Make sure that sorting does not change section order
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
e2882c85 3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
76727919 49#include "observable.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
37e136b1 67#include <algorithm>
c906108c 68
ccefe4c4 69#include "psymtab.h"
c906108c 70
3e43a32a
MS
71int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
9a4105ab 73void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
c2d11a7d 77 unsigned long total_size);
769d7dc4
AC
78void (*deprecated_pre_add_symbol_hook) (const char *);
79void (*deprecated_post_add_symbol_hook) (void);
c906108c 80
74b7792f
AC
81static void clear_symtab_users_cleanup (void *ignore);
82
c378eb4e
MS
83/* Global variables owned by this file. */
84int readnow_symbol_files; /* Read full symbols immediately. */
97cbe998 85int readnever_symbol_files; /* Never read full symbols. */
c906108c 86
c378eb4e 87/* Functions this file defines. */
c906108c 88
ecf45d2c 89static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 90 objfile_flags flags, CORE_ADDR reloff);
d7db6da9 91
00b5771c 92static const struct sym_fns *find_sym_fns (bfd *);
c906108c 93
a14ed312 94static void overlay_invalidate_all (void);
c906108c 95
a14ed312 96static void simple_free_overlay_table (void);
c906108c 97
e17a4113
UW
98static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
99 enum bfd_endian);
c906108c 100
a14ed312 101static int simple_read_overlay_table (void);
c906108c 102
a14ed312 103static int simple_overlay_update_1 (struct obj_section *);
c906108c 104
31d99776
DJ
105static void symfile_find_segment_sections (struct objfile *objfile);
106
c906108c
SS
107/* List of all available sym_fns. On gdb startup, each object file reader
108 calls add_symtab_fns() to register information on each format it is
c378eb4e 109 prepared to read. */
c906108c 110
905014d7 111struct registered_sym_fns
c256e171 112{
905014d7
SM
113 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
114 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
115 {}
116
c256e171
DE
117 /* BFD flavour that we handle. */
118 enum bfd_flavour sym_flavour;
119
120 /* The "vtable" of symbol functions. */
121 const struct sym_fns *sym_fns;
905014d7 122};
c256e171 123
905014d7 124static std::vector<registered_sym_fns> symtab_fns;
c906108c 125
770e7fc7
DE
126/* Values for "set print symbol-loading". */
127
128const char print_symbol_loading_off[] = "off";
129const char print_symbol_loading_brief[] = "brief";
130const char print_symbol_loading_full[] = "full";
131static const char *print_symbol_loading_enums[] =
132{
133 print_symbol_loading_off,
134 print_symbol_loading_brief,
135 print_symbol_loading_full,
136 NULL
137};
138static const char *print_symbol_loading = print_symbol_loading_full;
139
b7209cb4
FF
140/* If non-zero, shared library symbols will be added automatically
141 when the inferior is created, new libraries are loaded, or when
142 attaching to the inferior. This is almost always what users will
143 want to have happen; but for very large programs, the startup time
144 will be excessive, and so if this is a problem, the user can clear
145 this flag and then add the shared library symbols as needed. Note
146 that there is a potential for confusion, since if the shared
c906108c 147 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 148 report all the functions that are actually present. */
c906108c
SS
149
150int auto_solib_add = 1;
c906108c 151\f
c5aa993b 152
770e7fc7
DE
153/* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161int
162print_symbol_loading_p (int from_tty, int exec, int full)
163{
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176}
177
0d14a781 178/* True if we are reading a symbol table. */
c906108c
SS
179
180int currently_reading_symtab = 0;
181
ccefe4c4
TT
182/* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
3b7bacac 184
c83dd867 185scoped_restore_tmpl<int>
ccefe4c4 186increment_reading_symtab (void)
c906108c 187{
c83dd867
TT
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
c906108c
SS
191}
192
5417f6dc
RM
193/* Remember the lowest-addressed loadable section we've seen.
194 This function is called via bfd_map_over_sections.
c906108c
SS
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202void
4efb68b1 203find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 204{
c5aa993b 205 asection **lowest = (asection **) obj;
c906108c 206
eb73e134 207 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
208 return;
209 if (!*lowest)
210 *lowest = sect; /* First loadable section */
211 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
212 *lowest = sect; /* A lower loadable section */
213 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
214 && (bfd_section_size (abfd, (*lowest))
215 <= bfd_section_size (abfd, sect)))
216 *lowest = sect;
217}
218
62557bbc 219/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 220 an existing section table. */
62557bbc 221
37e136b1 222section_addr_info
0542c86d
PA
223build_section_addr_info_from_section_table (const struct target_section *start,
224 const struct target_section *end)
62557bbc 225{
0542c86d 226 const struct target_section *stp;
62557bbc 227
37e136b1 228 section_addr_info sap;
62557bbc 229
37e136b1 230 for (stp = start; stp != end; stp++)
62557bbc 231 {
2b2848e2
DE
232 struct bfd_section *asect = stp->the_bfd_section;
233 bfd *abfd = asect->owner;
234
235 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
37e136b1
TT
236 && sap.size () < end - start)
237 sap.emplace_back (stp->addr,
238 bfd_section_name (abfd, asect),
239 gdb_bfd_section_index (abfd, asect));
62557bbc
KB
240 }
241
242 return sap;
243}
244
82ccf5a5 245/* Create a section_addr_info from section offsets in ABFD. */
089b4803 246
37e136b1 247static section_addr_info
82ccf5a5 248build_section_addr_info_from_bfd (bfd *abfd)
089b4803 249{
089b4803
TG
250 struct bfd_section *sec;
251
37e136b1
TT
252 section_addr_info sap;
253 for (sec = abfd->sections; sec != NULL; sec = sec->next)
82ccf5a5 254 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
37e136b1
TT
255 sap.emplace_back (bfd_get_section_vma (abfd, sec),
256 bfd_get_section_name (abfd, sec),
257 gdb_bfd_section_index (abfd, sec));
d76488d8 258
089b4803
TG
259 return sap;
260}
261
82ccf5a5
JK
262/* Create a section_addr_info from section offsets in OBJFILE. */
263
37e136b1 264section_addr_info
82ccf5a5
JK
265build_section_addr_info_from_objfile (const struct objfile *objfile)
266{
82ccf5a5
JK
267 int i;
268
269 /* Before reread_symbols gets rewritten it is not safe to call:
270 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
271 */
37e136b1
TT
272 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
273 for (i = 0; i < sap.size (); i++)
82ccf5a5 274 {
37e136b1 275 int sectindex = sap[i].sectindex;
82ccf5a5 276
37e136b1 277 sap[i].addr += objfile->section_offsets->offsets[sectindex];
82ccf5a5
JK
278 }
279 return sap;
280}
62557bbc 281
e8289572 282/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 283
e8289572
JB
284static void
285init_objfile_sect_indices (struct objfile *objfile)
c906108c 286{
e8289572 287 asection *sect;
c906108c 288 int i;
5417f6dc 289
b8fbeb18 290 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 291 if (sect)
b8fbeb18
EZ
292 objfile->sect_index_text = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 295 if (sect)
b8fbeb18
EZ
296 objfile->sect_index_data = sect->index;
297
298 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 299 if (sect)
b8fbeb18
EZ
300 objfile->sect_index_bss = sect->index;
301
302 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 303 if (sect)
b8fbeb18
EZ
304 objfile->sect_index_rodata = sect->index;
305
bbcd32ad
FF
306 /* This is where things get really weird... We MUST have valid
307 indices for the various sect_index_* members or gdb will abort.
308 So if for example, there is no ".text" section, we have to
31d99776
DJ
309 accomodate that. First, check for a file with the standard
310 one or two segments. */
311
312 symfile_find_segment_sections (objfile);
313
314 /* Except when explicitly adding symbol files at some address,
315 section_offsets contains nothing but zeros, so it doesn't matter
316 which slot in section_offsets the individual sect_index_* members
317 index into. So if they are all zero, it is safe to just point
318 all the currently uninitialized indices to the first slot. But
319 beware: if this is the main executable, it may be relocated
320 later, e.g. by the remote qOffsets packet, and then this will
321 be wrong! That's why we try segments first. */
bbcd32ad
FF
322
323 for (i = 0; i < objfile->num_sections; i++)
324 {
325 if (ANOFFSET (objfile->section_offsets, i) != 0)
326 {
327 break;
328 }
329 }
330 if (i == objfile->num_sections)
331 {
332 if (objfile->sect_index_text == -1)
333 objfile->sect_index_text = 0;
334 if (objfile->sect_index_data == -1)
335 objfile->sect_index_data = 0;
336 if (objfile->sect_index_bss == -1)
337 objfile->sect_index_bss = 0;
338 if (objfile->sect_index_rodata == -1)
339 objfile->sect_index_rodata = 0;
340 }
b8fbeb18 341}
c906108c 342
c1bd25fd
DJ
343/* The arguments to place_section. */
344
345struct place_section_arg
346{
347 struct section_offsets *offsets;
348 CORE_ADDR lowest;
349};
350
351/* Find a unique offset to use for loadable section SECT if
352 the user did not provide an offset. */
353
2c0b251b 354static void
c1bd25fd
DJ
355place_section (bfd *abfd, asection *sect, void *obj)
356{
19ba03f4 357 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
358 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
359 int done;
3bd72c6f 360 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 361
2711e456
DJ
362 /* We are only interested in allocated sections. */
363 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
364 return;
365
366 /* If the user specified an offset, honor it. */
65cf3563 367 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
368 return;
369
370 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
371 start_addr = (arg->lowest + align - 1) & -align;
372
c1bd25fd
DJ
373 do {
374 asection *cur_sec;
c1bd25fd 375
c1bd25fd
DJ
376 done = 1;
377
378 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
379 {
380 int indx = cur_sec->index;
c1bd25fd
DJ
381
382 /* We don't need to compare against ourself. */
383 if (cur_sec == sect)
384 continue;
385
2711e456
DJ
386 /* We can only conflict with allocated sections. */
387 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
388 continue;
389
390 /* If the section offset is 0, either the section has not been placed
391 yet, or it was the lowest section placed (in which case LOWEST
392 will be past its end). */
393 if (offsets[indx] == 0)
394 continue;
395
396 /* If this section would overlap us, then we must move up. */
397 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
398 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
399 {
400 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
401 start_addr = (start_addr + align - 1) & -align;
402 done = 0;
3bd72c6f 403 break;
c1bd25fd
DJ
404 }
405
406 /* Otherwise, we appear to be OK. So far. */
407 }
408 }
409 while (!done);
410
65cf3563 411 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 412 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 413}
e8289572 414
4f7ae6f5 415/* Store section_addr_info as prepared (made relative and with SECTINDEX
75242ef4
JK
416 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
417 entries. */
e8289572
JB
418
419void
75242ef4
JK
420relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
421 int num_sections,
37e136b1 422 const section_addr_info &addrs)
e8289572
JB
423{
424 int i;
425
75242ef4 426 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 427
c378eb4e 428 /* Now calculate offsets for section that were specified by the caller. */
37e136b1 429 for (i = 0; i < addrs.size (); i++)
e8289572 430 {
3189cb12 431 const struct other_sections *osp;
e8289572 432
37e136b1 433 osp = &addrs[i];
5488dafb 434 if (osp->sectindex == -1)
e8289572
JB
435 continue;
436
c378eb4e 437 /* Record all sections in offsets. */
e8289572 438 /* The section_offsets in the objfile are here filled in using
c378eb4e 439 the BFD index. */
75242ef4
JK
440 section_offsets->offsets[osp->sectindex] = osp->addr;
441 }
442}
443
1276c759
JK
444/* Transform section name S for a name comparison. prelink can split section
445 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
446 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
447 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
448 (`.sbss') section has invalid (increased) virtual address. */
449
450static const char *
451addr_section_name (const char *s)
452{
453 if (strcmp (s, ".dynbss") == 0)
454 return ".bss";
455 if (strcmp (s, ".sdynbss") == 0)
456 return ".sbss";
457
458 return s;
459}
460
37e136b1
TT
461/* std::sort comparator for addrs_section_sort. Sort entries in
462 ascending order by their (name, sectindex) pair. sectindex makes
463 the sort by name stable. */
82ccf5a5 464
37e136b1
TT
465static bool
466addrs_section_compar (const struct other_sections *a,
467 const struct other_sections *b)
82ccf5a5 468{
22e048c9 469 int retval;
82ccf5a5 470
37e136b1
TT
471 retval = strcmp (addr_section_name (a->name.c_str ()),
472 addr_section_name (b->name.c_str ()));
473 if (retval != 0)
474 return retval < 0;
82ccf5a5 475
37e136b1 476 return a->sectindex < b->sectindex;
82ccf5a5
JK
477}
478
37e136b1 479/* Provide sorted array of pointers to sections of ADDRS. */
82ccf5a5 480
37e136b1
TT
481static std::vector<const struct other_sections *>
482addrs_section_sort (const section_addr_info &addrs)
82ccf5a5 483{
82ccf5a5
JK
484 int i;
485
37e136b1
TT
486 std::vector<const struct other_sections *> array (addrs.size ());
487 for (i = 0; i < addrs.size (); i++)
488 array[i] = &addrs[i];
82ccf5a5 489
37e136b1 490 std::sort (array.begin (), array.end (), addrs_section_compar);
82ccf5a5
JK
491
492 return array;
493}
494
75242ef4 495/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
496 also SECTINDEXes specific to ABFD there. This function can be used to
497 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
498
499void
37e136b1 500addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
75242ef4
JK
501{
502 asection *lower_sect;
75242ef4
JK
503 CORE_ADDR lower_offset;
504 int i;
505
506 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
507 continguous sections. */
508 lower_sect = NULL;
509 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
510 if (lower_sect == NULL)
511 {
512 warning (_("no loadable sections found in added symbol-file %s"),
513 bfd_get_filename (abfd));
514 lower_offset = 0;
e8289572 515 }
75242ef4
JK
516 else
517 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
518
82ccf5a5
JK
519 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
520 in ABFD. Section names are not unique - there can be multiple sections of
521 the same name. Also the sections of the same name do not have to be
522 adjacent to each other. Some sections may be present only in one of the
523 files. Even sections present in both files do not have to be in the same
524 order.
525
526 Use stable sort by name for the sections in both files. Then linearly
527 scan both lists matching as most of the entries as possible. */
528
37e136b1
TT
529 std::vector<const struct other_sections *> addrs_sorted
530 = addrs_section_sort (*addrs);
82ccf5a5 531
37e136b1
TT
532 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
533 std::vector<const struct other_sections *> abfd_addrs_sorted
534 = addrs_section_sort (abfd_addrs);
82ccf5a5 535
c378eb4e
MS
536 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
537 ABFD_ADDRS_SORTED. */
82ccf5a5 538
37e136b1
TT
539 std::vector<const struct other_sections *>
540 addrs_to_abfd_addrs (addrs->size (), nullptr);
82ccf5a5 541
37e136b1
TT
542 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
543 = abfd_addrs_sorted.begin ();
52941706 544 for (const other_sections *sect : addrs_sorted)
82ccf5a5 545 {
37e136b1 546 const char *sect_name = addr_section_name (sect->name.c_str ());
82ccf5a5 547
37e136b1
TT
548 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
549 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 550 sect_name) < 0)
37e136b1 551 abfd_sorted_iter++;
82ccf5a5 552
37e136b1
TT
553 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
554 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
1276c759 555 sect_name) == 0)
82ccf5a5
JK
556 {
557 int index_in_addrs;
558
559 /* Make the found item directly addressable from ADDRS. */
37e136b1 560 index_in_addrs = sect - addrs->data ();
82ccf5a5 561 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
37e136b1 562 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
82ccf5a5
JK
563
564 /* Never use the same ABFD entry twice. */
37e136b1 565 abfd_sorted_iter++;
82ccf5a5 566 }
82ccf5a5
JK
567 }
568
75242ef4
JK
569 /* Calculate offsets for the loadable sections.
570 FIXME! Sections must be in order of increasing loadable section
571 so that contiguous sections can use the lower-offset!!!
572
573 Adjust offsets if the segments are not contiguous.
574 If the section is contiguous, its offset should be set to
575 the offset of the highest loadable section lower than it
576 (the loadable section directly below it in memory).
577 this_offset = lower_offset = lower_addr - lower_orig_addr */
578
37e136b1 579 for (i = 0; i < addrs->size (); i++)
75242ef4 580 {
37e136b1 581 const struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
582
583 if (sect)
75242ef4 584 {
c378eb4e 585 /* This is the index used by BFD. */
37e136b1 586 (*addrs)[i].sectindex = sect->sectindex;
672d9c23 587
37e136b1 588 if ((*addrs)[i].addr != 0)
75242ef4 589 {
37e136b1
TT
590 (*addrs)[i].addr -= sect->addr;
591 lower_offset = (*addrs)[i].addr;
75242ef4
JK
592 }
593 else
37e136b1 594 (*addrs)[i].addr = lower_offset;
75242ef4
JK
595 }
596 else
672d9c23 597 {
1276c759 598 /* addr_section_name transformation is not used for SECT_NAME. */
37e136b1 599 const std::string &sect_name = (*addrs)[i].name;
1276c759 600
b0fcb67f
JK
601 /* This section does not exist in ABFD, which is normally
602 unexpected and we want to issue a warning.
