Add support for the readnever concept
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
8926118c 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
086df311 24#include "bfdlink.h"
c906108c
SS
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "target.h"
30#include "value.h"
31#include "symfile.h"
32#include "objfiles.h"
0378c332 33#include "source.h"
c906108c
SS
34#include "gdbcmd.h"
35#include "breakpoint.h"
36#include "language.h"
37#include "complaints.h"
38#include "demangle.h"
fb14de7b
UW
39#include "inferior.h"
40#include "regcache.h"
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
fe898f56 48#include "block.h"
ea53e89f 49#include "observer.h"
c1bd25fd 50#include "exec.h"
9bdcbae7 51#include "parser-defs.h"
8756216b 52#include "varobj.h"
77069918 53#include "elf-bfd.h"
e85a822c 54#include "solib.h"
f1838a98 55#include "remote.h"
1bfeeb0f 56#include "stack.h"
cbb099e8 57#include "gdb_bfd.h"
529480d0 58#include "cli/cli-utils.h"
0efef640 59#include "common/byte-vector.h"
32fa66eb 60#include "selftest.h"
c906108c 61
c906108c
SS
62#include <sys/types.h>
63#include <fcntl.h>
53ce3c39 64#include <sys/stat.h>
c906108c 65#include <ctype.h>
dcb07cfa 66#include <chrono>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
3e43a32a
MS
70int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
9a4105ab 72void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
c2d11a7d 76 unsigned long total_size);
769d7dc4
AC
77void (*deprecated_pre_add_symbol_hook) (const char *);
78void (*deprecated_post_add_symbol_hook) (void);
c906108c 79
74b7792f
AC
80static void clear_symtab_users_cleanup (void *ignore);
81
c378eb4e
MS
82/* Global variables owned by this file. */
83int readnow_symbol_files; /* Read full symbols immediately. */
e2e32174 84int readnever_symbol_files; /* Never read full symbols. */
c906108c 85
c378eb4e 86/* Functions this file defines. */
c906108c 87
ecf45d2c 88static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
b15cc25c 89 objfile_flags flags);
d7db6da9 90
00b5771c 91static const struct sym_fns *find_sym_fns (bfd *);
c906108c 92
a14ed312 93static void overlay_invalidate_all (void);
c906108c 94
a14ed312 95static void simple_free_overlay_table (void);
c906108c 96
e17a4113
UW
97static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
c906108c 99
a14ed312 100static int simple_read_overlay_table (void);
c906108c 101
a14ed312 102static int simple_overlay_update_1 (struct obj_section *);
c906108c 103
31d99776
DJ
104static void symfile_find_segment_sections (struct objfile *objfile);
105
c906108c
SS
106/* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
c378eb4e 108 prepared to read. */
c906108c 109
905014d7 110struct registered_sym_fns
c256e171 111{
905014d7
SM
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
c256e171
DE
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
905014d7 121};
c256e171 122
905014d7 123static std::vector<registered_sym_fns> symtab_fns;
c906108c 124
770e7fc7
DE
125/* Values for "set print symbol-loading". */
126
127const char print_symbol_loading_off[] = "off";
128const char print_symbol_loading_brief[] = "brief";
129const char print_symbol_loading_full[] = "full";
130static const char *print_symbol_loading_enums[] =
131{
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136};
137static const char *print_symbol_loading = print_symbol_loading_full;
138
b7209cb4
FF
139/* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
c906108c 146 library symbols are not loaded, commands like "info fun" will *not*
0d14a781 147 report all the functions that are actually present. */
c906108c
SS
148
149int auto_solib_add = 1;
c906108c 150\f
c5aa993b 151
770e7fc7
DE
152/* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160int
161print_symbol_loading_p (int from_tty, int exec, int full)
162{
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175}
176
0d14a781 177/* True if we are reading a symbol table. */
c906108c
SS
178
179int currently_reading_symtab = 0;
180
ccefe4c4
TT
181/* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
3b7bacac 183
c83dd867 184scoped_restore_tmpl<int>
ccefe4c4 185increment_reading_symtab (void)
c906108c 186{
c83dd867
TT
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
c906108c
SS
190}
191
5417f6dc
RM
192/* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
c906108c
SS
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201void
4efb68b1 202find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 203{
c5aa993b 204 asection **lowest = (asection **) obj;
c906108c 205
eb73e134 206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216}
217
d76488d8
TT
218/* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
a39a16c4
MM
221
222struct section_addr_info *
223alloc_section_addr_info (size_t num_sections)
224{
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
a39a16c4
MM
232
233 return sap;
234}
62557bbc
KB
235
236/* Build (allocate and populate) a section_addr_info struct from
c378eb4e 237 an existing section table. */
62557bbc
KB
238
239extern struct section_addr_info *
0542c86d
PA
240build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
62557bbc
KB
242{
243 struct section_addr_info *sap;
0542c86d 244 const struct target_section *stp;
62557bbc
KB
245 int oidx;
246
a39a16c4 247 sap = alloc_section_addr_info (end - start);
62557bbc
KB
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
2b2848e2
DE
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 255 && oidx < end - start)
62557bbc
KB
256 {
257 sap->other[oidx].addr = stp->addr;
2b2848e2
DE
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
62557bbc
KB
260 oidx++;
261 }
262 }
263
d76488d8
TT
264 sap->num_sections = oidx;
265
62557bbc
KB
266 return sap;
267}
268
82ccf5a5 269/* Create a section_addr_info from section offsets in ABFD. */
089b4803 270
82ccf5a5
JK
271static struct section_addr_info *
272build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
273{
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
82ccf5a5
JK
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 281 {
82ccf5a5
JK
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
65cf3563 284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
012836ea
JK
285 i++;
286 }
d76488d8
TT
287
288 sap->num_sections = i;
289
089b4803
TG
290 return sap;
291}
292
82ccf5a5
JK
293/* Create a section_addr_info from section offsets in OBJFILE. */
294
295struct section_addr_info *
296build_section_addr_info_from_objfile (const struct objfile *objfile)
297{
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
d76488d8 305 for (i = 0; i < sap->num_sections; i++)
82ccf5a5
JK
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312}
62557bbc 313
c378eb4e 314/* Free all memory allocated by build_section_addr_info_from_section_table. */
62557bbc
KB
315
316extern void
317free_section_addr_info (struct section_addr_info *sap)
318{
319 int idx;
320
a39a16c4 321 for (idx = 0; idx < sap->num_sections; idx++)
d76488d8 322 xfree (sap->other[idx].name);
b8c9b27d 323 xfree (sap);
62557bbc
KB
324}
325
e8289572 326/* Initialize OBJFILE's sect_index_* members. */
3b7bacac 327
e8289572
JB
328static void
329init_objfile_sect_indices (struct objfile *objfile)
c906108c 330{
e8289572 331 asection *sect;
c906108c 332 int i;
5417f6dc 333
b8fbeb18 334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 335 if (sect)
b8fbeb18
EZ
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 339 if (sect)
b8fbeb18
EZ
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 343 if (sect)
b8fbeb18
EZ
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 347 if (sect)
b8fbeb18
EZ
348 objfile->sect_index_rodata = sect->index;
349
bbcd32ad
FF
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
31d99776
DJ
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
bbcd32ad
FF
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
b8fbeb18 385}
c906108c 386
c1bd25fd
DJ
387/* The arguments to place_section. */
388
389struct place_section_arg
390{
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393};
394
395/* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
2c0b251b 398static void
c1bd25fd
DJ
399place_section (bfd *abfd, asection *sect, void *obj)
400{
19ba03f4 401 struct place_section_arg *arg = (struct place_section_arg *) obj;
c1bd25fd
DJ
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
3bd72c6f 404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 405
2711e456
DJ
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
408 return;
409
410 /* If the user specified an offset, honor it. */
65cf3563 411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
c1bd25fd
DJ
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
415 start_addr = (arg->lowest + align - 1) & -align;
416
c1bd25fd
DJ
417 do {
418 asection *cur_sec;
c1bd25fd 419
c1bd25fd
DJ
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
c1bd25fd
DJ
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
2711e456
DJ
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
3bd72c6f 447 break;
c1bd25fd
DJ
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
65cf3563 455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
c1bd25fd 456 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 457}
e8289572 458
75242ef4
JK
459/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
e8289572
JB
462
463void
75242ef4
JK
464relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
3189cb12 466 const struct section_addr_info *addrs)
e8289572
JB
467{
468 int i;
469
75242ef4 470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 471
c378eb4e 472 /* Now calculate offsets for section that were specified by the caller. */
d76488d8 473 for (i = 0; i < addrs->num_sections; i++)
e8289572 474 {
3189cb12 475 const struct other_sections *osp;
e8289572 476
75242ef4 477 osp = &addrs->other[i];
5488dafb 478 if (osp->sectindex == -1)
e8289572
JB
479 continue;
480
c378eb4e 481 /* Record all sections in offsets. */
e8289572 482 /* The section_offsets in the objfile are here filled in using
c378eb4e 483 the BFD index. */
75242ef4
JK
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486}
487
1276c759
JK
488/* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494static const char *
495addr_section_name (const char *s)
496{
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503}
504
82ccf5a5
JK
505/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508static int
509addrs_section_compar (const void *ap, const void *bp)
510{
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
22e048c9 513 int retval;
82ccf5a5 514
1276c759 515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
516 if (retval)
517 return retval;
518
5488dafb 519 return a->sectindex - b->sectindex;
82ccf5a5
JK
520}
521
522/* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525static struct other_sections **
526addrs_section_sort (struct section_addr_info *addrs)
527{
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
8d749320 532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
d76488d8 533 for (i = 0; i < addrs->num_sections; i++)
82ccf5a5
JK
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540}
541
75242ef4 542/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
545
546void
547addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548{
549 asection *lower_sect;
75242ef4
JK
550 CORE_ADDR lower_offset;
551 int i;
82ccf5a5
JK
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
556
557 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
e8289572 566 }
75242ef4
JK
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
82ccf5a5
JK
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
c378eb4e
MS
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
82ccf5a5 590
8d749320 591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
82ccf5a5
JK
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
1276c759 596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
597
598 while (*abfd_addrs_sorted
1276c759
JK
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
82ccf5a5
JK
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
1276c759
JK
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
82ccf5a5
JK
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
75242ef4
JK
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
d76488d8 631 for (i = 0; i < addrs->num_sections; i++)
75242ef4 632 {
82ccf5a5 633 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
634
635 if (sect)
75242ef4 636 {
c378eb4e 637 /* This is the index used by BFD. */
82ccf5a5 638 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
639
640 if (addrs->other[i].addr != 0)
75242ef4 641 {
82ccf5a5 642 addrs->other[i].addr -= sect->addr;
75242ef4 643 lower_offset = addrs->other[i].addr;
75242ef4
JK
644 }
645 else
672d9c23 646 addrs->other[i].addr = lower_offset;
75242ef4
JK
647 }
648 else
672d9c23 649 {
1276c759
JK
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
b0fcb67f
JK
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
4d9743af
JK
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
1276c759
JK
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 668 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
672d9c23 680 addrs->other[i].addr = 0;
5488dafb 681 addrs->other[i].sectindex = -1;
672d9c23 682 }
75242ef4 683 }
82ccf5a5
JK
684
685 do_cleanups (my_cleanup);
75242ef4
JK
686}
687
688/* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694void
695default_symfile_offsets (struct objfile *objfile,
3189cb12 696 const struct section_addr_info *addrs)
75242ef4 697{
d445b2f6 698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
75242ef4
JK
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
e8289572 704
c1bd25fd
DJ
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
2711e456
DJ
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
2711e456
DJ
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
3e43a32a
MS
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
30510692 767 offsets[cur_sec->index]);
2711e456
DJ
768 offsets[cur_sec->index] = 0;
769 }
770 }
c1bd25fd
DJ
771 }
772
e8289572 773 /* Remember the bfd indexes for the .text, .data, .bss and
c378eb4e 774 .rodata sections. */
e8289572
JB
775 init_objfile_sect_indices (objfile);
776}
777
31d99776
DJ
778/* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784struct symfile_segment_data *
785default_symfile_segments (bfd *abfd)
786{
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
41bf6aca 812 data = XCNEW (struct symfile_segment_data);
31d99776 813 data->num_segments = 1;
fc270c35
TT
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
31d99776
DJ
816
817 num_sections = bfd_count_sections (abfd);
fc270c35 818 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840}
841
608e2dbb
TT
842/* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845static void
b15cc25c 846read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
608e2dbb
TT
847{
848 (*objfile->sf->sym_read) (objfile, add_flags);
23732b1e 849 objfile->per_bfd->minsyms_read = true;
8a92335b
JK
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
608e2dbb 856 {
192b62ce 857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
608e2dbb
TT
858
859 if (abfd != NULL)
24ba069a
JK
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
192b62ce
TT
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
24ba069a 867 }
608e2dbb
TT
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871}
872
3d6e24f0
JB
873/* Initialize entry point information for this objfile. */
874
875static void
876init_entry_point_info (struct objfile *objfile)
877{
6ef55de7
TT
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
3d6e24f0
JB
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
6ef55de7
TT
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
3d6e24f0
JB
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
6ef55de7
TT
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
3d6e24f0
JB
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
6ef55de7 906 ei->entry_point_p = 0;
3d6e24f0
JB
907 }
908
6ef55de7 909 if (ei->entry_point_p)
3d6e24f0 910 {
53eddfa6 911 struct obj_section *osect;
6ef55de7 912 CORE_ADDR entry_point = ei->entry_point;
53eddfa6 913 int found;
3d6e24f0
JB
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
df6d5441 918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
3d6e24f0
JB
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
6ef55de7 924 ei->entry_point
df6d5441 925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
53eddfa6
TT
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
6ef55de7 936 ei->the_bfd_section_index
53eddfa6
TT
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
6ef55de7 944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
3d6e24f0
JB
945 }
946}
947
c906108c
SS
948/* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
36e4d068
JB
951 This function does not set the OBJFILE's entry-point info.
952
96baa820
JM
953 OBJFILE is where the symbols are to be read from.
954
7e8580c1
JB
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
96baa820 964
7eedccfa
PP
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
c906108c 968
36e4d068
JB
969static void
970syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
b15cc25c 972 symfile_add_flags add_flags)
c906108c 973{
a39a16c4 974 struct section_addr_info *local_addr = NULL;
c906108c 975 struct cleanup *old_chain;
7eedccfa 976 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 977
8fb8eb5c 978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
c906108c 979
75245b24 980 if (objfile->sf == NULL)
36e4d068
JB
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
d445b2f6 984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
a7bfba49 985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
36e4d068
JB
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
224c3ddb
SM
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
36e4d068
JB
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
75245b24 994
c906108c
SS
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
ed2b3126
TT
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
c906108c 999
6bf667bb
DE
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
c378eb4e 1002 no load address was specified. */
6bf667bb 1003 if (! addrs)
a39a16c4 1004 {
d445b2f6 1005 local_addr = alloc_section_addr_info (1);
a39a16c4
MM
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
c5aa993b 1010 if (mainline)
c906108c
SS
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
c5aa993b 1013 will be cleaned up if an error occurs during symbol reading. */
74b7792f 1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
9e86da07 1020 delete symfile_objfile;
adb7f338 1021 gdb_assert (symfile_objfile == NULL);
c906108c
SS
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
c906108c 1028
c5aa993b 1029 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
53a5351d 1034 and assume that <addr> is where that got loaded.
c906108c 1035
53a5351d
JM
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
6bf667bb 1038 if (addrs->num_sections > 0)
75242ef4 1039 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
c378eb4e 1043 initial symbol reading for this file. */
c906108c 1044
c5aa993b 1045 (*objfile->sf->sym_init) (objfile);
7eedccfa 1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1047
6bf667bb 1048 (*objfile->sf->sym_offsets) (objfile, addrs);
c906108c 1049
608e2dbb 1050 read_symbols (objfile, add_flags);
b11896a5 1051
c906108c
SS
1052 /* Discard cleanups as symbol reading was successful. */
1053
ed2b3126 1054 objfile_holder.release ();
c906108c 1055 discard_cleanups (old_chain);
f7545552 1056 xfree (local_addr);
c906108c
SS
1057}
1058
36e4d068
JB
1059/* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
6bf667bb 1062static void
36e4d068
JB
1063syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
b15cc25c 1065 symfile_add_flags add_flags)
36e4d068 1066{
6bf667bb 1067 syms_from_objfile_1 (objfile, addrs, add_flags);
36e4d068
JB
1068 init_entry_point_info (objfile);
1069}
1070
c906108c
SS
1071/* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1074
e7d52ed3 1075static void
b15cc25c 1076finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
c906108c 1077{
c906108c 1078 /* If this is the main symbol file we have to clean up all users of the
c378eb4e 1079 old main symbol file. Otherwise it is sufficient to fixup all the
c906108c 1080 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1081 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
c1e56572 1086 clear_symtab_users (add_flags);
c906108c 1087 }
7eedccfa 1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1089 {
69de3c6a 1090 breakpoint_re_set ();
c906108c
SS
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1095}
1096
1097/* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
5417f6dc 1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
8ac244b4 1101 A new reference is acquired by this function.
