Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
197e01b6 | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
b368761e | 4 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 |
083ae935 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 2 of the License, or | |
12 | (at your option) any later version. | |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b JM |
19 | You should have received a copy of the GNU General Public License |
20 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
21 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
22 | Boston, MA 02110-1301, USA. */ | |
c906108c SS |
23 | |
24 | #include "defs.h" | |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "gdbcore.h" | |
28 | #include "frame.h" | |
29 | #include "target.h" | |
30 | #include "value.h" | |
31 | #include "symfile.h" | |
32 | #include "objfiles.h" | |
33 | #include "gdbcmd.h" | |
34 | #include "call-cmds.h" | |
88987551 | 35 | #include "gdb_regex.h" |
c906108c SS |
36 | #include "expression.h" |
37 | #include "language.h" | |
38 | #include "demangle.h" | |
39 | #include "inferior.h" | |
c5f0f3d0 | 40 | #include "linespec.h" |
0378c332 | 41 | #include "source.h" |
a7fdf62f | 42 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 43 | #include "objc-lang.h" |
1f8173e6 | 44 | #include "ada-lang.h" |
c906108c | 45 | |
2de7ced7 DJ |
46 | #include "hashtab.h" |
47 | ||
04ea0df1 | 48 | #include "gdb_obstack.h" |
fe898f56 | 49 | #include "block.h" |
de4f826b | 50 | #include "dictionary.h" |
c906108c SS |
51 | |
52 | #include <sys/types.h> | |
53 | #include <fcntl.h> | |
54 | #include "gdb_string.h" | |
55 | #include "gdb_stat.h" | |
56 | #include <ctype.h> | |
015a42b4 | 57 | #include "cp-abi.h" |
ea53e89f | 58 | #include "observer.h" |
c906108c | 59 | |
c906108c SS |
60 | /* Prototypes for local functions */ |
61 | ||
a14ed312 | 62 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 63 | |
a14ed312 | 64 | static void rbreak_command (char *, int); |
c906108c | 65 | |
a14ed312 | 66 | static void types_info (char *, int); |
c906108c | 67 | |
a14ed312 | 68 | static void functions_info (char *, int); |
c906108c | 69 | |
a14ed312 | 70 | static void variables_info (char *, int); |
c906108c | 71 | |
a14ed312 | 72 | static void sources_info (char *, int); |
c906108c | 73 | |
d092d1a2 | 74 | static void output_source_filename (const char *, int *); |
c906108c | 75 | |
a14ed312 | 76 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 77 | |
50641945 FN |
78 | /* This one is used by linespec.c */ |
79 | ||
80 | char *operator_chars (char *p, char **end); | |
81 | ||
3121eff0 | 82 | static struct symbol *lookup_symbol_aux (const char *name, |
5ad1c190 | 83 | const char *linkage_name, |
3121eff0 | 84 | const struct block *block, |
176620f1 | 85 | const domain_enum domain, |
3121eff0 DJ |
86 | int *is_a_field_of_this, |
87 | struct symtab **symtab); | |
fba7f19c | 88 | |
e4051eeb DC |
89 | static |
90 | struct symbol *lookup_symbol_aux_local (const char *name, | |
5ad1c190 | 91 | const char *linkage_name, |
e4051eeb | 92 | const struct block *block, |
176620f1 | 93 | const domain_enum domain, |
89a9d1b1 | 94 | struct symtab **symtab); |
8155455b DC |
95 | |
96 | static | |
97 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
98 | const char *name, | |
5ad1c190 | 99 | const char *linkage_name, |
176620f1 | 100 | const domain_enum domain, |
8155455b DC |
101 | struct symtab **symtab); |
102 | ||
103 | static | |
104 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, | |
105 | const char *name, | |
5ad1c190 | 106 | const char *linkage_name, |
176620f1 | 107 | const domain_enum domain, |
8155455b | 108 | struct symtab **symtab); |
fba7f19c | 109 | |
ae2f03ac | 110 | #if 0 |
406bc4de DC |
111 | static |
112 | struct symbol *lookup_symbol_aux_minsyms (const char *name, | |
5ad1c190 | 113 | const char *linkage_name, |
176620f1 | 114 | const domain_enum domain, |
406bc4de | 115 | int *is_a_field_of_this, |
e45febe2 | 116 | struct symtab **symtab); |
ae2f03ac | 117 | #endif |
406bc4de | 118 | |
f83f82bc AC |
119 | /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c. |
120 | Signals the presence of objects compiled by HP compilers. */ | |
121 | int deprecated_hp_som_som_object_present = 0; | |
c906108c | 122 | |
a14ed312 | 123 | static void fixup_section (struct general_symbol_info *, struct objfile *); |
c906108c | 124 | |
a14ed312 | 125 | static int file_matches (char *, char **, int); |
c906108c | 126 | |
176620f1 | 127 | static void print_symbol_info (domain_enum, |
a14ed312 | 128 | struct symtab *, struct symbol *, int, char *); |
c906108c | 129 | |
a14ed312 | 130 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 131 | |
176620f1 | 132 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 133 | |
a14ed312 | 134 | void _initialize_symtab (void); |
c906108c SS |
135 | |
136 | /* */ | |
137 | ||
138 | /* The single non-language-specific builtin type */ | |
139 | struct type *builtin_type_error; | |
140 | ||
141 | /* Block in which the most recently searched-for symbol was found. | |
142 | Might be better to make this a parameter to lookup_symbol and | |
143 | value_of_this. */ | |
144 | ||
145 | const struct block *block_found; | |
146 | ||
c906108c SS |
147 | /* Check for a symtab of a specific name; first in symtabs, then in |
148 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
149 | in the symtab filename will also work. */ | |
150 | ||
1b15f1fa TT |
151 | struct symtab * |
152 | lookup_symtab (const char *name) | |
c906108c | 153 | { |
52f0bd74 AC |
154 | struct symtab *s; |
155 | struct partial_symtab *ps; | |
156 | struct objfile *objfile; | |
58d370e0 | 157 | char *real_path = NULL; |
f079a2e5 | 158 | char *full_path = NULL; |
58d370e0 TT |
159 | |
160 | /* Here we are interested in canonicalizing an absolute path, not | |
161 | absolutizing a relative path. */ | |
162 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
163 | { |
164 | full_path = xfullpath (name); | |
165 | make_cleanup (xfree, full_path); | |
166 | real_path = gdb_realpath (name); | |
167 | make_cleanup (xfree, real_path); | |
168 | } | |
c906108c | 169 | |
c5aa993b | 170 | got_symtab: |
c906108c SS |
171 | |
172 | /* First, search for an exact match */ | |
173 | ||
174 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 175 | { |
a7fdf62f | 176 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 177 | { |
58d370e0 TT |
178 | return s; |
179 | } | |
f079a2e5 | 180 | |
58d370e0 TT |
181 | /* If the user gave us an absolute path, try to find the file in |
182 | this symtab and use its absolute path. */ | |
f079a2e5 JB |
183 | |
184 | if (full_path != NULL) | |
185 | { | |
09bcec80 BR |
186 | const char *fp = symtab_to_fullname (s); |
187 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) | |
188 | { | |
189 | return s; | |
190 | } | |
f079a2e5 JB |
191 | } |
192 | ||
58d370e0 TT |
193 | if (real_path != NULL) |
194 | { | |
09bcec80 BR |
195 | char *fullname = symtab_to_fullname (s); |
196 | if (fullname != NULL) | |
197 | { | |
198 | char *rp = gdb_realpath (fullname); | |
199 | make_cleanup (xfree, rp); | |
200 | if (FILENAME_CMP (real_path, rp) == 0) | |
201 | { | |
202 | return s; | |
203 | } | |
204 | } | |
58d370e0 TT |
205 | } |
206 | } | |
207 | ||
c906108c SS |
208 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
209 | ||
caadab2c | 210 | if (lbasename (name) == name) |
c906108c | 211 | ALL_SYMTABS (objfile, s) |
c5aa993b | 212 | { |
31889e00 | 213 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
214 | return s; |
215 | } | |
c906108c SS |
216 | |
217 | /* Same search rules as above apply here, but now we look thru the | |
218 | psymtabs. */ | |
219 | ||
220 | ps = lookup_partial_symtab (name); | |
221 | if (!ps) | |
222 | return (NULL); | |
223 | ||
c5aa993b | 224 | if (ps->readin) |
8a3fe4f8 | 225 | error (_("Internal: readin %s pst for `%s' found when no symtab found."), |
c5aa993b | 226 | ps->filename, name); |
c906108c SS |
227 | |
228 | s = PSYMTAB_TO_SYMTAB (ps); | |
229 | ||
230 | if (s) | |
231 | return s; | |
232 | ||
233 | /* At this point, we have located the psymtab for this file, but | |
234 | the conversion to a symtab has failed. This usually happens | |
235 | when we are looking up an include file. In this case, | |
236 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
237 | been created. So, we need to run through the symtabs again in | |
238 | order to find the file. | |
239 | XXX - This is a crock, and should be fixed inside of the the | |
240 | symbol parsing routines. */ | |
241 | goto got_symtab; | |
242 | } | |
243 | ||
c906108c SS |
244 | /* Lookup the partial symbol table of a source file named NAME. |
245 | *If* there is no '/' in the name, a match after a '/' | |
246 | in the psymtab filename will also work. */ | |
247 | ||
248 | struct partial_symtab * | |
1f8cc6db | 249 | lookup_partial_symtab (const char *name) |
c906108c | 250 | { |
52f0bd74 AC |
251 | struct partial_symtab *pst; |
252 | struct objfile *objfile; | |
f079a2e5 | 253 | char *full_path = NULL; |
58d370e0 TT |
254 | char *real_path = NULL; |
255 | ||
256 | /* Here we are interested in canonicalizing an absolute path, not | |
257 | absolutizing a relative path. */ | |
258 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
259 | { |
260 | full_path = xfullpath (name); | |
261 | make_cleanup (xfree, full_path); | |
262 | real_path = gdb_realpath (name); | |
263 | make_cleanup (xfree, real_path); | |
264 | } | |
c5aa993b | 265 | |
c906108c | 266 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 267 | { |
a7fdf62f | 268 | if (FILENAME_CMP (name, pst->filename) == 0) |
c5aa993b JM |
269 | { |
270 | return (pst); | |
271 | } | |
f079a2e5 | 272 | |
58d370e0 TT |
273 | /* If the user gave us an absolute path, try to find the file in |
274 | this symtab and use its absolute path. */ | |
f079a2e5 | 275 | if (full_path != NULL) |
58d370e0 | 276 | { |
d9c8471e | 277 | psymtab_to_fullname (pst); |
58d370e0 | 278 | if (pst->fullname != NULL |
f079a2e5 | 279 | && FILENAME_CMP (full_path, pst->fullname) == 0) |
58d370e0 | 280 | { |
58d370e0 TT |
281 | return pst; |
282 | } | |
283 | } | |
c906108c | 284 | |
f079a2e5 JB |
285 | if (real_path != NULL) |
286 | { | |
287 | char *rp = NULL; | |
d9c8471e | 288 | psymtab_to_fullname (pst); |
f079a2e5 JB |
289 | if (pst->fullname != NULL) |
290 | { | |
291 | rp = gdb_realpath (pst->fullname); | |
292 | make_cleanup (xfree, rp); | |
293 | } | |
294 | if (rp != NULL && FILENAME_CMP (real_path, rp) == 0) | |
295 | { | |
296 | return pst; | |
297 | } | |
298 | } | |
299 | } | |
58d370e0 | 300 | |
c906108c SS |
301 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
302 | ||
caadab2c | 303 | if (lbasename (name) == name) |
c906108c | 304 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 305 | { |
31889e00 | 306 | if (FILENAME_CMP (lbasename (pst->filename), name) == 0) |
c5aa993b JM |
307 | return (pst); |
308 | } | |
c906108c SS |
309 | |
310 | return (NULL); | |
311 | } | |
312 | \f | |
313 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
314 | full method name, which consist of the class name (from T), the unadorned | |
315 | method name from METHOD_ID, and the signature for the specific overload, | |
316 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
317 | ||
318 | char * | |
fba45db2 | 319 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
320 | { |
321 | int mangled_name_len; | |
322 | char *mangled_name; | |
323 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
324 | struct fn_field *method = &f[signature_id]; | |
325 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
326 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
327 | char *newname = type_name_no_tag (type); | |
328 | ||
329 | /* Does the form of physname indicate that it is the full mangled name | |
330 | of a constructor (not just the args)? */ | |
331 | int is_full_physname_constructor; | |
332 | ||
333 | int is_constructor; | |
015a42b4 | 334 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
335 | /* Need a new type prefix. */ |
336 | char *const_prefix = method->is_const ? "C" : ""; | |
337 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
338 | char buf[20]; | |
339 | int len = (newname == NULL ? 0 : strlen (newname)); | |
340 | ||
43630227 PS |
341 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
342 | or an operator name. */ | |
343 | if ((physname[0] == '_' && physname[1] == 'Z') | |
344 | || is_operator_name (field_name)) | |
235d1e03 EZ |
345 | return xstrdup (physname); |
346 | ||
015a42b4 | 347 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
348 | |
349 | is_constructor = | |
6314a349 | 350 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
c906108c SS |
351 | |
352 | if (!is_destructor) | |
c5aa993b | 353 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
354 | |
