Minor comment reformatting in ada-typeprint.c
[deliverable/binutils-gdb.git] / gdb / symfile.c
CommitLineData
c906108c 1/* Generic symbol file reading for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4c38e0a4 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
777ea8f1 5 Free Software Foundation, Inc.
8926118c 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
e17c207e 25#include "arch-utils.h"
086df311 26#include "bfdlink.h"
c906108c
SS
27#include "symtab.h"
28#include "gdbtypes.h"
29#include "gdbcore.h"
30#include "frame.h"
31#include "target.h"
32#include "value.h"
33#include "symfile.h"
34#include "objfiles.h"
0378c332 35#include "source.h"
c906108c
SS
36#include "gdbcmd.h"
37#include "breakpoint.h"
38#include "language.h"
39#include "complaints.h"
40#include "demangle.h"
fb14de7b
UW
41#include "inferior.h"
42#include "regcache.h"
5b5d99cf 43#include "filenames.h" /* for DOSish file names */
c906108c 44#include "gdb-stabs.h"
04ea0df1 45#include "gdb_obstack.h"
d75b5104 46#include "completer.h"
af5f3db6 47#include "bcache.h"
2de7ced7 48#include "hashtab.h"
dbda9972 49#include "readline/readline.h"
7e8580c1 50#include "gdb_assert.h"
fe898f56 51#include "block.h"
ea53e89f 52#include "observer.h"
c1bd25fd 53#include "exec.h"
9bdcbae7 54#include "parser-defs.h"
8756216b 55#include "varobj.h"
77069918 56#include "elf-bfd.h"
e85a822c 57#include "solib.h"
f1838a98 58#include "remote.h"
c906108c 59
c906108c
SS
60#include <sys/types.h>
61#include <fcntl.h>
62#include "gdb_string.h"
63#include "gdb_stat.h"
64#include <ctype.h>
65#include <time.h>
2b71414d 66#include <sys/time.h>
c906108c 67
ccefe4c4 68#include "psymtab.h"
c906108c 69
9a4105ab
AC
70int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71void (*deprecated_show_load_progress) (const char *section,
5417f6dc
RM
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
c2d11a7d 75 unsigned long total_size);
769d7dc4
AC
76void (*deprecated_pre_add_symbol_hook) (const char *);
77void (*deprecated_post_add_symbol_hook) (void);
c906108c 78
74b7792f
AC
79static void clear_symtab_users_cleanup (void *ignore);
80
c906108c 81/* Global variables owned by this file */
c5aa993b 82int readnow_symbol_files; /* Read full symbols immediately */
c906108c 83
c906108c
SS
84/* External variables and functions referenced. */
85
a14ed312 86extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
87
88/* Functions this file defines */
89
90#if 0
a14ed312
KB
91static int simple_read_overlay_region_table (void);
92static void simple_free_overlay_region_table (void);
c906108c
SS
93#endif
94
a14ed312 95static void load_command (char *, int);
c906108c 96
d7db6da9
FN
97static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
a14ed312 99static void add_symbol_file_command (char *, int);
c906108c 100
a14ed312 101bfd *symfile_bfd_open (char *);
c906108c 102
0e931cf0
JB
103int get_section_index (struct objfile *, char *);
104
00b5771c 105static const struct sym_fns *find_sym_fns (bfd *);
c906108c 106
a14ed312 107static void decrement_reading_symtab (void *);
c906108c 108
a14ed312 109static void overlay_invalidate_all (void);
c906108c 110
a14ed312 111void list_overlays_command (char *, int);
c906108c 112
a14ed312 113void map_overlay_command (char *, int);
c906108c 114
a14ed312 115void unmap_overlay_command (char *, int);
c906108c 116
a14ed312 117static void overlay_auto_command (char *, int);
c906108c 118
a14ed312 119static void overlay_manual_command (char *, int);
c906108c 120
a14ed312 121static void overlay_off_command (char *, int);
c906108c 122
a14ed312 123static void overlay_load_command (char *, int);
c906108c 124
a14ed312 125static void overlay_command (char *, int);
c906108c 126
a14ed312 127static void simple_free_overlay_table (void);
c906108c 128
e17a4113
UW
129static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
c906108c 131
a14ed312 132static int simple_read_overlay_table (void);
c906108c 133
a14ed312 134static int simple_overlay_update_1 (struct obj_section *);
c906108c 135
a14ed312 136static void add_filename_language (char *ext, enum language lang);
392a587b 137
a14ed312 138static void info_ext_lang_command (char *args, int from_tty);
392a587b 139
a14ed312 140static void init_filename_language_table (void);
392a587b 141
31d99776
DJ
142static void symfile_find_segment_sections (struct objfile *objfile);
143
a14ed312 144void _initialize_symfile (void);
c906108c
SS
145
146/* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
00b5771c
TT
150typedef const struct sym_fns *sym_fns_ptr;
151DEF_VEC_P (sym_fns_ptr);
152
153static VEC (sym_fns_ptr) *symtab_fns = NULL;
c906108c
SS
154
155/* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158#ifdef SYMBOL_RELOADING_DEFAULT
159int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160#else
161int symbol_reloading = 0;
162#endif
920d2a44
AC
163static void
164show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("\
168Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170}
171
b7209cb4
FF
172/* If non-zero, shared library symbols will be added automatically
173 when the inferior is created, new libraries are loaded, or when
174 attaching to the inferior. This is almost always what users will
175 want to have happen; but for very large programs, the startup time
176 will be excessive, and so if this is a problem, the user can clear
177 this flag and then add the shared library symbols as needed. Note
178 that there is a potential for confusion, since if the shared
c906108c 179 library symbols are not loaded, commands like "info fun" will *not*
b7209cb4 180 report all the functions that are actually present. */
c906108c
SS
181
182int auto_solib_add = 1;
b7209cb4
FF
183
184/* For systems that support it, a threshold size in megabytes. If
185 automatically adding a new library's symbol table to those already
186 known to the debugger would cause the total shared library symbol
187 size to exceed this threshhold, then the shlib's symbols are not
188 added. The threshold is ignored if the user explicitly asks for a
189 shlib to be added, such as when using the "sharedlibrary"
190 command. */
191
192int auto_solib_limit;
c906108c 193\f
c5aa993b 194
c906108c
SS
195/* Make a null terminated copy of the string at PTR with SIZE characters in
196 the obstack pointed to by OBSTACKP . Returns the address of the copy.
197 Note that the string at PTR does not have to be null terminated, I.E. it
198 may be part of a larger string and we are only saving a substring. */
199
200char *
63ca651f 201obsavestring (const char *ptr, int size, struct obstack *obstackp)
c906108c 202{
52f0bd74 203 char *p = (char *) obstack_alloc (obstackp, size + 1);
c906108c
SS
204 /* Open-coded memcpy--saves function call time. These strings are usually
205 short. FIXME: Is this really still true with a compiler that can
206 inline memcpy? */
207 {
aa1ee363
AC
208 const char *p1 = ptr;
209 char *p2 = p;
63ca651f 210 const char *end = ptr + size;
433759f7 211
c906108c
SS
212 while (p1 != end)
213 *p2++ = *p1++;
214 }
215 p[size] = 0;
216 return p;
217}
218
48cb83fd
JK
219/* Concatenate NULL terminated variable argument list of `const char *' strings;
220 return the new string. Space is found in the OBSTACKP. Argument list must
221 be terminated by a sentinel expression `(char *) NULL'. */
c906108c
SS
222
223char *
48cb83fd 224obconcat (struct obstack *obstackp, ...)
c906108c 225{
48cb83fd
JK
226 va_list ap;
227
228 va_start (ap, obstackp);
229 for (;;)
230 {
231 const char *s = va_arg (ap, const char *);
232
233 if (s == NULL)
234 break;
235
236 obstack_grow_str (obstackp, s);
237 }
238 va_end (ap);
239 obstack_1grow (obstackp, 0);
240
241 return obstack_finish (obstackp);
c906108c
SS
242}
243
ccefe4c4 244/* True if we are reading a symbol table. */
c906108c
SS
245
246int currently_reading_symtab = 0;
247
248static void
fba45db2 249decrement_reading_symtab (void *dummy)
c906108c
SS
250{
251 currently_reading_symtab--;
252}
253
ccefe4c4
TT
254/* Increment currently_reading_symtab and return a cleanup that can be
255 used to decrement it. */
256struct cleanup *
257increment_reading_symtab (void)
c906108c 258{
ccefe4c4
TT
259 ++currently_reading_symtab;
260 return make_cleanup (decrement_reading_symtab, NULL);
c906108c
SS
261}
262
5417f6dc
RM
263/* Remember the lowest-addressed loadable section we've seen.
264 This function is called via bfd_map_over_sections.
c906108c
SS
265
266 In case of equal vmas, the section with the largest size becomes the
267 lowest-addressed loadable section.
268
269 If the vmas and sizes are equal, the last section is considered the
270 lowest-addressed loadable section. */
271
272void
4efb68b1 273find_lowest_section (bfd *abfd, asection *sect, void *obj)
c906108c 274{
c5aa993b 275 asection **lowest = (asection **) obj;
c906108c 276
eb73e134 277 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
c906108c
SS
278 return;
279 if (!*lowest)
280 *lowest = sect; /* First loadable section */
281 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
282 *lowest = sect; /* A lower loadable section */
283 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
284 && (bfd_section_size (abfd, (*lowest))
285 <= bfd_section_size (abfd, sect)))
286 *lowest = sect;
287}
288
a39a16c4
MM
289/* Create a new section_addr_info, with room for NUM_SECTIONS. */
290
291struct section_addr_info *
292alloc_section_addr_info (size_t num_sections)
293{
294 struct section_addr_info *sap;
295 size_t size;
296
297 size = (sizeof (struct section_addr_info)
298 + sizeof (struct other_sections) * (num_sections - 1));
299 sap = (struct section_addr_info *) xmalloc (size);
300 memset (sap, 0, size);
301 sap->num_sections = num_sections;
302
303 return sap;
304}
62557bbc
KB
305
306/* Build (allocate and populate) a section_addr_info struct from
307 an existing section table. */
308
309extern struct section_addr_info *
0542c86d
PA
310build_section_addr_info_from_section_table (const struct target_section *start,
311 const struct target_section *end)
62557bbc
KB
312{
313 struct section_addr_info *sap;
0542c86d 314 const struct target_section *stp;
62557bbc
KB
315 int oidx;
316
a39a16c4 317 sap = alloc_section_addr_info (end - start);
62557bbc
KB
318
319 for (stp = start, oidx = 0; stp != end; stp++)
320 {
5417f6dc 321 if (bfd_get_section_flags (stp->bfd,
fbd35540 322 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
a39a16c4 323 && oidx < end - start)
62557bbc
KB
324 {
325 sap->other[oidx].addr = stp->addr;
5417f6dc 326 sap->other[oidx].name
fbd35540 327 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
62557bbc
KB
328 sap->other[oidx].sectindex = stp->the_bfd_section->index;
329 oidx++;
330 }
331 }
332
333 return sap;
334}
335
82ccf5a5 336/* Create a section_addr_info from section offsets in ABFD. */
089b4803 337
82ccf5a5
JK
338static struct section_addr_info *
339build_section_addr_info_from_bfd (bfd *abfd)
089b4803
TG
340{
341 struct section_addr_info *sap;
342 int i;
343 struct bfd_section *sec;
344
82ccf5a5
JK
345 sap = alloc_section_addr_info (bfd_count_sections (abfd));
346 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
347 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
012836ea 348 {
82ccf5a5
JK
349 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
350 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
012836ea
JK
351 sap->other[i].sectindex = sec->index;
352 i++;
353 }
089b4803
TG
354 return sap;
355}
356
82ccf5a5
JK
357/* Create a section_addr_info from section offsets in OBJFILE. */
358
359struct section_addr_info *
360build_section_addr_info_from_objfile (const struct objfile *objfile)
361{
362 struct section_addr_info *sap;
363 int i;
364
365 /* Before reread_symbols gets rewritten it is not safe to call:
366 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
367 */
368 sap = build_section_addr_info_from_bfd (objfile->obfd);
369 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
370 {
371 int sectindex = sap->other[i].sectindex;
372
373 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
374 }
375 return sap;
376}
62557bbc
KB
377
378/* Free all memory allocated by build_section_addr_info_from_section_table. */
379
380extern void
381free_section_addr_info (struct section_addr_info *sap)
382{
383 int idx;
384
a39a16c4 385 for (idx = 0; idx < sap->num_sections; idx++)
62557bbc 386 if (sap->other[idx].name)
b8c9b27d
KB
387 xfree (sap->other[idx].name);
388 xfree (sap);
62557bbc
KB
389}
390
391
e8289572
JB
392/* Initialize OBJFILE's sect_index_* members. */
393static void
394init_objfile_sect_indices (struct objfile *objfile)
c906108c 395{
e8289572 396 asection *sect;
c906108c 397 int i;
5417f6dc 398
b8fbeb18 399 sect = bfd_get_section_by_name (objfile->obfd, ".text");
5417f6dc 400 if (sect)
b8fbeb18
EZ
401 objfile->sect_index_text = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".data");
5417f6dc 404 if (sect)
b8fbeb18
EZ
405 objfile->sect_index_data = sect->index;
406
407 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
5417f6dc 408 if (sect)
b8fbeb18
EZ
409 objfile->sect_index_bss = sect->index;
410
411 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
5417f6dc 412 if (sect)
b8fbeb18
EZ
413 objfile->sect_index_rodata = sect->index;
414
bbcd32ad
FF
415 /* This is where things get really weird... We MUST have valid
416 indices for the various sect_index_* members or gdb will abort.
417 So if for example, there is no ".text" section, we have to
31d99776
DJ
418 accomodate that. First, check for a file with the standard
419 one or two segments. */
420
421 symfile_find_segment_sections (objfile);
422
423 /* Except when explicitly adding symbol files at some address,
424 section_offsets contains nothing but zeros, so it doesn't matter
425 which slot in section_offsets the individual sect_index_* members
426 index into. So if they are all zero, it is safe to just point
427 all the currently uninitialized indices to the first slot. But
428 beware: if this is the main executable, it may be relocated
429 later, e.g. by the remote qOffsets packet, and then this will
430 be wrong! That's why we try segments first. */
bbcd32ad
FF
431
432 for (i = 0; i < objfile->num_sections; i++)
433 {
434 if (ANOFFSET (objfile->section_offsets, i) != 0)
435 {
436 break;
437 }
438 }
439 if (i == objfile->num_sections)
440 {
441 if (objfile->sect_index_text == -1)
442 objfile->sect_index_text = 0;
443 if (objfile->sect_index_data == -1)
444 objfile->sect_index_data = 0;
445 if (objfile->sect_index_bss == -1)
446 objfile->sect_index_bss = 0;
447 if (objfile->sect_index_rodata == -1)
448 objfile->sect_index_rodata = 0;
449 }
b8fbeb18 450}
c906108c 451
c1bd25fd
DJ
452/* The arguments to place_section. */
453
454struct place_section_arg
455{
456 struct section_offsets *offsets;
457 CORE_ADDR lowest;
458};
459
460/* Find a unique offset to use for loadable section SECT if
461 the user did not provide an offset. */
462
2c0b251b 463static void
c1bd25fd
DJ
464place_section (bfd *abfd, asection *sect, void *obj)
465{
466 struct place_section_arg *arg = obj;
467 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
468 int done;
3bd72c6f 469 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
c1bd25fd 470
2711e456
DJ
471 /* We are only interested in allocated sections. */
472 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
c1bd25fd
DJ
473 return;
474
475 /* If the user specified an offset, honor it. */
476 if (offsets[sect->index] != 0)
477 return;
478
479 /* Otherwise, let's try to find a place for the section. */
3bd72c6f
DJ
480 start_addr = (arg->lowest + align - 1) & -align;
481
c1bd25fd
DJ
482 do {
483 asection *cur_sec;
c1bd25fd 484
c1bd25fd
DJ
485 done = 1;
486
487 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
488 {
489 int indx = cur_sec->index;
c1bd25fd
DJ
490
491 /* We don't need to compare against ourself. */
492 if (cur_sec == sect)
493 continue;
494
2711e456
DJ
495 /* We can only conflict with allocated sections. */
496 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
c1bd25fd
DJ
497 continue;
498
499 /* If the section offset is 0, either the section has not been placed
500 yet, or it was the lowest section placed (in which case LOWEST
501 will be past its end). */
502 if (offsets[indx] == 0)
503 continue;
504
505 /* If this section would overlap us, then we must move up. */
506 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
507 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
508 {
509 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
510 start_addr = (start_addr + align - 1) & -align;
511 done = 0;
3bd72c6f 512 break;
c1bd25fd
DJ
513 }
514
515 /* Otherwise, we appear to be OK. So far. */
516 }
517 }
518 while (!done);
519
520 offsets[sect->index] = start_addr;
521 arg->lowest = start_addr + bfd_get_section_size (sect);
c1bd25fd 522}
e8289572 523
75242ef4
JK
524/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
525 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
526 entries. */
e8289572
JB
527
528void
75242ef4
JK
529relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
530 int num_sections,
531 struct section_addr_info *addrs)
e8289572
JB
532{
533 int i;
534
75242ef4 535 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
e8289572 536
75242ef4 537 /* Now calculate offsets for section that were specified by the caller. */
a39a16c4 538 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
e8289572 539 {
75242ef4 540 struct other_sections *osp;
e8289572 541
75242ef4 542 osp = &addrs->other[i];
e8289572
JB
543 if (osp->addr == 0)
544 continue;
545
546 /* Record all sections in offsets */
547 /* The section_offsets in the objfile are here filled in using
548 the BFD index. */
75242ef4
JK
549 section_offsets->offsets[osp->sectindex] = osp->addr;
550 }
551}
552
1276c759
JK
553/* Transform section name S for a name comparison. prelink can split section
554 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
555 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
556 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
557 (`.sbss') section has invalid (increased) virtual address. */
558
559static const char *
560addr_section_name (const char *s)
561{
562 if (strcmp (s, ".dynbss") == 0)
563 return ".bss";
564 if (strcmp (s, ".sdynbss") == 0)
565 return ".sbss";
566
567 return s;
568}
569
82ccf5a5
JK
570/* qsort comparator for addrs_section_sort. Sort entries in ascending order by
571 their (name, sectindex) pair. sectindex makes the sort by name stable. */
572
573static int
574addrs_section_compar (const void *ap, const void *bp)
575{
576 const struct other_sections *a = *((struct other_sections **) ap);
577 const struct other_sections *b = *((struct other_sections **) bp);
578 int retval, a_idx, b_idx;
579
1276c759 580 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
82ccf5a5
JK
581 if (retval)
582 return retval;
583
584 /* SECTINDEX is undefined iff ADDR is zero. */
585 a_idx = a->addr == 0 ? 0 : a->sectindex;
586 b_idx = b->addr == 0 ? 0 : b->sectindex;
587 return a_idx - b_idx;
588}
589
590/* Provide sorted array of pointers to sections of ADDRS. The array is
591 terminated by NULL. Caller is responsible to call xfree for it. */
592
593static struct other_sections **
594addrs_section_sort (struct section_addr_info *addrs)
595{
596 struct other_sections **array;
597 int i;
598
599 /* `+ 1' for the NULL terminator. */
600 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 array[i] = &addrs->other[i];
603 array[i] = NULL;
604
605 qsort (array, i, sizeof (*array), addrs_section_compar);
606
607 return array;
608}
609
75242ef4 610/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
672d9c23
JK
611 also SECTINDEXes specific to ABFD there. This function can be used to
612 rebase ADDRS to start referencing different BFD than before. */
75242ef4
JK
613
614void
615addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
616{
617 asection *lower_sect;
75242ef4
JK
618 CORE_ADDR lower_offset;
619 int i;
82ccf5a5
JK
620 struct cleanup *my_cleanup;
621 struct section_addr_info *abfd_addrs;
622 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
623 struct other_sections **addrs_to_abfd_addrs;
75242ef4
JK
624
625 /* Find lowest loadable section to be used as starting point for
e76ab67f
DJ
626 continguous sections. */
627 lower_sect = NULL;
628 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
75242ef4
JK
629 if (lower_sect == NULL)
630 {
631 warning (_("no loadable sections found in added symbol-file %s"),
632 bfd_get_filename (abfd));
633 lower_offset = 0;
e8289572 634 }
75242ef4
JK
635 else
636 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
637
82ccf5a5
JK
638 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
639 in ABFD. Section names are not unique - there can be multiple sections of
640 the same name. Also the sections of the same name do not have to be
641 adjacent to each other. Some sections may be present only in one of the
642 files. Even sections present in both files do not have to be in the same
643 order.