7904e09f 1102
9e86da07 1103 For NAME description see the objfile constructor.
24ba069a 1104
7eedccfa
PP
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f 1107
6bf667bb 1108 ADDRS is as described for syms_from_objfile_1, above.
7eedccfa 1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1110
63524580
JK
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
c906108c 1114 Upon success, returns a pointer to the objfile that was added.
c378eb4e 1115 Upon failure, jumps back to command level (never returns). */
7eedccfa 1116
7904e09f 1117static struct objfile *
b15cc25c
PA
1118symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
6bf667bb 1120 struct section_addr_info *addrs,
b15cc25c 1121 objfile_flags flags, struct objfile *parent)
c906108c
SS
1122{
1123 struct objfile *objfile;
7eedccfa 1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
0838fb57 1125 const int mainline = add_flags & SYMFILE_MAINLINE;
770e7fc7 1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
b11896a5
TT
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
c906108c 1129
9291a0cd 1130 if (readnow_symbol_files)
b11896a5
TT
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
e2e32174
SDJ
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
9291a0cd 1141
5417f6dc
RM
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
c906108c
SS
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
0838fb57 1146 && mainline
c906108c 1147 && from_tty
9e2f0ad4 1148 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1149 error (_("Not confirmed."));
c906108c 1150
b15cc25c
PA
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
9e86da07 1153 objfile = new struct objfile (abfd, name, flags);
c906108c 1154
63524580
JK
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
78a4a9b9
AC
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
c378eb4e 1160 performed, or need to read an unmapped symbol table. */
b11896a5 1161 if (should_print)
c906108c 1162 {
769d7dc4
AC
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1165 else
c906108c 1166 {
55333a84
DE
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
c906108c 1170 }
c906108c 1171 }
6bf667bb 1172 syms_from_objfile (objfile, addrs, add_flags);
c906108c
SS
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
c378eb4e 1177 all partial symbol tables for this objfile if so. */
c906108c 1178
9291a0cd 1179 if ((flags & OBJF_READNOW))
c906108c 1180 {
b11896a5 1181 if (should_print)
c906108c 1182 {
a3f17187 1183 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
ccefe4c4
TT
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1190 }
1191
b11896a5 1192 if (should_print && !objfile_has_symbols (objfile))
cb3c37b2
JB
1193 {
1194 wrap_here ("");
55333a84 1195 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1196 wrap_here ("");
1197 }
1198
b11896a5 1199 if (should_print)
c906108c 1200 {
769d7dc4
AC
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
c906108c 1203 else
55333a84 1204 printf_unfiltered (_("done.\n"));
c906108c
SS
1205 }
1206
481d0f41
JB
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
109f874e 1212 if (objfile->sf == NULL)
8caee43b
PP
1213 {
1214 observer_notify_new_objfile (objfile);
c378eb4e 1215 return objfile; /* No symbols. */
8caee43b 1216 }
109f874e 1217
e7d52ed3 1218 finish_new_objfile (objfile, add_flags);
c906108c 1219
06d3b283 1220 observer_notify_new_objfile (objfile);
c906108c 1221
ce7d4522 1222 bfd_cache_close_all ();
c906108c
SS
1223 return (objfile);
1224}
1225
24ba069a 1226/* Add BFD as a separate debug file for OBJFILE. For NAME description
9e86da07 1227 see the objfile constructor. */
9cce227f
TG
1228
1229void
b15cc25c
PA
1230symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
24ba069a 1232 struct objfile *objfile)
9cce227f 1233{
089b4803
TG
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1242
870f88f7 1243 symbol_file_add_with_addrs
24ba069a 1244 (bfd, name, symfile_flags, sap,
9cce227f 1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
63524580
JK
1246 | OBJF_USERLOADED),
1247 objfile);
089b4803
TG
1248
1249 do_cleanups (my_cleanup);
9cce227f 1250}
7904e09f 1251
eb4556d7
JB
1252/* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
6bf667bb 1254 See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1255
eb4556d7 1256struct objfile *
b15cc25c
PA
1257symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
eb4556d7 1259 struct section_addr_info *addrs,
b15cc25c 1260 objfile_flags flags, struct objfile *parent)
eb4556d7 1261{
24ba069a
JK
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
eb4556d7
JB
1264}
1265
7904e09f 1266/* Process a symbol file, as either the main file or as a dynamically
6bf667bb 1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
3b7bacac 1268
7904e09f 1269struct objfile *
b15cc25c
PA
1270symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
7904e09f 1272{
192b62ce 1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
8ac244b4 1274
192b62ce
TT
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
7904e09f
JB
1277}
1278
d7db6da9
FN
1279/* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
5417f6dc 1286
1adeb98a 1287void
ecf45d2c 1288symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1adeb98a 1289{
ecf45d2c 1290 symbol_file_add_main_1 (args, add_flags, 0);
d7db6da9
FN
1291}
1292
1293static void
ecf45d2c
SL
1294symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
d7db6da9 1296{
ecf45d2c 1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
7dcd53a0 1298
7eedccfa 1299 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1300
d7db6da9
FN
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
b15cc25c 1305 if ((add_flags & SYMFILE_NO_READ) == 0)
7dcd53a0 1306 set_initial_language ();
1adeb98a
FN
1307}
1308
1309void
1310symbol_file_clear (int from_tty)
1311{
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
0430b0d6
AS
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
4262abfb 1316 objfile_name (symfile_objfile))
0430b0d6 1317 : !query (_("Discard symbol table? "))))
8a3fe4f8 1318 error (_("Not confirmed."));
1adeb98a 1319
0133421a
JK
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1322 no_shared_libraries (NULL, from_tty);
1323
0133421a
JK
1324 free_all_objfiles ();
1325
adb7f338 1326 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1329}
1330
c4dcb155
SM
1331/* See symfile.h. */
1332
1333int separate_debug_file_debug = 0;
1334
5b5d99cf 1335static int
287ccc17 1336separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1337 struct objfile *parent_objfile)
5b5d99cf 1338{
904578ed
JK
1339 unsigned long file_crc;
1340 int file_crc_p;
32a0e547 1341 struct stat parent_stat, abfd_stat;
904578ed 1342 int verified_as_different;
32a0e547
JK
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
c378eb4e 1348 the separate debug infos with the same basename can exist. */
32a0e547 1349
4262abfb 1350 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
32a0e547 1351 return 0;
5b5d99cf 1352
c4dcb155
SM
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name);
1355
192b62ce 1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
f1838a98 1357
192b62ce 1358 if (abfd == NULL)
5b5d99cf
JB
1359 return 0;
1360
0ba1096a 1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
32a0e547
JK
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
0a93529c
GB
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
32a0e547 1371
192b62ce 1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
904578ed
JK
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
32a0e547 1375 {
904578ed
JK
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
192b62ce 1378 return 0;
904578ed 1379 verified_as_different = 1;
32a0e547 1380 }
904578ed
JK
1381 else
1382 verified_as_different = 0;
32a0e547 1383
192b62ce 1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
5b5d99cf 1385
904578ed
JK
1386 if (!file_crc_p)
1387 return 0;
1388
287ccc17
JK
1389 if (crc != file_crc)
1390 {
dccee2de
TT
1391 unsigned long parent_crc;
1392
0a93529c
GB
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
904578ed 1396
dccee2de 1397 if (!verified_as_different)
904578ed 1398 {
dccee2de 1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
904578ed
JK
1400 return 0;
1401 }
1402
dccee2de 1403 if (verified_as_different || parent_crc != file_crc)
904578ed
JK
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
4262abfb 1406 name, objfile_name (parent_objfile));
904578ed 1407
287ccc17
JK
1408 return 0;
1409 }
1410
1411 return 1;
5b5d99cf
JB
1412}
1413
aa28a74e 1414char *debug_file_directory = NULL;
920d2a44
AC
1415static void
1416show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418{
3e43a32a
MS
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
920d2a44
AC
1422 value);
1423}
5b5d99cf
JB
1424
1425#if ! defined (DEBUG_SUBDIRECTORY)
1426#define DEBUG_SUBDIRECTORY ".debug"
1427#endif
1428
1db33378
PP
1429/* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
7edbb660
DE
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, of NULL. */
1db33378
PP
1435
1436static char *
1437find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
9cce227f 1441{
1db33378
PP
1442 char *debugdir;
1443 char *debugfile;
9cce227f 1444 int i;
e4ab2fad
JK
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
5b5d99cf 1448
c4dcb155
SM
1449 if (separate_debug_file_debug)
1450 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1451 "%s\n"), objfile_name (objfile));
1452
325fac50 1453 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1ffa32ee 1454 i = strlen (dir);
1db33378
PP
1455 if (canon_dir != NULL && strlen (canon_dir) > i)
1456 i = strlen (canon_dir);
1ffa32ee 1457
224c3ddb
SM
1458 debugfile
1459 = (char *) xmalloc (strlen (debug_file_directory) + 1
1460 + i
1461 + strlen (DEBUG_SUBDIRECTORY)
1462 + strlen ("/")
1463 + strlen (debuglink)
1464 + 1);
5b5d99cf
JB
1465
1466 /* First try in the same directory as the original file. */
1467 strcpy (debugfile, dir);
1db33378 1468 strcat (debugfile, debuglink);
5b5d99cf 1469
32a0e547 1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1471 return debugfile;
5417f6dc 1472
5b5d99cf
JB
1473 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1474 strcpy (debugfile, dir);
1475 strcat (debugfile, DEBUG_SUBDIRECTORY);
1476 strcat (debugfile, "/");
1db33378 1477 strcat (debugfile, debuglink);
5b5d99cf 1478
32a0e547 1479 if (separate_debug_file_exists (debugfile, crc32, objfile))
1db33378 1480 return debugfile;
5417f6dc 1481
24ddea62 1482 /* Then try in the global debugfile directories.
f888f159 1483
24ddea62
JK
1484 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1485 cause "/..." lookups. */
5417f6dc 1486
e4ab2fad
JK
1487 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1488 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
24ddea62 1489
e4ab2fad
JK
1490 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1491 {
1492 strcpy (debugfile, debugdir);
aa28a74e 1493 strcat (debugfile, "/");
24ddea62 1494 strcat (debugfile, dir);
1db33378 1495 strcat (debugfile, debuglink);
aa28a74e 1496
32a0e547 1497 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1498 {
1499 do_cleanups (back_to);
1500 return debugfile;
1501 }
24ddea62
JK
1502
1503 /* If the file is in the sysroot, try using its base path in the
1504 global debugfile directory. */
1db33378
PP
1505 if (canon_dir != NULL
1506 && filename_ncmp (canon_dir, gdb_sysroot,
0ba1096a 1507 strlen (gdb_sysroot)) == 0
1db33378 1508 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
24ddea62 1509 {
e4ab2fad 1510 strcpy (debugfile, debugdir);
1db33378 1511 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
24ddea62 1512 strcat (debugfile, "/");
1db33378 1513 strcat (debugfile, debuglink);
24ddea62 1514
32a0e547 1515 if (separate_debug_file_exists (debugfile, crc32, objfile))
a991ac28
TT
1516 {
1517 do_cleanups (back_to);
1518 return debugfile;
1519 }
24ddea62 1520 }
aa28a74e 1521 }
f888f159 1522
e4ab2fad 1523 do_cleanups (back_to);
25522fae 1524 xfree (debugfile);
1db33378
PP
1525 return NULL;
1526}
1527
7edbb660 1528/* Modify PATH to contain only "[/]directory/" part of PATH.
1db33378
PP
1529 If there were no directory separators in PATH, PATH will be empty
1530 string on return. */
1531
1532static void
1533terminate_after_last_dir_separator (char *path)
1534{
1535 int i;
1536
1537 /* Strip off the final filename part, leaving the directory name,
1538 followed by a slash. The directory can be relative or absolute. */
1539 for (i = strlen(path) - 1; i >= 0; i--)
1540 if (IS_DIR_SEPARATOR (path[i]))
1541 break;
1542
1543 /* If I is -1 then no directory is present there and DIR will be "". */
1544 path[i + 1] = '\0';
1545}
1546
1547/* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1548 Returns pathname, or NULL. */
1549
1550char *
1551find_separate_debug_file_by_debuglink (struct objfile *objfile)
1552{
1db33378
PP
1553 char *debugfile;
1554 unsigned long crc32;
1db33378 1555
5eae7aea
TT
1556 gdb::unique_xmalloc_ptr<char> debuglink
1557 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1db33378
PP
1558
1559 if (debuglink == NULL)
1560 {
1561 /* There's no separate debug info, hence there's no way we could
1562 load it => no warning. */
1563 return NULL;
1564 }
1565
5eae7aea
TT
1566 std::string dir = objfile_name (objfile);
1567 terminate_after_last_dir_separator (&dir[0]);
1568 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1db33378 1569
5eae7aea
TT
1570 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1571 debuglink.get (), crc32, objfile);
1db33378
PP
1572
1573 if (debugfile == NULL)
1574 {
1db33378
PP
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
4262abfb
JK
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1db33378 1582 {
5eae7aea
TT
1583 gdb::unique_xmalloc_ptr<char> symlink_dir
1584 (lrealpath (objfile_name (objfile)));
1db33378
PP
1585 if (symlink_dir != NULL)
1586 {
5eae7aea
TT
1587 terminate_after_last_dir_separator (symlink_dir.get ());
1588 if (dir != symlink_dir.get ())
1db33378
PP
1589 {
1590 /* Different directory, so try using it. */
5eae7aea
TT
1591 debugfile = find_separate_debug_file (symlink_dir.get (),
1592 symlink_dir.get (),
1593 debuglink.get (),
1db33378
PP
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1db33378 1599 }
aa28a74e 1600
25522fae 1601 return debugfile;
5b5d99cf
JB
1602}
1603
e2e32174
SDJ
1604/* Make sure that OBJF_{READNOW,READNEVER} are not set
1605 simultaneously. */
1606
1607static void
1608validate_readnow_readnever (objfile_flags flags)
1609{
1610 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1611 error (_("-readnow and -readnever cannot be used simultaneously"));
1612}
1613
c906108c
SS
1614/* This is the symbol-file command. Read the file, analyze its
1615 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1616 the command is rather bizarre:
1617
1618 1. The function buildargv implements various quoting conventions
1619 which are undocumented and have little or nothing in common with
1620 the way things are quoted (or not quoted) elsewhere in GDB.