355 | if (is_destructor || is_full_physname_constructor) | |
356 | { | |
c5aa993b JM |
357 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
358 | strcpy (mangled_name, physname); | |
c906108c SS |
359 | return mangled_name; |
360 | } | |
361 | ||
362 | if (len == 0) | |
363 | { | |
364 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
365 | } | |
366 | else if (physname[0] == 't' || physname[0] == 'Q') | |
367 | { | |
368 | /* The physname for template and qualified methods already includes | |
c5aa993b | 369 | the class name. */ |
c906108c SS |
370 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
371 | newname = NULL; | |
372 | len = 0; | |
373 | } | |
374 | else | |
375 | { | |
376 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
377 | } | |
378 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 379 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 380 | |
c906108c | 381 | { |
c5aa993b | 382 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
383 | if (is_constructor) |
384 | mangled_name[0] = '\0'; | |
385 | else | |
386 | strcpy (mangled_name, field_name); | |
387 | } | |
388 | strcat (mangled_name, buf); | |
389 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
390 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 391 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
392 | if (newname != NULL) |
393 | strcat (mangled_name, newname); | |
394 | ||
395 | strcat (mangled_name, physname); | |
396 | return (mangled_name); | |
397 | } | |
12af6855 JB |
398 | |
399 | \f | |
89aad1f9 EZ |
400 | /* Initialize the language dependent portion of a symbol |
401 | depending upon the language for the symbol. */ | |
402 | void | |
403 | symbol_init_language_specific (struct general_symbol_info *gsymbol, | |
404 | enum language language) | |
405 | { | |
406 | gsymbol->language = language; | |
407 | if (gsymbol->language == language_cplus | |
5784d15e AF |
408 | || gsymbol->language == language_java |
409 | || gsymbol->language == language_objc) | |
89aad1f9 EZ |
410 | { |
411 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
412 | } | |
89aad1f9 EZ |
413 | else |
414 | { | |
415 | memset (&gsymbol->language_specific, 0, | |
416 | sizeof (gsymbol->language_specific)); | |
417 | } | |
418 | } | |
419 | ||
2de7ced7 DJ |
420 | /* Functions to initialize a symbol's mangled name. */ |
421 | ||
422 | /* Create the hash table used for demangled names. Each hash entry is | |
423 | a pair of strings; one for the mangled name and one for the demangled | |
424 | name. The entry is hashed via just the mangled name. */ | |
425 | ||
426 | static void | |
427 | create_demangled_names_hash (struct objfile *objfile) | |
428 | { | |
429 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
430 | The hash table code will round this up to the next prime number. | |
431 | Choosing a much larger table size wastes memory, and saves only about | |
432 | 1% in symbol reading. */ | |
433 | ||
aa2ee5f6 | 434 | objfile->demangled_names_hash = htab_create_alloc |
2de7ced7 | 435 | (256, htab_hash_string, (int (*) (const void *, const void *)) streq, |
aa2ee5f6 | 436 | NULL, xcalloc, xfree); |
2de7ced7 | 437 | } |
12af6855 | 438 | |
2de7ced7 | 439 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
440 | language of that symbol. If the language is set to language_auto, |
441 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
442 | then set the language appropriately. The returned name is allocated |
443 | by the demangler and should be xfree'd. */ | |
12af6855 | 444 | |
2de7ced7 DJ |
445 | static char * |
446 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
447 | const char *mangled) | |
12af6855 | 448 | { |
12af6855 JB |
449 | char *demangled = NULL; |
450 | ||
451 | if (gsymbol->language == language_unknown) | |
452 | gsymbol->language = language_auto; | |
1bae87b9 AF |
453 | |
454 | if (gsymbol->language == language_objc | |
455 | || gsymbol->language == language_auto) | |
456 | { | |
457 | demangled = | |
458 | objc_demangle (mangled, 0); | |
459 | if (demangled != NULL) | |
460 | { | |
461 | gsymbol->language = language_objc; | |
462 | return demangled; | |
463 | } | |
464 | } | |
12af6855 JB |
465 | if (gsymbol->language == language_cplus |
466 | || gsymbol->language == language_auto) | |
467 | { | |
468 | demangled = | |
2de7ced7 | 469 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 470 | if (demangled != NULL) |
2de7ced7 DJ |
471 | { |
472 | gsymbol->language = language_cplus; | |
473 | return demangled; | |
474 | } | |
12af6855 JB |
475 | } |
476 | if (gsymbol->language == language_java) | |
477 | { | |
478 | demangled = | |
2de7ced7 | 479 | cplus_demangle (mangled, |
12af6855 JB |
480 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
481 | if (demangled != NULL) | |
2de7ced7 DJ |
482 | { |
483 | gsymbol->language = language_java; | |
484 | return demangled; | |
485 | } | |
486 | } | |
487 | return NULL; | |
488 | } | |
489 | ||
980cae7a DC |
490 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
491 | on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE | |
4a146b47 | 492 | is used, and the memory comes from that objfile's objfile_obstack. |
980cae7a DC |
493 | LINKAGE_NAME is copied, so the pointer can be discarded after |
494 | calling this function. */ | |
2de7ced7 | 495 | |
d2a52b27 DC |
496 | /* We have to be careful when dealing with Java names: when we run |
497 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
498 | gets demangled as a C++ name. This is unfortunate, but there's not | |
499 | much we can do about it: but when demangling partial symbols and | |
500 | regular symbols, we'd better not reuse the wrong demangled name. | |
501 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
502 | on Java names when storing them in the hash table. */ | |
503 | ||
504 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
505 | don't mind the Java prefix so much: different languages have | |
506 | different demangling requirements, so it's only natural that we | |
507 | need to keep language data around in our demangling cache. But | |
508 | it's not good that the minimal symbol has the wrong demangled name. | |
509 | Unfortunately, I can't think of any easy solution to that | |
510 | problem. */ | |
511 | ||
512 | #define JAVA_PREFIX "##JAVA$$" | |
513 | #define JAVA_PREFIX_LEN 8 | |
514 | ||
2de7ced7 DJ |
515 | void |
516 | symbol_set_names (struct general_symbol_info *gsymbol, | |
980cae7a | 517 | const char *linkage_name, int len, struct objfile *objfile) |
2de7ced7 DJ |
518 | { |
519 | char **slot; | |
980cae7a DC |
520 | /* A 0-terminated copy of the linkage name. */ |
521 | const char *linkage_name_copy; | |
d2a52b27 DC |
522 | /* A copy of the linkage name that might have a special Java prefix |
523 | added to it, for use when looking names up in the hash table. */ | |
524 | const char *lookup_name; | |
525 | /* The length of lookup_name. */ | |
526 | int lookup_len; | |
2de7ced7 DJ |
527 | |
528 | if (objfile->demangled_names_hash == NULL) | |
529 | create_demangled_names_hash (objfile); | |
530 | ||
980cae7a DC |
531 | /* The stabs reader generally provides names that are not |
532 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
533 | can just use the given copy, unless we're in the Java case. */ |
534 | if (gsymbol->language == language_java) | |
535 | { | |
536 | char *alloc_name; | |
537 | lookup_len = len + JAVA_PREFIX_LEN; | |
538 | ||
539 | alloc_name = alloca (lookup_len + 1); | |
540 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
541 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
542 | alloc_name[lookup_len] = '\0'; | |
543 | ||
544 | lookup_name = alloc_name; | |
545 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
546 | } | |
547 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 548 | { |
980cae7a | 549 | char *alloc_name; |
d2a52b27 | 550 | lookup_len = len; |
980cae7a | 551 | |
d2a52b27 | 552 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 553 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 554 | alloc_name[lookup_len] = '\0'; |
980cae7a | 555 | |
d2a52b27 | 556 | lookup_name = alloc_name; |
980cae7a | 557 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
558 | } |
559 | else | |
980cae7a | 560 | { |
d2a52b27 DC |
561 | lookup_len = len; |
562 | lookup_name = linkage_name; | |
980cae7a DC |
563 | linkage_name_copy = linkage_name; |
564 | } | |
2de7ced7 | 565 | |
980cae7a | 566 | slot = (char **) htab_find_slot (objfile->demangled_names_hash, |
d2a52b27 | 567 | lookup_name, INSERT); |
2de7ced7 DJ |
568 | |
569 | /* If this name is not in the hash table, add it. */ | |
570 | if (*slot == NULL) | |
571 | { | |
980cae7a DC |
572 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
573 | linkage_name_copy); | |
2de7ced7 DJ |
574 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
575 | ||
576 | /* If there is a demangled name, place it right after the mangled name. | |
577 | Otherwise, just place a second zero byte after the end of the mangled | |
578 | name. */ | |
4a146b47 | 579 | *slot = obstack_alloc (&objfile->objfile_obstack, |
d2a52b27 DC |
580 | lookup_len + demangled_len + 2); |
581 | memcpy (*slot, lookup_name, lookup_len + 1); | |
980cae7a | 582 | if (demangled_name != NULL) |
2de7ced7 | 583 | { |
d2a52b27 | 584 | memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1); |
2de7ced7 DJ |
585 | xfree (demangled_name); |
586 | } | |
587 | else | |
d2a52b27 | 588 | (*slot)[lookup_len + 1] = '\0'; |
2de7ced7 DJ |
589 | } |
590 | ||
d2a52b27 DC |
591 | gsymbol->name = *slot + lookup_len - len; |
592 | if ((*slot)[lookup_len + 1] != '\0') | |
2de7ced7 | 593 | gsymbol->language_specific.cplus_specific.demangled_name |
d2a52b27 | 594 | = &(*slot)[lookup_len + 1]; |
2de7ced7 DJ |
595 | else |
596 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
597 | } | |
598 | ||
599 | /* Initialize the demangled name of GSYMBOL if possible. Any required space | |
600 | to store the name is obtained from the specified obstack. The function | |
601 | symbol_set_names, above, should be used instead where possible for more | |
602 | efficient memory usage. */ | |
603 | ||
604 | void | |
605 | symbol_init_demangled_name (struct general_symbol_info *gsymbol, | |
606 | struct obstack *obstack) | |
607 | { | |
608 | char *mangled = gsymbol->name; | |
609 | char *demangled = NULL; | |
610 | ||
611 | demangled = symbol_find_demangled_name (gsymbol, mangled); | |
612 | if (gsymbol->language == language_cplus | |
1bae87b9 AF |
613 | || gsymbol->language == language_java |
614 | || gsymbol->language == language_objc) | |
2de7ced7 DJ |
615 | { |
616 | if (demangled) | |
617 | { | |
618 | gsymbol->language_specific.cplus_specific.demangled_name | |
619 | = obsavestring (demangled, strlen (demangled), obstack); | |
620 | xfree (demangled); | |
621 | } | |
12af6855 | 622 | else |
2de7ced7 DJ |
623 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; |
624 | } | |
625 | else | |
626 | { | |
627 | /* Unknown language; just clean up quietly. */ | |
628 | if (demangled) | |
629 | xfree (demangled); | |
12af6855 | 630 | } |
12af6855 JB |
631 | } |
632 | ||
22abf04a DC |
633 | /* Return the source code name of a symbol. In languages where |
634 | demangling is necessary, this is the demangled name. */ | |
635 | ||
636 | char * | |
637 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
638 | { | |
1f8173e6 | 639 | switch (gsymbol->language) |
22abf04a | 640 | { |
1f8173e6 PH |
641 | case language_cplus: |
642 | case language_java: | |
643 | case language_objc: | |
644 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
645 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
646 | break; | |
647 | case language_ada: | |
648 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
649 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
650 | else | |
651 | return ada_decode_symbol (gsymbol); | |
652 | break; | |
653 | default: | |
654 | break; | |
22abf04a | 655 | } |
1f8173e6 | 656 | return gsymbol->name; |
22abf04a DC |
657 | } |
658 | ||
9cc0d196 EZ |
659 | /* Return the demangled name for a symbol based on the language for |
660 | that symbol. If no demangled name exists, return NULL. */ | |
661 | char * | |
662 | symbol_demangled_name (struct general_symbol_info *gsymbol) | |
663 | { | |
1f8173e6 PH |
664 | switch (gsymbol->language) |
665 | { | |
666 | case language_cplus: | |
667 | case language_java: | |
668 | case language_objc: | |
669 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
670 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
671 | break; | |
672 | case language_ada: | |
673 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
674 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
675 | else | |
676 | return ada_decode_symbol (gsymbol); | |
677 | break; | |
678 | default: | |
679 | break; | |
680 | } | |