603
4d9743af
JK
604 However, the ELF prelinker does create a few sections which are
605 marked in the main executable as loadable (they are loaded in
606 memory from the DYNAMIC segment) and yet are not present in
607 separate debug info files. This is fine, and should not cause
608 a warning. Shared libraries contain just the section
609 ".gnu.liblist" but it is not marked as loadable there. There is
610 no other way to identify them than by their name as the sections
1276c759
JK
611 created by prelink have no special flags.
612
613 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f 614
37e136b1
TT
615 if (!(sect_name == ".gnu.liblist"
616 || sect_name == ".gnu.conflict"
617 || (sect_name == ".bss"
1276c759 618 && i > 0
37e136b1 619 && (*addrs)[i - 1].name == ".dynbss"
1276c759 620 && addrs_to_abfd_addrs[i - 1] != NULL)
37e136b1 621 || (sect_name == ".sbss"
1276c759 622 && i > 0
37e136b1 623 && (*addrs)[i - 1].name == ".sdynbss"
1276c759 624 && addrs_to_abfd_addrs[i - 1] != NULL)))
37e136b1 625 warning (_("section %s not found in %s"), sect_name.c_str (),
b0fcb67f
JK
626 bfd_get_filename (abfd));
627
37e136b1
TT
628 (*addrs)[i].addr = 0;
629 (*addrs)[i].sectindex = -1;
672d9c23 630 }
75242ef4
JK
631 }
632}
633
634/* Parse the user's idea of an offset for dynamic linking, into our idea
635 of how to represent it for fast symbol reading. This is the default
636 version of the sym_fns.sym_offsets function for symbol readers that
637 don't need to do anything special. It allocates a section_offsets table
638 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
639
640void
641default_symfile_offsets (struct objfile *objfile,
37e136b1 642 const section_addr_info &addrs)
75242ef4 643{
d445b2f6 644 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
645 objfile->section_offsets = (struct section_offsets *)
646 obstack_alloc (&objfile->objfile_obstack,
647 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
648 relative_addr_info_to_section_offsets (objfile->section_offsets,
649 objfile->num_sections, addrs);
e8289572 650
c1bd25fd
DJ
651 /* For relocatable files, all loadable sections will start at zero.
652 The zero is meaningless, so try to pick arbitrary addresses such
653 that no loadable sections overlap. This algorithm is quadratic,
654 but the number of sections in a single object file is generally
655 small. */
656 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
657 {
658 struct place_section_arg arg;
2711e456
DJ
659 bfd *abfd = objfile->obfd;
660 asection *cur_sec;
2711e456
DJ
661
662 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
663 /* We do not expect this to happen; just skip this step if the
664 relocatable file has a section with an assigned VMA. */
665 if (bfd_section_vma (abfd, cur_sec) != 0)
666 break;
667
668 if (cur_sec == NULL)
669 {
670 CORE_ADDR *offsets = objfile->section_offsets->offsets;
671
672 /* Pick non-overlapping offsets for sections the user did not
673 place explicitly. */
674 arg.offsets = objfile->section_offsets;
675 arg.lowest = 0;
676 bfd_map_over_sections (objfile->obfd, place_section, &arg);
677
678 /* Correctly filling in the section offsets is not quite
679 enough. Relocatable files have two properties that
680 (most) shared objects do not:
681
682 - Their debug information will contain relocations. Some
683 shared libraries do also, but many do not, so this can not
684 be assumed.
685
686 - If there are multiple code sections they will be loaded
687 at different relative addresses in memory than they are
688 in the objfile, since all sections in the file will start
689 at address zero.
690
691 Because GDB has very limited ability to map from an
692 address in debug info to the correct code section,
693 it relies on adding SECT_OFF_TEXT to things which might be
694 code. If we clear all the section offsets, and set the
695 section VMAs instead, then symfile_relocate_debug_section
696 will return meaningful debug information pointing at the
697 correct sections.
698
699 GDB has too many different data structures for section
700 addresses - a bfd, objfile, and so_list all have section
701 tables, as does exec_ops. Some of these could probably
702 be eliminated. */
703
704 for (cur_sec = abfd->sections; cur_sec != NULL;
705 cur_sec = cur_sec->next)
706 {
707 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
708 continue;
709
710 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
711 exec_set_section_address (bfd_get_filename (abfd),
712 cur_sec->index,
30510692 713 offsets[cur_sec->index]);
2711e456
DJ
714 offsets[cur_sec->index] = 0;
715 }
716 }
c1bd25fd
DJ
717 }
718
e8289572 719 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 720 .rodata sections. */
e8289572
JB
721 init_objfile_sect_indices (objfile);
722}
723
31d99776
DJ
724/* Divide the file into segments, which are individual relocatable units.
725 This is the default version of the sym_fns.sym_segments function for
726 symbol readers that do not have an explicit representation of segments.
727 It assumes that object files do not have segments, and fully linked
728 files have a single segment. */
729
730struct symfile_segment_data *
731default_symfile_segments (bfd *abfd)
732{
733 int num_sections, i;
734 asection *sect;
735 struct symfile_segment_data *data;
736 CORE_ADDR low, high;
737
738 /* Relocatable files contain enough information to position each
739 loadable section independently; they should not be relocated
740 in segments. */
741 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
742 return NULL;
743
744 /* Make sure there is at least one loadable section in the file. */
745 for (sect = abfd->sections; sect != NULL; sect = sect->next)
746 {
747 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
748 continue;
749
750 break;
751 }
752 if (sect == NULL)
753 return NULL;
754
755 low = bfd_get_section_vma (abfd, sect);
756 high = low + bfd_get_section_size (sect);
757
41bf6aca 758 data = XCNEW (struct symfile_segment_data);
31d99776 759 data->num_segments = 1;
fc270c35
TT
760 data->segment_bases = XCNEW (CORE_ADDR);
761 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
762
763 num_sections = bfd_count_sections (abfd);
fc270c35 764 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
765
766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
767 {
768 CORE_ADDR vma;
769
770 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
771 continue;
772
773 vma = bfd_get_section_vma (abfd, sect);
774 if (vma < low)
775 low = vma;
776 if (vma + bfd_get_section_size (sect) > high)
777 high = vma + bfd_get_section_size (sect);
778
779 data->segment_info[i] = 1;
780 }
781
782 data->segment_bases[0] = low;
783 data->segment_sizes[0] = high - low;
784
785 return data;
786}
787
608e2dbb
TT
788/* This is a convenience function to call sym_read for OBJFILE and
789 possibly force the partial symbols to be read. */
790
791static void
b15cc25c 792read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
793{
794 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 795 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
796
797 /* find_separate_debug_file_in_section should be called only if there is
798 single binary with no existing separate debug info file. */
799 if (!objfile_has_partial_symbols (objfile)
800 && objfile->separate_debug_objfile == NULL
801 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 802 {
192b62ce 803 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
804
805 if (abfd != NULL)
24ba069a
JK
806 {
807 /* find_separate_debug_file_in_section uses the same filename for the
808 virtual section-as-bfd like the bfd filename containing the
809 section. Therefore use also non-canonical name form for the same
810 file containing the section. */
921222e2
TT
811 symbol_file_add_separate (abfd.get (),
812 bfd_get_filename (abfd.get ()),
813 add_flags | SYMFILE_NOT_FILENAME, objfile);
24ba069a 814 }
608e2dbb
TT
815 }
816 if ((add_flags & SYMFILE_NO_READ) == 0)
817 require_partial_symbols (objfile, 0);
818}
819
3d6e24f0
JB
820/* Initialize entry point information for this objfile. */
821
822static void
823init_entry_point_info (struct objfile *objfile)
824{
6ef55de7
TT
825 struct entry_info *ei = &objfile->per_bfd->ei;
826
827 if (ei->initialized)
828 return;
829 ei->initialized = 1;
830
3d6e24f0
JB
831 /* Save startup file's range of PC addresses to help blockframe.c
832 decide where the bottom of the stack is. */
833
834 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
835 {
836 /* Executable file -- record its entry point so we'll recognize
837 the startup file because it contains the entry point. */
6ef55de7
TT
838 ei->entry_point = bfd_get_start_address (objfile->obfd);
839 ei->entry_point_p = 1;
3d6e24f0
JB
840 }
841 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
842 && bfd_get_start_address (objfile->obfd) != 0)
843 {
844 /* Some shared libraries may have entry points set and be
845 runnable. There's no clear way to indicate this, so just check
846 for values other than zero. */
6ef55de7
TT
847 ei->entry_point = bfd_get_start_address (objfile->obfd);
848 ei->entry_point_p = 1;
3d6e24f0
JB
849 }
850 else
851 {
852 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 853 ei->entry_point_p = 0;
3d6e24f0
JB
854 }
855
6ef55de7 856 if (ei->entry_point_p)
3d6e24f0 857 {
53eddfa6 858 struct obj_section *osect;
6ef55de7 859 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 860 int found;
3d6e24f0
JB
861
862 /* Make certain that the address points at real code, and not a
863 function descriptor. */
864 entry_point
df6d5441 865 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0 866 entry_point,
8b88a78e 867 current_top_target ());
3d6e24f0
JB
868
869 /* Remove any ISA markers, so that this matches entries in the
870 symbol table. */
6ef55de7 871 ei->entry_point
df6d5441 872 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
873
874 found = 0;
875 ALL_OBJFILE_OSECTIONS (objfile, osect)
876 {
877 struct bfd_section *sect = osect->the_bfd_section;
878
879 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
880 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
881 + bfd_get_section_size (sect)))
882 {
6ef55de7 883 ei->the_bfd_section_index
53eddfa6
TT
884 = gdb_bfd_section_index (objfile->obfd, sect);
885 found = 1;
886 break;
887 }
888 }
889
890 if (!found)
6ef55de7 891 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
892 }
893}
894
c906108c
SS
895/* Process a symbol file, as either the main file or as a dynamically
896 loaded file.
897
36e4d068
JB
898 This function does not set the OBJFILE's entry-point info.
899
96baa820
JM
900 OBJFILE is where the symbols are to be read from.
901
7e8580c1
JB
902 ADDRS is the list of section load addresses. If the user has given
903 an 'add-symbol-file' command, then this is the list of offsets and
904 addresses he or she provided as arguments to the command; or, if
905 we're handling a shared library, these are the actual addresses the
906 sections are loaded at, according to the inferior's dynamic linker
907 (as gleaned by GDB's shared library code). We convert each address
908 into an offset from the section VMA's as it appears in the object
909 file, and then call the file's sym_offsets function to convert this
910 into a format-specific offset table --- a `struct section_offsets'.
d81a3eaf
PT
911 The sectindex field is used to control the ordering of sections
912 with the same name. Upon return, it is updated to contain the
913 correspondig BFD section index, or -1 if the section was not found.
96baa820 914
7eedccfa
PP
915 ADD_FLAGS encodes verbosity level, whether this is main symbol or
916 an extra symbol file such as dynamically loaded code, and wether
917 breakpoint reset should be deferred. */
c906108c 918
36e4d068
JB
919static void
920syms_from_objfile_1 (struct objfile *objfile,
37e136b1 921 section_addr_info *addrs,
b15cc25c 922 symfile_add_flags add_flags)
c906108c 923{
37e136b1 924 section_addr_info local_addr;
c906108c 925 struct cleanup *old_chain;
7eedccfa 926 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 927
8fb8eb5c 928 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 929
75245b24 930 if (objfile->sf == NULL)
36e4d068
JB
931 {
932 /* No symbols to load, but we still need to make sure
933 that the section_offsets table is allocated. */
d445b2f6 934 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 935 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
936
937 objfile->num_sections = num_sections;
938 objfile->section_offsets
224c3ddb
SM
939 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
940 size);
36e4d068
JB
941 memset (objfile->section_offsets, 0, size);
942 return;
943 }
75245b24 944
c906108c
SS
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
ed2b3126
TT
947 old_chain = make_cleanup (null_cleanup, NULL);
948 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 949
6bf667bb
DE
950 /* If ADDRS is NULL, put together a dummy address list.
951 We now establish the convention that an addr of zero means
c378eb4e 952 no load address was specified. */
6bf667bb 953 if (! addrs)
37e136b1 954 addrs = &local_addr;
a39a16c4 955
c5aa993b 956 if (mainline)
c906108c
SS
957 {
958 /* We will modify the main symbol table, make sure that all its users
c5aa993b 959 will be cleaned up if an error occurs during symbol reading. */
74b7792f 960 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
961
962 /* Since no error yet, throw away the old symbol table. */
963
964 if (symfile_objfile != NULL)
965 {
9e86da07 966 delete symfile_objfile;
adb7f338 967 gdb_assert (symfile_objfile == NULL);
c906108c
SS
968 }
969
970 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
971 If the user wants to get rid of them, they should do "symbol-file"
972 without arguments first. Not sure this is the best behavior
973 (PR 2207). */
c906108c 974
c5aa993b 975 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
976 }
977
978 /* Convert addr into an offset rather than an absolute address.
979 We find the lowest address of a loaded segment in the objfile,
53a5351d 980 and assume that <addr> is where that got loaded.
c906108c 981
53a5351d
JM
982 We no longer warn if the lowest section is not a text segment (as
983 happens for the PA64 port. */
37e136b1 984 if (addrs->size () > 0)
75242ef4 985 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
986
987 /* Initialize symbol reading routines for this objfile, allow complaints to
988 appear for this new file, and record how verbose to be, then do the
c378eb4e 989 initial symbol reading for this file. */
c906108c 990
c5aa993b 991 (*objfile->sf->sym_init) (objfile);
b98664d3 992 clear_complaints (1);
c906108c 993
37e136b1 994 (*objfile->sf->sym_offsets) (objfile, *addrs);
c906108c 995
608e2dbb 996 read_symbols (objfile, add_flags);
b11896a5 997
c906108c
SS
998 /* Discard cleanups as symbol reading was successful. */
999
ed2b3126 1000 objfile_holder.release ();
c906108c 1001 discard_cleanups (old_chain);
c906108c
SS
1002}
1003
36e4d068
JB
1004/* Same as syms_from_objfile_1, but also initializes the objfile
1005 entry-point info. */
1006
6bf667bb 1007static void
36e4d068 1008syms_from_objfile (struct objfile *objfile,
37e136b1 1009 section_addr_info *addrs,
b15cc25c 1010 symfile_add_flags add_flags)
36e4d068 1011{
6bf667bb 1012 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1013 init_entry_point_info (objfile);
1014}
1015
c906108c
SS
1016/* Perform required actions after either reading in the initial
1017 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1018 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1019
e7d52ed3 1020static void
b15cc25c 1021finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1022{
c906108c 1023 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1024 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1025 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1026 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1027 {
1028 /* OK, make it the "real" symbol file. */
1029 symfile_objfile = objfile;
1030
c1e56572 1031 clear_symtab_users (add_flags);
c906108c 1032 }
7eedccfa 1033 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1034 {
69de3c6a 1035 breakpoint_re_set ();
c906108c
SS
1036 }
1037
1038 /* We're done reading the symbol file; finish off complaints. */
b98664d3 1039 clear_complaints (0);
c906108c
SS
1040}
1041
1042/* Process a symbol file, as either the main file or as a dynamically
1043 loaded file.
1044
5417f6dc 1045 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1046 A new reference is acquired by this function.
7904e09f 1047
9e86da07 1048 For NAME description see the objfile constructor.