644
645 Use stable sort by name for the sections in both files. Then linearly
646 scan both lists matching as most of the entries as possible. */
647
648 addrs_sorted = addrs_section_sort (addrs);
649 my_cleanup = make_cleanup (xfree, addrs_sorted);
650
651 abfd_addrs = build_section_addr_info_from_bfd (abfd);
652 make_cleanup_free_section_addr_info (abfd_addrs);
653 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
654 make_cleanup (xfree, abfd_addrs_sorted);
655
656 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
657
658 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
659 * addrs->num_sections);
660 make_cleanup (xfree, addrs_to_abfd_addrs);
661
662 while (*addrs_sorted)
663 {
1276c759 664 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
82ccf5a5
JK
665
666 while (*abfd_addrs_sorted
1276c759
JK
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) < 0)
82ccf5a5
JK
669 abfd_addrs_sorted++;
670
671 if (*abfd_addrs_sorted
1276c759
JK
672 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
673 sect_name) == 0)
82ccf5a5
JK
674 {
675 int index_in_addrs;
676
677 /* Make the found item directly addressable from ADDRS. */
678 index_in_addrs = *addrs_sorted - addrs->other;
679 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
680 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
681
682 /* Never use the same ABFD entry twice. */
683 abfd_addrs_sorted++;
684 }
685
686 addrs_sorted++;
687 }
688
75242ef4
JK
689 /* Calculate offsets for the loadable sections.
690 FIXME! Sections must be in order of increasing loadable section
691 so that contiguous sections can use the lower-offset!!!
692
693 Adjust offsets if the segments are not contiguous.
694 If the section is contiguous, its offset should be set to
695 the offset of the highest loadable section lower than it
696 (the loadable section directly below it in memory).
697 this_offset = lower_offset = lower_addr - lower_orig_addr */
698
699 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
700 {
82ccf5a5 701 struct other_sections *sect = addrs_to_abfd_addrs[i];
672d9c23
JK
702
703 if (sect)
75242ef4 704 {
672d9c23 705 /* This is the index used by BFD. */
82ccf5a5 706 addrs->other[i].sectindex = sect->sectindex;
672d9c23
JK
707
708 if (addrs->other[i].addr != 0)
75242ef4 709 {
82ccf5a5 710 addrs->other[i].addr -= sect->addr;
75242ef4 711 lower_offset = addrs->other[i].addr;
75242ef4
JK
712 }
713 else
672d9c23 714 addrs->other[i].addr = lower_offset;
75242ef4
JK
715 }
716 else
672d9c23 717 {
1276c759
JK
718 /* addr_section_name transformation is not used for SECT_NAME. */
719 const char *sect_name = addrs->other[i].name;
720
b0fcb67f
JK
721 /* This section does not exist in ABFD, which is normally
722 unexpected and we want to issue a warning.
723
4d9743af
JK
724 However, the ELF prelinker does create a few sections which are
725 marked in the main executable as loadable (they are loaded in
726 memory from the DYNAMIC segment) and yet are not present in
727 separate debug info files. This is fine, and should not cause
728 a warning. Shared libraries contain just the section
729 ".gnu.liblist" but it is not marked as loadable there. There is
730 no other way to identify them than by their name as the sections
1276c759
JK
731 created by prelink have no special flags.
732
733 For the sections `.bss' and `.sbss' see addr_section_name. */
b0fcb67f
JK
734
735 if (!(strcmp (sect_name, ".gnu.liblist") == 0
4d9743af 736 || strcmp (sect_name, ".gnu.conflict") == 0
1276c759
JK
737 || (strcmp (sect_name, ".bss") == 0
738 && i > 0
739 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
740 && addrs_to_abfd_addrs[i - 1] != NULL)
741 || (strcmp (sect_name, ".sbss") == 0
742 && i > 0
743 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
744 && addrs_to_abfd_addrs[i - 1] != NULL)))
b0fcb67f
JK
745 warning (_("section %s not found in %s"), sect_name,
746 bfd_get_filename (abfd));
747
672d9c23
JK
748 addrs->other[i].addr = 0;
749
750 /* SECTINDEX is invalid if ADDR is zero. */
751 }
75242ef4 752 }
82ccf5a5
JK
753
754 do_cleanups (my_cleanup);
75242ef4
JK
755}
756
757/* Parse the user's idea of an offset for dynamic linking, into our idea
758 of how to represent it for fast symbol reading. This is the default
759 version of the sym_fns.sym_offsets function for symbol readers that
760 don't need to do anything special. It allocates a section_offsets table
761 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
762
763void
764default_symfile_offsets (struct objfile *objfile,
765 struct section_addr_info *addrs)
766{
767 objfile->num_sections = bfd_count_sections (objfile->obfd);
768 objfile->section_offsets = (struct section_offsets *)
769 obstack_alloc (&objfile->objfile_obstack,
770 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
771 relative_addr_info_to_section_offsets (objfile->section_offsets,
772 objfile->num_sections, addrs);
e8289572 773
c1bd25fd
DJ
774 /* For relocatable files, all loadable sections will start at zero.
775 The zero is meaningless, so try to pick arbitrary addresses such
776 that no loadable sections overlap. This algorithm is quadratic,
777 but the number of sections in a single object file is generally
778 small. */
779 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
780 {
781 struct place_section_arg arg;
2711e456
DJ
782 bfd *abfd = objfile->obfd;
783 asection *cur_sec;
2711e456
DJ
784
785 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
786 /* We do not expect this to happen; just skip this step if the
787 relocatable file has a section with an assigned VMA. */
788 if (bfd_section_vma (abfd, cur_sec) != 0)
789 break;
790
791 if (cur_sec == NULL)
792 {
793 CORE_ADDR *offsets = objfile->section_offsets->offsets;
794
795 /* Pick non-overlapping offsets for sections the user did not
796 place explicitly. */
797 arg.offsets = objfile->section_offsets;
798 arg.lowest = 0;
799 bfd_map_over_sections (objfile->obfd, place_section, &arg);
800
801 /* Correctly filling in the section offsets is not quite
802 enough. Relocatable files have two properties that
803 (most) shared objects do not:
804
805 - Their debug information will contain relocations. Some
806 shared libraries do also, but many do not, so this can not
807 be assumed.
808
809 - If there are multiple code sections they will be loaded
810 at different relative addresses in memory than they are
811 in the objfile, since all sections in the file will start
812 at address zero.
813
814 Because GDB has very limited ability to map from an
815 address in debug info to the correct code section,
816 it relies on adding SECT_OFF_TEXT to things which might be
817 code. If we clear all the section offsets, and set the
818 section VMAs instead, then symfile_relocate_debug_section
819 will return meaningful debug information pointing at the
820 correct sections.
821
822 GDB has too many different data structures for section
823 addresses - a bfd, objfile, and so_list all have section
824 tables, as does exec_ops. Some of these could probably
825 be eliminated. */
826
827 for (cur_sec = abfd->sections; cur_sec != NULL;
828 cur_sec = cur_sec->next)
829 {
830 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
831 continue;
832
833 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
30510692
DJ
834 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
835 offsets[cur_sec->index]);
2711e456
DJ
836 offsets[cur_sec->index] = 0;
837 }
838 }
c1bd25fd
DJ
839 }
840
e8289572
JB
841 /* Remember the bfd indexes for the .text, .data, .bss and
842 .rodata sections. */
843 init_objfile_sect_indices (objfile);
844}
845
846
31d99776
DJ
847/* Divide the file into segments, which are individual relocatable units.
848 This is the default version of the sym_fns.sym_segments function for
849 symbol readers that do not have an explicit representation of segments.
850 It assumes that object files do not have segments, and fully linked
851 files have a single segment. */
852
853struct symfile_segment_data *
854default_symfile_segments (bfd *abfd)
855{
856 int num_sections, i;
857 asection *sect;
858 struct symfile_segment_data *data;
859 CORE_ADDR low, high;
860
861 /* Relocatable files contain enough information to position each
862 loadable section independently; they should not be relocated
863 in segments. */
864 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
865 return NULL;
866
867 /* Make sure there is at least one loadable section in the file. */
868 for (sect = abfd->sections; sect != NULL; sect = sect->next)
869 {
870 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
871 continue;
872
873 break;
874 }
875 if (sect == NULL)
876 return NULL;
877
878 low = bfd_get_section_vma (abfd, sect);
879 high = low + bfd_get_section_size (sect);
880
881 data = XZALLOC (struct symfile_segment_data);
882 data->num_segments = 1;
883 data->segment_bases = XCALLOC (1, CORE_ADDR);
884 data->segment_sizes = XCALLOC (1, CORE_ADDR);
885
886 num_sections = bfd_count_sections (abfd);
887 data->segment_info = XCALLOC (num_sections, int);
888
889 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
890 {
891 CORE_ADDR vma;
892
893 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
894 continue;
895
896 vma = bfd_get_section_vma (abfd, sect);
897 if (vma < low)
898 low = vma;
899 if (vma + bfd_get_section_size (sect) > high)
900 high = vma + bfd_get_section_size (sect);
901
902 data->segment_info[i] = 1;
903 }
904
905 data->segment_bases[0] = low;
906 data->segment_sizes[0] = high - low;
907
908 return data;
909}
910
c906108c
SS
911/* Process a symbol file, as either the main file or as a dynamically
912 loaded file.
913
96baa820
JM
914 OBJFILE is where the symbols are to be read from.
915
7e8580c1
JB
916 ADDRS is the list of section load addresses. If the user has given
917 an 'add-symbol-file' command, then this is the list of offsets and
918 addresses he or she provided as arguments to the command; or, if
919 we're handling a shared library, these are the actual addresses the
920 sections are loaded at, according to the inferior's dynamic linker
921 (as gleaned by GDB's shared library code). We convert each address
922 into an offset from the section VMA's as it appears in the object
923 file, and then call the file's sym_offsets function to convert this
924 into a format-specific offset table --- a `struct section_offsets'.
925 If ADDRS is non-zero, OFFSETS must be zero.
926
927 OFFSETS is a table of section offsets already in the right
928 format-specific representation. NUM_OFFSETS is the number of
929 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
930 assume this is the proper table the call to sym_offsets described
931 above would produce. Instead of calling sym_offsets, we just dump
932 it right into objfile->section_offsets. (When we're re-reading
933 symbols from an objfile, we don't have the original load address
934 list any more; all we have is the section offset table.) If
935 OFFSETS is non-zero, ADDRS must be zero.
96baa820 936
7eedccfa
PP
937 ADD_FLAGS encodes verbosity level, whether this is main symbol or
938 an extra symbol file such as dynamically loaded code, and wether
939 breakpoint reset should be deferred. */
c906108c
SS
940
941void
7e8580c1
JB
942syms_from_objfile (struct objfile *objfile,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
7eedccfa 946 int add_flags)
c906108c 947{
a39a16c4 948 struct section_addr_info *local_addr = NULL;
c906108c 949 struct cleanup *old_chain;
7eedccfa 950 const int mainline = add_flags & SYMFILE_MAINLINE;
2acceee2 951
7e8580c1 952 gdb_assert (! (addrs && offsets));
2acceee2 953
c906108c 954 init_entry_point_info (objfile);
31d99776 955 objfile->sf = find_sym_fns (objfile->obfd);
c906108c 956
75245b24
MS
957 if (objfile->sf == NULL)
958 return; /* No symbols. */
959
c906108c
SS
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
74b7792f 962 old_chain = make_cleanup_free_objfile (objfile);
c906108c 963
a39a16c4
MM
964 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
965 list. We now establish the convention that an addr of zero means
966 no load address was specified. */
967 if (! addrs && ! offsets)
968 {
5417f6dc 969 local_addr
a39a16c4
MM
970 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
c5aa993b 977 if (mainline)
c906108c
SS
978 {
979 /* We will modify the main symbol table, make sure that all its users
c5aa993b 980 will be cleaned up if an error occurs during symbol reading. */
74b7792f 981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
c906108c
SS
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
adb7f338 988 gdb_assert (symfile_objfile == NULL);
c906108c
SS
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
c5aa993b
JM
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
c906108c 995
c5aa993b 996 (*objfile->sf->sym_new_init) (objfile);
c906108c
SS
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
53a5351d 1001 and assume that <addr> is where that got loaded.
c906108c 1002
53a5351d
JM
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
0d15807d 1005 if (addrs && addrs->other[0].name)
75242ef4 1006 addr_info_make_relative (addrs, objfile->obfd);
c906108c
SS
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
1010 initial symbol reading for this file. */
1011
c5aa993b 1012 (*objfile->sf->sym_init) (objfile);
7eedccfa 1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
c906108c 1014
7e8580c1
JB
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
8b92e4d5 1025 obstack_alloc (&objfile->objfile_obstack, size));
7e8580c1
JB
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
c906108c 1030
f4352531 1031 (*objfile->sf->sym_read) (objfile, add_flags);
c906108c 1032
c906108c
SS
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
f7545552 1036 xfree (local_addr);
c906108c
SS
1037}
1038
1039/* Perform required actions after either reading in the initial
1040 symbols for a new objfile, or mapping in the symbols from a reusable
c1e56572 1041 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c5aa993b 1042
c906108c 1043void
7eedccfa 1044new_symfile_objfile (struct objfile *objfile, int add_flags)
c906108c 1045{
c906108c
SS
1046 /* If this is the main symbol file we have to clean up all users of the
1047 old main symbol file. Otherwise it is sufficient to fixup all the
1048 breakpoints that may have been redefined by this symbol file. */
7eedccfa 1049 if (add_flags & SYMFILE_MAINLINE)
c906108c
SS
1050 {
1051 /* OK, make it the "real" symbol file. */
1052 symfile_objfile = objfile;
1053
c1e56572 1054 clear_symtab_users (add_flags);
c906108c 1055 }
7eedccfa 1056 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
c906108c 1057 {
69de3c6a 1058 breakpoint_re_set ();
c906108c
SS
1059 }
1060
1061 /* We're done reading the symbol file; finish off complaints. */
7eedccfa 1062 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
c906108c
SS
1063}
1064
1065/* Process a symbol file, as either the main file or as a dynamically
1066 loaded file.
