2010-05-16 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
9a4105ab
AC
70int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c906108c 81/* Global variables owned by this file */
c5aa993b 82int readnow_symbol_files; /* Read full symbols immediately */
c906108c 83
c906108c
SS
84/* External variables and functions referenced. */
85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
87
88/* Functions this file defines */
89
90#if 0
a14ed312
KB
91static int simple_read_overlay_region_table (void);
92static void simple_free_overlay_region_table (void);
c906108c
SS
93#endif
94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101bfd *symfile_bfd_open (char *);
c906108c 102
0e931cf0
JB
103int get_section_index (struct objfile *, char *);
104
31d99776 105static struct sym_fns *find_sym_fns (bfd *);
c906108c 106
a14ed312 107static void decrement_reading_symtab (void *);
c906108c 108
a14ed312 109static void overlay_invalidate_all (void);
c906108c 110
a14ed312 111void list_overlays_command (char *, int);
c906108c 112
a14ed312 113void map_overlay_command (char *, int);
c906108c 114
a14ed312 115void unmap_overlay_command (char *, int);
c906108c 116
a14ed312 117static void overlay_auto_command (char *, int);
c906108c 118
a14ed312 119static void overlay_manual_command (char *, int);
c906108c 120
a14ed312 121static void overlay_off_command (char *, int);
c906108c 122
a14ed312 123static void overlay_load_command (char *, int);
c906108c 124
a14ed312 125static void overlay_command (char *, int);
c906108c 126
a14ed312 127static void simple_free_overlay_table (void);
c906108c 128
e17a4113
UW
129static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
c906108c 131
a14ed312 132static int simple_read_overlay_table (void);
c906108c 133
a14ed312 134static int simple_overlay_update_1 (struct obj_section *);
c906108c 135
a14ed312 136static void add_filename_language (char *ext, enum language lang);
392a587b 137
a14ed312 138static void info_ext_lang_command (char *args, int from_tty);
392a587b 139
a14ed312 140static void init_filename_language_table (void);
392a587b 141
31d99776
DJ
142static void symfile_find_segment_sections (struct objfile *objfile);
143
a14ed312 144void _initialize_symfile (void);
c906108c
SS
145
146/* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150static struct sym_fns *symtab_fns = NULL;
151
152/* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155#ifdef SYMBOL_RELOADING_DEFAULT
156int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157#else
158int symbol_reloading = 0;
159#endif
920d2a44
AC
160static void
161show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("\
165Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167}
168
b7209cb4
FF
169/* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
c906108c 176 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 177 report all the functions that are actually present. */
c906108c
SS
178
179int auto_solib_add = 1;
b7209cb4
FF
180
181/* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189int auto_solib_limit;
c906108c 190\f
c5aa993b 191
c906108c
SS
192/* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197char *
63ca651f 198obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 199{
52f0bd74 200 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
aa1ee363
AC
205 const char *p1 = ptr;
206 char *p2 = p;
63ca651f 207 const char *end = ptr + size;
c906108c
SS
208 while (p1 != end)
209 *p2++ = *p1++;
210 }
211 p[size] = 0;
212 return p;
213}
214
48cb83fd
JK
215/* Concatenate NULL terminated variable argument list of `const char *' strings;
216 return the new string. Space is found in the OBSTACKP. Argument list must
217 be terminated by a sentinel expression `(char *) NULL'. */
c906108c
SS
218
219char *
48cb83fd 220obconcat (struct obstack *obstackp, ...)
c906108c 221{
48cb83fd
JK
222 va_list ap;
223
224 va_start (ap, obstackp);
225 for (;;)
226 {
227 const char *s = va_arg (ap, const char *);
228
229 if (s == NULL)
230 break;
231
232 obstack_grow_str (obstackp, s);
233 }
234 va_end (ap);
235 obstack_1grow (obstackp, 0);
236
237 return obstack_finish (obstackp);
c906108c
SS
238}
239
ccefe4c4 240/* True if we are reading a symbol table. */
c906108c
SS
241
242int currently_reading_symtab = 0;
243
244static void
fba45db2 245decrement_reading_symtab (void *dummy)
c906108c
SS
246{
247 currently_reading_symtab--;
248}
249
ccefe4c4
TT
250/* Increment currently_reading_symtab and return a cleanup that can be
251 used to decrement it. */
252struct cleanup *
253increment_reading_symtab (void)
c906108c 254{
ccefe4c4
TT
255 ++currently_reading_symtab;
256 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
257}
258
5417f6dc
RM
259/* Remember the lowest-addressed loadable section we've seen.
260 This function is called via bfd_map_over_sections.
c906108c
SS
261
262 In case of equal vmas, the section with the largest size becomes the
263 lowest-addressed loadable section.
264
265 If the vmas and sizes are equal, the last section is considered the
266 lowest-addressed loadable section. */
267
268void
4efb68b1 269find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 270{
c5aa993b 271 asection **lowest = (asection **) obj;
c906108c 272
eb73e134 273 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
274 return;
275 if (!*lowest)
276 *lowest = sect; /* First loadable section */
277 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
278 *lowest = sect; /* A lower loadable section */
279 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
280 && (bfd_section_size (abfd, (*lowest))
281 <= bfd_section_size (abfd, sect)))
282 *lowest = sect;
283}
284
a39a16c4
MM
285/* Create a new section_addr_info, with room for NUM_SECTIONS. */
286
287struct section_addr_info *
288alloc_section_addr_info (size_t num_sections)
289{
290 struct section_addr_info *sap;
291 size_t size;
292
293 size = (sizeof (struct section_addr_info)
294 + sizeof (struct other_sections) * (num_sections - 1));
295 sap = (struct section_addr_info *) xmalloc (size);
296 memset (sap, 0, size);
297 sap->num_sections = num_sections;
298
299 return sap;
300}
62557bbc
KB
301
302/* Build (allocate and populate) a section_addr_info struct from
303 an existing section table. */
304
305extern struct section_addr_info *
0542c86d
PA
306build_section_addr_info_from_section_table (const struct target_section *start,
307 const struct target_section *end)
62557bbc
KB
308{
309 struct section_addr_info *sap;
0542c86d 310 const struct target_section *stp;
62557bbc
KB
311 int oidx;
312
a39a16c4 313 sap = alloc_section_addr_info (end - start);
62557bbc
KB
314
315 for (stp = start, oidx = 0; stp != end; stp++)
316 {
5417f6dc 317 if (bfd_get_section_flags (stp->bfd,
fbd35540 318 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 319 && oidx < end - start)
62557bbc
KB
320 {
321 sap->other[oidx].addr = stp->addr;
5417f6dc 322 sap->other[oidx].name
fbd35540 323 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
324 sap->other[oidx].sectindex = stp->the_bfd_section->index;
325 oidx++;
326 }
327 }
328
329 return sap;
330}
331
82ccf5a5 332/* Create a section_addr_info from section offsets in ABFD. */
089b4803 333
82ccf5a5
JK
334static struct section_addr_info *
335build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
336{
337 struct section_addr_info *sap;
338 int i;
339 struct bfd_section *sec;
340
82ccf5a5
JK
341 sap = alloc_section_addr_info (bfd_count_sections (abfd));
342 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
343 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 344 {
82ccf5a5
JK
345 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
346 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
347 sap->other[i].sectindex = sec->index;
348 i++;
349 }
089b4803
TG
350 return sap;
351}
352
82ccf5a5
JK
353/* Create a section_addr_info from section offsets in OBJFILE. */
354
355struct section_addr_info *
356build_section_addr_info_from_objfile (const struct objfile *objfile)
357{
358 struct section_addr_info *sap;
359 int i;
360
361 /* Before reread_symbols gets rewritten it is not safe to call:
362 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
363 */
364 sap = build_section_addr_info_from_bfd (objfile->obfd);
365 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
366 {
367 int sectindex = sap->other[i].sectindex;
368
369 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
370 }
371 return sap;
372}
62557bbc
KB
373
374/* Free all memory allocated by build_section_addr_info_from_section_table. */
375
376extern void
377free_section_addr_info (struct section_addr_info *sap)
378{
379 int idx;
380
a39a16c4 381 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 382 if (sap->other[idx].name)
b8c9b27d
KB
383 xfree (sap->other[idx].name);
384 xfree (sap);
62557bbc
KB
385}
386
387
e8289572
JB
388/* Initialize OBJFILE's sect_index_* members. */
389static void
390init_objfile_sect_indices (struct objfile *objfile)
c906108c 391{
e8289572 392 asection *sect;
c906108c 393 int i;
5417f6dc 394
b8fbeb18 395 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 396 if (sect)
b8fbeb18
EZ
397 objfile->sect_index_text = sect->index;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 400 if (sect)
b8fbeb18
EZ
401 objfile->sect_index_data = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 404 if (sect)
b8fbeb18
EZ
405 objfile->sect_index_bss = sect->index;
406
407 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 408 if (sect)
b8fbeb18
EZ
409 objfile->sect_index_rodata = sect->index;
410
bbcd32ad
FF
411 /* This is where things get really weird... We MUST have valid
412 indices for the various sect_index_* members or gdb will abort.
413 So if for example, there is no ".text" section, we have to
31d99776
DJ
414 accomodate that. First, check for a file with the standard
415 one or two segments. */
416
417 symfile_find_segment_sections (objfile);
418
419 /* Except when explicitly adding symbol files at some address,
420 section_offsets contains nothing but zeros, so it doesn't matter
421 which slot in section_offsets the individual sect_index_* members
422 index into. So if they are all zero, it is safe to just point
423 all the currently uninitialized indices to the first slot. But
424 beware: if this is the main executable, it may be relocated
425 later, e.g. by the remote qOffsets packet, and then this will
426 be wrong! That's why we try segments first. */
bbcd32ad
FF
427
428 for (i = 0; i < objfile->num_sections; i++)
429 {
430 if (ANOFFSET (objfile->section_offsets, i) != 0)
431 {
432 break;
433 }
434 }
435 if (i == objfile->num_sections)
436 {
437 if (objfile->sect_index_text == -1)
438 objfile->sect_index_text = 0;
439 if (objfile->sect_index_data == -1)
440 objfile->sect_index_data = 0;
441 if (objfile->sect_index_bss == -1)
442 objfile->sect_index_bss = 0;
443 if (objfile->sect_index_rodata == -1)
444 objfile->sect_index_rodata = 0;
445 }
b8fbeb18 446}
c906108c 447
c1bd25fd
DJ
448/* The arguments to place_section. */
449
450struct place_section_arg
451{
452 struct section_offsets *offsets;
453 CORE_ADDR lowest;
454};
455
456/* Find a unique offset to use for loadable section SECT if
457 the user did not provide an offset. */
458
2c0b251b 459static void
c1bd25fd
DJ
460place_section (bfd *abfd, asection *sect, void *obj)
461{
462 struct place_section_arg *arg = obj;
463 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
464 int done;
3bd72c6f 465 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 466
2711e456
DJ
467 /* We are only interested in allocated sections. */
468 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
469 return;
470
471 /* If the user specified an offset, honor it. */
472 if (offsets[sect->index] != 0)
473 return;
474
475 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
476 start_addr = (arg->lowest + align - 1) & -align;
477
c1bd25fd
DJ
478 do {
479 asection *cur_sec;
c1bd25fd 480
c1bd25fd
DJ
481 done = 1;
482
483 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
484 {
485 int indx = cur_sec->index;
c1bd25fd
DJ
486
487 /* We don't need to compare against ourself. */
488 if (cur_sec == sect)
489 continue;
490
2711e456
DJ
491 /* We can only conflict with allocated sections. */
492 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
493 continue;
494
495 /* If the section offset is 0, either the section has not been placed
496 yet, or it was the lowest section placed (in which case LOWEST
497 will be past its end). */
498 if (offsets[indx] == 0)
499 continue;
500
501 /* If this section would overlap us, then we must move up. */
502 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
503 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
504 {
505 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
506 start_addr = (start_addr + align - 1) & -align;
507 done = 0;
3bd72c6f 508 break;
c1bd25fd
DJ
509 }
510
511 /* Otherwise, we appear to be OK. So far. */
512 }
513 }
514 while (!done);
515
516 offsets[sect->index] = start_addr;
517 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 518}
e8289572 519
75242ef4
JK
520/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
521 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
522 entries. */
e8289572
JB
523
524void
75242ef4
JK
525relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
526 int num_sections,
527 struct section_addr_info *addrs)
e8289572
JB
528{
529 int i;
530
75242ef4 531 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 532
75242ef4 533 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 534 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 535 {
75242ef4 536 struct other_sections *osp;
e8289572 537
75242ef4 538 osp = &addrs->other[i];
e8289572
JB
539 if (osp->addr == 0)
540 continue;
541
542 /* Record all sections in offsets */
543 /* The section_offsets in the objfile are here filled in using
544 the BFD index. */
75242ef4
JK
545 section_offsets->offsets[osp->sectindex] = osp->addr;
546 }
547}
548
82ccf5a5
JK
549/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
550 their (name, sectindex) pair. sectindex makes the sort by name stable. */
551
552static int
553addrs_section_compar (const void *ap, const void *bp)
554{
555 const struct other_sections *a = *((struct other_sections **) ap);
556 const struct other_sections *b = *((struct other_sections **) bp);
557 int retval, a_idx, b_idx;
558
559 retval = strcmp (a->name, b->name);
560 if (retval)
561 return retval;
562
563 /* SECTINDEX is undefined iff ADDR is zero. */
564 a_idx = a->addr == 0 ? 0 : a->sectindex;
565 b_idx = b->addr == 0 ? 0 : b->sectindex;
566 return a_idx - b_idx;
567}
568
569/* Provide sorted array of pointers to sections of ADDRS. The array is
570 terminated by NULL. Caller is responsible to call xfree for it. */
571
572static struct other_sections **
573addrs_section_sort (struct section_addr_info *addrs)
574{
575 struct other_sections **array;
576 int i;
577
578 /* `+ 1' for the NULL terminator. */
579 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
580 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
581 array[i] = &addrs->other[i];
582 array[i] = NULL;
583
584 qsort (array, i, sizeof (*array), addrs_section_compar);
585
586 return array;
587}
588
75242ef4 589/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
590 also SECTINDEXes specific to ABFD there. This function can be used to
591 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
592
593void
594addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
595{
596 asection *lower_sect;
75242ef4
JK
597 CORE_ADDR lower_offset;
598 int i;
82ccf5a5
JK
599 struct cleanup *my_cleanup;
600 struct section_addr_info *abfd_addrs;
601 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
602 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
603
604 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
605 continguous sections. */
606 lower_sect = NULL;
607 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
608 if (lower_sect == NULL)
609 {
610 warning (_("no loadable sections found in added symbol-file %s"),
611 bfd_get_filename (abfd));
612 lower_offset = 0;
e8289572 613 }
75242ef4
JK
614 else
615 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
616
82ccf5a5
JK
617 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
618 in ABFD. Section names are not unique - there can be multiple sections of
619 the same name. Also the sections of the same name do not have to be
620 adjacent to each other. Some sections may be present only in one of the
621 files. Even sections present in both files do not have to be in the same
622 order.