24ba069a 1049
7eedccfa
PP
1050 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1051 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1052
6bf667bb 1053 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1054 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1055
63524580
JK
1056 PARENT is the original objfile if ABFD is a separate debug info file.
1057 Otherwise PARENT is NULL.
1058
c906108c 1059 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1060 Upon failure, jumps back to command level (never returns). */
7eedccfa 1061
7904e09f 1062static struct objfile *
b15cc25c
PA
1063symbol_file_add_with_addrs (bfd *abfd, const char *name,
1064 symfile_add_flags add_flags,
37e136b1 1065 section_addr_info *addrs,
b15cc25c 1066 objfile_flags flags, struct objfile *parent)
c906108c
SS
1067{
1068 struct objfile *objfile;
7eedccfa 1069 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1070 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1071 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1072 && (readnow_symbol_files
1073 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1074
9291a0cd 1075 if (readnow_symbol_files)
b11896a5
TT
1076 {
1077 flags |= OBJF_READNOW;
1078 add_flags &= ~SYMFILE_NO_READ;
1079 }
97cbe998
SDJ
1080 else if (readnever_symbol_files
1081 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1082 {
1083 flags |= OBJF_READNEVER;
1084 add_flags |= SYMFILE_NO_READ;
1085 }
921222e2
TT
1086 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1087 flags |= OBJF_NOT_FILENAME;
9291a0cd 1088
5417f6dc
RM
1089 /* Give user a chance to burp if we'd be
1090 interactively wiping out any existing symbols. */
c906108c
SS
1091
1092 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1093 && mainline
c906108c 1094 && from_tty
9e2f0ad4 1095 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1096 error (_("Not confirmed."));
c906108c 1097
b15cc25c
PA
1098 if (mainline)
1099 flags |= OBJF_MAINLINE;
9e86da07 1100 objfile = new struct objfile (abfd, name, flags);
c906108c 1101
63524580
JK
1102 if (parent)
1103 add_separate_debug_objfile (objfile, parent);
1104
78a4a9b9
AC
1105 /* We either created a new mapped symbol table, mapped an existing
1106 symbol table file which has not had initial symbol reading
c378eb4e 1107 performed, or need to read an unmapped symbol table. */
b11896a5 1108 if (should_print)
c906108c 1109 {
769d7dc4
AC
1110 if (deprecated_pre_add_symbol_hook)
1111 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1112 else
c906108c 1113 {
55333a84
DE
1114 printf_unfiltered (_("Reading symbols from %s..."), name);
1115 wrap_here ("");
1116 gdb_flush (gdb_stdout);
c906108c 1117 }
c906108c 1118 }
6bf667bb 1119 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1120
1121 /* We now have at least a partial symbol table. Check to see if the
1122 user requested that all symbols be read on initial access via either
1123 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1124 all partial symbol tables for this objfile if so. */
c906108c 1125
9291a0cd 1126 if ((flags & OBJF_READNOW))
c906108c 1127 {
b11896a5 1128 if (should_print)
c906108c 1129 {
a3f17187 1130 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1131 wrap_here ("");
1132 gdb_flush (gdb_stdout);
1133 }
1134
ccefe4c4
TT
1135 if (objfile->sf)
1136 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1137 }
1138
b11896a5 1139 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1140 {
1141 wrap_here ("");
55333a84 1142 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1143 wrap_here ("");
1144 }
1145
b11896a5 1146 if (should_print)
c906108c 1147 {
769d7dc4
AC
1148 if (deprecated_post_add_symbol_hook)
1149 deprecated_post_add_symbol_hook ();
c906108c 1150 else
55333a84 1151 printf_unfiltered (_("done.\n"));
c906108c
SS
1152 }
1153
481d0f41
JB
1154 /* We print some messages regardless of whether 'from_tty ||
1155 info_verbose' is true, so make sure they go out at the right
1156 time. */
1157 gdb_flush (gdb_stdout);
1158
109f874e 1159 if (objfile->sf == NULL)
8caee43b 1160 {
76727919 1161 gdb::observers::new_objfile.notify (objfile);
c378eb4e 1162 return objfile; /* No symbols. */
8caee43b 1163 }
109f874e 1164
e7d52ed3 1165 finish_new_objfile (objfile, add_flags);
c906108c 1166
76727919 1167 gdb::observers::new_objfile.notify (objfile);
c906108c 1168
ce7d4522 1169 bfd_cache_close_all ();
c906108c
SS
1170 return (objfile);
1171}
1172
24ba069a 1173/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1174 see the objfile constructor. */
9cce227f
TG
1175
1176void
b15cc25c
PA
1177symbol_file_add_separate (bfd *bfd, const char *name,
1178 symfile_add_flags symfile_flags,
24ba069a 1179 struct objfile *objfile)
9cce227f 1180{
089b4803
TG
1181 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1182 because sections of BFD may not match sections of OBJFILE and because
1183 vma may have been modified by tools such as prelink. */
37e136b1 1184 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
9cce227f 1185
870f88f7 1186 symbol_file_add_with_addrs
37e136b1 1187 (bfd, name, symfile_flags, &sap,
9cce227f 1188 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1189 | OBJF_USERLOADED),
1190 objfile);
9cce227f 1191}
7904e09f 1192
eb4556d7
JB
1193/* Process the symbol file ABFD, as either the main file or as a
1194 dynamically loaded file.
6bf667bb 1195 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1196
eb4556d7 1197struct objfile *
b15cc25c
PA
1198symbol_file_add_from_bfd (bfd *abfd, const char *name,
1199 symfile_add_flags add_flags,
37e136b1 1200 section_addr_info *addrs,
b15cc25c 1201 objfile_flags flags, struct objfile *parent)
eb4556d7 1202{
24ba069a
JK
1203 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1204 parent);
eb4556d7
JB
1205}
1206
7904e09f 1207/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1208 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1209
7904e09f 1210struct objfile *
b15cc25c 1211symbol_file_add (const char *name, symfile_add_flags add_flags,
37e136b1 1212 section_addr_info *addrs, objfile_flags flags)
7904e09f 1213{
192b62ce 1214 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1215
192b62ce
TT
1216 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1217 flags, NULL);
7904e09f
JB
1218}
1219
d7db6da9
FN
1220/* Call symbol_file_add() with default values and update whatever is
1221 affected by the loading of a new main().
1222 Used when the file is supplied in the gdb command line
1223 and by some targets with special loading requirements.
1224 The auxiliary function, symbol_file_add_main_1(), has the flags
1225 argument for the switches that can only be specified in the symbol_file
1226 command itself. */
5417f6dc 1227
1adeb98a 1228void
ecf45d2c 1229symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1230{
d4d429d5 1231 symbol_file_add_main_1 (args, add_flags, 0, 0);
d7db6da9
FN
1232}
1233
1234static void
ecf45d2c 1235symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
d4d429d5 1236 objfile_flags flags, CORE_ADDR reloff)
d7db6da9 1237{
ecf45d2c 1238 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1239
d4d429d5
PT
1240 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1241 if (reloff != 0)
1242 objfile_rebase (objfile, reloff);
d7db6da9 1243
d7db6da9
FN
1244 /* Getting new symbols may change our opinion about
1245 what is frameless. */
1246 reinit_frame_cache ();
1247
b15cc25c 1248 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1249 set_initial_language ();
1adeb98a
FN
1250}
1251
1252void
1253symbol_file_clear (int from_tty)
1254{
1255 if ((have_full_symbols () || have_partial_symbols ())
1256 && from_tty
0430b0d6
AS
1257 && (symfile_objfile
1258 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1259 objfile_name (symfile_objfile))
0430b0d6 1260 : !query (_("Discard symbol table? "))))
8a3fe4f8 1261 error (_("Not confirmed."));
1adeb98a 1262
0133421a
JK
1263 /* solib descriptors may have handles to objfiles. Wipe them before their
1264 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1265 no_shared_libraries (NULL, from_tty);
1266
0133421a
JK
1267 free_all_objfiles ();
1268
adb7f338 1269 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1270 if (from_tty)
1271 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1272}
1273
c4dcb155
SM
1274/* See symfile.h. */
1275
1276int separate_debug_file_debug = 0;
1277
5b5d99cf 1278static int
a8dbfd58 1279separate_debug_file_exists (const std::string &name, unsigned long crc,
32a0e547 1280 struct objfile *parent_objfile)
5b5d99cf 1281{
904578ed
JK
1282 unsigned long file_crc;
1283 int file_crc_p;
32a0e547 1284 struct stat parent_stat, abfd_stat;
904578ed 1285 int verified_as_different;
32a0e547
JK
1286
1287 /* Find a separate debug info file as if symbols would be present in
1288 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1289 section can contain just the basename of PARENT_OBJFILE without any
1290 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1291 the separate debug infos with the same basename can exist. */
32a0e547 1292
a8dbfd58 1293 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
32a0e547 1294 return 0;
5b5d99cf 1295
c4dcb155 1296 if (separate_debug_file_debug)
a8dbfd58 1297 printf_unfiltered (_(" Trying %s\n"), name.c_str ());
c4dcb155 1298
a8dbfd58 1299 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
f1838a98 1300
192b62ce 1301 if (abfd == NULL)
5b5d99cf
JB
1302 return 0;
1303
0ba1096a 1304 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1305
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1308 meaningful st_dev.) Files accessed from gdbservers that do not
1309 support the vFile:fstat packet will also have st_ino set to zero.
1310 Do not indicate a duplicate library in either case. While there
1311 is no guarantee that a system that provides meaningful inode
1312 numbers will never set st_ino to zero, this is merely an
1313 optimization, so we do not need to worry about false negatives. */
32a0e547 1314
192b62ce 1315 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1316 && abfd_stat.st_ino != 0
1317 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1318 {
904578ed
JK
1319 if (abfd_stat.st_dev == parent_stat.st_dev
1320 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1321 return 0;
904578ed 1322 verified_as_different = 1;
32a0e547 1323 }
904578ed
JK
1324 else
1325 verified_as_different = 0;
32a0e547 1326
192b62ce 1327 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1328
904578ed
JK
1329 if (!file_crc_p)
1330 return 0;
1331
287ccc17
JK
1332 if (crc != file_crc)
1333 {
dccee2de
TT
1334 unsigned long parent_crc;
1335
0a93529c
GB
1336 /* If the files could not be verified as different with
1337 bfd_stat then we need to calculate the parent's CRC
1338 to verify whether the files are different or not. */
904578ed 1339
dccee2de 1340 if (!verified_as_different)
904578ed 1341 {
dccee2de 1342 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1343 return 0;
1344 }
1345
dccee2de 1346 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1347 warning (_("the debug information found in \"%s\""
1348 " does not match \"%s\" (CRC mismatch).\n"),
a8dbfd58 1349 name.c_str (), objfile_name (parent_objfile));
904578ed 1350
287ccc17
JK
1351 return 0;
1352 }
1353
1354 return 1;
5b5d99cf
JB
1355}
1356
aa28a74e 1357char *debug_file_directory = NULL;
920d2a44
AC
1358static void
1359show_debug_file_directory (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361{
3e43a32a
MS
1362 fprintf_filtered (file,
1363 _("The directory where separate debug "
1364 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1365 value);
1366}
5b5d99cf
JB
1367
1368#if ! defined (DEBUG_SUBDIRECTORY)
1369#define DEBUG_SUBDIRECTORY ".debug"
1370#endif
1371
1db33378
PP
1372/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1373 where the original file resides (may not be the same as
1374 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1375 looking for. CANON_DIR is the "realpath" form of DIR.
1376 DIR must contain a trailing '/'.
a8dbfd58
SM
1377 Returns the path of the file with separate debug info, or an empty
1378 string. */
1db33378 1379
a8dbfd58 1380static std::string
1db33378
PP
1381find_separate_debug_file (const char *dir,
1382 const char *canon_dir,
1383 const char *debuglink,
1384 unsigned long crc32, struct objfile *objfile)
9cce227f 1385{
c4dcb155
SM
1386 if (separate_debug_file_debug)
1387 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1388 "%s\n"), objfile_name (objfile));
1389
5b5d99cf 1390 /* First try in the same directory as the original file. */
a8dbfd58
SM
1391 std::string debugfile = dir;
1392 debugfile += debuglink;
5b5d99cf 1393
32a0e547 1394 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1395 return debugfile;
5417f6dc 1396
5b5d99cf 1397 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
a8dbfd58
SM
1398 debugfile = dir;
1399 debugfile += DEBUG_SUBDIRECTORY;
1400 debugfile += "/";
1401 debugfile += debuglink;
5b5d99cf 1402
32a0e547 1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1404 return debugfile;
5417f6dc 1405
24ddea62 1406 /* Then try in the global debugfile directories.
f888f159 1407
24ddea62
JK
1408 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1409 cause "/..." lookups. */
5417f6dc 1410
e80aaf61
SM
1411 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1412 = dirnames_to_char_ptr_vec (debug_file_directory);
24ddea62 1413
e80aaf61 1414 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
e4ab2fad 1415 {
a8dbfd58
SM
1416 debugfile = debugdir.get ();
1417 debugfile += "/";
1418 debugfile += dir;
1419 debugfile += debuglink;
aa28a74e 1420
32a0e547 1421 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1422 return debugfile;
24ddea62
JK
1423
1424 /* If the file is in the sysroot, try using its base path in the
1425 global debugfile directory. */
1db33378
PP
1426 if (canon_dir != NULL
1427 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1428 strlen (gdb_sysroot)) == 0
1db33378 1429 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1430 {
a8dbfd58
SM
1431 debugfile = debugdir.get ();
1432 debugfile += (canon_dir + strlen (gdb_sysroot));
1433 debugfile += "/";
1434 debugfile += debuglink;
24ddea62 1435
32a0e547 1436 if (separate_debug_file_exists (debugfile, crc32, objfile))
e80aaf61 1437 return debugfile;
24ddea62 1438 }
aa28a74e 1439 }
f888f159 1440
a8dbfd58 1441 return std::string ();
1db33378
PP
1442}
1443
7edbb660 1444/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1445 If there were no directory separators in PATH, PATH will be empty
1446 string on return. */
1447
1448static void
1449terminate_after_last_dir_separator (char *path)
1450{
1451 int i;
1452
1453 /* Strip off the final filename part, leaving the directory name,
1454 followed by a slash. The directory can be relative or absolute. */
1455 for (i = strlen(path) - 1; i >= 0; i--)
1456 if (IS_DIR_SEPARATOR (path[i]))
1457 break;
1458
1459 /* If I is -1 then no directory is present there and DIR will be "". */
1460 path[i + 1] = '\0';
1461}
1462
1463/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
a8dbfd58 1464 Returns pathname, or an empty string. */
1db33378 1465
a8dbfd58 1466std::string
1db33378
PP
1467find_separate_debug_file_by_debuglink (struct objfile *objfile)
1468{
1db33378 1469 unsigned long crc32;
1db33378 1470
5eae7aea
TT
1471 gdb::unique_xmalloc_ptr<char> debuglink
1472 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1473
1474 if (debuglink == NULL)
1475 {
1476 /* There's no separate debug info, hence there's no way we could
1477 load it => no warning. */
a8dbfd58 1478 return std::string ();
1db33378
PP
1479 }
1480
5eae7aea
TT
1481 std::string dir = objfile_name (objfile);
1482 terminate_after_last_dir_separator (&dir[0]);
1483 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1484
a8dbfd58
SM
1485 std::string debugfile
1486 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1487 debuglink.get (), crc32, objfile);
1db33378 1488
a8dbfd58 1489 if (debugfile.empty ())
1db33378 1490 {
1db33378
PP
1491 /* For PR gdb/9538, try again with realpath (if different from the
1492 original). */
1493
1494 struct stat st_buf;
1495
4262abfb
JK
1496 if (lstat (objfile_name (objfile), &st_buf) == 0
1497 && S_ISLNK (st_buf.st_mode))
1db33378 1498 {
5eae7aea
TT
1499 gdb::unique_xmalloc_ptr<char> symlink_dir
1500 (lrealpath (objfile_name (objfile)));
1db33378
PP
1501 if (symlink_dir != NULL)
1502 {
5eae7aea
TT
1503 terminate_after_last_dir_separator (symlink_dir.get ());
1504 if (dir != symlink_dir.get ())
1db33378
PP
1505 {
1506 /* Different directory, so try using it. */
5eae7aea
TT
1507 debugfile = find_separate_debug_file (symlink_dir.get (),
1508 symlink_dir.get (),
1509 debuglink.get (),
1db33378
PP
1510 crc32,
1511 objfile);
1512 }
1513 }
1514 }
1db33378 1515 }
aa28a74e 1516
25522fae 1517 return debugfile;
5b5d99cf
JB
1518}
1519
97cbe998
SDJ
1520/* Make sure that OBJF_{READNOW,READNEVER} are not set
1521 simultaneously. */
1522
1523static void
1524validate_readnow_readnever (objfile_flags flags)
1525{
1526 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1527 error (_("-readnow and -readnever cannot be used simultaneously"));
1528}
1529
c906108c
SS
1530/* This is the symbol-file command. Read the file, analyze its
1531 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1532 the command is rather bizarre:
1533
1534 1. The function buildargv implements various quoting conventions
1535 which are undocumented and have little or nothing in common with
1536 the way things are quoted (or not quoted) elsewhere in GDB.