1067
5417f6dc
RM
1068 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1069 This BFD will be closed on error, and is always consumed by this function.
7904e09f 1070
7eedccfa
PP
1071 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1072 extra, such as dynamically loaded code, and what to do with breakpoins.
7904e09f
JB
1073
1074 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
7eedccfa
PP
1075 syms_from_objfile, above.
1076 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
c906108c 1077
c906108c
SS
1078 Upon success, returns a pointer to the objfile that was added.
1079 Upon failure, jumps back to command level (never returns). */
7eedccfa 1080
7904e09f 1081static struct objfile *
7eedccfa
PP
1082symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1083 int add_flags,
7904e09f
JB
1084 struct section_addr_info *addrs,
1085 struct section_offsets *offsets,
1086 int num_offsets,
7eedccfa 1087 int flags)
c906108c
SS
1088{
1089 struct objfile *objfile;
a39a16c4 1090 struct cleanup *my_cleanups;
5417f6dc 1091 const char *name = bfd_get_filename (abfd);
7eedccfa 1092 const int from_tty = add_flags & SYMFILE_VERBOSE;
c906108c 1093
9291a0cd
TT
1094 if (readnow_symbol_files)
1095 flags |= OBJF_READNOW;
1096
5417f6dc 1097 my_cleanups = make_cleanup_bfd_close (abfd);
c906108c 1098
5417f6dc
RM
1099 /* Give user a chance to burp if we'd be
1100 interactively wiping out any existing symbols. */
c906108c
SS
1101
1102 if ((have_full_symbols () || have_partial_symbols ())
7eedccfa 1103 && (add_flags & SYMFILE_MAINLINE)
c906108c 1104 && from_tty
9e2f0ad4 1105 && !query (_("Load new symbol table from \"%s\"? "), name))
8a3fe4f8 1106 error (_("Not confirmed."));
c906108c 1107
2df3850c 1108 objfile = allocate_objfile (abfd, flags);
5417f6dc 1109 discard_cleanups (my_cleanups);
c906108c 1110
78a4a9b9
AC
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (from_tty || info_verbose)
c906108c 1115 {
769d7dc4
AC
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
78a4a9b9 1118 else
c906108c 1119 {
55333a84
DE
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
c906108c 1123 }
c906108c 1124 }
78a4a9b9 1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
7eedccfa 1126 add_flags);
c906108c
SS
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
9291a0cd 1133 if ((flags & OBJF_READNOW))
c906108c 1134 {
55333a84 1135 if (from_tty || info_verbose)
c906108c 1136 {
a3f17187 1137 printf_unfiltered (_("expanding to full symbols..."));
c906108c
SS
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
ccefe4c4
TT
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
c906108c
SS
1144 }
1145
55333a84 1146 if ((from_tty || info_verbose)
e361b228 1147 && !objfile_has_symbols (objfile))
cb3c37b2
JB
1148 {
1149 wrap_here ("");
55333a84 1150 printf_unfiltered (_("(no debugging symbols found)..."));
cb3c37b2
JB
1151 wrap_here ("");
1152 }
1153
c906108c
SS
1154 if (from_tty || info_verbose)
1155 {
769d7dc4
AC
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
c906108c 1158 else
55333a84 1159 printf_unfiltered (_("done.\n"));
c906108c
SS
1160 }
1161
481d0f41
JB
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1166
a39a16c4
MM
1167 do_cleanups (my_cleanups);
1168
109f874e 1169 if (objfile->sf == NULL)
8caee43b
PP
1170 {
1171 observer_notify_new_objfile (objfile);
1172 return objfile; /* No symbols. */
1173 }
109f874e 1174
7eedccfa 1175 new_symfile_objfile (objfile, add_flags);
c906108c 1176
06d3b283 1177 observer_notify_new_objfile (objfile);
c906108c 1178
ce7d4522 1179 bfd_cache_close_all ();
c906108c
SS
1180 return (objfile);
1181}
1182
9cce227f
TG
1183/* Add BFD as a separate debug file for OBJFILE. */
1184
1185void
1186symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1187{
15d123c9 1188 struct objfile *new_objfile;
089b4803
TG
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1191
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
9cce227f 1197
15d123c9 1198 new_objfile = symbol_file_add_with_addrs_or_offsets
9cce227f 1199 (bfd, symfile_flags,
089b4803 1200 sap, NULL, 0,
9cce227f
TG
1201 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1202 | OBJF_USERLOADED));
089b4803
TG
1203
1204 do_cleanups (my_cleanup);
9cce227f 1205
15d123c9 1206 add_separate_debug_objfile (new_objfile, objfile);
9cce227f 1207}
7904e09f 1208
eb4556d7
JB
1209/* Process the symbol file ABFD, as either the main file or as a
1210 dynamically loaded file.
1211
1212 See symbol_file_add_with_addrs_or_offsets's comments for
1213 details. */
1214struct objfile *
7eedccfa 1215symbol_file_add_from_bfd (bfd *abfd, int add_flags,
eb4556d7 1216 struct section_addr_info *addrs,
7eedccfa 1217 int flags)
eb4556d7 1218{
7eedccfa
PP
1219 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1220 flags);
eb4556d7
JB
1221}
1222
1223
7904e09f
JB
1224/* Process a symbol file, as either the main file or as a dynamically
1225 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1226 for details. */
1227struct objfile *
7eedccfa
PP
1228symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1229 int flags)
7904e09f 1230{
7eedccfa
PP
1231 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1232 flags);
7904e09f
JB
1233}
1234
1235
d7db6da9
FN
1236/* Call symbol_file_add() with default values and update whatever is
1237 affected by the loading of a new main().
1238 Used when the file is supplied in the gdb command line
1239 and by some targets with special loading requirements.
1240 The auxiliary function, symbol_file_add_main_1(), has the flags
1241 argument for the switches that can only be specified in the symbol_file
1242 command itself. */
5417f6dc 1243
1adeb98a
FN
1244void
1245symbol_file_add_main (char *args, int from_tty)
1246{
d7db6da9
FN
1247 symbol_file_add_main_1 (args, from_tty, 0);
1248}
1249
1250static void
1251symbol_file_add_main_1 (char *args, int from_tty, int flags)
1252{
7eedccfa
PP
1253 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1254 symbol_file_add (args, add_flags, NULL, flags);
d7db6da9 1255
d7db6da9
FN
1256 /* Getting new symbols may change our opinion about
1257 what is frameless. */
1258 reinit_frame_cache ();
1259
1260 set_initial_language ();
1adeb98a
FN
1261}
1262
1263void
1264symbol_file_clear (int from_tty)
1265{
1266 if ((have_full_symbols () || have_partial_symbols ())
1267 && from_tty
0430b0d6
AS
1268 && (symfile_objfile
1269 ? !query (_("Discard symbol table from `%s'? "),
1270 symfile_objfile->name)
1271 : !query (_("Discard symbol table? "))))
8a3fe4f8 1272 error (_("Not confirmed."));
1adeb98a 1273
0133421a
JK
1274 /* solib descriptors may have handles to objfiles. Wipe them before their
1275 objfiles get stale by free_all_objfiles. */
d10c338d
DE
1276 no_shared_libraries (NULL, from_tty);
1277
0133421a
JK
1278 free_all_objfiles ();
1279
adb7f338 1280 gdb_assert (symfile_objfile == NULL);
d10c338d
DE
1281 if (from_tty)
1282 printf_unfiltered (_("No symbol file now.\n"));
1adeb98a
FN
1283}
1284
5b5d99cf
JB
1285static char *
1286get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1287{
1288 asection *sect;
1289 bfd_size_type debuglink_size;
1290 unsigned long crc32;
1291 char *contents;
1292 int crc_offset;
5417f6dc 1293
5b5d99cf
JB
1294 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1295
1296 if (sect == NULL)
1297 return NULL;
1298
1299 debuglink_size = bfd_section_size (objfile->obfd, sect);
5417f6dc 1300
5b5d99cf
JB
1301 contents = xmalloc (debuglink_size);
1302 bfd_get_section_contents (objfile->obfd, sect, contents,
1303 (file_ptr)0, (bfd_size_type)debuglink_size);
1304
1305 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1306 crc_offset = strlen (contents) + 1;
1307 crc_offset = (crc_offset + 3) & ~3;
1308
1309 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
5417f6dc 1310
5b5d99cf
JB
1311 *crc32_out = crc32;
1312 return contents;
1313}
1314
1315static int
287ccc17 1316separate_debug_file_exists (const char *name, unsigned long crc,
32a0e547 1317 struct objfile *parent_objfile)
5b5d99cf
JB
1318{
1319 unsigned long file_crc = 0;
f1838a98 1320 bfd *abfd;
777ea8f1 1321 gdb_byte buffer[8*1024];
5b5d99cf 1322 int count;
32a0e547
JK
1323 struct stat parent_stat, abfd_stat;
1324
1325 /* Find a separate debug info file as if symbols would be present in
1326 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1327 section can contain just the basename of PARENT_OBJFILE without any
1328 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1329 the separate debug infos with the same basename can exist. */
1330
1331 if (strcmp (name, parent_objfile->name) == 0)
1332 return 0;
5b5d99cf 1333
874f5765 1334 abfd = bfd_open_maybe_remote (name);
f1838a98
UW
1335
1336 if (!abfd)
5b5d99cf
JB
1337 return 0;
1338
32a0e547
JK
1339 /* Verify symlinks were not the cause of strcmp name difference above.
1340
1341 Some operating systems, e.g. Windows, do not provide a meaningful
1342 st_ino; they always set it to zero. (Windows does provide a
1343 meaningful st_dev.) Do not indicate a duplicate library in that
1344 case. While there is no guarantee that a system that provides
1345 meaningful inode numbers will never set st_ino to zero, this is
1346 merely an optimization, so we do not need to worry about false
1347 negatives. */
1348
1349 if (bfd_stat (abfd, &abfd_stat) == 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1351 && abfd_stat.st_dev == parent_stat.st_dev
1352 && abfd_stat.st_ino == parent_stat.st_ino
1353 && abfd_stat.st_ino != 0)
1354 {
1355 bfd_close (abfd);
1356 return 0;
1357 }
1358
f1838a98 1359 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
5b5d99cf
JB
1360 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1361
f1838a98 1362 bfd_close (abfd);
5b5d99cf 1363
287ccc17
JK
1364 if (crc != file_crc)
1365 {
1366 warning (_("the debug information found in \"%s\""
1367 " does not match \"%s\" (CRC mismatch).\n"),
32a0e547 1368 name, parent_objfile->name);
287ccc17
JK
1369 return 0;
1370 }
1371
1372 return 1;
5b5d99cf
JB
1373}
1374
aa28a74e 1375char *debug_file_directory = NULL;
920d2a44
AC
1376static void
1377show_debug_file_directory (struct ui_file *file, int from_tty,
1378 struct cmd_list_element *c, const char *value)
1379{
1380 fprintf_filtered (file, _("\
1381The directory where separate debug symbols are searched for is \"%s\".\n"),
1382 value);
1383}
5b5d99cf
JB
1384
1385#if ! defined (DEBUG_SUBDIRECTORY)
1386#define DEBUG_SUBDIRECTORY ".debug"
1387#endif
1388
9cce227f
TG
1389char *
1390find_separate_debug_file_by_debuglink (struct objfile *objfile)
1391{
952a6d41 1392 char *basename, *debugdir;
9cce227f
TG
1393 char *dir = NULL;
1394 char *debugfile = NULL;
1395 char *canon_name = NULL;
9cce227f
TG
1396 unsigned long crc32;
1397 int i;
5b5d99cf
JB
1398
1399 basename = get_debug_link_info (objfile, &crc32);
1400
1401 if (basename == NULL)
287ccc17
JK
1402 /* There's no separate debug info, hence there's no way we could
1403 load it => no warning. */
25522fae 1404 goto cleanup_return_debugfile;
5417f6dc 1405
5b5d99cf
JB
1406 dir = xstrdup (objfile->name);
1407
fe36c4f4 1408 /* Strip off the final filename part, leaving the directory name,
569b05a5 1409 followed by a slash. The directory can be relative or absolute. */
5b5d99cf
JB
1410 for (i = strlen(dir) - 1; i >= 0; i--)
1411 {
1412 if (IS_DIR_SEPARATOR (dir[i]))
1413 break;
1414 }
569b05a5 1415 /* If I is -1 then no directory is present there and DIR will be "". */
5b5d99cf 1416 dir[i+1] = '\0';
5417f6dc 1417
1ffa32ee
JK
1418 /* Set I to max (strlen (canon_name), strlen (dir)). */
1419 canon_name = lrealpath (dir);
1420 i = strlen (dir);
1421 if (canon_name && strlen (canon_name) > i)
1422 i = strlen (canon_name);
1423
25522fae
JK
1424 debugfile = xmalloc (strlen (debug_file_directory) + 1
1425 + i
1426 + strlen (DEBUG_SUBDIRECTORY)
1427 + strlen ("/")
1428 + strlen (basename)
1429 + 1);
5b5d99cf
JB
1430
1431 /* First try in the same directory as the original file. */
1432 strcpy (debugfile, dir);
1433 strcat (debugfile, basename);
1434
32a0e547 1435 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1436 goto cleanup_return_debugfile;
5417f6dc 1437
5b5d99cf
JB
1438 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1439 strcpy (debugfile, dir);
1440 strcat (debugfile, DEBUG_SUBDIRECTORY);
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
32a0e547 1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1445 goto cleanup_return_debugfile;
5417f6dc 1446
24ddea62
JK
1447 /* Then try in the global debugfile directories.
1448
1449 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1450 cause "/..." lookups. */
5417f6dc 1451
24ddea62
JK
1452 debugdir = debug_file_directory;
1453 do
aa28a74e 1454 {
24ddea62
JK
1455 char *debugdir_end;
1456
1457 while (*debugdir == DIRNAME_SEPARATOR)
1458 debugdir++;
1459
1460 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1461 if (debugdir_end == NULL)
1462 debugdir_end = &debugdir[strlen (debugdir)];
1463
1464 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1465 debugfile[debugdir_end - debugdir] = 0;
aa28a74e 1466 strcat (debugfile, "/");
24ddea62 1467 strcat (debugfile, dir);
aa28a74e
DJ
1468 strcat (debugfile, basename);
1469
32a0e547 1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
25522fae 1471 goto cleanup_return_debugfile;
24ddea62
JK
1472
1473 /* If the file is in the sysroot, try using its base path in the
1474 global debugfile directory. */
1475 if (canon_name
1476 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 {
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1484
32a0e547 1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
24ddea62
JK
1486 goto cleanup_return_debugfile;
1487 }
1488
1489 debugdir = debugdir_end;
aa28a74e 1490 }
24ddea62 1491 while (*debugdir != 0);
aa28a74e 1492
25522fae
JK
1493 xfree (debugfile);
1494 debugfile = NULL;
aa28a74e 1495
25522fae
JK
1496cleanup_return_debugfile:
1497 xfree (canon_name);
5b5d99cf
JB
1498 xfree (basename);
1499 xfree (dir);
25522fae 1500 return debugfile;
5b5d99cf
JB
1501}
1502
1503
c906108c
SS
1504/* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
cb2f3a29
MK
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
c906108c
SS
1516 conventions (because it is confusing and inconvenient). */
1517
1518void
fba45db2 1519symbol_file_command (char *args, int from_tty)
c906108c 1520{
c906108c
SS
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1adeb98a 1525 symbol_file_clear (from_tty);
c906108c
SS
1526 }
1527 else
1528 {
d1a41061 1529 char **argv = gdb_buildargv (args);
cb2f3a29
MK
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
7a292a7a 1534 cleanups = make_cleanup_freeargv (argv);
c906108c
SS
1535 while (*argv != NULL)
1536 {
78a4a9b9
AC
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
8a3fe4f8 1540 error (_("unknown option `%s'"), *argv);
78a4a9b9
AC
1541 else
1542 {
cb2f3a29 1543 symbol_file_add_main_1 (*argv, from_tty, flags);
78a4a9b9 1544 name = *argv;
78a4a9b9 1545 }
cb2f3a29 1546
c906108c
SS
1547 argv++;
1548 }
1549
1550 if (name == NULL)
cb2f3a29
MK
1551 error (_("no symbol file name was specified"));
1552
c906108c
SS
1553 do_cleanups (cleanups);
1554 }
1555}
1556
1557/* Set the initial language.