681 | return NULL; | |
9cc0d196 | 682 | } |
fe39c653 | 683 | |
4725b721 PH |
684 | /* Return the search name of a symbol---generally the demangled or |
685 | linkage name of the symbol, depending on how it will be searched for. | |
686 | If there is no distinct demangled name, then returns the same value | |
687 | (same pointer) as SYMBOL_LINKAGE_NAME. */ | |
fc062ac6 JB |
688 | char * |
689 | symbol_search_name (const struct general_symbol_info *gsymbol) | |
690 | { | |
1f8173e6 PH |
691 | if (gsymbol->language == language_ada) |
692 | return gsymbol->name; | |
693 | else | |
694 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
695 | } |
696 | ||
fe39c653 EZ |
697 | /* Initialize the structure fields to zero values. */ |
698 | void | |
699 | init_sal (struct symtab_and_line *sal) | |
700 | { | |
701 | sal->symtab = 0; | |
702 | sal->section = 0; | |
703 | sal->line = 0; | |
704 | sal->pc = 0; | |
705 | sal->end = 0; | |
706 | } | |
c906108c SS |
707 | \f |
708 | ||
c5aa993b | 709 | |
ccefbec3 EZ |
710 | /* Find which partial symtab contains PC and SECTION. Return 0 if |
711 | none. We return the psymtab that contains a symbol whose address | |
712 | exactly matches PC, or, if we cannot find an exact match, the | |
713 | psymtab that contains a symbol whose address is closest to PC. */ | |
c906108c | 714 | struct partial_symtab * |
fba45db2 | 715 | find_pc_sect_psymtab (CORE_ADDR pc, asection *section) |
c906108c | 716 | { |
52f0bd74 AC |
717 | struct partial_symtab *pst; |
718 | struct objfile *objfile; | |
8a48e967 DJ |
719 | struct minimal_symbol *msymbol; |
720 | ||
721 | /* If we know that this is not a text address, return failure. This is | |
722 | necessary because we loop based on texthigh and textlow, which do | |
723 | not include the data ranges. */ | |
724 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
725 | if (msymbol | |
726 | && (msymbol->type == mst_data | |
727 | || msymbol->type == mst_bss | |
728 | || msymbol->type == mst_abs | |
729 | || msymbol->type == mst_file_data | |
730 | || msymbol->type == mst_file_bss)) | |
731 | return NULL; | |
c906108c SS |
732 | |
733 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 734 | { |
c5aa993b | 735 | if (pc >= pst->textlow && pc < pst->texthigh) |
c5aa993b | 736 | { |
c5aa993b | 737 | struct partial_symtab *tpst; |
ccefbec3 EZ |
738 | struct partial_symtab *best_pst = pst; |
739 | struct partial_symbol *best_psym = NULL; | |
c5aa993b JM |
740 | |
741 | /* An objfile that has its functions reordered might have | |
742 | many partial symbol tables containing the PC, but | |
743 | we want the partial symbol table that contains the | |
744 | function containing the PC. */ | |
745 | if (!(objfile->flags & OBJF_REORDERED) && | |
746 | section == 0) /* can't validate section this way */ | |
747 | return (pst); | |
748 | ||
c5aa993b JM |
749 | if (msymbol == NULL) |
750 | return (pst); | |
751 | ||
ccefbec3 EZ |
752 | /* The code range of partial symtabs sometimes overlap, so, in |
753 | the loop below, we need to check all partial symtabs and | |
754 | find the one that fits better for the given PC address. We | |
755 | select the partial symtab that contains a symbol whose | |
756 | address is closest to the PC address. By closest we mean | |
757 | that find_pc_sect_symbol returns the symbol with address | |
758 | that is closest and still less than the given PC. */ | |
c5aa993b JM |
759 | for (tpst = pst; tpst != NULL; tpst = tpst->next) |
760 | { | |
c5aa993b | 761 | if (pc >= tpst->textlow && pc < tpst->texthigh) |
c5aa993b JM |
762 | { |
763 | struct partial_symbol *p; | |
c906108c | 764 | |
c5aa993b JM |
765 | p = find_pc_sect_psymbol (tpst, pc, section); |
766 | if (p != NULL | |
767 | && SYMBOL_VALUE_ADDRESS (p) | |
768 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
769 | return (tpst); | |
ccefbec3 EZ |
770 | if (p != NULL) |
771 | { | |
772 | /* We found a symbol in this partial symtab which | |
773 | matches (or is closest to) PC, check whether it | |
774 | is closer than our current BEST_PSYM. Since | |
775 | this symbol address is necessarily lower or | |
776 | equal to PC, the symbol closer to PC is the | |
777 | symbol which address is the highest. */ | |
778 | /* This way we return the psymtab which contains | |
779 | such best match symbol. This can help in cases | |
780 | where the symbol information/debuginfo is not | |
781 | complete, like for instance on IRIX6 with gcc, | |
782 | where no debug info is emitted for | |
783 | statics. (See also the nodebug.exp | |
784 | testcase.) */ | |
785 | if (best_psym == NULL | |
786 | || SYMBOL_VALUE_ADDRESS (p) | |
787 | > SYMBOL_VALUE_ADDRESS (best_psym)) | |
788 | { | |
789 | best_psym = p; | |
790 | best_pst = tpst; | |
791 | } | |
792 | } | |
793 | ||
c5aa993b JM |
794 | } |
795 | } | |
ccefbec3 | 796 | return (best_pst); |
c5aa993b JM |
797 | } |
798 | } | |
c906108c SS |
799 | return (NULL); |
800 | } | |
801 | ||
802 | /* Find which partial symtab contains PC. Return 0 if none. | |
803 | Backward compatibility, no section */ | |
804 | ||
805 | struct partial_symtab * | |
fba45db2 | 806 | find_pc_psymtab (CORE_ADDR pc) |
c906108c SS |
807 | { |
808 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
809 | } | |
810 | ||
811 | /* Find which partial symbol within a psymtab matches PC and SECTION. | |
812 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ | |
813 | ||
814 | struct partial_symbol * | |
fba45db2 KB |
815 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
816 | asection *section) | |
c906108c SS |
817 | { |
818 | struct partial_symbol *best = NULL, *p, **pp; | |
819 | CORE_ADDR best_pc; | |
c5aa993b | 820 | |
c906108c SS |
821 | if (!psymtab) |
822 | psymtab = find_pc_sect_psymtab (pc, section); | |
823 | if (!psymtab) | |
824 | return 0; | |
825 | ||
826 | /* Cope with programs that start at address 0 */ | |
827 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
828 | ||
829 | /* Search the global symbols as well as the static symbols, so that | |
830 | find_pc_partial_function doesn't use a minimal symbol and thus | |
831 | cache a bad endaddr. */ | |
832 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
833 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
834 | < psymtab->n_global_syms); | |
c906108c SS |
835 | pp++) |
836 | { | |
837 | p = *pp; | |
176620f1 | 838 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
839 | && SYMBOL_CLASS (p) == LOC_BLOCK |
840 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
841 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
842 | || (psymtab->textlow == 0 | |
843 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
844 | { | |
c5aa993b | 845 | if (section) /* match on a specific section */ |
c906108c SS |
846 | { |
847 | fixup_psymbol_section (p, psymtab->objfile); | |
848 | if (SYMBOL_BFD_SECTION (p) != section) | |
849 | continue; | |
850 | } | |
851 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
852 | best = p; | |
853 | } | |
854 | } | |
855 | ||
856 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
857 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
858 | < psymtab->n_static_syms); | |
c906108c SS |
859 | pp++) |
860 | { | |
861 | p = *pp; | |
176620f1 | 862 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
863 | && SYMBOL_CLASS (p) == LOC_BLOCK |
864 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
865 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 866 | || (psymtab->textlow == 0 |
c906108c SS |
867 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
868 | { | |
c5aa993b | 869 | if (section) /* match on a specific section */ |
c906108c SS |
870 | { |
871 | fixup_psymbol_section (p, psymtab->objfile); | |
872 | if (SYMBOL_BFD_SECTION (p) != section) | |
873 | continue; | |
874 | } | |
875 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
876 | best = p; | |
877 | } | |
878 | } | |
879 | ||
880 | return best; | |
881 | } | |
882 | ||
883 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. | |
884 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ | |
885 | ||
886 | struct partial_symbol * | |
fba45db2 | 887 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
c906108c SS |
888 | { |
889 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
890 | } | |
891 | \f | |
892 | /* Debug symbols usually don't have section information. We need to dig that | |
893 | out of the minimal symbols and stash that in the debug symbol. */ | |
894 | ||
895 | static void | |
fba45db2 | 896 | fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile) |
c906108c SS |
897 | { |
898 | struct minimal_symbol *msym; | |
899 | msym = lookup_minimal_symbol (ginfo->name, NULL, objfile); | |
900 | ||
901 | if (msym) | |
7a78d0ee KB |
902 | { |
903 | ginfo->bfd_section = SYMBOL_BFD_SECTION (msym); | |
904 | ginfo->section = SYMBOL_SECTION (msym); | |
905 | } | |
19e2d14b KB |
906 | else if (objfile) |
907 | { | |
908 | /* Static, function-local variables do appear in the linker | |
909 | (minimal) symbols, but are frequently given names that won't | |
910 | be found via lookup_minimal_symbol(). E.g., it has been | |
911 | observed in frv-uclinux (ELF) executables that a static, | |
912 | function-local variable named "foo" might appear in the | |
913 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
914 | point in attempting to extend the lookup-by-name mechanism to | |
915 | handle this case due to the fact that there can be multiple | |
916 | names. | |
917 | ||
918 | So, instead, search the section table when lookup by name has | |
919 | failed. The ``addr'' and ``endaddr'' fields may have already | |
920 | been relocated. If so, the relocation offset (i.e. the | |
921 | ANOFFSET value) needs to be subtracted from these values when | |
922 | performing the comparison. We unconditionally subtract it, | |
923 | because, when no relocation has been performed, the ANOFFSET | |
924 | value will simply be zero. | |
925 | ||
926 | The address of the symbol whose section we're fixing up HAS | |
927 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
928 | the section isn't yet known and knowing the section is | |
929 | necessary in order to add the correct relocation value. In | |
930 | other words, we wouldn't even be in this function (attempting | |
931 | to compute the section) if it were already known. | |
932 | ||
933 | Note that it is possible to search the minimal symbols | |
934 | (subtracting the relocation value if necessary) to find the | |
935 | matching minimal symbol, but this is overkill and much less | |
936 | efficient. It is not necessary to find the matching minimal | |
937 | symbol, only its section. | |
938 | ||
939 | Note that this technique (of doing a section table search) | |
940 | can fail when unrelocated section addresses overlap. For | |
941 | this reason, we still attempt a lookup by name prior to doing | |
942 | a search of the section table. */ | |
943 | ||
944 | CORE_ADDR addr; | |
945 | struct obj_section *s; | |
946 | ||
947 | addr = ginfo->value.address; | |
948 | ||
949 | ALL_OBJFILE_OSECTIONS (objfile, s) | |
950 | { | |
951 | int idx = s->the_bfd_section->index; | |
952 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
953 | ||
954 | if (s->addr - offset <= addr && addr < s->endaddr - offset) | |
955 | { | |
956 | ginfo->bfd_section = s->the_bfd_section; | |
957 | ginfo->section = idx; | |
958 | return; | |
959 | } | |
960 | } | |
961 | } | |
c906108c SS |
962 | } |
963 | ||
964 | struct symbol * | |
fba45db2 | 965 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c SS |
966 | { |
967 | if (!sym) | |
968 | return NULL; | |
969 | ||
970 | if (SYMBOL_BFD_SECTION (sym)) | |
971 | return sym; | |
972 | ||
973 | fixup_section (&sym->ginfo, objfile); | |
974 | ||
975 | return sym; | |
976 | } | |
977 | ||
7a78d0ee | 978 | struct partial_symbol * |
fba45db2 | 979 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
c906108c SS |
980 | { |
981 | if (!psym) | |
982 | return NULL; | |
983 | ||
984 | if (SYMBOL_BFD_SECTION (psym)) | |
985 | return psym; | |
986 | ||
987 | fixup_section (&psym->ginfo, objfile); | |
988 | ||
989 | return psym; | |
990 | } | |
991 | ||
992 | /* Find the definition for a specified symbol name NAME | |
176620f1 | 993 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c SS |
994 | Returns the struct symbol pointer, or zero if no symbol is found. |
995 | If SYMTAB is non-NULL, store the symbol table in which the | |
996 | symbol was found there, or NULL if not found. | |
997 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if | |
998 | NAME is a field of the current implied argument `this'. If so set | |
999 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. | |
1000 | BLOCK_FOUND is set to the block in which NAME is found (in the case of | |
1001 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1002 | ||