1537
1538 2. Options are used, which are not generally used in GDB (perhaps
1539 "set mapped on", "set readnow on" would be better)
1540
1541 3. The order of options matters, which is contrary to GNU
c906108c
SS
1542 conventions (because it is confusing and inconvenient). */
1543
1544void
1d8b34a7 1545symbol_file_command (const char *args, int from_tty)
c906108c 1546{
c906108c
SS
1547 dont_repeat ();
1548
1549 if (args == NULL)
1550 {
1adeb98a 1551 symbol_file_clear (from_tty);
c906108c
SS
1552 }
1553 else
1554 {
b15cc25c 1555 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1556 symfile_add_flags add_flags = 0;
cb2f3a29 1557 char *name = NULL;
40fc416f 1558 bool stop_processing_options = false;
d4d429d5 1559 CORE_ADDR offset = 0;
40fc416f
SDJ
1560 int idx;
1561 char *arg;
cb2f3a29 1562
ecf45d2c
SL
1563 if (from_tty)
1564 add_flags |= SYMFILE_VERBOSE;
1565
773a1edc 1566 gdb_argv built_argv (args);
40fc416f 1567 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
c906108c 1568 {
40fc416f 1569 if (stop_processing_options || *arg != '-')
7f0f8ac8 1570 {
40fc416f
SDJ
1571 if (name == NULL)
1572 name = arg;
1573 else
1574 error (_("Unrecognized argument \"%s\""), arg);
7f0f8ac8 1575 }
40fc416f
SDJ
1576 else if (strcmp (arg, "-readnow") == 0)
1577 flags |= OBJF_READNOW;
97cbe998
SDJ
1578 else if (strcmp (arg, "-readnever") == 0)
1579 flags |= OBJF_READNEVER;
d4d429d5
PT
1580 else if (strcmp (arg, "-o") == 0)
1581 {
1582 arg = built_argv[++idx];
1583 if (arg == NULL)
1584 error (_("Missing argument to -o"));
1585
1586 offset = parse_and_eval_address (arg);
1587 }
40fc416f
SDJ
1588 else if (strcmp (arg, "--") == 0)
1589 stop_processing_options = true;
1590 else
1591 error (_("Unrecognized argument \"%s\""), arg);
c906108c
SS
1592 }
1593
1594 if (name == NULL)
cb2f3a29 1595 error (_("no symbol file name was specified"));
40fc416f 1596
97cbe998
SDJ
1597 validate_readnow_readnever (flags);
1598
d4d429d5 1599 symbol_file_add_main_1 (name, add_flags, flags, offset);
c906108c
SS
1600 }
1601}
1602
1603/* Set the initial language.
1604
cb2f3a29
MK
1605 FIXME: A better solution would be to record the language in the
1606 psymtab when reading partial symbols, and then use it (if known) to
1607 set the language. This would be a win for formats that encode the
1608 language in an easily discoverable place, such as DWARF. For
1609 stabs, we can jump through hoops looking for specially named
1610 symbols or try to intuit the language from the specific type of
1611 stabs we find, but we can't do that until later when we read in
1612 full symbols. */
c906108c 1613
8b60591b 1614void
fba45db2 1615set_initial_language (void)
c906108c 1616{
9e6c82ad 1617 enum language lang = main_language ();
c906108c 1618
9e6c82ad 1619 if (lang == language_unknown)
01f8c46d 1620 {
bf6d8a91 1621 char *name = main_name ();
d12307c1 1622 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1623
bf6d8a91
TT
1624 if (sym != NULL)
1625 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1626 }
cb2f3a29 1627
ccefe4c4
TT
1628 if (lang == language_unknown)
1629 {
1630 /* Make C the default language */
1631 lang = language_c;
c906108c 1632 }
ccefe4c4
TT
1633
1634 set_language (lang);
1635 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1636}
1637
cb2f3a29
MK
1638/* Open the file specified by NAME and hand it off to BFD for
1639 preliminary analysis. Return a newly initialized bfd *, which
1640 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1641 absolute). In case of trouble, error() is called. */
c906108c 1642
192b62ce 1643gdb_bfd_ref_ptr
97a41605 1644symfile_bfd_open (const char *name)
c906108c 1645{
97a41605 1646 int desc = -1;
c906108c 1647
e0cc99a6 1648 gdb::unique_xmalloc_ptr<char> absolute_name;
97a41605 1649 if (!is_target_filename (name))
f1838a98 1650 {
ee0c3293 1651 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1652
97a41605
GB
1653 /* Look down path for it, allocate 2nd new malloc'd copy. */
1654 desc = openp (getenv ("PATH"),
1655 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1656 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1657#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1658 if (desc < 0)
1659 {
ee0c3293 1660 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1661
ee0c3293 1662 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1663 desc = openp (getenv ("PATH"),
1664 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1665 exename, O_RDONLY | O_BINARY, &absolute_name);
1666 }
c906108c 1667#endif
97a41605 1668 if (desc < 0)
ee0c3293 1669 perror_with_name (expanded_name.get ());
cb2f3a29 1670
e0cc99a6 1671 name = absolute_name.get ();
97a41605 1672 }
c906108c 1673
192b62ce
TT
1674 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1675 if (sym_bfd == NULL)
faab9922
JK
1676 error (_("`%s': can't open to read symbols: %s."), name,
1677 bfd_errmsg (bfd_get_error ()));
97a41605 1678
192b62ce
TT
1679 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1680 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1681
192b62ce
TT
1682 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1683 error (_("`%s': can't read symbols: %s."), name,
1684 bfd_errmsg (bfd_get_error ()));
cb2f3a29
MK
1685
1686 return sym_bfd;
c906108c
SS
1687}
1688
cb2f3a29
MK
1689/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1690 the section was not found. */
1691
0e931cf0 1692int
a121b7c1 1693get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1694{
1695 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1696
0e931cf0
JB
1697 if (sect)
1698 return sect->index;
1699 else
1700 return -1;
1701}
1702
c256e171
DE
1703/* Link SF into the global symtab_fns list.
1704 FLAVOUR is the file format that SF handles.
1705 Called on startup by the _initialize routine in each object file format
1706 reader, to register information about each format the reader is prepared
1707 to handle. */
c906108c
SS
1708
1709void
c256e171 1710add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1711{
905014d7 1712 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1713}
1714
cb2f3a29
MK
1715/* Initialize OBJFILE to read symbols from its associated BFD. It
1716 either returns or calls error(). The result is an initialized
1717 struct sym_fns in the objfile structure, that contains cached
1718 information about the symbol file. */
c906108c 1719
00b5771c 1720static const struct sym_fns *
31d99776 1721find_sym_fns (bfd *abfd)
c906108c 1722{
31d99776 1723 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1724
75245b24
MS
1725 if (our_flavour == bfd_target_srec_flavour
1726 || our_flavour == bfd_target_ihex_flavour
1727 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1728 return NULL; /* No symbols. */
75245b24 1729
905014d7
SM
1730 for (const registered_sym_fns &rsf : symtab_fns)
1731 if (our_flavour == rsf.sym_flavour)
1732 return rsf.sym_fns;
cb2f3a29 1733
8a3fe4f8 1734 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1735 bfd_get_target (abfd));
c906108c
SS
1736}
1737\f
cb2f3a29 1738
c906108c
SS
1739/* This function runs the load command of our current target. */
1740
1741static void
5fed81ff 1742load_command (const char *arg, int from_tty)
c906108c 1743{
e5cc9f32
JB
1744 dont_repeat ();
1745
4487aabf
PA
1746 /* The user might be reloading because the binary has changed. Take
1747 this opportunity to check. */
1748 reopen_exec_file ();
1749 reread_symbols ();
1750
b577b6af 1751 std::string temp;
c906108c 1752 if (arg == NULL)
1986bccd 1753 {
b577b6af 1754 const char *parg, *prev;
1986bccd 1755
b577b6af 1756 arg = get_exec_file (1);
1986bccd 1757
b577b6af
TT
1758 /* We may need to quote this string so buildargv can pull it
1759 apart. */
1760 prev = parg = arg;
1986bccd
AS
1761 while ((parg = strpbrk (parg, "\\\"'\t ")))
1762 {
b577b6af
TT
1763 temp.append (prev, parg - prev);
1764 prev = parg++;
1765 temp.push_back ('\\');
1986bccd 1766 }
b577b6af
TT
1767 /* If we have not copied anything yet, then we didn't see a
1768 character to quote, and we can just leave ARG unchanged. */
1769 if (!temp.empty ())
1986bccd 1770 {
b577b6af
TT
1771 temp.append (prev);
1772 arg = temp.c_str ();
1986bccd
AS
1773 }
1774 }
1775
c906108c 1776 target_load (arg, from_tty);
2889e661
JB
1777
1778 /* After re-loading the executable, we don't really know which
1779 overlays are mapped any more. */
1780 overlay_cache_invalid = 1;
c906108c
SS
1781}
1782
1783/* This version of "load" should be usable for any target. Currently
1784 it is just used for remote targets, not inftarg.c or core files,
1785 on the theory that only in that case is it useful.
1786
1787 Avoiding xmodem and the like seems like a win (a) because we don't have
1788 to worry about finding it, and (b) On VMS, fork() is very slow and so
1789 we don't want to run a subprocess. On the other hand, I'm not sure how
1790 performance compares. */
917317f4 1791
917317f4
JM
1792static int validate_download = 0;
1793
e4f9b4d5
MS
1794/* Callback service function for generic_load (bfd_map_over_sections). */
1795
1796static void
1797add_section_size_callback (bfd *abfd, asection *asec, void *data)
1798{
19ba03f4 1799 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1800
2c500098 1801 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1802}
1803
a76d924d 1804/* Opaque data for load_progress. */
55089490
TT
1805struct load_progress_data
1806{
a76d924d 1807 /* Cumulative data. */
55089490
TT
1808 unsigned long write_count = 0;
1809 unsigned long data_count = 0;
1810 bfd_size_type total_size = 0;
a76d924d
DJ
1811};
1812
1813/* Opaque data for load_progress for a single section. */
55089490
TT
1814struct load_progress_section_data
1815{
1816 load_progress_section_data (load_progress_data *cumulative_,
1817 const char *section_name_, ULONGEST section_size_,
1818 CORE_ADDR lma_, gdb_byte *buffer_)
1819 : cumulative (cumulative_), section_name (section_name_),
1820 section_size (section_size_), lma (lma_), buffer (buffer_)
1821 {}
1822
a76d924d 1823 struct load_progress_data *cumulative;
cf7a04e8 1824
a76d924d 1825 /* Per-section data. */
cf7a04e8 1826 const char *section_name;
55089490 1827 ULONGEST section_sent = 0;
cf7a04e8
DJ
1828 ULONGEST section_size;
1829 CORE_ADDR lma;
1830 gdb_byte *buffer;
e4f9b4d5
MS
1831};
1832
55089490
TT
1833/* Opaque data for load_section_callback. */
1834struct load_section_data
1835{
1836 load_section_data (load_progress_data *progress_data_)
1837 : progress_data (progress_data_)
1838 {}
1839
1840 ~load_section_data ()
1841 {
1842 for (auto &&request : requests)
1843 {
1844 xfree (request.data);
1845 delete ((load_progress_section_data *) request.baton);
1846 }
1847 }
1848
1849 CORE_ADDR load_offset = 0;
1850 struct load_progress_data *progress_data;
1851 std::vector<struct memory_write_request> requests;
1852};
1853
a76d924d 1854/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1855
1856static void
1857load_progress (ULONGEST bytes, void *untyped_arg)
1858{
19ba03f4
SM
1859 struct load_progress_section_data *args
1860 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1861 struct load_progress_data *totals;
1862
1863 if (args == NULL)
1864 /* Writing padding data. No easy way to get at the cumulative
1865 stats, so just ignore this. */
1866 return;
1867
1868 totals = args->cumulative;
1869
1870 if (bytes == 0 && args->section_sent == 0)
1871 {
1872 /* The write is just starting. Let the user know we've started
1873 this section. */
112e8700
SM
1874 current_uiout->message ("Loading section %s, size %s lma %s\n",
1875 args->section_name,
1876 hex_string (args->section_size),
1877 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1878 return;
1879 }
cf7a04e8
DJ
1880
1881 if (validate_download)
1882 {
1883 /* Broken memories and broken monitors manifest themselves here
1884 when bring new computers to life. This doubles already slow
1885 downloads. */
1886 /* NOTE: cagney/1999-10-18: A more efficient implementation
1887 might add a verify_memory() method to the target vector and
1888 then use that. remote.c could implement that method using
1889 the ``qCRC'' packet. */
0efef640 1890 gdb::byte_vector check (bytes);
cf7a04e8 1891
0efef640 1892 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1893 error (_("Download verify read failed at %s"),
f5656ead 1894 paddress (target_gdbarch (), args->lma));
0efef640 1895 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1896 error (_("Download verify compare failed at %s"),
f5656ead 1897 paddress (target_gdbarch (), args->lma));
cf7a04e8 1898 }
a76d924d 1899 totals->data_count += bytes;
cf7a04e8
DJ
1900 args->lma += bytes;
1901 args->buffer += bytes;
a76d924d 1902 totals->write_count += 1;
cf7a04e8 1903 args->section_sent += bytes;
522002f9 1904 if (check_quit_flag ()
cf7a04e8
DJ
1905 || (deprecated_ui_load_progress_hook != NULL
1906 && deprecated_ui_load_progress_hook (args->section_name,
1907 args->section_sent)))
1908 error (_("Canceled the download"));
1909
1910 if (deprecated_show_load_progress != NULL)
1911 deprecated_show_load_progress (args->section_name,
1912 args->section_sent,
1913 args->section_size,
a76d924d
DJ
1914 totals->data_count,
1915 totals->total_size);
cf7a04e8
DJ
1916}
1917
e4f9b4d5
MS
1918/* Callback service function for generic_load (bfd_map_over_sections). */
1919
1920static void
1921load_section_callback (bfd *abfd, asection *asec, void *data)
1922{
19ba03f4 1923 struct load_section_data *args = (struct load_section_data *) data;
cf7a04e8 1924 bfd_size_type size = bfd_get_section_size (asec);
cf7a04e8 1925 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1926
cf7a04e8
DJ
1927 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1928 return;
e4f9b4d5 1929
cf7a04e8
DJ
1930 if (size == 0)
1931 return;
e4f9b4d5 1932
55089490
TT
1933 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 ULONGEST end = begin + size;
1935 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
cf7a04e8 1936 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d 1937
55089490
TT
1938 load_progress_section_data *section_data
1939 = new load_progress_section_data (args->progress_data, sect_name, size,
1940 begin, buffer);
cf7a04e8 1941
55089490 1942 args->requests.emplace_back (begin, end, buffer, section_data);
e4f9b4d5
MS
1943}
1944
dcb07cfa
PA
1945static void print_transfer_performance (struct ui_file *stream,
1946 unsigned long data_count,
1947 unsigned long write_count,
1948 std::chrono::steady_clock::duration d);
1949
c906108c 1950void
9cbe5fff 1951generic_load (const char *args, int from_tty)
c906108c 1952{
a76d924d 1953 struct load_progress_data total_progress;
55089490 1954 struct load_section_data cbdata (&total_progress);
79a45e25 1955 struct ui_out *uiout = current_uiout;
a76d924d 1956
d1a41061
PP
1957 if (args == NULL)
1958 error_no_arg (_("file to load"));
1986bccd 1959
773a1edc 1960 gdb_argv argv (args);
1986bccd 1961
ee0c3293 1962 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
1963
1964 if (argv[1] != NULL)
917317f4 1965 {
f698ca8e 1966 const char *endptr;
ba5f2f8a 1967
f698ca8e 1968 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
1969
1970 /* If the last word was not a valid number then
1971 treat it as a file name with spaces in. */
1972 if (argv[1] == endptr)
1973 error (_("Invalid download offset:%s."), argv[1]);
1974
1975 if (argv[2] != NULL)
1976 error (_("Too many parameters."));
917317f4 1977 }
c906108c 1978
c378eb4e 1979 /* Open the file for loading. */
ee0c3293 1980 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 1981 if (loadfile_bfd == NULL)
ee0c3293 1982 perror_with_name (filename.get ());
917317f4 1983
192b62ce 1984 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 1985 {
ee0c3293 1986 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
1987 bfd_errmsg (bfd_get_error ()));
1988 }
c5aa993b 1989
192b62ce 1990 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
1991 (void *) &total_progress.total_size);
1992
192b62ce 1993 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 1994
dcb07cfa
PA
1995 using namespace std::chrono;
1996
1997 steady_clock::time_point start_time = steady_clock::now ();
c906108c 1998
a76d924d
DJ
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
c906108c 2002
dcb07cfa 2003 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2004
55089490 2005 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2006 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2007 uiout->text ("Start address ");
2008 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2009 uiout->text (", load size ");
2010 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2011 uiout->text ("\n");
fb14de7b 2012 regcache_write_pc (get_current_regcache (), entry);
c906108c 2013
38963c97
DJ
2014 /* Reset breakpoints, now that we have changed the load image. For
2015 instance, breakpoints may have been set (or reset, by
2016 post_create_inferior) while connected to the target but before we
2017 loaded the program. In that case, the prologue analyzer could
2018 have read instructions from the target to find the right
2019 breakpoint locations. Loading has changed the contents of that
2020 memory. */
2021
2022 breakpoint_re_set ();
2023
a76d924d
DJ
2024 print_transfer_performance (gdb_stdout, total_progress.data_count,
2025 total_progress.write_count,
dcb07cfa 2026 end_time - start_time);
c906108c
SS
2027}
2028
dcb07cfa
PA
2029/* Report on STREAM the performance of a memory transfer operation,
2030 such as 'load'. DATA_COUNT is the number of bytes transferred.
