it! We're done. */
3149 return;
3150
3151 /* Cached table no good: need to read the entire table anew.
3152 Or else we want all the sections, in which case it's actually
3153 more efficient to read the whole table in one block anyway. */
3154
0d43edd1
JB
3155 if (! simple_read_overlay_table ())
3156 return;
3157
c906108c
SS
3158 /* Now may as well update all sections, even if only one was requested. */
3159 ALL_OBJSECTIONS (objfile, osect)
3160 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3161 {
3162 int i, size;
3163
3164 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3165 for (i = 0; i < cache_novlys; i++)
3166 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3167 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3168 cache_ovly_table[i][SIZE] == size */ )
3169 { /* obj_section matches i'th entry in ovly_table */
3170 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3171 break; /* finished with inner for loop: break out */
3172 }
3173 }
c906108c
SS
3174}
3175
3176
3177void
fba45db2 3178_initialize_symfile (void)
c906108c
SS
3179{
3180 struct cmd_list_element *c;
c5aa993b 3181
c906108c 3182 c = add_cmd ("symbol-file", class_files, symbol_file_command,
c5aa993b 3183 "Load symbol table from executable file FILE.\n\
c906108c
SS
3184The `file' command can also load symbol tables, as well as setting the file\n\
3185to execute.", &cmdlist);
3186 c->completer = filename_completer;
3187
3188 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
db162d44 3189 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
c906108c 3190Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2acceee2 3191ADDR is the starting address of the file's text.\n\
db162d44
EZ
3192The optional arguments are section-name section-address pairs and\n\
3193should be specified if the data and bss segments are not contiguous\n\
3194with the text. SECT is a section name to be loaded at SECT_ADDR.",
c906108c
SS
3195 &cmdlist);
3196 c->completer = filename_completer;
3197
3198 c = add_cmd ("add-shared-symbol-files", class_files,
3199 add_shared_symbol_files_command,
3200 "Load the symbols from shared objects in the dynamic linker's link map.",
c5aa993b 3201 &cmdlist);
c906108c
SS
3202 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3203 &cmdlist);
3204
3205 c = add_cmd ("load", class_files, load_command,
c5aa993b 3206 "Dynamically load FILE into the running program, and record its symbols\n\
c906108c
SS
3207for access from GDB.", &cmdlist);
3208 c->completer = filename_completer;
3209
3210 add_show_from_set
3211 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
c5aa993b
JM
3212 (char *) &symbol_reloading,
3213 "Set dynamic symbol table reloading multiple times in one run.",
c906108c
SS
3214 &setlist),
3215 &showlist);
3216
c5aa993b
JM
3217 add_prefix_cmd ("overlay", class_support, overlay_command,
3218 "Commands for debugging overlays.", &overlaylist,
c906108c
SS
3219 "overlay ", 0, &cmdlist);
3220
3221 add_com_alias ("ovly", "overlay", class_alias, 1);
3222 add_com_alias ("ov", "overlay", class_alias, 1);
3223
c5aa993b 3224 add_cmd ("map-overlay", class_support, map_overlay_command,
c906108c
SS
3225 "Assert that an overlay section is mapped.", &overlaylist);
3226
c5aa993b 3227 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
c906108c
SS
3228 "Assert that an overlay section is unmapped.", &overlaylist);
3229
c5aa993b 3230 add_cmd ("list-overlays", class_support, list_overlays_command,
c906108c
SS
3231 "List mappings of overlay sections.", &overlaylist);
3232
c5aa993b 3233 add_cmd ("manual", class_support, overlay_manual_command,
c906108c 3234 "Enable overlay debugging.", &overlaylist);
c5aa993b 3235 add_cmd ("off", class_support, overlay_off_command,
c906108c 3236 "Disable overlay debugging.", &overlaylist);
c5aa993b 3237 add_cmd ("auto", class_support, overlay_auto_command,
c906108c 3238 "Enable automatic overlay debugging.", &overlaylist);
c5aa993b 3239 add_cmd ("load-target", class_support, overlay_load_command,
c906108c
SS
3240 "Read the overlay mapping state from the target.", &overlaylist);
3241
3242 /* Filename extension to source language lookup table: */
3243 init_filename_language_table ();
3244 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
c5aa993b 3245 (char *) &ext_args,
c906108c
SS
3246 "Set mapping between filename extension and source language.\n\
3247Usage: set extension-language .foo bar",
c5aa993b 3248 &setlist);
c906108c
SS
3249 c->function.cfunc = set_ext_lang_command;
3250
c5aa993b 3251 add_info ("extensions", info_ext_lang_command,
c906108c 3252 "All filename extensions associated with a source language.");
917317f4
JM
3253
3254 add_show_from_set
3255 (add_set_cmd ("download-write-size", class_obscure,
3256 var_integer, (char *) &download_write_size,
3257 "Set the write size used when downloading a program.\n"
3258 "Only used when downloading a program onto a remote\n"
3259 "target. Specify zero, or a negative value, to disable\n"
3260 "blocked writes. The actual size of each transfer is also\n"
3261 "limited by the size of the target packet and the memory\n"
3262 "cache.\n",
3263 &setlist),
3264 &showlist);
c906108c 3265}
This page took 0.361997 seconds and 4 git commands to generate.