1003 | /* This function has a bunch of loops in it and it would seem to be | |
1004 | attractive to put in some QUIT's (though I'm not really sure | |
1005 | whether it can run long enough to be really important). But there | |
1006 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
1007 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1008 | that there is C++ code below which can error(), but that probably | |
1009 | doesn't affect these calls since they are looking for a known | |
1010 | variable and thus can probably assume it will never hit the C++ | |
1011 | code). */ | |
c906108c SS |
1012 | |
1013 | struct symbol * | |
fba7f19c | 1014 | lookup_symbol (const char *name, const struct block *block, |
176620f1 | 1015 | const domain_enum domain, int *is_a_field_of_this, |
fba45db2 | 1016 | struct symtab **symtab) |
c906108c | 1017 | { |
729051e6 DJ |
1018 | char *demangled_name = NULL; |
1019 | const char *modified_name = NULL; | |
3121eff0 | 1020 | const char *mangled_name = NULL; |
fba7f19c EZ |
1021 | int needtofreename = 0; |
1022 | struct symbol *returnval; | |
c906108c | 1023 | |
729051e6 DJ |
1024 | modified_name = name; |
1025 | ||
987504bb | 1026 | /* If we are using C++ or Java, demangle the name before doing a lookup, so |
729051e6 DJ |
1027 | we can always binary search. */ |
1028 | if (current_language->la_language == language_cplus) | |
1029 | { | |
1030 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1031 | if (demangled_name) | |
1032 | { | |
1033 | mangled_name = name; | |
1034 | modified_name = demangled_name; | |
1035 | needtofreename = 1; | |
1036 | } | |
1037 | } | |
987504bb JJ |
1038 | else if (current_language->la_language == language_java) |
1039 | { | |
1040 | demangled_name = cplus_demangle (name, | |
1041 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); | |
1042 | if (demangled_name) | |
1043 | { | |
1044 | mangled_name = name; | |
1045 | modified_name = demangled_name; | |
1046 | needtofreename = 1; | |
1047 | } | |
1048 | } | |
729051e6 | 1049 | |
63872f9d JG |
1050 | if (case_sensitivity == case_sensitive_off) |
1051 | { | |
1052 | char *copy; | |
1053 | int len, i; | |
1054 | ||
1055 | len = strlen (name); | |
1056 | copy = (char *) alloca (len + 1); | |
1057 | for (i= 0; i < len; i++) | |
1058 | copy[i] = tolower (name[i]); | |
1059 | copy[len] = 0; | |
fba7f19c | 1060 | modified_name = copy; |
63872f9d | 1061 | } |
fba7f19c | 1062 | |
3121eff0 | 1063 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
176620f1 | 1064 | domain, is_a_field_of_this, symtab); |
fba7f19c | 1065 | if (needtofreename) |
729051e6 | 1066 | xfree (demangled_name); |
fba7f19c EZ |
1067 | |
1068 | return returnval; | |
1069 | } | |
1070 | ||
5ad1c190 DC |
1071 | /* Behave like lookup_symbol_aux except that NAME is the natural name |
1072 | of the symbol that we're looking for and, if LINKAGE_NAME is | |
1073 | non-NULL, ensure that the symbol's linkage name matches as | |
1074 | well. */ | |
1075 | ||
fba7f19c | 1076 | static struct symbol * |
5ad1c190 | 1077 | lookup_symbol_aux (const char *name, const char *linkage_name, |
176620f1 | 1078 | const struct block *block, const domain_enum domain, |
3121eff0 | 1079 | int *is_a_field_of_this, struct symtab **symtab) |
fba7f19c | 1080 | { |
8155455b | 1081 | struct symbol *sym; |
406bc4de | 1082 | |
9a146a11 EZ |
1083 | /* Make sure we do something sensible with is_a_field_of_this, since |
1084 | the callers that set this parameter to some non-null value will | |
1085 | certainly use it later and expect it to be either 0 or 1. | |
1086 | If we don't set it, the contents of is_a_field_of_this are | |
1087 | undefined. */ | |
1088 | if (is_a_field_of_this != NULL) | |
1089 | *is_a_field_of_this = 0; | |
1090 | ||
e4051eeb DC |
1091 | /* Search specified block and its superiors. Don't search |
1092 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1093 | |
5ad1c190 | 1094 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain, |
89a9d1b1 | 1095 | symtab); |
8155455b DC |
1096 | if (sym != NULL) |
1097 | return sym; | |
c906108c | 1098 | |
5f9a71c3 DC |
1099 | /* If requested to do so by the caller and if appropriate for the |
1100 | current language, check to see if NAME is a field of `this'. */ | |
1101 | ||
1102 | if (current_language->la_value_of_this != NULL | |
1103 | && is_a_field_of_this != NULL) | |
c906108c | 1104 | { |
5f9a71c3 | 1105 | struct value *v = current_language->la_value_of_this (0); |
c5aa993b | 1106 | |
c906108c SS |
1107 | if (v && check_field (v, name)) |
1108 | { | |
1109 | *is_a_field_of_this = 1; | |
1110 | if (symtab != NULL) | |
1111 | *symtab = NULL; | |
1112 | return NULL; | |
1113 | } | |
1114 | } | |
1115 | ||
5f9a71c3 DC |
1116 | /* Now do whatever is appropriate for the current language to look |
1117 | up static and global variables. */ | |
c906108c | 1118 | |
5f9a71c3 DC |
1119 | sym = current_language->la_lookup_symbol_nonlocal (name, linkage_name, |
1120 | block, domain, | |
1121 | symtab); | |
8155455b DC |
1122 | if (sym != NULL) |
1123 | return sym; | |
c906108c | 1124 | |
8155455b DC |
1125 | /* Now search all static file-level symbols. Not strictly correct, |
1126 | but more useful than an error. Do the symtabs first, then check | |
1127 | the psymtabs. If a psymtab indicates the existence of the | |
1128 | desired name as a file-level static, then do psymtab-to-symtab | |
c906108c SS |
1129 | conversion on the fly and return the found symbol. */ |
1130 | ||
5ad1c190 | 1131 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 1132 | domain, symtab); |
8155455b DC |
1133 | if (sym != NULL) |
1134 | return sym; | |
1135 | ||
5ad1c190 | 1136 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, |
176620f1 | 1137 | domain, symtab); |
8155455b DC |
1138 | if (sym != NULL) |
1139 | return sym; | |
c906108c | 1140 | |
c906108c SS |
1141 | if (symtab != NULL) |
1142 | *symtab = NULL; | |
8155455b | 1143 | return NULL; |
c906108c | 1144 | } |
8155455b | 1145 | |
e4051eeb | 1146 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1147 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1148 | |
1149 | static struct symbol * | |
5ad1c190 | 1150 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
8155455b | 1151 | const struct block *block, |
176620f1 | 1152 | const domain_enum domain, |
89a9d1b1 | 1153 | struct symtab **symtab) |
8155455b DC |
1154 | { |
1155 | struct symbol *sym; | |
89a9d1b1 DC |
1156 | const struct block *static_block = block_static_block (block); |
1157 | ||
e4051eeb DC |
1158 | /* Check if either no block is specified or it's a global block. */ |
1159 | ||
89a9d1b1 DC |
1160 | if (static_block == NULL) |
1161 | return NULL; | |
e4051eeb | 1162 | |
89a9d1b1 | 1163 | while (block != static_block) |
f61e8913 | 1164 | { |
5ad1c190 | 1165 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain, |
f61e8913 DC |
1166 | symtab); |
1167 | if (sym != NULL) | |
1168 | return sym; | |
1169 | block = BLOCK_SUPERBLOCK (block); | |
1170 | } | |
1171 | ||
89a9d1b1 | 1172 | /* We've reached the static block without finding a result. */ |
e4051eeb | 1173 | |
f61e8913 DC |
1174 | return NULL; |
1175 | } | |
1176 | ||
1177 | /* Look up a symbol in a block; if found, locate its symtab, fixup the | |
1178 | symbol, and set block_found appropriately. */ | |
1179 | ||
5f9a71c3 | 1180 | struct symbol * |
5ad1c190 | 1181 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
f61e8913 | 1182 | const struct block *block, |
176620f1 | 1183 | const domain_enum domain, |
f61e8913 DC |
1184 | struct symtab **symtab) |
1185 | { | |
1186 | struct symbol *sym; | |
8155455b DC |
1187 | struct objfile *objfile = NULL; |
1188 | struct blockvector *bv; | |
1189 | struct block *b; | |
1190 | struct symtab *s = NULL; | |
f61e8913 | 1191 | |
5ad1c190 | 1192 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
f61e8913 | 1193 | if (sym) |
8155455b | 1194 | { |
f61e8913 DC |
1195 | block_found = block; |
1196 | if (symtab != NULL) | |
8155455b | 1197 | { |
f61e8913 DC |
1198 | /* Search the list of symtabs for one which contains the |
1199 | address of the start of this block. */ | |
1200 | ALL_SYMTABS (objfile, s) | |
8155455b | 1201 | { |
f61e8913 DC |
1202 | bv = BLOCKVECTOR (s); |
1203 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1204 | if (BLOCK_START (b) <= BLOCK_START (block) | |
1205 | && BLOCK_END (b) > BLOCK_START (block)) | |
1206 | goto found; | |
8155455b | 1207 | } |
f61e8913 DC |
1208 | found: |
1209 | *symtab = s; | |
8155455b | 1210 | } |
f61e8913 DC |
1211 | |
1212 | return fixup_symbol_section (sym, objfile); | |
8155455b DC |
1213 | } |
1214 | ||
1215 | return NULL; | |
1216 | } | |
1217 | ||
1218 | /* Check to see if the symbol is defined in one of the symtabs. | |
1219 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1220 | depending on whether or not we want to search global symbols or | |
1221 | static symbols. */ | |
1222 | ||
1223 | static struct symbol * | |
1224 | lookup_symbol_aux_symtabs (int block_index, | |
5ad1c190 | 1225 | const char *name, const char *linkage_name, |
176620f1 | 1226 | const domain_enum domain, |
8155455b DC |
1227 | struct symtab **symtab) |
1228 | { | |
1229 | struct symbol *sym; | |
1230 | struct objfile *objfile; | |
1231 | struct blockvector *bv; | |
1232 | const struct block *block; | |
1233 | struct symtab *s; | |
1234 | ||
1235 | ALL_SYMTABS (objfile, s) | |
1236 | { | |
1237 | bv = BLOCKVECTOR (s); | |
1238 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1239 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1240 | if (sym) |
1241 | { | |
1242 | block_found = block; | |
1243 | if (symtab != NULL) | |
1244 | *symtab = s; | |
1245 | return fixup_symbol_section (sym, objfile); | |
1246 | } | |
1247 | } | |
1248 | ||
1249 | return NULL; | |
1250 | } | |
1251 | ||
1252 | /* Check to see if the symbol is defined in one of the partial | |
1253 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or | |
1254 | STATIC_BLOCK, depending on whether or not we want to search global | |
1255 | symbols or static symbols. */ | |
1256 | ||
1257 | static struct symbol * | |
1258 | lookup_symbol_aux_psymtabs (int block_index, const char *name, | |
5ad1c190 | 1259 | const char *linkage_name, |
176620f1 | 1260 | const domain_enum domain, |
8155455b DC |
1261 | struct symtab **symtab) |
1262 | { | |
1263 | struct symbol *sym; | |
1264 | struct objfile *objfile; | |
1265 | struct blockvector *bv; | |
1266 | const struct block *block; | |
1267 | struct partial_symtab *ps; | |
1268 | struct symtab *s; | |
1269 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); | |
1270 | ||
1271 | ALL_PSYMTABS (objfile, ps) | |
1272 | { | |
1273 | if (!ps->readin | |
5ad1c190 | 1274 | && lookup_partial_symbol (ps, name, linkage_name, |
176620f1 | 1275 | psymtab_index, domain)) |
8155455b DC |
1276 | { |
1277 | s = PSYMTAB_TO_SYMTAB (ps); | |
1278 | bv = BLOCKVECTOR (s); | |
1279 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1280 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1281 | if (!sym) |
1282 | { | |
1283 | /* This shouldn't be necessary, but as a last resort try | |
1284 | looking in the statics even though the psymtab claimed | |
1285 | the symbol was global, or vice-versa. It's possible | |
1286 | that the psymtab gets it wrong in some cases. */ | |
1287 | ||
1288 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1289 | If that happens, isn't it likely to be a GDB error, in | |
1290 | which case we should fix the GDB error rather than | |
1291 | silently dealing with it here? So I'd vote for | |
1292 | removing the check for the symbol in the other | |
1293 | block. */ | |
1294 | block = BLOCKVECTOR_BLOCK (bv, | |
1295 | block_index == GLOBAL_BLOCK ? | |
1296 | STATIC_BLOCK : GLOBAL_BLOCK); | |
5ad1c190 | 1297 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b | 1298 | if (!sym) |
8a3fe4f8 | 1299 | error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."), |
8155455b DC |
1300 | block_index == GLOBAL_BLOCK ? "global" : "static", |
1301 | name, ps->filename, name, name); | |
1302 | } | |
1303 | if (symtab != NULL) | |
1304 | *symtab = s; | |
1305 | return fixup_symbol_section (sym, objfile); | |
1306 | } | |
1307 | } | |
1308 | ||
1309 | return NULL; | |
1310 | } | |
1311 | ||
ae2f03ac | 1312 | #if 0 |
406bc4de DC |
1313 | /* Check for the possibility of the symbol being a function or a |
1314 | mangled variable that is stored in one of the minimal symbol | |
1315 | tables. Eventually, all global symbols might be resolved in this | |
1316 | way. */ | |
1317 | ||
e45febe2 DC |
1318 | /* NOTE: carlton/2002-12-05: At one point, this function was part of |
1319 | lookup_symbol_aux, and what are now 'return' statements within | |
1320 | lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if | |
1321 | sym was NULL. As far as I can tell, this was basically accidental; | |