2031 WRITE_COUNT is the number of separate write operations, or 0, if
2032 that information is not available. TIME is how long the operation
2033 lasted. */
c906108c 2034
dcb07cfa 2035static void
d9fcf2fb 2036print_transfer_performance (struct ui_file *stream,
917317f4
JM
2037 unsigned long data_count,
2038 unsigned long write_count,
dcb07cfa 2039 std::chrono::steady_clock::duration time)
917317f4 2040{
dcb07cfa 2041 using namespace std::chrono;
79a45e25 2042 struct ui_out *uiout = current_uiout;
2b71414d 2043
dcb07cfa 2044 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2045
112e8700 2046 uiout->text ("Transfer rate: ");
dcb07cfa 2047 if (ms.count () > 0)
8b93c638 2048 {
dcb07cfa 2049 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2050
112e8700 2051 if (uiout->is_mi_like_p ())
9f43d28c 2052 {
112e8700
SM
2053 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2054 uiout->text (" bits/sec");
9f43d28c
DJ
2055 }
2056 else if (rate < 1024)
2057 {
112e8700
SM
2058 uiout->field_fmt ("transfer-rate", "%lu", rate);
2059 uiout->text (" bytes/sec");
9f43d28c
DJ
2060 }
2061 else
2062 {
112e8700
SM
2063 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2064 uiout->text (" KB/sec");
9f43d28c 2065 }
8b93c638
JM
2066 }
2067 else
2068 {
112e8700
SM
2069 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2070 uiout->text (" bits in <1 sec");
8b93c638
JM
2071 }
2072 if (write_count > 0)
2073 {
112e8700
SM
2074 uiout->text (", ");
2075 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2076 uiout->text (" bytes/write");
8b93c638 2077 }
112e8700 2078 uiout->text (".\n");
c906108c
SS
2079}
2080
2081/* This function allows the addition of incrementally linked object files.
2082 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2083/* Note: ezannoni 2000-04-13 This function/command used to have a
2084 special case syntax for the rombug target (Rombug is the boot
2085 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2086 rombug case, the user doesn't need to supply a text address,
2087 instead a call to target_link() (in target.c) would supply the
c378eb4e 2088 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2089
c906108c 2090static void
2cf311eb 2091add_symbol_file_command (const char *args, int from_tty)
c906108c 2092{
5af949e3 2093 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2094 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2095 char *arg;
2acceee2 2096 int argcnt = 0;
76ad5e1e 2097 struct objfile *objf;
b15cc25c
PA
2098 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2099 symfile_add_flags add_flags = 0;
2100
2101 if (from_tty)
2102 add_flags |= SYMFILE_VERBOSE;
db162d44 2103
a39a16c4 2104 struct sect_opt
2acceee2 2105 {
a121b7c1
PA
2106 const char *name;
2107 const char *value;
a39a16c4 2108 };
db162d44 2109
40fc416f
SDJ
2110 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2111 bool stop_processing_options = false;
c5aa993b 2112
c906108c
SS
2113 dont_repeat ();
2114
2115 if (args == NULL)
8a3fe4f8 2116 error (_("add-symbol-file takes a file name and an address"));
c906108c 2117
40fc416f 2118 bool seen_addr = false;
773a1edc 2119 gdb_argv argv (args);
db162d44 2120
5b96932b
AS
2121 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2122 {
40fc416f 2123 if (stop_processing_options || *arg != '-')
41dc8db8 2124 {
40fc416f 2125 if (filename == NULL)
41dc8db8 2126 {
40fc416f
SDJ
2127 /* First non-option argument is always the filename. */
2128 filename.reset (tilde_expand (arg));
41dc8db8 2129 }
40fc416f 2130 else if (!seen_addr)
41dc8db8 2131 {
40fc416f
SDJ
2132 /* The second non-option argument is always the text
2133 address at which to load the program. */
2134 sect_opts[0].value = arg;
2135 seen_addr = true;
41dc8db8
MB
2136 }
2137 else
02ca603a 2138 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2139 }
40fc416f
SDJ
2140 else if (strcmp (arg, "-readnow") == 0)
2141 flags |= OBJF_READNOW;
97cbe998
SDJ
2142 else if (strcmp (arg, "-readnever") == 0)
2143 flags |= OBJF_READNEVER;
40fc416f
SDJ
2144 else if (strcmp (arg, "-s") == 0)
2145 {
2146 if (argv[argcnt + 1] == NULL)
2147 error (_("Missing section name after \"-s\""));
2148 else if (argv[argcnt + 2] == NULL)
2149 error (_("Missing section address after \"-s\""));
2150
2151 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2152
2153 sect_opts.push_back (sect);
2154 argcnt += 2;
2155 }
2156 else if (strcmp (arg, "--") == 0)
2157 stop_processing_options = true;
2158 else
2159 error (_("Unrecognized argument \"%s\""), arg);
c906108c 2160 }
c906108c 2161
40fc416f
SDJ
2162 if (filename == NULL)
2163 error (_("You must provide a filename to be loaded."));
2164
97cbe998
SDJ
2165 validate_readnow_readnever (flags);
2166
c378eb4e 2167 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2168 a sect_addr_info structure to be passed around to other
2169 functions. We have to split this up into separate print
bb599908 2170 statements because hex_string returns a local static
c378eb4e 2171 string. */
5417f6dc 2172
ed6dfe51 2173 printf_unfiltered (_("add symbol table from file \"%s\""),
ee0c3293 2174 filename.get ());
37e136b1 2175 section_addr_info section_addrs;
ed6dfe51
PT
2176 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2177 if (!seen_addr)
2178 ++it;
2179 for (; it != sect_opts.end (); ++it)
c906108c 2180 {
db162d44 2181 CORE_ADDR addr;
ed6dfe51
PT
2182 const char *val = it->value;
2183 const char *sec = it->name;
5417f6dc 2184
ed6dfe51
PT
2185 if (section_addrs.empty ())
2186 printf_unfiltered (_(" at\n"));
ae822768 2187 addr = parse_and_eval_address (val);
db162d44 2188
db162d44 2189 /* Here we store the section offsets in the order they were
d81a3eaf
PT
2190 entered on the command line. Every array element is
2191 assigned an ascending section index to preserve the above
2192 order over an unstable sorting algorithm. This dummy
2193 index is not used for any other purpose.
2194 */
2195 section_addrs.emplace_back (addr, sec, section_addrs.size ());
5af949e3
UW
2196 printf_unfiltered ("\t%s_addr = %s\n", sec,
2197 paddress (gdbarch, addr));
db162d44 2198
5417f6dc 2199 /* The object's sections are initialized when a
db162d44 2200 call is made to build_objfile_section_table (objfile).
5417f6dc 2201 This happens in reread_symbols.
db162d44
EZ
2202 At this point, we don't know what file type this is,
2203 so we can't determine what section names are valid. */
2acceee2 2204 }
ed6dfe51
PT
2205 if (section_addrs.empty ())
2206 printf_unfiltered ("\n");
db162d44 2207
2acceee2 2208 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2209 error (_("Not confirmed."));
c906108c 2210
37e136b1
TT
2211 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2212 flags);
76ad5e1e
NB
2213
2214 add_target_sections_of_objfile (objf);
c906108c
SS
2215
2216 /* Getting new symbols may change our opinion about what is
2217 frameless. */
2218 reinit_frame_cache ();
2219}
2220\f
70992597 2221
63644780
NB
2222/* This function removes a symbol file that was added via add-symbol-file. */
2223
2224static void
2cf311eb 2225remove_symbol_file_command (const char *args, int from_tty)
63644780 2226{
63644780 2227 struct objfile *objf = NULL;
63644780 2228 struct program_space *pspace = current_program_space;
63644780
NB
2229
2230 dont_repeat ();
2231
2232 if (args == NULL)
2233 error (_("remove-symbol-file: no symbol file provided"));
2234
773a1edc 2235 gdb_argv argv (args);
63644780
NB
2236
2237 if (strcmp (argv[0], "-a") == 0)
2238 {
2239 /* Interpret the next argument as an address. */
2240 CORE_ADDR addr;
2241
2242 if (argv[1] == NULL)
2243 error (_("Missing address argument"));
2244
2245 if (argv[2] != NULL)
2246 error (_("Junk after %s"), argv[1]);
2247
2248 addr = parse_and_eval_address (argv[1]);
2249
2250 ALL_OBJFILES (objf)
2251 {
d03de421
PA
2252 if ((objf->flags & OBJF_USERLOADED) != 0
2253 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2254 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2255 break;
2256 }
2257 }
2258 else if (argv[0] != NULL)
2259 {
2260 /* Interpret the current argument as a file name. */
63644780
NB
2261
2262 if (argv[1] != NULL)
2263 error (_("Junk after %s"), argv[0]);
2264
ee0c3293 2265 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2266
2267 ALL_OBJFILES (objf)
2268 {
d03de421
PA
2269 if ((objf->flags & OBJF_USERLOADED) != 0
2270 && (objf->flags & OBJF_SHARED) != 0
63644780 2271 && objf->pspace == pspace
ee0c3293 2272 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2273 break;
2274 }
2275 }
2276
2277 if (objf == NULL)
2278 error (_("No symbol file found"));
2279
2280 if (from_tty
2281 && !query (_("Remove symbol table from file \"%s\"? "),
2282 objfile_name (objf)))
2283 error (_("Not confirmed."));
2284
9e86da07 2285 delete objf;
63644780 2286 clear_symtab_users (0);
63644780
NB
2287}
2288
c906108c 2289/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2290
c906108c 2291void
fba45db2 2292reread_symbols (void)
c906108c
SS
2293{
2294 struct objfile *objfile;
2295 long new_modtime;
c906108c
SS
2296 struct stat new_statbuf;
2297 int res;
4c404b8b 2298 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2299
2300 /* With the addition of shared libraries, this should be modified,
2301 the load time should be saved in the partial symbol tables, since
2302 different tables may come from different source files. FIXME.
2303 This routine should then walk down each partial symbol table
c378eb4e 2304 and see if the symbol table that it originates from has been changed. */
c906108c 2305
c5aa993b
JM
2306 for (objfile = object_files; objfile; objfile = objfile->next)
2307 {
9cce227f
TG
2308 if (objfile->obfd == NULL)
2309 continue;
2310
2311 /* Separate debug objfiles are handled in the main objfile. */
2312 if (objfile->separate_debug_objfile_backlink)
2313 continue;
2314
02aeec7b
JB
2315 /* If this object is from an archive (what you usually create with
2316 `ar', often called a `static library' on most systems, though
2317 a `shared library' on AIX is also an archive), then you should
2318 stat on the archive name, not member name. */
9cce227f
TG
2319 if (objfile->obfd->my_archive)
2320 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2321 else
4262abfb 2322 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2323 if (res != 0)
2324 {
c378eb4e 2325 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2326 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2327 objfile_name (objfile));
9cce227f
TG
2328 continue;
2329 }
2330 new_modtime = new_statbuf.st_mtime;
2331 if (new_modtime != objfile->mtime)
2332 {
2333 struct cleanup *old_cleanups;
2334 struct section_offsets *offsets;
2335 int num_offsets;
9cce227f
TG
2336
2337 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2338 objfile_name (objfile));
9cce227f
TG
2339
2340 /* There are various functions like symbol_file_add,
2341 symfile_bfd_open, syms_from_objfile, etc., which might
2342 appear to do what we want. But they have various other
2343 effects which we *don't* want. So we just do stuff
2344 ourselves. We don't worry about mapped files (for one thing,
2345 any mapped file will be out of date). */
2346
2347 /* If we get an error, blow away this objfile (not sure if
2348 that is the correct response for things like shared
2349 libraries). */
ed2b3126
TT
2350 std::unique_ptr<struct objfile> objfile_holder (objfile);
2351
9cce227f 2352 /* We need to do this whenever any symbols go away. */
ed2b3126 2353 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2354
0ba1096a
KT
2355 if (exec_bfd != NULL
2356 && filename_cmp (bfd_get_filename (objfile->obfd),
2357 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2358 {
2359 /* Reload EXEC_BFD without asking anything. */
2360
2361 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2362 }
2363
f6eeced0
JK
2364 /* Keep the calls order approx. the same as in free_objfile. */
2365
2366 /* Free the separate debug objfiles. It will be
2367 automatically recreated by sym_read. */
2368 free_objfile_separate_debug (objfile);
2369
2370 /* Remove any references to this objfile in the global
2371 value lists. */
2372 preserve_values (objfile);
2373
2374 /* Nuke all the state that we will re-read. Much of the following
2375 code which sets things to NULL really is necessary to tell
2376 other parts of GDB that there is nothing currently there.
2377
2378 Try to keep the freeing order compatible with free_objfile. */
2379
2380 if (objfile->sf != NULL)
2381 {
2382 (*objfile->sf->sym_finish) (objfile);
2383 }
2384
2385 clear_objfile_data (objfile);
2386
e1507e95 2387 /* Clean up any state BFD has sitting around. */
a4453b7e 2388 {
192b62ce 2389 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2390 char *obfd_filename;
a4453b7e
TT
2391
2392 obfd_filename = bfd_get_filename (objfile->obfd);
2393 /* Open the new BFD before freeing the old one, so that
2394 the filename remains live. */
192b62ce
TT
2395 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2396 objfile->obfd = temp.release ();
e1507e95 2397 if (objfile->obfd == NULL)
192b62ce 2398 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2399 }
2400
c0c9f665 2401 std::string original_name = objfile->original_name;
24ba069a 2402
9cce227f
TG
2403 /* bfd_openr sets cacheable to true, which is what we want. */
2404 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2405 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2406 bfd_errmsg (bfd_get_error ()));
2407
2408 /* Save the offsets, we will nuke them with the rest of the
2409 objfile_obstack. */
2410 num_offsets = objfile->num_sections;
2411 offsets = ((struct section_offsets *)
2412 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2413 memcpy (offsets, objfile->section_offsets,
2414 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2415
9cce227f
TG
2416 /* FIXME: Do we have to free a whole linked list, or is this
2417 enough? */
af5bf4ad
SM
2418 objfile->global_psymbols.clear ();
2419 objfile->static_psymbols.clear ();
9cce227f 2420
c378eb4e 2421 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2422 psymbol_bcache_free (objfile->psymbol_cache);
2423 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2424
2425 /* NB: after this call to obstack_free, objfiles_changed
2426 will need to be called (see discussion below). */
9cce227f
TG
2427 obstack_free (&objfile->objfile_obstack, 0);
2428 objfile->sections = NULL;
43f3e411 2429 objfile->compunit_symtabs = NULL;
9cce227f
TG
2430 objfile->psymtabs = NULL;
2431 objfile->psymtabs_addrmap = NULL;
2432 objfile->free_psymtabs = NULL;
34eaf542 2433 objfile->template_symbols = NULL;
9cce227f 2434
9cce227f
TG
2435 /* obstack_init also initializes the obstack so it is
2436 empty. We could use obstack_specify_allocation but
d82ea6a8 2437 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2438 obstack_init (&objfile->objfile_obstack);
779bd270 2439
846060df
JB
2440 /* set_objfile_per_bfd potentially allocates the per-bfd
2441 data on the objfile's obstack (if sharing data across
2442 multiple users is not possible), so it's important to
2443 do it *after* the obstack has been initialized. */
2444 set_objfile_per_bfd (objfile);
2445
224c3ddb 2446 objfile->original_name
c0c9f665
TT
2447 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2448 original_name.c_str (),
2449 original_name.size ());
24ba069a 2450
779bd270
DE
2451 /* Reset the sym_fns pointer. The ELF reader can change it
2452 based on whether .gdb_index is present, and we need it to
2453 start over. PR symtab/15885 */
8fb8eb5c 2454 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2455
d82ea6a8 2456 build_objfile_section_table (objfile);
9cce227f
TG
2457 terminate_minimal_symbol_table (objfile);
2458
2459 /* We use the same section offsets as from last time. I'm not
2460 sure whether that is always correct for shared libraries. */
2461 objfile->section_offsets = (struct section_offsets *)
2462 obstack_alloc (&objfile->objfile_obstack,
2463 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2464 memcpy (objfile->section_offsets, offsets,
2465 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2466 objfile->num_sections = num_offsets;
2467
2468 /* What the hell is sym_new_init for, anyway? The concept of
2469 distinguishing between the main file and additional files
2470 in this way seems rather dubious. */
2471 if (objfile == symfile_objfile)
c906108c 2472 {
9cce227f 2473 (*objfile->sf->sym_new_init) (objfile);
c906108c 2474 }
9cce227f
TG
2475
2476 (*objfile->sf->sym_init) (objfile);
b98664d3 2477 clear_complaints (1);
608e2dbb
TT
2478
2479 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2480
2481 /* We are about to read new symbols and potentially also
2482 DWARF information. Some targets may want to pass addresses
2483 read from DWARF DIE's through an adjustment function before
2484 saving them, like MIPS, which may call into
2485 "find_pc_section". When called, that function will make
2486 use of per-objfile program space data.