1558
cb2f3a29
MK
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
c906108c 1567
8b60591b 1568void
fba45db2 1569set_initial_language (void)
c906108c 1570{
c5aa993b 1571 enum language lang = language_unknown;
c906108c 1572
01f8c46d
JK
1573 if (language_of_main != language_unknown)
1574 lang = language_of_main;
1575 else
1576 {
1577 const char *filename;
1578
1579 filename = find_main_filename ();
1580 if (filename != NULL)
1581 lang = deduce_language_from_filename (filename);
1582 }
cb2f3a29 1583
ccefe4c4
TT
1584 if (lang == language_unknown)
1585 {
1586 /* Make C the default language */
1587 lang = language_c;
c906108c 1588 }
ccefe4c4
TT
1589
1590 set_language (lang);
1591 expected_language = current_language; /* Don't warn the user. */
c906108c
SS
1592}
1593
874f5765
TG
1594/* If NAME is a remote name open the file using remote protocol, otherwise
1595 open it normally. */
1596
1597bfd *
1598bfd_open_maybe_remote (const char *name)
1599{
1600 if (remote_filename_p (name))
1601 return remote_bfd_open (name, gnutarget);
1602 else
1603 return bfd_openr (name, gnutarget);
1604}
1605
1606
cb2f3a29
MK
1607/* Open the file specified by NAME and hand it off to BFD for
1608 preliminary analysis. Return a newly initialized bfd *, which
1609 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1610 absolute). In case of trouble, error() is called. */
c906108c
SS
1611
1612bfd *
fba45db2 1613symfile_bfd_open (char *name)
c906108c
SS
1614{
1615 bfd *sym_bfd;
1616 int desc;
1617 char *absolute_name;
1618
f1838a98
UW
1619 if (remote_filename_p (name))
1620 {
1621 name = xstrdup (name);
1622 sym_bfd = remote_bfd_open (name, gnutarget);
1623 if (!sym_bfd)
1624 {
1625 make_cleanup (xfree, name);
1626 error (_("`%s': can't open to read symbols: %s."), name,
1627 bfd_errmsg (bfd_get_error ()));
1628 }
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 bfd_close (sym_bfd);
1633 make_cleanup (xfree, name);
1634 error (_("`%s': can't read symbols: %s."), name,
1635 bfd_errmsg (bfd_get_error ()));
1636 }
1637
1638 return sym_bfd;
1639 }
1640
cb2f3a29 1641 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
c906108c
SS
1642
1643 /* Look down path for it, allocate 2nd new malloc'd copy. */
cb2f3a29 1644 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
fbdebf46 1645 O_RDONLY | O_BINARY, &absolute_name);
608506ed 1646#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
c906108c
SS
1647 if (desc < 0)
1648 {
1649 char *exename = alloca (strlen (name) + 5);
433759f7 1650
c906108c 1651 strcat (strcpy (exename, name), ".exe");
014d698b 1652 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
fbdebf46 1653 O_RDONLY | O_BINARY, &absolute_name);
c906108c
SS
1654 }
1655#endif
1656 if (desc < 0)
1657 {
b8c9b27d 1658 make_cleanup (xfree, name);
c906108c
SS
1659 perror_with_name (name);
1660 }
cb2f3a29
MK
1661
1662 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1663 bfd. It'll be freed in free_objfile(). */
1664 xfree (name);
1665 name = absolute_name;
c906108c 1666
9f76c2cd 1667 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
c906108c
SS
1668 if (!sym_bfd)
1669 {
1670 close (desc);
b8c9b27d 1671 make_cleanup (xfree, name);
f1838a98 1672 error (_("`%s': can't open to read symbols: %s."), name,
c906108c
SS
1673 bfd_errmsg (bfd_get_error ()));
1674 }
549c1eea 1675 bfd_set_cacheable (sym_bfd, 1);
c906108c
SS
1676
1677 if (!bfd_check_format (sym_bfd, bfd_object))
1678 {
cb2f3a29
MK
1679 /* FIXME: should be checking for errors from bfd_close (for one
1680 thing, on error it does not free all the storage associated
1681 with the bfd). */
1682 bfd_close (sym_bfd); /* This also closes desc. */
b8c9b27d 1683 make_cleanup (xfree, name);
f1838a98 1684 error (_("`%s': can't read symbols: %s."), name,
c906108c
SS
1685 bfd_errmsg (bfd_get_error ()));
1686 }
cb2f3a29 1687
4f6f9936
JK
1688 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1689 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1690
cb2f3a29 1691 return sym_bfd;
c906108c
SS
1692}
1693
cb2f3a29
MK
1694/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1695 the section was not found. */
1696
0e931cf0
JB
1697int
1698get_section_index (struct objfile *objfile, char *section_name)
1699{
1700 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
cb2f3a29 1701
0e931cf0
JB
1702 if (sect)
1703 return sect->index;
1704 else
1705 return -1;
1706}
1707
cb2f3a29
MK
1708/* Link SF into the global symtab_fns list. Called on startup by the
1709 _initialize routine in each object file format reader, to register
1710 information about each format the the reader is prepared to
1711 handle. */
c906108c
SS
1712
1713void
00b5771c 1714add_symtab_fns (const struct sym_fns *sf)
c906108c 1715{
00b5771c 1716 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
c906108c
SS
1717}
1718
cb2f3a29
MK
1719/* Initialize OBJFILE to read symbols from its associated BFD. It
1720 either returns or calls error(). The result is an initialized
1721 struct sym_fns in the objfile structure, that contains cached
1722 information about the symbol file. */
c906108c 1723
00b5771c 1724static const struct sym_fns *
31d99776 1725find_sym_fns (bfd *abfd)
c906108c 1726{
00b5771c 1727 const struct sym_fns *sf;
31d99776 1728 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
00b5771c 1729 int i;
c906108c 1730
75245b24
MS
1731 if (our_flavour == bfd_target_srec_flavour
1732 || our_flavour == bfd_target_ihex_flavour
1733 || our_flavour == bfd_target_tekhex_flavour)
31d99776 1734 return NULL; /* No symbols. */
75245b24 1735
00b5771c 1736 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
31d99776
DJ
1737 if (our_flavour == sf->sym_flavour)
1738 return sf;
cb2f3a29 1739
8a3fe4f8 1740 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
31d99776 1741 bfd_get_target (abfd));
c906108c
SS
1742}
1743\f
cb2f3a29 1744
c906108c
SS
1745/* This function runs the load command of our current target. */
1746
1747static void
fba45db2 1748load_command (char *arg, int from_tty)
c906108c 1749{
4487aabf
PA
1750 /* The user might be reloading because the binary has changed. Take
1751 this opportunity to check. */
1752 reopen_exec_file ();
1753 reread_symbols ();
1754
c906108c 1755 if (arg == NULL)
1986bccd
AS
1756 {
1757 char *parg;
1758 int count = 0;
1759
1760 parg = arg = get_exec_file (1);
1761
1762 /* Count how many \ " ' tab space there are in the name. */
1763 while ((parg = strpbrk (parg, "\\\"'\t ")))
1764 {
1765 parg++;
1766 count++;
1767 }
1768
1769 if (count)
1770 {
1771 /* We need to quote this string so buildargv can pull it apart. */
1772 char *temp = xmalloc (strlen (arg) + count + 1 );
1773 char *ptemp = temp;
1774 char *prev;
1775
1776 make_cleanup (xfree, temp);
1777
1778 prev = parg = arg;
1779 while ((parg = strpbrk (parg, "\\\"'\t ")))
1780 {
1781 strncpy (ptemp, prev, parg - prev);
1782 ptemp += parg - prev;
1783 prev = parg++;
1784 *ptemp++ = '\\';
1785 }
1786 strcpy (ptemp, prev);
1787
1788 arg = temp;
1789 }
1790 }
1791
c906108c 1792 target_load (arg, from_tty);
2889e661
JB
1793
1794 /* After re-loading the executable, we don't really know which
1795 overlays are mapped any more. */
1796 overlay_cache_invalid = 1;
c906108c
SS
1797}
1798
1799/* This version of "load" should be usable for any target. Currently
1800 it is just used for remote targets, not inftarg.c or core files,
1801 on the theory that only in that case is it useful.
1802
1803 Avoiding xmodem and the like seems like a win (a) because we don't have
1804 to worry about finding it, and (b) On VMS, fork() is very slow and so
1805 we don't want to run a subprocess. On the other hand, I'm not sure how
1806 performance compares. */
917317f4 1807
917317f4
JM
1808static int validate_download = 0;
1809
e4f9b4d5
MS
1810/* Callback service function for generic_load (bfd_map_over_sections). */
1811
1812static void
1813add_section_size_callback (bfd *abfd, asection *asec, void *data)
1814{
1815 bfd_size_type *sum = data;
1816
2c500098 1817 *sum += bfd_get_section_size (asec);
e4f9b4d5
MS
1818}
1819
1820/* Opaque data for load_section_callback. */
1821struct load_section_data {
1822 unsigned long load_offset;
a76d924d
DJ
1823 struct load_progress_data *progress_data;
1824 VEC(memory_write_request_s) *requests;
1825};
1826
1827/* Opaque data for load_progress. */
1828struct load_progress_data {
1829 /* Cumulative data. */
e4f9b4d5
MS
1830 unsigned long write_count;
1831 unsigned long data_count;
1832 bfd_size_type total_size;
a76d924d
DJ
1833};
1834
1835/* Opaque data for load_progress for a single section. */
1836struct load_progress_section_data {
1837 struct load_progress_data *cumulative;
cf7a04e8 1838
a76d924d 1839 /* Per-section data. */
cf7a04e8
DJ
1840 const char *section_name;
1841 ULONGEST section_sent;
1842 ULONGEST section_size;
1843 CORE_ADDR lma;
1844 gdb_byte *buffer;
e4f9b4d5
MS
1845};
1846
a76d924d 1847/* Target write callback routine for progress reporting. */
cf7a04e8
DJ
1848
1849static void
1850load_progress (ULONGEST bytes, void *untyped_arg)
1851{
a76d924d
DJ
1852 struct load_progress_section_data *args = untyped_arg;
1853 struct load_progress_data *totals;
1854
1855 if (args == NULL)
1856 /* Writing padding data. No easy way to get at the cumulative
1857 stats, so just ignore this. */
1858 return;
1859
1860 totals = args->cumulative;
1861
1862 if (bytes == 0 && args->section_sent == 0)
1863 {
1864 /* The write is just starting. Let the user know we've started
1865 this section. */
5af949e3
UW
1866 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1867 args->section_name, hex_string (args->section_size),
1868 paddress (target_gdbarch, args->lma));
a76d924d
DJ
1869 return;
1870 }
cf7a04e8
DJ
1871
1872 if (validate_download)
1873 {
1874 /* Broken memories and broken monitors manifest themselves here
1875 when bring new computers to life. This doubles already slow
1876 downloads. */
1877 /* NOTE: cagney/1999-10-18: A more efficient implementation
1878 might add a verify_memory() method to the target vector and
1879 then use that. remote.c could implement that method using
1880 the ``qCRC'' packet. */
1881 gdb_byte *check = xmalloc (bytes);
1882 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1883
1884 if (target_read_memory (args->lma, check, bytes) != 0)
5af949e3
UW
1885 error (_("Download verify read failed at %s"),
1886 paddress (target_gdbarch, args->lma));
cf7a04e8 1887 if (memcmp (args->buffer, check, bytes) != 0)
5af949e3
UW
1888 error (_("Download verify compare failed at %s"),
1889 paddress (target_gdbarch, args->lma));
cf7a04e8
DJ
1890 do_cleanups (verify_cleanups);
1891 }
a76d924d 1892 totals->data_count += bytes;
cf7a04e8
DJ
1893 args->lma += bytes;
1894 args->buffer += bytes;
a76d924d 1895 totals->write_count += 1;
cf7a04e8
DJ
1896 args->section_sent += bytes;
1897 if (quit_flag
1898 || (deprecated_ui_load_progress_hook != NULL
1899 && deprecated_ui_load_progress_hook (args->section_name,
1900 args->section_sent)))
1901 error (_("Canceled the download"));
1902
1903 if (deprecated_show_load_progress != NULL)
1904 deprecated_show_load_progress (args->section_name,
1905 args->section_sent,
1906 args->section_size,
a76d924d
DJ
1907 totals->data_count,
1908 totals->total_size);
cf7a04e8
DJ
1909}
1910
e4f9b4d5
MS
1911/* Callback service function for generic_load (bfd_map_over_sections). */
1912
1913static void
1914load_section_callback (bfd *abfd, asection *asec, void *data)
1915{
a76d924d 1916 struct memory_write_request *new_request;
e4f9b4d5 1917 struct load_section_data *args = data;
a76d924d 1918 struct load_progress_section_data *section_data;
cf7a04e8
DJ
1919 bfd_size_type size = bfd_get_section_size (asec);
1920 gdb_byte *buffer;
cf7a04e8 1921 const char *sect_name = bfd_get_section_name (abfd, asec);
e4f9b4d5 1922
cf7a04e8
DJ
1923 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1924 return;
e4f9b4d5 1925
cf7a04e8
DJ
1926 if (size == 0)
1927 return;
e4f9b4d5 1928
a76d924d
DJ
1929 new_request = VEC_safe_push (memory_write_request_s,
1930 args->requests, NULL);
1931 memset (new_request, 0, sizeof (struct memory_write_request));
1932 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1933 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1934 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1935 new_request->data = xmalloc (size);
1936 new_request->baton = section_data;
cf7a04e8 1937
a76d924d 1938 buffer = new_request->data;
cf7a04e8 1939
a76d924d
DJ
1940 section_data->cumulative = args->progress_data;
1941 section_data->section_name = sect_name;
1942 section_data->section_size = size;
1943 section_data->lma = new_request->begin;
1944 section_data->buffer = buffer;
cf7a04e8
DJ
1945
1946 bfd_get_section_contents (abfd, asec, buffer, 0, size);
a76d924d
DJ
1947}
1948
1949/* Clean up an entire memory request vector, including load
1950 data and progress records. */
cf7a04e8 1951
a76d924d
DJ
1952static void
1953clear_memory_write_data (void *arg)
1954{
1955 VEC(memory_write_request_s) **vec_p = arg;
1956 VEC(memory_write_request_s) *vec = *vec_p;
1957 int i;
1958 struct memory_write_request *mr;
cf7a04e8 1959
a76d924d
DJ
1960 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1961 {
1962 xfree (mr->data);
1963 xfree (mr->baton);
1964 }
1965 VEC_free (memory_write_request_s, vec);
e4f9b4d5
MS
1966}
1967
c906108c 1968void
917317f4 1969generic_load (char *args, int from_tty)
c906108c 1970{
c906108c 1971 bfd *loadfile_bfd;
2b71414d 1972 struct timeval start_time, end_time;
917317f4 1973 char *filename;
1986bccd 1974 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
e4f9b4d5 1975 struct load_section_data cbdata;
a76d924d
DJ
1976 struct load_progress_data total_progress;
1977
e4f9b4d5 1978 CORE_ADDR entry;
1986bccd 1979 char **argv;
e4f9b4d5 1980
a76d924d
DJ
1981 memset (&cbdata, 0, sizeof (cbdata));
1982 memset (&total_progress, 0, sizeof (total_progress));
1983 cbdata.progress_data = &total_progress;
1984
1985 make_cleanup (clear_memory_write_data, &cbdata.requests);
917317f4 1986
d1a41061
PP
1987 if (args == NULL)
1988 error_no_arg (_("file to load"));
1986bccd 1989
d1a41061 1990 argv = gdb_buildargv (args);
1986bccd
AS
1991 make_cleanup_freeargv (argv);
1992
1993 filename = tilde_expand (argv[0]);
1994 make_cleanup (xfree, filename);
1995
1996 if (argv[1] != NULL)
917317f4
JM
1997 {
1998 char *endptr;
ba5f2f8a 1999
1986bccd
AS
2000 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2001
2002 /* If the last word was not a valid number then
2003 treat it as a file name with spaces in. */
2004 if (argv[1] == endptr)
2005 error (_("Invalid download offset:%s."), argv[1]);
2006
2007 if (argv[2] != NULL)
2008 error (_("Too many parameters."));
917317f4 2009 }
c906108c 2010
917317f4 2011 /* Open the file for loading. */
c906108c
SS
2012 loadfile_bfd = bfd_openr (filename, gnutarget);
2013 if (loadfile_bfd == NULL)
2014 {
2015 perror_with_name (filename);
2016 return;
2017 }
917317f4 2018
c906108c
SS
2019 /* FIXME: should be checking for errors from bfd_close (for one thing,
2020 on error it does not free all the storage associated with the
2021 bfd). */
5c65bbb6 2022 make_cleanup_bfd_close (loadfile_bfd);
c906108c 2023
c5aa993b 2024 if (!bfd_check_format (loadfile_bfd, bfd_object))
c906108c 2025 {
8a3fe4f8 2026 error (_("\"%s\" is not an object file: %s"), filename,
c906108c
SS
2027 bfd_errmsg (bfd_get_error ()));
2028 }
c5aa993b 2029
5417f6dc 2030 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
a76d924d
DJ
2031 (void *) &total_progress.total_size);
2032
2033 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
c2d11a7d 2034
2b71414d 2035 gettimeofday (&start_time, NULL);
c906108c 2036
a76d924d
DJ
2037 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2038 load_progress) != 0)
2039 error (_("Load failed"));
c906108c 2040
2b71414d 2041 gettimeofday (&end_time, NULL);
ba5f2f8a 2042
e4f9b4d5 2043 entry = bfd_get_start_address (loadfile_bfd);
e4f9b4d5 2044 ui_out_text (uiout, "Start address ");
5af949e3 2045 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
e4f9b4d5 2046 ui_out_text (uiout, ", load size ");
a76d924d 2047 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
e4f9b4d5 2048 ui_out_text (uiout, "\n");
e4f9b4d5
MS
2049 /* We were doing this in remote-mips.c, I suspect it is right
2050 for other targets too. */
fb14de7b 2051 regcache_write_pc (get_current_regcache (), entry);
c906108c 2052
38963c97
DJ
2053 /* Reset breakpoints, now that we have changed the load image. For
2054 instance, breakpoints may have been set (or reset, by
2055 post_create_inferior) while connected to the target but before we
2056 loaded the program. In that case, the prologue analyzer could
2057 have read instructions from the target to find the right
2058 breakpoint locations. Loading has changed the contents of that
2059 memory. */
2060
2061 breakpoint_re_set ();
2062
7ca9f392
AC
2063 /* FIXME: are we supposed to call symbol_file_add or not? According
2064 to a comment from remote-mips.c (where a call to symbol_file_add
2065 was commented out), making the call confuses GDB if more than one
2066 file is loaded in. Some targets do (e.g., remote-vx.c) but
b2fa5097 2067 others don't (or didn't - perhaps they have all been deleted). */
c906108c 2068
a76d924d
DJ
2069 print_transfer_performance (gdb_stdout, total_progress.data_count,
2070 total_progress.write_count,
2071 &start_time, &end_time);
c906108c
SS
2072
2073 do_cleanups (old_cleanups);
2074}
2075
2076/* Report how fast the transfer went. */
2077
917317f4
JM
2078/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2079 replaced by print_transfer_performance (with a very different
2080 function signature). */
2081
c906108c 2082void
fba45db2
KB
2083report_transfer_performance (unsigned long data_count, time_t start_time,
2084 time_t end_time)
c906108c 2085{
2b71414d
DJ
2086 struct timeval start, end;
2087
2088 start.tv_sec = start_time;
2089 start.tv_usec = 0;
2090 end.tv_sec = end_time;
2091 end.tv_usec = 0;
2092
2093 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
917317f4
JM
2094}
2095
2096void
d9fcf2fb 2097print_transfer_performance (struct ui_file *stream,
917317f4
JM
2098 unsigned long data_count,
2099 unsigned long write_count,
2b71414d
DJ
2100 const struct timeval *start_time,
2101 const struct timeval *end_time)
917317f4 2102{
9f43d28c 2103 ULONGEST time_count;
2b71414d
DJ
2104
2105 /* Compute the elapsed time in milliseconds, as a tradeoff between
2106 accuracy and overflow. */
2107 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2108 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2109
8b93c638
JM
2110 ui_out_text (uiout, "Transfer rate: ");
2111 if (time_count > 0)
2112 {
9f43d28c
DJ
2113 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2114
2115 if (ui_out_is_mi_like_p (uiout))
2116 {
2117 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2118 ui_out_text (uiout, " bits/sec");
2119 }
2120 else if (rate < 1024)
2121 {
2122 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2123 ui_out_text (uiout, " bytes/sec");
2124 }
2125 else
2126 {
2127 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2128 ui_out_text (uiout, " KB/sec");
2129 }
8b93c638
JM
2130 }
2131 else
2132 {
ba5f2f8a 2133 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
5417f6dc 2134 ui_out_text (uiout, " bits in <1 sec");
8b93c638
JM
2135 }
2136 if (write_count > 0)
2137 {
2138 ui_out_text (uiout, ", ");
ba5f2f8a 2139 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
8b93c638
JM
2140 ui_out_text (uiout, " bytes/write");
2141 }
2142 ui_out_text (uiout, ".\n");
c906108c
SS
2143}
2144
2145/* This function allows the addition of incrementally linked object files.
