ChangeLog:
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
9b254dd1 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
086df311 25#include "bfdlink.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcore.h"
29#include "frame.h"
30#include "target.h"
31#include "value.h"
32#include "symfile.h"
33#include "objfiles.h"
0378c332 34#include "source.h"
c906108c
SS
35#include "gdbcmd.h"
36#include "breakpoint.h"
37#include "language.h"
38#include "complaints.h"
39#include "demangle.h"
c5aa993b 40#include "inferior.h" /* for write_pc */
5b5d99cf 41#include "filenames.h" /* for DOSish file names */
c906108c 42#include "gdb-stabs.h"
04ea0df1 43#include "gdb_obstack.h"
d75b5104 44#include "completer.h"
af5f3db6 45#include "bcache.h"
2de7ced7 46#include "hashtab.h"
dbda9972 47#include "readline/readline.h"
7e8580c1 48#include "gdb_assert.h"
fe898f56 49#include "block.h"
ea53e89f 50#include "observer.h"
c1bd25fd 51#include "exec.h"
9bdcbae7 52#include "parser-defs.h"
8756216b 53#include "varobj.h"
77069918 54#include "elf-bfd.h"
e85a822c 55#include "solib.h"
f1838a98 56#include "remote.h"
c906108c 57
c906108c
SS
58#include <sys/types.h>
59#include <fcntl.h>
60#include "gdb_string.h"
61#include "gdb_stat.h"
62#include <ctype.h>
63#include <time.h>
2b71414d 64#include <sys/time.h>
c906108c 65
c906108c 66
9a4105ab
AC
67int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
c2d11a7d 72 unsigned long total_size);
769d7dc4
AC
73void (*deprecated_pre_add_symbol_hook) (const char *);
74void (*deprecated_post_add_symbol_hook) (void);
c906108c 75
74b7792f
AC
76static void clear_symtab_users_cleanup (void *ignore);
77
c906108c 78/* Global variables owned by this file */
c5aa993b 79int readnow_symbol_files; /* Read full symbols immediately */
c906108c 80
c906108c
SS
81/* External variables and functions referenced. */
82
a14ed312 83extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
84
85/* Functions this file defines */
86
87#if 0
a14ed312
KB
88static int simple_read_overlay_region_table (void);
89static void simple_free_overlay_region_table (void);
c906108c
SS
90#endif
91
a14ed312 92static void load_command (char *, int);
c906108c 93
d7db6da9
FN
94static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
a14ed312 96static void add_symbol_file_command (char *, int);
c906108c 97
a14ed312 98static void add_shared_symbol_files_command (char *, int);
c906108c 99
5b5d99cf
JB
100static void reread_separate_symbols (struct objfile *objfile);
101
a14ed312 102static void cashier_psymtab (struct partial_symtab *);
c906108c 103
a14ed312 104bfd *symfile_bfd_open (char *);
c906108c 105
0e931cf0
JB
106int get_section_index (struct objfile *, char *);
107
31d99776 108static struct sym_fns *find_sym_fns (bfd *);
c906108c 109
a14ed312 110static void decrement_reading_symtab (void *);
c906108c 111
a14ed312 112static void overlay_invalidate_all (void);
c906108c 113
a14ed312 114static int overlay_is_mapped (struct obj_section *);
c906108c 115
a14ed312 116void list_overlays_command (char *, int);
c906108c 117
a14ed312 118void map_overlay_command (char *, int);
c906108c 119
a14ed312 120void unmap_overlay_command (char *, int);
c906108c 121
a14ed312 122static void overlay_auto_command (char *, int);
c906108c 123
a14ed312 124static void overlay_manual_command (char *, int);
c906108c 125
a14ed312 126static void overlay_off_command (char *, int);
c906108c 127
a14ed312 128static void overlay_load_command (char *, int);
c906108c 129
a14ed312 130static void overlay_command (char *, int);
c906108c 131
a14ed312 132static void simple_free_overlay_table (void);
c906108c 133
a14ed312 134static void read_target_long_array (CORE_ADDR, unsigned int *, int);
c906108c 135
a14ed312 136static int simple_read_overlay_table (void);
c906108c 137
a14ed312 138static int simple_overlay_update_1 (struct obj_section *);
c906108c 139
a14ed312 140static void add_filename_language (char *ext, enum language lang);
392a587b 141
a14ed312 142static void info_ext_lang_command (char *args, int from_tty);
392a587b 143
5b5d99cf
JB
144static char *find_separate_debug_file (struct objfile *objfile);
145
a14ed312 146static void init_filename_language_table (void);
392a587b 147
31d99776
DJ
148static void symfile_find_segment_sections (struct objfile *objfile);
149
a14ed312 150void _initialize_symfile (void);
c906108c
SS
151
152/* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156static struct sym_fns *symtab_fns = NULL;
157
158/* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161#ifdef SYMBOL_RELOADING_DEFAULT
162int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163#else
164int symbol_reloading = 0;
165#endif
920d2a44
AC
166static void
167show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169{
170 fprintf_filtered (file, _("\
171Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173}
174
bf250677
DE
175/* If non-zero, gdb will notify the user when it is loading symbols
176 from a file. This is almost always what users will want to have happen;
177 but for programs with lots of dynamically linked libraries, the output
178 can be more noise than signal. */
179
180int print_symbol_loading = 1;
c906108c 181
b7209cb4
FF
182/* If non-zero, shared library symbols will be added automatically
183 when the inferior is created, new libraries are loaded, or when
184 attaching to the inferior. This is almost always what users will
185 want to have happen; but for very large programs, the startup time
186 will be excessive, and so if this is a problem, the user can clear
187 this flag and then add the shared library symbols as needed. Note
188 that there is a potential for confusion, since if the shared
c906108c 189 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 190 report all the functions that are actually present. */
c906108c
SS
191
192int auto_solib_add = 1;
b7209cb4
FF
193
194/* For systems that support it, a threshold size in megabytes. If
195 automatically adding a new library's symbol table to those already
196 known to the debugger would cause the total shared library symbol
197 size to exceed this threshhold, then the shlib's symbols are not
198 added. The threshold is ignored if the user explicitly asks for a
199 shlib to be added, such as when using the "sharedlibrary"
200 command. */
201
202int auto_solib_limit;
c906108c 203\f
c5aa993b 204
0fe19209
DC
205/* This compares two partial symbols by names, using strcmp_iw_ordered
206 for the comparison. */
c906108c
SS
207
208static int
0cd64fe2 209compare_psymbols (const void *s1p, const void *s2p)
c906108c 210{
0fe19209
DC
211 struct partial_symbol *const *s1 = s1p;
212 struct partial_symbol *const *s2 = s2p;
213
4725b721
PH
214 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
215 SYMBOL_SEARCH_NAME (*s2));
c906108c
SS
216}
217
218void
fba45db2 219sort_pst_symbols (struct partial_symtab *pst)
c906108c
SS
220{
221 /* Sort the global list; don't sort the static list */
222
c5aa993b
JM
223 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
224 pst->n_global_syms, sizeof (struct partial_symbol *),
c906108c
SS
225 compare_psymbols);
226}
227
c906108c
SS
228/* Make a null terminated copy of the string at PTR with SIZE characters in
229 the obstack pointed to by OBSTACKP . Returns the address of the copy.
230 Note that the string at PTR does not have to be null terminated, I.E. it
231 may be part of a larger string and we are only saving a substring. */
232
233char *
63ca651f 234obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 235{
52f0bd74 236 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
237 /* Open-coded memcpy--saves function call time. These strings are usually
238 short. FIXME: Is this really still true with a compiler that can
239 inline memcpy? */
240 {
aa1ee363
AC
241 const char *p1 = ptr;
242 char *p2 = p;
63ca651f 243 const char *end = ptr + size;
c906108c
SS
244 while (p1 != end)
245 *p2++ = *p1++;
246 }
247 p[size] = 0;
248 return p;
249}
250
251/* Concatenate strings S1, S2 and S3; return the new string. Space is found
252 in the obstack pointed to by OBSTACKP. */
253
254char *
fba45db2
KB
255obconcat (struct obstack *obstackp, const char *s1, const char *s2,
256 const char *s3)
c906108c 257{
52f0bd74
AC
258 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
259 char *val = (char *) obstack_alloc (obstackp, len);
c906108c
SS
260 strcpy (val, s1);
261 strcat (val, s2);
262 strcat (val, s3);
263 return val;
264}
265
266/* True if we are nested inside psymtab_to_symtab. */
267
268int currently_reading_symtab = 0;
269
270static void
fba45db2 271decrement_reading_symtab (void *dummy)
c906108c
SS
272{
273 currently_reading_symtab--;
274}
275
276/* Get the symbol table that corresponds to a partial_symtab.
277 This is fast after the first time you do it. In fact, there
278 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
279 case inline. */
280
281struct symtab *
aa1ee363 282psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
283{
284 /* If it's been looked up before, return it. */
285 if (pst->symtab)
286 return pst->symtab;
287
288 /* If it has not yet been read in, read it. */
289 if (!pst->readin)
c5aa993b 290 {
c906108c
SS
291 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
292 currently_reading_symtab++;
293 (*pst->read_symtab) (pst);
294 do_cleanups (back_to);
295 }
296
297 return pst->symtab;
298}
299
5417f6dc
RM
300/* Remember the lowest-addressed loadable section we've seen.
301 This function is called via bfd_map_over_sections.
c906108c
SS
302
303 In case of equal vmas, the section with the largest size becomes the
304 lowest-addressed loadable section.
305
306 If the vmas and sizes are equal, the last section is considered the
307 lowest-addressed loadable section. */
308
309void
4efb68b1 310find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 311{
c5aa993b 312 asection **lowest = (asection **) obj;
c906108c
SS
313
314 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
315 return;
316 if (!*lowest)
317 *lowest = sect; /* First loadable section */
318 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
319 *lowest = sect; /* A lower loadable section */
320 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
321 && (bfd_section_size (abfd, (*lowest))
322 <= bfd_section_size (abfd, sect)))
323 *lowest = sect;
324}
325
a39a16c4
MM
326/* Create a new section_addr_info, with room for NUM_SECTIONS. */
327
328struct section_addr_info *
329alloc_section_addr_info (size_t num_sections)
330{
331 struct section_addr_info *sap;
332 size_t size;
333
334 size = (sizeof (struct section_addr_info)
335 + sizeof (struct other_sections) * (num_sections - 1));
336 sap = (struct section_addr_info *) xmalloc (size);
337 memset (sap, 0, size);
338 sap->num_sections = num_sections;
339
340 return sap;
341}
62557bbc 342
7b90c3f9
JB
343
344/* Return a freshly allocated copy of ADDRS. The section names, if
345 any, are also freshly allocated copies of those in ADDRS. */
346struct section_addr_info *
347copy_section_addr_info (struct section_addr_info *addrs)
348{
349 struct section_addr_info *copy
350 = alloc_section_addr_info (addrs->num_sections);
351 int i;
352
353 copy->num_sections = addrs->num_sections;
354 for (i = 0; i < addrs->num_sections; i++)
355 {
356 copy->other[i].addr = addrs->other[i].addr;
357 if (addrs->other[i].name)
358 copy->other[i].name = xstrdup (addrs->other[i].name);
359 else
360 copy->other[i].name = NULL;
361 copy->other[i].sectindex = addrs->other[i].sectindex;
362 }
363
364 return copy;
365}
366
367
368
62557bbc
KB
369/* Build (allocate and populate) a section_addr_info struct from
370 an existing section table. */
371
372extern struct section_addr_info *
373build_section_addr_info_from_section_table (const struct section_table *start,
374 const struct section_table *end)
375{
376 struct section_addr_info *sap;
377 const struct section_table *stp;
378 int oidx;
379
a39a16c4 380 sap = alloc_section_addr_info (end - start);
62557bbc
KB
381
382 for (stp = start, oidx = 0; stp != end; stp++)
383 {
5417f6dc 384 if (bfd_get_section_flags (stp->bfd,
fbd35540 385 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 386 && oidx < end - start)
62557bbc
KB
387 {
388 sap->other[oidx].addr = stp->addr;
5417f6dc 389 sap->other[oidx].name
fbd35540 390 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
391 sap->other[oidx].sectindex = stp->the_bfd_section->index;
392 oidx++;
393 }
394 }
395
396 return sap;
397}
398
399
400/* Free all memory allocated by build_section_addr_info_from_section_table. */
401
402extern void
403free_section_addr_info (struct section_addr_info *sap)
404{
405 int idx;
406
a39a16c4 407 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 408 if (sap->other[idx].name)
b8c9b27d
KB
409 xfree (sap->other[idx].name);
410 xfree (sap);
62557bbc
KB
411}
412
413
e8289572
JB
414/* Initialize OBJFILE's sect_index_* members. */
415static void
416init_objfile_sect_indices (struct objfile *objfile)
c906108c 417{
e8289572 418 asection *sect;
c906108c 419 int i;
5417f6dc 420
b8fbeb18 421 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 422 if (sect)
b8fbeb18
EZ
423 objfile->sect_index_text = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 426 if (sect)
b8fbeb18
EZ
427 objfile->sect_index_data = sect->index;
428
429 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 430 if (sect)
b8fbeb18
EZ
431 objfile->sect_index_bss = sect->index;
432
433 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 434 if (sect)
b8fbeb18
EZ
435 objfile->sect_index_rodata = sect->index;
436
bbcd32ad
FF
437 /* This is where things get really weird... We MUST have valid
438 indices for the various sect_index_* members or gdb will abort.
439 So if for example, there is no ".text" section, we have to
31d99776
DJ
440 accomodate that. First, check for a file with the standard
441 one or two segments. */
442
443 symfile_find_segment_sections (objfile);
444
445 /* Except when explicitly adding symbol files at some address,
446 section_offsets contains nothing but zeros, so it doesn't matter
447 which slot in section_offsets the individual sect_index_* members
448 index into. So if they are all zero, it is safe to just point
449 all the currently uninitialized indices to the first slot. But
450 beware: if this is the main executable, it may be relocated
451 later, e.g. by the remote qOffsets packet, and then this will
452 be wrong! That's why we try segments first. */
bbcd32ad
FF
453
454 for (i = 0; i < objfile->num_sections; i++)
455 {
456 if (ANOFFSET (objfile->section_offsets, i) != 0)
457 {
458 break;
459 }
460 }
461 if (i == objfile->num_sections)
462 {
463 if (objfile->sect_index_text == -1)
464 objfile->sect_index_text = 0;
465 if (objfile->sect_index_data == -1)
466 objfile->sect_index_data = 0;
467 if (objfile->sect_index_bss == -1)
468 objfile->sect_index_bss = 0;
469 if (objfile->sect_index_rodata == -1)
470 objfile->sect_index_rodata = 0;
471 }
b8fbeb18 472}
c906108c 473
c1bd25fd
DJ
474/* The arguments to place_section. */
475
476struct place_section_arg
477{
478 struct section_offsets *offsets;
479 CORE_ADDR lowest;
480};
481
482/* Find a unique offset to use for loadable section SECT if
483 the user did not provide an offset. */
484
485void
486place_section (bfd *abfd, asection *sect, void *obj)
487{
488 struct place_section_arg *arg = obj;
489 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
490 int done;
3bd72c6f 491 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 492
2711e456
DJ
493 /* We are only interested in allocated sections. */
494 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
495 return;
496
497 /* If the user specified an offset, honor it. */
498 if (offsets[sect->index] != 0)
499 return;
500
501 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
502 start_addr = (arg->lowest + align - 1) & -align;
503
c1bd25fd
DJ
504 do {
505 asection *cur_sec;
c1bd25fd 506
c1bd25fd
DJ
507 done = 1;
508
509 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
510 {
511 int indx = cur_sec->index;
512 CORE_ADDR cur_offset;
513
514 /* We don't need to compare against ourself. */
515 if (cur_sec == sect)
516 continue;
517
2711e456
DJ
518 /* We can only conflict with allocated sections. */
519 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
520 continue;
521
522 /* If the section offset is 0, either the section has not been placed
523 yet, or it was the lowest section placed (in which case LOWEST
524 will be past its end). */
525 if (offsets[indx] == 0)
526 continue;
527
528 /* If this section would overlap us, then we must move up. */
529 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
530 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
531 {
532 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
533 start_addr = (start_addr + align - 1) & -align;
534 done = 0;
3bd72c6f 535 break;
c1bd25fd
DJ
536 }
537
538 /* Otherwise, we appear to be OK. So far. */
539 }
540 }
541 while (!done);
542
543 offsets[sect->index] = start_addr;
544 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 545}
e8289572
JB
546
547/* Parse the user's idea of an offset for dynamic linking, into our idea
5417f6dc 548 of how to represent it for fast symbol reading. This is the default
e8289572
JB
549 version of the sym_fns.sym_offsets function for symbol readers that
550 don't need to do anything special. It allocates a section_offsets table
551 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
552
553void
554default_symfile_offsets (struct objfile *objfile,
555 struct section_addr_info *addrs)
556{
557 int i;
558
a39a16c4 559 objfile->num_sections = bfd_count_sections (objfile->obfd);
e8289572 560 objfile->section_offsets = (struct section_offsets *)
5417f6dc 561 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
5417f6dc 563 memset (objfile->section_offsets, 0,
a39a16c4 564 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
e8289572
JB
565
566 /* Now calculate offsets for section that were specified by the
567 caller. */
a39a16c4 568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572
JB
569 {
570 struct other_sections *osp ;
571
572 osp = &addrs->other[i] ;
573 if (osp->addr == 0)
574 continue;
575
576 /* Record all sections in offsets */
577 /* The section_offsets in the objfile are here filled in using
578 the BFD index. */
579 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
580 }
581
c1bd25fd
DJ
582 /* For relocatable files, all loadable sections will start at zero.
583 The zero is meaningless, so try to pick arbitrary addresses such
584 that no loadable sections overlap. This algorithm is quadratic,
585 but the number of sections in a single object file is generally
586 small. */
587 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
588 {
589 struct place_section_arg arg;
2711e456
DJ
590 bfd *abfd = objfile->obfd;
591 asection *cur_sec;
592 CORE_ADDR lowest = 0;
593
594 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
595 /* We do not expect this to happen; just skip this step if the
596 relocatable file has a section with an assigned VMA. */
597 if (bfd_section_vma (abfd, cur_sec) != 0)
598 break;
599
600 if (cur_sec == NULL)
601 {
602 CORE_ADDR *offsets = objfile->section_offsets->offsets;
603
604 /* Pick non-overlapping offsets for sections the user did not
605 place explicitly. */
606 arg.offsets = objfile->section_offsets;
607 arg.lowest = 0;
608 bfd_map_over_sections (objfile->obfd, place_section, &arg);
609
610 /* Correctly filling in the section offsets is not quite
611 enough. Relocatable files have two properties that
612 (most) shared objects do not:
613
614 - Their debug information will contain relocations. Some
615 shared libraries do also, but many do not, so this can not
616 be assumed.