2487
2488 Since we discarded our section information above, we have
2489 dangling pointers in the per-objfile program space data
2490 structure. Force GDB to update the section mapping
2491 information by letting it know the objfile has changed,
2492 making the dangling pointers point to correct data
2493 again. */
2494
2495 objfiles_changed ();
2496
608e2dbb 2497 read_symbols (objfile, 0);
b11896a5 2498
9cce227f 2499 if (!objfile_has_symbols (objfile))
c906108c 2500 {
9cce227f
TG
2501 wrap_here ("");
2502 printf_unfiltered (_("(no debugging symbols found)\n"));
2503 wrap_here ("");
c5aa993b 2504 }
9cce227f
TG
2505
2506 /* We're done reading the symbol file; finish off complaints. */
b98664d3 2507 clear_complaints (0);
9cce227f
TG
2508
2509 /* Getting new symbols may change our opinion about what is
2510 frameless. */
2511
2512 reinit_frame_cache ();
2513
2514 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2515 objfile_holder.release ();
9cce227f
TG
2516 discard_cleanups (old_cleanups);
2517
2518 /* If the mtime has changed between the time we set new_modtime
2519 and now, we *want* this to be out of date, so don't call stat
2520 again now. */
2521 objfile->mtime = new_modtime;
9cce227f 2522 init_entry_point_info (objfile);
4ac39b97 2523
4c404b8b 2524 new_objfiles.push_back (objfile);
c906108c
SS
2525 }
2526 }
c906108c 2527
4c404b8b 2528 if (!new_objfiles.empty ())
ea53e89f 2529 {
c1e56572 2530 clear_symtab_users (0);
4ac39b97
JK
2531
2532 /* clear_objfile_data for each objfile was called before freeing it and
76727919 2533 gdb::observers::new_objfile.notify (NULL) has been called by
4ac39b97 2534 clear_symtab_users above. Notify the new files now. */
4c404b8b 2535 for (auto iter : new_objfiles)
76727919 2536 gdb::observers::new_objfile.notify (objfile);
4ac39b97 2537
ea53e89f
JB
2538 /* At least one objfile has changed, so we can consider that
2539 the executable we're debugging has changed too. */
76727919 2540 gdb::observers::executable_changed.notify ();
ea53e89f 2541 }
c906108c 2542}
c906108c
SS
2543\f
2544
593e3209 2545struct filename_language
c5aa993b 2546{
593e3209
SM
2547 filename_language (const std::string &ext_, enum language lang_)
2548 : ext (ext_), lang (lang_)
2549 {}
3fcf0b0d 2550
593e3209
SM
2551 std::string ext;
2552 enum language lang;
2553};
c906108c 2554
593e3209 2555static std::vector<filename_language> filename_language_table;
c906108c 2556
56618e20
TT
2557/* See symfile.h. */
2558
2559void
2560add_filename_language (const char *ext, enum language lang)
c906108c 2561{
593e3209 2562 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2563}
2564
2565static char *ext_args;
920d2a44
AC
2566static void
2567show_ext_args (struct ui_file *file, int from_tty,
2568 struct cmd_list_element *c, const char *value)
2569{
3e43a32a
MS
2570 fprintf_filtered (file,
2571 _("Mapping between filename extension "
2572 "and source language is \"%s\".\n"),
920d2a44
AC
2573 value);
2574}
c906108c
SS
2575
2576static void
eb4c3f4a
TT
2577set_ext_lang_command (const char *args,
2578 int from_tty, struct cmd_list_element *e)
c906108c 2579{
c906108c
SS
2580 char *cp = ext_args;
2581 enum language lang;
2582
c378eb4e 2583 /* First arg is filename extension, starting with '.' */
c906108c 2584 if (*cp != '.')
8a3fe4f8 2585 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2586
2587 /* Find end of first arg. */
c5aa993b 2588 while (*cp && !isspace (*cp))
c906108c
SS
2589 cp++;
2590
2591 if (*cp == '\0')
3e43a32a
MS
2592 error (_("'%s': two arguments required -- "
2593 "filename extension and language"),
c906108c
SS
2594 ext_args);
2595
c378eb4e 2596 /* Null-terminate first arg. */
c5aa993b 2597 *cp++ = '\0';
c906108c
SS
2598
2599 /* Find beginning of second arg, which should be a source language. */
529480d0 2600 cp = skip_spaces (cp);
c906108c
SS
2601
2602 if (*cp == '\0')
3e43a32a
MS
2603 error (_("'%s': two arguments required -- "
2604 "filename extension and language"),
c906108c
SS
2605 ext_args);
2606
2607 /* Lookup the language from among those we know. */
2608 lang = language_enum (cp);
2609
593e3209 2610 auto it = filename_language_table.begin ();
c906108c 2611 /* Now lookup the filename extension: do we already know it? */
593e3209 2612 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2613 {
593e3209 2614 if (it->ext == ext_args)
3fcf0b0d
TT
2615 break;
2616 }
c906108c 2617
593e3209 2618 if (it == filename_language_table.end ())
c906108c 2619 {
c378eb4e 2620 /* New file extension. */
c906108c
SS
2621 add_filename_language (ext_args, lang);
2622 }
2623 else
2624 {
c378eb4e 2625 /* Redefining a previously known filename extension. */
c906108c
SS
2626
2627 /* if (from_tty) */
2628 /* query ("Really make files of type %s '%s'?", */
2629 /* ext_args, language_str (lang)); */
2630
593e3209 2631 it->lang = lang;
c906108c
SS
2632 }
2633}
2634
2635static void
1d12d88f 2636info_ext_lang_command (const char *args, int from_tty)
c906108c 2637{
a3f17187 2638 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2639 printf_filtered ("\n\n");
593e3209
SM
2640 for (const filename_language &entry : filename_language_table)
2641 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2642 language_str (entry.lang));
c906108c
SS
2643}
2644
c906108c 2645enum language
dd786858 2646deduce_language_from_filename (const char *filename)
c906108c 2647{
e6a959d6 2648 const char *cp;
c906108c
SS
2649
2650 if (filename != NULL)
2651 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2652 {
593e3209
SM
2653 for (const filename_language &entry : filename_language_table)
2654 if (entry.ext == cp)
2655 return entry.lang;
3fcf0b0d 2656 }
c906108c
SS
2657
2658 return language_unknown;
2659}
2660\f
43f3e411
DE
2661/* Allocate and initialize a new symbol table.
2662 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2663
2664struct symtab *
43f3e411 2665allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2666{
43f3e411
DE
2667 struct objfile *objfile = cust->objfile;
2668 struct symtab *symtab
2669 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2670
19ba03f4
SM
2671 symtab->filename
2672 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2673 objfile->per_bfd->filename_cache);
c5aa993b
JM
2674 symtab->fullname = NULL;
2675 symtab->language = deduce_language_from_filename (filename);
c906108c 2676
db0fec5c
DE
2677 /* This can be very verbose with lots of headers.
2678 Only print at higher debug levels. */
2679 if (symtab_create_debug >= 2)
45cfd468
DE
2680 {
2681 /* Be a bit clever with debugging messages, and don't print objfile
2682 every time, only when it changes. */
2683 static char *last_objfile_name = NULL;
2684
2685 if (last_objfile_name == NULL
4262abfb 2686 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2687 {
2688 xfree (last_objfile_name);
4262abfb 2689 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2690 fprintf_unfiltered (gdb_stdlog,
2691 "Creating one or more symtabs for objfile %s ...\n",
2692 last_objfile_name);
2693 }
2694 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2695 "Created symtab %s for module %s.\n",
2696 host_address_to_string (symtab), filename);
45cfd468
DE
2697 }
2698
43f3e411
DE
2699 /* Add it to CUST's list of symtabs. */
2700 if (cust->filetabs == NULL)
2701 {
2702 cust->filetabs = symtab;
2703 cust->last_filetab = symtab;
2704 }
2705 else
2706 {
2707 cust->last_filetab->next = symtab;
2708 cust->last_filetab = symtab;
2709 }
2710
2711 /* Backlink to the containing compunit symtab. */
2712 symtab->compunit_symtab = cust;
2713
2714 return symtab;
2715}
2716
2717/* Allocate and initialize a new compunit.
2718 NAME is the name of the main source file, if there is one, or some
2719 descriptive text if there are no source files. */
2720
2721struct compunit_symtab *
2722allocate_compunit_symtab (struct objfile *objfile, const char *name)
2723{
2724 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2725 struct compunit_symtab);
2726 const char *saved_name;
2727
2728 cu->objfile = objfile;
2729
2730 /* The name we record here is only for display/debugging purposes.
2731 Just save the basename to avoid path issues (too long for display,
2732 relative vs absolute, etc.). */
2733 saved_name = lbasename (name);
224c3ddb
SM
2734 cu->name
2735 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2736 strlen (saved_name));
43f3e411
DE
2737
2738 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2739
2740 if (symtab_create_debug)
2741 {
2742 fprintf_unfiltered (gdb_stdlog,
2743 "Created compunit symtab %s for %s.\n",
2744 host_address_to_string (cu),
2745 cu->name);
2746 }
2747
2748 return cu;
2749}
2750
2751/* Hook CU to the objfile it comes from. */
2752
2753void
2754add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2755{
2756 cu->next = cu->objfile->compunit_symtabs;
2757 cu->objfile->compunit_symtabs = cu;
c906108c 2758}
c906108c 2759\f
c5aa993b 2760
b15cc25c
PA
2761/* Reset all data structures in gdb which may contain references to
2762 symbol table data. */
c906108c
SS
2763
2764void
b15cc25c 2765clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2766{
2767 /* Someday, we should do better than this, by only blowing away
2768 the things that really need to be blown. */
c0501be5
DJ
2769
2770 /* Clear the "current" symtab first, because it is no longer valid.
2771 breakpoint_re_set may try to access the current symtab. */
2772 clear_current_source_symtab_and_line ();
2773
c906108c 2774 clear_displays ();
1bfeeb0f 2775 clear_last_displayed_sal ();
c906108c 2776 clear_pc_function_cache ();
76727919 2777 gdb::observers::new_objfile.notify (NULL);
9bdcbae7
DJ
2778
2779 /* Clear globals which might have pointed into a removed objfile.
2780 FIXME: It's not clear which of these are supposed to persist
2781 between expressions and which ought to be reset each time. */
2782 expression_context_block = NULL;
aee1fcdf 2783 innermost_block.reset ();
8756216b
DP
2784
2785 /* Varobj may refer to old symbols, perform a cleanup. */
2786 varobj_invalidate ();
2787
e700d1b2
JB
2788 /* Now that the various caches have been cleared, we can re_set
2789 our breakpoints without risking it using stale data. */
2790 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2791 breakpoint_re_set ();
c906108c
SS
2792}
2793
74b7792f
AC
2794static void
2795clear_symtab_users_cleanup (void *ignore)
2796{
c1e56572 2797 clear_symtab_users (0);
74b7792f 2798}
c906108c 2799\f
c906108c
SS
2800/* OVERLAYS:
2801 The following code implements an abstraction for debugging overlay sections.
2802
2803 The target model is as follows:
2804 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2805 same VMA, each with its own unique LMA (or load address).
c906108c 2806 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2807 sections, one by one, from the load address into the VMA address.
5417f6dc 2808 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2809 sections should be considered to be mapped from the VMA to the LMA.
2810 This information is used for symbol lookup, and memory read/write.
5417f6dc 2811 For instance, if a section has been mapped then its contents
c5aa993b 2812 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2813
2814 Two levels of debugger support for overlays are available. One is
2815 "manual", in which the debugger relies on the user to tell it which
2816 overlays are currently mapped. This level of support is
2817 implemented entirely in the core debugger, and the information about
2818 whether a section is mapped is kept in the objfile->obj_section table.
2819
2820 The second level of support is "automatic", and is only available if
2821 the target-specific code provides functionality to read the target's
2822 overlay mapping table, and translate its contents for the debugger
2823 (by updating the mapped state information in the obj_section tables).
2824
2825 The interface is as follows:
c5aa993b
JM
2826 User commands:
2827 overlay map <name> -- tell gdb to consider this section mapped
2828 overlay unmap <name> -- tell gdb to consider this section unmapped
2829 overlay list -- list the sections that GDB thinks are mapped
2830 overlay read-target -- get the target's state of what's mapped
2831 overlay off/manual/auto -- set overlay debugging state
2832 Functional interface:
2833 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2834 section, return that section.
5417f6dc 2835 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2836 the pc, either in its VMA or its LMA
714835d5 2837 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2838 section_is_overlay(sect): true if section's VMA != LMA
2839 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2840 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2841 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2842 overlay_mapped_address(...): map an address from section's LMA to VMA
2843 overlay_unmapped_address(...): map an address from section's VMA to LMA
2844 symbol_overlayed_address(...): Return a "current" address for symbol:
2845 either in VMA or LMA depending on whether
c378eb4e 2846 the symbol's section is currently mapped. */
c906108c
SS
2847
2848/* Overlay debugging state: */
2849
d874f1e2 2850enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2851int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2852
c906108c 2853/* Function: section_is_overlay (SECTION)
5417f6dc 2854 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2855 SECTION is loaded at an address different from where it will "run". */
2856
2857int
714835d5 2858section_is_overlay (struct obj_section *section)
c906108c 2859{
714835d5
UW
2860 if (overlay_debugging && section)
2861 {
714835d5 2862 asection *bfd_section = section->the_bfd_section;
f888f159 2863
714835d5
UW
2864 if (bfd_section_lma (abfd, bfd_section) != 0
2865 && bfd_section_lma (abfd, bfd_section)
2866 != bfd_section_vma (abfd, bfd_section))
2867 return 1;
2868 }
c906108c
SS
2869
2870 return 0;
2871}
2872
2873/* Function: overlay_invalidate_all (void)
2874 Invalidate the mapped state of all overlay sections (mark it as stale). */
2875
2876static void
fba45db2 2877overlay_invalidate_all (void)
c906108c 2878{
c5aa993b 2879 struct objfile *objfile;
c906108c
SS
2880 struct obj_section *sect;
2881
2882 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2883 if (section_is_overlay (sect))
2884 sect->ovly_mapped = -1;
c906108c
SS
2885}
2886
714835d5 2887/* Function: section_is_mapped (SECTION)
5417f6dc 2888 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2889
2890 Access to the ovly_mapped flag is restricted to this function, so
2891 that we can do automatic update. If the global flag
2892 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2893 overlay_invalidate_all. If the mapped state of the particular
2894 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2895
714835d5
UW
2896int
2897section_is_mapped (struct obj_section *osect)
c906108c 2898{
9216df95
UW
2899 struct gdbarch *gdbarch;
2900
714835d5 2901 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2902 return 0;
2903
c5aa993b 2904 switch (overlay_debugging)
c906108c
SS
2905 {
2906 default:
d874f1e2 2907 case ovly_off:
c5aa993b 2908 return 0; /* overlay debugging off */
d874f1e2 2909 case ovly_auto: /* overlay debugging automatic */
1c772458 2910 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 2911 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
2912 gdbarch = get_objfile_arch (osect->objfile);
2913 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2914 {
2915 if (overlay_cache_invalid)
2916 {
2917 overlay_invalidate_all ();
2918 overlay_cache_invalid = 0;
2919 }
2920 if (osect->ovly_mapped == -1)
9216df95 2921 gdbarch_overlay_update (gdbarch, osect);
c906108c 2922 }
86a73007 2923 /* fall thru */
d874f1e2 2924 case ovly_on: /* overlay debugging manual */
c906108c
SS
2925 return osect->ovly_mapped == 1;
2926 }
2927}
2928
c906108c
SS
2929/* Function: pc_in_unmapped_range
2930 If PC falls into the lma range of SECTION, return true, else false. */
2931
2932CORE_ADDR
714835d5 2933pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2934{
714835d5
UW
2935 if (section_is_overlay (section))
2936 {
2937 bfd *abfd = section->objfile->obfd;
2938 asection *bfd_section = section->the_bfd_section;
fbd35540 2939
714835d5
UW
2940 /* We assume the LMA is relocated by the same offset as the VMA. */
2941 bfd_vma size = bfd_get_section_size (bfd_section);
2942 CORE_ADDR offset = obj_section_offset (section);
2943
2944 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2945 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2946 return 1;
2947 }
c906108c 2948
c906108c
SS
2949 return 0;
2950}
2951
2952/* Function: pc_in_mapped_range
2953 If PC falls into the vma range of SECTION, return true, else false. */
2954
2955CORE_ADDR
714835d5 2956pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2957{
714835d5
UW
2958 if (section_is_overlay (section))
2959 {
2960 if (obj_section_addr (section) <= pc
2961 && pc < obj_section_endaddr (section))
2962 return 1;
2963 }
c906108c 2964
c906108c
SS
2965 return 0;
2966}
2967
9ec8e6a0
JB
2968/* Return true if the mapped ranges of sections A and B overlap, false
2969 otherwise. */
3b7bacac 2970
b9362cc7 2971static int
714835d5 2972sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2973{
714835d5
UW
2974 CORE_ADDR a_start = obj_section_addr (a);
2975 CORE_ADDR a_end = obj_section_endaddr (a);
2976 CORE_ADDR b_start = obj_section_addr (b);
2977 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2978
2979 return (a_start < b_end && b_start < a_end);
2980}
2981
c906108c
SS
2982/* Function: overlay_unmapped_address (PC, SECTION)