2146 It does not modify any state in the target, only in the debugger. */
db162d44
EZ
2147/* Note: ezannoni 2000-04-13 This function/command used to have a
2148 special case syntax for the rombug target (Rombug is the boot
2149 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2150 rombug case, the user doesn't need to supply a text address,
2151 instead a call to target_link() (in target.c) would supply the
2152 value to use. We are now discontinuing this type of ad hoc syntax. */
c906108c 2153
c906108c 2154static void
fba45db2 2155add_symbol_file_command (char *args, int from_tty)
c906108c 2156{
5af949e3 2157 struct gdbarch *gdbarch = get_current_arch ();
db162d44 2158 char *filename = NULL;
2df3850c 2159 int flags = OBJF_USERLOADED;
c906108c 2160 char *arg;
db162d44 2161 int section_index = 0;
2acceee2
JM
2162 int argcnt = 0;
2163 int sec_num = 0;
2164 int i;
db162d44
EZ
2165 int expecting_sec_name = 0;
2166 int expecting_sec_addr = 0;
5b96932b 2167 char **argv;
db162d44 2168
a39a16c4 2169 struct sect_opt
2acceee2 2170 {
2acceee2
JM
2171 char *name;
2172 char *value;
a39a16c4 2173 };
db162d44 2174
a39a16c4
MM
2175 struct section_addr_info *section_addrs;
2176 struct sect_opt *sect_opts = NULL;
2177 size_t num_sect_opts = 0;
3017564a 2178 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
c5aa993b 2179
a39a16c4 2180 num_sect_opts = 16;
5417f6dc 2181 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
a39a16c4
MM
2182 * sizeof (struct sect_opt));
2183
c906108c
SS
2184 dont_repeat ();
2185
2186 if (args == NULL)
8a3fe4f8 2187 error (_("add-symbol-file takes a file name and an address"));
c906108c 2188
d1a41061 2189 argv = gdb_buildargv (args);
5b96932b 2190 make_cleanup_freeargv (argv);
db162d44 2191
5b96932b
AS
2192 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2193 {
2194 /* Process the argument. */
db162d44 2195 if (argcnt == 0)
c906108c 2196 {
db162d44
EZ
2197 /* The first argument is the file name. */
2198 filename = tilde_expand (arg);
3017564a 2199 make_cleanup (xfree, filename);
c906108c 2200 }
db162d44 2201 else
7a78ae4e
ND
2202 if (argcnt == 1)
2203 {
2204 /* The second argument is always the text address at which
2205 to load the program. */
2206 sect_opts[section_index].name = ".text";
2207 sect_opts[section_index].value = arg;
f414f22f 2208 if (++section_index >= num_sect_opts)
a39a16c4
MM
2209 {
2210 num_sect_opts *= 2;
5417f6dc 2211 sect_opts = ((struct sect_opt *)
a39a16c4 2212 xrealloc (sect_opts,
5417f6dc 2213 num_sect_opts
a39a16c4
MM
2214 * sizeof (struct sect_opt)));
2215 }
7a78ae4e
ND
2216 }
2217 else
2218 {
2219 /* It's an option (starting with '-') or it's an argument
2220 to an option */
2221
2222 if (*arg == '-')
2223 {
78a4a9b9
AC
2224 if (strcmp (arg, "-readnow") == 0)
2225 flags |= OBJF_READNOW;
2226 else if (strcmp (arg, "-s") == 0)
2227 {
2228 expecting_sec_name = 1;
2229 expecting_sec_addr = 1;
2230 }
7a78ae4e
ND
2231 }
2232 else
2233 {
2234 if (expecting_sec_name)
db162d44 2235 {
7a78ae4e
ND
2236 sect_opts[section_index].name = arg;
2237 expecting_sec_name = 0;
db162d44
EZ
2238 }
2239 else
7a78ae4e
ND
2240 if (expecting_sec_addr)
2241 {
2242 sect_opts[section_index].value = arg;
2243 expecting_sec_addr = 0;
f414f22f 2244 if (++section_index >= num_sect_opts)
a39a16c4
MM
2245 {
2246 num_sect_opts *= 2;
5417f6dc 2247 sect_opts = ((struct sect_opt *)
a39a16c4 2248 xrealloc (sect_opts,
5417f6dc 2249 num_sect_opts
a39a16c4
MM
2250 * sizeof (struct sect_opt)));
2251 }
7a78ae4e
ND
2252 }
2253 else
8a3fe4f8 2254 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
7a78ae4e
ND
2255 }
2256 }
c906108c 2257 }
c906108c 2258
927890d0
JB
2259 /* This command takes at least two arguments. The first one is a
2260 filename, and the second is the address where this file has been
2261 loaded. Abort now if this address hasn't been provided by the
2262 user. */
2263 if (section_index < 1)
2264 error (_("The address where %s has been loaded is missing"), filename);
2265
db162d44
EZ
2266 /* Print the prompt for the query below. And save the arguments into
2267 a sect_addr_info structure to be passed around to other
2268 functions. We have to split this up into separate print
bb599908 2269 statements because hex_string returns a local static
db162d44 2270 string. */
5417f6dc 2271
a3f17187 2272 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
a39a16c4
MM
2273 section_addrs = alloc_section_addr_info (section_index);
2274 make_cleanup (xfree, section_addrs);
db162d44 2275 for (i = 0; i < section_index; i++)
c906108c 2276 {
db162d44
EZ
2277 CORE_ADDR addr;
2278 char *val = sect_opts[i].value;
2279 char *sec = sect_opts[i].name;
5417f6dc 2280
ae822768 2281 addr = parse_and_eval_address (val);
db162d44 2282
db162d44
EZ
2283 /* Here we store the section offsets in the order they were
2284 entered on the command line. */
a39a16c4
MM
2285 section_addrs->other[sec_num].name = sec;
2286 section_addrs->other[sec_num].addr = addr;
5af949e3
UW
2287 printf_unfiltered ("\t%s_addr = %s\n", sec,
2288 paddress (gdbarch, addr));
db162d44
EZ
2289 sec_num++;
2290
5417f6dc 2291 /* The object's sections are initialized when a
db162d44 2292 call is made to build_objfile_section_table (objfile).
5417f6dc 2293 This happens in reread_symbols.
db162d44
EZ
2294 At this point, we don't know what file type this is,
2295 so we can't determine what section names are valid. */
2acceee2 2296 }
db162d44 2297
2acceee2 2298 if (from_tty && (!query ("%s", "")))
8a3fe4f8 2299 error (_("Not confirmed."));
c906108c 2300
7eedccfa
PP
2301 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2302 section_addrs, flags);
c906108c
SS
2303
2304 /* Getting new symbols may change our opinion about what is
2305 frameless. */
2306 reinit_frame_cache ();
db162d44 2307 do_cleanups (my_cleanups);
c906108c
SS
2308}
2309\f
70992597 2310
c906108c
SS
2311/* Re-read symbols if a symbol-file has changed. */
2312void
fba45db2 2313reread_symbols (void)
c906108c
SS
2314{
2315 struct objfile *objfile;
2316 long new_modtime;
2317 int reread_one = 0;
2318 struct stat new_statbuf;
2319 int res;
2320
2321 /* With the addition of shared libraries, this should be modified,
2322 the load time should be saved in the partial symbol tables, since
2323 different tables may come from different source files. FIXME.
2324 This routine should then walk down each partial symbol table
2325 and see if the symbol table that it originates from has been changed */
2326
c5aa993b
JM
2327 for (objfile = object_files; objfile; objfile = objfile->next)
2328 {
9cce227f
TG
2329 /* solib-sunos.c creates one objfile with obfd. */
2330 if (objfile->obfd == NULL)
2331 continue;
2332
2333 /* Separate debug objfiles are handled in the main objfile. */
2334 if (objfile->separate_debug_objfile_backlink)
2335 continue;
2336
02aeec7b
JB
2337 /* If this object is from an archive (what you usually create with
2338 `ar', often called a `static library' on most systems, though
2339 a `shared library' on AIX is also an archive), then you should
2340 stat on the archive name, not member name. */
9cce227f
TG
2341 if (objfile->obfd->my_archive)
2342 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2343 else
9cce227f
TG
2344 res = stat (objfile->name, &new_statbuf);
2345 if (res != 0)
2346 {
2347 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2348 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2349 objfile->name);
2350 continue;
2351 }
2352 new_modtime = new_statbuf.st_mtime;
2353 if (new_modtime != objfile->mtime)
2354 {
2355 struct cleanup *old_cleanups;
2356 struct section_offsets *offsets;
2357 int num_offsets;
2358 char *obfd_filename;
2359
2360 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2361 objfile->name);
2362
2363 /* There are various functions like symbol_file_add,
2364 symfile_bfd_open, syms_from_objfile, etc., which might
2365 appear to do what we want. But they have various other
2366 effects which we *don't* want. So we just do stuff
2367 ourselves. We don't worry about mapped files (for one thing,
2368 any mapped file will be out of date). */
2369
2370 /* If we get an error, blow away this objfile (not sure if
2371 that is the correct response for things like shared
2372 libraries). */
2373 old_cleanups = make_cleanup_free_objfile (objfile);
2374 /* We need to do this whenever any symbols go away. */
2375 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2376
2377 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2378 bfd_get_filename (exec_bfd)) == 0)
2379 {
2380 /* Reload EXEC_BFD without asking anything. */
2381
2382 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2383 }
2384
2385 /* Clean up any state BFD has sitting around. We don't need
2386 to close the descriptor but BFD lacks a way of closing the
2387 BFD without closing the descriptor. */
2388 obfd_filename = bfd_get_filename (objfile->obfd);
2389 if (!bfd_close (objfile->obfd))
2390 error (_("Can't close BFD for %s: %s"), objfile->name,
2391 bfd_errmsg (bfd_get_error ()));
874f5765 2392 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
9cce227f
TG
2393 if (objfile->obfd == NULL)
2394 error (_("Can't open %s to read symbols."), objfile->name);
2395 else
2396 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2397 /* bfd_openr sets cacheable to true, which is what we want. */
2398 if (!bfd_check_format (objfile->obfd, bfd_object))
2399 error (_("Can't read symbols from %s: %s."), objfile->name,
2400 bfd_errmsg (bfd_get_error ()));
2401
2402 /* Save the offsets, we will nuke them with the rest of the
2403 objfile_obstack. */
2404 num_offsets = objfile->num_sections;
2405 offsets = ((struct section_offsets *)
2406 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2407 memcpy (offsets, objfile->section_offsets,
2408 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2409
2410 /* Remove any references to this objfile in the global
2411 value lists. */
2412 preserve_values (objfile);
2413
2414 /* Nuke all the state that we will re-read. Much of the following
2415 code which sets things to NULL really is necessary to tell
2416 other parts of GDB that there is nothing currently there.