617
618 - If there are multiple code sections they will be loaded
619 at different relative addresses in memory than they are
620 in the objfile, since all sections in the file will start
621 at address zero.
622
623 Because GDB has very limited ability to map from an
624 address in debug info to the correct code section,
625 it relies on adding SECT_OFF_TEXT to things which might be
626 code. If we clear all the section offsets, and set the
627 section VMAs instead, then symfile_relocate_debug_section
628 will return meaningful debug information pointing at the
629 correct sections.
630
631 GDB has too many different data structures for section
632 addresses - a bfd, objfile, and so_list all have section
633 tables, as does exec_ops. Some of these could probably
634 be eliminated. */
635
636 for (cur_sec = abfd->sections; cur_sec != NULL;
637 cur_sec = cur_sec->next)
638 {
639 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
640 continue;
641
642 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
643 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
644 offsets[cur_sec->index]);
2711e456
DJ
645 offsets[cur_sec->index] = 0;
646 }
647 }
c1bd25fd
DJ
648 }
649
e8289572
JB
650 /* Remember the bfd indexes for the .text, .data, .bss and
651 .rodata sections. */
652 init_objfile_sect_indices (objfile);
653}
654
655
31d99776
DJ
656/* Divide the file into segments, which are individual relocatable units.
657 This is the default version of the sym_fns.sym_segments function for
658 symbol readers that do not have an explicit representation of segments.
659 It assumes that object files do not have segments, and fully linked
660 files have a single segment. */
661
662struct symfile_segment_data *
663default_symfile_segments (bfd *abfd)
664{
665 int num_sections, i;
666 asection *sect;
667 struct symfile_segment_data *data;
668 CORE_ADDR low, high;
669
670 /* Relocatable files contain enough information to position each
671 loadable section independently; they should not be relocated
672 in segments. */
673 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
674 return NULL;
675
676 /* Make sure there is at least one loadable section in the file. */
677 for (sect = abfd->sections; sect != NULL; sect = sect->next)
678 {
679 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
680 continue;
681
682 break;
683 }
684 if (sect == NULL)
685 return NULL;
686
687 low = bfd_get_section_vma (abfd, sect);
688 high = low + bfd_get_section_size (sect);
689
690 data = XZALLOC (struct symfile_segment_data);
691 data->num_segments = 1;
692 data->segment_bases = XCALLOC (1, CORE_ADDR);
693 data->segment_sizes = XCALLOC (1, CORE_ADDR);
694
695 num_sections = bfd_count_sections (abfd);
696 data->segment_info = XCALLOC (num_sections, int);
697
698 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
699 {
700 CORE_ADDR vma;
701
702 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
703 continue;
704
705 vma = bfd_get_section_vma (abfd, sect);
706 if (vma < low)
707 low = vma;
708 if (vma + bfd_get_section_size (sect) > high)
709 high = vma + bfd_get_section_size (sect);
710
711 data->segment_info[i] = 1;
712 }
713
714 data->segment_bases[0] = low;
715 data->segment_sizes[0] = high - low;
716
717 return data;
718}
719
c906108c
SS
720/* Process a symbol file, as either the main file or as a dynamically
721 loaded file.
722
96baa820
JM
723 OBJFILE is where the symbols are to be read from.
724
7e8580c1
JB
725 ADDRS is the list of section load addresses. If the user has given
726 an 'add-symbol-file' command, then this is the list of offsets and
727 addresses he or she provided as arguments to the command; or, if
728 we're handling a shared library, these are the actual addresses the
729 sections are loaded at, according to the inferior's dynamic linker
730 (as gleaned by GDB's shared library code). We convert each address
731 into an offset from the section VMA's as it appears in the object
732 file, and then call the file's sym_offsets function to convert this
733 into a format-specific offset table --- a `struct section_offsets'.
734 If ADDRS is non-zero, OFFSETS must be zero.
735
736 OFFSETS is a table of section offsets already in the right
737 format-specific representation. NUM_OFFSETS is the number of
738 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
739 assume this is the proper table the call to sym_offsets described
740 above would produce. Instead of calling sym_offsets, we just dump
741 it right into objfile->section_offsets. (When we're re-reading
742 symbols from an objfile, we don't have the original load address
743 list any more; all we have is the section offset table.) If
744 OFFSETS is non-zero, ADDRS must be zero.
96baa820
JM
745
746 MAINLINE is nonzero if this is the main symbol file, or zero if
747 it's an extra symbol file such as dynamically loaded code.
748
749 VERBO is nonzero if the caller has printed a verbose message about
750 the symbol reading (and complaints can be more terse about it). */
c906108c
SS
751
752void
7e8580c1
JB
753syms_from_objfile (struct objfile *objfile,
754 struct section_addr_info *addrs,
755 struct section_offsets *offsets,
756 int num_offsets,
757 int mainline,
758 int verbo)
c906108c 759{
a39a16c4 760 struct section_addr_info *local_addr = NULL;
c906108c 761 struct cleanup *old_chain;
2acceee2 762
7e8580c1 763 gdb_assert (! (addrs && offsets));
2acceee2 764
c906108c 765 init_entry_point_info (objfile);
31d99776 766 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 767
75245b24
MS
768 if (objfile->sf == NULL)
769 return; /* No symbols. */
770
c906108c
SS
771 /* Make sure that partially constructed symbol tables will be cleaned up
772 if an error occurs during symbol reading. */
74b7792f 773 old_chain = make_cleanup_free_objfile (objfile);
c906108c 774
a39a16c4
MM
775 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
776 list. We now establish the convention that an addr of zero means
777 no load address was specified. */
778 if (! addrs && ! offsets)
779 {
5417f6dc 780 local_addr
a39a16c4
MM
781 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
782 make_cleanup (xfree, local_addr);
783 addrs = local_addr;
784 }
785
786 /* Now either addrs or offsets is non-zero. */
787
c5aa993b 788 if (mainline)
c906108c
SS
789 {
790 /* We will modify the main symbol table, make sure that all its users
c5aa993b 791 will be cleaned up if an error occurs during symbol reading. */
74b7792f 792 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
793
794 /* Since no error yet, throw away the old symbol table. */
795
796 if (symfile_objfile != NULL)
797 {
798 free_objfile (symfile_objfile);
799 symfile_objfile = NULL;
800 }
801
802 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
803 If the user wants to get rid of them, they should do "symbol-file"
804 without arguments first. Not sure this is the best behavior
805 (PR 2207). */
c906108c 806
c5aa993b 807 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
808 }
809
810 /* Convert addr into an offset rather than an absolute address.
811 We find the lowest address of a loaded segment in the objfile,
53a5351d 812 and assume that <addr> is where that got loaded.
c906108c 813
53a5351d
JM
814 We no longer warn if the lowest section is not a text segment (as
815 happens for the PA64 port. */
1549f619 816 if (!mainline && addrs && addrs->other[0].name)
c906108c 817 {
1549f619
EZ
818 asection *lower_sect;
819 asection *sect;
820 CORE_ADDR lower_offset;
821 int i;
822
5417f6dc 823 /* Find lowest loadable section to be used as starting point for
2acceee2
JM
824 continguous sections. FIXME!! won't work without call to find
825 .text first, but this assumes text is lowest section. */
826 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
827 if (lower_sect == NULL)
c906108c 828 bfd_map_over_sections (objfile->obfd, find_lowest_section,
4efb68b1 829 &lower_sect);
2acceee2 830 if (lower_sect == NULL)
ff8e85c3
PA
831 {
832 warning (_("no loadable sections found in added symbol-file %s"),
833 objfile->name);
834 lower_offset = 0;
835 }
2acceee2 836 else
ff8e85c3 837 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
5417f6dc 838
13de58df 839 /* Calculate offsets for the loadable sections.
2acceee2
JM
840 FIXME! Sections must be in order of increasing loadable section
841 so that contiguous sections can use the lower-offset!!!
5417f6dc 842
13de58df
JB
843 Adjust offsets if the segments are not contiguous.
844 If the section is contiguous, its offset should be set to
2acceee2
JM
845 the offset of the highest loadable section lower than it
846 (the loadable section directly below it in memory).
847 this_offset = lower_offset = lower_addr - lower_orig_addr */
848
1549f619 849 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
7e8580c1
JB
850 {
851 if (addrs->other[i].addr != 0)
852 {
853 sect = bfd_get_section_by_name (objfile->obfd,
854 addrs->other[i].name);
855 if (sect)
856 {
857 addrs->other[i].addr
858 -= bfd_section_vma (objfile->obfd, sect);
859 lower_offset = addrs->other[i].addr;
860 /* This is the index used by BFD. */
861 addrs->other[i].sectindex = sect->index ;
862 }
863 else
864 {
8a3fe4f8 865 warning (_("section %s not found in %s"),
5417f6dc 866 addrs->other[i].name,
7e8580c1
JB
867 objfile->name);
868 addrs->other[i].addr = 0;
869 }
870 }
871 else
872 addrs->other[i].addr = lower_offset;
873 }
c906108c
SS
874 }
875
876 /* Initialize symbol reading routines for this objfile, allow complaints to
877 appear for this new file, and record how verbose to be, then do the
878 initial symbol reading for this file. */
879
c5aa993b 880 (*objfile->sf->sym_init) (objfile);
b9caf505 881 clear_complaints (&symfile_complaints, 1, verbo);
c906108c 882
7e8580c1
JB
883 if (addrs)
884 (*objfile->sf->sym_offsets) (objfile, addrs);
885 else
886 {
887 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
888
889 /* Just copy in the offset table directly as given to us. */
890 objfile->num_sections = num_offsets;
891 objfile->section_offsets
892 = ((struct section_offsets *)
8b92e4d5 893 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
894 memcpy (objfile->section_offsets, offsets, size);
895
896 init_objfile_sect_indices (objfile);
897 }
c906108c 898
96baa820 899 (*objfile->sf->sym_read) (objfile, mainline);
c906108c 900
c906108c
SS
901 /* Don't allow char * to have a typename (else would get caddr_t).
902 Ditto void *. FIXME: Check whether this is now done by all the
903 symbol readers themselves (many of them now do), and if so remove
904 it from here. */
905
906 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
907 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
908
909 /* Mark the objfile has having had initial symbol read attempted. Note
910 that this does not mean we found any symbols... */
911
c5aa993b 912 objfile->flags |= OBJF_SYMS;
c906108c
SS
913
914 /* Discard cleanups as symbol reading was successful. */
915
916 discard_cleanups (old_chain);
c906108c
SS
917}
918
919/* Perform required actions after either reading in the initial
920 symbols for a new objfile, or mapping in the symbols from a reusable
921 objfile. */
c5aa993b 922
c906108c 923void
fba45db2 924new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
c906108c
SS
925{
926
927 /* If this is the main symbol file we have to clean up all users of the
928 old main symbol file. Otherwise it is sufficient to fixup all the
929 breakpoints that may have been redefined by this symbol file. */
930 if (mainline)
931 {
932 /* OK, make it the "real" symbol file. */
933 symfile_objfile = objfile;
934
935 clear_symtab_users ();
936 }
937 else
938 {
939 breakpoint_re_set ();
940 }
941
942 /* We're done reading the symbol file; finish off complaints. */
b9caf505 943 clear_complaints (&symfile_complaints, 0, verbo);
c906108c
SS
944}
945
946/* Process a symbol file, as either the main file or as a dynamically
947 loaded file.
948
5417f6dc
RM
949 ABFD is a BFD already open on the file, as from symfile_bfd_open.
950 This BFD will be closed on error, and is always consumed by this function.
7904e09f
JB
951
952 FROM_TTY says how verbose to be.
953
954 MAINLINE specifies whether this is the main symbol file, or whether
955 it's an extra symbol file such as dynamically loaded code.
956
957 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
958 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
959 non-zero.
c906108c 960
c906108c
SS
961 Upon success, returns a pointer to the objfile that was added.
962 Upon failure, jumps back to command level (never returns). */
7904e09f 963static struct objfile *
5417f6dc 964symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
7904e09f
JB
965 struct section_addr_info *addrs,
966 struct section_offsets *offsets,
967 int num_offsets,
968 int mainline, int flags)
c906108c
SS
969{
970 struct objfile *objfile;
971 struct partial_symtab *psymtab;
77069918 972 char *debugfile = NULL;
7b90c3f9 973 struct section_addr_info *orig_addrs = NULL;
a39a16c4 974 struct cleanup *my_cleanups;
5417f6dc 975 const char *name = bfd_get_filename (abfd);
c906108c 976
5417f6dc 977 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 978
5417f6dc
RM
979 /* Give user a chance to burp if we'd be
980 interactively wiping out any existing symbols. */
c906108c
SS
981
982 if ((have_full_symbols () || have_partial_symbols ())
983 && mainline
984 && from_tty
985 && !query ("Load new symbol table from \"%s\"? ", name))
8a3fe4f8 986 error (_("Not confirmed."));
c906108c 987
2df3850c 988 objfile = allocate_objfile (abfd, flags);
5417f6dc 989 discard_cleanups (my_cleanups);
c906108c 990
a39a16c4 991 if (addrs)
63cd24fe 992 {
7b90c3f9
JB
993 orig_addrs = copy_section_addr_info (addrs);
994 make_cleanup_free_section_addr_info (orig_addrs);
63cd24fe 995 }
a39a16c4 996
78a4a9b9
AC
997 /* We either created a new mapped symbol table, mapped an existing
998 symbol table file which has not had initial symbol reading
999 performed, or need to read an unmapped symbol table. */
1000 if (from_tty || info_verbose)
c906108c 1001 {
769d7dc4
AC
1002 if (deprecated_pre_add_symbol_hook)
1003 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1004 else
c906108c 1005 {
bf250677
DE
1006 if (print_symbol_loading)
1007 {
1008 printf_unfiltered (_("Reading symbols from %s..."), name);
1009 wrap_here ("");
1010 gdb_flush (gdb_stdout);
1011 }
c906108c 1012 }
c906108c 1013 }
78a4a9b9
AC
1014 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1015 mainline, from_tty);
c906108c
SS
1016
1017 /* We now have at least a partial symbol table. Check to see if the
1018 user requested that all symbols be read on initial access via either
1019 the gdb startup command line or on a per symbol file basis. Expand
1020 all partial symbol tables for this objfile if so. */
1021
2acceee2 1022 if ((flags & OBJF_READNOW) || readnow_symbol_files)
c906108c 1023 {
bf250677 1024 if ((from_tty || info_verbose) && print_symbol_loading)
c906108c 1025 {
a3f17187 1026 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1027 wrap_here ("");
1028 gdb_flush (gdb_stdout);
1029 }
1030
c5aa993b 1031 for (psymtab = objfile->psymtabs;
c906108c 1032 psymtab != NULL;
c5aa993b 1033 psymtab = psymtab->next)
c906108c
SS
1034 {
1035 psymtab_to_symtab (psymtab);
1036 }
1037 }
1038
77069918
JK
1039 /* If the file has its own symbol tables it has no separate debug info.
1040 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1041 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1042 if (objfile->psymtabs == NULL)
1043 debugfile = find_separate_debug_file (objfile);
5b5d99cf
JB
1044 if (debugfile)
1045 {
5b5d99cf
JB
1046 if (addrs != NULL)
1047 {
1048 objfile->separate_debug_objfile
a39a16c4 1049 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
5b5d99cf
JB
1050 }
1051 else
1052 {
1053 objfile->separate_debug_objfile
1054 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1055 }
1056 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1057 = objfile;
5417f6dc 1058
5b5d99cf
JB
1059 /* Put the separate debug object before the normal one, this is so that
1060 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1061 put_objfile_before (objfile->separate_debug_objfile, objfile);
5417f6dc 1062
5b5d99cf
JB
1063 xfree (debugfile);
1064 }
5417f6dc 1065
bf250677
DE
1066 if (!have_partial_symbols () && !have_full_symbols ()
1067 && print_symbol_loading)
cb3c37b2
JB
1068 {
1069 wrap_here ("");
a3f17187 1070 printf_filtered (_("(no debugging symbols found)"));
8f5ba92b
JG
1071 if (from_tty || info_verbose)
1072 printf_filtered ("...");
1073 else
1074 printf_filtered ("\n");
cb3c37b2
JB
1075 wrap_here ("");
1076 }
1077
c906108c
SS
1078 if (from_tty || info_verbose)
1079 {
769d7dc4
AC
1080 if (deprecated_post_add_symbol_hook)
1081 deprecated_post_add_symbol_hook ();
c906108c 1082 else
c5aa993b 1083 {
bf250677
DE
1084 if (print_symbol_loading)
1085 printf_unfiltered (_("done.\n"));
c5aa993b 1086 }
c906108c
SS
1087 }
1088
481d0f41
JB
1089 /* We print some messages regardless of whether 'from_tty ||
1090 info_verbose' is true, so make sure they go out at the right
1091 time. */
1092 gdb_flush (gdb_stdout);
1093
a39a16c4
MM
1094 do_cleanups (my_cleanups);
1095
109f874e
MS
1096 if (objfile->sf == NULL)
1097 return objfile; /* No symbols. */
1098
c906108c
SS
1099 new_symfile_objfile (objfile, mainline, from_tty);
1100
06d3b283 1101 observer_notify_new_objfile (objfile);
c906108c 1102
ce7d4522 1103 bfd_cache_close_all ();
c906108c
SS
1104 return (objfile);
1105}
1106
7904e09f 1107
eb4556d7
JB
1108/* Process the symbol file ABFD, as either the main file or as a
1109 dynamically loaded file.