623
624 Use stable sort by name for the sections in both files. Then linearly
625 scan both lists matching as most of the entries as possible. */
626
627 addrs_sorted = addrs_section_sort (addrs);
628 my_cleanup = make_cleanup (xfree, addrs_sorted);
629
630 abfd_addrs = build_section_addr_info_from_bfd (abfd);
631 make_cleanup_free_section_addr_info (abfd_addrs);
632 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
633 make_cleanup (xfree, abfd_addrs_sorted);
634
635 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
636
637 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
638 * addrs->num_sections);
639 make_cleanup (xfree, addrs_to_abfd_addrs);
640
641 while (*addrs_sorted)
642 {
643 const char *sect_name = (*addrs_sorted)->name;
644
645 while (*abfd_addrs_sorted
646 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
647 abfd_addrs_sorted++;
648
649 if (*abfd_addrs_sorted
650 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
651 {
652 int index_in_addrs;
653
654 /* Make the found item directly addressable from ADDRS. */
655 index_in_addrs = *addrs_sorted - addrs->other;
656 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
657 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
658
659 /* Never use the same ABFD entry twice. */
660 abfd_addrs_sorted++;
661 }
662
663 addrs_sorted++;
664 }
665
75242ef4
JK
666 /* Calculate offsets for the loadable sections.
667 FIXME! Sections must be in order of increasing loadable section
668 so that contiguous sections can use the lower-offset!!!
669
670 Adjust offsets if the segments are not contiguous.
671 If the section is contiguous, its offset should be set to
672 the offset of the highest loadable section lower than it
673 (the loadable section directly below it in memory).
674 this_offset = lower_offset = lower_addr - lower_orig_addr */
675
676 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
677 {
b0fcb67f 678 const char *sect_name = addrs->other[i].name;
82ccf5a5 679 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
680
681 if (sect)
75242ef4 682 {
672d9c23 683 /* This is the index used by BFD. */
82ccf5a5 684 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
685
686 if (addrs->other[i].addr != 0)
75242ef4 687 {
82ccf5a5 688 addrs->other[i].addr -= sect->addr;
75242ef4 689 lower_offset = addrs->other[i].addr;
75242ef4
JK
690 }
691 else
672d9c23 692 addrs->other[i].addr = lower_offset;
75242ef4
JK
693 }
694 else
672d9c23 695 {
b0fcb67f
JK
696 /* This section does not exist in ABFD, which is normally
697 unexpected and we want to issue a warning.
698
4d9743af
JK
699 However, the ELF prelinker does create a few sections which are
700 marked in the main executable as loadable (they are loaded in
701 memory from the DYNAMIC segment) and yet are not present in
702 separate debug info files. This is fine, and should not cause
703 a warning. Shared libraries contain just the section
704 ".gnu.liblist" but it is not marked as loadable there. There is
705 no other way to identify them than by their name as the sections
706 created by prelink have no special flags. */
b0fcb67f
JK
707
708 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af
JK
709 || strcmp (sect_name, ".gnu.conflict") == 0
710 || strcmp (sect_name, ".dynbss") == 0
711 || strcmp (sect_name, ".sdynbss") == 0))
b0fcb67f
JK
712 warning (_("section %s not found in %s"), sect_name,
713 bfd_get_filename (abfd));
714
672d9c23
JK
715 addrs->other[i].addr = 0;
716
717 /* SECTINDEX is invalid if ADDR is zero. */
718 }
75242ef4 719 }
82ccf5a5
JK
720
721 do_cleanups (my_cleanup);
75242ef4
JK
722}
723
724/* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730void
731default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733{
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
e8289572 740
c1bd25fd
DJ
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
2711e456
DJ
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
2711e456
DJ
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
801 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
802 offsets[cur_sec->index]);
2711e456
DJ
803 offsets[cur_sec->index] = 0;
804 }
805 }
c1bd25fd
DJ
806 }
807
e8289572
JB
808 /* Remember the bfd indexes for the .text, .data, .bss and
809 .rodata sections. */
810 init_objfile_sect_indices (objfile);
811}
812
813
31d99776
DJ
814/* Divide the file into segments, which are individual relocatable units.
815 This is the default version of the sym_fns.sym_segments function for
816 symbol readers that do not have an explicit representation of segments.
817 It assumes that object files do not have segments, and fully linked
818 files have a single segment. */
819
820struct symfile_segment_data *
821default_symfile_segments (bfd *abfd)
822{
823 int num_sections, i;
824 asection *sect;
825 struct symfile_segment_data *data;
826 CORE_ADDR low, high;
827
828 /* Relocatable files contain enough information to position each
829 loadable section independently; they should not be relocated
830 in segments. */
831 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
832 return NULL;
833
834 /* Make sure there is at least one loadable section in the file. */
835 for (sect = abfd->sections; sect != NULL; sect = sect->next)
836 {
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 break;
841 }
842 if (sect == NULL)
843 return NULL;
844
845 low = bfd_get_section_vma (abfd, sect);
846 high = low + bfd_get_section_size (sect);
847
848 data = XZALLOC (struct symfile_segment_data);
849 data->num_segments = 1;
850 data->segment_bases = XCALLOC (1, CORE_ADDR);
851 data->segment_sizes = XCALLOC (1, CORE_ADDR);
852
853 num_sections = bfd_count_sections (abfd);
854 data->segment_info = XCALLOC (num_sections, int);
855
856 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
857 {
858 CORE_ADDR vma;
859
860 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
861 continue;
862
863 vma = bfd_get_section_vma (abfd, sect);
864 if (vma < low)
865 low = vma;
866 if (vma + bfd_get_section_size (sect) > high)
867 high = vma + bfd_get_section_size (sect);
868
869 data->segment_info[i] = 1;
870 }
871
872 data->segment_bases[0] = low;
873 data->segment_sizes[0] = high - low;
874
875 return data;
876}
877
c906108c
SS
878/* Process a symbol file, as either the main file or as a dynamically
879 loaded file.
880
96baa820
JM
881 OBJFILE is where the symbols are to be read from.
882
7e8580c1
JB
883 ADDRS is the list of section load addresses. If the user has given
884 an 'add-symbol-file' command, then this is the list of offsets and
885 addresses he or she provided as arguments to the command; or, if
886 we're handling a shared library, these are the actual addresses the
887 sections are loaded at, according to the inferior's dynamic linker
888 (as gleaned by GDB's shared library code). We convert each address
889 into an offset from the section VMA's as it appears in the object
890 file, and then call the file's sym_offsets function to convert this
891 into a format-specific offset table --- a `struct section_offsets'.
892 If ADDRS is non-zero, OFFSETS must be zero.
893
894 OFFSETS is a table of section offsets already in the right
895 format-specific representation. NUM_OFFSETS is the number of
896 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
897 assume this is the proper table the call to sym_offsets described
898 above would produce. Instead of calling sym_offsets, we just dump
899 it right into objfile->section_offsets. (When we're re-reading
900 symbols from an objfile, we don't have the original load address
901 list any more; all we have is the section offset table.) If
902 OFFSETS is non-zero, ADDRS must be zero.
96baa820 903
7eedccfa
PP
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and wether
906 breakpoint reset should be deferred. */
c906108c
SS
907
908void
7e8580c1
JB
909syms_from_objfile (struct objfile *objfile,
910 struct section_addr_info *addrs,
911 struct section_offsets *offsets,
912 int num_offsets,
7eedccfa 913 int add_flags)
c906108c 914{
a39a16c4 915 struct section_addr_info *local_addr = NULL;
c906108c 916 struct cleanup *old_chain;
7eedccfa 917 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 918
7e8580c1 919 gdb_assert (! (addrs && offsets));
2acceee2 920
c906108c 921 init_entry_point_info (objfile);
31d99776 922 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 923
75245b24
MS
924 if (objfile->sf == NULL)
925 return; /* No symbols. */
926
c906108c
SS
927 /* Make sure that partially constructed symbol tables will be cleaned up
928 if an error occurs during symbol reading. */
74b7792f 929 old_chain = make_cleanup_free_objfile (objfile);
c906108c 930
a39a16c4
MM
931 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
932 list. We now establish the convention that an addr of zero means
933 no load address was specified. */
934 if (! addrs && ! offsets)
935 {
5417f6dc 936 local_addr
a39a16c4
MM
937 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
938 make_cleanup (xfree, local_addr);
939 addrs = local_addr;
940 }
941
942 /* Now either addrs or offsets is non-zero. */
943
c5aa993b 944 if (mainline)
c906108c
SS
945 {
946 /* We will modify the main symbol table, make sure that all its users
c5aa993b 947 will be cleaned up if an error occurs during symbol reading. */
74b7792f 948 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
949
950 /* Since no error yet, throw away the old symbol table. */
951
952 if (symfile_objfile != NULL)
953 {
954 free_objfile (symfile_objfile);
adb7f338 955 gdb_assert (symfile_objfile == NULL);
c906108c
SS
956 }
957
958 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
959 If the user wants to get rid of them, they should do "symbol-file"
960 without arguments first. Not sure this is the best behavior
961 (PR 2207). */
c906108c 962
c5aa993b 963 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
964 }
965
966 /* Convert addr into an offset rather than an absolute address.
967 We find the lowest address of a loaded segment in the objfile,
53a5351d 968 and assume that <addr> is where that got loaded.
c906108c 969
53a5351d
JM
970 We no longer warn if the lowest section is not a text segment (as
971 happens for the PA64 port. */
0d15807d 972 if (addrs && addrs->other[0].name)
75242ef4 973 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
974
975 /* Initialize symbol reading routines for this objfile, allow complaints to
976 appear for this new file, and record how verbose to be, then do the
977 initial symbol reading for this file. */
978
c5aa993b 979 (*objfile->sf->sym_init) (objfile);
7eedccfa 980 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 981
7e8580c1
JB
982 if (addrs)
983 (*objfile->sf->sym_offsets) (objfile, addrs);
984 else
985 {
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
987
988 /* Just copy in the offset table directly as given to us. */
989 objfile->num_sections = num_offsets;
990 objfile->section_offsets
991 = ((struct section_offsets *)
8b92e4d5 992 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
993 memcpy (objfile->section_offsets, offsets, size);
994
995 init_objfile_sect_indices (objfile);
996 }
c906108c 997
f4352531 998 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 999
c906108c
SS
1000 /* Discard cleanups as symbol reading was successful. */
1001
1002 discard_cleanups (old_chain);
f7545552 1003 xfree (local_addr);
c906108c
SS
1004}
1005
1006/* Perform required actions after either reading in the initial
1007 symbols for a new objfile, or mapping in the symbols from a reusable
1008 objfile. */
c5aa993b 1009
c906108c 1010void
7eedccfa 1011new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c
SS
1012{
1013
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1017 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1018 {
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1021
1022 clear_symtab_users ();
1023 }
7eedccfa 1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1025 {
69de3c6a 1026 breakpoint_re_set ();
c906108c
SS
1027 }
1028
1029 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1031}
1032
1033/* Process a symbol file, as either the main file or as a dynamically
1034 loaded file.
1035
5417f6dc
RM
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1038
7eedccfa
PP
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1041
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1045
c906108c
SS
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
7eedccfa 1048
7904e09f 1049static struct objfile *
7eedccfa
PP
1050symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1051 int add_flags,
7904e09f
JB
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1054 int num_offsets,
7eedccfa 1055 int flags)
c906108c
SS
1056{
1057 struct objfile *objfile;
a39a16c4 1058 struct cleanup *my_cleanups;
5417f6dc 1059 const char *name = bfd_get_filename (abfd);
7eedccfa 1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 1061
5417f6dc 1062 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1063
5417f6dc
RM
1064 /* Give user a chance to burp if we'd be
1065 interactively wiping out any existing symbols. */
c906108c
SS
1066
1067 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1068 && (add_flags & SYMFILE_MAINLINE)
c906108c 1069 && from_tty
9e2f0ad4 1070 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1071 error (_("Not confirmed."));
c906108c 1072
2df3850c 1073 objfile = allocate_objfile (abfd, flags);
5417f6dc 1074 discard_cleanups (my_cleanups);
c906108c 1075
78a4a9b9
AC
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (from_tty || info_verbose)
c906108c 1080 {
769d7dc4
AC
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1083 else
c906108c 1084 {
55333a84
DE
1085 printf_unfiltered (_("Reading symbols from %s..."), name);
1086 wrap_here ("");
1087 gdb_flush (gdb_stdout);
c906108c 1088 }
c906108c 1089 }
78a4a9b9 1090 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1091 add_flags);
c906108c
SS
1092
1093 /* We now have at least a partial symbol table. Check to see if the
1094 user requested that all symbols be read on initial access via either
1095 the gdb startup command line or on a per symbol file basis. Expand
1096 all partial symbol tables for this objfile if so. */
1097
2acceee2 1098 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1099 {
55333a84 1100 if (from_tty || info_verbose)
c906108c 1101 {
a3f17187 1102 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1103 wrap_here ("");
1104 gdb_flush (gdb_stdout);
1105 }
1106
ccefe4c4
TT
1107 if (objfile->sf)
1108 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1109 }
1110
55333a84 1111 if ((from_tty || info_verbose)
e361b228 1112 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1113 {
1114 wrap_here ("");
55333a84 1115 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1116 wrap_here ("");
1117 }
1118
c906108c
SS
1119 if (from_tty || info_verbose)
1120 {
769d7dc4
AC
1121 if (deprecated_post_add_symbol_hook)
1122 deprecated_post_add_symbol_hook ();
c906108c 1123 else
55333a84 1124 printf_unfiltered (_("done.\n"));
c906108c
SS
1125 }
1126
481d0f41
JB
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
a39a16c4
MM
1132 do_cleanups (my_cleanups);
1133
109f874e 1134 if (objfile->sf == NULL)
8caee43b
PP
1135 {
1136 observer_notify_new_objfile (objfile);
1137 return objfile; /* No symbols. */
1138 }
109f874e 1139
7eedccfa 1140 new_symfile_objfile (objfile, add_flags);
c906108c 1141
06d3b283 1142 observer_notify_new_objfile (objfile);
c906108c 1143
ce7d4522 1144 bfd_cache_close_all ();
c906108c
SS
1145 return (objfile);
1146}
1147
9cce227f
TG
1148/* Add BFD as a separate debug file for OBJFILE. */
1149
1150void
1151symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1152{
15d123c9 1153 struct objfile *new_objfile;
089b4803
TG
1154 struct section_addr_info *sap;
1155 struct cleanup *my_cleanup;
1156
1157 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1158 because sections of BFD may not match sections of OBJFILE and because
1159 vma may have been modified by tools such as prelink. */
1160 sap = build_section_addr_info_from_objfile (objfile);
1161 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1162
15d123c9 1163 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1164 (bfd, symfile_flags,
089b4803 1165 sap, NULL, 0,
9cce227f
TG
1166 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1167 | OBJF_USERLOADED));
089b4803
TG
1168
1169 do_cleanups (my_cleanup);
9cce227f 1170
15d123c9 1171 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1172}
7904e09f 1173
eb4556d7
JB
1174/* Process the symbol file ABFD, as either the main file or as a
1175 dynamically loaded file.