1621
1622 2. Options are used, which are not generally used in GDB (perhaps
1623 "set mapped on", "set readnow on" would be better)
1624
1625 3. The order of options matters, which is contrary to GNU
c906108c
SS
1626 conventions (because it is confusing and inconvenient). */
1627
1628void
1d8b34a7 1629symbol_file_command (const char *args, int from_tty)
c906108c 1630{
c906108c
SS
1631 dont_repeat ();
1632
1633 if (args == NULL)
1634 {
1adeb98a 1635 symbol_file_clear (from_tty);
c906108c
SS
1636 }
1637 else
1638 {
b15cc25c 1639 objfile_flags flags = OBJF_USERLOADED;
ecf45d2c 1640 symfile_add_flags add_flags = 0;
cb2f3a29
MK
1641 char *name = NULL;
1642
ecf45d2c
SL
1643 if (from_tty)
1644 add_flags |= SYMFILE_VERBOSE;
1645
773a1edc
TT
1646 gdb_argv built_argv (args);
1647 for (char *arg : built_argv)
c906108c 1648 {
773a1edc 1649 if (strcmp (arg, "-readnow") == 0)
78a4a9b9 1650 flags |= OBJF_READNOW;
e2e32174
SDJ
1651 else if (strcmp (arg, "-readnever") == 0)
1652 flags |= OBJF_READNEVER;
773a1edc
TT
1653 else if (*arg == '-')
1654 error (_("unknown option `%s'"), arg);
78a4a9b9 1655 else
e2e32174 1656 name = arg;
c906108c
SS
1657 }
1658
1659 if (name == NULL)
cb2f3a29 1660 error (_("no symbol file name was specified"));
e2e32174
SDJ
1661
1662 validate_readnow_readnever (flags);
1663
1664 symbol_file_add_main_1 (name, add_flags, flags);
c906108c
SS
1665 }
1666}
1667
1668/* Set the initial language.
1669
cb2f3a29
MK
1670 FIXME: A better solution would be to record the language in the
1671 psymtab when reading partial symbols, and then use it (if known) to
1672 set the language. This would be a win for formats that encode the
1673 language in an easily discoverable place, such as DWARF. For
1674 stabs, we can jump through hoops looking for specially named
1675 symbols or try to intuit the language from the specific type of
1676 stabs we find, but we can't do that until later when we read in
1677 full symbols. */
c906108c 1678
8b60591b 1679void
fba45db2 1680set_initial_language (void)
c906108c 1681{
9e6c82ad 1682 enum language lang = main_language ();
c906108c 1683
9e6c82ad 1684 if (lang == language_unknown)
01f8c46d 1685 {
bf6d8a91 1686 char *name = main_name ();
d12307c1 1687 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
f888f159 1688
bf6d8a91
TT
1689 if (sym != NULL)
1690 lang = SYMBOL_LANGUAGE (sym);
01f8c46d 1691 }
cb2f3a29 1692
ccefe4c4
TT
1693 if (lang == language_unknown)
1694 {
1695 /* Make C the default language */
1696 lang = language_c;
c906108c 1697 }
ccefe4c4
TT
1698
1699 set_language (lang);
1700 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1701}
1702
cb2f3a29
MK
1703/* Open the file specified by NAME and hand it off to BFD for
1704 preliminary analysis. Return a newly initialized bfd *, which
1705 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1706 absolute). In case of trouble, error() is called. */
c906108c 1707
192b62ce 1708gdb_bfd_ref_ptr
97a41605 1709symfile_bfd_open (const char *name)
c906108c 1710{
97a41605
GB
1711 int desc = -1;
1712 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 1713
97a41605 1714 if (!is_target_filename (name))
f1838a98 1715 {
ee0c3293 1716 char *absolute_name;
f1838a98 1717
ee0c3293 1718 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
c906108c 1719
97a41605
GB
1720 /* Look down path for it, allocate 2nd new malloc'd copy. */
1721 desc = openp (getenv ("PATH"),
1722 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
ee0c3293 1723 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
608506ed 1724#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
97a41605
GB
1725 if (desc < 0)
1726 {
ee0c3293 1727 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
433759f7 1728
ee0c3293 1729 strcat (strcpy (exename, expanded_name.get ()), ".exe");
97a41605
GB
1730 desc = openp (getenv ("PATH"),
1731 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1732 exename, O_RDONLY | O_BINARY, &absolute_name);
1733 }
c906108c 1734#endif
97a41605 1735 if (desc < 0)
ee0c3293 1736 perror_with_name (expanded_name.get ());
cb2f3a29 1737
97a41605
GB
1738 make_cleanup (xfree, absolute_name);
1739 name = absolute_name;
1740 }
c906108c 1741
192b62ce
TT
1742 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1743 if (sym_bfd == NULL)
faab9922
JK
1744 error (_("`%s': can't open to read symbols: %s."), name,
1745 bfd_errmsg (bfd_get_error ()));
97a41605 1746
192b62ce
TT
1747 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1748 bfd_set_cacheable (sym_bfd.get (), 1);
c906108c 1749
192b62ce
TT
1750 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1751 error (_("`%s': can't read symbols: %s."), name,
1752 bfd_errmsg (bfd_get_error ()));
cb2f3a29 1753
faab9922
JK
1754 do_cleanups (back_to);
1755
cb2f3a29 1756 return sym_bfd;
c906108c
SS
1757}
1758
cb2f3a29
MK
1759/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1760 the section was not found. */
1761
0e931cf0 1762int
a121b7c1 1763get_section_index (struct objfile *objfile, const char *section_name)
0e931cf0
JB
1764{
1765 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1766
0e931cf0
JB
1767 if (sect)
1768 return sect->index;
1769 else
1770 return -1;
1771}
1772
c256e171
DE
1773/* Link SF into the global symtab_fns list.
1774 FLAVOUR is the file format that SF handles.
1775 Called on startup by the _initialize routine in each object file format
1776 reader, to register information about each format the reader is prepared
1777 to handle. */
c906108c
SS
1778
1779void
c256e171 1780add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
c906108c 1781{
905014d7 1782 symtab_fns.emplace_back (flavour, sf);
c906108c
SS
1783}
1784
cb2f3a29
MK
1785/* Initialize OBJFILE to read symbols from its associated BFD. It
1786 either returns or calls error(). The result is an initialized
1787 struct sym_fns in the objfile structure, that contains cached
1788 information about the symbol file. */
c906108c 1789
00b5771c 1790static const struct sym_fns *
31d99776 1791find_sym_fns (bfd *abfd)
c906108c 1792{
31d99776 1793 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1794
75245b24
MS
1795 if (our_flavour == bfd_target_srec_flavour
1796 || our_flavour == bfd_target_ihex_flavour
1797 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1798 return NULL; /* No symbols. */
75245b24 1799
905014d7
SM
1800 for (const registered_sym_fns &rsf : symtab_fns)
1801 if (our_flavour == rsf.sym_flavour)
1802 return rsf.sym_fns;
cb2f3a29 1803
8a3fe4f8 1804 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1805 bfd_get_target (abfd));
c906108c
SS
1806}
1807\f
cb2f3a29 1808
c906108c
SS
1809/* This function runs the load command of our current target. */
1810
1811static void
5fed81ff 1812load_command (const char *arg, int from_tty)
c906108c 1813{
5b3fca71
TT
1814 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1815
e5cc9f32
JB
1816 dont_repeat ();
1817
4487aabf
PA
1818 /* The user might be reloading because the binary has changed. Take
1819 this opportunity to check. */
1820 reopen_exec_file ();
1821 reread_symbols ();
1822
c906108c 1823 if (arg == NULL)
1986bccd 1824 {
5fed81ff 1825 const char *parg;
1986bccd
AS
1826 int count = 0;
1827
1828 parg = arg = get_exec_file (1);
1829
1830 /* Count how many \ " ' tab space there are in the name. */
1831 while ((parg = strpbrk (parg, "\\\"'\t ")))
1832 {
1833 parg++;
1834 count++;
1835 }
1836
1837 if (count)
1838 {
1839 /* We need to quote this string so buildargv can pull it apart. */
224c3ddb 1840 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1986bccd 1841 char *ptemp = temp;
5fed81ff 1842 const char *prev;
1986bccd
AS
1843
1844 make_cleanup (xfree, temp);
1845
1846 prev = parg = arg;
1847 while ((parg = strpbrk (parg, "\\\"'\t ")))
1848 {
1849 strncpy (ptemp, prev, parg - prev);
1850 ptemp += parg - prev;
1851 prev = parg++;
1852 *ptemp++ = '\\';
1853 }
1854 strcpy (ptemp, prev);
1855
1856 arg = temp;
1857 }
1858 }
1859
c906108c 1860 target_load (arg, from_tty);
2889e661
JB
1861
1862 /* After re-loading the executable, we don't really know which
1863 overlays are mapped any more. */
1864 overlay_cache_invalid = 1;
5b3fca71
TT
1865
1866 do_cleanups (cleanup);
c906108c
SS
1867}
1868
1869/* This version of "load" should be usable for any target. Currently
1870 it is just used for remote targets, not inftarg.c or core files,
1871 on the theory that only in that case is it useful.
1872
1873 Avoiding xmodem and the like seems like a win (a) because we don't have
1874 to worry about finding it, and (b) On VMS, fork() is very slow and so
1875 we don't want to run a subprocess. On the other hand, I'm not sure how
1876 performance compares. */
917317f4 1877
917317f4
JM
1878static int validate_download = 0;
1879
e4f9b4d5
MS
1880/* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882static void
1883add_section_size_callback (bfd *abfd, asection *asec, void *data)
1884{
19ba03f4 1885 bfd_size_type *sum = (bfd_size_type *) data;
e4f9b4d5 1886
2c500098 1887 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1888}
1889
1890/* Opaque data for load_section_callback. */
1891struct load_section_data {
f698ca8e 1892 CORE_ADDR load_offset;
a76d924d
DJ
1893 struct load_progress_data *progress_data;
1894 VEC(memory_write_request_s) *requests;
1895};
1896
1897/* Opaque data for load_progress. */
1898struct load_progress_data {
1899 /* Cumulative data. */
e4f9b4d5
MS
1900 unsigned long write_count;
1901 unsigned long data_count;
1902 bfd_size_type total_size;
a76d924d
DJ
1903};
1904
1905/* Opaque data for load_progress for a single section. */
1906struct load_progress_section_data {
1907 struct load_progress_data *cumulative;
cf7a04e8 1908
a76d924d 1909 /* Per-section data. */
cf7a04e8
DJ
1910 const char *section_name;
1911 ULONGEST section_sent;
1912 ULONGEST section_size;
1913 CORE_ADDR lma;
1914 gdb_byte *buffer;
e4f9b4d5
MS
1915};
1916
a76d924d 1917/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1918
1919static void
1920load_progress (ULONGEST bytes, void *untyped_arg)
1921{
19ba03f4
SM
1922 struct load_progress_section_data *args
1923 = (struct load_progress_section_data *) untyped_arg;
a76d924d
DJ
1924 struct load_progress_data *totals;
1925
1926 if (args == NULL)
1927 /* Writing padding data. No easy way to get at the cumulative
1928 stats, so just ignore this. */
1929 return;
1930
1931 totals = args->cumulative;
1932
1933 if (bytes == 0 && args->section_sent == 0)
1934 {
1935 /* The write is just starting. Let the user know we've started
1936 this section. */
112e8700
SM
1937 current_uiout->message ("Loading section %s, size %s lma %s\n",
1938 args->section_name,
1939 hex_string (args->section_size),
1940 paddress (target_gdbarch (), args->lma));
a76d924d
DJ
1941 return;
1942 }
cf7a04e8
DJ
1943
1944 if (validate_download)
1945 {
1946 /* Broken memories and broken monitors manifest themselves here
1947 when bring new computers to life. This doubles already slow
1948 downloads. */
1949 /* NOTE: cagney/1999-10-18: A more efficient implementation
1950 might add a verify_memory() method to the target vector and
1951 then use that. remote.c could implement that method using
1952 the ``qCRC'' packet. */
0efef640 1953 gdb::byte_vector check (bytes);
cf7a04e8 1954
0efef640 1955 if (target_read_memory (args->lma, check.data (), bytes) != 0)
5af949e3 1956 error (_("Download verify read failed at %s"),
f5656ead 1957 paddress (target_gdbarch (), args->lma));
0efef640 1958 if (memcmp (args->buffer, check.data (), bytes) != 0)
5af949e3 1959 error (_("Download verify compare failed at %s"),
f5656ead 1960 paddress (target_gdbarch (), args->lma));
cf7a04e8 1961 }
a76d924d 1962 totals->data_count += bytes;
cf7a04e8
DJ
1963 args->lma += bytes;
1964 args->buffer += bytes;
a76d924d 1965 totals->write_count += 1;
cf7a04e8 1966 args->section_sent += bytes;
522002f9 1967 if (check_quit_flag ()
cf7a04e8
DJ
1968 || (deprecated_ui_load_progress_hook != NULL
1969 && deprecated_ui_load_progress_hook (args->section_name,
1970 args->section_sent)))
1971 error (_("Canceled the download"));
1972
1973 if (deprecated_show_load_progress != NULL)
1974 deprecated_show_load_progress (args->section_name,
1975 args->section_sent,
1976 args->section_size,
a76d924d
DJ
1977 totals->data_count,
1978 totals->total_size);
cf7a04e8
DJ
1979}
1980
e4f9b4d5
MS
1981/* Callback service function for generic_load (bfd_map_over_sections). */
1982
1983static void
1984load_section_callback (bfd *abfd, asection *asec, void *data)
1985{
a76d924d 1986 struct memory_write_request *new_request;
19ba03f4 1987 struct load_section_data *args = (struct load_section_data *) data;
a76d924d 1988 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1989 bfd_size_type size = bfd_get_section_size (asec);
1990 gdb_byte *buffer;
cf7a04e8 1991 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1992
cf7a04e8
DJ
1993 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1994 return;
e4f9b4d5 1995
cf7a04e8
DJ
1996 if (size == 0)
1997 return;
e4f9b4d5 1998
a76d924d
DJ
1999 new_request = VEC_safe_push (memory_write_request_s,
2000 args->requests, NULL);
2001 memset (new_request, 0, sizeof (struct memory_write_request));
8d749320 2002 section_data = XCNEW (struct load_progress_section_data);
a76d924d 2003 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
3e43a32a
MS
2004 new_request->end = new_request->begin + size; /* FIXME Should size
2005 be in instead? */
224c3ddb 2006 new_request->data = (gdb_byte *) xmalloc (size);
a76d924d 2007 new_request->baton = section_data;
cf7a04e8 2008
a76d924d 2009 buffer = new_request->data;
cf7a04e8 2010
a76d924d
DJ
2011 section_data->cumulative = args->progress_data;
2012 section_data->section_name = sect_name;
2013 section_data->section_size = size;
2014 section_data->lma = new_request->begin;
2015 section_data->buffer = buffer;
cf7a04e8
DJ
2016
2017 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
2018}
2019
2020/* Clean up an entire memory request vector, including load
2021 data and progress records. */
cf7a04e8 2022