2983 Returns the address corresponding to PC in the unmapped (load) range.
2984 May be the same as PC. */
2985
2986CORE_ADDR
714835d5 2987overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2988{
714835d5
UW
2989 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2990 {
714835d5 2991 asection *bfd_section = section->the_bfd_section;
fbd35540 2992
714835d5
UW
2993 return pc + bfd_section_lma (abfd, bfd_section)
2994 - bfd_section_vma (abfd, bfd_section);
2995 }
c906108c
SS
2996
2997 return pc;
2998}
2999
3000/* Function: overlay_mapped_address (PC, SECTION)
3001 Returns the address corresponding to PC in the mapped (runtime) range.
3002 May be the same as PC. */
3003
3004CORE_ADDR
714835d5 3005overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3006{
714835d5
UW
3007 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3008 {
714835d5 3009 asection *bfd_section = section->the_bfd_section;
fbd35540 3010
714835d5
UW
3011 return pc + bfd_section_vma (abfd, bfd_section)
3012 - bfd_section_lma (abfd, bfd_section);
3013 }
c906108c
SS
3014
3015 return pc;
3016}
3017
5417f6dc 3018/* Function: symbol_overlayed_address
c906108c
SS
3019 Return one of two addresses (relative to the VMA or to the LMA),
3020 depending on whether the section is mapped or not. */
3021
c5aa993b 3022CORE_ADDR
714835d5 3023symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3024{
3025 if (overlay_debugging)
3026 {
c378eb4e 3027 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3028 if (section == 0)
3029 return address;
c378eb4e
MS
3030 /* If the symbol's section is not an overlay, just return its
3031 address. */
c906108c
SS
3032 if (!section_is_overlay (section))
3033 return address;
c378eb4e 3034 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3035 if (section_is_mapped (section))
3036 return address;
3037 /*
3038 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3039 * then return its LOADED address rather than its vma address!!
3040 */
3041 return overlay_unmapped_address (address, section);
3042 }
3043 return address;
3044}
3045
5417f6dc 3046/* Function: find_pc_overlay (PC)
c906108c
SS
3047 Return the best-match overlay section for PC:
3048 If PC matches a mapped overlay section's VMA, return that section.
3049 Else if PC matches an unmapped section's VMA, return that section.
3050 Else if PC matches an unmapped section's LMA, return that section. */
3051
714835d5 3052struct obj_section *
fba45db2 3053find_pc_overlay (CORE_ADDR pc)
c906108c 3054{
c5aa993b 3055 struct objfile *objfile;
c906108c
SS
3056 struct obj_section *osect, *best_match = NULL;
3057
3058 if (overlay_debugging)
b631e59b
KT
3059 {
3060 ALL_OBJSECTIONS (objfile, osect)
3061 if (section_is_overlay (osect))
c5aa993b 3062 {
b631e59b
KT
3063 if (pc_in_mapped_range (pc, osect))
3064 {
3065 if (section_is_mapped (osect))
3066 return osect;
3067 else
3068 best_match = osect;
3069 }
3070 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3071 best_match = osect;
3072 }
b631e59b 3073 }
714835d5 3074 return best_match;
c906108c
SS
3075}
3076
3077/* Function: find_pc_mapped_section (PC)
5417f6dc 3078 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3079 currently marked as MAPPED, return that section. Else return NULL. */
3080
714835d5 3081struct obj_section *
fba45db2 3082find_pc_mapped_section (CORE_ADDR pc)
c906108c 3083{
c5aa993b 3084 struct objfile *objfile;
c906108c
SS
3085 struct obj_section *osect;
3086
3087 if (overlay_debugging)
b631e59b
KT
3088 {
3089 ALL_OBJSECTIONS (objfile, osect)
3090 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3091 return osect;
3092 }
c906108c
SS
3093
3094 return NULL;
3095}
3096
3097/* Function: list_overlays_command
c378eb4e 3098 Print a list of mapped sections and their PC ranges. */
c906108c 3099
5d3055ad 3100static void
2cf311eb 3101list_overlays_command (const char *args, int from_tty)
c906108c 3102{
c5aa993b
JM
3103 int nmapped = 0;
3104 struct objfile *objfile;
c906108c
SS
3105 struct obj_section *osect;
3106
3107 if (overlay_debugging)
b631e59b
KT
3108 {
3109 ALL_OBJSECTIONS (objfile, osect)
714835d5 3110 if (section_is_mapped (osect))
b631e59b
KT
3111 {
3112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3113 const char *name;
3114 bfd_vma lma, vma;
3115 int size;
3116
3117 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3118 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3119 size = bfd_get_section_size (osect->the_bfd_section);
3120 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3121
3122 printf_filtered ("Section %s, loaded at ", name);
3123 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3124 puts_filtered (" - ");
3125 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3126 printf_filtered (", mapped at ");
3127 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3128 puts_filtered (" - ");
3129 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3130 puts_filtered ("\n");
3131
3132 nmapped++;
3133 }
3134 }
c906108c 3135 if (nmapped == 0)
a3f17187 3136 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3137}
3138
3139/* Function: map_overlay_command
3140 Mark the named section as mapped (ie. residing at its VMA address). */
3141
5d3055ad 3142static void
2cf311eb 3143map_overlay_command (const char *args, int from_tty)
c906108c 3144{
c5aa993b
JM
3145 struct objfile *objfile, *objfile2;
3146 struct obj_section *sec, *sec2;
c906108c
SS
3147
3148 if (!overlay_debugging)
3e43a32a
MS
3149 error (_("Overlay debugging not enabled. Use "
3150 "either the 'overlay auto' or\n"
3151 "the 'overlay manual' command."));
c906108c
SS
3152
3153 if (args == 0 || *args == 0)
8a3fe4f8 3154 error (_("Argument required: name of an overlay section"));
c906108c 3155
c378eb4e 3156 /* First, find a section matching the user supplied argument. */
c906108c
SS
3157 ALL_OBJSECTIONS (objfile, sec)
3158 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3159 {
c378eb4e 3160 /* Now, check to see if the section is an overlay. */
714835d5 3161 if (!section_is_overlay (sec))
c5aa993b
JM
3162 continue; /* not an overlay section */
3163
c378eb4e 3164 /* Mark the overlay as "mapped". */
c5aa993b
JM
3165 sec->ovly_mapped = 1;
3166
3167 /* Next, make a pass and unmap any sections that are
3168 overlapped by this new section: */
3169 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3170 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3171 {
3172 if (info_verbose)
a3f17187 3173 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3174 bfd_section_name (objfile->obfd,
3175 sec2->the_bfd_section));
c378eb4e 3176 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3177 }
3178 return;
3179 }
8a3fe4f8 3180 error (_("No overlay section called %s"), args);
c906108c
SS
3181}
3182
3183/* Function: unmap_overlay_command
5417f6dc 3184 Mark the overlay section as unmapped
c906108c
SS
3185 (ie. resident in its LMA address range, rather than the VMA range). */
3186
5d3055ad 3187static void
2cf311eb 3188unmap_overlay_command (const char *args, int from_tty)
c906108c 3189{
c5aa993b 3190 struct objfile *objfile;
7a270e0c 3191 struct obj_section *sec = NULL;
c906108c
SS
3192
3193 if (!overlay_debugging)
3e43a32a
MS
3194 error (_("Overlay debugging not enabled. "
3195 "Use either the 'overlay auto' or\n"
3196 "the 'overlay manual' command."));
c906108c
SS
3197
3198 if (args == 0 || *args == 0)
8a3fe4f8 3199 error (_("Argument required: name of an overlay section"));
c906108c 3200
c378eb4e 3201 /* First, find a section matching the user supplied argument. */
c906108c
SS
3202 ALL_OBJSECTIONS (objfile, sec)
3203 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3204 {
3205 if (!sec->ovly_mapped)
8a3fe4f8 3206 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3207 sec->ovly_mapped = 0;
3208 return;
3209 }
8a3fe4f8 3210 error (_("No overlay section called %s"), args);
c906108c
SS
3211}
3212
3213/* Function: overlay_auto_command
3214 A utility command to turn on overlay debugging.
c378eb4e 3215 Possibly this should be done via a set/show command. */
c906108c
SS
3216
3217static void
2cf311eb 3218overlay_auto_command (const char *args, int from_tty)
c906108c 3219{
d874f1e2 3220 overlay_debugging = ovly_auto;
1900040c 3221 enable_overlay_breakpoints ();
c906108c 3222 if (info_verbose)
a3f17187 3223 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3224}
3225
3226/* Function: overlay_manual_command
3227 A utility command to turn on overlay debugging.
c378eb4e 3228 Possibly this should be done via a set/show command. */
c906108c
SS
3229
3230static void
2cf311eb 3231overlay_manual_command (const char *args, int from_tty)
c906108c 3232{
d874f1e2 3233 overlay_debugging = ovly_on;
1900040c 3234 disable_overlay_breakpoints ();
c906108c 3235 if (info_verbose)
a3f17187 3236 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3237}
3238
3239/* Function: overlay_off_command
3240 A utility command to turn on overlay debugging.
c378eb4e 3241 Possibly this should be done via a set/show command. */
c906108c
SS
3242
3243static void
2cf311eb 3244overlay_off_command (const char *args, int from_tty)
c906108c 3245{
d874f1e2 3246 overlay_debugging = ovly_off;
1900040c 3247 disable_overlay_breakpoints ();
c906108c 3248 if (info_verbose)
a3f17187 3249 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3250}
3251
3252static void
2cf311eb 3253overlay_load_command (const char *args, int from_tty)
c906108c 3254{
e17c207e
UW
3255 struct gdbarch *gdbarch = get_current_arch ();
3256
3257 if (gdbarch_overlay_update_p (gdbarch))
3258 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3259 else
8a3fe4f8 3260 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3261}
3262
3263/* Function: overlay_command
c378eb4e 3264 A place-holder for a mis-typed command. */
c906108c 3265
c378eb4e 3266/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3267static struct cmd_list_element *overlaylist;
c906108c
SS
3268
3269static void
981a3fb3 3270overlay_command (const char *args, int from_tty)
c906108c 3271{
c5aa993b 3272 printf_unfiltered
c906108c 3273 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3274 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3275}
3276
c906108c
SS
3277/* Target Overlays for the "Simplest" overlay manager:
3278
5417f6dc
RM
3279 This is GDB's default target overlay layer. It works with the
3280 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3281 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3282 so targets that use a different runtime overlay manager can
c906108c
SS
3283 substitute their own overlay_update function and take over the
3284 function pointer.
3285
3286 The overlay_update function pokes around in the target's data structures
3287 to see what overlays are mapped, and updates GDB's overlay mapping with
3288 this information.
3289
3290 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3291 unsigned _novlys; /# number of overlay sections #/
3292 unsigned _ovly_table[_novlys][4] = {
438e1e42 3293 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3294 {..., ..., ..., ...},
3295 }
3296 unsigned _novly_regions; /# number of overlay regions #/
3297 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3298 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3299 {..., ..., ...},
3300 }
c906108c
SS
3301 These functions will attempt to update GDB's mappedness state in the
3302 symbol section table, based on the target's mappedness state.
3303
3304 To do this, we keep a cached copy of the target's _ovly_table, and
3305 attempt to detect when the cached copy is invalidated. The main
3306 entry point is "simple_overlay_update(SECT), which looks up SECT in
3307 the cached table and re-reads only the entry for that section from
c378eb4e 3308 the target (whenever possible). */
c906108c
SS
3309
3310/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3311static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3312static unsigned cache_novlys = 0;
c906108c 3313static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3314enum ovly_index
3315 {
438e1e42 3316 VMA, OSIZE, LMA, MAPPED
c5aa993b 3317 };
c906108c 3318
c378eb4e 3319/* Throw away the cached copy of _ovly_table. */
3b7bacac 3320
c906108c 3321static void
fba45db2 3322simple_free_overlay_table (void)
c906108c
SS
3323{
3324 if (cache_ovly_table)
b8c9b27d 3325 xfree (cache_ovly_table);
c5aa993b 3326 cache_novlys = 0;
c906108c
SS
3327 cache_ovly_table = NULL;
3328 cache_ovly_table_base = 0;
3329}
3330
9216df95 3331/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3332 Convert to host order. int LEN is number of ints. */
3b7bacac 3333
c906108c 3334static void
9216df95 3335read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3336 int len, int size, enum bfd_endian byte_order)
c906108c 3337{
c378eb4e 3338 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3339 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3340 int i;
c906108c 3341
9216df95 3342 read_memory (memaddr, buf, len * size);
c906108c 3343 for (i = 0; i < len; i++)
e17a4113 3344 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3345}
3346
3347/* Find and grab a copy of the target _ovly_table
c378eb4e 3348 (and _novlys, which is needed for the table's size). */
3b7bacac 3349
c5aa993b 3350static int
fba45db2 3351simple_read_overlay_table (void)
c906108c 3352{
3b7344d5 3353 struct bound_minimal_symbol novlys_msym;
7c7b6655 3354 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3355 struct gdbarch *gdbarch;
3356 int word_size;
e17a4113 3357 enum bfd_endian byte_order;
c906108c
SS
3358
3359 simple_free_overlay_table ();
9b27852e 3360 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3361 if (! novlys_msym.minsym)
c906108c 3362 {
8a3fe4f8 3363 error (_("Error reading inferior's overlay table: "
0d43edd1 3364 "couldn't find `_novlys' variable\n"
8a3fe4f8 3365 "in inferior. Use `overlay manual' mode."));
0d43edd1 3366 return 0;
c906108c 3367 }
0d43edd1 3368
7c7b6655
TT
3369 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3370 if (! ovly_table_msym.minsym)
0d43edd1 3371 {
8a3fe4f8 3372 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3373 "`_ovly_table' array\n"
8a3fe4f8 3374 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3375 return 0;
3376 }
3377
7c7b6655 3378 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3379 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3380 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3381
77e371c0
TT
3382 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3383 4, byte_order);
0d43edd1 3384 cache_ovly_table
224c3ddb 3385 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3386 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3387 read_target_long_array (cache_ovly_table_base,
777ea8f1 3388 (unsigned int *) cache_ovly_table,
e17a4113 3389 cache_novlys * 4, word_size, byte_order);
0d43edd1 3390
c5aa993b 3391 return 1; /* SUCCESS */
c906108c
SS
3392}
3393
5417f6dc 3394/* Function: simple_overlay_update_1
c906108c
SS
3395 A helper function for simple_overlay_update. Assuming a cached copy
3396 of _ovly_table exists, look through it to find an entry whose vma,
3397 lma and size match those of OSECT. Re-read the entry and make sure
3398 it still matches OSECT (else the table may no longer be valid).
3399 Set OSECT's mapped state to match the entry. Return: 1 for
3400 success, 0 for failure. */
3401
3402static int
fba45db2 3403simple_overlay_update_1 (struct obj_section *osect)
c906108c 3404{
764c99c1 3405 int i;
fbd35540 3406 asection *bsect = osect->the_bfd_section;
9216df95
UW
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3410
c906108c 3411 for (i = 0; i < cache_novlys; i++)
fbd35540 3412 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3413 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3414 {
9216df95
UW
3415 read_target_long_array (cache_ovly_table_base + i * word_size,
3416 (unsigned int *) cache_ovly_table[i],
e17a4113 3417 4, word_size, byte_order);
fbd35540 3418 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3419 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3420 {
3421 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3422 return 1;
3423 }
c378eb4e 3424 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3425 return 0;
3426 }
3427 return 0;
3428}
3429
3430/* Function: simple_overlay_update
5417f6dc
RM
3431 If OSECT is NULL, then update all sections' mapped state
3432 (after re-reading the entire target _ovly_table).