1176
1177 See symbol_file_add_with_addrs_or_offsets's comments for
1178 details. */
1179struct objfile *
7eedccfa 1180symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1181 struct section_addr_info *addrs,
7eedccfa 1182 int flags)
eb4556d7 1183{
7eedccfa
PP
1184 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1185 flags);
eb4556d7
JB
1186}
1187
1188
7904e09f
JB
1189/* Process a symbol file, as either the main file or as a dynamically
1190 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1191 for details. */
1192struct objfile *
7eedccfa
PP
1193symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1194 int flags)
7904e09f 1195{
7eedccfa
PP
1196 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1197 flags);
7904e09f
JB
1198}
1199
1200
d7db6da9
FN
1201/* Call symbol_file_add() with default values and update whatever is
1202 affected by the loading of a new main().
1203 Used when the file is supplied in the gdb command line
1204 and by some targets with special loading requirements.
1205 The auxiliary function, symbol_file_add_main_1(), has the flags
1206 argument for the switches that can only be specified in the symbol_file
1207 command itself. */
5417f6dc 1208
1adeb98a
FN
1209void
1210symbol_file_add_main (char *args, int from_tty)
1211{
d7db6da9
FN
1212 symbol_file_add_main_1 (args, from_tty, 0);
1213}
1214
1215static void
1216symbol_file_add_main_1 (char *args, int from_tty, int flags)
1217{
7eedccfa
PP
1218 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1219 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1220
d7db6da9
FN
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1224
1225 set_initial_language ();
1adeb98a
FN
1226}
1227
1228void
1229symbol_file_clear (int from_tty)
1230{
1231 if ((have_full_symbols () || have_partial_symbols ())
1232 && from_tty
0430b0d6
AS
1233 && (symfile_objfile
1234 ? !query (_("Discard symbol table from `%s'? "),
1235 symfile_objfile->name)
1236 : !query (_("Discard symbol table? "))))
8a3fe4f8 1237 error (_("Not confirmed."));
1adeb98a 1238
0133421a
JK
1239 /* solib descriptors may have handles to objfiles. Wipe them before their
1240 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1241 no_shared_libraries (NULL, from_tty);
1242
0133421a
JK
1243 free_all_objfiles ();
1244
adb7f338 1245 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1246 if (from_tty)
1247 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1248}
1249
5b5d99cf
JB
1250static char *
1251get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1252{
1253 asection *sect;
1254 bfd_size_type debuglink_size;
1255 unsigned long crc32;
1256 char *contents;
1257 int crc_offset;
5417f6dc 1258
5b5d99cf
JB
1259 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1260
1261 if (sect == NULL)
1262 return NULL;
1263
1264 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1265
5b5d99cf
JB
1266 contents = xmalloc (debuglink_size);
1267 bfd_get_section_contents (objfile->obfd, sect, contents,
1268 (file_ptr)0, (bfd_size_type)debuglink_size);
1269
1270 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1271 crc_offset = strlen (contents) + 1;
1272 crc_offset = (crc_offset + 3) & ~3;
1273
1274 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1275
5b5d99cf
JB
1276 *crc32_out = crc32;
1277 return contents;
1278}
1279
1280static int
287ccc17 1281separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1282 struct objfile *parent_objfile)
5b5d99cf
JB
1283{
1284 unsigned long file_crc = 0;
f1838a98 1285 bfd *abfd;
777ea8f1 1286 gdb_byte buffer[8*1024];
5b5d99cf 1287 int count;
32a0e547
JK
1288 struct stat parent_stat, abfd_stat;
1289
1290 /* Find a separate debug info file as if symbols would be present in
1291 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1292 section can contain just the basename of PARENT_OBJFILE without any
1293 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1294 the separate debug infos with the same basename can exist. */
1295
1296 if (strcmp (name, parent_objfile->name) == 0)
1297 return 0;
5b5d99cf 1298
874f5765 1299 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1300
1301 if (!abfd)
5b5d99cf
JB
1302 return 0;
1303
32a0e547
JK
1304 /* Verify symlinks were not the cause of strcmp name difference above.
1305
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
1308 meaningful st_dev.) Do not indicate a duplicate library in that
1309 case. While there is no guarantee that a system that provides
1310 meaningful inode numbers will never set st_ino to zero, this is
1311 merely an optimization, so we do not need to worry about false
1312 negatives. */
1313
1314 if (bfd_stat (abfd, &abfd_stat) == 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1316 && abfd_stat.st_dev == parent_stat.st_dev
1317 && abfd_stat.st_ino == parent_stat.st_ino
1318 && abfd_stat.st_ino != 0)
1319 {
1320 bfd_close (abfd);
1321 return 0;
1322 }
1323
f1838a98 1324 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1325 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1326
f1838a98 1327 bfd_close (abfd);
5b5d99cf 1328
287ccc17
JK
1329 if (crc != file_crc)
1330 {
1331 warning (_("the debug information found in \"%s\""
1332 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1333 name, parent_objfile->name);
287ccc17
JK
1334 return 0;
1335 }
1336
1337 return 1;
5b5d99cf
JB
1338}
1339
aa28a74e 1340char *debug_file_directory = NULL;
920d2a44
AC
1341static void
1342show_debug_file_directory (struct ui_file *file, int from_tty,
1343 struct cmd_list_element *c, const char *value)
1344{
1345 fprintf_filtered (file, _("\
1346The directory where separate debug symbols are searched for is \"%s\".\n"),
1347 value);
1348}
5b5d99cf
JB
1349
1350#if ! defined (DEBUG_SUBDIRECTORY)
1351#define DEBUG_SUBDIRECTORY ".debug"
1352#endif
1353
9cce227f
TG
1354char *
1355find_separate_debug_file_by_debuglink (struct objfile *objfile)
1356{
952a6d41 1357 char *basename, *debugdir;
9cce227f
TG
1358 char *dir = NULL;
1359 char *debugfile = NULL;
1360 char *canon_name = NULL;
9cce227f
TG
1361 unsigned long crc32;
1362 int i;
5b5d99cf
JB
1363
1364 basename = get_debug_link_info (objfile, &crc32);
1365
1366 if (basename == NULL)
287ccc17
JK
1367 /* There's no separate debug info, hence there's no way we could
1368 load it => no warning. */
25522fae 1369 goto cleanup_return_debugfile;
5417f6dc 1370
5b5d99cf
JB
1371 dir = xstrdup (objfile->name);
1372
fe36c4f4
JB
1373 /* Strip off the final filename part, leaving the directory name,
1374 followed by a slash. Objfile names should always be absolute and
1375 tilde-expanded, so there should always be a slash in there
1376 somewhere. */
5b5d99cf
JB
1377 for (i = strlen(dir) - 1; i >= 0; i--)
1378 {
1379 if (IS_DIR_SEPARATOR (dir[i]))
1380 break;
1381 }
fe36c4f4 1382 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1383 dir[i+1] = '\0';
5417f6dc 1384
1ffa32ee
JK
1385 /* Set I to max (strlen (canon_name), strlen (dir)). */
1386 canon_name = lrealpath (dir);
1387 i = strlen (dir);
1388 if (canon_name && strlen (canon_name) > i)
1389 i = strlen (canon_name);
1390
25522fae
JK
1391 debugfile = xmalloc (strlen (debug_file_directory) + 1
1392 + i
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
1395 + strlen (basename)
1396 + 1);
5b5d99cf
JB
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
32a0e547 1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1403 goto cleanup_return_debugfile;
5417f6dc 1404
5b5d99cf
JB
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
32a0e547 1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1412 goto cleanup_return_debugfile;
5417f6dc 1413
24ddea62
JK
1414 /* Then try in the global debugfile directories.
1415
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
5417f6dc 1418
24ddea62
JK
1419 debugdir = debug_file_directory;
1420 do
aa28a74e 1421 {
24ddea62
JK
1422 char *debugdir_end;
1423
1424 while (*debugdir == DIRNAME_SEPARATOR)
1425 debugdir++;
1426
1427 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1428 if (debugdir_end == NULL)
1429 debugdir_end = &debugdir[strlen (debugdir)];
1430
1431 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1432 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1433 strcat (debugfile, "/");
24ddea62 1434 strcat (debugfile, dir);
aa28a74e
DJ
1435 strcat (debugfile, basename);
1436
32a0e547 1437 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1438 goto cleanup_return_debugfile;
24ddea62
JK
1439
1440 /* If the file is in the sysroot, try using its base path in the
1441 global debugfile directory. */
1442 if (canon_name
1443 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1444 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1445 {
1446 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1447 debugfile[debugdir_end - debugdir] = 0;
1448 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1449 strcat (debugfile, "/");
1450 strcat (debugfile, basename);
1451
32a0e547 1452 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1453 goto cleanup_return_debugfile;
1454 }
1455
1456 debugdir = debugdir_end;
aa28a74e 1457 }
24ddea62 1458 while (*debugdir != 0);
aa28a74e 1459
25522fae
JK
1460 xfree (debugfile);
1461 debugfile = NULL;
aa28a74e 1462
25522fae
JK
1463cleanup_return_debugfile:
1464 xfree (canon_name);
5b5d99cf
JB
1465 xfree (basename);
1466 xfree (dir);
25522fae 1467 return debugfile;
5b5d99cf
JB
1468}
1469
1470
c906108c
SS
1471/* This is the symbol-file command. Read the file, analyze its
1472 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1473 the command is rather bizarre:
1474
1475 1. The function buildargv implements various quoting conventions
1476 which are undocumented and have little or nothing in common with
1477 the way things are quoted (or not quoted) elsewhere in GDB.
1478
1479 2. Options are used, which are not generally used in GDB (perhaps
1480 "set mapped on", "set readnow on" would be better)
1481
1482 3. The order of options matters, which is contrary to GNU
c906108c
SS
1483 conventions (because it is confusing and inconvenient). */
1484
1485void
fba45db2 1486symbol_file_command (char *args, int from_tty)
c906108c 1487{
c906108c
SS
1488 dont_repeat ();
1489
1490 if (args == NULL)
1491 {
1adeb98a 1492 symbol_file_clear (from_tty);
c906108c
SS
1493 }
1494 else
1495 {
d1a41061 1496 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1497 int flags = OBJF_USERLOADED;
1498 struct cleanup *cleanups;
1499 char *name = NULL;
1500
7a292a7a 1501 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1502 while (*argv != NULL)
1503 {
78a4a9b9
AC
1504 if (strcmp (*argv, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1506 else if (**argv == '-')
8a3fe4f8 1507 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1508 else
1509 {
cb2f3a29 1510 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1511 name = *argv;
78a4a9b9 1512 }
cb2f3a29 1513
c906108c
SS
1514 argv++;
1515 }
1516
1517 if (name == NULL)
cb2f3a29
MK
1518 error (_("no symbol file name was specified"));
1519
c906108c
SS
1520 do_cleanups (cleanups);
1521 }
1522}
1523
1524/* Set the initial language.