a76d924d
DJ
2023static void
2024clear_memory_write_data (void *arg)
2025{
19ba03f4 2026 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
a76d924d
DJ
2027 VEC(memory_write_request_s) *vec = *vec_p;
2028 int i;
2029 struct memory_write_request *mr;
cf7a04e8 2030
a76d924d
DJ
2031 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2032 {
2033 xfree (mr->data);
2034 xfree (mr->baton);
2035 }
2036 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
2037}
2038
dcb07cfa
PA
2039static void print_transfer_performance (struct ui_file *stream,
2040 unsigned long data_count,
2041 unsigned long write_count,
2042 std::chrono::steady_clock::duration d);
2043
c906108c 2044void
9cbe5fff 2045generic_load (const char *args, int from_tty)
c906108c 2046{
773a1edc 2047 struct cleanup *old_cleanups;
e4f9b4d5 2048 struct load_section_data cbdata;
a76d924d 2049 struct load_progress_data total_progress;
79a45e25 2050 struct ui_out *uiout = current_uiout;
a76d924d 2051
e4f9b4d5
MS
2052 CORE_ADDR entry;
2053
a76d924d
DJ
2054 memset (&cbdata, 0, sizeof (cbdata));
2055 memset (&total_progress, 0, sizeof (total_progress));
2056 cbdata.progress_data = &total_progress;
2057
773a1edc 2058 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 2059
d1a41061
PP
2060 if (args == NULL)
2061 error_no_arg (_("file to load"));
1986bccd 2062
773a1edc 2063 gdb_argv argv (args);
1986bccd 2064
ee0c3293 2065 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1986bccd
AS
2066
2067 if (argv[1] != NULL)
917317f4 2068 {
f698ca8e 2069 const char *endptr;
ba5f2f8a 2070
f698ca8e 2071 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1986bccd
AS
2072
2073 /* If the last word was not a valid number then
2074 treat it as a file name with spaces in. */
2075 if (argv[1] == endptr)
2076 error (_("Invalid download offset:%s."), argv[1]);
2077
2078 if (argv[2] != NULL)
2079 error (_("Too many parameters."));
917317f4 2080 }
c906108c 2081
c378eb4e 2082 /* Open the file for loading. */
ee0c3293 2083 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
c906108c 2084 if (loadfile_bfd == NULL)
ee0c3293 2085 perror_with_name (filename.get ());
917317f4 2086
192b62ce 2087 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
c906108c 2088 {
ee0c3293 2089 error (_("\"%s\" is not an object file: %s"), filename.get (),
c906108c
SS
2090 bfd_errmsg (bfd_get_error ()));
2091 }
c5aa993b 2092
192b62ce 2093 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
a76d924d
DJ
2094 (void *) &total_progress.total_size);
2095
192b62ce 2096 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
c2d11a7d 2097
dcb07cfa
PA
2098 using namespace std::chrono;
2099
2100 steady_clock::time_point start_time = steady_clock::now ();
c906108c 2101
a76d924d
DJ
2102 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2103 load_progress) != 0)
2104 error (_("Load failed"));
c906108c 2105
dcb07cfa 2106 steady_clock::time_point end_time = steady_clock::now ();
ba5f2f8a 2107
192b62ce 2108 entry = bfd_get_start_address (loadfile_bfd.get ());
8c2b9656 2109 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
112e8700
SM
2110 uiout->text ("Start address ");
2111 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2112 uiout->text (", load size ");
2113 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2114 uiout->text ("\n");
fb14de7b 2115 regcache_write_pc (get_current_regcache (), entry);
c906108c 2116
38963c97
DJ
2117 /* Reset breakpoints, now that we have changed the load image. For
2118 instance, breakpoints may have been set (or reset, by
2119 post_create_inferior) while connected to the target but before we
2120 loaded the program. In that case, the prologue analyzer could
2121 have read instructions from the target to find the right
2122 breakpoint locations. Loading has changed the contents of that
2123 memory. */
2124
2125 breakpoint_re_set ();
2126
a76d924d
DJ
2127 print_transfer_performance (gdb_stdout, total_progress.data_count,
2128 total_progress.write_count,
dcb07cfa 2129 end_time - start_time);
c906108c
SS
2130
2131 do_cleanups (old_cleanups);
2132}
2133
dcb07cfa
PA
2134/* Report on STREAM the performance of a memory transfer operation,
2135 such as 'load'. DATA_COUNT is the number of bytes transferred.
2136 WRITE_COUNT is the number of separate write operations, or 0, if
2137 that information is not available. TIME is how long the operation
2138 lasted. */
c906108c 2139
dcb07cfa 2140static void
d9fcf2fb 2141print_transfer_performance (struct ui_file *stream,
917317f4
JM
2142 unsigned long data_count,
2143 unsigned long write_count,
dcb07cfa 2144 std::chrono::steady_clock::duration time)
917317f4 2145{
dcb07cfa 2146 using namespace std::chrono;
79a45e25 2147 struct ui_out *uiout = current_uiout;
2b71414d 2148
dcb07cfa 2149 milliseconds ms = duration_cast<milliseconds> (time);
2b71414d 2150
112e8700 2151 uiout->text ("Transfer rate: ");
dcb07cfa 2152 if (ms.count () > 0)
8b93c638 2153 {
dcb07cfa 2154 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
9f43d28c 2155
112e8700 2156 if (uiout->is_mi_like_p ())
9f43d28c 2157 {
112e8700
SM
2158 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2159 uiout->text (" bits/sec");
9f43d28c
DJ
2160 }
2161 else if (rate < 1024)
2162 {
112e8700
SM
2163 uiout->field_fmt ("transfer-rate", "%lu", rate);
2164 uiout->text (" bytes/sec");
9f43d28c
DJ
2165 }
2166 else
2167 {
112e8700
SM
2168 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2169 uiout->text (" KB/sec");
9f43d28c 2170 }
8b93c638
JM
2171 }
2172 else
2173 {
112e8700
SM
2174 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2175 uiout->text (" bits in <1 sec");
8b93c638
JM
2176 }
2177 if (write_count > 0)
2178 {
112e8700
SM
2179 uiout->text (", ");
2180 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2181 uiout->text (" bytes/write");
8b93c638 2182 }
112e8700 2183 uiout->text (".\n");
c906108c
SS
2184}
2185
2186/* This function allows the addition of incrementally linked object files.
2187 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2188/* Note: ezannoni 2000-04-13 This function/command used to have a
2189 special case syntax for the rombug target (Rombug is the boot
2190 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2191 rombug case, the user doesn't need to supply a text address,
2192 instead a call to target_link() (in target.c) would supply the
c378eb4e 2193 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2194
c906108c 2195static void
2cf311eb 2196add_symbol_file_command (const char *args, int from_tty)
c906108c 2197{
5af949e3 2198 struct gdbarch *gdbarch = get_current_arch ();
ee0c3293 2199 gdb::unique_xmalloc_ptr<char> filename;
c906108c 2200 char *arg;
2acceee2
JM
2201 int argcnt = 0;
2202 int sec_num = 0;
db162d44
EZ
2203 int expecting_sec_name = 0;
2204 int expecting_sec_addr = 0;
76ad5e1e 2205 struct objfile *objf;
b15cc25c
PA
2206 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2207 symfile_add_flags add_flags = 0;
2208
2209 if (from_tty)
2210 add_flags |= SYMFILE_VERBOSE;
db162d44 2211
a39a16c4 2212 struct sect_opt
2acceee2 2213 {
a121b7c1
PA
2214 const char *name;
2215 const char *value;
a39a16c4 2216 };
db162d44 2217
a39a16c4 2218 struct section_addr_info *section_addrs;
f978cb06 2219 std::vector<sect_opt> sect_opts;
3017564a 2220 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2221
c906108c
SS
2222 dont_repeat ();
2223
2224 if (args == NULL)
8a3fe4f8 2225 error (_("add-symbol-file takes a file name and an address"));
c906108c 2226
773a1edc 2227 gdb_argv argv (args);
db162d44 2228
5b96932b
AS
2229 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2230 {
c378eb4e 2231 /* Process the argument. */
db162d44 2232 if (argcnt == 0)
c906108c 2233 {
c378eb4e 2234 /* The first argument is the file name. */
ee0c3293 2235 filename.reset (tilde_expand (arg));
c906108c 2236 }
41dc8db8
MB
2237 else if (argcnt == 1)
2238 {
2239 /* The second argument is always the text address at which
2240 to load the program. */
f978cb06
TT
2241 sect_opt sect = { ".text", arg };
2242 sect_opts.push_back (sect);
41dc8db8 2243 }
db162d44 2244 else
41dc8db8
MB
2245 {
2246 /* It's an option (starting with '-') or it's an argument
2247 to an option. */
41dc8db8
MB
2248 if (expecting_sec_name)
2249 {
f978cb06
TT
2250 sect_opt sect = { arg, NULL };
2251 sect_opts.push_back (sect);
41dc8db8
MB
2252 expecting_sec_name = 0;
2253 }
2254 else if (expecting_sec_addr)
2255 {
f978cb06 2256 sect_opts.back ().value = arg;
41dc8db8 2257 expecting_sec_addr = 0;
41dc8db8
MB
2258 }
2259 else if (strcmp (arg, "-readnow") == 0)
2260 flags |= OBJF_READNOW;
e2e32174
SDJ
2261 else if (strcmp (arg, "-readnever") == 0)
2262 flags |= OBJF_READNEVER;
41dc8db8
MB
2263 else if (strcmp (arg, "-s") == 0)
2264 {
2265 expecting_sec_name = 1;
2266 expecting_sec_addr = 1;
2267 }
2268 else
02ca603a 2269 error (_("Unrecognized argument \"%s\""), arg);
41dc8db8 2270 }
c906108c 2271 }
c906108c 2272
e2e32174
SDJ
2273 validate_readnow_readnever (flags);
2274
927890d0
JB
2275 /* This command takes at least two arguments. The first one is a
2276 filename, and the second is the address where this file has been
2277 loaded. Abort now if this address hasn't been provided by the
2278 user. */
f978cb06 2279 if (sect_opts.empty ())
ee0c3293
TT
2280 error (_("The address where %s has been loaded is missing"),
2281 filename.get ());
927890d0 2282
02ca603a
TT
2283 if (expecting_sec_name)
2284 error (_("Missing section name after \"-s\""));
2285 else if (expecting_sec_addr)
2286 error (_("Missing section address after \"-s\""));
2287
c378eb4e 2288 /* Print the prompt for the query below. And save the arguments into
db162d44
EZ
2289 a sect_addr_info structure to be passed around to other
2290 functions. We have to split this up into separate print
bb599908 2291 statements because hex_string returns a local static
c378eb4e 2292 string. */
5417f6dc 2293
ee0c3293
TT
2294 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2295 filename.get ());
f978cb06 2296 section_addrs = alloc_section_addr_info (sect_opts.size ());
a39a16c4 2297 make_cleanup (xfree, section_addrs);
f978cb06 2298 for (sect_opt &sect : sect_opts)
c906108c 2299 {
db162d44 2300 CORE_ADDR addr;
f978cb06
TT
2301 const char *val = sect.value;
2302 const char *sec = sect.name;
5417f6dc 2303
ae822768 2304 addr = parse_and_eval_address (val);
db162d44 2305
db162d44 2306 /* Here we store the section offsets in the order they were
c378eb4e 2307 entered on the command line. */
a121b7c1 2308 section_addrs->other[sec_num].name = (char *) sec;
a39a16c4 2309 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2310 printf_unfiltered ("\t%s_addr = %s\n", sec,
2311 paddress (gdbarch, addr));
db162d44
EZ
2312 sec_num++;
2313
5417f6dc 2314 /* The object's sections are initialized when a
db162d44 2315 call is made to build_objfile_section_table (objfile).
5417f6dc 2316 This happens in reread_symbols.
db162d44
EZ
2317 At this point, we don't know what file type this is,
2318 so we can't determine what section names are valid. */
2acceee2 2319 }
d76488d8 2320 section_addrs->num_sections = sec_num;
db162d44 2321
2acceee2 2322 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2323 error (_("Not confirmed."));
c906108c 2324
ee0c3293 2325 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
76ad5e1e
NB
2326
2327 add_target_sections_of_objfile (objf);
c906108c
SS
2328
2329 /* Getting new symbols may change our opinion about what is
2330 frameless. */
2331 reinit_frame_cache ();
db162d44 2332 do_cleanups (my_cleanups);
c906108c
SS
2333}
2334\f
70992597 2335
63644780
NB
2336/* This function removes a symbol file that was added via add-symbol-file. */
2337
2338static void
2cf311eb 2339remove_symbol_file_command (const char *args, int from_tty)
63644780 2340{
63644780 2341 struct objfile *objf = NULL;
63644780 2342 struct program_space *pspace = current_program_space;
63644780
NB
2343
2344 dont_repeat ();
2345
2346 if (args == NULL)
2347 error (_("remove-symbol-file: no symbol file provided"));
2348
773a1edc 2349 gdb_argv argv (args);
63644780
NB
2350
2351 if (strcmp (argv[0], "-a") == 0)
2352 {
2353 /* Interpret the next argument as an address. */
2354 CORE_ADDR addr;
2355
2356 if (argv[1] == NULL)
2357 error (_("Missing address argument"));
2358
2359 if (argv[2] != NULL)
2360 error (_("Junk after %s"), argv[1]);
2361
2362 addr = parse_and_eval_address (argv[1]);
2363
2364 ALL_OBJFILES (objf)
2365 {
d03de421
PA
2366 if ((objf->flags & OBJF_USERLOADED) != 0
2367 && (objf->flags & OBJF_SHARED) != 0
63644780
NB
2368 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2369 break;
2370 }
2371 }
2372 else if (argv[0] != NULL)
2373 {
2374 /* Interpret the current argument as a file name. */
63644780
NB
2375
2376 if (argv[1] != NULL)
2377 error (_("Junk after %s"), argv[0]);
2378
ee0c3293 2379 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
63644780
NB
2380
2381 ALL_OBJFILES (objf)
2382 {
d03de421
PA
2383 if ((objf->flags & OBJF_USERLOADED) != 0
2384 && (objf->flags & OBJF_SHARED) != 0
63644780 2385 && objf->pspace == pspace
ee0c3293 2386 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
63644780
NB
2387 break;
2388 }
2389 }
2390
2391 if (objf == NULL)
2392 error (_("No symbol file found"));
2393
2394 if (from_tty
2395 && !query (_("Remove symbol table from file \"%s\"? "),
2396 objfile_name (objf)))
2397 error (_("Not confirmed."));
2398
9e86da07 2399 delete objf;
63644780 2400 clear_symtab_users (0);
63644780
NB
2401}
2402
c906108c 2403/* Re-read symbols if a symbol-file has changed. */
3b7bacac 2404
c906108c 2405void
fba45db2 2406reread_symbols (void)
c906108c
SS
2407{
2408 struct objfile *objfile;
2409 long new_modtime;
c906108c
SS
2410 struct stat new_statbuf;
2411 int res;
4c404b8b 2412 std::vector<struct objfile *> new_objfiles;
c906108c
SS
2413
2414 /* With the addition of shared libraries, this should be modified,
2415 the load time should be saved in the partial symbol tables, since
2416 different tables may come from different source files. FIXME.