1110
1111 See symbol_file_add_with_addrs_or_offsets's comments for
1112 details. */
1113struct objfile *
1114symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1115 struct section_addr_info *addrs,
1116 int mainline, int flags)
1117{
1118 return symbol_file_add_with_addrs_or_offsets (abfd,
1119 from_tty, addrs, 0, 0,
1120 mainline, flags);
1121}
1122
1123
7904e09f
JB
1124/* Process a symbol file, as either the main file or as a dynamically
1125 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1126 for details. */
1127struct objfile *
1128symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1129 int mainline, int flags)
1130{
eb4556d7
JB
1131 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1132 addrs, mainline, flags);
7904e09f
JB
1133}
1134
1135
d7db6da9
FN
1136/* Call symbol_file_add() with default values and update whatever is
1137 affected by the loading of a new main().
1138 Used when the file is supplied in the gdb command line
1139 and by some targets with special loading requirements.
1140 The auxiliary function, symbol_file_add_main_1(), has the flags
1141 argument for the switches that can only be specified in the symbol_file
1142 command itself. */
5417f6dc 1143
1adeb98a
FN
1144void
1145symbol_file_add_main (char *args, int from_tty)
1146{
d7db6da9
FN
1147 symbol_file_add_main_1 (args, from_tty, 0);
1148}
1149
1150static void
1151symbol_file_add_main_1 (char *args, int from_tty, int flags)
1152{
1153 symbol_file_add (args, from_tty, NULL, 1, flags);
1154
d7db6da9
FN
1155 /* Getting new symbols may change our opinion about
1156 what is frameless. */
1157 reinit_frame_cache ();
1158
1159 set_initial_language ();
1adeb98a
FN
1160}
1161
1162void
1163symbol_file_clear (int from_tty)
1164{
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && from_tty
0430b0d6
AS
1167 && (symfile_objfile
1168 ? !query (_("Discard symbol table from `%s'? "),
1169 symfile_objfile->name)
1170 : !query (_("Discard symbol table? "))))
8a3fe4f8 1171 error (_("Not confirmed."));
1adeb98a
FN
1172 free_all_objfiles ();
1173
1174 /* solib descriptors may have handles to objfiles. Since their
1175 storage has just been released, we'd better wipe the solib
1176 descriptors as well.
1177 */
e85a822c 1178 no_shared_libraries (NULL, from_tty);
1adeb98a
FN
1179
1180 symfile_objfile = NULL;
1181 if (from_tty)
a3f17187 1182 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1183}
1184
77069918
JK
1185struct build_id
1186 {
1187 size_t size;
1188 gdb_byte data[1];
1189 };
1190
1191/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1192
1193static struct build_id *
1194build_id_bfd_get (bfd *abfd)
1195{
1196 struct build_id *retval;
1197
1198 if (!bfd_check_format (abfd, bfd_object)
1199 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1200 || elf_tdata (abfd)->build_id == NULL)
1201 return NULL;
1202
1203 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1204 retval->size = elf_tdata (abfd)->build_id_size;
1205 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1206
1207 return retval;
1208}
1209
1210/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1211
1212static int
1213build_id_verify (const char *filename, struct build_id *check)
1214{
1215 bfd *abfd;
1216 struct build_id *found = NULL;
1217 int retval = 0;
1218
1219 /* We expect to be silent on the non-existing files. */
f1838a98
UW
1220 if (remote_filename_p (filename))
1221 abfd = remote_bfd_open (filename, gnutarget);
1222 else
1223 abfd = bfd_openr (filename, gnutarget);
77069918
JK
1224 if (abfd == NULL)
1225 return 0;
1226
1227 found = build_id_bfd_get (abfd);
1228
1229 if (found == NULL)
1230 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1231 else if (found->size != check->size
1232 || memcmp (found->data, check->data, found->size) != 0)
1233 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1234 else
1235 retval = 1;
1236
1237 if (!bfd_close (abfd))
1238 warning (_("cannot close \"%s\": %s"), filename,
1239 bfd_errmsg (bfd_get_error ()));
1240 return retval;
1241}
1242
1243static char *
1244build_id_to_debug_filename (struct build_id *build_id)
1245{
1246 char *link, *s, *retval = NULL;
1247 gdb_byte *data = build_id->data;
1248 size_t size = build_id->size;
1249
1250 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1251 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1252 + 2 * size + (sizeof ".debug" - 1) + 1);
1253 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1254 if (size > 0)
1255 {
1256 size--;
1257 s += sprintf (s, "%02x", (unsigned) *data++);
1258 }
1259 if (size > 0)
1260 *s++ = '/';
1261 while (size-- > 0)
1262 s += sprintf (s, "%02x", (unsigned) *data++);
1263 strcpy (s, ".debug");
1264
1265 /* lrealpath() is expensive even for the usually non-existent files. */
1266 if (access (link, F_OK) == 0)
1267 retval = lrealpath (link);
1268 xfree (link);
1269
1270 if (retval != NULL && !build_id_verify (retval, build_id))
1271 {
1272 xfree (retval);
1273 retval = NULL;
1274 }
1275
1276 return retval;
1277}
1278
5b5d99cf
JB
1279static char *
1280get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1281{
1282 asection *sect;
1283 bfd_size_type debuglink_size;
1284 unsigned long crc32;
1285 char *contents;
1286 int crc_offset;
1287 unsigned char *p;
5417f6dc 1288
5b5d99cf
JB
1289 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1290
1291 if (sect == NULL)
1292 return NULL;
1293
1294 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1295
5b5d99cf
JB
1296 contents = xmalloc (debuglink_size);
1297 bfd_get_section_contents (objfile->obfd, sect, contents,
1298 (file_ptr)0, (bfd_size_type)debuglink_size);
1299
1300 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1301 crc_offset = strlen (contents) + 1;
1302 crc_offset = (crc_offset + 3) & ~3;
1303
1304 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1305
5b5d99cf
JB
1306 *crc32_out = crc32;
1307 return contents;
1308}
1309
1310static int
1311separate_debug_file_exists (const char *name, unsigned long crc)
1312{
1313 unsigned long file_crc = 0;
f1838a98 1314 bfd *abfd;
777ea8f1 1315 gdb_byte buffer[8*1024];
5b5d99cf
JB
1316 int count;
1317
f1838a98
UW
1318 if (remote_filename_p (name))
1319 abfd = remote_bfd_open (name, gnutarget);
1320 else
1321 abfd = bfd_openr (name, gnutarget);
1322
1323 if (!abfd)
5b5d99cf
JB
1324 return 0;
1325
f1838a98 1326 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1327 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1328
f1838a98 1329 bfd_close (abfd);
5b5d99cf
JB
1330
1331 return crc == file_crc;
1332}
1333
aa28a74e 1334char *debug_file_directory = NULL;
920d2a44
AC
1335static void
1336show_debug_file_directory (struct ui_file *file, int from_tty,
1337 struct cmd_list_element *c, const char *value)
1338{
1339 fprintf_filtered (file, _("\
1340The directory where separate debug symbols are searched for is \"%s\".\n"),
1341 value);
1342}
5b5d99cf
JB
1343
1344#if ! defined (DEBUG_SUBDIRECTORY)
1345#define DEBUG_SUBDIRECTORY ".debug"
1346#endif
1347
1348static char *
1349find_separate_debug_file (struct objfile *objfile)
1350{
1351 asection *sect;
1352 char *basename;
1353 char *dir;
1354 char *debugfile;
1355 char *name_copy;
aa28a74e 1356 char *canon_name;
5b5d99cf
JB
1357 bfd_size_type debuglink_size;
1358 unsigned long crc32;
1359 int i;
77069918
JK
1360 struct build_id *build_id;
1361
1362 build_id = build_id_bfd_get (objfile->obfd);
1363 if (build_id != NULL)
1364 {
1365 char *build_id_name;
1366
1367 build_id_name = build_id_to_debug_filename (build_id);
1368 free (build_id);
1369 /* Prevent looping on a stripped .debug file. */
1370 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1371 {
1372 warning (_("\"%s\": separate debug info file has no debug info"),
1373 build_id_name);
1374 xfree (build_id_name);
1375 }
1376 else if (build_id_name != NULL)
1377 return build_id_name;
1378 }
5b5d99cf
JB
1379
1380 basename = get_debug_link_info (objfile, &crc32);
1381
1382 if (basename == NULL)
1383 return NULL;
5417f6dc 1384
5b5d99cf
JB
1385 dir = xstrdup (objfile->name);
1386
fe36c4f4
JB
1387 /* Strip off the final filename part, leaving the directory name,
1388 followed by a slash. Objfile names should always be absolute and
1389 tilde-expanded, so there should always be a slash in there
1390 somewhere. */
5b5d99cf
JB
1391 for (i = strlen(dir) - 1; i >= 0; i--)
1392 {
1393 if (IS_DIR_SEPARATOR (dir[i]))
1394 break;
1395 }
fe36c4f4 1396 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
5b5d99cf 1397 dir[i+1] = '\0';
5417f6dc 1398
5b5d99cf
JB
1399 debugfile = alloca (strlen (debug_file_directory) + 1
1400 + strlen (dir)
1401 + strlen (DEBUG_SUBDIRECTORY)
1402 + strlen ("/")
5417f6dc 1403 + strlen (basename)
5b5d99cf
JB
1404 + 1);
1405
1406 /* First try in the same directory as the original file. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, basename);
1409
1410 if (separate_debug_file_exists (debugfile, crc32))
1411 {
1412 xfree (basename);
1413 xfree (dir);
1414 return xstrdup (debugfile);
1415 }
5417f6dc 1416
5b5d99cf
JB
1417 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1418 strcpy (debugfile, dir);
1419 strcat (debugfile, DEBUG_SUBDIRECTORY);
1420 strcat (debugfile, "/");
1421 strcat (debugfile, basename);
1422
1423 if (separate_debug_file_exists (debugfile, crc32))
1424 {
1425 xfree (basename);
1426 xfree (dir);
1427 return xstrdup (debugfile);
1428 }
5417f6dc 1429
5b5d99cf
JB
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
5b5d99cf
JB
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1440 return xstrdup (debugfile);
1441 }
5417f6dc 1442
aa28a74e
DJ
1443 /* If the file is in the sysroot, try using its base path in the
1444 global debugfile directory. */
1445 canon_name = lrealpath (dir);
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1460 return xstrdup (debugfile);
1461 }
1462 }
1463
1464 if (canon_name)
1465 xfree (canon_name);
1466
5b5d99cf
JB
1467 xfree (basename);
1468 xfree (dir);
1469 return NULL;
1470}
1471
1472
c906108c
SS
1473/* This is the symbol-file command. Read the file, analyze its
1474 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1475 the command is rather bizarre:
1476
1477 1. The function buildargv implements various quoting conventions
1478 which are undocumented and have little or nothing in common with
1479 the way things are quoted (or not quoted) elsewhere in GDB.
1480
1481 2. Options are used, which are not generally used in GDB (perhaps
1482 "set mapped on", "set readnow on" would be better)
1483
1484 3. The order of options matters, which is contrary to GNU
c906108c
SS
1485 conventions (because it is confusing and inconvenient). */
1486
1487void
fba45db2 1488symbol_file_command (char *args, int from_tty)
c906108c 1489{
c906108c
SS
1490 dont_repeat ();
1491
1492 if (args == NULL)
1493 {
1adeb98a 1494 symbol_file_clear (from_tty);
c906108c
SS
1495 }
1496 else
1497 {
cb2f3a29
MK
1498 char **argv = buildargv (args);
1499 int flags = OBJF_USERLOADED;
1500 struct cleanup *cleanups;
1501 char *name = NULL;
1502
1503 if (argv == NULL)
1504 nomem (0);
1505
7a292a7a 1506 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1507 while (*argv != NULL)
1508 {
78a4a9b9
AC
1509 if (strcmp (*argv, "-readnow") == 0)
1510 flags |= OBJF_READNOW;
1511 else if (**argv == '-')
8a3fe4f8 1512 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1513 else
1514 {
cb2f3a29 1515 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1516 name = *argv;
78a4a9b9 1517 }
cb2f3a29 1518
c906108c
SS
1519 argv++;
1520 }
1521
1522 if (name == NULL)
cb2f3a29
MK
1523 error (_("no symbol file name was specified"));
1524
c906108c
SS
1525 do_cleanups (cleanups);
1526 }
1527}
1528
1529/* Set the initial language.
1530
cb2f3a29
MK
1531 FIXME: A better solution would be to record the language in the
1532 psymtab when reading partial symbols, and then use it (if known) to
1533 set the language. This would be a win for formats that encode the
1534 language in an easily discoverable place, such as DWARF. For
1535 stabs, we can jump through hoops looking for specially named
1536 symbols or try to intuit the language from the specific type of
1537 stabs we find, but we can't do that until later when we read in
1538 full symbols. */
c906108c 1539
8b60591b 1540void
fba45db2 1541set_initial_language (void)
c906108c
SS
1542{
1543 struct partial_symtab *pst;
c5aa993b 1544 enum language lang = language_unknown;
c906108c
SS
1545
1546 pst = find_main_psymtab ();
1547 if (pst != NULL)
1548 {
c5aa993b 1549 if (pst->filename != NULL)
cb2f3a29
MK
1550 lang = deduce_language_from_filename (pst->filename);
1551
c906108c
SS
1552 if (lang == language_unknown)
1553 {
c5aa993b
JM
1554 /* Make C the default language */
1555 lang = language_c;
c906108c 1556 }
cb2f3a29 1557
c906108c 1558 set_language (lang);
cb2f3a29 1559 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1560 }
1561}
1562
cb2f3a29
MK
1563/* Open the file specified by NAME and hand it off to BFD for
1564 preliminary analysis. Return a newly initialized bfd *, which
1565 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1566 absolute). In case of trouble, error() is called. */
c906108c
SS
1567
1568bfd *
fba45db2 1569symfile_bfd_open (char *name)
c906108c
SS
1570{
1571 bfd *sym_bfd;
1572 int desc;
1573 char *absolute_name;
1574
f1838a98
UW
1575 if (remote_filename_p (name))
1576 {
1577 name = xstrdup (name);
1578 sym_bfd = remote_bfd_open (name, gnutarget);
1579 if (!sym_bfd)
1580 {
1581 make_cleanup (xfree, name);
1582 error (_("`%s': can't open to read symbols: %s."), name,
1583 bfd_errmsg (bfd_get_error ()));
1584 }
1585
1586 if (!bfd_check_format (sym_bfd, bfd_object))
1587 {
1588 bfd_close (sym_bfd);
1589 make_cleanup (xfree, name);
1590 error (_("`%s': can't read symbols: %s."), name,
1591 bfd_errmsg (bfd_get_error ()));
1592 }
1593
1594 return sym_bfd;
1595 }
1596
cb2f3a29 1597 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1598
1599 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29
MK
1600 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1601 O_RDONLY | O_BINARY, 0, &absolute_name);
608506ed 1602#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1603 if (desc < 0)
1604 {
1605 char *exename = alloca (strlen (name) + 5);
1606 strcat (strcpy (exename, name), ".exe");
014d698b
EZ
1607 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1608 O_RDONLY | O_BINARY, 0, &absolute_name);
c906108c
SS
1609 }
1610#endif
1611 if (desc < 0)
1612 {
b8c9b27d 1613 make_cleanup (xfree, name);
c906108c
SS
1614 perror_with_name (name);
1615 }
cb2f3a29
MK
1616
1617 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1618 bfd. It'll be freed in free_objfile(). */
1619 xfree (name);
1620 name = absolute_name;
c906108c 1621
9f76c2cd 1622 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1623 if (!sym_bfd)
1624 {
1625 close (desc);
b8c9b27d 1626 make_cleanup (xfree, name);
f1838a98 1627 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1628 bfd_errmsg (bfd_get_error ()));
1629 }
549c1eea 1630 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1631
1632 if (!bfd_check_format (sym_bfd, bfd_object))
1633 {
cb2f3a29
MK
1634 /* FIXME: should be checking for errors from bfd_close (for one
1635 thing, on error it does not free all the storage associated
1636 with the bfd). */
1637 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1638 make_cleanup (xfree, name);
f1838a98 1639 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1640 bfd_errmsg (bfd_get_error ()));
1641 }
cb2f3a29
MK
1642
1643 return sym_bfd;
c906108c
SS
1644}
1645
cb2f3a29
MK
1646/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1647 the section was not found. */
1648
0e931cf0
JB
1649int
1650get_section_index (struct objfile *objfile, char *section_name)
1651{
1652 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1653
0e931cf0
JB
1654 if (sect)
1655 return sect->index;
1656 else
1657 return -1;
1658}
1659
cb2f3a29
MK
1660/* Link SF into the global symtab_fns list. Called on startup by the
1661 _initialize routine in each object file format reader, to register
1662 information about each format the the reader is prepared to
1663 handle. */
c906108c
SS
1664
1665void
fba45db2 1666add_symtab_fns (struct sym_fns *sf)
c906108c
SS
1667{
1668 sf->next = symtab_fns;
1669 symtab_fns = sf;
1670}
1671
cb2f3a29
MK
1672/* Initialize OBJFILE to read symbols from its associated BFD. It
1673 either returns or calls error(). The result is an initialized
1674 struct sym_fns in the objfile structure, that contains cached
1675 information about the symbol file. */
c906108c 1676
31d99776
DJ
1677static struct sym_fns *
1678find_sym_fns (bfd *abfd)
c906108c
SS
1679{
1680 struct sym_fns *sf;
31d99776 1681 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
c906108c 1682
75245b24
MS
1683 if (our_flavour == bfd_target_srec_flavour
1684 || our_flavour == bfd_target_ihex_flavour
1685 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1686 return NULL; /* No symbols. */
75245b24 1687
c5aa993b 1688 for (sf = symtab_fns; sf != NULL; sf = sf->next)
31d99776
DJ
1689 if (our_flavour == sf->sym_flavour)
1690 return sf;
cb2f3a29 1691
8a3fe4f8 1692 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1693 bfd_get_target (abfd));
c906108c
SS
1694}
1695\f
cb2f3a29 1696
c906108c
SS
1697/* This function runs the load command of our current target. */
1698
1699static void
fba45db2 1700load_command (char *arg, int from_tty)
c906108c 1701{
4487aabf
PA
1702 /* The user might be reloading because the binary has changed. Take
1703 this opportunity to check. */
1704 reopen_exec_file ();
1705 reread_symbols ();
1706
c906108c 1707 if (arg == NULL)
1986bccd
AS
1708 {
1709 char *parg;
1710 int count = 0;
1711
1712 parg = arg = get_exec_file (1);
1713
1714 /* Count how many \ " ' tab space there are in the name. */
1715 while ((parg = strpbrk (parg, "\\\"'\t ")))
1716 {
1717 parg++;
1718 count++;
1719 }
1720
1721 if (count)
1722 {
1723 /* We need to quote this string so buildargv can pull it apart. */
1724 char *temp = xmalloc (strlen (arg) + count + 1 );
1725 char *ptemp = temp;
1726 char *prev;
1727
1728 make_cleanup (xfree, temp);
1729
1730 prev = parg = arg;
1731 while ((parg = strpbrk (parg, "\\\"'\t ")))
1732 {
1733 strncpy (ptemp, prev, parg - prev);
1734 ptemp += parg - prev;
1735 prev = parg++;
1736 *ptemp++ = '\\';
1737 }
1738 strcpy (ptemp, prev);
1739
1740 arg = temp;
1741 }
1742 }
1743
c906108c 1744 target_load (arg, from_tty);
2889e661
JB
1745
1746 /* After re-loading the executable, we don't really know which
1747 overlays are mapped any more. */
1748 overlay_cache_invalid = 1;
c906108c
SS
1749}
1750
1751/* This version of "load" should be usable for any target. Currently
1752 it is just used for remote targets, not inftarg.c or core files,
1753 on the theory that only in that case is it useful.