1525
cb2f3a29
MK
1526 FIXME: A better solution would be to record the language in the
1527 psymtab when reading partial symbols, and then use it (if known) to
1528 set the language. This would be a win for formats that encode the
1529 language in an easily discoverable place, such as DWARF. For
1530 stabs, we can jump through hoops looking for specially named
1531 symbols or try to intuit the language from the specific type of
1532 stabs we find, but we can't do that until later when we read in
1533 full symbols. */
c906108c 1534
8b60591b 1535void
fba45db2 1536set_initial_language (void)
c906108c 1537{
ccefe4c4 1538 char *filename;
c5aa993b 1539 enum language lang = language_unknown;
c906108c 1540
ccefe4c4
TT
1541 filename = find_main_filename ();
1542 if (filename != NULL)
1543 lang = deduce_language_from_filename (filename);
cb2f3a29 1544
ccefe4c4
TT
1545 if (lang == language_unknown)
1546 {
1547 /* Make C the default language */
1548 lang = language_c;
c906108c 1549 }
ccefe4c4
TT
1550
1551 set_language (lang);
1552 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1553}
1554
874f5765
TG
1555/* If NAME is a remote name open the file using remote protocol, otherwise
1556 open it normally. */
1557
1558bfd *
1559bfd_open_maybe_remote (const char *name)
1560{
1561 if (remote_filename_p (name))
1562 return remote_bfd_open (name, gnutarget);
1563 else
1564 return bfd_openr (name, gnutarget);
1565}
1566
1567
cb2f3a29
MK
1568/* Open the file specified by NAME and hand it off to BFD for
1569 preliminary analysis. Return a newly initialized bfd *, which
1570 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1571 absolute). In case of trouble, error() is called. */
c906108c
SS
1572
1573bfd *
fba45db2 1574symfile_bfd_open (char *name)
c906108c
SS
1575{
1576 bfd *sym_bfd;
1577 int desc;
1578 char *absolute_name;
1579
f1838a98
UW
1580 if (remote_filename_p (name))
1581 {
1582 name = xstrdup (name);
1583 sym_bfd = remote_bfd_open (name, gnutarget);
1584 if (!sym_bfd)
1585 {
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't open to read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1589 }
1590
1591 if (!bfd_check_format (sym_bfd, bfd_object))
1592 {
1593 bfd_close (sym_bfd);
1594 make_cleanup (xfree, name);
1595 error (_("`%s': can't read symbols: %s."), name,
1596 bfd_errmsg (bfd_get_error ()));
1597 }
1598
1599 return sym_bfd;
1600 }
1601
cb2f3a29 1602 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1603
1604 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1606 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1607#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1608 if (desc < 0)
1609 {
1610 char *exename = alloca (strlen (name) + 5);
1611 strcat (strcpy (exename, name), ".exe");
014d698b 1612 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1613 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1614 }
1615#endif
1616 if (desc < 0)
1617 {
b8c9b27d 1618 make_cleanup (xfree, name);
c906108c
SS
1619 perror_with_name (name);
1620 }
cb2f3a29
MK
1621
1622 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1623 bfd. It'll be freed in free_objfile(). */
1624 xfree (name);
1625 name = absolute_name;
c906108c 1626
9f76c2cd 1627 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1628 if (!sym_bfd)
1629 {
1630 close (desc);
b8c9b27d 1631 make_cleanup (xfree, name);
f1838a98 1632 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1633 bfd_errmsg (bfd_get_error ()));
1634 }
549c1eea 1635 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1636
1637 if (!bfd_check_format (sym_bfd, bfd_object))
1638 {
cb2f3a29
MK
1639 /* FIXME: should be checking for errors from bfd_close (for one
1640 thing, on error it does not free all the storage associated
1641 with the bfd). */
1642 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1643 make_cleanup (xfree, name);
f1838a98 1644 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1645 bfd_errmsg (bfd_get_error ()));
1646 }
cb2f3a29 1647
4f6f9936
JK
1648 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1649 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1650
cb2f3a29 1651 return sym_bfd;
c906108c
SS
1652}
1653
cb2f3a29
MK
1654/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1655 the section was not found. */
1656
0e931cf0
JB
1657int
1658get_section_index (struct objfile *objfile, char *section_name)
1659{
1660 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1661
0e931cf0
JB
1662 if (sect)
1663 return sect->index;
1664 else
1665 return -1;
1666}
1667
cb2f3a29
MK
1668/* Link SF into the global symtab_fns list. Called on startup by the
1669 _initialize routine in each object file format reader, to register
1670 information about each format the the reader is prepared to
1671 handle. */
c906108c
SS
1672
1673void
fba45db2 1674add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1675{
1676 sf->next = symtab_fns;
1677 symtab_fns = sf;
1678}
1679
cb2f3a29
MK
1680/* Initialize OBJFILE to read symbols from its associated BFD. It
1681 either returns or calls error(). The result is an initialized
1682 struct sym_fns in the objfile structure, that contains cached
1683 information about the symbol file. */
c906108c 1684
31d99776
DJ
1685static struct sym_fns *
1686find_sym_fns (bfd *abfd)
c906108c
SS
1687{
1688 struct sym_fns *sf;
31d99776 1689 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1690
75245b24
MS
1691 if (our_flavour == bfd_target_srec_flavour
1692 || our_flavour == bfd_target_ihex_flavour
1693 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1694 return NULL; /* No symbols. */
75245b24 1695
c5aa993b 1696 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1697 if (our_flavour == sf->sym_flavour)
1698 return sf;
cb2f3a29 1699
8a3fe4f8 1700 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1701 bfd_get_target (abfd));
c906108c
SS
1702}
1703\f
cb2f3a29 1704
c906108c
SS
1705/* This function runs the load command of our current target. */
1706
1707static void
fba45db2 1708load_command (char *arg, int from_tty)
c906108c 1709{
4487aabf
PA
1710 /* The user might be reloading because the binary has changed. Take
1711 this opportunity to check. */
1712 reopen_exec_file ();
1713 reread_symbols ();
1714
c906108c 1715 if (arg == NULL)
1986bccd
AS
1716 {
1717 char *parg;
1718 int count = 0;
1719
1720 parg = arg = get_exec_file (1);
1721
1722 /* Count how many \ " ' tab space there are in the name. */
1723 while ((parg = strpbrk (parg, "\\\"'\t ")))
1724 {
1725 parg++;
1726 count++;
1727 }
1728
1729 if (count)
1730 {
1731 /* We need to quote this string so buildargv can pull it apart. */
1732 char *temp = xmalloc (strlen (arg) + count + 1 );
1733 char *ptemp = temp;
1734 char *prev;
1735
1736 make_cleanup (xfree, temp);
1737
1738 prev = parg = arg;
1739 while ((parg = strpbrk (parg, "\\\"'\t ")))
1740 {
1741 strncpy (ptemp, prev, parg - prev);
1742 ptemp += parg - prev;
1743 prev = parg++;
1744 *ptemp++ = '\\';
1745 }
1746 strcpy (ptemp, prev);
1747
1748 arg = temp;
1749 }
1750 }
1751
c906108c 1752 target_load (arg, from_tty);
2889e661
JB
1753
1754 /* After re-loading the executable, we don't really know which
1755 overlays are mapped any more. */
1756 overlay_cache_invalid = 1;
c906108c
SS
1757}
1758
1759/* This version of "load" should be usable for any target. Currently
1760 it is just used for remote targets, not inftarg.c or core files,
1761 on the theory that only in that case is it useful.
1762
1763 Avoiding xmodem and the like seems like a win (a) because we don't have
1764 to worry about finding it, and (b) On VMS, fork() is very slow and so
1765 we don't want to run a subprocess. On the other hand, I'm not sure how
1766 performance compares. */
917317f4 1767
917317f4
JM
1768static int validate_download = 0;
1769
e4f9b4d5
MS
1770/* Callback service function for generic_load (bfd_map_over_sections). */
1771
1772static void
1773add_section_size_callback (bfd *abfd, asection *asec, void *data)
1774{
1775 bfd_size_type *sum = data;
1776
2c500098 1777 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1778}
1779
1780/* Opaque data for load_section_callback. */
1781struct load_section_data {
1782 unsigned long load_offset;
a76d924d
DJ
1783 struct load_progress_data *progress_data;
1784 VEC(memory_write_request_s) *requests;
1785};
1786
1787/* Opaque data for load_progress. */
1788struct load_progress_data {
1789 /* Cumulative data. */
e4f9b4d5
MS
1790 unsigned long write_count;
1791 unsigned long data_count;
1792 bfd_size_type total_size;
a76d924d
DJ
1793};
1794
1795/* Opaque data for load_progress for a single section. */
1796struct load_progress_section_data {
1797 struct load_progress_data *cumulative;
cf7a04e8 1798
a76d924d 1799 /* Per-section data. */
cf7a04e8
DJ
1800 const char *section_name;
1801 ULONGEST section_sent;
1802 ULONGEST section_size;
1803 CORE_ADDR lma;
1804 gdb_byte *buffer;
e4f9b4d5
MS
1805};
1806
a76d924d 1807/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1808
1809static void
1810load_progress (ULONGEST bytes, void *untyped_arg)
1811{
a76d924d
DJ
1812 struct load_progress_section_data *args = untyped_arg;
1813 struct load_progress_data *totals;
1814
1815 if (args == NULL)
1816 /* Writing padding data. No easy way to get at the cumulative
1817 stats, so just ignore this. */
1818 return;
1819
1820 totals = args->cumulative;
1821
1822 if (bytes == 0 && args->section_sent == 0)
1823 {
1824 /* The write is just starting. Let the user know we've started
1825 this section. */
5af949e3
UW
1826 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1827 args->section_name, hex_string (args->section_size),
1828 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1829 return;
1830 }
cf7a04e8
DJ
1831
1832 if (validate_download)
1833 {
1834 /* Broken memories and broken monitors manifest themselves here
1835 when bring new computers to life. This doubles already slow
1836 downloads. */
1837 /* NOTE: cagney/1999-10-18: A more efficient implementation
1838 might add a verify_memory() method to the target vector and
1839 then use that. remote.c could implement that method using
1840 the ``qCRC'' packet. */
1841 gdb_byte *check = xmalloc (bytes);
1842 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1843
1844 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1845 error (_("Download verify read failed at %s"),
1846 paddress (target_gdbarch, args->lma));
cf7a04e8 1847 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1848 error (_("Download verify compare failed at %s"),
1849 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1850 do_cleanups (verify_cleanups);
1851 }
a76d924d 1852 totals->data_count += bytes;
cf7a04e8
DJ
1853 args->lma += bytes;
1854 args->buffer += bytes;
a76d924d 1855 totals->write_count += 1;
cf7a04e8
DJ
1856 args->section_sent += bytes;
1857 if (quit_flag
1858 || (deprecated_ui_load_progress_hook != NULL
1859 && deprecated_ui_load_progress_hook (args->section_name,
1860 args->section_sent)))
1861 error (_("Canceled the download"));
1862
1863 if (deprecated_show_load_progress != NULL)
1864 deprecated_show_load_progress (args->section_name,
1865 args->section_sent,
1866 args->section_size,
a76d924d
DJ
1867 totals->data_count,
1868 totals->total_size);
cf7a04e8
DJ
1869}
1870
e4f9b4d5
MS
1871/* Callback service function for generic_load (bfd_map_over_sections). */
1872
1873static void
1874load_section_callback (bfd *abfd, asection *asec, void *data)
1875{
a76d924d 1876 struct memory_write_request *new_request;
e4f9b4d5 1877 struct load_section_data *args = data;
a76d924d 1878 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1879 bfd_size_type size = bfd_get_section_size (asec);
1880 gdb_byte *buffer;
cf7a04e8 1881 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1882
cf7a04e8
DJ
1883 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1884 return;
e4f9b4d5 1885
cf7a04e8
DJ
1886 if (size == 0)
1887 return;
e4f9b4d5 1888
a76d924d
DJ
1889 new_request = VEC_safe_push (memory_write_request_s,
1890 args->requests, NULL);
1891 memset (new_request, 0, sizeof (struct memory_write_request));
1892 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1893 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1894 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1895 new_request->data = xmalloc (size);
1896 new_request->baton = section_data;
cf7a04e8 1897
a76d924d 1898 buffer = new_request->data;
cf7a04e8 1899
a76d924d
DJ
1900 section_data->cumulative = args->progress_data;
1901 section_data->section_name = sect_name;
1902 section_data->section_size = size;
1903 section_data->lma = new_request->begin;
1904 section_data->buffer = buffer;
cf7a04e8
DJ
1905
1906 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1907}
1908
1909/* Clean up an entire memory request vector, including load
1910 data and progress records. */
cf7a04e8 1911
a76d924d
DJ
1912static void
1913clear_memory_write_data (void *arg)
1914{
1915 VEC(memory_write_request_s) **vec_p = arg;
1916 VEC(memory_write_request_s) *vec = *vec_p;
1917 int i;
1918 struct memory_write_request *mr;
cf7a04e8 1919
a76d924d
DJ
1920 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1921 {
1922 xfree (mr->data);
1923 xfree (mr->baton);
1924 }
1925 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1926}
1927
c906108c 1928void
917317f4 1929generic_load (char *args, int from_tty)
c906108c 1930{
c906108c 1931 bfd *loadfile_bfd;
2b71414d 1932 struct timeval start_time, end_time;
917317f4 1933 char *filename;
1986bccd 1934 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1935 struct load_section_data cbdata;
a76d924d
DJ
1936 struct load_progress_data total_progress;
1937
e4f9b4d5 1938 CORE_ADDR entry;
1986bccd 1939 char **argv;
e4f9b4d5 1940
a76d924d
DJ
1941 memset (&cbdata, 0, sizeof (cbdata));
1942 memset (&total_progress, 0, sizeof (total_progress));
1943 cbdata.progress_data = &total_progress;
1944
1945 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1946
d1a41061
PP
1947 if (args == NULL)
1948 error_no_arg (_("file to load"));
1986bccd 1949
d1a41061 1950 argv = gdb_buildargv (args);
1986bccd
AS
1951 make_cleanup_freeargv (argv);
1952
1953 filename = tilde_expand (argv[0]);
1954 make_cleanup (xfree, filename);
1955
1956 if (argv[1] != NULL)
917317f4
JM
1957 {
1958 char *endptr;
ba5f2f8a 1959
1986bccd
AS
1960 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1961
1962 /* If the last word was not a valid number then
1963 treat it as a file name with spaces in. */
1964 if (argv[1] == endptr)
1965 error (_("Invalid download offset:%s."), argv[1]);
1966
1967 if (argv[2] != NULL)
1968 error (_("Too many parameters."));
917317f4 1969 }
c906108c 1970
917317f4 1971 /* Open the file for loading. */
c906108c
SS
1972 loadfile_bfd = bfd_openr (filename, gnutarget);
1973 if (loadfile_bfd == NULL)
1974 {
1975 perror_with_name (filename);
1976 return;
1977 }
917317f4 1978
c906108c
SS
1979 /* FIXME: should be checking for errors from bfd_close (for one thing,
1980 on error it does not free all the storage associated with the
1981 bfd). */
5c65bbb6 1982 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1983
c5aa993b 1984 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1985 {
8a3fe4f8 1986 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1987 bfd_errmsg (bfd_get_error ()));
1988 }
c5aa993b 1989
5417f6dc 1990 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1991 (void *) &total_progress.total_size);
1992
1993 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1994
2b71414d 1995 gettimeofday (&start_time, NULL);
c906108c 1996
a76d924d
DJ
1997 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1998 load_progress) != 0)
1999 error (_("Load failed"));
c906108c 2000
2b71414d 2001 gettimeofday (&end_time, NULL);
ba5f2f8a 2002
e4f9b4d5 2003 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2004 ui_out_text (uiout, "Start address ");
5af949e3 2005 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2006 ui_out_text (uiout, ", load size ");
a76d924d 2007 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2008 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2009 /* We were doing this in remote-mips.c, I suspect it is right
2010 for other targets too. */
fb14de7b 2011 regcache_write_pc (get_current_regcache (), entry);
c906108c 2012
38963c97
DJ
2013 /* Reset breakpoints, now that we have changed the load image. For
2014 instance, breakpoints may have been set (or reset, by
2015 post_create_inferior) while connected to the target but before we
2016 loaded the program. In that case, the prologue analyzer could
2017 have read instructions from the target to find the right
2018 breakpoint locations. Loading has changed the contents of that
2019 memory. */
2020
2021 breakpoint_re_set ();
2022
7ca9f392
AC
2023 /* FIXME: are we supposed to call symbol_file_add or not? According
2024 to a comment from remote-mips.c (where a call to symbol_file_add
2025 was commented out), making the call confuses GDB if more than one
2026 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2027 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2028
a76d924d
DJ
2029 print_transfer_performance (gdb_stdout, total_progress.data_count,
2030 total_progress.write_count,
2031 &start_time, &end_time);
c906108c
SS
2032
2033 do_cleanups (old_cleanups);
2034}
2035
2036/* Report how fast the transfer went. */
2037
917317f4
JM
2038/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2039 replaced by print_transfer_performance (with a very different
2040 function signature). */
2041
c906108c 2042void
fba45db2
KB
2043report_transfer_performance (unsigned long data_count, time_t start_time,
2044 time_t end_time)
c906108c 2045{
2b71414d
DJ
2046 struct timeval start, end;
2047
2048 start.tv_sec = start_time;
2049 start.tv_usec = 0;
2050 end.tv_sec = end_time;
2051 end.tv_usec = 0;
2052
2053 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2054}
2055
2056void
d9fcf2fb 2057print_transfer_performance (struct ui_file *stream,
917317f4
JM
2058 unsigned long data_count,
2059 unsigned long write_count,
2b71414d
DJ
2060 const struct timeval *start_time,
2061 const struct timeval *end_time)
917317f4 2062{
9f43d28c 2063 ULONGEST time_count;
2b71414d
DJ
2064
2065 /* Compute the elapsed time in milliseconds, as a tradeoff between
2066 accuracy and overflow. */
2067 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2068 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2069
8b93c638
JM
2070 ui_out_text (uiout, "Transfer rate: ");
2071 if (time_count > 0)
2072 {
9f43d28c
DJ
2073 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2074
2075 if (ui_out_is_mi_like_p (uiout))
2076 {
2077 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2078 ui_out_text (uiout, " bits/sec");
2079 }
2080 else if (rate < 1024)
2081 {
2082 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2083 ui_out_text (uiout, " bytes/sec");
2084 }
2085 else
2086 {
2087 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2088 ui_out_text (uiout, " KB/sec");
2089 }
8b93c638
JM
2090 }
2091 else
2092 {
ba5f2f8a 2093 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2094 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2095 }
2096 if (write_count > 0)
2097 {
2098 ui_out_text (uiout, ", ");
ba5f2f8a 2099 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2100 ui_out_text (uiout, " bytes/write");
2101 }
2102 ui_out_text (uiout, ".\n");
c906108c
SS
2103}
2104
2105/* This function allows the addition of incrementally linked object files.