2417 This routine should then walk down each partial symbol table
c378eb4e 2418 and see if the symbol table that it originates from has been changed. */
c906108c 2419
c5aa993b
JM
2420 for (objfile = object_files; objfile; objfile = objfile->next)
2421 {
9cce227f
TG
2422 if (objfile->obfd == NULL)
2423 continue;
2424
2425 /* Separate debug objfiles are handled in the main objfile. */
2426 if (objfile->separate_debug_objfile_backlink)
2427 continue;
2428
02aeec7b
JB
2429 /* If this object is from an archive (what you usually create with
2430 `ar', often called a `static library' on most systems, though
2431 a `shared library' on AIX is also an archive), then you should
2432 stat on the archive name, not member name. */
9cce227f
TG
2433 if (objfile->obfd->my_archive)
2434 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2435 else
4262abfb 2436 res = stat (objfile_name (objfile), &new_statbuf);
9cce227f
TG
2437 if (res != 0)
2438 {
c378eb4e 2439 /* FIXME, should use print_sys_errmsg but it's not filtered. */
9cce227f 2440 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
4262abfb 2441 objfile_name (objfile));
9cce227f
TG
2442 continue;
2443 }
2444 new_modtime = new_statbuf.st_mtime;
2445 if (new_modtime != objfile->mtime)
2446 {
2447 struct cleanup *old_cleanups;
2448 struct section_offsets *offsets;
2449 int num_offsets;
24ba069a 2450 char *original_name;
9cce227f
TG
2451
2452 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
4262abfb 2453 objfile_name (objfile));
9cce227f
TG
2454
2455 /* There are various functions like symbol_file_add,
2456 symfile_bfd_open, syms_from_objfile, etc., which might
2457 appear to do what we want. But they have various other
2458 effects which we *don't* want. So we just do stuff
2459 ourselves. We don't worry about mapped files (for one thing,
2460 any mapped file will be out of date). */
2461
2462 /* If we get an error, blow away this objfile (not sure if
2463 that is the correct response for things like shared
2464 libraries). */
ed2b3126
TT
2465 std::unique_ptr<struct objfile> objfile_holder (objfile);
2466
9cce227f 2467 /* We need to do this whenever any symbols go away. */
ed2b3126 2468 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
9cce227f 2469
0ba1096a
KT
2470 if (exec_bfd != NULL
2471 && filename_cmp (bfd_get_filename (objfile->obfd),
2472 bfd_get_filename (exec_bfd)) == 0)
9cce227f
TG
2473 {
2474 /* Reload EXEC_BFD without asking anything. */
2475
2476 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2477 }
2478
f6eeced0
JK
2479 /* Keep the calls order approx. the same as in free_objfile. */
2480
2481 /* Free the separate debug objfiles. It will be
2482 automatically recreated by sym_read. */
2483 free_objfile_separate_debug (objfile);
2484
2485 /* Remove any references to this objfile in the global
2486 value lists. */
2487 preserve_values (objfile);
2488
2489 /* Nuke all the state that we will re-read. Much of the following
2490 code which sets things to NULL really is necessary to tell
2491 other parts of GDB that there is nothing currently there.
2492
2493 Try to keep the freeing order compatible with free_objfile. */
2494
2495 if (objfile->sf != NULL)
2496 {
2497 (*objfile->sf->sym_finish) (objfile);
2498 }
2499
2500 clear_objfile_data (objfile);
2501
e1507e95 2502 /* Clean up any state BFD has sitting around. */
a4453b7e 2503 {
192b62ce 2504 gdb_bfd_ref_ptr obfd (objfile->obfd);
d3846e71 2505 char *obfd_filename;
a4453b7e
TT
2506
2507 obfd_filename = bfd_get_filename (objfile->obfd);
2508 /* Open the new BFD before freeing the old one, so that
2509 the filename remains live. */
192b62ce
TT
2510 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2511 objfile->obfd = temp.release ();
e1507e95 2512 if (objfile->obfd == NULL)
192b62ce 2513 error (_("Can't open %s to read symbols."), obfd_filename);
a4453b7e
TT
2514 }
2515
24ba069a
JK
2516 original_name = xstrdup (objfile->original_name);
2517 make_cleanup (xfree, original_name);
2518
9cce227f
TG
2519 /* bfd_openr sets cacheable to true, which is what we want. */
2520 if (!bfd_check_format (objfile->obfd, bfd_object))
4262abfb 2521 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
9cce227f
TG
2522 bfd_errmsg (bfd_get_error ()));
2523
2524 /* Save the offsets, we will nuke them with the rest of the
2525 objfile_obstack. */
2526 num_offsets = objfile->num_sections;
2527 offsets = ((struct section_offsets *)
2528 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2529 memcpy (offsets, objfile->section_offsets,
2530 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2531
9cce227f
TG
2532 /* FIXME: Do we have to free a whole linked list, or is this
2533 enough? */
af5bf4ad
SM
2534 objfile->global_psymbols.clear ();
2535 objfile->static_psymbols.clear ();
9cce227f 2536
c378eb4e 2537 /* Free the obstacks for non-reusable objfiles. */
710e1a31
SW
2538 psymbol_bcache_free (objfile->psymbol_cache);
2539 objfile->psymbol_cache = psymbol_bcache_init ();
41664b45
DG
2540
2541 /* NB: after this call to obstack_free, objfiles_changed
2542 will need to be called (see discussion below). */
9cce227f
TG
2543 obstack_free (&objfile->objfile_obstack, 0);
2544 objfile->sections = NULL;
43f3e411 2545 objfile->compunit_symtabs = NULL;
9cce227f
TG
2546 objfile->psymtabs = NULL;
2547 objfile->psymtabs_addrmap = NULL;
2548 objfile->free_psymtabs = NULL;
34eaf542 2549 objfile->template_symbols = NULL;
9cce227f 2550
9cce227f
TG
2551 /* obstack_init also initializes the obstack so it is
2552 empty. We could use obstack_specify_allocation but
d82ea6a8 2553 gdb_obstack.h specifies the alloc/dealloc functions. */
9cce227f 2554 obstack_init (&objfile->objfile_obstack);
779bd270 2555
846060df
JB
2556 /* set_objfile_per_bfd potentially allocates the per-bfd
2557 data on the objfile's obstack (if sharing data across
2558 multiple users is not possible), so it's important to
2559 do it *after* the obstack has been initialized. */
2560 set_objfile_per_bfd (objfile);
2561
224c3ddb
SM
2562 objfile->original_name
2563 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2564 strlen (original_name));
24ba069a 2565
779bd270
DE
2566 /* Reset the sym_fns pointer. The ELF reader can change it
2567 based on whether .gdb_index is present, and we need it to
2568 start over. PR symtab/15885 */
8fb8eb5c 2569 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
779bd270 2570
d82ea6a8 2571 build_objfile_section_table (objfile);
9cce227f
TG
2572 terminate_minimal_symbol_table (objfile);
2573
2574 /* We use the same section offsets as from last time. I'm not
2575 sure whether that is always correct for shared libraries. */
2576 objfile->section_offsets = (struct section_offsets *)
2577 obstack_alloc (&objfile->objfile_obstack,
2578 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2579 memcpy (objfile->section_offsets, offsets,
2580 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2581 objfile->num_sections = num_offsets;
2582
2583 /* What the hell is sym_new_init for, anyway? The concept of
2584 distinguishing between the main file and additional files
2585 in this way seems rather dubious. */
2586 if (objfile == symfile_objfile)
c906108c 2587 {
9cce227f 2588 (*objfile->sf->sym_new_init) (objfile);
c906108c 2589 }
9cce227f
TG
2590
2591 (*objfile->sf->sym_init) (objfile);
2592 clear_complaints (&symfile_complaints, 1, 1);
608e2dbb
TT
2593
2594 objfile->flags &= ~OBJF_PSYMTABS_READ;
41664b45
DG
2595
2596 /* We are about to read new symbols and potentially also
2597 DWARF information. Some targets may want to pass addresses
2598 read from DWARF DIE's through an adjustment function before
2599 saving them, like MIPS, which may call into
2600 "find_pc_section". When called, that function will make
2601 use of per-objfile program space data.
2602
2603 Since we discarded our section information above, we have
2604 dangling pointers in the per-objfile program space data
2605 structure. Force GDB to update the section mapping
2606 information by letting it know the objfile has changed,
2607 making the dangling pointers point to correct data
2608 again. */
2609
2610 objfiles_changed ();
2611
608e2dbb 2612 read_symbols (objfile, 0);
b11896a5 2613
9cce227f 2614 if (!objfile_has_symbols (objfile))
c906108c 2615 {
9cce227f
TG
2616 wrap_here ("");
2617 printf_unfiltered (_("(no debugging symbols found)\n"));
2618 wrap_here ("");
c5aa993b 2619 }
9cce227f
TG
2620
2621 /* We're done reading the symbol file; finish off complaints. */
2622 clear_complaints (&symfile_complaints, 0, 1);
2623
2624 /* Getting new symbols may change our opinion about what is
2625 frameless. */
2626
2627 reinit_frame_cache ();
2628
2629 /* Discard cleanups as symbol reading was successful. */
ed2b3126 2630 objfile_holder.release ();
9cce227f
TG
2631 discard_cleanups (old_cleanups);
2632
2633 /* If the mtime has changed between the time we set new_modtime
2634 and now, we *want* this to be out of date, so don't call stat
2635 again now. */
2636 objfile->mtime = new_modtime;
9cce227f 2637 init_entry_point_info (objfile);
4ac39b97 2638
4c404b8b 2639 new_objfiles.push_back (objfile);
c906108c
SS
2640 }
2641 }
c906108c 2642
4c404b8b 2643 if (!new_objfiles.empty ())
ea53e89f 2644 {
c1e56572 2645 clear_symtab_users (0);
4ac39b97
JK
2646
2647 /* clear_objfile_data for each objfile was called before freeing it and
2648 observer_notify_new_objfile (NULL) has been called by
2649 clear_symtab_users above. Notify the new files now. */
4c404b8b
TT
2650 for (auto iter : new_objfiles)
2651 observer_notify_new_objfile (iter);
4ac39b97 2652
ea53e89f
JB
2653 /* At least one objfile has changed, so we can consider that
2654 the executable we're debugging has changed too. */
781b42b0 2655 observer_notify_executable_changed ();
ea53e89f 2656 }
c906108c 2657}
c906108c
SS
2658\f
2659
593e3209 2660struct filename_language
c5aa993b 2661{
593e3209
SM
2662 filename_language (const std::string &ext_, enum language lang_)
2663 : ext (ext_), lang (lang_)
2664 {}
3fcf0b0d 2665
593e3209
SM
2666 std::string ext;
2667 enum language lang;
2668};
c906108c 2669
593e3209 2670static std::vector<filename_language> filename_language_table;
c906108c 2671
56618e20
TT
2672/* See symfile.h. */
2673
2674void
2675add_filename_language (const char *ext, enum language lang)
c906108c 2676{
593e3209 2677 filename_language_table.emplace_back (ext, lang);
c906108c
SS
2678}
2679
2680static char *ext_args;
920d2a44
AC
2681static void
2682show_ext_args (struct ui_file *file, int from_tty,
2683 struct cmd_list_element *c, const char *value)
2684{
3e43a32a
MS
2685 fprintf_filtered (file,
2686 _("Mapping between filename extension "
2687 "and source language is \"%s\".\n"),
920d2a44
AC
2688 value);
2689}
c906108c
SS
2690
2691static void
eb4c3f4a
TT
2692set_ext_lang_command (const char *args,
2693 int from_tty, struct cmd_list_element *e)
c906108c 2694{
c906108c
SS
2695 char *cp = ext_args;
2696 enum language lang;
2697
c378eb4e 2698 /* First arg is filename extension, starting with '.' */
c906108c 2699 if (*cp != '.')
8a3fe4f8 2700 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2701
2702 /* Find end of first arg. */
c5aa993b 2703 while (*cp && !isspace (*cp))
c906108c
SS
2704 cp++;
2705
2706 if (*cp == '\0')
3e43a32a
MS
2707 error (_("'%s': two arguments required -- "
2708 "filename extension and language"),
c906108c
SS
2709 ext_args);
2710
c378eb4e 2711 /* Null-terminate first arg. */
c5aa993b 2712 *cp++ = '\0';
c906108c
SS
2713
2714 /* Find beginning of second arg, which should be a source language. */
529480d0 2715 cp = skip_spaces (cp);
c906108c
SS
2716
2717 if (*cp == '\0')
3e43a32a
MS
2718 error (_("'%s': two arguments required -- "
2719 "filename extension and language"),
c906108c
SS
2720 ext_args);
2721
2722 /* Lookup the language from among those we know. */
2723 lang = language_enum (cp);
2724
593e3209 2725 auto it = filename_language_table.begin ();
c906108c 2726 /* Now lookup the filename extension: do we already know it? */
593e3209 2727 for (; it != filename_language_table.end (); it++)
3fcf0b0d 2728 {
593e3209 2729 if (it->ext == ext_args)
3fcf0b0d
TT
2730 break;
2731 }
c906108c 2732
593e3209 2733 if (it == filename_language_table.end ())
c906108c 2734 {
c378eb4e 2735 /* New file extension. */
c906108c
SS
2736 add_filename_language (ext_args, lang);
2737 }
2738 else
2739 {
c378eb4e 2740 /* Redefining a previously known filename extension. */
c906108c
SS
2741
2742 /* if (from_tty) */
2743 /* query ("Really make files of type %s '%s'?", */
2744 /* ext_args, language_str (lang)); */
2745
593e3209 2746 it->lang = lang;
c906108c
SS
2747 }
2748}
2749
2750static void
1d12d88f 2751info_ext_lang_command (const char *args, int from_tty)
c906108c 2752{
a3f17187 2753 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c 2754 printf_filtered ("\n\n");
593e3209
SM
2755 for (const filename_language &entry : filename_language_table)
2756 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2757 language_str (entry.lang));
c906108c
SS
2758}
2759
c906108c 2760enum language
dd786858 2761deduce_language_from_filename (const char *filename)
c906108c 2762{
e6a959d6 2763 const char *cp;
c906108c
SS
2764
2765 if (filename != NULL)
2766 if ((cp = strrchr (filename, '.')) != NULL)
3fcf0b0d 2767 {
593e3209
SM
2768 for (const filename_language &entry : filename_language_table)
2769 if (entry.ext == cp)
2770 return entry.lang;
3fcf0b0d 2771 }
c906108c
SS
2772
2773 return language_unknown;
2774}
2775\f
43f3e411
DE
2776/* Allocate and initialize a new symbol table.