2417
2418 Try to keep the freeing order compatible with free_objfile. */
2419
2420 if (objfile->sf != NULL)
2421 {
2422 (*objfile->sf->sym_finish) (objfile);
2423 }
2424
2425 clear_objfile_data (objfile);
2426
15d123c9 2427 /* Free the separate debug objfiles. It will be
9cce227f 2428 automatically recreated by sym_read. */
15d123c9 2429 free_objfile_separate_debug (objfile);
9cce227f
TG
2430
2431 /* FIXME: Do we have to free a whole linked list, or is this
2432 enough? */
2433 if (objfile->global_psymbols.list)
2434 xfree (objfile->global_psymbols.list);
2435 memset (&objfile->global_psymbols, 0,
2436 sizeof (objfile->global_psymbols));
2437 if (objfile->static_psymbols.list)
2438 xfree (objfile->static_psymbols.list);
2439 memset (&objfile->static_psymbols, 0,
2440 sizeof (objfile->static_psymbols));
2441
2442 /* Free the obstacks for non-reusable objfiles */
710e1a31
SW
2443 psymbol_bcache_free (objfile->psymbol_cache);
2444 objfile->psymbol_cache = psymbol_bcache_init ();
9cce227f 2445 bcache_xfree (objfile->macro_cache);
cbd70537 2446 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
9cce227f 2447 bcache_xfree (objfile->filename_cache);
cbd70537 2448 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
9cce227f
TG
2449 if (objfile->demangled_names_hash != NULL)
2450 {
2451 htab_delete (objfile->demangled_names_hash);
2452 objfile->demangled_names_hash = NULL;
2453 }
2454 obstack_free (&objfile->objfile_obstack, 0);
2455 objfile->sections = NULL;
2456 objfile->symtabs = NULL;
2457 objfile->psymtabs = NULL;
2458 objfile->psymtabs_addrmap = NULL;
2459 objfile->free_psymtabs = NULL;
2460 objfile->cp_namespace_symtab = NULL;
34eaf542 2461 objfile->template_symbols = NULL;
9cce227f
TG
2462 objfile->msymbols = NULL;
2463 objfile->deprecated_sym_private = NULL;
2464 objfile->minimal_symbol_count = 0;
2465 memset (&objfile->msymbol_hash, 0,
2466 sizeof (objfile->msymbol_hash));
2467 memset (&objfile->msymbol_demangled_hash, 0,
2468 sizeof (objfile->msymbol_demangled_hash));
2469
710e1a31 2470 objfile->psymbol_cache = psymbol_bcache_init ();
cbd70537
SW
2471 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2472 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
9cce227f
TG
2473 /* obstack_init also initializes the obstack so it is
2474 empty. We could use obstack_specify_allocation but
2475 gdb_obstack.h specifies the alloc/dealloc
2476 functions. */
2477 obstack_init (&objfile->objfile_obstack);
2478 if (build_objfile_section_table (objfile))
2479 {
2480 error (_("Can't find the file sections in `%s': %s"),
2481 objfile->name, bfd_errmsg (bfd_get_error ()));
2482 }
2483 terminate_minimal_symbol_table (objfile);
2484
2485 /* We use the same section offsets as from last time. I'm not
2486 sure whether that is always correct for shared libraries. */
2487 objfile->section_offsets = (struct section_offsets *)
2488 obstack_alloc (&objfile->objfile_obstack,
2489 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2490 memcpy (objfile->section_offsets, offsets,
2491 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2492 objfile->num_sections = num_offsets;
2493
2494 /* What the hell is sym_new_init for, anyway? The concept of
2495 distinguishing between the main file and additional files
2496 in this way seems rather dubious. */
2497 if (objfile == symfile_objfile)
c906108c 2498 {
9cce227f 2499 (*objfile->sf->sym_new_init) (objfile);
c906108c 2500 }
9cce227f
TG
2501
2502 (*objfile->sf->sym_init) (objfile);
2503 clear_complaints (&symfile_complaints, 1, 1);
2504 /* Do not set flags as this is safe and we don't want to be
2505 verbose. */
2506 (*objfile->sf->sym_read) (objfile, 0);
2507 if (!objfile_has_symbols (objfile))
c906108c 2508 {
9cce227f
TG
2509 wrap_here ("");
2510 printf_unfiltered (_("(no debugging symbols found)\n"));
2511 wrap_here ("");
c5aa993b 2512 }
9cce227f
TG
2513
2514 /* We're done reading the symbol file; finish off complaints. */
2515 clear_complaints (&symfile_complaints, 0, 1);
2516
2517 /* Getting new symbols may change our opinion about what is
2518 frameless. */
2519
2520 reinit_frame_cache ();
2521
2522 /* Discard cleanups as symbol reading was successful. */
2523 discard_cleanups (old_cleanups);
2524
2525 /* If the mtime has changed between the time we set new_modtime
2526 and now, we *want* this to be out of date, so don't call stat
2527 again now. */
2528 objfile->mtime = new_modtime;
2529 reread_one = 1;
2530 init_entry_point_info (objfile);
c906108c
SS
2531 }
2532 }
c906108c
SS
2533
2534 if (reread_one)
ea53e89f 2535 {
ff3536bc
UW
2536 /* Notify objfiles that we've modified objfile sections. */
2537 objfiles_changed ();
2538
c1e56572 2539 clear_symtab_users (0);
ea53e89f
JB
2540 /* At least one objfile has changed, so we can consider that
2541 the executable we're debugging has changed too. */
781b42b0 2542 observer_notify_executable_changed ();
ea53e89f 2543 }
c906108c 2544}
c906108c
SS
2545\f
2546
c5aa993b
JM
2547
2548typedef struct
2549{
2550 char *ext;
c906108c 2551 enum language lang;
c5aa993b
JM
2552}
2553filename_language;
c906108c 2554
c5aa993b 2555static filename_language *filename_language_table;
c906108c
SS
2556static int fl_table_size, fl_table_next;
2557
2558static void
fba45db2 2559add_filename_language (char *ext, enum language lang)
c906108c
SS
2560{
2561 if (fl_table_next >= fl_table_size)
2562 {
2563 fl_table_size += 10;
5417f6dc 2564 filename_language_table =
25bf3106
PM
2565 xrealloc (filename_language_table,
2566 fl_table_size * sizeof (*filename_language_table));
c906108c
SS
2567 }
2568
4fcf66da 2569 filename_language_table[fl_table_next].ext = xstrdup (ext);
c906108c
SS
2570 filename_language_table[fl_table_next].lang = lang;
2571 fl_table_next++;
2572}
2573
2574static char *ext_args;
920d2a44
AC
2575static void
2576show_ext_args (struct ui_file *file, int from_tty,
2577 struct cmd_list_element *c, const char *value)
2578{
2579 fprintf_filtered (file, _("\
2580Mapping between filename extension and source language is \"%s\".\n"),
2581 value);
2582}
c906108c
SS
2583
2584static void
26c41df3 2585set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
c906108c
SS
2586{
2587 int i;
2588 char *cp = ext_args;
2589 enum language lang;
2590
2591 /* First arg is filename extension, starting with '.' */
2592 if (*cp != '.')
8a3fe4f8 2593 error (_("'%s': Filename extension must begin with '.'"), ext_args);
c906108c
SS
2594
2595 /* Find end of first arg. */
c5aa993b 2596 while (*cp && !isspace (*cp))
c906108c
SS
2597 cp++;
2598
2599 if (*cp == '\0')
8a3fe4f8 2600 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2601 ext_args);
2602
2603 /* Null-terminate first arg */
c5aa993b 2604 *cp++ = '\0';
c906108c
SS
2605
2606 /* Find beginning of second arg, which should be a source language. */
2607 while (*cp && isspace (*cp))
2608 cp++;
2609
2610 if (*cp == '\0')
8a3fe4f8 2611 error (_("'%s': two arguments required -- filename extension and language"),
c906108c
SS
2612 ext_args);
2613
2614 /* Lookup the language from among those we know. */
2615 lang = language_enum (cp);
2616
2617 /* Now lookup the filename extension: do we already know it? */
2618 for (i = 0; i < fl_table_next; i++)
2619 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2620 break;
2621
2622 if (i >= fl_table_next)
2623 {
2624 /* new file extension */
2625 add_filename_language (ext_args, lang);
2626 }
2627 else
2628 {
2629 /* redefining a previously known filename extension */
2630
2631 /* if (from_tty) */
2632 /* query ("Really make files of type %s '%s'?", */
2633 /* ext_args, language_str (lang)); */
2634
b8c9b27d 2635 xfree (filename_language_table[i].ext);
4fcf66da 2636 filename_language_table[i].ext = xstrdup (ext_args);
c906108c
SS
2637 filename_language_table[i].lang = lang;
2638 }
2639}
2640
2641static void
fba45db2 2642info_ext_lang_command (char *args, int from_tty)
c906108c
SS
2643{
2644 int i;
2645
a3f17187 2646 printf_filtered (_("Filename extensions and the languages they represent:"));
c906108c
SS
2647 printf_filtered ("\n\n");
2648 for (i = 0; i < fl_table_next; i++)
c5aa993b
JM
2649 printf_filtered ("\t%s\t- %s\n",
2650 filename_language_table[i].ext,
c906108c
SS
2651 language_str (filename_language_table[i].lang));
2652}
2653
2654static void
fba45db2 2655init_filename_language_table (void)
c906108c
SS
2656{
2657 if (fl_table_size == 0) /* protect against repetition */
2658 {
2659 fl_table_size = 20;
2660 fl_table_next = 0;
c5aa993b 2661 filename_language_table =
c906108c 2662 xmalloc (fl_table_size * sizeof (*filename_language_table));
c5aa993b 2663 add_filename_language (".c", language_c);
6aecb9c2 2664 add_filename_language (".d", language_d);
c5aa993b
JM
2665 add_filename_language (".C", language_cplus);
2666 add_filename_language (".cc", language_cplus);
2667 add_filename_language (".cp", language_cplus);
2668 add_filename_language (".cpp", language_cplus);
2669 add_filename_language (".cxx", language_cplus);
2670 add_filename_language (".c++", language_cplus);
2671 add_filename_language (".java", language_java);
c906108c 2672 add_filename_language (".class", language_java);
da2cf7e0 2673 add_filename_language (".m", language_objc);
c5aa993b
JM
2674 add_filename_language (".f", language_fortran);
2675 add_filename_language (".F", language_fortran);
fd5700c7
JK
2676 add_filename_language (".for", language_fortran);
2677 add_filename_language (".FOR", language_fortran);
2678 add_filename_language (".ftn", language_fortran);
2679 add_filename_language (".FTN", language_fortran);
2680 add_filename_language (".fpp", language_fortran);
2681 add_filename_language (".FPP", language_fortran);
2682 add_filename_language (".f90", language_fortran);
2683 add_filename_language (".F90", language_fortran);
2684 add_filename_language (".f95", language_fortran);
2685 add_filename_language (".F95", language_fortran);
2686 add_filename_language (".f03", language_fortran);
2687 add_filename_language (".F03", language_fortran);
2688 add_filename_language (".f08", language_fortran);
2689 add_filename_language (".F08", language_fortran);
c5aa993b 2690 add_filename_language (".s", language_asm);
aa707ed0 2691 add_filename_language (".sx", language_asm);
c5aa993b 2692 add_filename_language (".S", language_asm);
c6fd39cd
PM
2693 add_filename_language (".pas", language_pascal);
2694 add_filename_language (".p", language_pascal);
2695 add_filename_language (".pp", language_pascal);
963a6417
PH
2696 add_filename_language (".adb", language_ada);
2697 add_filename_language (".ads", language_ada);
2698 add_filename_language (".a", language_ada);
2699 add_filename_language (".ada", language_ada);
dde59185 2700 add_filename_language (".dg", language_ada);
c906108c
SS
2701 }
2702}
2703
2704enum language
dd786858 2705deduce_language_from_filename (const char *filename)
c906108c
SS
2706{
2707 int i;
2708 char *cp;
2709
2710 if (filename != NULL)
2711 if ((cp = strrchr (filename, '.')) != NULL)
2712 for (i = 0; i < fl_table_next; i++)
2713 if (strcmp (cp, filename_language_table[i].ext) == 0)
2714 return filename_language_table[i].lang;
2715
2716 return language_unknown;
2717}
2718\f
2719/* allocate_symtab:
2720
2721 Allocate and partly initialize a new symbol table. Return a pointer
2722 to it. error() if no space.
2723
2724 Caller must set these fields:
c5aa993b
JM
2725 LINETABLE(symtab)
2726 symtab->blockvector
2727 symtab->dirname
2728 symtab->free_code
2729 symtab->free_ptr
c906108c
SS
2730 */
2731
2732struct symtab *
72b9f47f 2733allocate_symtab (const char *filename, struct objfile *objfile)
c906108c 2734{
52f0bd74 2735 struct symtab *symtab;
c906108c
SS
2736
2737 symtab = (struct symtab *)
4a146b47 2738 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
c906108c 2739 memset (symtab, 0, sizeof (*symtab));
10abe6bf
TT
2740 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2741 objfile->filename_cache);
c5aa993b
JM
2742 symtab->fullname = NULL;
2743 symtab->language = deduce_language_from_filename (filename);
1c9e8358 2744 symtab->debugformat = "unknown";
c906108c
SS
2745
2746 /* Hook it to the objfile it comes from */
2747
c5aa993b
JM
2748 symtab->objfile = objfile;
2749 symtab->next = objfile->symtabs;
2750 objfile->symtabs = symtab;
c906108c 2751
c906108c
SS
2752 return (symtab);
2753}
c906108c 2754\f
c5aa993b 2755
c906108c 2756/* Reset all data structures in gdb which may contain references to symbol
c1e56572 2757 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
c906108c
SS
2758
2759void
c1e56572 2760clear_symtab_users (int add_flags)
c906108c
SS
2761{
2762 /* Someday, we should do better than this, by only blowing away
2763 the things that really need to be blown. */
c0501be5
DJ
2764
2765 /* Clear the "current" symtab first, because it is no longer valid.
2766 breakpoint_re_set may try to access the current symtab. */
2767 clear_current_source_symtab_and_line ();
2768
c906108c 2769 clear_displays ();
c1e56572
JK
2770 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2771 breakpoint_re_set ();
6c95b8df 2772 set_default_breakpoint (0, NULL, 0, 0, 0);
c906108c 2773 clear_pc_function_cache ();
06d3b283 2774 observer_notify_new_objfile (NULL);
9bdcbae7
DJ
2775
2776 /* Clear globals which might have pointed into a removed objfile.
2777 FIXME: It's not clear which of these are supposed to persist
2778 between expressions and which ought to be reset each time. */
2779 expression_context_block = NULL;
2780 innermost_block = NULL;
8756216b
DP
2781
2782 /* Varobj may refer to old symbols, perform a cleanup. */
2783 varobj_invalidate ();
2784
c906108c
SS
2785}
2786
74b7792f
AC
2787static void
2788clear_symtab_users_cleanup (void *ignore)
2789{
c1e56572 2790 clear_symtab_users (0);
74b7792f 2791}
c906108c 2792\f
c906108c
SS
2793/* OVERLAYS:
2794 The following code implements an abstraction for debugging overlay sections.
2795
2796 The target model is as follows:
2797 1) The gnu linker will permit multiple sections to be mapped into the
c5aa993b 2798 same VMA, each with its own unique LMA (or load address).
c906108c 2799 2) It is assumed that some runtime mechanism exists for mapping the
c5aa993b 2800 sections, one by one, from the load address into the VMA address.
5417f6dc 2801 3) This code provides a mechanism for gdb to keep track of which
c5aa993b
JM
2802 sections should be considered to be mapped from the VMA to the LMA.
2803 This information is used for symbol lookup, and memory read/write.
5417f6dc 2804 For instance, if a section has been mapped then its contents
c5aa993b 2805 should be read from the VMA, otherwise from the LMA.
c906108c
SS
2806
2807 Two levels of debugger support for overlays are available. One is
2808 "manual", in which the debugger relies on the user to tell it which
2809 overlays are currently mapped. This level of support is
2810 implemented entirely in the core debugger, and the information about
2811 whether a section is mapped is kept in the objfile->obj_section table.
2812
2813 The second level of support is "automatic", and is only available if
2814 the target-specific code provides functionality to read the target's
2815 overlay mapping table, and translate its contents for the debugger
2816 (by updating the mapped state information in the obj_section tables).
2817
2818 The interface is as follows:
c5aa993b
JM
2819 User commands:
2820 overlay map <name> -- tell gdb to consider this section mapped
2821 overlay unmap <name> -- tell gdb to consider this section unmapped
2822 overlay list -- list the sections that GDB thinks are mapped
2823 overlay read-target -- get the target's state of what's mapped
2824 overlay off/manual/auto -- set overlay debugging state
2825 Functional interface:
2826 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2827 section, return that section.
5417f6dc 2828 find_pc_overlay(pc): find any overlay section that contains
c5aa993b 2829 the pc, either in its VMA or its LMA
714835d5 2830 section_is_mapped(sect): true if overlay is marked as mapped
c5aa993b
JM
2831 section_is_overlay(sect): true if section's VMA != LMA
2832 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2833 pc_in_unmapped_range(...): true if pc belongs to section's LMA
9ec8e6a0 2834 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
c5aa993b
JM
2835 overlay_mapped_address(...): map an address from section's LMA to VMA
2836 overlay_unmapped_address(...): map an address from section's VMA to LMA
2837 symbol_overlayed_address(...): Return a "current" address for symbol:
2838 either in VMA or LMA depending on whether
2839 the symbol's section is currently mapped
c906108c
SS
2840 */
2841
2842/* Overlay debugging state: */
2843
d874f1e2 2844enum overlay_debugging_state overlay_debugging = ovly_off;
c906108c
SS
2845int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2846
c906108c 2847/* Function: section_is_overlay (SECTION)
5417f6dc 2848 Returns true if SECTION has VMA not equal to LMA, ie.
c906108c
SS
2849 SECTION is loaded at an address different from where it will "run". */
2850
2851int
714835d5 2852section_is_overlay (struct obj_section *section)
c906108c 2853{
714835d5
UW
2854 if (overlay_debugging && section)
2855 {
2856 bfd *abfd = section->objfile->obfd;
2857 asection *bfd_section = section->the_bfd_section;
2858
2859 if (bfd_section_lma (abfd, bfd_section) != 0
2860 && bfd_section_lma (abfd, bfd_section)
2861 != bfd_section_vma (abfd, bfd_section))
2862 return 1;
2863 }
c906108c
SS
2864
2865 return 0;
2866}
2867
2868/* Function: overlay_invalidate_all (void)
2869 Invalidate the mapped state of all overlay sections (mark it as stale). */
2870
2871static void
fba45db2 2872overlay_invalidate_all (void)
c906108c 2873{
c5aa993b 2874 struct objfile *objfile;
c906108c
SS
2875 struct obj_section *sect;
2876
2877 ALL_OBJSECTIONS (objfile, sect)
714835d5
UW
2878 if (section_is_overlay (sect))
2879 sect->ovly_mapped = -1;
c906108c
SS
2880}
2881
714835d5 2882/* Function: section_is_mapped (SECTION)
5417f6dc 2883 Returns true if section is an overlay, and is currently mapped.