2106 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2107/* Note: ezannoni 2000-04-13 This function/command used to have a
2108 special case syntax for the rombug target (Rombug is the boot
2109 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2110 rombug case, the user doesn't need to supply a text address,
2111 instead a call to target_link() (in target.c) would supply the
2112 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2113
c906108c 2114static void
fba45db2 2115add_symbol_file_command (char *args, int from_tty)
c906108c 2116{
5af949e3 2117 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2118 char *filename = NULL;
2df3850c 2119 int flags = OBJF_USERLOADED;
c906108c 2120 char *arg;
db162d44 2121 int section_index = 0;
2acceee2
JM
2122 int argcnt = 0;
2123 int sec_num = 0;
2124 int i;
db162d44
EZ
2125 int expecting_sec_name = 0;
2126 int expecting_sec_addr = 0;
5b96932b 2127 char **argv;
db162d44 2128
a39a16c4 2129 struct sect_opt
2acceee2 2130 {
2acceee2
JM
2131 char *name;
2132 char *value;
a39a16c4 2133 };
db162d44 2134
a39a16c4
MM
2135 struct section_addr_info *section_addrs;
2136 struct sect_opt *sect_opts = NULL;
2137 size_t num_sect_opts = 0;
3017564a 2138 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2139
a39a16c4 2140 num_sect_opts = 16;
5417f6dc 2141 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2142 * sizeof (struct sect_opt));
2143
c906108c
SS
2144 dont_repeat ();
2145
2146 if (args == NULL)
8a3fe4f8 2147 error (_("add-symbol-file takes a file name and an address"));
c906108c 2148
d1a41061 2149 argv = gdb_buildargv (args);
5b96932b 2150 make_cleanup_freeargv (argv);
db162d44 2151
5b96932b
AS
2152 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2153 {
2154 /* Process the argument. */
db162d44 2155 if (argcnt == 0)
c906108c 2156 {
db162d44
EZ
2157 /* The first argument is the file name. */
2158 filename = tilde_expand (arg);
3017564a 2159 make_cleanup (xfree, filename);
c906108c 2160 }
db162d44 2161 else
7a78ae4e
ND
2162 if (argcnt == 1)
2163 {
2164 /* The second argument is always the text address at which
2165 to load the program. */
2166 sect_opts[section_index].name = ".text";
2167 sect_opts[section_index].value = arg;
f414f22f 2168 if (++section_index >= num_sect_opts)
a39a16c4
MM
2169 {
2170 num_sect_opts *= 2;
5417f6dc 2171 sect_opts = ((struct sect_opt *)
a39a16c4 2172 xrealloc (sect_opts,
5417f6dc 2173 num_sect_opts
a39a16c4
MM
2174 * sizeof (struct sect_opt)));
2175 }
7a78ae4e
ND
2176 }
2177 else
2178 {
2179 /* It's an option (starting with '-') or it's an argument
2180 to an option */
2181
2182 if (*arg == '-')
2183 {
78a4a9b9
AC
2184 if (strcmp (arg, "-readnow") == 0)
2185 flags |= OBJF_READNOW;
2186 else if (strcmp (arg, "-s") == 0)
2187 {
2188 expecting_sec_name = 1;
2189 expecting_sec_addr = 1;
2190 }
7a78ae4e
ND
2191 }
2192 else
2193 {
2194 if (expecting_sec_name)
db162d44 2195 {
7a78ae4e
ND
2196 sect_opts[section_index].name = arg;
2197 expecting_sec_name = 0;
db162d44
EZ
2198 }
2199 else
7a78ae4e
ND
2200 if (expecting_sec_addr)
2201 {
2202 sect_opts[section_index].value = arg;
2203 expecting_sec_addr = 0;
f414f22f 2204 if (++section_index >= num_sect_opts)
a39a16c4
MM
2205 {
2206 num_sect_opts *= 2;
5417f6dc 2207 sect_opts = ((struct sect_opt *)
a39a16c4 2208 xrealloc (sect_opts,
5417f6dc 2209 num_sect_opts
a39a16c4
MM
2210 * sizeof (struct sect_opt)));
2211 }
7a78ae4e
ND
2212 }
2213 else
8a3fe4f8 2214 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2215 }
2216 }
c906108c 2217 }
c906108c 2218
927890d0
JB
2219 /* This command takes at least two arguments. The first one is a
2220 filename, and the second is the address where this file has been
2221 loaded. Abort now if this address hasn't been provided by the
2222 user. */
2223 if (section_index < 1)
2224 error (_("The address where %s has been loaded is missing"), filename);
2225
db162d44
EZ
2226 /* Print the prompt for the query below. And save the arguments into
2227 a sect_addr_info structure to be passed around to other
2228 functions. We have to split this up into separate print
bb599908 2229 statements because hex_string returns a local static
db162d44 2230 string. */
5417f6dc 2231
a3f17187 2232 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2233 section_addrs = alloc_section_addr_info (section_index);
2234 make_cleanup (xfree, section_addrs);
db162d44 2235 for (i = 0; i < section_index; i++)
c906108c 2236 {
db162d44
EZ
2237 CORE_ADDR addr;
2238 char *val = sect_opts[i].value;
2239 char *sec = sect_opts[i].name;
5417f6dc 2240
ae822768 2241 addr = parse_and_eval_address (val);
db162d44 2242
db162d44
EZ
2243 /* Here we store the section offsets in the order they were
2244 entered on the command line. */
a39a16c4
MM
2245 section_addrs->other[sec_num].name = sec;
2246 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2247 printf_unfiltered ("\t%s_addr = %s\n", sec,
2248 paddress (gdbarch, addr));
db162d44
EZ
2249 sec_num++;
2250
5417f6dc 2251 /* The object's sections are initialized when a
db162d44 2252 call is made to build_objfile_section_table (objfile).
5417f6dc 2253 This happens in reread_symbols.
db162d44
EZ
2254 At this point, we don't know what file type this is,
2255 so we can't determine what section names are valid. */
2acceee2 2256 }
db162d44 2257
2acceee2 2258 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2259 error (_("Not confirmed."));
c906108c 2260
7eedccfa
PP
2261 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2262 section_addrs, flags);
c906108c
SS
2263
2264 /* Getting new symbols may change our opinion about what is
2265 frameless. */
2266 reinit_frame_cache ();
db162d44 2267 do_cleanups (my_cleanups);
c906108c
SS
2268}
2269\f
70992597 2270
c906108c
SS
2271/* Re-read symbols if a symbol-file has changed. */
2272void
fba45db2 2273reread_symbols (void)
c906108c
SS
2274{
2275 struct objfile *objfile;
2276 long new_modtime;
2277 int reread_one = 0;
2278 struct stat new_statbuf;
2279 int res;
2280
2281 /* With the addition of shared libraries, this should be modified,
2282 the load time should be saved in the partial symbol tables, since
2283 different tables may come from different source files. FIXME.
2284 This routine should then walk down each partial symbol table
2285 and see if the symbol table that it originates from has been changed */
2286
c5aa993b
JM
2287 for (objfile = object_files; objfile; objfile = objfile->next)
2288 {
9cce227f
TG
2289 /* solib-sunos.c creates one objfile with obfd. */
2290 if (objfile->obfd == NULL)
2291 continue;
2292
2293 /* Separate debug objfiles are handled in the main objfile. */
2294 if (objfile->separate_debug_objfile_backlink)
2295 continue;
2296
02aeec7b
JB
2297 /* If this object is from an archive (what you usually create with
2298 `ar', often called a `static library' on most systems, though
2299 a `shared library' on AIX is also an archive), then you should
2300 stat on the archive name, not member name. */
9cce227f
TG
2301 if (objfile->obfd->my_archive)
2302 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2303 else
9cce227f
TG
2304 res = stat (objfile->name, &new_statbuf);
2305 if (res != 0)
2306 {
2307 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2308 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2309 objfile->name);
2310 continue;
2311 }
2312 new_modtime = new_statbuf.st_mtime;
2313 if (new_modtime != objfile->mtime)
2314 {
2315 struct cleanup *old_cleanups;
2316 struct section_offsets *offsets;
2317 int num_offsets;
2318 char *obfd_filename;
2319
2320 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2321 objfile->name);
2322
2323 /* There are various functions like symbol_file_add,
2324 symfile_bfd_open, syms_from_objfile, etc., which might
2325 appear to do what we want. But they have various other
2326 effects which we *don't* want. So we just do stuff
2327 ourselves. We don't worry about mapped files (for one thing,
2328 any mapped file will be out of date). */
2329
2330 /* If we get an error, blow away this objfile (not sure if
2331 that is the correct response for things like shared
2332 libraries). */
2333 old_cleanups = make_cleanup_free_objfile (objfile);
2334 /* We need to do this whenever any symbols go away. */
2335 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2336
2337 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2338 bfd_get_filename (exec_bfd)) == 0)
2339 {
2340 /* Reload EXEC_BFD without asking anything. */
2341
2342 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2343 }
2344
2345 /* Clean up any state BFD has sitting around. We don't need
2346 to close the descriptor but BFD lacks a way of closing the
2347 BFD without closing the descriptor. */
2348 obfd_filename = bfd_get_filename (objfile->obfd);
2349 if (!bfd_close (objfile->obfd))
2350 error (_("Can't close BFD for %s: %s"), objfile->name,
2351 bfd_errmsg (bfd_get_error ()));
874f5765 2352 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2353 if (objfile->obfd == NULL)
2354 error (_("Can't open %s to read symbols."), objfile->name);
2355 else
2356 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2357 /* bfd_openr sets cacheable to true, which is what we want. */
2358 if (!bfd_check_format (objfile->obfd, bfd_object))
2359 error (_("Can't read symbols from %s: %s."), objfile->name,
2360 bfd_errmsg (bfd_get_error ()));
2361
2362 /* Save the offsets, we will nuke them with the rest of the
2363 objfile_obstack. */
2364 num_offsets = objfile->num_sections;
2365 offsets = ((struct section_offsets *)
2366 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2367 memcpy (offsets, objfile->section_offsets,
2368 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2369
2370 /* Remove any references to this objfile in the global
2371 value lists. */
2372 preserve_values (objfile);
2373
2374 /* Nuke all the state that we will re-read. Much of the following
2375 code which sets things to NULL really is necessary to tell
2376 other parts of GDB that there is nothing currently there.