2777 CUST is from the result of allocate_compunit_symtab. */
c906108c
SS
2778
2779struct symtab *
43f3e411 2780allocate_symtab (struct compunit_symtab *cust, const char *filename)
c906108c 2781{
43f3e411
DE
2782 struct objfile *objfile = cust->objfile;
2783 struct symtab *symtab
2784 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
c906108c 2785
19ba03f4
SM
2786 symtab->filename
2787 = (const char *) bcache (filename, strlen (filename) + 1,
21ea9eec 2788 objfile->per_bfd->filename_cache);
c5aa993b
JM
2789 symtab->fullname = NULL;
2790 symtab->language = deduce_language_from_filename (filename);
c906108c 2791
db0fec5c
DE
2792 /* This can be very verbose with lots of headers.
2793 Only print at higher debug levels. */
2794 if (symtab_create_debug >= 2)
45cfd468
DE
2795 {
2796 /* Be a bit clever with debugging messages, and don't print objfile
2797 every time, only when it changes. */
2798 static char *last_objfile_name = NULL;
2799
2800 if (last_objfile_name == NULL
4262abfb 2801 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
45cfd468
DE
2802 {
2803 xfree (last_objfile_name);
4262abfb 2804 last_objfile_name = xstrdup (objfile_name (objfile));
45cfd468
DE
2805 fprintf_unfiltered (gdb_stdlog,
2806 "Creating one or more symtabs for objfile %s ...\n",
2807 last_objfile_name);
2808 }
2809 fprintf_unfiltered (gdb_stdlog,
b3dbbd6f
PM
2810 "Created symtab %s for module %s.\n",
2811 host_address_to_string (symtab), filename);
45cfd468
DE
2812 }
2813
43f3e411
DE
2814 /* Add it to CUST's list of symtabs. */
2815 if (cust->filetabs == NULL)
2816 {
2817 cust->filetabs = symtab;
2818 cust->last_filetab = symtab;
2819 }
2820 else
2821 {
2822 cust->last_filetab->next = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825
2826 /* Backlink to the containing compunit symtab. */
2827 symtab->compunit_symtab = cust;
2828
2829 return symtab;
2830}
2831
2832/* Allocate and initialize a new compunit.
2833 NAME is the name of the main source file, if there is one, or some
2834 descriptive text if there are no source files. */
2835
2836struct compunit_symtab *
2837allocate_compunit_symtab (struct objfile *objfile, const char *name)
2838{
2839 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2840 struct compunit_symtab);
2841 const char *saved_name;
2842
2843 cu->objfile = objfile;
2844
2845 /* The name we record here is only for display/debugging purposes.
2846 Just save the basename to avoid path issues (too long for display,
2847 relative vs absolute, etc.). */
2848 saved_name = lbasename (name);
224c3ddb
SM
2849 cu->name
2850 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2851 strlen (saved_name));
43f3e411
DE
2852
2853 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2854
2855 if (symtab_create_debug)
2856 {
2857 fprintf_unfiltered (gdb_stdlog,
2858 "Created compunit symtab %s for %s.\n",
2859 host_address_to_string (cu),
2860 cu->name);
2861 }
2862
2863 return cu;
2864}
2865
2866/* Hook CU to the objfile it comes from. */
2867
2868void
2869add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2870{
2871 cu->next = cu->objfile->compunit_symtabs;
2872 cu->objfile->compunit_symtabs = cu;
c906108c 2873}
c906108c 2874\f
c5aa993b 2875
b15cc25c
PA
2876/* Reset all data structures in gdb which may contain references to
2877 symbol table data. */
c906108c
SS
2878
2879void
b15cc25c 2880clear_symtab_users (symfile_add_flags add_flags)
c906108c
SS
2881{
2882 /* Someday, we should do better than this, by only blowing away
2883 the things that really need to be blown. */
c0501be5
DJ
2884
2885 /* Clear the "current" symtab first, because it is no longer valid.
2886 breakpoint_re_set may try to access the current symtab. */
2887 clear_current_source_symtab_and_line ();
2888
c906108c 2889 clear_displays ();
1bfeeb0f 2890 clear_last_displayed_sal ();
c906108c 2891 clear_pc_function_cache ();
06d3b283 2892 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2893
2894 /* Clear globals which might have pointed into a removed objfile.
2895 FIXME: It's not clear which of these are supposed to persist
2896 between expressions and which ought to be reset each time. */
2897 expression_context_block = NULL;
2898 innermost_block = NULL;
8756216b
DP
2899
2900 /* Varobj may refer to old symbols, perform a cleanup. */
2901 varobj_invalidate ();
2902
e700d1b2
JB
2903 /* Now that the various caches have been cleared, we can re_set
2904 our breakpoints without risking it using stale data. */
2905 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2906 breakpoint_re_set ();
c906108c
SS
2907}
2908
74b7792f
AC
2909static void
2910clear_symtab_users_cleanup (void *ignore)
2911{
c1e56572 2912 clear_symtab_users (0);
74b7792f 2913}
c906108c 2914\f
c906108c
SS
2915/* OVERLAYS:
2916 The following code implements an abstraction for debugging overlay sections.
2917
2918 The target model is as follows:
2919 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2920 same VMA, each with its own unique LMA (or load address).
c906108c 2921 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2922 sections, one by one, from the load address into the VMA address.
5417f6dc 2923 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2924 sections should be considered to be mapped from the VMA to the LMA.
2925 This information is used for symbol lookup, and memory read/write.
5417f6dc 2926 For instance, if a section has been mapped then its contents
c5aa993b 2927 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2928
2929 Two levels of debugger support for overlays are available. One is
2930 "manual", in which the debugger relies on the user to tell it which
2931 overlays are currently mapped. This level of support is
2932 implemented entirely in the core debugger, and the information about
2933 whether a section is mapped is kept in the objfile->obj_section table.
2934
2935 The second level of support is "automatic", and is only available if
2936 the target-specific code provides functionality to read the target's
2937 overlay mapping table, and translate its contents for the debugger
2938 (by updating the mapped state information in the obj_section tables).
2939
2940 The interface is as follows:
c5aa993b
JM
2941 User commands:
2942 overlay map <name> -- tell gdb to consider this section mapped
2943 overlay unmap <name> -- tell gdb to consider this section unmapped
2944 overlay list -- list the sections that GDB thinks are mapped
2945 overlay read-target -- get the target's state of what's mapped
2946 overlay off/manual/auto -- set overlay debugging state
2947 Functional interface:
2948 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2949 section, return that section.
5417f6dc 2950 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2951 the pc, either in its VMA or its LMA
714835d5 2952 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2953 section_is_overlay(sect): true if section's VMA != LMA
2954 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2955 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2956 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2957 overlay_mapped_address(...): map an address from section's LMA to VMA
2958 overlay_unmapped_address(...): map an address from section's VMA to LMA
2959 symbol_overlayed_address(...): Return a "current" address for symbol:
2960 either in VMA or LMA depending on whether
c378eb4e 2961 the symbol's section is currently mapped. */
c906108c
SS
2962
2963/* Overlay debugging state: */
2964
d874f1e2 2965enum overlay_debugging_state overlay_debugging = ovly_off;
c378eb4e 2966int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
c906108c 2967
c906108c 2968/* Function: section_is_overlay (SECTION)
5417f6dc 2969 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2970 SECTION is loaded at an address different from where it will "run". */
2971
2972int
714835d5 2973section_is_overlay (struct obj_section *section)
c906108c 2974{
714835d5
UW
2975 if (overlay_debugging && section)
2976 {
2977 bfd *abfd = section->objfile->obfd;
2978 asection *bfd_section = section->the_bfd_section;
f888f159 2979
714835d5
UW
2980 if (bfd_section_lma (abfd, bfd_section) != 0
2981 && bfd_section_lma (abfd, bfd_section)
2982 != bfd_section_vma (abfd, bfd_section))
2983 return 1;
2984 }
c906108c
SS
2985
2986 return 0;
2987}
2988
2989/* Function: overlay_invalidate_all (void)
2990 Invalidate the mapped state of all overlay sections (mark it as stale). */
2991
2992static void
fba45db2 2993overlay_invalidate_all (void)
c906108c 2994{
c5aa993b 2995 struct objfile *objfile;
c906108c
SS
2996 struct obj_section *sect;
2997
2998 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2999 if (section_is_overlay (sect))
3000 sect->ovly_mapped = -1;
c906108c
SS
3001}
3002
714835d5 3003/* Function: section_is_mapped (SECTION)
5417f6dc 3004 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3005
3006 Access to the ovly_mapped flag is restricted to this function, so
3007 that we can do automatic update. If the global flag
3008 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3009 overlay_invalidate_all. If the mapped state of the particular
3010 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3011
714835d5
UW
3012int
3013section_is_mapped (struct obj_section *osect)
c906108c 3014{
9216df95
UW
3015 struct gdbarch *gdbarch;
3016
714835d5 3017 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
3018 return 0;
3019
c5aa993b 3020 switch (overlay_debugging)
c906108c
SS
3021 {
3022 default:
d874f1e2 3023 case ovly_off:
c5aa993b 3024 return 0; /* overlay debugging off */
d874f1e2 3025 case ovly_auto: /* overlay debugging automatic */
1c772458 3026 /* Unles there is a gdbarch_overlay_update function,
c378eb4e 3027 there's really nothing useful to do here (can't really go auto). */
9216df95
UW
3028 gdbarch = get_objfile_arch (osect->objfile);
3029 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
3030 {
3031 if (overlay_cache_invalid)
3032 {
3033 overlay_invalidate_all ();
3034 overlay_cache_invalid = 0;
3035 }
3036 if (osect->ovly_mapped == -1)
9216df95 3037 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
3038 }
3039 /* fall thru to manual case */
d874f1e2 3040 case ovly_on: /* overlay debugging manual */
c906108c
SS
3041 return osect->ovly_mapped == 1;
3042 }
3043}
3044
c906108c
SS
3045/* Function: pc_in_unmapped_range
3046 If PC falls into the lma range of SECTION, return true, else false. */
3047
3048CORE_ADDR
714835d5 3049pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3050{
714835d5
UW
3051 if (section_is_overlay (section))
3052 {
3053 bfd *abfd = section->objfile->obfd;
3054 asection *bfd_section = section->the_bfd_section;
fbd35540 3055
714835d5
UW
3056 /* We assume the LMA is relocated by the same offset as the VMA. */
3057 bfd_vma size = bfd_get_section_size (bfd_section);
3058 CORE_ADDR offset = obj_section_offset (section);
3059
3060 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3061 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3062 return 1;
3063 }
c906108c 3064
c906108c
SS
3065 return 0;
3066}
3067
3068/* Function: pc_in_mapped_range
3069 If PC falls into the vma range of SECTION, return true, else false. */
3070
3071CORE_ADDR
714835d5 3072pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 3073{
714835d5
UW
3074 if (section_is_overlay (section))
3075 {
3076 if (obj_section_addr (section) <= pc
3077 && pc < obj_section_endaddr (section))
3078 return 1;
3079 }
c906108c 3080
c906108c
SS
3081 return 0;
3082}
3083
9ec8e6a0
JB
3084/* Return true if the mapped ranges of sections A and B overlap, false
3085 otherwise. */
3b7bacac 3086
b9362cc7 3087static int
714835d5 3088sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 3089{
714835d5
UW
3090 CORE_ADDR a_start = obj_section_addr (a);
3091 CORE_ADDR a_end = obj_section_endaddr (a);
3092 CORE_ADDR b_start = obj_section_addr (b);
3093 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
3094
3095 return (a_start < b_end && b_start < a_end);
3096}
3097
c906108c
SS
3098/* Function: overlay_unmapped_address (PC, SECTION)
3099 Returns the address corresponding to PC in the unmapped (load) range.
3100 May be the same as PC. */
3101
3102CORE_ADDR
714835d5 3103overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3104{
714835d5
UW
3105 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3106 {
3107 bfd *abfd = section->objfile->obfd;
3108 asection *bfd_section = section->the_bfd_section;
fbd35540 3109
714835d5
UW
3110 return pc + bfd_section_lma (abfd, bfd_section)
3111 - bfd_section_vma (abfd, bfd_section);
3112 }
c906108c
SS
3113
3114 return pc;
3115}
3116
3117/* Function: overlay_mapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the mapped (runtime) range.
3119 May be the same as PC. */
3120
3121CORE_ADDR
714835d5 3122overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3123{
714835d5
UW
3124 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3125 {
3126 bfd *abfd = section->objfile->obfd;
3127 asection *bfd_section = section->the_bfd_section;
fbd35540 3128
714835d5
UW
3129 return pc + bfd_section_vma (abfd, bfd_section)
3130 - bfd_section_lma (abfd, bfd_section);
3131 }
c906108c
SS
3132
3133 return pc;
3134}
3135
5417f6dc 3136/* Function: symbol_overlayed_address
c906108c
SS
3137 Return one of two addresses (relative to the VMA or to the LMA),
3138 depending on whether the section is mapped or not. */
3139
c5aa993b 3140CORE_ADDR
714835d5 3141symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3142{
3143 if (overlay_debugging)
3144 {
c378eb4e 3145 /* If the symbol has no section, just return its regular address. */
c906108c
SS
3146 if (section == 0)
3147 return address;
c378eb4e
MS
3148 /* If the symbol's section is not an overlay, just return its
3149 address. */
c906108c
SS
3150 if (!section_is_overlay (section))
3151 return address;
c378eb4e 3152 /* If the symbol's section is mapped, just return its address. */
c906108c
SS
3153 if (section_is_mapped (section))
3154 return address;
3155 /*
3156 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3157 * then return its LOADED address rather than its vma address!!