1322 | it didn't happen every time that msymbol was non-NULL, but only if | |
1323 | some additional conditions held as well, and it caused problems | |
1324 | with HP-generated symbol tables. */ | |
1325 | ||
ae2f03ac EZ |
1326 | /* NOTE: carlton/2003-05-14: This function was once used as part of |
1327 | lookup_symbol. It is currently unnecessary for correctness | |
1328 | reasons, however, and using it doesn't seem to be any faster than | |
1329 | using lookup_symbol_aux_psymtabs, so I'm commenting it out. */ | |
1330 | ||
406bc4de DC |
1331 | static struct symbol * |
1332 | lookup_symbol_aux_minsyms (const char *name, | |
5ad1c190 | 1333 | const char *linkage_name, |
176620f1 | 1334 | const domain_enum domain, |
406bc4de | 1335 | int *is_a_field_of_this, |
e45febe2 | 1336 | struct symtab **symtab) |
406bc4de DC |
1337 | { |
1338 | struct symbol *sym; | |
1339 | struct blockvector *bv; | |
1340 | const struct block *block; | |
1341 | struct minimal_symbol *msymbol; | |
1342 | struct symtab *s; | |
1343 | ||
176620f1 | 1344 | if (domain == VAR_DOMAIN) |
406bc4de DC |
1345 | { |
1346 | msymbol = lookup_minimal_symbol (name, NULL, NULL); | |
1347 | ||
1348 | if (msymbol != NULL) | |
1349 | { | |
1350 | /* OK, we found a minimal symbol in spite of not finding any | |
1351 | symbol. There are various possible explanations for | |
1352 | this. One possibility is the symbol exists in code not | |
1353 | compiled -g. Another possibility is that the 'psymtab' | |
1354 | isn't doing its job. A third possibility, related to #2, | |
1355 | is that we were confused by name-mangling. For instance, | |
1356 | maybe the psymtab isn't doing its job because it only | |
1357 | know about demangled names, but we were given a mangled | |
1358 | name... */ | |
1359 | ||
1360 | /* We first use the address in the msymbol to try to locate | |
1361 | the appropriate symtab. Note that find_pc_sect_symtab() | |
1362 | has a side-effect of doing psymtab-to-symtab expansion, | |
1363 | for the found symtab. */ | |
1364 | s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol), | |
1365 | SYMBOL_BFD_SECTION (msymbol)); | |
1366 | if (s != NULL) | |
1367 | { | |
1368 | /* This is a function which has a symtab for its address. */ | |
1369 | bv = BLOCKVECTOR (s); | |
1370 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1371 | ||
2335f48e | 1372 | /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the |
406bc4de DC |
1373 | `name' argument to lookup_block_symbol. But the name |
1374 | of a minimal symbol is always mangled, so that seems | |
1375 | to be clearly the wrong thing to pass as the | |
1376 | unmangled name. */ | |
1377 | sym = | |
5ad1c190 | 1378 | lookup_block_symbol (block, name, linkage_name, domain); |
406bc4de DC |
1379 | /* We kept static functions in minimal symbol table as well as |
1380 | in static scope. We want to find them in the symbol table. */ | |
1381 | if (!sym) | |
1382 | { | |
1383 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
1384 | sym = lookup_block_symbol (block, name, | |
5ad1c190 | 1385 | linkage_name, domain); |
406bc4de DC |
1386 | } |
1387 | ||
1388 | /* NOTE: carlton/2002-12-04: The following comment was | |
1389 | taken from a time when two versions of this function | |
1390 | were part of the body of lookup_symbol_aux: this | |
1391 | comment was taken from the version of the function | |
1392 | that was #ifdef HPUXHPPA, and the comment was right | |
1393 | before the 'return NULL' part of lookup_symbol_aux. | |
1394 | (Hence the "Fall through and return 0" comment.) | |
1395 | Elena did some digging into the situation for | |
1396 | Fortran, and she reports: | |
1397 | ||
1398 | "I asked around (thanks to Jeff Knaggs), and I think | |
1399 | the story for Fortran goes like this: | |
1400 | ||
1401 | "Apparently, in older Fortrans, '_' was not part of | |
1402 | the user namespace. g77 attached a final '_' to | |
1403 | procedure names as the exported symbols for linkage | |
1404 | (foo_) , but the symbols went in the debug info just | |
1405 | like 'foo'. The rationale behind this is not | |
1406 | completely clear, and maybe it was done to other | |
1407 | symbols as well, not just procedures." */ | |
1408 | ||
1409 | /* If we get here with sym == 0, the symbol was | |
1410 | found in the minimal symbol table | |
1411 | but not in the symtab. | |
1412 | Fall through and return 0 to use the msymbol | |
1413 | definition of "foo_". | |
1414 | (Note that outer code generally follows up a call | |
1415 | to this routine with a call to lookup_minimal_symbol(), | |
1416 | so a 0 return means we'll just flow into that other routine). | |
1417 | ||
1418 | This happens for Fortran "foo_" symbols, | |
1419 | which are "foo" in the symtab. | |
1420 | ||
1421 | This can also happen if "asm" is used to make a | |
1422 | regular symbol but not a debugging symbol, e.g. | |
1423 | asm(".globl _main"); | |
1424 | asm("_main:"); | |
1425 | */ | |
1426 | ||
1427 | if (symtab != NULL && sym != NULL) | |
1428 | *symtab = s; | |
406bc4de DC |
1429 | return fixup_symbol_section (sym, s->objfile); |
1430 | } | |
406bc4de DC |
1431 | } |
1432 | } | |
1433 | ||
1434 | return NULL; | |
1435 | } | |
ae2f03ac | 1436 | #endif /* 0 */ |
406bc4de | 1437 | |
5f9a71c3 DC |
1438 | /* A default version of lookup_symbol_nonlocal for use by languages |
1439 | that can't think of anything better to do. This implements the C | |
1440 | lookup rules. */ | |
1441 | ||
1442 | struct symbol * | |
1443 | basic_lookup_symbol_nonlocal (const char *name, | |
1444 | const char *linkage_name, | |
1445 | const struct block *block, | |
1446 | const domain_enum domain, | |
1447 | struct symtab **symtab) | |
1448 | { | |
1449 | struct symbol *sym; | |
1450 | ||
1451 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1452 | this (or what turned into this) was part of lookup_symbol_aux; | |
1453 | I'm much less worried about these questions now, since these | |
1454 | decisions have turned out well, but I leave these comments here | |
1455 | for posterity. */ | |
1456 | ||
1457 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1458 | not it would be appropriate to search the current global block | |
1459 | here as well. (That's what this code used to do before the | |
1460 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1461 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1462 | next. On the other hand, if decode_line_1 is passed an argument | |
1463 | like filename:var, then the user presumably wants 'var' to be | |
1464 | searched for in filename. On the third hand, there shouldn't be | |
1465 | multiple global variables all of which are named 'var', and it's | |
1466 | not like decode_line_1 has ever restricted its search to only | |
1467 | global variables in a single filename. All in all, only | |
1468 | searching the static block here seems best: it's correct and it's | |
1469 | cleanest. */ | |
1470 | ||
1471 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1472 | issue here: if you usually search for global symbols in the | |
1473 | current file, then it would be slightly better to search the | |
1474 | current global block before searching all the symtabs. But there | |
1475 | are other factors that have a much greater effect on performance | |
1476 | than that one, so I don't think we should worry about that for | |
1477 | now. */ | |
1478 | ||
1479 | sym = lookup_symbol_static (name, linkage_name, block, domain, symtab); | |
1480 | if (sym != NULL) | |
1481 | return sym; | |
1482 | ||
1483 | return lookup_symbol_global (name, linkage_name, domain, symtab); | |
1484 | } | |
1485 | ||
1486 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1487 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1488 | ||
1489 | struct symbol * | |
1490 | lookup_symbol_static (const char *name, | |
1491 | const char *linkage_name, | |
1492 | const struct block *block, | |
1493 | const domain_enum domain, | |
1494 | struct symtab **symtab) | |
1495 | { | |
1496 | const struct block *static_block = block_static_block (block); | |
1497 | ||
1498 | if (static_block != NULL) | |
1499 | return lookup_symbol_aux_block (name, linkage_name, static_block, | |
1500 | domain, symtab); | |
1501 | else | |
1502 | return NULL; | |
1503 | } | |
1504 | ||
1505 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1506 | necessary). */ | |
1507 | ||
1508 | struct symbol * | |
1509 | lookup_symbol_global (const char *name, | |
1510 | const char *linkage_name, | |
1511 | const domain_enum domain, | |
1512 | struct symtab **symtab) | |
1513 | { | |
1514 | struct symbol *sym; | |
1515 | ||
1516 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, | |
1517 | domain, symtab); | |
1518 | if (sym != NULL) | |
1519 | return sym; | |
1520 | ||
1521 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, | |
1522 | domain, symtab); | |
1523 | } | |
1524 | ||
3d4e8fd2 DC |
1525 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1526 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's | |
1527 | linkage name matches it. Check the global symbols if GLOBAL, the | |
1528 | static symbols if not */ | |
c906108c | 1529 | |
b6429628 | 1530 | struct partial_symbol * |
3d4e8fd2 DC |
1531 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1532 | const char *linkage_name, int global, | |
176620f1 | 1533 | domain_enum domain) |
c906108c | 1534 | { |
357e46e7 | 1535 | struct partial_symbol *temp; |
c906108c | 1536 | struct partial_symbol **start, **psym; |
38d49aff | 1537 | struct partial_symbol **top, **real_top, **bottom, **center; |
c906108c SS |
1538 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1539 | int do_linear_search = 1; | |
357e46e7 | 1540 | |
c906108c SS |
1541 | if (length == 0) |
1542 | { | |
1543 | return (NULL); | |
1544 | } | |
c906108c SS |
1545 | start = (global ? |
1546 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 1547 | pst->objfile->static_psymbols.list + pst->statics_offset); |
357e46e7 | 1548 | |
c5aa993b | 1549 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
1550 | { |
1551 | do_linear_search = 0; | |
1552 | ||
1553 | /* Binary search. This search is guaranteed to end with center | |
0fe19209 DC |
1554 | pointing at the earliest partial symbol whose name might be |
1555 | correct. At that point *all* partial symbols with an | |
1556 | appropriate name will be checked against the correct | |
176620f1 | 1557 | domain. */ |
c906108c SS |
1558 | |
1559 | bottom = start; | |
1560 | top = start + length - 1; | |
38d49aff | 1561 | real_top = top; |
c906108c SS |
1562 | while (top > bottom) |
1563 | { | |
1564 | center = bottom + (top - bottom) / 2; | |
1565 | if (!(center < top)) | |
e2e0b3e5 | 1566 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
c906108c | 1567 | if (!do_linear_search |
357e46e7 | 1568 | && (SYMBOL_LANGUAGE (*center) == language_java)) |
c906108c SS |
1569 | { |
1570 | do_linear_search = 1; | |
1571 | } | |
4725b721 | 1572 | if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0) |
c906108c SS |
1573 | { |
1574 | top = center; | |
1575 | } | |
1576 | else | |
1577 | { | |
1578 | bottom = center + 1; | |
1579 | } | |
1580 | } | |
1581 | if (!(top == bottom)) | |
e2e0b3e5 | 1582 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
357e46e7 | 1583 | |
3d4e8fd2 DC |
1584 | while (top <= real_top |
1585 | && (linkage_name != NULL | |
1586 | ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0 | |
4725b721 | 1587 | : SYMBOL_MATCHES_SEARCH_NAME (*top,name))) |
c906108c | 1588 | { |
176620f1 | 1589 | if (SYMBOL_DOMAIN (*top) == domain) |
c906108c | 1590 | { |
357e46e7 | 1591 | return (*top); |
c906108c | 1592 | } |
c5aa993b | 1593 | top++; |
c906108c SS |
1594 | } |
1595 | } | |
1596 | ||
1597 | /* Can't use a binary search or else we found during the binary search that | |
1598 | we should also do a linear search. */ | |
1599 | ||
1600 | if (do_linear_search) | |
357e46e7 | 1601 | { |
c906108c SS |
1602 | for (psym = start; psym < start + length; psym++) |
1603 | { | |
176620f1 | 1604 | if (domain == SYMBOL_DOMAIN (*psym)) |
c906108c | 1605 | { |
3d4e8fd2 DC |
1606 | if (linkage_name != NULL |
1607 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0 | |
4725b721 | 1608 | : SYMBOL_MATCHES_SEARCH_NAME (*psym, name)) |
c906108c SS |
1609 | { |
1610 | return (*psym); | |
1611 | } | |
1612 | } | |
1613 | } | |
1614 | } | |
1615 | ||
1616 | return (NULL); | |
1617 | } | |
1618 | ||
176620f1 | 1619 | /* Look up a type named NAME in the struct_domain. The type returned |
b368761e DC |
1620 | must not be opaque -- i.e., must have at least one field |
1621 | defined. */ | |
c906108c | 1622 | |
b368761e DC |
1623 | struct type * |
1624 | lookup_transparent_type (const char *name) | |
1625 | { | |
1626 | return current_language->la_lookup_transparent_type (name); | |
1627 | } | |
c906108c | 1628 | |
b368761e DC |