1754
1755 Avoiding xmodem and the like seems like a win (a) because we don't have
1756 to worry about finding it, and (b) On VMS, fork() is very slow and so
1757 we don't want to run a subprocess. On the other hand, I'm not sure how
1758 performance compares. */
917317f4 1759
917317f4
JM
1760static int validate_download = 0;
1761
e4f9b4d5
MS
1762/* Callback service function for generic_load (bfd_map_over_sections). */
1763
1764static void
1765add_section_size_callback (bfd *abfd, asection *asec, void *data)
1766{
1767 bfd_size_type *sum = data;
1768
2c500098 1769 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1770}
1771
1772/* Opaque data for load_section_callback. */
1773struct load_section_data {
1774 unsigned long load_offset;
a76d924d
DJ
1775 struct load_progress_data *progress_data;
1776 VEC(memory_write_request_s) *requests;
1777};
1778
1779/* Opaque data for load_progress. */
1780struct load_progress_data {
1781 /* Cumulative data. */
e4f9b4d5
MS
1782 unsigned long write_count;
1783 unsigned long data_count;
1784 bfd_size_type total_size;
a76d924d
DJ
1785};
1786
1787/* Opaque data for load_progress for a single section. */
1788struct load_progress_section_data {
1789 struct load_progress_data *cumulative;
cf7a04e8 1790
a76d924d 1791 /* Per-section data. */
cf7a04e8
DJ
1792 const char *section_name;
1793 ULONGEST section_sent;
1794 ULONGEST section_size;
1795 CORE_ADDR lma;
1796 gdb_byte *buffer;
e4f9b4d5
MS
1797};
1798
a76d924d 1799/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1800
1801static void
1802load_progress (ULONGEST bytes, void *untyped_arg)
1803{
a76d924d
DJ
1804 struct load_progress_section_data *args = untyped_arg;
1805 struct load_progress_data *totals;
1806
1807 if (args == NULL)
1808 /* Writing padding data. No easy way to get at the cumulative
1809 stats, so just ignore this. */
1810 return;
1811
1812 totals = args->cumulative;
1813
1814 if (bytes == 0 && args->section_sent == 0)
1815 {
1816 /* The write is just starting. Let the user know we've started
1817 this section. */
1818 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1819 args->section_name, paddr_nz (args->section_size),
1820 paddr_nz (args->lma));
1821 return;
1822 }
cf7a04e8
DJ
1823
1824 if (validate_download)
1825 {
1826 /* Broken memories and broken monitors manifest themselves here
1827 when bring new computers to life. This doubles already slow
1828 downloads. */
1829 /* NOTE: cagney/1999-10-18: A more efficient implementation
1830 might add a verify_memory() method to the target vector and
1831 then use that. remote.c could implement that method using
1832 the ``qCRC'' packet. */
1833 gdb_byte *check = xmalloc (bytes);
1834 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1835
1836 if (target_read_memory (args->lma, check, bytes) != 0)
1837 error (_("Download verify read failed at 0x%s"),
1838 paddr (args->lma));
1839 if (memcmp (args->buffer, check, bytes) != 0)
1840 error (_("Download verify compare failed at 0x%s"),
1841 paddr (args->lma));
1842 do_cleanups (verify_cleanups);
1843 }
a76d924d 1844 totals->data_count += bytes;
cf7a04e8
DJ
1845 args->lma += bytes;
1846 args->buffer += bytes;
a76d924d 1847 totals->write_count += 1;
cf7a04e8
DJ
1848 args->section_sent += bytes;
1849 if (quit_flag
1850 || (deprecated_ui_load_progress_hook != NULL
1851 && deprecated_ui_load_progress_hook (args->section_name,
1852 args->section_sent)))
1853 error (_("Canceled the download"));
1854
1855 if (deprecated_show_load_progress != NULL)
1856 deprecated_show_load_progress (args->section_name,
1857 args->section_sent,
1858 args->section_size,
a76d924d
DJ
1859 totals->data_count,
1860 totals->total_size);
cf7a04e8
DJ
1861}
1862
e4f9b4d5
MS
1863/* Callback service function for generic_load (bfd_map_over_sections). */
1864
1865static void
1866load_section_callback (bfd *abfd, asection *asec, void *data)
1867{
a76d924d 1868 struct memory_write_request *new_request;
e4f9b4d5 1869 struct load_section_data *args = data;
a76d924d 1870 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1871 bfd_size_type size = bfd_get_section_size (asec);
1872 gdb_byte *buffer;
cf7a04e8 1873 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1874
cf7a04e8
DJ
1875 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1876 return;
e4f9b4d5 1877
cf7a04e8
DJ
1878 if (size == 0)
1879 return;
e4f9b4d5 1880
a76d924d
DJ
1881 new_request = VEC_safe_push (memory_write_request_s,
1882 args->requests, NULL);
1883 memset (new_request, 0, sizeof (struct memory_write_request));
1884 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1885 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1886 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1887 new_request->data = xmalloc (size);
1888 new_request->baton = section_data;
cf7a04e8 1889
a76d924d 1890 buffer = new_request->data;
cf7a04e8 1891
a76d924d
DJ
1892 section_data->cumulative = args->progress_data;
1893 section_data->section_name = sect_name;
1894 section_data->section_size = size;
1895 section_data->lma = new_request->begin;
1896 section_data->buffer = buffer;
cf7a04e8
DJ
1897
1898 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1899}
1900
1901/* Clean up an entire memory request vector, including load
1902 data and progress records. */
cf7a04e8 1903
a76d924d
DJ
1904static void
1905clear_memory_write_data (void *arg)
1906{
1907 VEC(memory_write_request_s) **vec_p = arg;
1908 VEC(memory_write_request_s) *vec = *vec_p;
1909 int i;
1910 struct memory_write_request *mr;
cf7a04e8 1911
a76d924d
DJ
1912 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1913 {
1914 xfree (mr->data);
1915 xfree (mr->baton);
1916 }
1917 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1918}
1919
c906108c 1920void
917317f4 1921generic_load (char *args, int from_tty)
c906108c 1922{
c906108c 1923 bfd *loadfile_bfd;
2b71414d 1924 struct timeval start_time, end_time;
917317f4 1925 char *filename;
1986bccd 1926 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1927 struct load_section_data cbdata;
a76d924d
DJ
1928 struct load_progress_data total_progress;
1929
e4f9b4d5 1930 CORE_ADDR entry;
1986bccd 1931 char **argv;
e4f9b4d5 1932
a76d924d
DJ
1933 memset (&cbdata, 0, sizeof (cbdata));
1934 memset (&total_progress, 0, sizeof (total_progress));
1935 cbdata.progress_data = &total_progress;
1936
1937 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1938
1986bccd
AS
1939 argv = buildargv (args);
1940
1941 if (argv == NULL)
1942 nomem(0);
1943
1944 make_cleanup_freeargv (argv);
1945
1946 filename = tilde_expand (argv[0]);
1947 make_cleanup (xfree, filename);
1948
1949 if (argv[1] != NULL)
917317f4
JM
1950 {
1951 char *endptr;
ba5f2f8a 1952
1986bccd
AS
1953 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1954
1955 /* If the last word was not a valid number then
1956 treat it as a file name with spaces in. */
1957 if (argv[1] == endptr)
1958 error (_("Invalid download offset:%s."), argv[1]);
1959
1960 if (argv[2] != NULL)
1961 error (_("Too many parameters."));
917317f4 1962 }
c906108c 1963
917317f4 1964 /* Open the file for loading. */
c906108c
SS
1965 loadfile_bfd = bfd_openr (filename, gnutarget);
1966 if (loadfile_bfd == NULL)
1967 {
1968 perror_with_name (filename);
1969 return;
1970 }
917317f4 1971
c906108c
SS
1972 /* FIXME: should be checking for errors from bfd_close (for one thing,
1973 on error it does not free all the storage associated with the
1974 bfd). */
5c65bbb6 1975 make_cleanup_bfd_close (loadfile_bfd);
c906108c 1976
c5aa993b 1977 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 1978 {
8a3fe4f8 1979 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
1980 bfd_errmsg (bfd_get_error ()));
1981 }
c5aa993b 1982
5417f6dc 1983 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
1984 (void *) &total_progress.total_size);
1985
1986 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 1987
2b71414d 1988 gettimeofday (&start_time, NULL);
c906108c 1989
a76d924d
DJ
1990 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1991 load_progress) != 0)
1992 error (_("Load failed"));
c906108c 1993
2b71414d 1994 gettimeofday (&end_time, NULL);
ba5f2f8a 1995
e4f9b4d5 1996 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5
MS
1997 ui_out_text (uiout, "Start address ");
1998 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1999 ui_out_text (uiout, ", load size ");
a76d924d 2000 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2001 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2002 /* We were doing this in remote-mips.c, I suspect it is right
2003 for other targets too. */
2004 write_pc (entry);
c906108c 2005
7ca9f392
AC
2006 /* FIXME: are we supposed to call symbol_file_add or not? According
2007 to a comment from remote-mips.c (where a call to symbol_file_add
2008 was commented out), making the call confuses GDB if more than one
2009 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2010 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2011
a76d924d
DJ
2012 print_transfer_performance (gdb_stdout, total_progress.data_count,
2013 total_progress.write_count,
2014 &start_time, &end_time);
c906108c
SS
2015
2016 do_cleanups (old_cleanups);
2017}
2018
2019/* Report how fast the transfer went. */
2020
917317f4
JM
2021/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2022 replaced by print_transfer_performance (with a very different
2023 function signature). */
2024
c906108c 2025void
fba45db2
KB
2026report_transfer_performance (unsigned long data_count, time_t start_time,
2027 time_t end_time)
c906108c 2028{
2b71414d
DJ
2029 struct timeval start, end;
2030
2031 start.tv_sec = start_time;
2032 start.tv_usec = 0;
2033 end.tv_sec = end_time;
2034 end.tv_usec = 0;
2035
2036 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2037}
2038
2039void
d9fcf2fb 2040print_transfer_performance (struct ui_file *stream,
917317f4
JM
2041 unsigned long data_count,
2042 unsigned long write_count,
2b71414d
DJ
2043 const struct timeval *start_time,
2044 const struct timeval *end_time)
917317f4 2045{
9f43d28c 2046 ULONGEST time_count;
2b71414d
DJ
2047
2048 /* Compute the elapsed time in milliseconds, as a tradeoff between
2049 accuracy and overflow. */
2050 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2051 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2052
8b93c638
JM
2053 ui_out_text (uiout, "Transfer rate: ");
2054 if (time_count > 0)
2055 {
9f43d28c
DJ
2056 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2057
2058 if (ui_out_is_mi_like_p (uiout))
2059 {
2060 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2061 ui_out_text (uiout, " bits/sec");
2062 }
2063 else if (rate < 1024)
2064 {
2065 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2066 ui_out_text (uiout, " bytes/sec");
2067 }
2068 else
2069 {
2070 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2071 ui_out_text (uiout, " KB/sec");
2072 }
8b93c638
JM
2073 }
2074 else
2075 {
ba5f2f8a 2076 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2077 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2078 }
2079 if (write_count > 0)
2080 {
2081 ui_out_text (uiout, ", ");
ba5f2f8a 2082 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2083 ui_out_text (uiout, " bytes/write");
2084 }
2085 ui_out_text (uiout, ".\n");
c906108c
SS
2086}
2087
2088/* This function allows the addition of incrementally linked object files.
2089 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2090/* Note: ezannoni 2000-04-13 This function/command used to have a
2091 special case syntax for the rombug target (Rombug is the boot
2092 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2093 rombug case, the user doesn't need to supply a text address,
2094 instead a call to target_link() (in target.c) would supply the
2095 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2096
c906108c 2097static void
fba45db2 2098add_symbol_file_command (char *args, int from_tty)
c906108c 2099{
db162d44 2100 char *filename = NULL;
2df3850c 2101 int flags = OBJF_USERLOADED;
c906108c 2102 char *arg;
2acceee2 2103 int expecting_option = 0;
db162d44 2104 int section_index = 0;
2acceee2
JM
2105 int argcnt = 0;
2106 int sec_num = 0;
2107 int i;
db162d44
EZ
2108 int expecting_sec_name = 0;
2109 int expecting_sec_addr = 0;
5b96932b 2110 char **argv;
db162d44 2111
a39a16c4 2112 struct sect_opt
2acceee2 2113 {
2acceee2
JM
2114 char *name;
2115 char *value;
a39a16c4 2116 };
db162d44 2117
a39a16c4
MM
2118 struct section_addr_info *section_addrs;
2119 struct sect_opt *sect_opts = NULL;
2120 size_t num_sect_opts = 0;
3017564a 2121 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2122
a39a16c4 2123 num_sect_opts = 16;
5417f6dc 2124 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2125 * sizeof (struct sect_opt));
2126
c906108c
SS
2127 dont_repeat ();
2128
2129 if (args == NULL)
8a3fe4f8 2130 error (_("add-symbol-file takes a file name and an address"));
c906108c 2131
5b96932b
AS
2132 argv = buildargv (args);
2133 make_cleanup_freeargv (argv);
db162d44 2134
5b96932b
AS
2135 if (argv == NULL)
2136 nomem (0);
db162d44 2137
5b96932b
AS
2138 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2139 {
2140 /* Process the argument. */
db162d44 2141 if (argcnt == 0)
c906108c 2142 {
db162d44
EZ
2143 /* The first argument is the file name. */
2144 filename = tilde_expand (arg);
3017564a 2145 make_cleanup (xfree, filename);
c906108c 2146 }
db162d44 2147 else
7a78ae4e
ND
2148 if (argcnt == 1)
2149 {
2150 /* The second argument is always the text address at which
2151 to load the program. */
2152 sect_opts[section_index].name = ".text";
2153 sect_opts[section_index].value = arg;
f414f22f 2154 if (++section_index >= num_sect_opts)
a39a16c4
MM
2155 {
2156 num_sect_opts *= 2;
5417f6dc 2157 sect_opts = ((struct sect_opt *)
a39a16c4 2158 xrealloc (sect_opts,
5417f6dc 2159 num_sect_opts
a39a16c4
MM
2160 * sizeof (struct sect_opt)));
2161 }
7a78ae4e
ND
2162 }
2163 else
2164 {
2165 /* It's an option (starting with '-') or it's an argument
2166 to an option */
2167
2168 if (*arg == '-')
2169 {
78a4a9b9
AC
2170 if (strcmp (arg, "-readnow") == 0)
2171 flags |= OBJF_READNOW;
2172 else if (strcmp (arg, "-s") == 0)
2173 {
2174 expecting_sec_name = 1;
2175 expecting_sec_addr = 1;
2176 }
7a78ae4e
ND
2177 }
2178 else
2179 {
2180 if (expecting_sec_name)
db162d44 2181 {
7a78ae4e
ND
2182 sect_opts[section_index].name = arg;
2183 expecting_sec_name = 0;
db162d44
EZ
2184 }
2185 else
7a78ae4e
ND
2186 if (expecting_sec_addr)
2187 {
2188 sect_opts[section_index].value = arg;
2189 expecting_sec_addr = 0;
f414f22f 2190 if (++section_index >= num_sect_opts)
a39a16c4
MM
2191 {
2192 num_sect_opts *= 2;
5417f6dc 2193 sect_opts = ((struct sect_opt *)
a39a16c4 2194 xrealloc (sect_opts,
5417f6dc 2195 num_sect_opts
a39a16c4
MM
2196 * sizeof (struct sect_opt)));
2197 }
7a78ae4e
ND
2198 }
2199 else
8a3fe4f8 2200 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2201 }
2202 }
c906108c 2203 }
c906108c 2204
927890d0
JB
2205 /* This command takes at least two arguments. The first one is a
2206 filename, and the second is the address where this file has been
2207 loaded. Abort now if this address hasn't been provided by the
2208 user. */
2209 if (section_index < 1)
2210 error (_("The address where %s has been loaded is missing"), filename);
2211
db162d44
EZ
2212 /* Print the prompt for the query below. And save the arguments into
2213 a sect_addr_info structure to be passed around to other
2214 functions. We have to split this up into separate print
bb599908 2215 statements because hex_string returns a local static
db162d44 2216 string. */
5417f6dc 2217
a3f17187 2218 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2219 section_addrs = alloc_section_addr_info (section_index);
2220 make_cleanup (xfree, section_addrs);
db162d44 2221 for (i = 0; i < section_index; i++)
c906108c 2222 {
db162d44
EZ
2223 CORE_ADDR addr;
2224 char *val = sect_opts[i].value;
2225 char *sec = sect_opts[i].name;
5417f6dc 2226
ae822768 2227 addr = parse_and_eval_address (val);
db162d44 2228
db162d44
EZ
2229 /* Here we store the section offsets in the order they were
2230 entered on the command line. */
a39a16c4
MM
2231 section_addrs->other[sec_num].name = sec;
2232 section_addrs->other[sec_num].addr = addr;
35076fa0 2233 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
db162d44
EZ
2234 sec_num++;
2235
5417f6dc 2236 /* The object's sections are initialized when a
db162d44 2237 call is made to build_objfile_section_table (objfile).