3158 */
3159 return overlay_unmapped_address (address, section);
3160 }
3161 return address;
3162}
3163
5417f6dc 3164/* Function: find_pc_overlay (PC)
c906108c
SS
3165 Return the best-match overlay section for PC:
3166 If PC matches a mapped overlay section's VMA, return that section.
3167 Else if PC matches an unmapped section's VMA, return that section.
3168 Else if PC matches an unmapped section's LMA, return that section. */
3169
714835d5 3170struct obj_section *
fba45db2 3171find_pc_overlay (CORE_ADDR pc)
c906108c 3172{
c5aa993b 3173 struct objfile *objfile;
c906108c
SS
3174 struct obj_section *osect, *best_match = NULL;
3175
3176 if (overlay_debugging)
b631e59b
KT
3177 {
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (section_is_overlay (osect))
c5aa993b 3180 {
b631e59b
KT
3181 if (pc_in_mapped_range (pc, osect))
3182 {
3183 if (section_is_mapped (osect))
3184 return osect;
3185 else
3186 best_match = osect;
3187 }
3188 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3189 best_match = osect;
3190 }
b631e59b 3191 }
714835d5 3192 return best_match;
c906108c
SS
3193}
3194
3195/* Function: find_pc_mapped_section (PC)
5417f6dc 3196 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3197 currently marked as MAPPED, return that section. Else return NULL. */
3198
714835d5 3199struct obj_section *
fba45db2 3200find_pc_mapped_section (CORE_ADDR pc)
c906108c 3201{
c5aa993b 3202 struct objfile *objfile;
c906108c
SS
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
b631e59b
KT
3206 {
3207 ALL_OBJSECTIONS (objfile, osect)
3208 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3209 return osect;
3210 }
c906108c
SS
3211
3212 return NULL;
3213}
3214
3215/* Function: list_overlays_command
c378eb4e 3216 Print a list of mapped sections and their PC ranges. */
c906108c 3217
5d3055ad 3218static void
2cf311eb 3219list_overlays_command (const char *args, int from_tty)
c906108c 3220{
c5aa993b
JM
3221 int nmapped = 0;
3222 struct objfile *objfile;
c906108c
SS
3223 struct obj_section *osect;
3224
3225 if (overlay_debugging)
b631e59b
KT
3226 {
3227 ALL_OBJSECTIONS (objfile, osect)
714835d5 3228 if (section_is_mapped (osect))
b631e59b
KT
3229 {
3230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3231 const char *name;
3232 bfd_vma lma, vma;
3233 int size;
3234
3235 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3236 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3237 size = bfd_get_section_size (osect->the_bfd_section);
3238 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3239
3240 printf_filtered ("Section %s, loaded at ", name);
3241 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3242 puts_filtered (" - ");
3243 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3244 printf_filtered (", mapped at ");
3245 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3246 puts_filtered (" - ");
3247 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3248 puts_filtered ("\n");
3249
3250 nmapped++;
3251 }
3252 }
c906108c 3253 if (nmapped == 0)
a3f17187 3254 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3255}
3256
3257/* Function: map_overlay_command
3258 Mark the named section as mapped (ie. residing at its VMA address). */
3259
5d3055ad 3260static void
2cf311eb 3261map_overlay_command (const char *args, int from_tty)
c906108c 3262{
c5aa993b
JM
3263 struct objfile *objfile, *objfile2;
3264 struct obj_section *sec, *sec2;
c906108c
SS
3265
3266 if (!overlay_debugging)
3e43a32a
MS
3267 error (_("Overlay debugging not enabled. Use "
3268 "either the 'overlay auto' or\n"
3269 "the 'overlay manual' command."));
c906108c
SS
3270
3271 if (args == 0 || *args == 0)
8a3fe4f8 3272 error (_("Argument required: name of an overlay section"));
c906108c 3273
c378eb4e 3274 /* First, find a section matching the user supplied argument. */
c906108c
SS
3275 ALL_OBJSECTIONS (objfile, sec)
3276 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b 3277 {
c378eb4e 3278 /* Now, check to see if the section is an overlay. */
714835d5 3279 if (!section_is_overlay (sec))
c5aa993b
JM
3280 continue; /* not an overlay section */
3281
c378eb4e 3282 /* Mark the overlay as "mapped". */
c5aa993b
JM
3283 sec->ovly_mapped = 1;
3284
3285 /* Next, make a pass and unmap any sections that are
3286 overlapped by this new section: */
3287 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3288 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3289 {
3290 if (info_verbose)
a3f17187 3291 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3292 bfd_section_name (objfile->obfd,
3293 sec2->the_bfd_section));
c378eb4e 3294 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
c5aa993b
JM
3295 }
3296 return;
3297 }
8a3fe4f8 3298 error (_("No overlay section called %s"), args);
c906108c
SS
3299}
3300
3301/* Function: unmap_overlay_command
5417f6dc 3302 Mark the overlay section as unmapped
c906108c
SS
3303 (ie. resident in its LMA address range, rather than the VMA range). */
3304
5d3055ad 3305static void
2cf311eb 3306unmap_overlay_command (const char *args, int from_tty)
c906108c 3307{
c5aa993b 3308 struct objfile *objfile;
7a270e0c 3309 struct obj_section *sec = NULL;
c906108c
SS
3310
3311 if (!overlay_debugging)
3e43a32a
MS
3312 error (_("Overlay debugging not enabled. "
3313 "Use either the 'overlay auto' or\n"
3314 "the 'overlay manual' command."));
c906108c
SS
3315
3316 if (args == 0 || *args == 0)
8a3fe4f8 3317 error (_("Argument required: name of an overlay section"));
c906108c 3318
c378eb4e 3319 /* First, find a section matching the user supplied argument. */
c906108c
SS
3320 ALL_OBJSECTIONS (objfile, sec)
3321 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3322 {
3323 if (!sec->ovly_mapped)
8a3fe4f8 3324 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3325 sec->ovly_mapped = 0;
3326 return;
3327 }
8a3fe4f8 3328 error (_("No overlay section called %s"), args);
c906108c
SS
3329}
3330
3331/* Function: overlay_auto_command
3332 A utility command to turn on overlay debugging.
c378eb4e 3333 Possibly this should be done via a set/show command. */
c906108c
SS
3334
3335static void
2cf311eb 3336overlay_auto_command (const char *args, int from_tty)
c906108c 3337{
d874f1e2 3338 overlay_debugging = ovly_auto;
1900040c 3339 enable_overlay_breakpoints ();
c906108c 3340 if (info_verbose)
a3f17187 3341 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3342}
3343
3344/* Function: overlay_manual_command
3345 A utility command to turn on overlay debugging.
c378eb4e 3346 Possibly this should be done via a set/show command. */
c906108c
SS
3347
3348static void
2cf311eb 3349overlay_manual_command (const char *args, int from_tty)
c906108c 3350{
d874f1e2 3351 overlay_debugging = ovly_on;
1900040c 3352 disable_overlay_breakpoints ();
c906108c 3353 if (info_verbose)
a3f17187 3354 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3355}
3356
3357/* Function: overlay_off_command
3358 A utility command to turn on overlay debugging.
c378eb4e 3359 Possibly this should be done via a set/show command. */
c906108c
SS
3360
3361static void
2cf311eb 3362overlay_off_command (const char *args, int from_tty)
c906108c 3363{
d874f1e2 3364 overlay_debugging = ovly_off;
1900040c 3365 disable_overlay_breakpoints ();
c906108c 3366 if (info_verbose)
a3f17187 3367 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3368}
3369
3370static void
2cf311eb 3371overlay_load_command (const char *args, int from_tty)
c906108c 3372{
e17c207e
UW
3373 struct gdbarch *gdbarch = get_current_arch ();
3374
3375 if (gdbarch_overlay_update_p (gdbarch))
3376 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3377 else
8a3fe4f8 3378 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3379}
3380
3381/* Function: overlay_command
c378eb4e 3382 A place-holder for a mis-typed command. */
c906108c 3383
c378eb4e 3384/* Command list chain containing all defined "overlay" subcommands. */
28578e6b 3385static struct cmd_list_element *overlaylist;
c906108c
SS
3386
3387static void
981a3fb3 3388overlay_command (const char *args, int from_tty)
c906108c 3389{
c5aa993b 3390 printf_unfiltered
c906108c 3391 ("\"overlay\" must be followed by the name of an overlay command.\n");
635c7e8a 3392 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
c906108c
SS
3393}
3394
c906108c
SS
3395/* Target Overlays for the "Simplest" overlay manager:
3396
5417f6dc
RM
3397 This is GDB's default target overlay layer. It works with the
3398 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3399 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3400 so targets that use a different runtime overlay manager can
c906108c
SS
3401 substitute their own overlay_update function and take over the
3402 function pointer.
3403
3404 The overlay_update function pokes around in the target's data structures
3405 to see what overlays are mapped, and updates GDB's overlay mapping with
3406 this information.
3407
3408 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3409 unsigned _novlys; /# number of overlay sections #/
3410 unsigned _ovly_table[_novlys][4] = {
438e1e42 3411 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
c5aa993b
JM
3412 {..., ..., ..., ...},
3413 }
3414 unsigned _novly_regions; /# number of overlay regions #/
3415 unsigned _ovly_region_table[_novly_regions][3] = {
438e1e42 3416 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
c5aa993b
JM
3417 {..., ..., ...},
3418 }
c906108c
SS
3419 These functions will attempt to update GDB's mappedness state in the
3420 symbol section table, based on the target's mappedness state.
3421
3422 To do this, we keep a cached copy of the target's _ovly_table, and
3423 attempt to detect when the cached copy is invalidated. The main
3424 entry point is "simple_overlay_update(SECT), which looks up SECT in
3425 the cached table and re-reads only the entry for that section from
c378eb4e 3426 the target (whenever possible). */
c906108c
SS
3427
3428/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3429static unsigned (*cache_ovly_table)[4] = 0;
c5aa993b 3430static unsigned cache_novlys = 0;
c906108c 3431static CORE_ADDR cache_ovly_table_base = 0;
c5aa993b
JM
3432enum ovly_index
3433 {
438e1e42 3434 VMA, OSIZE, LMA, MAPPED
c5aa993b 3435 };
c906108c 3436
c378eb4e 3437/* Throw away the cached copy of _ovly_table. */
3b7bacac 3438
c906108c 3439static void
fba45db2 3440simple_free_overlay_table (void)
c906108c
SS
3441{
3442 if (cache_ovly_table)
b8c9b27d 3443 xfree (cache_ovly_table);
c5aa993b 3444 cache_novlys = 0;
c906108c
SS
3445 cache_ovly_table = NULL;
3446 cache_ovly_table_base = 0;
3447}
3448
9216df95 3449/* Read an array of ints of size SIZE from the target into a local buffer.
c378eb4e 3450 Convert to host order. int LEN is number of ints. */
3b7bacac 3451
c906108c 3452static void
9216df95 3453read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3454 int len, int size, enum bfd_endian byte_order)
c906108c 3455{
c378eb4e 3456 /* FIXME (alloca): Not safe if array is very large. */
224c3ddb 3457 gdb_byte *buf = (gdb_byte *) alloca (len * size);
c5aa993b 3458 int i;
c906108c 3459
9216df95 3460 read_memory (memaddr, buf, len * size);
c906108c 3461 for (i = 0; i < len; i++)
e17a4113 3462 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3463}
3464
3465/* Find and grab a copy of the target _ovly_table
c378eb4e 3466 (and _novlys, which is needed for the table's size). */
3b7bacac 3467
c5aa993b 3468static int
fba45db2 3469simple_read_overlay_table (void)
c906108c 3470{
3b7344d5 3471 struct bound_minimal_symbol novlys_msym;
7c7b6655 3472 struct bound_minimal_symbol ovly_table_msym;
9216df95
UW
3473 struct gdbarch *gdbarch;
3474 int word_size;
e17a4113 3475 enum bfd_endian byte_order;
c906108c
SS
3476
3477 simple_free_overlay_table ();
9b27852e 3478 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3b7344d5 3479 if (! novlys_msym.minsym)
c906108c 3480 {
8a3fe4f8 3481 error (_("Error reading inferior's overlay table: "
0d43edd1 3482 "couldn't find `_novlys' variable\n"
8a3fe4f8 3483 "in inferior. Use `overlay manual' mode."));
0d43edd1 3484 return 0;
c906108c 3485 }
0d43edd1 3486
7c7b6655
TT
3487 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3488 if (! ovly_table_msym.minsym)
0d43edd1 3489 {
8a3fe4f8 3490 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3491 "`_ovly_table' array\n"
8a3fe4f8 3492 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3493 return 0;
3494 }
3495
7c7b6655 3496 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
9216df95 3497 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3498 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3499
77e371c0
TT
3500 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3501 4, byte_order);
0d43edd1 3502 cache_ovly_table
224c3ddb 3503 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
77e371c0 3504 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
0d43edd1 3505 read_target_long_array (cache_ovly_table_base,
777ea8f1 3506 (unsigned int *) cache_ovly_table,
e17a4113 3507 cache_novlys * 4, word_size, byte_order);
0d43edd1 3508
c5aa993b 3509 return 1; /* SUCCESS */
c906108c
SS
3510}
3511
5417f6dc 3512/* Function: simple_overlay_update_1
c906108c
SS
3513 A helper function for simple_overlay_update. Assuming a cached copy
3514 of _ovly_table exists, look through it to find an entry whose vma,
3515 lma and size match those of OSECT. Re-read the entry and make sure
3516 it still matches OSECT (else the table may no longer be valid).
3517 Set OSECT's mapped state to match the entry. Return: 1 for
3518 success, 0 for failure. */
3519
3520static int
fba45db2 3521simple_overlay_update_1 (struct obj_section *osect)
c906108c 3522{
764c99c1 3523 int i;
fbd35540
MS
3524 bfd *obfd = osect->objfile->obfd;
3525 asection *bsect = osect->the_bfd_section;
9216df95
UW
3526 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3527 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3529
c906108c 3530 for (i = 0; i < cache_novlys; i++)
fbd35540 3531 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3532 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c 3533 {
9216df95
UW
3534 read_target_long_array (cache_ovly_table_base + i * word_size,
3535 (unsigned int *) cache_ovly_table[i],
e17a4113 3536 4, word_size, byte_order);
fbd35540 3537 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3538 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c906108c
SS
3539 {
3540 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3541 return 1;
3542 }
c378eb4e 3543 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3544 return 0;
3545 }
3546 return 0;
3547}
3548
3549/* Function: simple_overlay_update
5417f6dc
RM
3550 If OSECT is NULL, then update all sections' mapped state
3551 (after re-reading the entire target _ovly_table).
3552 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3553 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3554 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3555 re-read the entire cache, and go ahead and update all sections. */
3556
1c772458 3557void
fba45db2 3558simple_overlay_update (struct obj_section *osect)
c906108c 3559{
c5aa993b 3560 struct objfile *objfile;
c906108c 3561
c378eb4e 3562 /* Were we given an osect to look up? NULL means do all of them. */
c906108c 3563 if (osect)
c378eb4e 3564 /* Have we got a cached copy of the target's overlay table? */
c906108c 3565 if (cache_ovly_table != NULL)
9cc89665
MS
3566 {
3567 /* Does its cached location match what's currently in the
3568 symtab? */
3b7344d5 3569 struct bound_minimal_symbol minsym
9cc89665
MS
3570 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3571
3b7344d5 3572 if (minsym.minsym == NULL)
9cc89665
MS
3573 error (_("Error reading inferior's overlay table: couldn't "
3574 "find `_ovly_table' array\n"
3575 "in inferior. Use `overlay manual' mode."));
3576
77e371c0 3577 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
9cc89665
MS
3578 /* Then go ahead and try to look up this single section in
3579 the cache. */
3580 if (simple_overlay_update_1 (osect))
3581 /* Found it! We're done. */
3582 return;
3583 }
c906108c
SS
3584
3585 /* Cached table no good: need to read the entire table anew.