1629 | /* The standard implementation of lookup_transparent_type. This code |
1630 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1631 | up types were just left out. In particular it's assumed here that | |
1632 | types are available in struct_domain and only at file-static or | |
1633 | global blocks. */ | |
c906108c SS |
1634 | |
1635 | struct type * | |
b368761e | 1636 | basic_lookup_transparent_type (const char *name) |
c906108c | 1637 | { |
52f0bd74 AC |
1638 | struct symbol *sym; |
1639 | struct symtab *s = NULL; | |
1640 | struct partial_symtab *ps; | |
c906108c | 1641 | struct blockvector *bv; |
52f0bd74 AC |
1642 | struct objfile *objfile; |
1643 | struct block *block; | |
c906108c SS |
1644 | |
1645 | /* Now search all the global symbols. Do the symtab's first, then | |
1646 | check the psymtab's. If a psymtab indicates the existence | |
1647 | of the desired name as a global, then do psymtab-to-symtab | |
1648 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1649 | |
c906108c | 1650 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
1651 | { |
1652 | bv = BLOCKVECTOR (s); | |
1653 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1654 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1655 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1656 | { | |
1657 | return SYMBOL_TYPE (sym); | |
1658 | } | |
1659 | } | |
c906108c SS |
1660 | |
1661 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1662 | { |
3d4e8fd2 | 1663 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, |
176620f1 | 1664 | 1, STRUCT_DOMAIN)) |
c5aa993b JM |
1665 | { |
1666 | s = PSYMTAB_TO_SYMTAB (ps); | |
1667 | bv = BLOCKVECTOR (s); | |
1668 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1669 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1670 | if (!sym) |
1671 | { | |
1672 | /* This shouldn't be necessary, but as a last resort | |
1673 | * try looking in the statics even though the psymtab | |
1674 | * claimed the symbol was global. It's possible that | |
1675 | * the psymtab gets it wrong in some cases. | |
1676 | */ | |
1677 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1678 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1679 | if (!sym) |
8a3fe4f8 | 1680 | error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1681 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1682 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1683 | name, ps->filename, name, name); |
1684 | } | |
1685 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1686 | return SYMBOL_TYPE (sym); | |
1687 | } | |
1688 | } | |
c906108c SS |
1689 | |
1690 | /* Now search the static file-level symbols. | |
1691 | Not strictly correct, but more useful than an error. | |
1692 | Do the symtab's first, then | |
1693 | check the psymtab's. If a psymtab indicates the existence | |
1694 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1695 | conversion on the fly and return the found symbol. | |
1696 | */ | |
1697 | ||
1698 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1699 | { |
1700 | bv = BLOCKVECTOR (s); | |
1701 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1702 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1703 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1704 | { | |
1705 | return SYMBOL_TYPE (sym); | |
1706 | } | |
1707 | } | |
c906108c SS |
1708 | |
1709 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1710 | { |
176620f1 | 1711 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN)) |
c5aa993b JM |
1712 | { |
1713 | s = PSYMTAB_TO_SYMTAB (ps); | |
1714 | bv = BLOCKVECTOR (s); | |
1715 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1716 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1717 | if (!sym) |
1718 | { | |
1719 | /* This shouldn't be necessary, but as a last resort | |
1720 | * try looking in the globals even though the psymtab | |
1721 | * claimed the symbol was static. It's possible that | |
1722 | * the psymtab gets it wrong in some cases. | |
1723 | */ | |
1724 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1725 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1726 | if (!sym) |
8a3fe4f8 | 1727 | error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1728 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1729 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1730 | name, ps->filename, name, name); |
1731 | } | |
1732 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1733 | return SYMBOL_TYPE (sym); | |
1734 | } | |
1735 | } | |
c906108c SS |
1736 | return (struct type *) 0; |
1737 | } | |
1738 | ||
1739 | ||
1740 | /* Find the psymtab containing main(). */ | |
1741 | /* FIXME: What about languages without main() or specially linked | |
1742 | executables that have no main() ? */ | |
1743 | ||
1744 | struct partial_symtab * | |
fba45db2 | 1745 | find_main_psymtab (void) |
c906108c | 1746 | { |
52f0bd74 AC |
1747 | struct partial_symtab *pst; |
1748 | struct objfile *objfile; | |
c906108c SS |
1749 | |
1750 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 1751 | { |
176620f1 | 1752 | if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN)) |
c5aa993b JM |
1753 | { |
1754 | return (pst); | |
1755 | } | |
1756 | } | |
c906108c SS |
1757 | return (NULL); |
1758 | } | |
1759 | ||
176620f1 | 1760 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1761 | |
1762 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1763 | to find a match during the binary search of the non-encoded names, but | |
1764 | for now we don't worry about the slight inefficiency of looking for | |
1765 | a match we'll never find, since it will go pretty quick. Once the | |
1766 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 AF |
1767 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
1768 | symbol (language_cplus or language_objc set) has both the encoded and | |
1769 | non-encoded names tested for a match. | |
3121eff0 | 1770 | |
5ad1c190 | 1771 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
3121eff0 DJ |
1772 | particular mangled name. |
1773 | */ | |
c906108c SS |
1774 | |
1775 | struct symbol * | |
aa1ee363 | 1776 | lookup_block_symbol (const struct block *block, const char *name, |
5ad1c190 | 1777 | const char *linkage_name, |
176620f1 | 1778 | const domain_enum domain) |
c906108c | 1779 | { |
de4f826b DC |
1780 | struct dict_iterator iter; |
1781 | struct symbol *sym; | |
c906108c | 1782 | |
de4f826b | 1783 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1784 | { |
de4f826b DC |
1785 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1786 | sym != NULL; | |
1787 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1788 | { |
de4f826b DC |
1789 | if (SYMBOL_DOMAIN (sym) == domain |
1790 | && (linkage_name != NULL | |
1791 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
261397f8 DJ |
1792 | return sym; |
1793 | } | |
1794 | return NULL; | |
1795 | } | |
526e70c0 | 1796 | else |
c906108c | 1797 | { |
526e70c0 DC |
1798 | /* Note that parameter symbols do not always show up last in the |
1799 | list; this loop makes sure to take anything else other than | |
1800 | parameter symbols first; it only uses parameter symbols as a | |
1801 | last resort. Note that this only takes up extra computation | |
1802 | time on a match. */ | |
de4f826b DC |
1803 | |
1804 | struct symbol *sym_found = NULL; | |
1805 | ||
1806 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1807 | sym != NULL; | |
1808 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1809 | { |
176620f1 | 1810 | if (SYMBOL_DOMAIN (sym) == domain |
de4f826b DC |
1811 | && (linkage_name != NULL |
1812 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
c906108c | 1813 | { |
c906108c SS |
1814 | sym_found = sym; |
1815 | if (SYMBOL_CLASS (sym) != LOC_ARG && | |
1816 | SYMBOL_CLASS (sym) != LOC_LOCAL_ARG && | |
1817 | SYMBOL_CLASS (sym) != LOC_REF_ARG && | |
1818 | SYMBOL_CLASS (sym) != LOC_REGPARM && | |
1819 | SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR && | |
4c2df51b DJ |
1820 | SYMBOL_CLASS (sym) != LOC_BASEREG_ARG && |
1821 | SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG) | |
c906108c SS |
1822 | { |
1823 | break; | |
1824 | } | |
1825 | } | |
c906108c | 1826 | } |
de4f826b | 1827 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1828 | } |
c906108c SS |
1829 | } |
1830 | ||
c906108c SS |
1831 | /* Find the symtab associated with PC and SECTION. Look through the |
1832 | psymtabs and read in another symtab if necessary. */ | |
1833 | ||
1834 | struct symtab * | |
fba45db2 | 1835 | find_pc_sect_symtab (CORE_ADDR pc, asection *section) |
c906108c | 1836 | { |
52f0bd74 | 1837 | struct block *b; |
c906108c | 1838 | struct blockvector *bv; |
52f0bd74 AC |
1839 | struct symtab *s = NULL; |
1840 | struct symtab *best_s = NULL; | |
1841 | struct partial_symtab *ps; | |
1842 | struct objfile *objfile; | |
c906108c | 1843 | CORE_ADDR distance = 0; |
8a48e967 DJ |
1844 | struct minimal_symbol *msymbol; |
1845 | ||
1846 | /* If we know that this is not a text address, return failure. This is | |
1847 | necessary because we loop based on the block's high and low code | |
1848 | addresses, which do not include the data ranges, and because | |
1849 | we call find_pc_sect_psymtab which has a similar restriction based | |
1850 | on the partial_symtab's texthigh and textlow. */ | |
1851 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
1852 | if (msymbol | |
1853 | && (msymbol->type == mst_data | |
1854 | || msymbol->type == mst_bss | |
1855 | || msymbol->type == mst_abs | |
1856 | || msymbol->type == mst_file_data | |
1857 | || msymbol->type == mst_file_bss)) | |
1858 | return NULL; | |
c906108c SS |
1859 | |
1860 | /* Search all symtabs for the one whose file contains our address, and which | |
1861 | is the smallest of all the ones containing the address. This is designed | |
1862 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
1863 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
1864 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
1865 | ||
1866 | This happens for native ecoff format, where code from included files | |
1867 | gets its own symtab. The symtab for the included file should have | |
1868 | been read in already via the dependency mechanism. | |
1869 | It might be swifter to create several symtabs with the same name | |
1870 | like xcoff does (I'm not sure). | |
1871 | ||
1872 | It also happens for objfiles that have their functions reordered. | |
1873 | For these, the symtab we are looking for is not necessarily read in. */ | |
1874 | ||
1875 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
1876 | { |
1877 | bv = BLOCKVECTOR (s); | |
1878 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 1879 | |
c5aa993b | 1880 | if (BLOCK_START (b) <= pc |
c5aa993b | 1881 | && BLOCK_END (b) > pc |
c5aa993b JM |
1882 | && (distance == 0 |
1883 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
1884 | { | |
1885 | /* For an objfile that has its functions reordered, | |
1886 | find_pc_psymtab will find the proper partial symbol table | |
1887 | and we simply return its corresponding symtab. */ | |
1888 | /* In order to better support objfiles that contain both | |
1889 | stabs and coff debugging info, we continue on if a psymtab | |
1890 | can't be found. */ | |
1891 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
1892 | { | |
1893 | ps = find_pc_sect_psymtab (pc, section); | |
1894 | if (ps) | |
1895 | return PSYMTAB_TO_SYMTAB (ps); | |
1896 | } | |
1897 | if (section != 0) | |
1898 | { | |
de4f826b | 1899 | struct dict_iterator iter; |
261397f8 | 1900 | struct symbol *sym = NULL; |
c906108c | 1901 | |
de4f826b | 1902 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 1903 | { |
261397f8 DJ |
1904 | fixup_symbol_section (sym, objfile); |
1905 | if (section == SYMBOL_BFD_SECTION (sym)) | |
c5aa993b JM |
1906 | break; |
1907 | } | |
de4f826b | 1908 | if (sym == NULL) |
c5aa993b JM |
1909 | continue; /* no symbol in this symtab matches section */ |
1910 | } | |
1911 | distance = BLOCK_END (b) - BLOCK_START (b); | |
1912 | best_s = s; | |
1913 | } | |
1914 | } | |
c906108c SS |
1915 | |
1916 | if (best_s != NULL) | |
c5aa993b | 1917 | return (best_s); |
c906108c SS |
1918 | |
1919 | s = NULL; | |
1920 | ps = find_pc_sect_psymtab (pc, section); | |
1921 | if (ps) | |
1922 | { | |
1923 | if (ps->readin) | |
1924 | /* Might want to error() here (in case symtab is corrupt and | |
1925 | will cause a core dump), but maybe we can successfully | |
1926 | continue, so let's not. */ | |
8a3fe4f8 AC |
1927 | warning (_("\ |
1928 | (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"), | |
d730266b | 1929 | paddr_nz (pc)); |
c906108c SS |
1930 | s = PSYMTAB_TO_SYMTAB (ps); |
1931 | } | |
1932 | return (s); | |
1933 | } | |
1934 | ||
1935 | /* Find the symtab associated with PC. Look through the psymtabs and | |