5417f6dc 2238 This happens in reread_symbols.
db162d44
EZ
2239 At this point, we don't know what file type this is,
2240 so we can't determine what section names are valid. */
2acceee2 2241 }
db162d44 2242
2acceee2 2243 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2244 error (_("Not confirmed."));
c906108c 2245
a39a16c4 2246 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
c906108c
SS
2247
2248 /* Getting new symbols may change our opinion about what is
2249 frameless. */
2250 reinit_frame_cache ();
db162d44 2251 do_cleanups (my_cleanups);
c906108c
SS
2252}
2253\f
2254static void
fba45db2 2255add_shared_symbol_files_command (char *args, int from_tty)
c906108c
SS
2256{
2257#ifdef ADD_SHARED_SYMBOL_FILES
2258 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2259#else
8a3fe4f8 2260 error (_("This command is not available in this configuration of GDB."));
c5aa993b 2261#endif
c906108c
SS
2262}
2263\f
2264/* Re-read symbols if a symbol-file has changed. */
2265void
fba45db2 2266reread_symbols (void)
c906108c
SS
2267{
2268 struct objfile *objfile;
2269 long new_modtime;
2270 int reread_one = 0;
2271 struct stat new_statbuf;
2272 int res;
2273
2274 /* With the addition of shared libraries, this should be modified,
2275 the load time should be saved in the partial symbol tables, since
2276 different tables may come from different source files. FIXME.
2277 This routine should then walk down each partial symbol table
2278 and see if the symbol table that it originates from has been changed */
2279
c5aa993b
JM
2280 for (objfile = object_files; objfile; objfile = objfile->next)
2281 {
2282 if (objfile->obfd)
2283 {
52d16ba8 2284#ifdef DEPRECATED_IBM6000_TARGET
c5aa993b
JM
2285 /* If this object is from a shared library, then you should
2286 stat on the library name, not member name. */
c906108c 2287
c5aa993b
JM
2288 if (objfile->obfd->my_archive)
2289 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2290 else
c906108c 2291#endif
c5aa993b
JM
2292 res = stat (objfile->name, &new_statbuf);
2293 if (res != 0)
c906108c 2294 {
c5aa993b 2295 /* FIXME, should use print_sys_errmsg but it's not filtered. */
a3f17187 2296 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
c5aa993b
JM
2297 objfile->name);
2298 continue;
c906108c 2299 }
c5aa993b
JM
2300 new_modtime = new_statbuf.st_mtime;
2301 if (new_modtime != objfile->mtime)
c906108c 2302 {
c5aa993b
JM
2303 struct cleanup *old_cleanups;
2304 struct section_offsets *offsets;
2305 int num_offsets;
c5aa993b
JM
2306 char *obfd_filename;
2307
a3f17187 2308 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
c5aa993b
JM
2309 objfile->name);
2310
2311 /* There are various functions like symbol_file_add,
2312 symfile_bfd_open, syms_from_objfile, etc., which might
2313 appear to do what we want. But they have various other
2314 effects which we *don't* want. So we just do stuff
2315 ourselves. We don't worry about mapped files (for one thing,
2316 any mapped file will be out of date). */
2317
2318 /* If we get an error, blow away this objfile (not sure if
2319 that is the correct response for things like shared
2320 libraries). */
74b7792f 2321 old_cleanups = make_cleanup_free_objfile (objfile);
c5aa993b 2322 /* We need to do this whenever any symbols go away. */
74b7792f 2323 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c5aa993b 2324
b2de52bb
JK
2325 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2326 bfd_get_filename (exec_bfd)) == 0)
2327 {
2328 /* Reload EXEC_BFD without asking anything. */
2329
2330 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2331 }
2332
c5aa993b
JM
2333 /* Clean up any state BFD has sitting around. We don't need
2334 to close the descriptor but BFD lacks a way of closing the
2335 BFD without closing the descriptor. */
2336 obfd_filename = bfd_get_filename (objfile->obfd);
2337 if (!bfd_close (objfile->obfd))
8a3fe4f8 2338 error (_("Can't close BFD for %s: %s"), objfile->name,
c5aa993b 2339 bfd_errmsg (bfd_get_error ()));
f1838a98
UW
2340 if (remote_filename_p (obfd_filename))
2341 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2342 else
2343 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
c5aa993b 2344 if (objfile->obfd == NULL)
8a3fe4f8 2345 error (_("Can't open %s to read symbols."), objfile->name);
c5aa993b
JM
2346 /* bfd_openr sets cacheable to true, which is what we want. */
2347 if (!bfd_check_format (objfile->obfd, bfd_object))
8a3fe4f8 2348 error (_("Can't read symbols from %s: %s."), objfile->name,
c5aa993b
JM
2349 bfd_errmsg (bfd_get_error ()));
2350
2351 /* Save the offsets, we will nuke them with the rest of the
8b92e4d5 2352 objfile_obstack. */
c5aa993b 2353 num_offsets = objfile->num_sections;
5417f6dc 2354 offsets = ((struct section_offsets *)
a39a16c4 2355 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
5417f6dc 2356 memcpy (offsets, objfile->section_offsets,
a39a16c4 2357 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b 2358
ae5a43e0
DJ
2359 /* Remove any references to this objfile in the global
2360 value lists. */
2361 preserve_values (objfile);
2362
c5aa993b
JM
2363 /* Nuke all the state that we will re-read. Much of the following
2364 code which sets things to NULL really is necessary to tell
2365 other parts of GDB that there is nothing currently there. */
2366
2367 /* FIXME: Do we have to free a whole linked list, or is this
2368 enough? */
2369 if (objfile->global_psymbols.list)
2dc74dc1 2370 xfree (objfile->global_psymbols.list);
c5aa993b
JM
2371 memset (&objfile->global_psymbols, 0,
2372 sizeof (objfile->global_psymbols));
2373 if (objfile->static_psymbols.list)
2dc74dc1 2374 xfree (objfile->static_psymbols.list);
c5aa993b
JM
2375 memset (&objfile->static_psymbols, 0,
2376 sizeof (objfile->static_psymbols));
2377
2378 /* Free the obstacks for non-reusable objfiles */
af5f3db6
AC
2379 bcache_xfree (objfile->psymbol_cache);
2380 objfile->psymbol_cache = bcache_xmalloc ();
2381 bcache_xfree (objfile->macro_cache);
2382 objfile->macro_cache = bcache_xmalloc ();
2de7ced7
DJ
2383 if (objfile->demangled_names_hash != NULL)
2384 {
2385 htab_delete (objfile->demangled_names_hash);
2386 objfile->demangled_names_hash = NULL;
2387 }
b99607ea 2388 obstack_free (&objfile->objfile_obstack, 0);
c5aa993b
JM
2389 objfile->sections = NULL;
2390 objfile->symtabs = NULL;
2391 objfile->psymtabs = NULL;
2392 objfile->free_psymtabs = NULL;
a1b8c067 2393 objfile->cp_namespace_symtab = NULL;
c5aa993b 2394 objfile->msymbols = NULL;
0a6ddd08 2395 objfile->deprecated_sym_private = NULL;
c5aa993b 2396 objfile->minimal_symbol_count = 0;
0a83117a
MS
2397 memset (&objfile->msymbol_hash, 0,
2398 sizeof (objfile->msymbol_hash));
2399 memset (&objfile->msymbol_demangled_hash, 0,
2400 sizeof (objfile->msymbol_demangled_hash));
7b097ae3 2401 clear_objfile_data (objfile);
c5aa993b
JM
2402 if (objfile->sf != NULL)
2403 {
2404 (*objfile->sf->sym_finish) (objfile);
2405 }
2406
af5f3db6
AC
2407 objfile->psymbol_cache = bcache_xmalloc ();
2408 objfile->macro_cache = bcache_xmalloc ();
1ab21617
EZ
2409 /* obstack_init also initializes the obstack so it is
2410 empty. We could use obstack_specify_allocation but
2411 gdb_obstack.h specifies the alloc/dealloc
2412 functions. */
2413 obstack_init (&objfile->objfile_obstack);
c5aa993b
JM
2414 if (build_objfile_section_table (objfile))
2415 {
8a3fe4f8 2416 error (_("Can't find the file sections in `%s': %s"),
c5aa993b
JM
2417 objfile->name, bfd_errmsg (bfd_get_error ()));
2418 }
15831452 2419 terminate_minimal_symbol_table (objfile);
c5aa993b
JM
2420
2421 /* We use the same section offsets as from last time. I'm not
2422 sure whether that is always correct for shared libraries. */
2423 objfile->section_offsets = (struct section_offsets *)
5417f6dc 2424 obstack_alloc (&objfile->objfile_obstack,
a39a16c4 2425 SIZEOF_N_SECTION_OFFSETS (num_offsets));
5417f6dc 2426 memcpy (objfile->section_offsets, offsets,
a39a16c4 2427 SIZEOF_N_SECTION_OFFSETS (num_offsets));
c5aa993b
JM
2428 objfile->num_sections = num_offsets;
2429
2430 /* What the hell is sym_new_init for, anyway? The concept of
2431 distinguishing between the main file and additional files
2432 in this way seems rather dubious. */
2433 if (objfile == symfile_objfile)
2434 {
2435 (*objfile->sf->sym_new_init) (objfile);
c5aa993b
JM
2436 }
2437
2438 (*objfile->sf->sym_init) (objfile);
b9caf505 2439 clear_complaints (&symfile_complaints, 1, 1);
c5aa993b
JM
2440 /* The "mainline" parameter is a hideous hack; I think leaving it
2441 zero is OK since dbxread.c also does what it needs to do if
2442 objfile->global_psymbols.size is 0. */
96baa820 2443 (*objfile->sf->sym_read) (objfile, 0);
c5aa993b
JM
2444 if (!have_partial_symbols () && !have_full_symbols ())
2445 {
2446 wrap_here ("");
a3f17187 2447 printf_unfiltered (_("(no debugging symbols found)\n"));
c5aa993b
JM
2448 wrap_here ("");
2449 }
2450 objfile->flags |= OBJF_SYMS;
2451
2452 /* We're done reading the symbol file; finish off complaints. */
b9caf505 2453 clear_complaints (&symfile_complaints, 0, 1);
c906108c 2454
c5aa993b
JM
2455 /* Getting new symbols may change our opinion about what is
2456 frameless. */
c906108c 2457
c5aa993b 2458 reinit_frame_cache ();
c906108c 2459
c5aa993b
JM
2460 /* Discard cleanups as symbol reading was successful. */
2461 discard_cleanups (old_cleanups);
c906108c 2462
c5aa993b
JM
2463 /* If the mtime has changed between the time we set new_modtime
2464 and now, we *want* this to be out of date, so don't call stat
2465 again now. */
2466 objfile->mtime = new_modtime;
2467 reread_one = 1;
5b5d99cf 2468 reread_separate_symbols (objfile);
6528a9ea 2469 init_entry_point_info (objfile);
c5aa993b 2470 }
c906108c
SS
2471 }
2472 }
c906108c
SS
2473
2474 if (reread_one)
ea53e89f
JB
2475 {
2476 clear_symtab_users ();
2477 /* At least one objfile has changed, so we can consider that
2478 the executable we're debugging has changed too. */
781b42b0 2479 observer_notify_executable_changed ();
ea53e89f
JB
2480 }
2481
c906108c 2482}
5b5d99cf
JB
2483
2484
2485/* Handle separate debug info for OBJFILE, which has just been
2486 re-read:
2487 - If we had separate debug info before, but now we don't, get rid
2488 of the separated objfile.
2489 - If we didn't have separated debug info before, but now we do,
2490 read in the new separated debug info file.
2491 - If the debug link points to a different file, toss the old one
2492 and read the new one.
2493 This function does *not* handle the case where objfile is still
2494 using the same separate debug info file, but that file's timestamp
2495 has changed. That case should be handled by the loop in
2496 reread_symbols already. */
2497static void
2498reread_separate_symbols (struct objfile *objfile)
2499{
2500 char *debug_file;
2501 unsigned long crc32;
2502
2503 /* Does the updated objfile's debug info live in a
2504 separate file? */
2505 debug_file = find_separate_debug_file (objfile);
2506
2507 if (objfile->separate_debug_objfile)
2508 {
2509 /* There are two cases where we need to get rid of
2510 the old separated debug info objfile:
2511 - if the new primary objfile doesn't have
2512 separated debug info, or
2513 - if the new primary objfile has separate debug
2514 info, but it's under a different filename.
5417f6dc 2515
5b5d99cf
JB
2516 If the old and new objfiles both have separate
2517 debug info, under the same filename, then we're
2518 okay --- if the separated file's contents have
2519 changed, we will have caught that when we
2520 visited it in this function's outermost
2521 loop. */
2522 if (! debug_file
2523 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2524 free_objfile (objfile->separate_debug_objfile);
2525 }
2526
2527 /* If the new objfile has separate debug info, and we
2528 haven't loaded it already, do so now. */
2529 if (debug_file
2530 && ! objfile->separate_debug_objfile)
2531 {
2532 /* Use the same section offset table as objfile itself.
2533 Preserve the flags from objfile that make sense. */
2534 objfile->separate_debug_objfile
2535 = (symbol_file_add_with_addrs_or_offsets
5417f6dc 2536 (symfile_bfd_open (debug_file),
5b5d99cf
JB
2537 info_verbose, /* from_tty: Don't override the default. */
2538 0, /* No addr table. */
2539 objfile->section_offsets, objfile->num_sections,
2540 0, /* Not mainline. See comments about this above. */
78a4a9b9 2541 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
5b5d99cf
JB
2542 | OBJF_USERLOADED)));
2543 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2544 = objfile;
2545 }
73780b3c
MS
2546 if (debug_file)
2547 xfree (debug_file);
5b5d99cf
JB
2548}
2549
2550
c906108c
SS
2551\f
2552
c5aa993b
JM
2553
2554typedef struct
2555{
2556 char *ext;
c906108c 2557 enum language lang;
c5aa993b
JM
2558}
2559filename_language;
c906108c 2560
c5aa993b 2561static filename_language *filename_language_table;
c906108c
SS
2562static int fl_table_size, fl_table_next;
2563
2564static void
fba45db2 2565add_filename_language (char *ext, enum language lang)
c906108c
SS
2566{
2567 if (fl_table_next >= fl_table_size)
2568 {
2569 fl_table_size += 10;
5417f6dc 2570 filename_language_table =
25bf3106
PM
2571 xrealloc (filename_language_table,
2572 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2573 }
2574
4fcf66da 2575 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2576 filename_language_table[fl_table_next].lang = lang;
2577 fl_table_next++;
2578}
2579
2580static char *ext_args;
920d2a44
AC
2581static void
2582show_ext_args (struct ui_file *file, int from_tty,
2583 struct cmd_list_element *c, const char *value)
2584{
2585 fprintf_filtered (file, _("\
2586Mapping between filename extension and source language is \"%s\".\n"),
2587 value);
2588}
c906108c
SS
2589
2590static void
26c41df3 2591set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2592{
2593 int i;
2594 char *cp = ext_args;
2595 enum language lang;
2596
2597 /* First arg is filename extension, starting with '.' */
2598 if (*cp != '.')
8a3fe4f8 2599 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2600
2601 /* Find end of first arg. */
c5aa993b 2602 while (*cp && !isspace (*cp))
c906108c
SS
2603 cp++;
2604
2605 if (*cp == '\0')
8a3fe4f8 2606 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2607 ext_args);
2608
2609 /* Null-terminate first arg */
c5aa993b 2610 *cp++ = '\0';
c906108c
SS
2611
2612 /* Find beginning of second arg, which should be a source language. */
2613 while (*cp && isspace (*cp))
2614 cp++;
2615
2616 if (*cp == '\0')
8a3fe4f8 2617 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2618 ext_args);
2619
2620 /* Lookup the language from among those we know. */
2621 lang = language_enum (cp);
2622
2623 /* Now lookup the filename extension: do we already know it? */
2624 for (i = 0; i < fl_table_next; i++)
2625 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2626 break;
2627
2628 if (i >= fl_table_next)
2629 {
2630 /* new file extension */
2631 add_filename_language (ext_args, lang);
2632 }
2633 else
2634 {
2635 /* redefining a previously known filename extension */
2636
2637 /* if (from_tty) */
2638 /* query ("Really make files of type %s '%s'?", */
2639 /* ext_args, language_str (lang)); */
2640
b8c9b27d 2641 xfree (filename_language_table[i].ext);
4fcf66da 2642 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2643 filename_language_table[i].lang = lang;
2644 }
2645}
2646
2647static void
fba45db2 2648info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2649{
2650 int i;
2651
a3f17187 2652 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2653 printf_filtered ("\n\n");
2654 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2655 printf_filtered ("\t%s\t- %s\n",
2656 filename_language_table[i].ext,
c906108c
SS
2657 language_str (filename_language_table[i].lang));
2658}
2659
2660static void
fba45db2 2661init_filename_language_table (void)
c906108c
SS
2662{
2663 if (fl_table_size == 0) /* protect against repetition */
2664 {
2665 fl_table_size = 20;
2666 fl_table_next = 0;
c5aa993b 2667 filename_language_table =
c906108c 2668 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b
JM
2669 add_filename_language (".c", language_c);
2670 add_filename_language (".C", language_cplus);
2671 add_filename_language (".cc", language_cplus);
2672 add_filename_language (".cp", language_cplus);
2673 add_filename_language (".cpp", language_cplus);
2674 add_filename_language (".cxx", language_cplus);
2675 add_filename_language (".c++", language_cplus);
2676 add_filename_language (".java", language_java);
c906108c 2677 add_filename_language (".class", language_java);
da2cf7e0 2678 add_filename_language (".m", language_objc);
c5aa993b
JM
2679 add_filename_language (".f", language_fortran);
2680 add_filename_language (".F", language_fortran);
2681 add_filename_language (".s", language_asm);
aa707ed0 2682 add_filename_language (".sx", language_asm);
c5aa993b 2683 add_filename_language (".S", language_asm);
c6fd39cd
PM
2684 add_filename_language (".pas", language_pascal);
2685 add_filename_language (".p", language_pascal);
2686 add_filename_language (".pp", language_pascal);
963a6417
PH
2687 add_filename_language (".adb", language_ada);
2688 add_filename_language (".ads", language_ada);
2689 add_filename_language (".a", language_ada);
2690 add_filename_language (".ada", language_ada);
c906108c
SS
2691 }
2692}
2693
2694enum language
fba45db2 2695deduce_language_from_filename (char *filename)
c906108c
SS
2696{
2697 int i;
2698 char *cp;
2699
2700 if (filename != NULL)
2701 if ((cp = strrchr (filename, '.')) != NULL)
2702 for (i = 0; i < fl_table_next; i++)
2703 if (strcmp (cp, filename_language_table[i].ext) == 0)
2704 return filename_language_table[i].lang;
2705
2706 return language_unknown;
2707}
2708\f
2709/* allocate_symtab:
2710
2711 Allocate and partly initialize a new symbol table. Return a pointer
2712 to it. error() if no space.