c906108c
SS
2884
2885 Access to the ovly_mapped flag is restricted to this function, so
2886 that we can do automatic update. If the global flag
2887 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2888 overlay_invalidate_all. If the mapped state of the particular
2889 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2890
714835d5
UW
2891int
2892section_is_mapped (struct obj_section *osect)
c906108c 2893{
9216df95
UW
2894 struct gdbarch *gdbarch;
2895
714835d5 2896 if (osect == 0 || !section_is_overlay (osect))
c906108c
SS
2897 return 0;
2898
c5aa993b 2899 switch (overlay_debugging)
c906108c
SS
2900 {
2901 default:
d874f1e2 2902 case ovly_off:
c5aa993b 2903 return 0; /* overlay debugging off */
d874f1e2 2904 case ovly_auto: /* overlay debugging automatic */
1c772458 2905 /* Unles there is a gdbarch_overlay_update function,
c5aa993b 2906 there's really nothing useful to do here (can't really go auto) */
9216df95
UW
2907 gdbarch = get_objfile_arch (osect->objfile);
2908 if (gdbarch_overlay_update_p (gdbarch))
c906108c
SS
2909 {
2910 if (overlay_cache_invalid)
2911 {
2912 overlay_invalidate_all ();
2913 overlay_cache_invalid = 0;
2914 }
2915 if (osect->ovly_mapped == -1)
9216df95 2916 gdbarch_overlay_update (gdbarch, osect);
c906108c
SS
2917 }
2918 /* fall thru to manual case */
d874f1e2 2919 case ovly_on: /* overlay debugging manual */
c906108c
SS
2920 return osect->ovly_mapped == 1;
2921 }
2922}
2923
c906108c
SS
2924/* Function: pc_in_unmapped_range
2925 If PC falls into the lma range of SECTION, return true, else false. */
2926
2927CORE_ADDR
714835d5 2928pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2929{
714835d5
UW
2930 if (section_is_overlay (section))
2931 {
2932 bfd *abfd = section->objfile->obfd;
2933 asection *bfd_section = section->the_bfd_section;
fbd35540 2934
714835d5
UW
2935 /* We assume the LMA is relocated by the same offset as the VMA. */
2936 bfd_vma size = bfd_get_section_size (bfd_section);
2937 CORE_ADDR offset = obj_section_offset (section);
2938
2939 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2940 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2941 return 1;
2942 }
c906108c 2943
c906108c
SS
2944 return 0;
2945}
2946
2947/* Function: pc_in_mapped_range
2948 If PC falls into the vma range of SECTION, return true, else false. */
2949
2950CORE_ADDR
714835d5 2951pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
c906108c 2952{
714835d5
UW
2953 if (section_is_overlay (section))
2954 {
2955 if (obj_section_addr (section) <= pc
2956 && pc < obj_section_endaddr (section))
2957 return 1;
2958 }
c906108c 2959
c906108c
SS
2960 return 0;
2961}
2962
9ec8e6a0
JB
2963
2964/* Return true if the mapped ranges of sections A and B overlap, false
2965 otherwise. */
b9362cc7 2966static int
714835d5 2967sections_overlap (struct obj_section *a, struct obj_section *b)
9ec8e6a0 2968{
714835d5
UW
2969 CORE_ADDR a_start = obj_section_addr (a);
2970 CORE_ADDR a_end = obj_section_endaddr (a);
2971 CORE_ADDR b_start = obj_section_addr (b);
2972 CORE_ADDR b_end = obj_section_endaddr (b);
9ec8e6a0
JB
2973
2974 return (a_start < b_end && b_start < a_end);
2975}
2976
c906108c
SS
2977/* Function: overlay_unmapped_address (PC, SECTION)
2978 Returns the address corresponding to PC in the unmapped (load) range.
2979 May be the same as PC. */
2980
2981CORE_ADDR
714835d5 2982overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 2983{
714835d5
UW
2984 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2985 {
2986 bfd *abfd = section->objfile->obfd;
2987 asection *bfd_section = section->the_bfd_section;
fbd35540 2988
714835d5
UW
2989 return pc + bfd_section_lma (abfd, bfd_section)
2990 - bfd_section_vma (abfd, bfd_section);
2991 }
c906108c
SS
2992
2993 return pc;
2994}
2995
2996/* Function: overlay_mapped_address (PC, SECTION)
2997 Returns the address corresponding to PC in the mapped (runtime) range.
2998 May be the same as PC. */
2999
3000CORE_ADDR
714835d5 3001overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
c906108c 3002{
714835d5
UW
3003 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3004 {
3005 bfd *abfd = section->objfile->obfd;
3006 asection *bfd_section = section->the_bfd_section;
fbd35540 3007
714835d5
UW
3008 return pc + bfd_section_vma (abfd, bfd_section)
3009 - bfd_section_lma (abfd, bfd_section);
3010 }
c906108c
SS
3011
3012 return pc;
3013}
3014
3015
5417f6dc 3016/* Function: symbol_overlayed_address
c906108c
SS
3017 Return one of two addresses (relative to the VMA or to the LMA),
3018 depending on whether the section is mapped or not. */
3019
c5aa993b 3020CORE_ADDR
714835d5 3021symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
c906108c
SS
3022{
3023 if (overlay_debugging)
3024 {
3025 /* If the symbol has no section, just return its regular address. */
3026 if (section == 0)
3027 return address;
3028 /* If the symbol's section is not an overlay, just return its address */
3029 if (!section_is_overlay (section))
3030 return address;
3031 /* If the symbol's section is mapped, just return its address */
3032 if (section_is_mapped (section))
3033 return address;
3034 /*
3035 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3036 * then return its LOADED address rather than its vma address!!
3037 */
3038 return overlay_unmapped_address (address, section);
3039 }
3040 return address;
3041}
3042
5417f6dc 3043/* Function: find_pc_overlay (PC)
c906108c
SS
3044 Return the best-match overlay section for PC:
3045 If PC matches a mapped overlay section's VMA, return that section.
3046 Else if PC matches an unmapped section's VMA, return that section.
3047 Else if PC matches an unmapped section's LMA, return that section. */
3048
714835d5 3049struct obj_section *
fba45db2 3050find_pc_overlay (CORE_ADDR pc)
c906108c 3051{
c5aa993b 3052 struct objfile *objfile;
c906108c
SS
3053 struct obj_section *osect, *best_match = NULL;
3054
3055 if (overlay_debugging)
3056 ALL_OBJSECTIONS (objfile, osect)
714835d5 3057 if (section_is_overlay (osect))
c5aa993b 3058 {
714835d5 3059 if (pc_in_mapped_range (pc, osect))
c5aa993b 3060 {
714835d5
UW
3061 if (section_is_mapped (osect))
3062 return osect;
c5aa993b
JM
3063 else
3064 best_match = osect;
3065 }
714835d5 3066 else if (pc_in_unmapped_range (pc, osect))
c5aa993b
JM
3067 best_match = osect;
3068 }
714835d5 3069 return best_match;
c906108c
SS
3070}
3071
3072/* Function: find_pc_mapped_section (PC)
5417f6dc 3073 If PC falls into the VMA address range of an overlay section that is
c906108c
SS
3074 currently marked as MAPPED, return that section. Else return NULL. */
3075
714835d5 3076struct obj_section *
fba45db2 3077find_pc_mapped_section (CORE_ADDR pc)
c906108c 3078{
c5aa993b 3079 struct objfile *objfile;
c906108c
SS
3080 struct obj_section *osect;
3081
3082 if (overlay_debugging)
3083 ALL_OBJSECTIONS (objfile, osect)
714835d5
UW
3084 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3085 return osect;
c906108c
SS
3086
3087 return NULL;
3088}
3089
3090/* Function: list_overlays_command
3091 Print a list of mapped sections and their PC ranges */
3092
3093void
fba45db2 3094list_overlays_command (char *args, int from_tty)
c906108c 3095{
c5aa993b
JM
3096 int nmapped = 0;
3097 struct objfile *objfile;
c906108c
SS
3098 struct obj_section *osect;
3099
3100 if (overlay_debugging)
3101 ALL_OBJSECTIONS (objfile, osect)
714835d5 3102 if (section_is_mapped (osect))
c5aa993b 3103 {
5af949e3 3104 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c5aa993b
JM
3105 const char *name;
3106 bfd_vma lma, vma;
3107 int size;
3108
3109 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3110 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2c500098 3111 size = bfd_get_section_size (osect->the_bfd_section);
c5aa993b
JM
3112 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3113
3114 printf_filtered ("Section %s, loaded at ", name);
5af949e3 3115 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
c5aa993b 3116 puts_filtered (" - ");
5af949e3 3117 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
c5aa993b 3118 printf_filtered (", mapped at ");
5af949e3 3119 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
c5aa993b 3120 puts_filtered (" - ");
5af949e3 3121 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
c5aa993b
JM
3122 puts_filtered ("\n");
3123
3124 nmapped++;
3125 }
c906108c 3126 if (nmapped == 0)
a3f17187 3127 printf_filtered (_("No sections are mapped.\n"));
c906108c
SS
3128}
3129
3130/* Function: map_overlay_command
3131 Mark the named section as mapped (ie. residing at its VMA address). */
3132
3133void
fba45db2 3134map_overlay_command (char *args, int from_tty)
c906108c 3135{
c5aa993b
JM
3136 struct objfile *objfile, *objfile2;
3137 struct obj_section *sec, *sec2;
c906108c
SS
3138
3139 if (!overlay_debugging)
8a3fe4f8 3140 error (_("\
515ad16c 3141Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3142the 'overlay manual' command."));
c906108c
SS
3143
3144 if (args == 0 || *args == 0)
8a3fe4f8 3145 error (_("Argument required: name of an overlay section"));
c906108c
SS
3146
3147 /* First, find a section matching the user supplied argument */
3148 ALL_OBJSECTIONS (objfile, sec)
3149 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3150 {
3151 /* Now, check to see if the section is an overlay. */
714835d5 3152 if (!section_is_overlay (sec))
c5aa993b
JM
3153 continue; /* not an overlay section */
3154
3155 /* Mark the overlay as "mapped" */
3156 sec->ovly_mapped = 1;
3157
3158 /* Next, make a pass and unmap any sections that are
3159 overlapped by this new section: */
3160 ALL_OBJSECTIONS (objfile2, sec2)
714835d5 3161 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
c5aa993b
JM
3162 {
3163 if (info_verbose)
a3f17187 3164 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
c5aa993b
JM
3165 bfd_section_name (objfile->obfd,
3166 sec2->the_bfd_section));
3167 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3168 }
3169 return;
3170 }
8a3fe4f8 3171 error (_("No overlay section called %s"), args);
c906108c
SS
3172}
3173
3174/* Function: unmap_overlay_command
5417f6dc 3175 Mark the overlay section as unmapped
c906108c
SS
3176 (ie. resident in its LMA address range, rather than the VMA range). */
3177
3178void
fba45db2 3179unmap_overlay_command (char *args, int from_tty)
c906108c 3180{
c5aa993b 3181 struct objfile *objfile;
c906108c
SS
3182 struct obj_section *sec;
3183
3184 if (!overlay_debugging)
8a3fe4f8 3185 error (_("\
515ad16c 3186Overlay debugging not enabled. Use either the 'overlay auto' or\n\
8a3fe4f8 3187the 'overlay manual' command."));
c906108c
SS
3188
3189 if (args == 0 || *args == 0)
8a3fe4f8 3190 error (_("Argument required: name of an overlay section"));
c906108c
SS
3191
3192 /* First, find a section matching the user supplied argument */
3193 ALL_OBJSECTIONS (objfile, sec)
3194 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
c5aa993b
JM
3195 {
3196 if (!sec->ovly_mapped)
8a3fe4f8 3197 error (_("Section %s is not mapped"), args);
c5aa993b
JM
3198 sec->ovly_mapped = 0;
3199 return;
3200 }
8a3fe4f8 3201 error (_("No overlay section called %s"), args);
c906108c
SS
3202}
3203
3204/* Function: overlay_auto_command
3205 A utility command to turn on overlay debugging.
3206 Possibly this should be done via a set/show command. */
3207
3208static void
fba45db2 3209overlay_auto_command (char *args, int from_tty)
c906108c 3210{
d874f1e2 3211 overlay_debugging = ovly_auto;
1900040c 3212 enable_overlay_breakpoints ();
c906108c 3213 if (info_verbose)
a3f17187 3214 printf_unfiltered (_("Automatic overlay debugging enabled."));
c906108c
SS
3215}
3216
3217/* Function: overlay_manual_command
3218 A utility command to turn on overlay debugging.
3219 Possibly this should be done via a set/show command. */
3220
3221static void
fba45db2 3222overlay_manual_command (char *args, int from_tty)
c906108c 3223{
d874f1e2 3224 overlay_debugging = ovly_on;
1900040c 3225 disable_overlay_breakpoints ();
c906108c 3226 if (info_verbose)
a3f17187 3227 printf_unfiltered (_("Overlay debugging enabled."));
c906108c
SS
3228}
3229
3230/* Function: overlay_off_command
3231 A utility command to turn on overlay debugging.
3232 Possibly this should be done via a set/show command. */
3233
3234static void
fba45db2 3235overlay_off_command (char *args, int from_tty)
c906108c 3236{
d874f1e2 3237 overlay_debugging = ovly_off;
1900040c 3238 disable_overlay_breakpoints ();
c906108c 3239 if (info_verbose)
a3f17187 3240 printf_unfiltered (_("Overlay debugging disabled."));
c906108c
SS
3241}
3242
3243static void
fba45db2 3244overlay_load_command (char *args, int from_tty)
c906108c 3245{
e17c207e
UW
3246 struct gdbarch *gdbarch = get_current_arch ();
3247
3248 if (gdbarch_overlay_update_p (gdbarch))
3249 gdbarch_overlay_update (gdbarch, NULL);
c906108c 3250 else
8a3fe4f8 3251 error (_("This target does not know how to read its overlay state."));
c906108c
SS
3252}
3253
3254/* Function: overlay_command
3255 A place-holder for a mis-typed command */
3256
3257/* Command list chain containing all defined "overlay" subcommands. */
3258struct cmd_list_element *overlaylist;
3259
3260static void
fba45db2 3261overlay_command (char *args, int from_tty)
c906108c 3262{
c5aa993b 3263 printf_unfiltered
c906108c
SS
3264 ("\"overlay\" must be followed by the name of an overlay command.\n");
3265 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3266}
3267
3268
3269/* Target Overlays for the "Simplest" overlay manager:
3270
5417f6dc
RM
3271 This is GDB's default target overlay layer. It works with the
3272 minimal overlay manager supplied as an example by Cygnus. The
1c772458 3273 entry point is via a function pointer "gdbarch_overlay_update",
5417f6dc 3274 so targets that use a different runtime overlay manager can
c906108c
SS
3275 substitute their own overlay_update function and take over the
3276 function pointer.
3277
3278 The overlay_update function pokes around in the target's data structures
3279 to see what overlays are mapped, and updates GDB's overlay mapping with
3280 this information.
3281
3282 In this simple implementation, the target data structures are as follows:
c5aa993b
JM
3283 unsigned _novlys; /# number of overlay sections #/
3284 unsigned _ovly_table[_novlys][4] = {
3285 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3286 {..., ..., ..., ...},
3287 }
3288 unsigned _novly_regions; /# number of overlay regions #/
3289 unsigned _ovly_region_table[_novly_regions][3] = {
3290 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3291 {..., ..., ...},
3292 }
c906108c
SS
3293 These functions will attempt to update GDB's mappedness state in the
3294 symbol section table, based on the target's mappedness state.
3295
3296 To do this, we keep a cached copy of the target's _ovly_table, and
3297 attempt to detect when the cached copy is invalidated. The main
3298 entry point is "simple_overlay_update(SECT), which looks up SECT in
3299 the cached table and re-reads only the entry for that section from
3300 the target (whenever possible).
3301 */
3302
3303/* Cached, dynamically allocated copies of the target data structures: */
c5aa993b 3304static unsigned (*cache_ovly_table)[4] = 0;
c906108c 3305#if 0
c5aa993b 3306static unsigned (*cache_ovly_region_table)[3] = 0;
c906108c 3307#endif
c5aa993b 3308static unsigned cache_novlys = 0;
c906108c 3309#if 0
c5aa993b 3310static unsigned cache_novly_regions = 0;
c906108c
SS
3311#endif
3312static CORE_ADDR cache_ovly_table_base = 0;
3313#if 0
3314static CORE_ADDR cache_ovly_region_table_base = 0;
3315#endif
c5aa993b
JM
3316enum ovly_index
3317 {
3318 VMA, SIZE, LMA, MAPPED
3319 };
c906108c
SS
3320
3321/* Throw away the cached copy of _ovly_table */
3322static void
fba45db2 3323simple_free_overlay_table (void)
c906108c
SS
3324{
3325 if (cache_ovly_table)
b8c9b27d 3326 xfree (cache_ovly_table);
c5aa993b 3327 cache_novlys = 0;
c906108c
SS
3328 cache_ovly_table = NULL;
3329 cache_ovly_table_base = 0;
3330}
3331
3332#if 0
3333/* Throw away the cached copy of _ovly_region_table */
3334static void
fba45db2 3335simple_free_overlay_region_table (void)
c906108c
SS
3336{
3337 if (cache_ovly_region_table)
b8c9b27d 3338 xfree (cache_ovly_region_table);
c5aa993b 3339 cache_novly_regions = 0;
c906108c
SS
3340 cache_ovly_region_table = NULL;
3341 cache_ovly_region_table_base = 0;
3342}
3343#endif
3344
9216df95 3345/* Read an array of ints of size SIZE from the target into a local buffer.