2377
2378 Try to keep the freeing order compatible with free_objfile. */
2379
2380 if (objfile->sf != NULL)
2381 {
2382 (*objfile->sf->sym_finish) (objfile);
2383 }
2384
2385 clear_objfile_data (objfile);
2386
15d123c9 2387 /* Free the separate debug objfiles. It will be
9cce227f 2388 automatically recreated by sym_read. */
15d123c9 2389 free_objfile_separate_debug (objfile);
9cce227f
TG
2390
2391 /* FIXME: Do we have to free a whole linked list, or is this
2392 enough? */
2393 if (objfile->global_psymbols.list)
2394 xfree (objfile->global_psymbols.list);
2395 memset (&objfile->global_psymbols, 0,
2396 sizeof (objfile->global_psymbols));
2397 if (objfile->static_psymbols.list)
2398 xfree (objfile->static_psymbols.list);
2399 memset (&objfile->static_psymbols, 0,
2400 sizeof (objfile->static_psymbols));
2401
2402 /* Free the obstacks for non-reusable objfiles */
2403 bcache_xfree (objfile->psymbol_cache);
2404 objfile->psymbol_cache = bcache_xmalloc ();
2405 bcache_xfree (objfile->macro_cache);
2406 objfile->macro_cache = bcache_xmalloc ();
2407 bcache_xfree (objfile->filename_cache);
2408 objfile->filename_cache = bcache_xmalloc ();
2409 if (objfile->demangled_names_hash != NULL)
2410 {
2411 htab_delete (objfile->demangled_names_hash);
2412 objfile->demangled_names_hash = NULL;
2413 }
2414 obstack_free (&objfile->objfile_obstack, 0);
2415 objfile->sections = NULL;
2416 objfile->symtabs = NULL;
2417 objfile->psymtabs = NULL;
2418 objfile->psymtabs_addrmap = NULL;
2419 objfile->free_psymtabs = NULL;
2420 objfile->cp_namespace_symtab = NULL;
2421 objfile->msymbols = NULL;
2422 objfile->deprecated_sym_private = NULL;
2423 objfile->minimal_symbol_count = 0;
2424 memset (&objfile->msymbol_hash, 0,
2425 sizeof (objfile->msymbol_hash));
2426 memset (&objfile->msymbol_demangled_hash, 0,
2427 sizeof (objfile->msymbol_demangled_hash));
2428
2429 objfile->psymbol_cache = bcache_xmalloc ();
2430 objfile->macro_cache = bcache_xmalloc ();
2431 objfile->filename_cache = bcache_xmalloc ();
2432 /* obstack_init also initializes the obstack so it is
2433 empty. We could use obstack_specify_allocation but
2434 gdb_obstack.h specifies the alloc/dealloc
2435 functions. */
2436 obstack_init (&objfile->objfile_obstack);
2437 if (build_objfile_section_table (objfile))
2438 {
2439 error (_("Can't find the file sections in `%s': %s"),
2440 objfile->name, bfd_errmsg (bfd_get_error ()));
2441 }
2442 terminate_minimal_symbol_table (objfile);
2443
2444 /* We use the same section offsets as from last time. I'm not
2445 sure whether that is always correct for shared libraries. */
2446 objfile->section_offsets = (struct section_offsets *)
2447 obstack_alloc (&objfile->objfile_obstack,
2448 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2449 memcpy (objfile->section_offsets, offsets,
2450 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2451 objfile->num_sections = num_offsets;
2452
2453 /* What the hell is sym_new_init for, anyway? The concept of
2454 distinguishing between the main file and additional files
2455 in this way seems rather dubious. */
2456 if (objfile == symfile_objfile)
c906108c 2457 {
9cce227f 2458 (*objfile->sf->sym_new_init) (objfile);
c906108c 2459 }
9cce227f
TG
2460
2461 (*objfile->sf->sym_init) (objfile);
2462 clear_complaints (&symfile_complaints, 1, 1);
2463 /* Do not set flags as this is safe and we don't want to be
2464 verbose. */
2465 (*objfile->sf->sym_read) (objfile, 0);
2466 if (!objfile_has_symbols (objfile))
c906108c 2467 {
9cce227f
TG
2468 wrap_here ("");
2469 printf_unfiltered (_("(no debugging symbols found)\n"));
2470 wrap_here ("");
c5aa993b 2471 }
9cce227f
TG
2472
2473 /* We're done reading the symbol file; finish off complaints. */
2474 clear_complaints (&symfile_complaints, 0, 1);
2475
2476 /* Getting new symbols may change our opinion about what is
2477 frameless. */
2478
2479 reinit_frame_cache ();
2480
2481 /* Discard cleanups as symbol reading was successful. */
2482 discard_cleanups (old_cleanups);
2483
2484 /* If the mtime has changed between the time we set new_modtime
2485 and now, we *want* this to be out of date, so don't call stat
2486 again now. */
2487 objfile->mtime = new_modtime;
2488 reread_one = 1;
2489 init_entry_point_info (objfile);
c906108c
SS
2490 }
2491 }
c906108c
SS
2492
2493 if (reread_one)
ea53e89f 2494 {
ff3536bc
UW
2495 /* Notify objfiles that we've modified objfile sections. */
2496 objfiles_changed ();
2497
ea53e89f
JB
2498 clear_symtab_users ();
2499 /* At least one objfile has changed, so we can consider that
2500 the executable we're debugging has changed too. */
781b42b0 2501 observer_notify_executable_changed ();
ea53e89f 2502 }
c906108c 2503}
c906108c
SS
2504\f
2505
c5aa993b
JM
2506
2507typedef struct
2508{
2509 char *ext;
c906108c 2510 enum language lang;
c5aa993b
JM
2511}
2512filename_language;
c906108c 2513
c5aa993b 2514static filename_language *filename_language_table;
c906108c
SS
2515static int fl_table_size, fl_table_next;
2516
2517static void
fba45db2 2518add_filename_language (char *ext, enum language lang)
c906108c
SS
2519{
2520 if (fl_table_next >= fl_table_size)
2521 {
2522 fl_table_size += 10;
5417f6dc 2523 filename_language_table =
25bf3106
PM
2524 xrealloc (filename_language_table,
2525 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2526 }
2527
4fcf66da 2528 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2529 filename_language_table[fl_table_next].lang = lang;
2530 fl_table_next++;
2531}
2532
2533static char *ext_args;
920d2a44
AC
2534static void
2535show_ext_args (struct ui_file *file, int from_tty,
2536 struct cmd_list_element *c, const char *value)
2537{
2538 fprintf_filtered (file, _("\
2539Mapping between filename extension and source language is \"%s\".\n"),
2540 value);
2541}
c906108c
SS
2542
2543static void
26c41df3 2544set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2545{
2546 int i;
2547 char *cp = ext_args;
2548 enum language lang;
2549
2550 /* First arg is filename extension, starting with '.' */
2551 if (*cp != '.')
8a3fe4f8 2552 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2553
2554 /* Find end of first arg. */
c5aa993b 2555 while (*cp && !isspace (*cp))
c906108c
SS
2556 cp++;
2557
2558 if (*cp == '\0')
8a3fe4f8 2559 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2560 ext_args);
2561
2562 /* Null-terminate first arg */
c5aa993b 2563 *cp++ = '\0';
c906108c
SS
2564
2565 /* Find beginning of second arg, which should be a source language. */
2566 while (*cp && isspace (*cp))
2567 cp++;
2568
2569 if (*cp == '\0')
8a3fe4f8 2570 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2571 ext_args);
2572
2573 /* Lookup the language from among those we know. */
2574 lang = language_enum (cp);
2575
2576 /* Now lookup the filename extension: do we already know it? */
2577 for (i = 0; i < fl_table_next; i++)
2578 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2579 break;
2580
2581 if (i >= fl_table_next)
2582 {
2583 /* new file extension */
2584 add_filename_language (ext_args, lang);
2585 }
2586 else
2587 {
2588 /* redefining a previously known filename extension */
2589
2590 /* if (from_tty) */
2591 /* query ("Really make files of type %s '%s'?", */
2592 /* ext_args, language_str (lang)); */
2593
b8c9b27d 2594 xfree (filename_language_table[i].ext);
4fcf66da 2595 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2596 filename_language_table[i].lang = lang;
2597 }
2598}
2599
2600static void
fba45db2 2601info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2602{
2603 int i;
2604
a3f17187 2605 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2606 printf_filtered ("\n\n");
2607 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2608 printf_filtered ("\t%s\t- %s\n",
2609 filename_language_table[i].ext,
c906108c
SS
2610 language_str (filename_language_table[i].lang));
2611}
2612
2613static void
fba45db2 2614init_filename_language_table (void)
c906108c
SS
2615{
2616 if (fl_table_size == 0) /* protect against repetition */
2617 {
2618 fl_table_size = 20;
2619 fl_table_next = 0;
c5aa993b 2620 filename_language_table =
c906108c 2621 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2622 add_filename_language (".c", language_c);
6aecb9c2 2623 add_filename_language (".d", language_d);
c5aa993b
JM
2624 add_filename_language (".C", language_cplus);
2625 add_filename_language (".cc", language_cplus);
2626 add_filename_language (".cp", language_cplus);
2627 add_filename_language (".cpp", language_cplus);
2628 add_filename_language (".cxx", language_cplus);
2629 add_filename_language (".c++", language_cplus);
2630 add_filename_language (".java", language_java);
c906108c 2631 add_filename_language (".class", language_java);
da2cf7e0 2632 add_filename_language (".m", language_objc);
c5aa993b
JM
2633 add_filename_language (".f", language_fortran);
2634 add_filename_language (".F", language_fortran);
2635 add_filename_language (".s", language_asm);
aa707ed0 2636 add_filename_language (".sx", language_asm);
c5aa993b 2637 add_filename_language (".S", language_asm);
c6fd39cd
PM
2638 add_filename_language (".pas", language_pascal);
2639 add_filename_language (".p", language_pascal);
2640 add_filename_language (".pp", language_pascal);
963a6417
PH
2641 add_filename_language (".adb", language_ada);
2642 add_filename_language (".ads", language_ada);
2643 add_filename_language (".a", language_ada);
2644 add_filename_language (".ada", language_ada);
dde59185 2645 add_filename_language (".dg", language_ada);
c906108c
SS
2646 }
2647}
2648
2649enum language
fba45db2 2650deduce_language_from_filename (char *filename)
c906108c
SS
2651{
2652 int i;
2653 char *cp;
2654
2655 if (filename != NULL)
2656 if ((cp = strrchr (filename, '.')) != NULL)
2657 for (i = 0; i < fl_table_next; i++)
2658 if (strcmp (cp, filename_language_table[i].ext) == 0)
2659 return filename_language_table[i].lang;
2660
2661 return language_unknown;
2662}
2663\f
2664/* allocate_symtab:
2665
2666 Allocate and partly initialize a new symbol table. Return a pointer
2667 to it. error() if no space.
2668
2669 Caller must set these fields:
c5aa993b
JM
2670 LINETABLE(symtab)
2671 symtab->blockvector
2672 symtab->dirname
2673 symtab->free_code
2674 symtab->free_ptr
c906108c
SS
2675 */
2676
2677struct symtab *
fba45db2 2678allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2679{
52f0bd74 2680 struct symtab *symtab;
c906108c
SS
2681
2682 symtab = (struct symtab *)
4a146b47 2683 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2684 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2685 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2686 objfile->filename_cache);
c5aa993b
JM
2687 symtab->fullname = NULL;
2688 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2689 symtab->debugformat = "unknown";
c906108c
SS
2690
2691 /* Hook it to the objfile it comes from */
2692
c5aa993b
JM
2693 symtab->objfile = objfile;
2694 symtab->next = objfile->symtabs;
2695 objfile->symtabs = symtab;
c906108c 2696
c906108c
SS
2697 return (symtab);
2698}
c906108c 2699\f
c5aa993b 2700
c906108c
SS
2701/* Reset all data structures in gdb which may contain references to symbol
2702 table data. */
2703
2704void
fba45db2 2705clear_symtab_users (void)
c906108c
SS
2706{
2707 /* Someday, we should do better than this, by only blowing away
2708 the things that really need to be blown. */
c0501be5
DJ
2709
2710 /* Clear the "current" symtab first, because it is no longer valid.
2711 breakpoint_re_set may try to access the current symtab. */
2712 clear_current_source_symtab_and_line ();
2713
c906108c 2714 clear_displays ();
c906108c 2715 breakpoint_re_set ();
6c95b8df 2716 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2717 clear_pc_function_cache ();
06d3b283 2718 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2719
2720 /* Clear globals which might have pointed into a removed objfile.
2721 FIXME: It's not clear which of these are supposed to persist
2722 between expressions and which ought to be reset each time. */
2723 expression_context_block = NULL;
2724 innermost_block = NULL;
8756216b
DP
2725
2726 /* Varobj may refer to old symbols, perform a cleanup. */
2727 varobj_invalidate ();
2728
c906108c
SS
2729}
2730
74b7792f
AC
2731static void
2732clear_symtab_users_cleanup (void *ignore)
2733{
2734 clear_symtab_users ();
2735}
c906108c 2736\f
c906108c
SS
2737/* OVERLAYS:
2738 The following code implements an abstraction for debugging overlay sections.
2739
2740 The target model is as follows:
2741 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2742 same VMA, each with its own unique LMA (or load address).
c906108c 2743 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2744 sections, one by one, from the load address into the VMA address.
5417f6dc 2745 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2746 sections should be considered to be mapped from the VMA to the LMA.
2747 This information is used for symbol lookup, and memory read/write.
5417f6dc 2748 For instance, if a section has been mapped then its contents
c5aa993b 2749 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2750
2751 Two levels of debugger support for overlays are available. One is
2752 "manual", in which the debugger relies on the user to tell it which
2753 overlays are currently mapped. This level of support is
2754 implemented entirely in the core debugger, and the information about
2755 whether a section is mapped is kept in the objfile->obj_section table.
2756
2757 The second level of support is "automatic", and is only available if
2758 the target-specific code provides functionality to read the target's
2759 overlay mapping table, and translate its contents for the debugger
2760 (by updating the mapped state information in the obj_section tables).
2761
2762 The interface is as follows:
c5aa993b
JM
2763 User commands:
2764 overlay map <name> -- tell gdb to consider this section mapped
2765 overlay unmap <name> -- tell gdb to consider this section unmapped
2766 overlay list -- list the sections that GDB thinks are mapped
2767 overlay read-target -- get the target's state of what's mapped
2768 overlay off/manual/auto -- set overlay debugging state
2769 Functional interface:
2770 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2771 section, return that section.
5417f6dc 2772 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2773 the pc, either in its VMA or its LMA
714835d5 2774 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2775 section_is_overlay(sect): true if section's VMA != LMA
2776 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2777 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2778 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2779 overlay_mapped_address(...): map an address from section's LMA to VMA
2780 overlay_unmapped_address(...): map an address from section's VMA to LMA
2781 symbol_overlayed_address(...): Return a "current" address for symbol:
2782 either in VMA or LMA depending on whether
2783 the symbol's section is currently mapped
c906108c
SS
2784 */
2785
2786/* Overlay debugging state: */
2787
d874f1e2 2788enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2789int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2790
c906108c 2791/* Function: section_is_overlay (SECTION)
5417f6dc 2792 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2793 SECTION is loaded at an address different from where it will "run". */
2794
2795int
714835d5 2796section_is_overlay (struct obj_section *section)
c906108c 2797{
714835d5
UW
2798 if (overlay_debugging && section)
2799 {
2800 bfd *abfd = section->objfile->obfd;
2801 asection *bfd_section = section->the_bfd_section;
2802
2803 if (bfd_section_lma (abfd, bfd_section) != 0
2804 && bfd_section_lma (abfd, bfd_section)
2805 != bfd_section_vma (abfd, bfd_section))
2806 return 1;
2807 }
c906108c
SS
2808
2809 return 0;
2810}
2811
2812/* Function: overlay_invalidate_all (void)
2813 Invalidate the mapped state of all overlay sections (mark it as stale). */
2814
2815static void
fba45db2 2816overlay_invalidate_all (void)
c906108c 2817{
c5aa993b 2818 struct objfile *objfile;
c906108c
SS
2819 struct obj_section *sect;
2820
2821 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2822 if (section_is_overlay (sect))
2823 sect->ovly_mapped = -1;
c906108c
SS
2824}
2825
714835d5 2826/* Function: section_is_mapped (SECTION)
5417f6dc 2827 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2828
2829 Access to the ovly_mapped flag is restricted to this function, so
2830 that we can do automatic update. If the global flag
2831 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2832 overlay_invalidate_all. If the mapped state of the particular
2833 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2834
714835d5
UW
2835int
2836section_is_mapped (struct obj_section *osect)
c906108c 2837{
9216df95
UW
2838 struct gdbarch *gdbarch;
2839
714835d5 2840 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2841 return 0;
2842
c5aa993b 2843 switch (overlay_debugging)
c906108c
SS
2844 {
2845 default:
d874f1e2 2846 case ovly_off:
c5aa993b 2847 return 0; /* overlay debugging off */
d874f1e2 2848 case ovly_auto: /* overlay debugging automatic */
1c772458 2849 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2850 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2851 gdbarch = get_objfile_arch (osect->objfile);
2852 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2853 {
2854 if (overlay_cache_invalid)
2855 {
2856 overlay_invalidate_all ();
2857 overlay_cache_invalid = 0;
2858 }
2859 if (osect->ovly_mapped == -1)
9216df95 2860 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2861 }
2862 /* fall thru to manual case */
d874f1e2 2863 case ovly_on: /* overlay debugging manual */
c906108c
SS
2864 return osect->ovly_mapped == 1;
2865 }
2866}
2867
c906108c
SS
2868/* Function: pc_in_unmapped_range
2869 If PC falls into the lma range of SECTION, return true, else false. */
2870
2871CORE_ADDR
714835d5 2872pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2873{
714835d5
UW
2874 if (section_is_overlay (section))
2875 {
2876 bfd *abfd = section->objfile->obfd;
2877 asection *bfd_section = section->the_bfd_section;
fbd35540 2878
714835d5
UW
2879 /* We assume the LMA is relocated by the same offset as the VMA. */
2880 bfd_vma size = bfd_get_section_size (bfd_section);
2881 CORE_ADDR offset = obj_section_offset (section);
2882
2883 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2884 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2885 return 1;
2886 }
c906108c 2887
c906108c
SS
2888 return 0;
2889}
2890
2891/* Function: pc_in_mapped_range
2892 If PC falls into the vma range of SECTION, return true, else false. */
2893
2894CORE_ADDR
714835d5 2895pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2896{
714835d5
UW
2897 if (section_is_overlay (section))
2898 {
2899 if (obj_section_addr (section) <= pc
2900 && pc < obj_section_endaddr (section))
2901 return 1;
2902 }
c906108c 2903
c906108c
SS
2904 return 0;
2905}
2906
9ec8e6a0
JB
2907
2908/* Return true if the mapped ranges of sections A and B overlap, false
2909 otherwise. */
b9362cc7 2910static int
714835d5 2911sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2912{
714835d5
UW
2913 CORE_ADDR a_start = obj_section_addr (a);
2914 CORE_ADDR a_end = obj_section_endaddr (a);
2915 CORE_ADDR b_start = obj_section_addr (b);
2916 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2917
2918 return (a_start < b_end && b_start < a_end);
2919}
2920
c906108c
SS
2921/* Function: overlay_unmapped_address (PC, SECTION)