2713
2714 Caller must set these fields:
c5aa993b
JM
2715 LINETABLE(symtab)
2716 symtab->blockvector
2717 symtab->dirname
2718 symtab->free_code
2719 symtab->free_ptr
2720 possibly free_named_symtabs (symtab->filename);
c906108c
SS
2721 */
2722
2723struct symtab *
fba45db2 2724allocate_symtab (char *filename, struct objfile *objfile)
c906108c 2725{
52f0bd74 2726 struct symtab *symtab;
c906108c
SS
2727
2728 symtab = (struct symtab *)
4a146b47 2729 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2730 memset (symtab, 0, sizeof (*symtab));
c5aa993b 2731 symtab->filename = obsavestring (filename, strlen (filename),
4a146b47 2732 &objfile->objfile_obstack);
c5aa993b
JM
2733 symtab->fullname = NULL;
2734 symtab->language = deduce_language_from_filename (filename);
2735 symtab->debugformat = obsavestring ("unknown", 7,
4a146b47 2736 &objfile->objfile_obstack);
c906108c
SS
2737
2738 /* Hook it to the objfile it comes from */
2739
c5aa993b
JM
2740 symtab->objfile = objfile;
2741 symtab->next = objfile->symtabs;
2742 objfile->symtabs = symtab;
c906108c 2743
c906108c
SS
2744 return (symtab);
2745}
2746
2747struct partial_symtab *
fba45db2 2748allocate_psymtab (char *filename, struct objfile *objfile)
c906108c
SS
2749{
2750 struct partial_symtab *psymtab;
2751
c5aa993b 2752 if (objfile->free_psymtabs)
c906108c 2753 {
c5aa993b
JM
2754 psymtab = objfile->free_psymtabs;
2755 objfile->free_psymtabs = psymtab->next;
c906108c
SS
2756 }
2757 else
2758 psymtab = (struct partial_symtab *)
8b92e4d5 2759 obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2760 sizeof (struct partial_symtab));
2761
2762 memset (psymtab, 0, sizeof (struct partial_symtab));
c5aa993b 2763 psymtab->filename = obsavestring (filename, strlen (filename),
8b92e4d5 2764 &objfile->objfile_obstack);
c5aa993b 2765 psymtab->symtab = NULL;
c906108c
SS
2766
2767 /* Prepend it to the psymtab list for the objfile it belongs to.
2768 Psymtabs are searched in most recent inserted -> least recent
2769 inserted order. */
2770
c5aa993b
JM
2771 psymtab->objfile = objfile;
2772 psymtab->next = objfile->psymtabs;
2773 objfile->psymtabs = psymtab;
c906108c
SS
2774#if 0
2775 {
2776 struct partial_symtab **prev_pst;
c5aa993b
JM
2777 psymtab->objfile = objfile;
2778 psymtab->next = NULL;
2779 prev_pst = &(objfile->psymtabs);
c906108c 2780 while ((*prev_pst) != NULL)
c5aa993b 2781 prev_pst = &((*prev_pst)->next);
c906108c 2782 (*prev_pst) = psymtab;
c5aa993b 2783 }
c906108c 2784#endif
c5aa993b 2785
c906108c
SS
2786 return (psymtab);
2787}
2788
2789void
fba45db2 2790discard_psymtab (struct partial_symtab *pst)
c906108c
SS
2791{
2792 struct partial_symtab **prev_pst;
2793
2794 /* From dbxread.c:
2795 Empty psymtabs happen as a result of header files which don't
2796 have any symbols in them. There can be a lot of them. But this
2797 check is wrong, in that a psymtab with N_SLINE entries but
2798 nothing else is not empty, but we don't realize that. Fixing
2799 that without slowing things down might be tricky. */
2800
2801 /* First, snip it out of the psymtab chain */
2802
2803 prev_pst = &(pst->objfile->psymtabs);
2804 while ((*prev_pst) != pst)
2805 prev_pst = &((*prev_pst)->next);
2806 (*prev_pst) = pst->next;
2807
2808 /* Next, put it on a free list for recycling */
2809
2810 pst->next = pst->objfile->free_psymtabs;
2811 pst->objfile->free_psymtabs = pst;
2812}
c906108c 2813\f
c5aa993b 2814
c906108c
SS
2815/* Reset all data structures in gdb which may contain references to symbol
2816 table data. */
2817
2818void
fba45db2 2819clear_symtab_users (void)
c906108c
SS
2820{
2821 /* Someday, we should do better than this, by only blowing away
2822 the things that really need to be blown. */
c0501be5
DJ
2823
2824 /* Clear the "current" symtab first, because it is no longer valid.
2825 breakpoint_re_set may try to access the current symtab. */
2826 clear_current_source_symtab_and_line ();
2827
c906108c 2828 clear_displays ();
c906108c
SS
2829 breakpoint_re_set ();
2830 set_default_breakpoint (0, 0, 0, 0);
c906108c 2831 clear_pc_function_cache ();
06d3b283 2832 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2833
2834 /* Clear globals which might have pointed into a removed objfile.
2835 FIXME: It's not clear which of these are supposed to persist
2836 between expressions and which ought to be reset each time. */
2837 expression_context_block = NULL;
2838 innermost_block = NULL;
8756216b
DP
2839
2840 /* Varobj may refer to old symbols, perform a cleanup. */
2841 varobj_invalidate ();
2842
c906108c
SS
2843}
2844
74b7792f
AC
2845static void
2846clear_symtab_users_cleanup (void *ignore)
2847{
2848 clear_symtab_users ();
2849}
2850
c906108c
SS
2851/* clear_symtab_users_once:
2852
2853 This function is run after symbol reading, or from a cleanup.
2854 If an old symbol table was obsoleted, the old symbol table
5417f6dc 2855 has been blown away, but the other GDB data structures that may
c906108c
SS
2856 reference it have not yet been cleared or re-directed. (The old
2857 symtab was zapped, and the cleanup queued, in free_named_symtab()
2858 below.)
2859
2860 This function can be queued N times as a cleanup, or called
2861 directly; it will do all the work the first time, and then will be a
2862 no-op until the next time it is queued. This works by bumping a
2863 counter at queueing time. Much later when the cleanup is run, or at
2864 the end of symbol processing (in case the cleanup is discarded), if
2865 the queued count is greater than the "done-count", we do the work
2866 and set the done-count to the queued count. If the queued count is
2867 less than or equal to the done-count, we just ignore the call. This
2868 is needed because reading a single .o file will often replace many
2869 symtabs (one per .h file, for example), and we don't want to reset
2870 the breakpoints N times in the user's face.
2871
2872 The reason we both queue a cleanup, and call it directly after symbol
2873 reading, is because the cleanup protects us in case of errors, but is
2874 discarded if symbol reading is successful. */
2875
2876#if 0
2877/* FIXME: As free_named_symtabs is currently a big noop this function
2878 is no longer needed. */
a14ed312 2879static void clear_symtab_users_once (void);
c906108c
SS
2880
2881static int clear_symtab_users_queued;
2882static int clear_symtab_users_done;
2883
2884static void
fba45db2 2885clear_symtab_users_once (void)
c906108c
SS
2886{
2887 /* Enforce once-per-`do_cleanups'-semantics */
2888 if (clear_symtab_users_queued <= clear_symtab_users_done)
2889 return;
2890 clear_symtab_users_done = clear_symtab_users_queued;
2891
2892 clear_symtab_users ();
2893}
2894#endif
2895
2896/* Delete the specified psymtab, and any others that reference it. */
2897
2898static void
fba45db2 2899cashier_psymtab (struct partial_symtab *pst)
c906108c
SS
2900{
2901 struct partial_symtab *ps, *pprev = NULL;
2902 int i;
2903
2904 /* Find its previous psymtab in the chain */
c5aa993b
JM
2905 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2906 {
2907 if (ps == pst)
2908 break;
2909 pprev = ps;
2910 }
c906108c 2911
c5aa993b
JM
2912 if (ps)
2913 {
2914 /* Unhook it from the chain. */
2915 if (ps == pst->objfile->psymtabs)
2916 pst->objfile->psymtabs = ps->next;
2917 else
2918 pprev->next = ps->next;
2919
2920 /* FIXME, we can't conveniently deallocate the entries in the
2921 partial_symbol lists (global_psymbols/static_psymbols) that
2922 this psymtab points to. These just take up space until all
2923 the psymtabs are reclaimed. Ditto the dependencies list and
8b92e4d5 2924 filename, which are all in the objfile_obstack. */
c5aa993b
JM
2925
2926 /* We need to cashier any psymtab that has this one as a dependency... */
2927 again:
2928 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2929 {
2930 for (i = 0; i < ps->number_of_dependencies; i++)
2931 {
2932 if (ps->dependencies[i] == pst)
2933 {
2934 cashier_psymtab (ps);
2935 goto again; /* Must restart, chain has been munged. */
2936 }
2937 }
c906108c 2938 }
c906108c 2939 }
c906108c
SS
2940}
2941
2942/* If a symtab or psymtab for filename NAME is found, free it along
2943 with any dependent breakpoints, displays, etc.
2944 Used when loading new versions of object modules with the "add-file"
2945 command. This is only called on the top-level symtab or psymtab's name;
2946 it is not called for subsidiary files such as .h files.
2947
2948 Return value is 1 if we blew away the environment, 0 if not.
7e73cedf 2949 FIXME. The return value appears to never be used.
c906108c
SS
2950
2951 FIXME. I think this is not the best way to do this. We should
2952 work on being gentler to the environment while still cleaning up
2953 all stray pointers into the freed symtab. */
2954
2955int
fba45db2 2956free_named_symtabs (char *name)
c906108c
SS
2957{
2958#if 0
2959 /* FIXME: With the new method of each objfile having it's own
2960 psymtab list, this function needs serious rethinking. In particular,
2961 why was it ever necessary to toss psymtabs with specific compilation
2962 unit filenames, as opposed to all psymtabs from a particular symbol
2963 file? -- fnf
2964 Well, the answer is that some systems permit reloading of particular
2965 compilation units. We want to blow away any old info about these
2966 compilation units, regardless of which objfiles they arrived in. --gnu. */
2967
52f0bd74
AC
2968 struct symtab *s;
2969 struct symtab *prev;
2970 struct partial_symtab *ps;
c906108c
SS
2971 struct blockvector *bv;
2972 int blewit = 0;
2973
2974 /* We only wack things if the symbol-reload switch is set. */
2975 if (!symbol_reloading)
2976 return 0;
2977
2978 /* Some symbol formats have trouble providing file names... */
2979 if (name == 0 || *name == '\0')
2980 return 0;
2981
2982 /* Look for a psymtab with the specified name. */
2983
2984again2:
c5aa993b
JM
2985 for (ps = partial_symtab_list; ps; ps = ps->next)
2986 {
6314a349 2987 if (strcmp (name, ps->filename) == 0)
c5aa993b
JM
2988 {
2989 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2990 goto again2; /* Must restart, chain has been munged */
2991 }
c906108c 2992 }
c906108c
SS
2993
2994 /* Look for a symtab with the specified name. */
2995
2996 for (s = symtab_list; s; s = s->next)
2997 {
6314a349 2998 if (strcmp (name, s->filename) == 0)
c906108c
SS
2999 break;
3000 prev = s;
3001 }
3002
3003 if (s)
3004 {
3005 if (s == symtab_list)
3006 symtab_list = s->next;
3007 else
3008 prev->next = s->next;
3009
3010 /* For now, queue a delete for all breakpoints, displays, etc., whether
c5aa993b
JM
3011 or not they depend on the symtab being freed. This should be
3012 changed so that only those data structures affected are deleted. */
c906108c
SS
3013
3014 /* But don't delete anything if the symtab is empty.
c5aa993b
JM
3015 This test is necessary due to a bug in "dbxread.c" that
3016 causes empty symtabs to be created for N_SO symbols that
3017 contain the pathname of the object file. (This problem
3018 has been fixed in GDB 3.9x). */
c906108c
SS
3019
3020 bv = BLOCKVECTOR (s);
3021 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3022 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3023 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3024 {
e2e0b3e5 3025 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
b9caf505 3026 name);
c906108c
SS
3027 clear_symtab_users_queued++;
3028 make_cleanup (clear_symtab_users_once, 0);
3029 blewit = 1;
c5aa993b
JM
3030 }
3031 else
e2e0b3e5
AC
3032 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3033 name);
c906108c
SS
3034
3035 free_symtab (s);
3036 }
3037 else
3038 {
3039 /* It is still possible that some breakpoints will be affected
c5aa993b
JM
3040 even though no symtab was found, since the file might have
3041 been compiled without debugging, and hence not be associated
3042 with a symtab. In order to handle this correctly, we would need
3043 to keep a list of text address ranges for undebuggable files.
3044 For now, we do nothing, since this is a fairly obscure case. */
c906108c
SS
3045 ;
3046 }
3047
3048 /* FIXME, what about the minimal symbol table? */
3049 return blewit;
3050#else
3051 return (0);
3052#endif
3053}
3054\f
3055/* Allocate and partially fill a partial symtab. It will be
3056 completely filled at the end of the symbol list.
3057
d4f3574e 3058 FILENAME is the name of the symbol-file we are reading from. */
c906108c
SS
3059
3060struct partial_symtab *
fba45db2
KB
3061start_psymtab_common (struct objfile *objfile,
3062 struct section_offsets *section_offsets, char *filename,
3063 CORE_ADDR textlow, struct partial_symbol **global_syms,
3064 struct partial_symbol **static_syms)
c906108c
SS
3065{
3066 struct partial_symtab *psymtab;
3067
3068 psymtab = allocate_psymtab (filename, objfile);
c5aa993b
JM
3069 psymtab->section_offsets = section_offsets;
3070 psymtab->textlow = textlow;
3071 psymtab->texthigh = psymtab->textlow; /* default */
3072 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3073 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
c906108c
SS
3074 return (psymtab);
3075}
3076\f
2e618c13
AR
3077/* Helper function, initialises partial symbol structure and stashes
3078 it into objfile's bcache. Note that our caching mechanism will
3079 use all fields of struct partial_symbol to determine hash value of the
3080 structure. In other words, having two symbols with the same name but
3081 different domain (or address) is possible and correct. */
3082
11d31d94 3083static const struct partial_symbol *
2e618c13
AR
3084add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3085 enum address_class class,
3086 long val, /* Value as a long */
3087 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3088 enum language language, struct objfile *objfile,
3089 int *added)
3090{
3091 char *buf = name;
3092 /* psymbol is static so that there will be no uninitialized gaps in the
3093 structure which might contain random data, causing cache misses in
3094 bcache. */
3095 static struct partial_symbol psymbol;
3096
3097 if (name[namelength] != '\0')
3098 {
3099 buf = alloca (namelength + 1);
3100 /* Create local copy of the partial symbol */
3101 memcpy (buf, name, namelength);
3102 buf[namelength] = '\0';
3103 }
3104 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3105 if (val != 0)
3106 {
3107 SYMBOL_VALUE (&psymbol) = val;
3108 }
3109 else
3110 {
3111 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3112 }
3113 SYMBOL_SECTION (&psymbol) = 0;
3114 SYMBOL_LANGUAGE (&psymbol) = language;
3115 PSYMBOL_DOMAIN (&psymbol) = domain;
3116 PSYMBOL_CLASS (&psymbol) = class;
3117
3118 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3119
3120 /* Stash the partial symbol away in the cache */
11d31d94
TT
3121 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3122 objfile->psymbol_cache, added);
2e618c13
AR
3123}
3124
3125/* Helper function, adds partial symbol to the given partial symbol
3126 list. */
3127
3128static void
3129append_psymbol_to_list (struct psymbol_allocation_list *list,
11d31d94 3130 const struct partial_symbol *psym,
2e618c13
AR
3131 struct objfile *objfile)
3132{
3133 if (list->next >= list->list + list->size)
3134 extend_psymbol_list (list, objfile);
11d31d94 3135 *list->next++ = (struct partial_symbol *) psym;
2e618c13
AR
3136 OBJSTAT (objfile, n_psyms++);
3137}
3138
c906108c 3139/* Add a symbol with a long value to a psymtab.
5417f6dc 3140 Since one arg is a struct, we pass in a ptr and deref it (sigh).
5c4e30ca
DC
3141 Return the partial symbol that has been added. */
3142
3143/* NOTE: carlton/2003-09-11: The reason why we return the partial
3144 symbol is so that callers can get access to the symbol's demangled
3145 name, which they don't have any cheap way to determine otherwise.
3146 (Currenly, dwarf2read.c is the only file who uses that information,
3147 though it's possible that other readers might in the future.)