1936 | read in another symtab if necessary. Backward compatibility, no section */ | |
1937 | ||
1938 | struct symtab * | |
fba45db2 | 1939 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
1940 | { |
1941 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
1942 | } | |
c906108c | 1943 | \f |
c5aa993b | 1944 | |
7e73cedf | 1945 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
1946 | Return a structure containing a symtab pointer, a line number, |
1947 | and a pc range for the entire source line. | |
1948 | The value's .pc field is NOT the specified pc. | |
1949 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
1950 | use the line that ends there. Otherwise, in that case, the line | |
1951 | that begins there is used. */ | |
1952 | ||
1953 | /* The big complication here is that a line may start in one file, and end just | |
1954 | before the start of another file. This usually occurs when you #include | |
1955 | code in the middle of a subroutine. To properly find the end of a line's PC | |
1956 | range, we must search all symtabs associated with this compilation unit, and | |
1957 | find the one whose first PC is closer than that of the next line in this | |
1958 | symtab. */ | |
1959 | ||
1960 | /* If it's worth the effort, we could be using a binary search. */ | |
1961 | ||
1962 | struct symtab_and_line | |
198beae2 | 1963 | find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent) |
c906108c SS |
1964 | { |
1965 | struct symtab *s; | |
52f0bd74 AC |
1966 | struct linetable *l; |
1967 | int len; | |
1968 | int i; | |
1969 | struct linetable_entry *item; | |
c906108c SS |
1970 | struct symtab_and_line val; |
1971 | struct blockvector *bv; | |
1972 | struct minimal_symbol *msymbol; | |
1973 | struct minimal_symbol *mfunsym; | |
1974 | ||
1975 | /* Info on best line seen so far, and where it starts, and its file. */ | |
1976 | ||
1977 | struct linetable_entry *best = NULL; | |
1978 | CORE_ADDR best_end = 0; | |
1979 | struct symtab *best_symtab = 0; | |
1980 | ||
1981 | /* Store here the first line number | |
1982 | of a file which contains the line at the smallest pc after PC. | |
1983 | If we don't find a line whose range contains PC, | |
1984 | we will use a line one less than this, | |
1985 | with a range from the start of that file to the first line's pc. */ | |
1986 | struct linetable_entry *alt = NULL; | |
1987 | struct symtab *alt_symtab = 0; | |
1988 | ||
1989 | /* Info on best line seen in this file. */ | |
1990 | ||
1991 | struct linetable_entry *prev; | |
1992 | ||
1993 | /* If this pc is not from the current frame, | |
1994 | it is the address of the end of a call instruction. | |
1995 | Quite likely that is the start of the following statement. | |
1996 | But what we want is the statement containing the instruction. | |
1997 | Fudge the pc to make sure we get that. */ | |
1998 | ||
fe39c653 | 1999 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2000 | |
b77b1eb7 JB |
2001 | /* It's tempting to assume that, if we can't find debugging info for |
2002 | any function enclosing PC, that we shouldn't search for line | |
2003 | number info, either. However, GAS can emit line number info for | |
2004 | assembly files --- very helpful when debugging hand-written | |
2005 | assembly code. In such a case, we'd have no debug info for the | |
2006 | function, but we would have line info. */ | |
648f4f79 | 2007 | |
c906108c SS |
2008 | if (notcurrent) |
2009 | pc -= 1; | |
2010 | ||
c5aa993b | 2011 | /* elz: added this because this function returned the wrong |
c906108c SS |
2012 | information if the pc belongs to a stub (import/export) |
2013 | to call a shlib function. This stub would be anywhere between | |
2014 | two functions in the target, and the line info was erroneously | |
2015 | taken to be the one of the line before the pc. | |
c5aa993b | 2016 | */ |
c906108c | 2017 | /* RT: Further explanation: |
c5aa993b | 2018 | |
c906108c SS |
2019 | * We have stubs (trampolines) inserted between procedures. |
2020 | * | |
2021 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2022 | * exists in the main image. | |
2023 | * | |
2024 | * In the minimal symbol table, we have a bunch of symbols | |
2025 | * sorted by start address. The stubs are marked as "trampoline", | |
2026 | * the others appear as text. E.g.: | |
2027 | * | |
2028 | * Minimal symbol table for main image | |
2029 | * main: code for main (text symbol) | |
2030 | * shr1: stub (trampoline symbol) | |
2031 | * foo: code for foo (text symbol) | |
2032 | * ... | |
2033 | * Minimal symbol table for "shr1" image: | |
2034 | * ... | |
2035 | * shr1: code for shr1 (text symbol) | |
2036 | * ... | |
2037 | * | |
2038 | * So the code below is trying to detect if we are in the stub | |
2039 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2040 | * and if found, do the symbolization from the real-code address | |
2041 | * rather than the stub address. | |
2042 | * | |
2043 | * Assumptions being made about the minimal symbol table: | |
2044 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
2045 | * if we're really in the trampoline. If we're beyond it (say | |
2046 | * we're in "foo" in the above example), it'll have a closer | |
2047 | * symbol (the "foo" text symbol for example) and will not | |
2048 | * return the trampoline. | |
2049 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2050 | * corresponding to the trampoline, and whose address will | |
2051 | * be different than the trampoline address. I put in a sanity | |
2052 | * check for the address being the same, to avoid an | |
2053 | * infinite recursion. | |
2054 | */ | |
c5aa993b JM |
2055 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2056 | if (msymbol != NULL) | |
c906108c | 2057 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 2058 | { |
2335f48e | 2059 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 2060 | NULL); |
c5aa993b JM |
2061 | if (mfunsym == NULL) |
2062 | /* I eliminated this warning since it is coming out | |
2063 | * in the following situation: | |
2064 | * gdb shmain // test program with shared libraries | |
2065 | * (gdb) break shr1 // function in shared lib | |
2066 | * Warning: In stub for ... | |
2067 | * In the above situation, the shared lib is not loaded yet, | |
2068 | * so of course we can't find the real func/line info, | |
2069 | * but the "break" still works, and the warning is annoying. | |
2070 | * So I commented out the warning. RT */ | |
2335f48e | 2071 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2072 | /* fall through */ |
2073 | else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol)) | |
2074 | /* Avoid infinite recursion */ | |
2075 | /* See above comment about why warning is commented out */ | |
2335f48e | 2076 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2077 | /* fall through */ |
2078 | else | |
2079 | return find_pc_line (SYMBOL_VALUE (mfunsym), 0); | |
2080 | } | |
c906108c SS |
2081 | |
2082 | ||
2083 | s = find_pc_sect_symtab (pc, section); | |
2084 | if (!s) | |
2085 | { | |
2086 | /* if no symbol information, return previous pc */ | |
2087 | if (notcurrent) | |
2088 | pc++; | |
2089 | val.pc = pc; | |
2090 | return val; | |
2091 | } | |
2092 | ||
2093 | bv = BLOCKVECTOR (s); | |
2094 | ||
2095 | /* Look at all the symtabs that share this blockvector. | |
2096 | They all have the same apriori range, that we found was right; | |
2097 | but they have different line tables. */ | |
2098 | ||
2099 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2100 | { | |
2101 | /* Find the best line in this symtab. */ | |
2102 | l = LINETABLE (s); | |
2103 | if (!l) | |
c5aa993b | 2104 | continue; |
c906108c SS |
2105 | len = l->nitems; |
2106 | if (len <= 0) | |
2107 | { | |
2108 | /* I think len can be zero if the symtab lacks line numbers | |
2109 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2110 | I'm not sure which, and maybe it depends on the symbol | |
2111 | reader). */ | |
2112 | continue; | |
2113 | } | |
2114 | ||
2115 | prev = NULL; | |
2116 | item = l->item; /* Get first line info */ | |
2117 | ||
2118 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2119 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2120 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2121 | { | |
2122 | alt = item; | |
2123 | alt_symtab = s; | |
2124 | } | |
2125 | ||
2126 | for (i = 0; i < len; i++, item++) | |
2127 | { | |
2128 | /* Leave prev pointing to the linetable entry for the last line | |
2129 | that started at or before PC. */ | |
2130 | if (item->pc > pc) | |
2131 | break; | |
2132 | ||
2133 | prev = item; | |
2134 | } | |
2135 | ||
2136 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2137 | item points at the next line. If we ran off the end of the linetable |
2138 | (pc >= start of the last line), then prev == item. If pc < start of | |
2139 | the first line, prev will not be set. */ | |
c906108c SS |
2140 | |
2141 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2142 | If so, record this file, and its best line, as best so far. Don't |
2143 | save prev if it represents the end of a function (i.e. line number | |
2144 | 0) instead of a real line. */ | |
c906108c | 2145 | |
083ae935 | 2146 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2147 | { |
2148 | best = prev; | |
2149 | best_symtab = s; | |
25d53da1 KB |
2150 | |
2151 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2152 | if (best_end <= best->pc) | |
2153 | best_end = 0; | |
c906108c | 2154 | } |
25d53da1 KB |
2155 | |
2156 | /* If another line (denoted by ITEM) is in the linetable and its | |
2157 | PC is after BEST's PC, but before the current BEST_END, then | |
2158 | use ITEM's PC as the new best_end. */ | |
2159 | if (best && i < len && item->pc > best->pc | |
2160 | && (best_end == 0 || best_end > item->pc)) | |
2161 | best_end = item->pc; | |
c906108c SS |
2162 | } |
2163 | ||
2164 | if (!best_symtab) | |
2165 | { | |
2166 | if (!alt_symtab) | |
2167 | { /* If we didn't find any line # info, just | |
2168 | return zeros. */ | |
2169 | val.pc = pc; | |
2170 | } | |
2171 | else | |
2172 | { | |
2173 | val.symtab = alt_symtab; | |
2174 | val.line = alt->line - 1; | |
2175 | ||
2176 | /* Don't return line 0, that means that we didn't find the line. */ | |
c5aa993b JM |
2177 | if (val.line == 0) |
2178 | ++val.line; | |
c906108c SS |
2179 | |
2180 | val.pc = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2181 | val.end = alt->pc; | |
2182 | } | |
2183 | } | |
e8717518 FF |
2184 | else if (best->line == 0) |
2185 | { | |
2186 | /* If our best fit is in a range of PC's for which no line | |
2187 | number info is available (line number is zero) then we didn't | |
2188 | find any valid line information. */ | |
2189 | val.pc = pc; | |
2190 | } | |
c906108c SS |
2191 | else |
2192 | { | |
2193 | val.symtab = best_symtab; | |
2194 | val.line = best->line; | |
2195 | val.pc = best->pc; | |
2196 | if (best_end && (!alt || best_end < alt->pc)) | |
2197 | val.end = best_end; | |
2198 | else if (alt) | |
2199 | val.end = alt->pc; | |
2200 | else | |
2201 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2202 | } | |
2203 | val.section = section; | |
2204 | return val; | |
2205 | } | |
2206 | ||
2207 | /* Backward compatibility (no section) */ | |
2208 | ||
2209 | struct symtab_and_line | |
fba45db2 | 2210 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2211 | { |
c5aa993b | 2212 | asection *section; |
c906108c SS |
2213 | |
2214 | section = find_pc_overlay (pc); | |
2215 | if (pc_in_unmapped_range (pc, section)) | |
2216 | pc = overlay_mapped_address (pc, section); | |
2217 | return find_pc_sect_line (pc, section, notcurrent); | |
2218 | } | |
c906108c | 2219 | \f |
c906108c SS |
2220 | /* Find line number LINE in any symtab whose name is the same as |
2221 | SYMTAB. | |
2222 | ||
2223 | If found, return the symtab that contains the linetable in which it was | |
2224 | found, set *INDEX to the index in the linetable of the best entry | |
2225 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2226 | exact match. | |
2227 | ||
2228 | If not found, return NULL. */ | |
2229 | ||
50641945 | 2230 | struct symtab * |
fba45db2 | 2231 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
c906108c SS |
2232 | { |
2233 | int exact; | |
2234 | ||
2235 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2236 | so far seen. */ | |
2237 | ||
2238 | int best_index; | |
2239 | struct linetable *best_linetable; | |
2240 | struct symtab *best_symtab; | |
2241 | ||
2242 | /* First try looking it up in the given symtab. */ | |
2243 | best_linetable = LINETABLE (symtab); | |
2244 | best_symtab = symtab; | |
2245 | best_index = find_line_common (best_linetable, line, &exact); | |
2246 | if (best_index < 0 || !exact) | |
2247 | { | |
2248 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2249 | another symtab with the same name. In the case of xcoff, |