2922 Returns the address corresponding to PC in the unmapped (load) range.
2923 May be the same as PC. */
2924
2925CORE_ADDR
714835d5 2926overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2927{
714835d5
UW
2928 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2929 {
2930 bfd *abfd = section->objfile->obfd;
2931 asection *bfd_section = section->the_bfd_section;
fbd35540 2932
714835d5
UW
2933 return pc + bfd_section_lma (abfd, bfd_section)
2934 - bfd_section_vma (abfd, bfd_section);
2935 }
c906108c
SS
2936
2937 return pc;
2938}
2939
2940/* Function: overlay_mapped_address (PC, SECTION)
2941 Returns the address corresponding to PC in the mapped (runtime) range.
2942 May be the same as PC. */
2943
2944CORE_ADDR
714835d5 2945overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2946{
714835d5
UW
2947 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2948 {
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
fbd35540 2951
714835d5
UW
2952 return pc + bfd_section_vma (abfd, bfd_section)
2953 - bfd_section_lma (abfd, bfd_section);
2954 }
c906108c
SS
2955
2956 return pc;
2957}
2958
2959
5417f6dc 2960/* Function: symbol_overlayed_address
c906108c
SS
2961 Return one of two addresses (relative to the VMA or to the LMA),
2962 depending on whether the section is mapped or not. */
2963
c5aa993b 2964CORE_ADDR
714835d5 2965symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
2966{
2967 if (overlay_debugging)
2968 {
2969 /* If the symbol has no section, just return its regular address. */
2970 if (section == 0)
2971 return address;
2972 /* If the symbol's section is not an overlay, just return its address */
2973 if (!section_is_overlay (section))
2974 return address;
2975 /* If the symbol's section is mapped, just return its address */
2976 if (section_is_mapped (section))
2977 return address;
2978 /*
2979 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2980 * then return its LOADED address rather than its vma address!!
2981 */
2982 return overlay_unmapped_address (address, section);
2983 }
2984 return address;
2985}
2986
5417f6dc 2987/* Function: find_pc_overlay (PC)
c906108c
SS
2988 Return the best-match overlay section for PC:
2989 If PC matches a mapped overlay section's VMA, return that section.
2990 Else if PC matches an unmapped section's VMA, return that section.
2991 Else if PC matches an unmapped section's LMA, return that section. */
2992
714835d5 2993struct obj_section *
fba45db2 2994find_pc_overlay (CORE_ADDR pc)
c906108c 2995{
c5aa993b 2996 struct objfile *objfile;
c906108c
SS
2997 struct obj_section *osect, *best_match = NULL;
2998
2999 if (overlay_debugging)
3000 ALL_OBJSECTIONS (objfile, osect)
714835d5 3001 if (section_is_overlay (osect))
c5aa993b 3002 {
714835d5 3003 if (pc_in_mapped_range (pc, osect))
c5aa993b 3004 {
714835d5
UW
3005 if (section_is_mapped (osect))
3006 return osect;
c5aa993b
JM
3007 else
3008 best_match = osect;
3009 }
714835d5 3010 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3011 best_match = osect;
3012 }
714835d5 3013 return best_match;
c906108c
SS
3014}
3015
3016/* Function: find_pc_mapped_section (PC)
5417f6dc 3017 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3018 currently marked as MAPPED, return that section. Else return NULL. */
3019
714835d5 3020struct obj_section *
fba45db2 3021find_pc_mapped_section (CORE_ADDR pc)
c906108c 3022{
c5aa993b 3023 struct objfile *objfile;
c906108c
SS
3024 struct obj_section *osect;
3025
3026 if (overlay_debugging)
3027 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3028 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3029 return osect;
c906108c
SS
3030
3031 return NULL;
3032}
3033
3034/* Function: list_overlays_command
3035 Print a list of mapped sections and their PC ranges */
3036
3037void
fba45db2 3038list_overlays_command (char *args, int from_tty)
c906108c 3039{
c5aa993b
JM
3040 int nmapped = 0;
3041 struct objfile *objfile;
c906108c
SS
3042 struct obj_section *osect;
3043
3044 if (overlay_debugging)
3045 ALL_OBJSECTIONS (objfile, osect)
714835d5 3046 if (section_is_mapped (osect))
c5aa993b 3047 {
5af949e3 3048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3049 const char *name;
3050 bfd_vma lma, vma;
3051 int size;
3052
3053 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3054 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3055 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3056 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3057
3058 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3059 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3060 puts_filtered (" - ");
5af949e3 3061 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3062 printf_filtered (", mapped at ");
5af949e3 3063 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3064 puts_filtered (" - ");
5af949e3 3065 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3066 puts_filtered ("\n");
3067
3068 nmapped++;
3069 }
c906108c 3070 if (nmapped == 0)
a3f17187 3071 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3072}
3073
3074/* Function: map_overlay_command
3075 Mark the named section as mapped (ie. residing at its VMA address). */
3076
3077void
fba45db2 3078map_overlay_command (char *args, int from_tty)
c906108c 3079{
c5aa993b
JM
3080 struct objfile *objfile, *objfile2;
3081 struct obj_section *sec, *sec2;
c906108c
SS
3082
3083 if (!overlay_debugging)
8a3fe4f8 3084 error (_("\
515ad16c 3085Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3086the 'overlay manual' command."));
c906108c
SS
3087
3088 if (args == 0 || *args == 0)
8a3fe4f8 3089 error (_("Argument required: name of an overlay section"));
c906108c
SS
3090
3091 /* First, find a section matching the user supplied argument */
3092 ALL_OBJSECTIONS (objfile, sec)
3093 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3094 {
3095 /* Now, check to see if the section is an overlay. */
714835d5 3096 if (!section_is_overlay (sec))
c5aa993b
JM
3097 continue; /* not an overlay section */
3098
3099 /* Mark the overlay as "mapped" */
3100 sec->ovly_mapped = 1;
3101
3102 /* Next, make a pass and unmap any sections that are
3103 overlapped by this new section: */
3104 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3105 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3106 {
3107 if (info_verbose)
a3f17187 3108 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3109 bfd_section_name (objfile->obfd,
3110 sec2->the_bfd_section));
3111 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3112 }
3113 return;
3114 }
8a3fe4f8 3115 error (_("No overlay section called %s"), args);
c906108c
SS
3116}
3117
3118/* Function: unmap_overlay_command
5417f6dc 3119 Mark the overlay section as unmapped
c906108c
SS
3120 (ie. resident in its LMA address range, rather than the VMA range). */
3121
3122void
fba45db2 3123unmap_overlay_command (char *args, int from_tty)
c906108c 3124{
c5aa993b 3125 struct objfile *objfile;
c906108c
SS
3126 struct obj_section *sec;
3127
3128 if (!overlay_debugging)
8a3fe4f8 3129 error (_("\
515ad16c 3130Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3131the 'overlay manual' command."));
c906108c
SS
3132
3133 if (args == 0 || *args == 0)
8a3fe4f8 3134 error (_("Argument required: name of an overlay section"));
c906108c
SS
3135
3136 /* First, find a section matching the user supplied argument */
3137 ALL_OBJSECTIONS (objfile, sec)
3138 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3139 {
3140 if (!sec->ovly_mapped)
8a3fe4f8 3141 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3142 sec->ovly_mapped = 0;
3143 return;
3144 }
8a3fe4f8 3145 error (_("No overlay section called %s"), args);
c906108c
SS
3146}
3147
3148/* Function: overlay_auto_command
3149 A utility command to turn on overlay debugging.
3150 Possibly this should be done via a set/show command. */
3151
3152static void
fba45db2 3153overlay_auto_command (char *args, int from_tty)
c906108c 3154{
d874f1e2 3155 overlay_debugging = ovly_auto;
1900040c 3156 enable_overlay_breakpoints ();
c906108c 3157 if (info_verbose)
a3f17187 3158 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3159}
3160
3161/* Function: overlay_manual_command
3162 A utility command to turn on overlay debugging.
3163 Possibly this should be done via a set/show command. */
3164
3165static void
fba45db2 3166overlay_manual_command (char *args, int from_tty)
c906108c 3167{
d874f1e2 3168 overlay_debugging = ovly_on;
1900040c 3169 disable_overlay_breakpoints ();
c906108c 3170 if (info_verbose)
a3f17187 3171 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3172}
3173
3174/* Function: overlay_off_command
3175 A utility command to turn on overlay debugging.
3176 Possibly this should be done via a set/show command. */
3177
3178static void
fba45db2 3179overlay_off_command (char *args, int from_tty)
c906108c 3180{
d874f1e2 3181 overlay_debugging = ovly_off;
1900040c 3182 disable_overlay_breakpoints ();
c906108c 3183 if (info_verbose)
a3f17187 3184 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3185}
3186
3187static void
fba45db2 3188overlay_load_command (char *args, int from_tty)
c906108c 3189{
e17c207e
UW
3190 struct gdbarch *gdbarch = get_current_arch ();
3191
3192 if (gdbarch_overlay_update_p (gdbarch))
3193 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3194 else
8a3fe4f8 3195 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3196}
3197
3198/* Function: overlay_command
3199 A place-holder for a mis-typed command */
3200
3201/* Command list chain containing all defined "overlay" subcommands. */
3202struct cmd_list_element *overlaylist;
3203
3204static void
fba45db2 3205overlay_command (char *args, int from_tty)
c906108c 3206{
c5aa993b 3207 printf_unfiltered
c906108c
SS
3208 ("\"overlay\" must be followed by the name of an overlay command.\n");
3209 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3210}
3211
3212
3213/* Target Overlays for the "Simplest" overlay manager:
3214
5417f6dc
RM
3215 This is GDB's default target overlay layer. It works with the
3216 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3217 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3218 so targets that use a different runtime overlay manager can
c906108c
SS
3219 substitute their own overlay_update function and take over the
3220 function pointer.
3221
3222 The overlay_update function pokes around in the target's data structures
3223 to see what overlays are mapped, and updates GDB's overlay mapping with
3224 this information.
3225
3226 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3227 unsigned _novlys; /# number of overlay sections #/
3228 unsigned _ovly_table[_novlys][4] = {
3229 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3230 {..., ..., ..., ...},
3231 }
3232 unsigned _novly_regions; /# number of overlay regions #/
3233 unsigned _ovly_region_table[_novly_regions][3] = {
3234 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3235 {..., ..., ...},
3236 }
c906108c
SS
3237 These functions will attempt to update GDB's mappedness state in the
3238 symbol section table, based on the target's mappedness state.
3239
3240 To do this, we keep a cached copy of the target's _ovly_table, and
3241 attempt to detect when the cached copy is invalidated. The main
3242 entry point is "simple_overlay_update(SECT), which looks up SECT in
3243 the cached table and re-reads only the entry for that section from
3244 the target (whenever possible).