3148 Elena wasn't thrilled about that, and I don't blame her, but we
3149 couldn't come up with a better way to get that information. If
3150 it's needed in other situations, we could consider breaking up
3151 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3152 cache. */
3153
3154const struct partial_symbol *
176620f1 3155add_psymbol_to_list (char *name, int namelength, domain_enum domain,
fba45db2 3156 enum address_class class,
2e618c13
AR
3157 struct psymbol_allocation_list *list,
3158 long val, /* Value as a long */
fba45db2
KB
3159 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3160 enum language language, struct objfile *objfile)
c906108c 3161{
11d31d94 3162 const struct partial_symbol *psym;
2de7ced7 3163
2e618c13 3164 int added;
c906108c
SS
3165
3166 /* Stash the partial symbol away in the cache */
2e618c13
AR
3167 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3168 val, coreaddr, language, objfile, &added);
c906108c 3169
2e618c13
AR
3170 /* Do not duplicate global partial symbols. */
3171 if (list == &objfile->global_psymbols
3172 && !added)
3173 return psym;
5c4e30ca 3174
2e618c13
AR
3175 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3176 append_psymbol_to_list (list, psym, objfile);
5c4e30ca 3177 return psym;
c906108c
SS
3178}
3179
c906108c
SS
3180/* Initialize storage for partial symbols. */
3181
3182void
fba45db2 3183init_psymbol_list (struct objfile *objfile, int total_symbols)
c906108c
SS
3184{
3185 /* Free any previously allocated psymbol lists. */
c5aa993b
JM
3186
3187 if (objfile->global_psymbols.list)
c906108c 3188 {
2dc74dc1 3189 xfree (objfile->global_psymbols.list);
c906108c 3190 }
c5aa993b 3191 if (objfile->static_psymbols.list)
c906108c 3192 {
2dc74dc1 3193 xfree (objfile->static_psymbols.list);
c906108c 3194 }
c5aa993b 3195
c906108c
SS
3196 /* Current best guess is that approximately a twentieth
3197 of the total symbols (in a debugging file) are global or static
3198 oriented symbols */
c906108c 3199
c5aa993b
JM
3200 objfile->global_psymbols.size = total_symbols / 10;
3201 objfile->static_psymbols.size = total_symbols / 10;
3202
3203 if (objfile->global_psymbols.size > 0)
c906108c 3204 {
c5aa993b
JM
3205 objfile->global_psymbols.next =
3206 objfile->global_psymbols.list = (struct partial_symbol **)
7936743b
AC
3207 xmalloc ((objfile->global_psymbols.size
3208 * sizeof (struct partial_symbol *)));
c906108c 3209 }
c5aa993b 3210 if (objfile->static_psymbols.size > 0)
c906108c 3211 {
c5aa993b
JM
3212 objfile->static_psymbols.next =
3213 objfile->static_psymbols.list = (struct partial_symbol **)
7936743b
AC
3214 xmalloc ((objfile->static_psymbols.size
3215 * sizeof (struct partial_symbol *)));
c906108c
SS
3216 }
3217}
3218
3219/* OVERLAYS:
3220 The following code implements an abstraction for debugging overlay sections.
3221
3222 The target model is as follows:
3223 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 3224 same VMA, each with its own unique LMA (or load address).
c906108c 3225 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 3226 sections, one by one, from the load address into the VMA address.
5417f6dc 3227 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
3228 sections should be considered to be mapped from the VMA to the LMA.
3229 This information is used for symbol lookup, and memory read/write.
5417f6dc 3230 For instance, if a section has been mapped then its contents
c5aa993b 3231 should be read from the VMA, otherwise from the LMA.
c906108c
SS
3232
3233 Two levels of debugger support for overlays are available. One is
3234 "manual", in which the debugger relies on the user to tell it which
3235 overlays are currently mapped. This level of support is
3236 implemented entirely in the core debugger, and the information about
3237 whether a section is mapped is kept in the objfile->obj_section table.
3238
3239 The second level of support is "automatic", and is only available if
3240 the target-specific code provides functionality to read the target's
3241 overlay mapping table, and translate its contents for the debugger
3242 (by updating the mapped state information in the obj_section tables).
3243
3244 The interface is as follows:
c5aa993b
JM
3245 User commands:
3246 overlay map <name> -- tell gdb to consider this section mapped
3247 overlay unmap <name> -- tell gdb to consider this section unmapped
3248 overlay list -- list the sections that GDB thinks are mapped
3249 overlay read-target -- get the target's state of what's mapped
3250 overlay off/manual/auto -- set overlay debugging state
3251 Functional interface:
3252 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3253 section, return that section.
5417f6dc 3254 find_pc_overlay(pc): find any overlay section that contains
c5aa993b
JM
3255 the pc, either in its VMA or its LMA
3256 overlay_is_mapped(sect): true if overlay is marked as mapped
3257 section_is_overlay(sect): true if section's VMA != LMA
3258 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3259 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 3260 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
3261 overlay_mapped_address(...): map an address from section's LMA to VMA
3262 overlay_unmapped_address(...): map an address from section's VMA to LMA
3263 symbol_overlayed_address(...): Return a "current" address for symbol:
3264 either in VMA or LMA depending on whether
3265 the symbol's section is currently mapped
c906108c
SS
3266 */
3267
3268/* Overlay debugging state: */
3269
d874f1e2 3270enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
3271int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3272
c906108c 3273/* Function: section_is_overlay (SECTION)
5417f6dc 3274 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
3275 SECTION is loaded at an address different from where it will "run". */
3276
3277int
fba45db2 3278section_is_overlay (asection *section)
c906108c 3279{
fbd35540
MS
3280 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3281
c906108c
SS
3282 if (overlay_debugging)
3283 if (section && section->lma != 0 &&
3284 section->vma != section->lma)
3285 return 1;
3286
3287 return 0;
3288}
3289
3290/* Function: overlay_invalidate_all (void)
3291 Invalidate the mapped state of all overlay sections (mark it as stale). */
3292
3293static void
fba45db2 3294overlay_invalidate_all (void)
c906108c 3295{
c5aa993b 3296 struct objfile *objfile;
c906108c
SS
3297 struct obj_section *sect;
3298
3299 ALL_OBJSECTIONS (objfile, sect)
3300 if (section_is_overlay (sect->the_bfd_section))
c5aa993b 3301 sect->ovly_mapped = -1;
c906108c
SS
3302}
3303
3304/* Function: overlay_is_mapped (SECTION)
5417f6dc 3305 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
3306 Private: public access is thru function section_is_mapped.
3307
3308 Access to the ovly_mapped flag is restricted to this function, so
3309 that we can do automatic update. If the global flag
3310 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3311 overlay_invalidate_all. If the mapped state of the particular
3312 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3313
c5aa993b 3314static int
fba45db2 3315overlay_is_mapped (struct obj_section *osect)
c906108c
SS
3316{
3317 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3318 return 0;
3319
c5aa993b 3320 switch (overlay_debugging)
c906108c
SS
3321 {
3322 default:
d874f1e2 3323 case ovly_off:
c5aa993b 3324 return 0; /* overlay debugging off */
d874f1e2 3325 case ovly_auto: /* overlay debugging automatic */
1c772458 3326 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 3327 there's really nothing useful to do here (can't really go auto) */
1c772458 3328 if (gdbarch_overlay_update_p (current_gdbarch))
c906108c
SS
3329 {
3330 if (overlay_cache_invalid)
3331 {
3332 overlay_invalidate_all ();
3333 overlay_cache_invalid = 0;
3334 }
3335 if (osect->ovly_mapped == -1)
1c772458 3336 gdbarch_overlay_update (current_gdbarch, osect);
c906108c
SS
3337 }
3338 /* fall thru to manual case */
d874f1e2 3339 case ovly_on: /* overlay debugging manual */
c906108c
SS
3340 return osect->ovly_mapped == 1;
3341 }
3342}
3343
3344/* Function: section_is_mapped
3345 Returns true if section is an overlay, and is currently mapped. */
3346
3347int
fba45db2 3348section_is_mapped (asection *section)
c906108c 3349{
c5aa993b 3350 struct objfile *objfile;
c906108c
SS
3351 struct obj_section *osect;
3352
3353 if (overlay_debugging)
3354 if (section && section_is_overlay (section))
3355 ALL_OBJSECTIONS (objfile, osect)
3356 if (osect->the_bfd_section == section)
c5aa993b 3357 return overlay_is_mapped (osect);
c906108c
SS
3358
3359 return 0;
3360}
3361
3362/* Function: pc_in_unmapped_range
3363 If PC falls into the lma range of SECTION, return true, else false. */
3364
3365CORE_ADDR
fba45db2 3366pc_in_unmapped_range (CORE_ADDR pc, asection *section)
c906108c 3367{
fbd35540
MS
3368 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3369
c906108c
SS
3370 int size;
3371
3372 if (overlay_debugging)
3373 if (section && section_is_overlay (section))
3374 {
2c500098 3375 size = bfd_get_section_size (section);
c906108c
SS
3376 if (section->lma <= pc && pc < section->lma + size)
3377 return 1;
3378 }
3379 return 0;
3380}
3381
3382/* Function: pc_in_mapped_range
3383 If PC falls into the vma range of SECTION, return true, else false. */
3384
3385CORE_ADDR
fba45db2 3386pc_in_mapped_range (CORE_ADDR pc, asection *section)
c906108c 3387{
fbd35540
MS
3388 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3389
c906108c
SS
3390 int size;
3391
3392 if (overlay_debugging)
3393 if (section && section_is_overlay (section))
3394 {
2c500098 3395 size = bfd_get_section_size (section);
c906108c
SS
3396 if (section->vma <= pc && pc < section->vma + size)
3397 return 1;
3398 }
3399 return 0;
3400}
3401
9ec8e6a0
JB
3402
3403/* Return true if the mapped ranges of sections A and B overlap, false
3404 otherwise. */
b9362cc7 3405static int
9ec8e6a0
JB
3406sections_overlap (asection *a, asection *b)
3407{
fbd35540
MS
3408 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3409
9ec8e6a0 3410 CORE_ADDR a_start = a->vma;
2c500098 3411 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
9ec8e6a0 3412 CORE_ADDR b_start = b->vma;
2c500098 3413 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
9ec8e6a0
JB
3414
3415 return (a_start < b_end && b_start < a_end);
3416}
3417
c906108c
SS
3418/* Function: overlay_unmapped_address (PC, SECTION)
3419 Returns the address corresponding to PC in the unmapped (load) range.
3420 May be the same as PC. */
3421
3422CORE_ADDR
fba45db2 3423overlay_unmapped_address (CORE_ADDR pc, asection *section)
c906108c 3424{
fbd35540
MS
3425 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3426
c906108c
SS
3427 if (overlay_debugging)
3428 if (section && section_is_overlay (section) &&
3429 pc_in_mapped_range (pc, section))
3430 return pc + section->lma - section->vma;
3431
3432 return pc;
3433}
3434
3435/* Function: overlay_mapped_address (PC, SECTION)
3436 Returns the address corresponding to PC in the mapped (runtime) range.
3437 May be the same as PC. */
3438
3439CORE_ADDR
fba45db2 3440overlay_mapped_address (CORE_ADDR pc, asection *section)
c906108c 3441{
fbd35540
MS
3442 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3443
c906108c
SS
3444 if (overlay_debugging)
3445 if (section && section_is_overlay (section) &&
3446 pc_in_unmapped_range (pc, section))
3447 return pc + section->vma - section->lma;
3448
3449 return pc;
3450}
3451
3452
5417f6dc 3453/* Function: symbol_overlayed_address
c906108c
SS
3454 Return one of two addresses (relative to the VMA or to the LMA),
3455 depending on whether the section is mapped or not. */
3456
c5aa993b 3457CORE_ADDR
fba45db2 3458symbol_overlayed_address (CORE_ADDR address, asection *section)
c906108c
SS
3459{
3460 if (overlay_debugging)
3461 {
3462 /* If the symbol has no section, just return its regular address. */
3463 if (section == 0)
3464 return address;
3465 /* If the symbol's section is not an overlay, just return its address */
3466 if (!section_is_overlay (section))
3467 return address;
3468 /* If the symbol's section is mapped, just return its address */
3469 if (section_is_mapped (section))
3470 return address;
3471 /*
3472 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3473 * then return its LOADED address rather than its vma address!!
3474 */
3475 return overlay_unmapped_address (address, section);
3476 }
3477 return address;
3478}
3479
5417f6dc 3480/* Function: find_pc_overlay (PC)
c906108c
SS
3481 Return the best-match overlay section for PC:
3482 If PC matches a mapped overlay section's VMA, return that section.
3483 Else if PC matches an unmapped section's VMA, return that section.
3484 Else if PC matches an unmapped section's LMA, return that section. */
3485
3486asection *
fba45db2 3487find_pc_overlay (CORE_ADDR pc)
c906108c 3488{
c5aa993b 3489 struct objfile *objfile;
c906108c
SS
3490 struct obj_section *osect, *best_match = NULL;
3491
3492 if (overlay_debugging)
3493 ALL_OBJSECTIONS (objfile, osect)
3494 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3495 {
3496 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3497 {
3498 if (overlay_is_mapped (osect))
3499 return osect->the_bfd_section;
3500 else
3501 best_match = osect;
3502 }
3503 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3504 best_match = osect;
3505 }
c906108c
SS
3506 return best_match ? best_match->the_bfd_section : NULL;
3507}
3508
3509/* Function: find_pc_mapped_section (PC)
5417f6dc 3510 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3511 currently marked as MAPPED, return that section. Else return NULL. */
3512
3513asection *
fba45db2 3514find_pc_mapped_section (CORE_ADDR pc)
c906108c 3515{
c5aa993b 3516 struct objfile *objfile;
c906108c
SS
3517 struct obj_section *osect;
3518
3519 if (overlay_debugging)
3520 ALL_OBJSECTIONS (objfile, osect)
3521 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3522 overlay_is_mapped (osect))
c5aa993b 3523 return osect->the_bfd_section;
c906108c
SS
3524
3525 return NULL;
3526}
3527
3528/* Function: list_overlays_command
3529 Print a list of mapped sections and their PC ranges */
3530
3531void
fba45db2 3532list_overlays_command (char *args, int from_tty)
c906108c 3533{
c5aa993b
JM
3534 int nmapped = 0;
3535 struct objfile *objfile;
c906108c
SS
3536 struct obj_section *osect;
3537
3538 if (overlay_debugging)
3539 ALL_OBJSECTIONS (objfile, osect)
3540 if (overlay_is_mapped (osect))
c5aa993b
JM
3541 {
3542 const char *name;
3543 bfd_vma lma, vma;
3544 int size;
3545
3546 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3547 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3548 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3549 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3550
3551 printf_filtered ("Section %s, loaded at ", name);
ed49a04f 3552 fputs_filtered (paddress (lma), gdb_stdout);
c5aa993b 3553 puts_filtered (" - ");
ed49a04f 3554 fputs_filtered (paddress (lma + size), gdb_stdout);
c5aa993b 3555 printf_filtered (", mapped at ");
ed49a04f 3556 fputs_filtered (paddress (vma), gdb_stdout);
c5aa993b 3557 puts_filtered (" - ");
ed49a04f 3558 fputs_filtered (paddress (vma + size), gdb_stdout);
c5aa993b
JM
3559 puts_filtered ("\n");
3560
3561 nmapped++;
3562 }
c906108c 3563 if (nmapped == 0)
a3f17187 3564 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3565}
3566
3567/* Function: map_overlay_command
3568 Mark the named section as mapped (ie. residing at its VMA address). */
3569
3570void
fba45db2 3571map_overlay_command (char *args, int from_tty)
c906108c 3572{
c5aa993b
JM
3573 struct objfile *objfile, *objfile2;
3574 struct obj_section *sec, *sec2;
3575 asection *bfdsec;
c906108c
SS
3576
3577 if (!overlay_debugging)
8a3fe4f8 3578 error (_("\
515ad16c 3579Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3580the 'overlay manual' command."));
c906108c
SS
3581
3582 if (args == 0 || *args == 0)
8a3fe4f8 3583 error (_("Argument required: name of an overlay section"));
c906108c
SS
3584
3585 /* First, find a section matching the user supplied argument */
3586 ALL_OBJSECTIONS (objfile, sec)
3587 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3588 {
3589 /* Now, check to see if the section is an overlay. */
3590 bfdsec = sec->the_bfd_section;
3591 if (!section_is_overlay (bfdsec))
3592 continue; /* not an overlay section */
3593
3594 /* Mark the overlay as "mapped" */
3595 sec->ovly_mapped = 1;
3596
3597 /* Next, make a pass and unmap any sections that are
3598 overlapped by this new section: */
3599 ALL_OBJSECTIONS (objfile2, sec2)
9ec8e6a0
JB
3600 if (sec2->ovly_mapped
3601 && sec != sec2
3602 && sec->the_bfd_section != sec2->the_bfd_section
3603 && sections_overlap (sec->the_bfd_section,
3604 sec2->the_bfd_section))
c5aa993b
JM
3605 {
3606 if (info_verbose)
a3f17187 3607 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3608 bfd_section_name (objfile->obfd,
3609 sec2->the_bfd_section));
3610 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3611 }
3612 return;
3613 }
8a3fe4f8 3614 error (_("No overlay section called %s"), args);
c906108c
SS
3615}
3616
3617/* Function: unmap_overlay_command
5417f6dc 3618 Mark the overlay section as unmapped
c906108c
SS
3619 (ie. resident in its LMA address range, rather than the VMA range). */
3620
3621void
fba45db2 3622unmap_overlay_command (char *args, int from_tty)
c906108c 3623{
c5aa993b 3624 struct objfile *objfile;
c906108c
SS
3625 struct obj_section *sec;
3626
3627 if (!overlay_debugging)
8a3fe4f8 3628 error (_("\
515ad16c 3629Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3630the 'overlay manual' command."));
c906108c
SS
3631
3632 if (args == 0 || *args == 0)
8a3fe4f8 3633 error (_("Argument required: name of an overlay section"));
c906108c
SS
3634
3635 /* First, find a section matching the user supplied argument */
3636 ALL_OBJSECTIONS (objfile, sec)
3637 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3638 {
3639 if (!sec->ovly_mapped)
8a3fe4f8 3640 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3641 sec->ovly_mapped = 0;
3642 return;
3643 }
8a3fe4f8 3644 error (_("No overlay section called %s"), args);
c906108c
SS
3645}
3646
3647/* Function: overlay_auto_command
3648 A utility command to turn on overlay debugging.
3649 Possibly this should be done via a set/show command. */
3650
3651static void
fba45db2 3652overlay_auto_command (char *args, int from_tty)
c906108c 3653{
d874f1e2 3654 overlay_debugging = ovly_auto;
1900040c 3655 enable_overlay_breakpoints ();
c906108c 3656 if (info_verbose)
a3f17187 3657 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3658}
3659
3660/* Function: overlay_manual_command
3661 A utility command to turn on overlay debugging.
3662 Possibly this should be done via a set/show command. */
3663
3664static void
fba45db2 3665overlay_manual_command (char *args, int from_tty)
c906108c 3666{
d874f1e2 3667 overlay_debugging = ovly_on;
1900040c 3668 disable_overlay_breakpoints ();
c906108c 3669 if (info_verbose)
a3f17187 3670 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3671}
3672
3673/* Function: overlay_off_command
3674 A utility command to turn on overlay debugging.
3675 Possibly this should be done via a set/show command. */
3676
3677static void
fba45db2 3678overlay_off_command (char *args, int from_tty)
c906108c 3679{
d874f1e2 3680 overlay_debugging = ovly_off;
1900040c 3681 disable_overlay_breakpoints ();
c906108c 3682 if (info_verbose)
a3f17187 3683 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3684}
3685
3686static void
fba45db2 3687overlay_load_command (char *args, int from_tty)
c906108c 3688{
1c772458
UW
3689 if (gdbarch_overlay_update_p (current_gdbarch))
3690 gdbarch_overlay_update (current_gdbarch, NULL);
c906108c 3691 else
8a3fe4f8 3692 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3693}
3694
3695/* Function: overlay_command
3696 A place-holder for a mis-typed command */
3697
3698/* Command list chain containing all defined "overlay" subcommands. */
3699struct cmd_list_element *overlaylist;
3700
3701static void
fba45db2 3702overlay_command (char *args, int from_tty)
c906108c 3703{
c5aa993b 3704 printf_unfiltered
c906108c
SS
3705 ("\"overlay\" must be followed by the name of an overlay command.\n");
3706 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3707}
3708
3709
3710/* Target Overlays for the "Simplest" overlay manager:
3711
5417f6dc
RM
3712 This is GDB's default target overlay layer. It works with the
3713 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3714 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3715 so targets that use a different runtime overlay manager can
c906108c
SS
3716 substitute their own overlay_update function and take over the
3717 function pointer.