c906108c
SS
3346 Convert to host order. int LEN is number of ints */
3347static void
9216df95 3348read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
e17a4113 3349 int len, int size, enum bfd_endian byte_order)
c906108c 3350{
34c0bd93 3351 /* FIXME (alloca): Not safe if array is very large. */
9216df95 3352 gdb_byte *buf = alloca (len * size);
c5aa993b 3353 int i;
c906108c 3354
9216df95 3355 read_memory (memaddr, buf, len * size);
c906108c 3356 for (i = 0; i < len; i++)
e17a4113 3357 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
c906108c
SS
3358}
3359
3360/* Find and grab a copy of the target _ovly_table
3361 (and _novlys, which is needed for the table's size) */
c5aa993b 3362static int
fba45db2 3363simple_read_overlay_table (void)
c906108c 3364{
0d43edd1 3365 struct minimal_symbol *novlys_msym, *ovly_table_msym;
9216df95
UW
3366 struct gdbarch *gdbarch;
3367 int word_size;
e17a4113 3368 enum bfd_endian byte_order;
c906108c
SS
3369
3370 simple_free_overlay_table ();
9b27852e 3371 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
0d43edd1 3372 if (! novlys_msym)
c906108c 3373 {
8a3fe4f8 3374 error (_("Error reading inferior's overlay table: "
0d43edd1 3375 "couldn't find `_novlys' variable\n"
8a3fe4f8 3376 "in inferior. Use `overlay manual' mode."));
0d43edd1 3377 return 0;
c906108c 3378 }
0d43edd1 3379
9b27852e 3380 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
0d43edd1
JB
3381 if (! ovly_table_msym)
3382 {
8a3fe4f8 3383 error (_("Error reading inferior's overlay table: couldn't find "
0d43edd1 3384 "`_ovly_table' array\n"
8a3fe4f8 3385 "in inferior. Use `overlay manual' mode."));
0d43edd1
JB
3386 return 0;
3387 }
3388
9216df95
UW
3389 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3390 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3391 byte_order = gdbarch_byte_order (gdbarch);
9216df95 3392
e17a4113
UW
3393 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3394 4, byte_order);
0d43edd1
JB
3395 cache_ovly_table
3396 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3397 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3398 read_target_long_array (cache_ovly_table_base,
777ea8f1 3399 (unsigned int *) cache_ovly_table,
e17a4113 3400 cache_novlys * 4, word_size, byte_order);
0d43edd1 3401
c5aa993b 3402 return 1; /* SUCCESS */
c906108c
SS
3403}
3404
3405#if 0
3406/* Find and grab a copy of the target _ovly_region_table
3407 (and _novly_regions, which is needed for the table's size) */
c5aa993b 3408static int
fba45db2 3409simple_read_overlay_region_table (void)
c906108c
SS
3410{
3411 struct minimal_symbol *msym;
e17a4113
UW
3412 struct gdbarch *gdbarch;
3413 int word_size;
3414 enum bfd_endian byte_order;
c906108c
SS
3415
3416 simple_free_overlay_region_table ();
9b27852e 3417 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
e17a4113 3418 if (msym == NULL)
c5aa993b 3419 return 0; /* failure */
e17a4113
UW
3420
3421 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3422 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3423 byte_order = gdbarch_byte_order (gdbarch);
3424
3425 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3426 4, byte_order);
3427
c906108c
SS
3428 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3429 if (cache_ovly_region_table != NULL)
3430 {
9b27852e 3431 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
c906108c
SS
3432 if (msym != NULL)
3433 {
3434 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
c5aa993b 3435 read_target_long_array (cache_ovly_region_table_base,
777ea8f1 3436 (unsigned int *) cache_ovly_region_table,
e17a4113
UW
3437 cache_novly_regions * 3,
3438 word_size, byte_order);
c906108c 3439 }
c5aa993b
JM
3440 else
3441 return 0; /* failure */
c906108c 3442 }
c5aa993b
JM
3443 else
3444 return 0; /* failure */
3445 return 1; /* SUCCESS */
c906108c
SS
3446}
3447#endif
3448
5417f6dc 3449/* Function: simple_overlay_update_1
c906108c
SS
3450 A helper function for simple_overlay_update. Assuming a cached copy
3451 of _ovly_table exists, look through it to find an entry whose vma,
3452 lma and size match those of OSECT. Re-read the entry and make sure
3453 it still matches OSECT (else the table may no longer be valid).
3454 Set OSECT's mapped state to match the entry. Return: 1 for
3455 success, 0 for failure. */
3456
3457static int
fba45db2 3458simple_overlay_update_1 (struct obj_section *osect)
c906108c
SS
3459{
3460 int i, size;
fbd35540
MS
3461 bfd *obfd = osect->objfile->obfd;
3462 asection *bsect = osect->the_bfd_section;
9216df95
UW
3463 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3464 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
e17a4113 3465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 3466
2c500098 3467 size = bfd_get_section_size (osect->the_bfd_section);
c906108c 3468 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3469 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3470 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3471 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c 3472 {
9216df95
UW
3473 read_target_long_array (cache_ovly_table_base + i * word_size,
3474 (unsigned int *) cache_ovly_table[i],
e17a4113 3475 4, word_size, byte_order);
fbd35540
MS
3476 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3477 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3478 /* && cache_ovly_table[i][SIZE] == size */ )
c906108c
SS
3479 {
3480 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3481 return 1;
3482 }
fbd35540 3483 else /* Warning! Warning! Target's ovly table has changed! */
c906108c
SS
3484 return 0;
3485 }
3486 return 0;
3487}
3488
3489/* Function: simple_overlay_update
5417f6dc
RM
3490 If OSECT is NULL, then update all sections' mapped state
3491 (after re-reading the entire target _ovly_table).
3492 If OSECT is non-NULL, then try to find a matching entry in the
c906108c 3493 cached ovly_table and update only OSECT's mapped state.
5417f6dc 3494 If a cached entry can't be found or the cache isn't valid, then
c906108c
SS
3495 re-read the entire cache, and go ahead and update all sections. */
3496
1c772458 3497void
fba45db2 3498simple_overlay_update (struct obj_section *osect)
c906108c 3499{
c5aa993b 3500 struct objfile *objfile;
c906108c
SS
3501
3502 /* Were we given an osect to look up? NULL means do all of them. */
3503 if (osect)
3504 /* Have we got a cached copy of the target's overlay table? */
3505 if (cache_ovly_table != NULL)
3506 /* Does its cached location match what's currently in the symtab? */
c5aa993b 3507 if (cache_ovly_table_base ==
9b27852e 3508 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
c906108c
SS
3509 /* Then go ahead and try to look up this single section in the cache */
3510 if (simple_overlay_update_1 (osect))
3511 /* Found it! We're done. */
3512 return;
3513
3514 /* Cached table no good: need to read the entire table anew.
3515 Or else we want all the sections, in which case it's actually
3516 more efficient to read the whole table in one block anyway. */
3517
0d43edd1
JB
3518 if (! simple_read_overlay_table ())
3519 return;
3520
c906108c
SS
3521 /* Now may as well update all sections, even if only one was requested. */
3522 ALL_OBJSECTIONS (objfile, osect)
714835d5 3523 if (section_is_overlay (osect))
c5aa993b
JM
3524 {
3525 int i, size;
fbd35540
MS
3526 bfd *obfd = osect->objfile->obfd;
3527 asection *bsect = osect->the_bfd_section;
c5aa993b 3528
2c500098 3529 size = bfd_get_section_size (bsect);
c5aa993b 3530 for (i = 0; i < cache_novlys; i++)
fbd35540
MS
3531 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3532 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3533 /* && cache_ovly_table[i][SIZE] == size */ )
3534 { /* obj_section matches i'th entry in ovly_table */
c5aa993b
JM
3535 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3536 break; /* finished with inner for loop: break out */
3537 }
3538 }
c906108c
SS
3539}
3540
086df311
DJ
3541/* Set the output sections and output offsets for section SECTP in
3542 ABFD. The relocation code in BFD will read these offsets, so we
3543 need to be sure they're initialized. We map each section to itself,
3544 with no offset; this means that SECTP->vma will be honored. */
3545
3546static void
3547symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3548{
3549 sectp->output_section = sectp;
3550 sectp->output_offset = 0;
3551}
3552
ac8035ab
TG
3553/* Default implementation for sym_relocate. */
3554
3555
3556bfd_byte *
3557default_symfile_relocate (struct objfile *objfile, asection *sectp,
3558 bfd_byte *buf)
3559{
3560 bfd *abfd = objfile->obfd;
3561
3562 /* We're only interested in sections with relocation
3563 information. */
3564 if ((sectp->flags & SEC_RELOC) == 0)
3565 return NULL;
3566
3567 /* We will handle section offsets properly elsewhere, so relocate as if
3568 all sections begin at 0. */
3569 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3570
3571 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3572}
3573
086df311
DJ
3574/* Relocate the contents of a debug section SECTP in ABFD. The
3575 contents are stored in BUF if it is non-NULL, or returned in a
3576 malloc'd buffer otherwise.
3577
3578 For some platforms and debug info formats, shared libraries contain
3579 relocations against the debug sections (particularly for DWARF-2;
3580 one affected platform is PowerPC GNU/Linux, although it depends on
3581 the version of the linker in use). Also, ELF object files naturally
3582 have unresolved relocations for their debug sections. We need to apply
065a2c74
PA
3583 the relocations in order to get the locations of symbols correct.
3584 Another example that may require relocation processing, is the
3585 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3586 debug section. */
086df311
DJ
3587
3588bfd_byte *
ac8035ab
TG
3589symfile_relocate_debug_section (struct objfile *objfile,
3590 asection *sectp, bfd_byte *buf)
086df311 3591{
ac8035ab 3592 gdb_assert (objfile->sf->sym_relocate);
086df311 3593
ac8035ab 3594 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
086df311 3595}
c906108c 3596
31d99776
DJ
3597struct symfile_segment_data *
3598get_symfile_segment_data (bfd *abfd)
3599{
00b5771c 3600 const struct sym_fns *sf = find_sym_fns (abfd);
31d99776
DJ
3601
3602 if (sf == NULL)
3603 return NULL;
3604
3605 return sf->sym_segments (abfd);
3606}
3607
3608void
3609free_symfile_segment_data (struct symfile_segment_data *data)
3610{
3611 xfree (data->segment_bases);
3612 xfree (data->segment_sizes);
3613 xfree (data->segment_info);
3614 xfree (data);
3615}
3616
28c32713
JB
3617
3618/* Given:
3619 - DATA, containing segment addresses from the object file ABFD, and
3620 the mapping from ABFD's sections onto the segments that own them,
3621 and
3622 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3623 segment addresses reported by the target,
3624 store the appropriate offsets for each section in OFFSETS.
3625
3626 If there are fewer entries in SEGMENT_BASES than there are segments
3627 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3628
8d385431
DJ
3629 If there are more entries, then ignore the extra. The target may
3630 not be able to distinguish between an empty data segment and a
3631 missing data segment; a missing text segment is less plausible. */
31d99776
DJ
3632int
3633symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3634 struct section_offsets *offsets,
3635 int num_segment_bases,
3636 const CORE_ADDR *segment_bases)
3637{
3638 int i;
3639 asection *sect;
3640
28c32713
JB
3641 /* It doesn't make sense to call this function unless you have some
3642 segment base addresses. */
202b96c1 3643 gdb_assert (num_segment_bases > 0);
28c32713 3644
31d99776
DJ
3645 /* If we do not have segment mappings for the object file, we
3646 can not relocate it by segments. */
3647 gdb_assert (data != NULL);
3648 gdb_assert (data->num_segments > 0);
3649
31d99776
DJ
3650 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3651 {
31d99776
DJ
3652 int which = data->segment_info[i];
3653
28c32713
JB
3654 gdb_assert (0 <= which && which <= data->num_segments);
3655
3656 /* Don't bother computing offsets for sections that aren't
3657 loaded as part of any segment. */
3658 if (! which)
3659 continue;
3660
3661 /* Use the last SEGMENT_BASES entry as the address of any extra
3662 segments mentioned in DATA->segment_info. */
31d99776 3663 if (which > num_segment_bases)
28c32713 3664 which = num_segment_bases;
31d99776 3665
28c32713
JB
3666 offsets->offsets[i] = (segment_bases[which - 1]
3667 - data->segment_bases[which - 1]);
31d99776
DJ
3668 }
3669
3670 return 1;
3671}
3672
3673static void
3674symfile_find_segment_sections (struct objfile *objfile)
3675{
3676 bfd *abfd = objfile->obfd;
3677 int i;
3678 asection *sect;
3679 struct symfile_segment_data *data;
3680
3681 data = get_symfile_segment_data (objfile->obfd);
3682 if (data == NULL)
3683 return;
3684
3685 if (data->num_segments != 1 && data->num_segments != 2)
3686 {
3687 free_symfile_segment_data (data);
3688 return;
3689 }
3690
3691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3692 {
31d99776
DJ
3693 int which = data->segment_info[i];
3694
3695 if (which == 1)
3696 {
3697 if (objfile->sect_index_text == -1)
3698 objfile->sect_index_text = sect->index;
3699
3700 if (objfile->sect_index_rodata == -1)
3701 objfile->sect_index_rodata = sect->index;
3702 }
3703 else if (which == 2)
3704 {
3705 if (objfile->sect_index_data == -1)
3706 objfile->sect_index_data = sect->index;
3707
3708 if (objfile->sect_index_bss == -1)
3709 objfile->sect_index_bss = sect->index;
3710 }
3711 }
3712
3713 free_symfile_segment_data (data);
3714}
3715
c906108c 3716void
fba45db2 3717_initialize_symfile (void)
c906108c
SS
3718{
3719 struct cmd_list_element *c;
c5aa993b 3720
1a966eab
AC
3721 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3722Load symbol table from executable file FILE.\n\
c906108c 3723The `file' command can also load symbol tables, as well as setting the file\n\
1a966eab 3724to execute."), &cmdlist);
5ba2abeb 3725 set_cmd_completer (c, filename_completer);
c906108c 3726
1a966eab 3727 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
5b96932b 3728Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
1a966eab 3729Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
2acceee2 3730ADDR is the starting address of the file's text.\n\
db162d44
EZ
3731The optional arguments are section-name section-address pairs and\n\
3732should be specified if the data and bss segments are not contiguous\n\
1a966eab 3733with the text. SECT is a section name to be loaded at SECT_ADDR."),
c906108c 3734 &cmdlist);
5ba2abeb 3735 set_cmd_completer (c, filename_completer);
c906108c 3736
1a966eab
AC
3737 c = add_cmd ("load", class_files, load_command, _("\
3738Dynamically load FILE into the running program, and record its symbols\n\
1986bccd
AS
3739for access from GDB.\n\
3740A load OFFSET may also be given."), &cmdlist);
5ba2abeb 3741 set_cmd_completer (c, filename_completer);
c906108c 3742
5bf193a2
AC
3743 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3744 &symbol_reloading, _("\
3745Set dynamic symbol table reloading multiple times in one run."), _("\
3746Show dynamic symbol table reloading multiple times in one run."), NULL,
3747 NULL,
920d2a44 3748 show_symbol_reloading,
5bf193a2 3749 &setlist, &showlist);
c906108c 3750
c5aa993b 3751 add_prefix_cmd ("overlay", class_support, overlay_command,
1bedd215 3752 _("Commands for debugging overlays."), &overlaylist,
c906108c
SS
3753 "overlay ", 0, &cmdlist);
3754
3755 add_com_alias ("ovly", "overlay", class_alias, 1);
3756 add_com_alias ("ov", "overlay", class_alias, 1);
3757
c5aa993b 3758 add_cmd ("map-overlay", class_support, map_overlay_command,
1a966eab 3759 _("Assert that an overlay section is mapped."), &overlaylist);
c906108c 3760
c5aa993b 3761 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
1a966eab 3762 _("Assert that an overlay section is unmapped."), &overlaylist);
c906108c 3763
c5aa993b 3764 add_cmd ("list-overlays", class_support, list_overlays_command,
1a966eab 3765 _("List mappings of overlay sections."), &overlaylist);
c906108c 3766
c5aa993b 3767 add_cmd ("manual", class_support, overlay_manual_command,
1a966eab 3768 _("Enable overlay debugging."), &overlaylist);
c5aa993b 3769 add_cmd ("off", class_support, overlay_off_command,
1a966eab 3770 _("Disable overlay debugging."), &overlaylist);
c5aa993b 3771 add_cmd ("auto", class_support, overlay_auto_command,
1a966eab 3772 _("Enable automatic overlay debugging."), &overlaylist);
c5aa993b 3773 add_cmd ("load-target", class_support, overlay_load_command,
1a966eab 3774 _("Read the overlay mapping state from the target."), &overlaylist);
c906108c
SS
3775
3776 /* Filename extension to source language lookup table: */
3777 init_filename_language_table ();
26c41df3
AC
3778 add_setshow_string_noescape_cmd ("extension-language", class_files,
3779 &ext_args, _("\
3780Set mapping between filename extension and source language."), _("\
3781Show mapping between filename extension and source language."), _("\
3782Usage: set extension-language .foo bar"),
3783 set_ext_lang_command,
920d2a44 3784 show_ext_args,
26c41df3 3785 &setlist, &showlist);
c906108c 3786
c5aa993b 3787 add_info ("extensions", info_ext_lang_command,
1bedd215 3788 _("All filename extensions associated with a source language."));
917317f4 3789
525226b5
AC
3790 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3791 &debug_file_directory, _("\
24ddea62
JK
3792Set the directories where separate debug symbols are searched for."), _("\
3793Show the directories where separate debug symbols are searched for."), _("\
525226b5
AC
3794Separate debug symbols are first searched for in the same\n\
3795directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3796and lastly at the path of the directory of the binary with\n\
24ddea62 3797each global debug-file-directory component prepended."),
525226b5 3798 NULL,
920d2a44 3799 show_debug_file_directory,
525226b5 3800 &setlist, &showlist);
c906108c 3801}
This page took 1.291354 seconds and 4 git commands to generate.