3245 */
3246
3247/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3248static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3249#if 0
c5aa993b 3250static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3251#endif
c5aa993b 3252static unsigned cache_novlys = 0;
c906108c 3253#if 0
c5aa993b 3254static unsigned cache_novly_regions = 0;
c906108c
SS
3255#endif
3256static CORE_ADDR cache_ovly_table_base = 0;
3257#if 0
3258static CORE_ADDR cache_ovly_region_table_base = 0;
3259#endif
c5aa993b
JM
3260enum ovly_index
3261 {
3262 VMA, SIZE, LMA, MAPPED
3263 };
c906108c
SS
3264
3265/* Throw away the cached copy of _ovly_table */
3266static void
fba45db2 3267simple_free_overlay_table (void)
c906108c
SS
3268{
3269 if (cache_ovly_table)
b8c9b27d 3270 xfree (cache_ovly_table);
c5aa993b 3271 cache_novlys = 0;
c906108c
SS
3272 cache_ovly_table = NULL;
3273 cache_ovly_table_base = 0;
3274}
3275
3276#if 0
3277/* Throw away the cached copy of _ovly_region_table */
3278static void
fba45db2 3279simple_free_overlay_region_table (void)
c906108c
SS
3280{
3281 if (cache_ovly_region_table)
b8c9b27d 3282 xfree (cache_ovly_region_table);
c5aa993b 3283 cache_novly_regions = 0;
c906108c
SS
3284 cache_ovly_region_table = NULL;
3285 cache_ovly_region_table_base = 0;
3286}
3287#endif
3288
9216df95 3289/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3290 Convert to host order. int LEN is number of ints */
3291static void
9216df95 3292read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3293 int len, int size, enum bfd_endian byte_order)
c906108c 3294{
34c0bd93 3295 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3296 gdb_byte *buf = alloca (len * size);
c5aa993b 3297 int i;
c906108c 3298
9216df95 3299 read_memory (memaddr, buf, len * size);
c906108c 3300 for (i = 0; i < len; i++)
e17a4113 3301 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3302}
3303
3304/* Find and grab a copy of the target _ovly_table
3305 (and _novlys, which is needed for the table's size) */
c5aa993b 3306static int
fba45db2 3307simple_read_overlay_table (void)
c906108c 3308{
0d43edd1 3309 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3310 struct gdbarch *gdbarch;
3311 int word_size;
e17a4113 3312 enum bfd_endian byte_order;
c906108c
SS
3313
3314 simple_free_overlay_table ();
9b27852e 3315 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3316 if (! novlys_msym)
c906108c 3317 {
8a3fe4f8 3318 error (_("Error reading inferior's overlay table: "
0d43edd1 3319 "couldn't find `_novlys' variable\n"
8a3fe4f8 3320 "in inferior. Use `overlay manual' mode."));
0d43edd1 3321 return 0;
c906108c 3322 }
0d43edd1 3323
9b27852e 3324 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3325 if (! ovly_table_msym)
3326 {
8a3fe4f8 3327 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3328 "`_ovly_table' array\n"
8a3fe4f8 3329 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3330 return 0;
3331 }
3332
9216df95
UW
3333 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3334 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3335 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3336
e17a4113
UW
3337 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3338 4, byte_order);
0d43edd1
JB
3339 cache_ovly_table
3340 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3341 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3342 read_target_long_array (cache_ovly_table_base,
777ea8f1 3343 (unsigned int *) cache_ovly_table,
e17a4113 3344 cache_novlys * 4, word_size, byte_order);
0d43edd1 3345
c5aa993b 3346 return 1; /* SUCCESS */
c906108c
SS
3347}
3348
3349#if 0
3350/* Find and grab a copy of the target _ovly_region_table
3351 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3352static int
fba45db2 3353simple_read_overlay_region_table (void)
c906108c
SS
3354{
3355 struct minimal_symbol *msym;
e17a4113
UW
3356 struct gdbarch *gdbarch;
3357 int word_size;
3358 enum bfd_endian byte_order;
c906108c
SS
3359
3360 simple_free_overlay_region_table ();
9b27852e 3361 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3362 if (msym == NULL)
c5aa993b 3363 return 0; /* failure */
e17a4113
UW
3364
3365 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3366 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3367 byte_order = gdbarch_byte_order (gdbarch);
3368
3369 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3370 4, byte_order);
3371
c906108c
SS
3372 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3373 if (cache_ovly_region_table != NULL)
3374 {
9b27852e 3375 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3376 if (msym != NULL)
3377 {
3378 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3379 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3380 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3381 cache_novly_regions * 3,
3382 word_size, byte_order);
c906108c 3383 }
c5aa993b
JM
3384 else
3385 return 0; /* failure */
c906108c 3386 }
c5aa993b
JM
3387 else
3388 return 0; /* failure */
3389 return 1; /* SUCCESS */
c906108c
SS
3390}
3391#endif
3392
5417f6dc 3393/* Function: simple_overlay_update_1
c906108c
SS
3394 A helper function for simple_overlay_update. Assuming a cached copy
3395 of _ovly_table exists, look through it to find an entry whose vma,
3396 lma and size match those of OSECT. Re-read the entry and make sure
3397 it still matches OSECT (else the table may no longer be valid).
3398 Set OSECT's mapped state to match the entry. Return: 1 for
3399 success, 0 for failure. */
3400
3401static int
fba45db2 3402simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3403{
3404 int i, size;
fbd35540
MS
3405 bfd *obfd = osect->objfile->obfd;
3406 asection *bsect = osect->the_bfd_section;
9216df95
UW
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3410
2c500098 3411 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3412 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3413 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3414 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3415 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3416 {
9216df95
UW
3417 read_target_long_array (cache_ovly_table_base + i * word_size,
3418 (unsigned int *) cache_ovly_table[i],
e17a4113 3419 4, word_size, byte_order);
fbd35540
MS
3420 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3421 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3422 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3423 {
3424 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3425 return 1;
3426 }
fbd35540 3427 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3428 return 0;
3429 }
3430 return 0;
3431}
3432
3433/* Function: simple_overlay_update
5417f6dc
RM
3434 If OSECT is NULL, then update all sections' mapped state
3435 (after re-reading the entire target _ovly_table).
3436 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3437 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3438 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3439 re-read the entire cache, and go ahead and update all sections. */
3440
1c772458 3441void
fba45db2 3442simple_overlay_update (struct obj_section *osect)
c906108c 3443{
c5aa993b 3444 struct objfile *objfile;
c906108c
SS
3445
3446 /* Were we given an osect to look up? NULL means do all of them. */
3447 if (osect)
3448 /* Have we got a cached copy of the target's overlay table? */
3449 if (cache_ovly_table != NULL)
3450 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3451 if (cache_ovly_table_base ==
9b27852e 3452 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3453 /* Then go ahead and try to look up this single section in the cache */
3454 if (simple_overlay_update_1 (osect))
3455 /* Found it! We're done. */
3456 return;
3457
3458 /* Cached table no good: need to read the entire table anew.
3459 Or else we want all the sections, in which case it's actually
3460 more efficient to read the whole table in one block anyway. */
3461
0d43edd1
JB
3462 if (! simple_read_overlay_table ())
3463 return;
3464
c906108c
SS
3465 /* Now may as well update all sections, even if only one was requested. */
3466 ALL_OBJSECTIONS (objfile, osect)
714835d5 3467 if (section_is_overlay (osect))
c5aa993b
JM
3468 {
3469 int i, size;
fbd35540
MS
3470 bfd *obfd = osect->objfile->obfd;
3471 asection *bsect = osect->the_bfd_section;
c5aa993b 3472
2c500098 3473 size = bfd_get_section_size (bsect);
c5aa993b 3474 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3475 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3476 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3477 /* && cache_ovly_table[i][SIZE] == size */ )
3478 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3479 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3480 break; /* finished with inner for loop: break out */
3481 }
3482 }
c906108c
SS
3483}
3484
086df311
DJ
3485/* Set the output sections and output offsets for section SECTP in
3486 ABFD. The relocation code in BFD will read these offsets, so we
3487 need to be sure they're initialized. We map each section to itself,
3488 with no offset; this means that SECTP->vma will be honored. */
3489
3490static void
3491symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3492{
3493 sectp->output_section = sectp;
3494 sectp->output_offset = 0;
3495}
3496
ac8035ab
TG
3497/* Default implementation for sym_relocate. */
3498
3499
3500bfd_byte *
3501default_symfile_relocate (struct objfile *objfile, asection *sectp,
3502 bfd_byte *buf)
3503{
3504 bfd *abfd = objfile->obfd;
3505
3506 /* We're only interested in sections with relocation
3507 information. */
3508 if ((sectp->flags & SEC_RELOC) == 0)
3509 return NULL;
3510
3511 /* We will handle section offsets properly elsewhere, so relocate as if
3512 all sections begin at 0. */
3513 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3514
3515 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3516}
3517
086df311
DJ
3518/* Relocate the contents of a debug section SECTP in ABFD. The
3519 contents are stored in BUF if it is non-NULL, or returned in a
3520 malloc'd buffer otherwise.
3521
3522 For some platforms and debug info formats, shared libraries contain
3523 relocations against the debug sections (particularly for DWARF-2;
3524 one affected platform is PowerPC GNU/Linux, although it depends on
3525 the version of the linker in use). Also, ELF object files naturally
3526 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3527 the relocations in order to get the locations of symbols correct.
3528 Another example that may require relocation processing, is the
3529 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3530 debug section. */
086df311
DJ
3531
3532bfd_byte *
ac8035ab
TG
3533symfile_relocate_debug_section (struct objfile *objfile,
3534 asection *sectp, bfd_byte *buf)
086df311 3535{
ac8035ab 3536 gdb_assert (objfile->sf->sym_relocate);
086df311 3537
ac8035ab 3538 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3539}
c906108c 3540
31d99776
DJ
3541struct symfile_segment_data *
3542get_symfile_segment_data (bfd *abfd)
3543{
3544 struct sym_fns *sf = find_sym_fns (abfd);
3545
3546 if (sf == NULL)
3547 return NULL;
3548
3549 return sf->sym_segments (abfd);
3550}
3551
3552void
3553free_symfile_segment_data (struct symfile_segment_data *data)
3554{
3555 xfree (data->segment_bases);
3556 xfree (data->segment_sizes);
3557 xfree (data->segment_info);
3558 xfree (data);
3559}
3560
28c32713
JB
3561
3562/* Given:
3563 - DATA, containing segment addresses from the object file ABFD, and
3564 the mapping from ABFD's sections onto the segments that own them,
3565 and
3566 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3567 segment addresses reported by the target,
3568 store the appropriate offsets for each section in OFFSETS.
3569
3570 If there are fewer entries in SEGMENT_BASES than there are segments
3571 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3572
8d385431
DJ
3573 If there are more entries, then ignore the extra. The target may
3574 not be able to distinguish between an empty data segment and a
3575 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3576int
3577symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3578 struct section_offsets *offsets,
3579 int num_segment_bases,
3580 const CORE_ADDR *segment_bases)
3581{
3582 int i;
3583 asection *sect;
3584
28c32713
JB
3585 /* It doesn't make sense to call this function unless you have some
3586 segment base addresses. */
202b96c1 3587 gdb_assert (num_segment_bases > 0);
28c32713 3588
31d99776
DJ
3589 /* If we do not have segment mappings for the object file, we
3590 can not relocate it by segments. */
3591 gdb_assert (data != NULL);
3592 gdb_assert (data->num_segments > 0);
3593
31d99776
DJ
3594 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3595 {
31d99776
DJ
3596 int which = data->segment_info[i];
3597
28c32713
JB
3598 gdb_assert (0 <= which && which <= data->num_segments);
3599
3600 /* Don't bother computing offsets for sections that aren't
3601 loaded as part of any segment. */
3602 if (! which)
3603 continue;
3604
3605 /* Use the last SEGMENT_BASES entry as the address of any extra
3606 segments mentioned in DATA->segment_info. */
31d99776 3607 if (which > num_segment_bases)
28c32713 3608 which = num_segment_bases;
31d99776 3609
28c32713
JB
3610 offsets->offsets[i] = (segment_bases[which - 1]
3611 - data->segment_bases[which - 1]);
31d99776
DJ
3612 }
3613
3614 return 1;
3615}
3616
3617static void
3618symfile_find_segment_sections (struct objfile *objfile)
3619{
3620 bfd *abfd = objfile->obfd;
3621 int i;
3622 asection *sect;
3623 struct symfile_segment_data *data;
3624
3625 data = get_symfile_segment_data (objfile->obfd);
3626 if (data == NULL)
3627 return;
3628
3629 if (data->num_segments != 1 && data->num_segments != 2)
3630 {
3631 free_symfile_segment_data (data);
3632 return;
3633 }
3634
3635 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3636 {
31d99776
DJ
3637 int which = data->segment_info[i];
3638
3639 if (which == 1)
3640 {
3641 if (objfile->sect_index_text == -1)
3642 objfile->sect_index_text = sect->index;
3643
3644 if (objfile->sect_index_rodata == -1)
3645 objfile->sect_index_rodata = sect->index;
3646 }
3647 else if (which == 2)
3648 {
3649 if (objfile->sect_index_data == -1)
3650 objfile->sect_index_data = sect->index;
3651
3652 if (objfile->sect_index_bss == -1)
3653 objfile->sect_index_bss = sect->index;
3654 }
3655 }
3656
3657 free_symfile_segment_data (data);
3658}
3659
c906108c 3660void
fba45db2 3661_initialize_symfile (void)
c906108c
SS
3662{
3663 struct cmd_list_element *c;
c5aa993b 3664
1a966eab
AC
3665 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3666Load symbol table from executable file FILE.\n\
c906108c 3667The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3668to execute."), &cmdlist);
5ba2abeb 3669 set_cmd_completer (c, filename_completer);
c906108c 3670
1a966eab 3671 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3672Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3673Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3674ADDR is the starting address of the file's text.\n\
db162d44
EZ
3675The optional arguments are section-name section-address pairs and\n\
3676should be specified if the data and bss segments are not contiguous\n\
1a966eab 3677with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3678 &cmdlist);
5ba2abeb 3679 set_cmd_completer (c, filename_completer);
c906108c 3680
1a966eab
AC
3681 c = add_cmd ("load", class_files, load_command, _("\
3682Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3683for access from GDB.\n\
3684A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3685 set_cmd_completer (c, filename_completer);
c906108c 3686
5bf193a2
AC
3687 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3688 &symbol_reloading, _("\
3689Set dynamic symbol table reloading multiple times in one run."), _("\
3690Show dynamic symbol table reloading multiple times in one run."), NULL,
3691 NULL,
920d2a44 3692 show_symbol_reloading,
5bf193a2 3693 &setlist, &showlist);
c906108c 3694
c5aa993b 3695 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3696 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3697 "overlay ", 0, &cmdlist);
3698
3699 add_com_alias ("ovly", "overlay", class_alias, 1);
3700 add_com_alias ("ov", "overlay", class_alias, 1);
3701
c5aa993b 3702 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3703 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3704
c5aa993b 3705 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3706 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3707
c5aa993b 3708 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3709 _("List mappings of overlay sections."), &overlaylist);
c906108c 3710
c5aa993b 3711 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3712 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3713 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3714 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3715 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3716 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3717 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3718 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3719
3720 /* Filename extension to source language lookup table: */
3721 init_filename_language_table ();
26c41df3
AC
3722 add_setshow_string_noescape_cmd ("extension-language", class_files,
3723 &ext_args, _("\
3724Set mapping between filename extension and source language."), _("\
3725Show mapping between filename extension and source language."), _("\
3726Usage: set extension-language .foo bar"),
3727 set_ext_lang_command,
920d2a44 3728 show_ext_args,
26c41df3 3729 &setlist, &showlist);
c906108c 3730
c5aa993b 3731 add_info ("extensions", info_ext_lang_command,
1bedd215 3732 _("All filename extensions associated with a source language."));
917317f4 3733
525226b5
AC
3734 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3735 &debug_file_directory, _("\
24ddea62
JK
3736Set the directories where separate debug symbols are searched for."), _("\
3737Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3738Separate debug symbols are first searched for in the same\n\
3739directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3740and lastly at the path of the directory of the binary with\n\
24ddea62 3741each global debug-file-directory component prepended."),
525226b5 3742 NULL,
920d2a44 3743 show_debug_file_directory,
525226b5 3744 &setlist, &showlist);
c906108c 3745}
This page took 2.334453 seconds and 4 git commands to generate.