3718
3719 The overlay_update function pokes around in the target's data structures
3720 to see what overlays are mapped, and updates GDB's overlay mapping with
3721 this information.
3722
3723 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3724 unsigned _novlys; /# number of overlay sections #/
3725 unsigned _ovly_table[_novlys][4] = {
3726 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3727 {..., ..., ..., ...},
3728 }
3729 unsigned _novly_regions; /# number of overlay regions #/
3730 unsigned _ovly_region_table[_novly_regions][3] = {
3731 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3732 {..., ..., ...},
3733 }
c906108c
SS
3734 These functions will attempt to update GDB's mappedness state in the
3735 symbol section table, based on the target's mappedness state.
3736
3737 To do this, we keep a cached copy of the target's _ovly_table, and
3738 attempt to detect when the cached copy is invalidated. The main
3739 entry point is "simple_overlay_update(SECT), which looks up SECT in
3740 the cached table and re-reads only the entry for that section from
3741 the target (whenever possible).
3742 */
3743
3744/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3745static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3746#if 0
c5aa993b 3747static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3748#endif
c5aa993b 3749static unsigned cache_novlys = 0;
c906108c 3750#if 0
c5aa993b 3751static unsigned cache_novly_regions = 0;
c906108c
SS
3752#endif
3753static CORE_ADDR cache_ovly_table_base = 0;
3754#if 0
3755static CORE_ADDR cache_ovly_region_table_base = 0;
3756#endif
c5aa993b
JM
3757enum ovly_index
3758 {
3759 VMA, SIZE, LMA, MAPPED
3760 };
9a76efb6
UW
3761#define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3762 / TARGET_CHAR_BIT)
c906108c
SS
3763
3764/* Throw away the cached copy of _ovly_table */
3765static void
fba45db2 3766simple_free_overlay_table (void)
c906108c
SS
3767{
3768 if (cache_ovly_table)
b8c9b27d 3769 xfree (cache_ovly_table);
c5aa993b 3770 cache_novlys = 0;
c906108c
SS
3771 cache_ovly_table = NULL;
3772 cache_ovly_table_base = 0;
3773}
3774
3775#if 0
3776/* Throw away the cached copy of _ovly_region_table */
3777static void
fba45db2 3778simple_free_overlay_region_table (void)
c906108c
SS
3779{
3780 if (cache_ovly_region_table)
b8c9b27d 3781 xfree (cache_ovly_region_table);
c5aa993b 3782 cache_novly_regions = 0;
c906108c
SS
3783 cache_ovly_region_table = NULL;
3784 cache_ovly_region_table_base = 0;
3785}
3786#endif
3787
3788/* Read an array of ints from the target into a local buffer.
3789 Convert to host order. int LEN is number of ints */
3790static void
fba45db2 3791read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
c906108c 3792{
34c0bd93 3793 /* FIXME (alloca): Not safe if array is very large. */
777ea8f1 3794 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
c5aa993b 3795 int i;
c906108c
SS
3796
3797 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3798 for (i = 0; i < len; i++)
c5aa993b 3799 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
c906108c
SS
3800 TARGET_LONG_BYTES);
3801}
3802
3803/* Find and grab a copy of the target _ovly_table
3804 (and _novlys, which is needed for the table's size) */
c5aa993b 3805static int
fba45db2 3806simple_read_overlay_table (void)
c906108c 3807{
0d43edd1 3808 struct minimal_symbol *novlys_msym, *ovly_table_msym;
c906108c
SS
3809
3810 simple_free_overlay_table ();
9b27852e 3811 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3812 if (! novlys_msym)
c906108c 3813 {
8a3fe4f8 3814 error (_("Error reading inferior's overlay table: "
0d43edd1 3815 "couldn't find `_novlys' variable\n"
8a3fe4f8 3816 "in inferior. Use `overlay manual' mode."));
0d43edd1 3817 return 0;
c906108c 3818 }
0d43edd1 3819
9b27852e 3820 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3821 if (! ovly_table_msym)
3822 {
8a3fe4f8 3823 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3824 "`_ovly_table' array\n"
8a3fe4f8 3825 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3826 return 0;
3827 }
3828
3829 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3830 cache_ovly_table
3831 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3832 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3833 read_target_long_array (cache_ovly_table_base,
777ea8f1 3834 (unsigned int *) cache_ovly_table,
0d43edd1
JB
3835 cache_novlys * 4);
3836
c5aa993b 3837 return 1; /* SUCCESS */
c906108c
SS
3838}
3839
3840#if 0
3841/* Find and grab a copy of the target _ovly_region_table
3842 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3843static int
fba45db2 3844simple_read_overlay_region_table (void)
c906108c
SS
3845{
3846 struct minimal_symbol *msym;
3847
3848 simple_free_overlay_region_table ();
9b27852e 3849 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
c906108c
SS
3850 if (msym != NULL)
3851 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
c5aa993b
JM
3852 else
3853 return 0; /* failure */
c906108c
SS
3854 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3855 if (cache_ovly_region_table != NULL)
3856 {
9b27852e 3857 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3858 if (msym != NULL)
3859 {
3860 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3861 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3862 (unsigned int *) cache_ovly_region_table,
c906108c
SS
3863 cache_novly_regions * 3);
3864 }
c5aa993b
JM
3865 else
3866 return 0; /* failure */
c906108c 3867 }
c5aa993b
JM
3868 else
3869 return 0; /* failure */
3870 return 1; /* SUCCESS */
c906108c
SS
3871}
3872#endif
3873
5417f6dc 3874/* Function: simple_overlay_update_1
c906108c
SS
3875 A helper function for simple_overlay_update. Assuming a cached copy
3876 of _ovly_table exists, look through it to find an entry whose vma,
3877 lma and size match those of OSECT. Re-read the entry and make sure
3878 it still matches OSECT (else the table may no longer be valid).
3879 Set OSECT's mapped state to match the entry. Return: 1 for
3880 success, 0 for failure. */
3881
3882static int
fba45db2 3883simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3884{
3885 int i, size;
fbd35540
MS
3886 bfd *obfd = osect->objfile->obfd;
3887 asection *bsect = osect->the_bfd_section;
c906108c 3888
2c500098 3889 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3890 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3891 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3892 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3893 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3894 {
3895 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
777ea8f1 3896 (unsigned int *) cache_ovly_table[i], 4);
fbd35540
MS
3897 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3898 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3899 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3900 {
3901 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3902 return 1;
3903 }
fbd35540 3904 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3905 return 0;
3906 }
3907 return 0;
3908}
3909
3910/* Function: simple_overlay_update
5417f6dc
RM
3911 If OSECT is NULL, then update all sections' mapped state
3912 (after re-reading the entire target _ovly_table).
3913 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3914 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3915 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3916 re-read the entire cache, and go ahead and update all sections. */
3917
1c772458 3918void
fba45db2 3919simple_overlay_update (struct obj_section *osect)
c906108c 3920{
c5aa993b 3921 struct objfile *objfile;
c906108c
SS
3922
3923 /* Were we given an osect to look up? NULL means do all of them. */
3924 if (osect)
3925 /* Have we got a cached copy of the target's overlay table? */
3926 if (cache_ovly_table != NULL)
3927 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3928 if (cache_ovly_table_base ==
9b27852e 3929 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3930 /* Then go ahead and try to look up this single section in the cache */
3931 if (simple_overlay_update_1 (osect))
3932 /* Found it! We're done. */
3933 return;
3934
3935 /* Cached table no good: need to read the entire table anew.
3936 Or else we want all the sections, in which case it's actually
3937 more efficient to read the whole table in one block anyway. */
3938
0d43edd1
JB
3939 if (! simple_read_overlay_table ())
3940 return;
3941
c906108c
SS
3942 /* Now may as well update all sections, even if only one was requested. */
3943 ALL_OBJSECTIONS (objfile, osect)
3944 if (section_is_overlay (osect->the_bfd_section))
c5aa993b
JM
3945 {
3946 int i, size;
fbd35540
MS
3947 bfd *obfd = osect->objfile->obfd;
3948 asection *bsect = osect->the_bfd_section;
c5aa993b 3949
2c500098 3950 size = bfd_get_section_size (bsect);
c5aa993b 3951 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3952 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3953 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3954 /* && cache_ovly_table[i][SIZE] == size */ )
3955 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3956 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3957 break; /* finished with inner for loop: break out */
3958 }
3959 }
c906108c
SS
3960}
3961
086df311
DJ
3962/* Set the output sections and output offsets for section SECTP in
3963 ABFD. The relocation code in BFD will read these offsets, so we
3964 need to be sure they're initialized. We map each section to itself,
3965 with no offset; this means that SECTP->vma will be honored. */
3966
3967static void
3968symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3969{
3970 sectp->output_section = sectp;
3971 sectp->output_offset = 0;
3972}
3973
3974/* Relocate the contents of a debug section SECTP in ABFD. The
3975 contents are stored in BUF if it is non-NULL, or returned in a
3976 malloc'd buffer otherwise.
3977
3978 For some platforms and debug info formats, shared libraries contain
3979 relocations against the debug sections (particularly for DWARF-2;
3980 one affected platform is PowerPC GNU/Linux, although it depends on
3981 the version of the linker in use). Also, ELF object files naturally
3982 have unresolved relocations for their debug sections. We need to apply
3983 the relocations in order to get the locations of symbols correct. */
3984
3985bfd_byte *
3986symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3987{
3988 /* We're only interested in debugging sections with relocation
3989 information. */
3990 if ((sectp->flags & SEC_RELOC) == 0)
3991 return NULL;
3992 if ((sectp->flags & SEC_DEBUGGING) == 0)
3993 return NULL;
3994
3995 /* We will handle section offsets properly elsewhere, so relocate as if
3996 all sections begin at 0. */
3997 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3998
97606a13 3999 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
086df311 4000}
c906108c 4001
31d99776
DJ
4002struct symfile_segment_data *
4003get_symfile_segment_data (bfd *abfd)
4004{
4005 struct sym_fns *sf = find_sym_fns (abfd);
4006
4007 if (sf == NULL)
4008 return NULL;
4009
4010 return sf->sym_segments (abfd);
4011}
4012
4013void
4014free_symfile_segment_data (struct symfile_segment_data *data)
4015{
4016 xfree (data->segment_bases);
4017 xfree (data->segment_sizes);
4018 xfree (data->segment_info);
4019 xfree (data);
4020}
4021
28c32713
JB
4022
4023/* Given:
4024 - DATA, containing segment addresses from the object file ABFD, and
4025 the mapping from ABFD's sections onto the segments that own them,
4026 and
4027 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4028 segment addresses reported by the target,
4029 store the appropriate offsets for each section in OFFSETS.
4030
4031 If there are fewer entries in SEGMENT_BASES than there are segments
4032 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4033
8d385431
DJ
4034 If there are more entries, then ignore the extra. The target may
4035 not be able to distinguish between an empty data segment and a
4036 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
4037int
4038symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4039 struct section_offsets *offsets,
4040 int num_segment_bases,
4041 const CORE_ADDR *segment_bases)
4042{
4043 int i;
4044 asection *sect;
4045
28c32713
JB
4046 /* It doesn't make sense to call this function unless you have some
4047 segment base addresses. */
4048 gdb_assert (segment_bases > 0);
4049
31d99776
DJ
4050 /* If we do not have segment mappings for the object file, we
4051 can not relocate it by segments. */
4052 gdb_assert (data != NULL);
4053 gdb_assert (data->num_segments > 0);
4054
31d99776
DJ
4055 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4056 {
31d99776
DJ
4057 int which = data->segment_info[i];
4058
28c32713
JB
4059 gdb_assert (0 <= which && which <= data->num_segments);
4060
4061 /* Don't bother computing offsets for sections that aren't
4062 loaded as part of any segment. */
4063 if (! which)
4064 continue;
4065
4066 /* Use the last SEGMENT_BASES entry as the address of any extra
4067 segments mentioned in DATA->segment_info. */
31d99776 4068 if (which > num_segment_bases)
28c32713 4069 which = num_segment_bases;
31d99776 4070
28c32713
JB
4071 offsets->offsets[i] = (segment_bases[which - 1]
4072 - data->segment_bases[which - 1]);
31d99776
DJ
4073 }
4074
4075 return 1;
4076}
4077
4078static void
4079symfile_find_segment_sections (struct objfile *objfile)
4080{
4081 bfd *abfd = objfile->obfd;
4082 int i;
4083 asection *sect;
4084 struct symfile_segment_data *data;
4085
4086 data = get_symfile_segment_data (objfile->obfd);
4087 if (data == NULL)
4088 return;
4089
4090 if (data->num_segments != 1 && data->num_segments != 2)
4091 {
4092 free_symfile_segment_data (data);
4093 return;
4094 }
4095
4096 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4097 {
4098 CORE_ADDR vma;
4099 int which = data->segment_info[i];
4100
4101 if (which == 1)
4102 {
4103 if (objfile->sect_index_text == -1)
4104 objfile->sect_index_text = sect->index;
4105
4106 if (objfile->sect_index_rodata == -1)
4107 objfile->sect_index_rodata = sect->index;
4108 }
4109 else if (which == 2)
4110 {
4111 if (objfile->sect_index_data == -1)
4112 objfile->sect_index_data = sect->index;
4113
4114 if (objfile->sect_index_bss == -1)
4115 objfile->sect_index_bss = sect->index;
4116 }
4117 }
4118
4119 free_symfile_segment_data (data);
4120}
4121
c906108c 4122void
fba45db2 4123_initialize_symfile (void)
c906108c
SS
4124{
4125 struct cmd_list_element *c;
c5aa993b 4126
1a966eab
AC
4127 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4128Load symbol table from executable file FILE.\n\
c906108c 4129The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 4130to execute."), &cmdlist);
5ba2abeb 4131 set_cmd_completer (c, filename_completer);
c906108c 4132
1a966eab 4133 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 4134Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 4135Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 4136ADDR is the starting address of the file's text.\n\
db162d44
EZ
4137The optional arguments are section-name section-address pairs and\n\
4138should be specified if the data and bss segments are not contiguous\n\
1a966eab 4139with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 4140 &cmdlist);
5ba2abeb 4141 set_cmd_completer (c, filename_completer);
c906108c
SS
4142
4143 c = add_cmd ("add-shared-symbol-files", class_files,
1a966eab
AC
4144 add_shared_symbol_files_command, _("\
4145Load the symbols from shared objects in the dynamic linker's link map."),
c5aa993b 4146 &cmdlist);
c906108c
SS
4147 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4148 &cmdlist);
4149
1a966eab
AC
4150 c = add_cmd ("load", class_files, load_command, _("\
4151Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
4152for access from GDB.\n\
4153A load OFFSET may also be given."), &cmdlist);
5ba2abeb 4154 set_cmd_completer (c, filename_completer);
c906108c 4155
5bf193a2
AC
4156 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4157 &symbol_reloading, _("\
4158Set dynamic symbol table reloading multiple times in one run."), _("\
4159Show dynamic symbol table reloading multiple times in one run."), NULL,
4160 NULL,
920d2a44 4161 show_symbol_reloading,
5bf193a2 4162 &setlist, &showlist);
c906108c 4163
c5aa993b 4164 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 4165 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
4166 "overlay ", 0, &cmdlist);
4167
4168 add_com_alias ("ovly", "overlay", class_alias, 1);
4169 add_com_alias ("ov", "overlay", class_alias, 1);
4170
c5aa993b 4171 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 4172 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 4173
c5aa993b 4174 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 4175 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 4176
c5aa993b 4177 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 4178 _("List mappings of overlay sections."), &overlaylist);
c906108c 4179
c5aa993b 4180 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 4181 _("Enable overlay debugging."), &overlaylist);
c5aa993b 4182 add_cmd ("off", class_support, overlay_off_command,
1a966eab 4183 _("Disable overlay debugging."), &overlaylist);
c5aa993b 4184 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 4185 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 4186 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 4187 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
4188
4189 /* Filename extension to source language lookup table: */
4190 init_filename_language_table ();
26c41df3
AC
4191 add_setshow_string_noescape_cmd ("extension-language", class_files,
4192 &ext_args, _("\
4193Set mapping between filename extension and source language."), _("\
4194Show mapping between filename extension and source language."), _("\
4195Usage: set extension-language .foo bar"),
4196 set_ext_lang_command,
920d2a44 4197 show_ext_args,
26c41df3 4198 &setlist, &showlist);
c906108c 4199
c5aa993b 4200 add_info ("extensions", info_ext_lang_command,
1bedd215 4201 _("All filename extensions associated with a source language."));
917317f4 4202
525226b5
AC
4203 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4204 &debug_file_directory, _("\
4205Set the directory where separate debug symbols are searched for."), _("\
4206Show the directory where separate debug symbols are searched for."), _("\
4207Separate debug symbols are first searched for in the same\n\
4208directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4209and lastly at the path of the directory of the binary with\n\
4210the global debug-file directory prepended."),
4211 NULL,
920d2a44 4212 show_debug_file_directory,
525226b5 4213 &setlist, &showlist);
bf250677
DE
4214
4215 add_setshow_boolean_cmd ("symbol-loading", no_class,
4216 &print_symbol_loading, _("\
4217Set printing of symbol loading messages."), _("\
4218Show printing of symbol loading messages."), NULL,
4219 NULL,
4220 NULL,
4221 &setprintlist, &showprintlist);
c906108c 4222}
This page took 1.209098 seconds and 4 git commands to generate.