3586 Or else we want all the sections, in which case it's actually
3587 more efficient to read the whole table in one block anyway. */
3588
0d43edd1
JB
3589 if (! simple_read_overlay_table ())
3590 return;
3591
c378eb4e 3592 /* Now may as well update all sections, even if only one was requested. */
c906108c 3593 ALL_OBJSECTIONS (objfile, osect)
714835d5 3594 if (section_is_overlay (osect))
c5aa993b 3595 {
764c99c1 3596 int i;
fbd35540
MS
3597 bfd *obfd = osect->objfile->obfd;
3598 asection *bsect = osect->the_bfd_section;
c5aa993b 3599
c5aa993b 3600 for (i = 0; i < cache_novlys; i++)
fbd35540 3601 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
764c99c1 3602 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
c378eb4e 3603 { /* obj_section matches i'th entry in ovly_table. */
c5aa993b 3604 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
c378eb4e 3605 break; /* finished with inner for loop: break out. */
c5aa993b
JM
3606 }
3607 }
c906108c
SS
3608}
3609
086df311
DJ
3610/* Set the output sections and output offsets for section SECTP in
3611 ABFD. The relocation code in BFD will read these offsets, so we
3612 need to be sure they're initialized. We map each section to itself,
3613 with no offset; this means that SECTP->vma will be honored. */
3614
3615static void
3616symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3617{
3618 sectp->output_section = sectp;
3619 sectp->output_offset = 0;
3620}
3621
ac8035ab
TG
3622/* Default implementation for sym_relocate. */
3623
ac8035ab
TG
3624bfd_byte *
3625default_symfile_relocate (struct objfile *objfile, asection *sectp,
3626 bfd_byte *buf)
3627{
3019eac3
DE
3628 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3629 DWO file. */
3630 bfd *abfd = sectp->owner;
ac8035ab
TG
3631
3632 /* We're only interested in sections with relocation
3633 information. */
3634 if ((sectp->flags & SEC_RELOC) == 0)
3635 return NULL;
3636
3637 /* We will handle section offsets properly elsewhere, so relocate as if
3638 all sections begin at 0. */
3639 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3640
3641 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3642}
3643
086df311
DJ
3644/* Relocate the contents of a debug section SECTP in ABFD. The
3645 contents are stored in BUF if it is non-NULL, or returned in a
3646 malloc'd buffer otherwise.
3647
3648 For some platforms and debug info formats, shared libraries contain
3649 relocations against the debug sections (particularly for DWARF-2;
3650 one affected platform is PowerPC GNU/Linux, although it depends on
3651 the version of the linker in use). Also, ELF object files naturally
3652 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3653 the relocations in order to get the locations of symbols correct.
3654 Another example that may require relocation processing, is the
3655 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3656 debug section. */
086df311
DJ
3657
3658bfd_byte *
ac8035ab
TG
3659symfile_relocate_debug_section (struct objfile *objfile,
3660 asection *sectp, bfd_byte *buf)
086df311 3661{
ac8035ab 3662 gdb_assert (objfile->sf->sym_relocate);
086df311 3663
ac8035ab 3664 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3665}
c906108c 3666
31d99776
DJ
3667struct symfile_segment_data *
3668get_symfile_segment_data (bfd *abfd)
3669{
00b5771c 3670 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3671
3672 if (sf == NULL)
3673 return NULL;
3674
3675 return sf->sym_segments (abfd);
3676}
3677
3678void
3679free_symfile_segment_data (struct symfile_segment_data *data)
3680{
3681 xfree (data->segment_bases);
3682 xfree (data->segment_sizes);
3683 xfree (data->segment_info);
3684 xfree (data);
3685}
3686
28c32713
JB
3687/* Given:
3688 - DATA, containing segment addresses from the object file ABFD, and
3689 the mapping from ABFD's sections onto the segments that own them,
3690 and
3691 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3692 segment addresses reported by the target,
3693 store the appropriate offsets for each section in OFFSETS.
3694
3695 If there are fewer entries in SEGMENT_BASES than there are segments
3696 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3697
8d385431
DJ
3698 If there are more entries, then ignore the extra. The target may
3699 not be able to distinguish between an empty data segment and a
3700 missing data segment; a missing text segment is less plausible. */
3b7bacac 3701
31d99776 3702int
3189cb12
DE
3703symfile_map_offsets_to_segments (bfd *abfd,
3704 const struct symfile_segment_data *data,
31d99776
DJ
3705 struct section_offsets *offsets,
3706 int num_segment_bases,
3707 const CORE_ADDR *segment_bases)
3708{
3709 int i;
3710 asection *sect;
3711
28c32713
JB
3712 /* It doesn't make sense to call this function unless you have some
3713 segment base addresses. */
202b96c1 3714 gdb_assert (num_segment_bases > 0);
28c32713 3715
31d99776
DJ
3716 /* If we do not have segment mappings for the object file, we
3717 can not relocate it by segments. */
3718 gdb_assert (data != NULL);
3719 gdb_assert (data->num_segments > 0);
3720
31d99776
DJ
3721 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3722 {
31d99776
DJ
3723 int which = data->segment_info[i];
3724
28c32713
JB
3725 gdb_assert (0 <= which && which <= data->num_segments);
3726
3727 /* Don't bother computing offsets for sections that aren't
3728 loaded as part of any segment. */
3729 if (! which)
3730 continue;
3731
3732 /* Use the last SEGMENT_BASES entry as the address of any extra
3733 segments mentioned in DATA->segment_info. */
31d99776 3734 if (which > num_segment_bases)
28c32713 3735 which = num_segment_bases;
31d99776 3736
28c32713
JB
3737 offsets->offsets[i] = (segment_bases[which - 1]
3738 - data->segment_bases[which - 1]);
31d99776
DJ
3739 }
3740
3741 return 1;
3742}
3743
3744static void
3745symfile_find_segment_sections (struct objfile *objfile)
3746{
3747 bfd *abfd = objfile->obfd;
3748 int i;
3749 asection *sect;
3750 struct symfile_segment_data *data;
3751
3752 data = get_symfile_segment_data (objfile->obfd);
3753 if (data == NULL)
3754 return;
3755
3756 if (data->num_segments != 1 && data->num_segments != 2)
3757 {
3758 free_symfile_segment_data (data);
3759 return;
3760 }
3761
3762 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3763 {
31d99776
DJ
3764 int which = data->segment_info[i];
3765
3766 if (which == 1)
3767 {
3768 if (objfile->sect_index_text == -1)
3769 objfile->sect_index_text = sect->index;
3770
3771 if (objfile->sect_index_rodata == -1)
3772 objfile->sect_index_rodata = sect->index;
3773 }
3774 else if (which == 2)
3775 {
3776 if (objfile->sect_index_data == -1)
3777 objfile->sect_index_data = sect->index;
3778
3779 if (objfile->sect_index_bss == -1)
3780 objfile->sect_index_bss = sect->index;
3781 }
3782 }
3783
3784 free_symfile_segment_data (data);
3785}
3786
76ad5e1e
NB
3787/* Listen for free_objfile events. */
3788
3789static void
3790symfile_free_objfile (struct objfile *objfile)
3791{
c33b2f12
MM
3792 /* Remove the target sections owned by this objfile. */
3793 if (objfile != NULL)
76ad5e1e
NB
3794 remove_target_sections ((void *) objfile);
3795}
3796
540c2971
DE
3797/* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3798 Expand all symtabs that match the specified criteria.
3799 See quick_symbol_functions.expand_symtabs_matching for details. */
3800
3801void
14bc53a8
PA
3802expand_symtabs_matching
3803 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
b5ec771e 3804 const lookup_name_info &lookup_name,
14bc53a8
PA
3805 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3806 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3807 enum search_domain kind)
540c2971
DE
3808{
3809 struct objfile *objfile;
3810
3811 ALL_OBJFILES (objfile)
3812 {
3813 if (objfile->sf)
bb4142cf 3814 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
b5ec771e 3815 lookup_name,
276d885b 3816 symbol_matcher,
14bc53a8 3817 expansion_notify, kind);
540c2971
DE
3818 }
3819}
3820
3821/* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3822 Map function FUN over every file.
3823 See quick_symbol_functions.map_symbol_filenames for details. */
3824
3825void
bb4142cf
DE
3826map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3827 int need_fullname)
540c2971
DE
3828{
3829 struct objfile *objfile;
3830
3831 ALL_OBJFILES (objfile)
3832 {
3833 if (objfile->sf)
3834 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3835 need_fullname);
3836 }
3837}
3838
32fa66eb
SM
3839#if GDB_SELF_TEST
3840
3841namespace selftests {
3842namespace filename_language {
3843
32fa66eb
SM
3844static void test_filename_language ()
3845{
3846 /* This test messes up the filename_language_table global. */
593e3209 3847 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3848
3849 /* Test deducing an unknown extension. */
3850 language lang = deduce_language_from_filename ("myfile.blah");
3851 SELF_CHECK (lang == language_unknown);
3852
3853 /* Test deducing a known extension. */
3854 lang = deduce_language_from_filename ("myfile.c");
3855 SELF_CHECK (lang == language_c);
3856
3857 /* Test adding a new extension using the internal API. */
3858 add_filename_language (".blah", language_pascal);
3859 lang = deduce_language_from_filename ("myfile.blah");
3860 SELF_CHECK (lang == language_pascal);
3861}
3862
3863static void
3864test_set_ext_lang_command ()
3865{
3866 /* This test messes up the filename_language_table global. */
593e3209 3867 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
32fa66eb
SM
3868
3869 /* Confirm that the .hello extension is not known. */
3870 language lang = deduce_language_from_filename ("cake.hello");
3871 SELF_CHECK (lang == language_unknown);
3872
3873 /* Test adding a new extension using the CLI command. */
3874 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3875 ext_args = args_holder.get ();
3876 set_ext_lang_command (NULL, 1, NULL);
3877
3878 lang = deduce_language_from_filename ("cake.hello");
3879 SELF_CHECK (lang == language_rust);
3880
3881 /* Test overriding an existing extension using the CLI command. */
593e3209 3882 int size_before = filename_language_table.size ();
32fa66eb
SM
3883 args_holder.reset (xstrdup (".hello pascal"));
3884 ext_args = args_holder.get ();
3885 set_ext_lang_command (NULL, 1, NULL);
593e3209 3886 int size_after = filename_language_table.size ();
32fa66eb
SM
3887
3888 lang = deduce_language_from_filename ("cake.hello");
3889 SELF_CHECK (lang == language_pascal);
3890 SELF_CHECK (size_before == size_after);
3891}
3892
3893} /* namespace filename_language */
3894} /* namespace selftests */
3895
3896#endif /* GDB_SELF_TEST */
3897
c906108c 3898void
fba45db2 3899_initialize_symfile (void)
c906108c
SS
3900{
3901 struct cmd_list_element *c;
c5aa993b 3902
76ad5e1e
NB
3903 observer_attach_free_objfile (symfile_free_objfile);
3904
e2e32174 3905#define READNOW_READNEVER_HELP \
8ca2f0b9
TT
3906 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3907immediately. This makes the command slower, but may make future operations\n\
e2e32174
SDJ
3908faster.\n\
3909The '-readnever' option will prevent GDB from reading the symbol file's\n\
3910symbolic debug information."
8ca2f0b9 3911
1a966eab
AC
3912 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3913Load symbol table from executable file FILE.\n\
e2e32174 3914Usage: symbol-file [-readnow | -readnever] FILE\n\
c906108c 3915The `file' command can also load symbol tables, as well as setting the file\n\
e2e32174 3916to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
5ba2abeb 3917 set_cmd_completer (c, filename_completer);
c906108c 3918
1a966eab 3919 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3920Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
e2e32174
SDJ
3921Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3922-s SECT-NAME SECT-ADDR]...\n\
02ca603a
TT
3923ADDR is the starting address of the file's text.\n\
3924Each '-s' argument provides a section name and address, and\n\
db162d44 3925should be specified if the data and bss segments are not contiguous\n\
8ca2f0b9 3926with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
e2e32174 3927READNOW_READNEVER_HELP),
c906108c 3928 &cmdlist);
5ba2abeb 3929 set_cmd_completer (c, filename_completer);
c906108c 3930
63644780
NB
3931 c = add_cmd ("remove-symbol-file", class_files,
3932 remove_symbol_file_command, _("\
3933Remove a symbol file added via the add-symbol-file command.\n\
3934Usage: remove-symbol-file FILENAME\n\
3935 remove-symbol-file -a ADDRESS\n\
3936The file to remove can be identified by its filename or by an address\n\
3937that lies within the boundaries of this symbol file in memory."),
3938 &cmdlist);
3939
1a966eab
AC
3940 c = add_cmd ("load", class_files, load_command, _("\
3941Dynamically load FILE into the running program, and record its symbols\n\
1986bccd 3942for access from GDB.\n\
8ca2f0b9 3943Usage: load [FILE] [OFFSET]\n\
5cf30ebf
LM
3944An optional load OFFSET may also be given as a literal address.\n\
3945When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
8ca2f0b9 3946on its own."), &cmdlist);
5ba2abeb 3947 set_cmd_completer (c, filename_completer);
c906108c 3948
c5aa993b 3949 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3950 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3951 "overlay ", 0, &cmdlist);
3952
3953 add_com_alias ("ovly", "overlay", class_alias, 1);
3954 add_com_alias ("ov", "overlay", class_alias, 1);
3955
c5aa993b 3956 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3957 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3958
c5aa993b 3959 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3960 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3961
c5aa993b 3962 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3963 _("List mappings of overlay sections."), &overlaylist);
c906108c 3964
c5aa993b 3965 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3966 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3967 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3968 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3969 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3970 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3971 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3972 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3973
3974 /* Filename extension to source language lookup table: */
26c41df3
AC
3975 add_setshow_string_noescape_cmd ("extension-language", class_files,
3976 &ext_args, _("\
3977Set mapping between filename extension and source language."), _("\
3978Show mapping between filename extension and source language."), _("\
3979Usage: set extension-language .foo bar"),
3980 set_ext_lang_command,
920d2a44 3981 show_ext_args,
26c41df3 3982 &setlist, &showlist);
c906108c 3983
c5aa993b 3984 add_info ("extensions", info_ext_lang_command,
1bedd215 3985 _("All filename extensions associated with a source language."));
917317f4 3986
525226b5
AC
3987 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3988 &debug_file_directory, _("\
24ddea62
JK
3989Set the directories where separate debug symbols are searched for."), _("\
3990Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3991Separate debug symbols are first searched for in the same\n\
3992directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3993and lastly at the path of the directory of the binary with\n\
24ddea62 3994each global debug-file-directory component prepended."),
525226b5 3995 NULL,
920d2a44 3996 show_debug_file_directory,
525226b5 3997 &setlist, &showlist);
770e7fc7
DE
3998
3999 add_setshow_enum_cmd ("symbol-loading", no_class,
4000 print_symbol_loading_enums, &print_symbol_loading,
4001 _("\
4002Set printing of symbol loading messages."), _("\
4003Show printing of symbol loading messages."), _("\
4004off == turn all messages off\n\
4005brief == print messages for the executable,\n\
4006 and brief messages for shared libraries\n\
4007full == print messages for the executable,\n\
4008 and messages for each shared library."),
4009 NULL,
4010 NULL,
4011 &setprintlist, &showprintlist);
c4dcb155
SM
4012
4013 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4014 &separate_debug_file_debug, _("\
4015Set printing of separate debug info file search debug."), _("\
4016Show printing of separate debug info file search debug."), _("\
4017When on, GDB prints the searched locations while looking for separate debug \
4018info files."), NULL, NULL, &setdebuglist, &showdebuglist);
32fa66eb
SM
4019
4020#if GDB_SELF_TEST
4021 selftests::register_test
4022 ("filename_language", selftests::filename_language::test_filename_language);
4023 selftests::register_test
4024 ("set_ext_lang_command",
4025 selftests::filename_language::test_set_ext_lang_command);
4026#endif
c906108c 4027}
This page took 2.382439 seconds and 4 git commands to generate.