3433 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3434 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3435 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3436 re-read the entire cache, and go ahead and update all sections. */
3437
1c772458 3438void
fba45db2 3439simple_overlay_update (struct obj_section *osect)
c906108c 3440{
c5aa993b 3441 struct objfile *objfile;
c906108c 3442
c378eb4e 3443 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3444 if (osect)
c378eb4e 3445 /* Have we got a cached copy of the target's overlay table? */
c906108c 3446 if (cache_ovly_table != NULL)
9cc89665
MS
3447 {
3448 /* Does its cached location match what's currently in the
3449 symtab? */
3b7344d5 3450 struct bound_minimal_symbol minsym
9cc89665
MS
3451 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3452
3b7344d5 3453 if (minsym.minsym == NULL)
9cc89665
MS
3454 error (_("Error reading inferior's overlay table: couldn't "
3455 "find `_ovly_table' array\n"
3456 "in inferior. Use `overlay manual' mode."));
3457
77e371c0 3458 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3459 /* Then go ahead and try to look up this single section in
3460 the cache. */
3461 if (simple_overlay_update_1 (osect))
3462 /* Found it! We're done. */
3463 return;
3464 }
c906108c
SS
3465
3466 /* Cached table no good: need to read the entire table anew.
3467 Or else we want all the sections, in which case it's actually
3468 more efficient to read the whole table in one block anyway. */
3469
0d43edd1
JB
3470 if (! simple_read_overlay_table ())
3471 return;
3472
c378eb4e 3473 /* Now may as well update all sections, even if only one was requested. */
c906108c 3474 ALL_OBJSECTIONS (objfile, osect)
714835d5 3475 if (section_is_overlay (osect))
c5aa993b 3476 {
764c99c1 3477 int i;
fbd35540 3478 asection *bsect = osect->the_bfd_section;
c5aa993b 3479
c5aa993b 3480 for (i = 0; i < cache_novlys; i++)
fbd35540 3481 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3482 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3483 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3484 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3485 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3486 }
3487 }
c906108c
SS
3488}
3489
086df311
DJ
3490/* Set the output sections and output offsets for section SECTP in
3491 ABFD. The relocation code in BFD will read these offsets, so we
3492 need to be sure they're initialized. We map each section to itself,
3493 with no offset; this means that SECTP->vma will be honored. */
3494
3495static void
3496symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3497{
3498 sectp->output_section = sectp;
3499 sectp->output_offset = 0;
3500}
3501
ac8035ab
TG
3502/* Default implementation for sym_relocate. */
3503
ac8035ab
TG
3504bfd_byte *
3505default_symfile_relocate (struct objfile *objfile, asection *sectp,
3506 bfd_byte *buf)
3507{
3019eac3
DE
3508 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3509 DWO file. */
3510 bfd *abfd = sectp->owner;
ac8035ab
TG
3511
3512 /* We're only interested in sections with relocation
3513 information. */
3514 if ((sectp->flags & SEC_RELOC) == 0)
3515 return NULL;
3516
3517 /* We will handle section offsets properly elsewhere, so relocate as if
3518 all sections begin at 0. */
3519 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3520
3521 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3522}
3523
086df311
DJ
3524/* Relocate the contents of a debug section SECTP in ABFD. The
3525 contents are stored in BUF if it is non-NULL, or returned in a
3526 malloc'd buffer otherwise.
3527
3528 For some platforms and debug info formats, shared libraries contain
3529 relocations against the debug sections (particularly for DWARF-2;
3530 one affected platform is PowerPC GNU/Linux, although it depends on
3531 the version of the linker in use). Also, ELF object files naturally
3532 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3533 the relocations in order to get the locations of symbols correct.
3534 Another example that may require relocation processing, is the
3535 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3536 debug section. */
086df311
DJ
3537
3538bfd_byte *
ac8035ab
TG
3539symfile_relocate_debug_section (struct objfile *objfile,
3540 asection *sectp, bfd_byte *buf)
086df311 3541{
ac8035ab 3542 gdb_assert (objfile->sf->sym_relocate);
086df311 3543
ac8035ab 3544 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3545}
c906108c 3546
31d99776
DJ
3547struct symfile_segment_data *
3548get_symfile_segment_data (bfd *abfd)
3549{
00b5771c 3550 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3551
3552 if (sf == NULL)
3553 return NULL;
3554
3555 return sf->sym_segments (abfd);
3556}
3557
3558void
3559free_symfile_segment_data (struct symfile_segment_data *data)
3560{
3561 xfree (data->segment_bases);
3562 xfree (data->segment_sizes);
3563 xfree (data->segment_info);
3564 xfree (data);
3565}
3566
28c32713
JB
3567/* Given:
3568 - DATA, containing segment addresses from the object file ABFD, and
3569 the mapping from ABFD's sections onto the segments that own them,
3570 and
3571 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3572 segment addresses reported by the target,
3573 store the appropriate offsets for each section in OFFSETS.
3574
3575 If there are fewer entries in SEGMENT_BASES than there are segments
3576 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3577
8d385431
DJ
3578 If there are more entries, then ignore the extra. The target may
3579 not be able to distinguish between an empty data segment and a
3580 missing data segment; a missing text segment is less plausible. */
3b7bacac 3581
31d99776 3582int
3189cb12
DE
3583symfile_map_offsets_to_segments (bfd *abfd,
3584 const struct symfile_segment_data *data,
31d99776
DJ
3585 struct section_offsets *offsets,
3586 int num_segment_bases,
3587 const CORE_ADDR *segment_bases)
3588{
3589 int i;
3590 asection *sect;
3591
28c32713
JB
3592 /* It doesn't make sense to call this function unless you have some
3593 segment base addresses. */
202b96c1 3594 gdb_assert (num_segment_bases > 0);
28c32713 3595
31d99776
DJ
3596 /* If we do not have segment mappings for the object file, we
3597 can not relocate it by segments. */
3598 gdb_assert (data != NULL);
3599 gdb_assert (data->num_segments > 0);
3600
31d99776
DJ
3601 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3602 {
31d99776
DJ
3603 int which = data->segment_info[i];
3604
28c32713
JB
3605 gdb_assert (0 <= which && which <= data->num_segments);
3606
3607 /* Don't bother computing offsets for sections that aren't
3608 loaded as part of any segment. */
3609 if (! which)
3610 continue;
3611
3612 /* Use the last SEGMENT_BASES entry as the address of any extra
3613 segments mentioned in DATA->segment_info. */
31d99776 3614 if (which > num_segment_bases)
28c32713 3615 which = num_segment_bases;
31d99776 3616
28c32713
JB
3617 offsets->offsets[i] = (segment_bases[which - 1]
3618 - data->segment_bases[which - 1]);
31d99776
DJ
3619 }
3620
3621 return 1;
3622}
3623
3624static void
3625symfile_find_segment_sections (struct objfile *objfile)
3626{
3627 bfd *abfd = objfile->obfd;
3628 int i;
3629 asection *sect;
3630 struct symfile_segment_data *data;
3631
3632 data = get_symfile_segment_data (objfile->obfd);
3633 if (data == NULL)
3634 return;
3635
3636 if (data->num_segments != 1 && data->num_segments != 2)
3637 {
3638 free_symfile_segment_data (data);
3639 return;
3640 }
3641
3642 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3643 {
31d99776
DJ
3644 int which = data->segment_info[i];
3645
3646 if (which == 1)
3647 {
3648 if (objfile->sect_index_text == -1)
3649 objfile->sect_index_text = sect->index;
3650
3651 if (objfile->sect_index_rodata == -1)
3652 objfile->sect_index_rodata = sect->index;
3653 }
3654 else if (which == 2)
3655 {
3656 if (objfile->sect_index_data == -1)
3657 objfile->sect_index_data = sect->index;
3658
3659 if (objfile->sect_index_bss == -1)
3660 objfile->sect_index_bss = sect->index;
3661 }
3662 }
3663
3664 free_symfile_segment_data (data);
3665}
3666
76ad5e1e
NB
3667/* Listen for free_objfile events. */
3668
3669static void
3670symfile_free_objfile (struct objfile *objfile)
3671{
c33b2f12
MM
3672 /* Remove the target sections owned by this objfile. */
3673 if (objfile != NULL)
76ad5e1e
NB
3674 remove_target_sections ((void *) objfile);
3675}
3676
540c2971
DE
3677/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3678 Expand all symtabs that match the specified criteria.
3679 See quick_symbol_functions.expand_symtabs_matching for details. */
3680
3681void
14bc53a8
PA
3682expand_symtabs_matching
3683 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3684 const lookup_name_info &lookup_name,
14bc53a8
PA
3685 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3686 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3687 enum search_domain kind)
540c2971
DE
3688{
3689 struct objfile *objfile;
3690
3691 ALL_OBJFILES (objfile)
3692 {
3693 if (objfile->sf)
bb4142cf 3694 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3695 lookup_name,
276d885b 3696 symbol_matcher,
14bc53a8 3697 expansion_notify, kind);
540c2971
DE
3698 }
3699}
3700
3701/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3702 Map function FUN over every file.
3703 See quick_symbol_functions.map_symbol_filenames for details. */
3704
3705void
bb4142cf
DE
3706map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3707 int need_fullname)
540c2971
DE
3708{
3709 struct objfile *objfile;
3710
3711 ALL_OBJFILES (objfile)
3712 {
3713 if (objfile->sf)
3714 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3715 need_fullname);
3716 }
3717}
3718
32fa66eb
SM
3719#if GDB_SELF_TEST
3720
3721namespace selftests {
3722namespace filename_language {
3723
32fa66eb
SM
3724static void test_filename_language ()
3725{
3726 /* This test messes up the filename_language_table global. */
593e3209 3727 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3728
3729 /* Test deducing an unknown extension. */
3730 language lang = deduce_language_from_filename ("myfile.blah");
3731 SELF_CHECK (lang == language_unknown);
3732
3733 /* Test deducing a known extension. */
3734 lang = deduce_language_from_filename ("myfile.c");
3735 SELF_CHECK (lang == language_c);
3736
3737 /* Test adding a new extension using the internal API. */
3738 add_filename_language (".blah", language_pascal);
3739 lang = deduce_language_from_filename ("myfile.blah");
3740 SELF_CHECK (lang == language_pascal);
3741}
3742
3743static void
3744test_set_ext_lang_command ()
3745{
3746 /* This test messes up the filename_language_table global. */
593e3209 3747 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3748
3749 /* Confirm that the .hello extension is not known. */
3750 language lang = deduce_language_from_filename ("cake.hello");
3751 SELF_CHECK (lang == language_unknown);
3752
3753 /* Test adding a new extension using the CLI command. */
3754 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3755 ext_args = args_holder.get ();
3756 set_ext_lang_command (NULL, 1, NULL);
3757
3758 lang = deduce_language_from_filename ("cake.hello");
3759 SELF_CHECK (lang == language_rust);
3760
3761 /* Test overriding an existing extension using the CLI command. */
593e3209 3762 int size_before = filename_language_table.size ();
32fa66eb
SM
3763 args_holder.reset (xstrdup (".hello pascal"));
3764 ext_args = args_holder.get ();
3765 set_ext_lang_command (NULL, 1, NULL);
593e3209 3766 int size_after = filename_language_table.size ();
32fa66eb
SM
3767
3768 lang = deduce_language_from_filename ("cake.hello");
3769 SELF_CHECK (lang == language_pascal);
3770 SELF_CHECK (size_before == size_after);
3771}
3772
3773} /* namespace filename_language */
3774} /* namespace selftests */
3775
3776#endif /* GDB_SELF_TEST */
3777
c906108c 3778void
fba45db2 3779_initialize_symfile (void)
c906108c
SS
3780{
3781 struct cmd_list_element *c;
c5aa993b 3782
76727919 3783 gdb::observers::free_objfile.attach (symfile_free_objfile);
76ad5e1e 3784
97cbe998 3785#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3786 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3787immediately. This makes the command slower, but may make future operations\n\
97cbe998
SDJ
3788faster.\n\
3789The '-readnever' option will prevent GDB from reading the symbol file's\n\
3790symbolic debug information."
8ca2f0b9 3791
1a966eab
AC
3792 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3793Load symbol table from executable file FILE.\n\
d4d429d5
PT
3794Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3795OFF is an optional offset which is added to each section address.\n\
c906108c 3796The `file' command can also load symbol tables, as well as setting the file\n\
97cbe998 3797to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3798 set_cmd_completer (c, filename_completer);
c906108c 3799
1a966eab 3800 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3801Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
ed6dfe51
PT
3802Usage: add-symbol-file FILE [-readnow | -readnever] [ADDR] \
3803[-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3804ADDR is the starting address of the file's text.\n\
3805Each '-s' argument provides a section name and address, and\n\
db162d44 3806should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3807with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
97cbe998 3808READNOW_READNEVER_HELP),
c906108c 3809 &cmdlist);
5ba2abeb 3810 set_cmd_completer (c, filename_completer);
c906108c 3811
63644780
NB
3812 c = add_cmd ("remove-symbol-file", class_files,
3813 remove_symbol_file_command, _("\
3814Remove a symbol file added via the add-symbol-file command.\n\
3815Usage: remove-symbol-file FILENAME\n\
3816 remove-symbol-file -a ADDRESS\n\
3817The file to remove can be identified by its filename or by an address\n\
3818that lies within the boundaries of this symbol file in memory."),
3819 &cmdlist);
3820
1a966eab
AC
3821 c = add_cmd ("load", class_files, load_command, _("\
3822Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3823for access from GDB.\n\
8ca2f0b9 3824Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3825An optional load OFFSET may also be given as a literal address.\n\
3826When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3827on its own."), &cmdlist);
5ba2abeb 3828 set_cmd_completer (c, filename_completer);
c906108c 3829
c5aa993b 3830 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3831 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3832 "overlay ", 0, &cmdlist);
3833
3834 add_com_alias ("ovly", "overlay", class_alias, 1);
3835 add_com_alias ("ov", "overlay", class_alias, 1);
3836
c5aa993b 3837 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3838 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3839
c5aa993b 3840 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3841 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3842
c5aa993b 3843 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3844 _("List mappings of overlay sections."), &overlaylist);
c906108c 3845
c5aa993b 3846 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3847 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3848 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3849 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3850 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3851 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3852 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3853 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3854
3855 /* Filename extension to source language lookup table: */
26c41df3
AC
3856 add_setshow_string_noescape_cmd ("extension-language", class_files,
3857 &ext_args, _("\
3858Set mapping between filename extension and source language."), _("\
3859Show mapping between filename extension and source language."), _("\
3860Usage: set extension-language .foo bar"),
3861 set_ext_lang_command,
920d2a44 3862 show_ext_args,
26c41df3 3863 &setlist, &showlist);
c906108c 3864
c5aa993b 3865 add_info ("extensions", info_ext_lang_command,
1bedd215 3866 _("All filename extensions associated with a source language."));
917317f4 3867
525226b5
AC
3868 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3869 &debug_file_directory, _("\
24ddea62
JK
3870Set the directories where separate debug symbols are searched for."), _("\
3871Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3872Separate debug symbols are first searched for in the same\n\
3873directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3874and lastly at the path of the directory of the binary with\n\
24ddea62 3875each global debug-file-directory component prepended."),
525226b5 3876 NULL,
920d2a44 3877 show_debug_file_directory,
525226b5 3878 &setlist, &showlist);
770e7fc7
DE
3879
3880 add_setshow_enum_cmd ("symbol-loading", no_class,
3881 print_symbol_loading_enums, &print_symbol_loading,
3882 _("\
3883Set printing of symbol loading messages."), _("\
3884Show printing of symbol loading messages."), _("\
3885off == turn all messages off\n\
3886brief == print messages for the executable,\n\
3887 and brief messages for shared libraries\n\
3888full == print messages for the executable,\n\
3889 and messages for each shared library."),
3890 NULL,
3891 NULL,
3892 &setprintlist, &showprintlist);
c4dcb155
SM
3893
3894 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3895 &separate_debug_file_debug, _("\
3896Set printing of separate debug info file search debug."), _("\
3897Show printing of separate debug info file search debug."), _("\
3898When on, GDB prints the searched locations while looking for separate debug \
3899info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
3900
3901#if GDB_SELF_TEST
3902 selftests::register_test
3903 ("filename_language", selftests::filename_language::test_filename_language);
3904 selftests::register_test
3905 ("set_ext_lang_command",
3906 selftests::filename_language::test_set_ext_lang_command);
3907#endif
c906108c 3908}
This page took 2.285755 seconds and 4 git commands to generate.