2250 | multiple csects for one source file (produced by IBM's FORTRAN | |
2251 | compiler) produce multiple symtabs (this is unavoidable | |
2252 | assuming csects can be at arbitrary places in memory and that | |
2253 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2254 | |
2255 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2256 | or 0 if none has been seen so far. |
2257 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2258 | int best; |
2259 | ||
2260 | struct objfile *objfile; | |
2261 | struct symtab *s; | |
2262 | ||
2263 | if (best_index >= 0) | |
2264 | best = best_linetable->item[best_index].line; | |
2265 | else | |
2266 | best = 0; | |
2267 | ||
2268 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
2269 | { |
2270 | struct linetable *l; | |
2271 | int ind; | |
c906108c | 2272 | |
6314a349 | 2273 | if (strcmp (symtab->filename, s->filename) != 0) |
c5aa993b JM |
2274 | continue; |
2275 | l = LINETABLE (s); | |
2276 | ind = find_line_common (l, line, &exact); | |
2277 | if (ind >= 0) | |
2278 | { | |
2279 | if (exact) | |
2280 | { | |
2281 | best_index = ind; | |
2282 | best_linetable = l; | |
2283 | best_symtab = s; | |
2284 | goto done; | |
2285 | } | |
2286 | if (best == 0 || l->item[ind].line < best) | |
2287 | { | |
2288 | best = l->item[ind].line; | |
2289 | best_index = ind; | |
2290 | best_linetable = l; | |
2291 | best_symtab = s; | |
2292 | } | |
2293 | } | |
2294 | } | |
c906108c | 2295 | } |
c5aa993b | 2296 | done: |
c906108c SS |
2297 | if (best_index < 0) |
2298 | return NULL; | |
2299 | ||
2300 | if (index) | |
2301 | *index = best_index; | |
2302 | if (exact_match) | |
2303 | *exact_match = exact; | |
2304 | ||
2305 | return best_symtab; | |
2306 | } | |
2307 | \f | |
2308 | /* Set the PC value for a given source file and line number and return true. | |
2309 | Returns zero for invalid line number (and sets the PC to 0). | |
2310 | The source file is specified with a struct symtab. */ | |
2311 | ||
2312 | int | |
fba45db2 | 2313 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2314 | { |
2315 | struct linetable *l; | |
2316 | int ind; | |
2317 | ||
2318 | *pc = 0; | |
2319 | if (symtab == 0) | |
2320 | return 0; | |
2321 | ||
2322 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2323 | if (symtab != NULL) | |
2324 | { | |
2325 | l = LINETABLE (symtab); | |
2326 | *pc = l->item[ind].pc; | |
2327 | return 1; | |
2328 | } | |
2329 | else | |
2330 | return 0; | |
2331 | } | |
2332 | ||
2333 | /* Find the range of pc values in a line. | |
2334 | Store the starting pc of the line into *STARTPTR | |
2335 | and the ending pc (start of next line) into *ENDPTR. | |
2336 | Returns 1 to indicate success. | |
2337 | Returns 0 if could not find the specified line. */ | |
2338 | ||
2339 | int | |
fba45db2 KB |
2340 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2341 | CORE_ADDR *endptr) | |
c906108c SS |
2342 | { |
2343 | CORE_ADDR startaddr; | |
2344 | struct symtab_and_line found_sal; | |
2345 | ||
2346 | startaddr = sal.pc; | |
c5aa993b | 2347 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2348 | return 0; |
2349 | ||
2350 | /* This whole function is based on address. For example, if line 10 has | |
2351 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2352 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2353 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2354 | This also insures that we never give a range like "starts at 0x134 | |
2355 | and ends at 0x12c". */ | |
2356 | ||
2357 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2358 | if (found_sal.line != sal.line) | |
2359 | { | |
2360 | /* The specified line (sal) has zero bytes. */ | |
2361 | *startptr = found_sal.pc; | |
2362 | *endptr = found_sal.pc; | |
2363 | } | |
2364 | else | |
2365 | { | |
2366 | *startptr = found_sal.pc; | |
2367 | *endptr = found_sal.end; | |
2368 | } | |
2369 | return 1; | |
2370 | } | |
2371 | ||
2372 | /* Given a line table and a line number, return the index into the line | |
2373 | table for the pc of the nearest line whose number is >= the specified one. | |
2374 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2375 | ||
2376 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2377 | ||
2378 | static int | |
aa1ee363 | 2379 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2380 | int *exact_match) |
c906108c | 2381 | { |
52f0bd74 AC |
2382 | int i; |
2383 | int len; | |
c906108c SS |
2384 | |
2385 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2386 | or 0 if none has been seen so far. | |
2387 | BEST_INDEX identifies the item for it. */ | |
2388 | ||
2389 | int best_index = -1; | |
2390 | int best = 0; | |
2391 | ||
2392 | if (lineno <= 0) | |
2393 | return -1; | |
2394 | if (l == 0) | |
2395 | return -1; | |
2396 | ||
2397 | len = l->nitems; | |
2398 | for (i = 0; i < len; i++) | |
2399 | { | |
aa1ee363 | 2400 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2401 | |
2402 | if (item->line == lineno) | |
2403 | { | |
2404 | /* Return the first (lowest address) entry which matches. */ | |
2405 | *exact_match = 1; | |
2406 | return i; | |
2407 | } | |
2408 | ||
2409 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2410 | { | |
2411 | best = item->line; | |
2412 | best_index = i; | |
2413 | } | |
2414 | } | |
2415 | ||
2416 | /* If we got here, we didn't get an exact match. */ | |
2417 | ||
2418 | *exact_match = 0; | |
2419 | return best_index; | |
2420 | } | |
2421 | ||
2422 | int | |
fba45db2 | 2423 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2424 | { |
2425 | struct symtab_and_line sal; | |
2426 | sal = find_pc_line (pc, 0); | |
2427 | *startptr = sal.pc; | |
2428 | *endptr = sal.end; | |
2429 | return sal.symtab != 0; | |
2430 | } | |
2431 | ||
2432 | /* Given a function symbol SYM, find the symtab and line for the start | |
2433 | of the function. | |
2434 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2435 | of real code inside the function. */ | |
2436 | ||
50641945 | 2437 | struct symtab_and_line |
fba45db2 | 2438 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c SS |
2439 | { |
2440 | CORE_ADDR pc; | |
2441 | struct symtab_and_line sal; | |
2442 | ||
2443 | pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
2444 | fixup_symbol_section (sym, NULL); | |
2445 | if (funfirstline) | |
c5aa993b | 2446 | { /* skip "first line" of function (which is actually its prologue) */ |
c906108c SS |
2447 | asection *section = SYMBOL_BFD_SECTION (sym); |
2448 | /* If function is in an unmapped overlay, use its unmapped LMA | |
c5aa993b | 2449 | address, so that SKIP_PROLOGUE has something unique to work on */ |
c906108c SS |
2450 | if (section_is_overlay (section) && |
2451 | !section_is_mapped (section)) | |
2452 | pc = overlay_unmapped_address (pc, section); | |
2453 | ||
782263ab | 2454 | pc += DEPRECATED_FUNCTION_START_OFFSET; |
b83266a0 | 2455 | pc = SKIP_PROLOGUE (pc); |
c906108c SS |
2456 | |
2457 | /* For overlays, map pc back into its mapped VMA range */ | |
2458 | pc = overlay_mapped_address (pc, section); | |
2459 | } | |
2460 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2461 | ||
c906108c SS |
2462 | /* Check if SKIP_PROLOGUE left us in mid-line, and the next |
2463 | line is still part of the same function. */ | |
2464 | if (sal.pc != pc | |
2465 | && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end | |
2466 | && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym))) | |
2467 | { | |
2468 | /* First pc of next line */ | |
2469 | pc = sal.end; | |
2470 | /* Recalculate the line number (might not be N+1). */ | |
2471 | sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0); | |
2472 | } | |
2473 | sal.pc = pc; | |
c906108c SS |
2474 | |
2475 | return sal; | |
2476 | } | |
50641945 | 2477 | |
c906108c SS |
2478 | /* If P is of the form "operator[ \t]+..." where `...' is |
2479 | some legitimate operator text, return a pointer to the | |
2480 | beginning of the substring of the operator text. | |
2481 | Otherwise, return "". */ | |
2482 | char * | |
fba45db2 | 2483 | operator_chars (char *p, char **end) |
c906108c SS |
2484 | { |
2485 | *end = ""; | |
2486 | if (strncmp (p, "operator", 8)) | |
2487 | return *end; | |
2488 | p += 8; | |
2489 | ||
2490 | /* Don't get faked out by `operator' being part of a longer | |
2491 | identifier. */ | |
c5aa993b | 2492 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2493 | return *end; |
2494 | ||
2495 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2496 | while (*p == ' ' || *p == '\t') | |
2497 | p++; | |
2498 | ||
2499 | /* Recognize 'operator TYPENAME'. */ | |
2500 | ||
c5aa993b | 2501 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2502 | { |
aa1ee363 | 2503 | char *q = p + 1; |
c5aa993b | 2504 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2505 | q++; |
2506 | *end = q; | |
2507 | return p; | |
2508 | } | |
2509 | ||
53e8ad3d MS |
2510 | while (*p) |
2511 | switch (*p) | |
2512 | { | |
2513 | case '\\': /* regexp quoting */ | |
2514 | if (p[1] == '*') | |
2515 | { | |
2516 | if (p[2] == '=') /* 'operator\*=' */ | |
2517 | *end = p + 3; | |
2518 | else /* 'operator\*' */ | |
2519 | *end = p + 2; | |
2520 | return p; | |
2521 | } | |
2522 | else if (p[1] == '[') | |
2523 | { | |
2524 | if (p[2] == ']') | |
8a3fe4f8 | 2525 | error (_("mismatched quoting on brackets, try 'operator\\[\\]'")); |
53e8ad3d MS |
2526 | else if (p[2] == '\\' && p[3] == ']') |
2527 | { | |
2528 | *end = p + 4; /* 'operator\[\]' */ | |
2529 | return p; | |
2530 | } | |
2531 | else | |
8a3fe4f8 | 2532 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d MS |
2533 | } |
2534 | else | |
2535 | { | |
2536 | /* Gratuitous qoute: skip it and move on. */ | |
2537 | p++; | |
2538 | continue; | |
2539 | } | |
2540 | break; | |
2541 | case '!': | |
2542 | case '=': | |
2543 | case '*': | |
2544 | case '/': | |
2545 | case '%': | |
2546 | case '^': | |
2547 | if (p[1] == '=') | |
2548 | *end = p + 2; | |
2549 | else | |
2550 | *end = p + 1; | |
2551 | return p; | |
2552 | case '<': | |
2553 | case '>': | |
2554 | case '+': | |
2555 | case '-': | |
2556 | case '&': | |
2557 | case '|': | |
2558 | if (p[0] == '-' && p[1] == '>') | |
2559 | { | |
2560 | /* Struct pointer member operator 'operator->'. */ | |
2561 | if (p[2] == '*') | |
2562 | { | |
2563 | *end = p + 3; /* 'operator->*' */ | |
2564 | return p; | |
2565 | } | |
2566 | else if (p[2] == '\\') | |
2567 | { | |
2568 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2569 | return p; | |
2570 | } | |
2571 | else | |
2572 | { | |
2573 | *end = p + 2; /* 'operator->' */ | |
2574 | return p; | |
2575 | } | |
2576 | } | |
2577 | if (p[1] == '=' || p[1] == p[0]) | |
2578 | *end = p + 2; | |
2579 | else | |
2580 | *end = p + 1; | |
2581 | return p; | |
2582 | case '~': | |
2583 | case ',': | |
c5aa993b | 2584 | *end = p + 1; |
53e8ad3d MS |
2585 | return p; |
2586 | case '(': | |
2587 | if (p[1] != ')') | |
8a3fe4f8 | 2588 | error (_("`operator ()' must be specified without whitespace in `()'")); |
c5aa993b | 2589 | *end = p + 2; |
53e8ad3d MS |
2590 | return p; |
2591 | case '?': | |
2592 | if (p[1] != ':') | |
8a3fe4f8 | 2593 | error (_("`operator ?:' must be specified without whitespace in `?:'")); |
53e8ad3d MS |
2594 | *end = p + 2; |
2595 | return p; | |
2596 | case '[': | |
2597 | if (p[1] != ']') | |
8a3fe4f8 | 2598 | error (_("`operator []' must be specified without whitespace in `[]'")); |
53e8ad3d MS |
2599 | *end = p + 2; |
2600 | return p; | |
2601 | default: | |
8a3fe4f8 | 2602 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
2603 | break; |
2604 | } | |
2605 | ||
c906108c SS |
2606 | *end = ""; |
2607 | return *end; | |
2608 | } | |
c906108c | 2609 | \f |
c5aa993b | 2610 | |
c94fdfd0 EZ |
2611 | /* If FILE is not already in the table of files, return zero; |
2612 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2613 | is non-zero. If *FIRST is non-zero, forget the old table | |
2614 | contents. */ | |
2615 | static int | |
2616 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2617 | { |
c94fdfd0 EZ |
2618 | /* Table of files seen so far. */ |
2619 | static const char **tab = NULL; | |
c906108c SS |
2620 | /* Allocated size of tab in elements. |
2621 | Start with one 256-byte block (when using GNU malloc.c). | |
2622 | 24 is the malloc overhead when range checking is in effect. */ | |
2623 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2624 | /* Current size of tab in elements. */ | |
2625 | static int tab_cur_size; | |
c94fdfd0 | 2626 | const char **p; |
c906108c SS |
2627 | |
2628 | if (*first) | |
2629 | { | |
2630 | if (tab == NULL) | |
c94fdfd0 | 2631 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2632 | tab_cur_size = 0; |
2633 | } | |
2634 | ||
c94fdfd0 | 2635 | /* Is FILE in tab? */ |
c906108c | 2636 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2637 | if (strcmp (*p, file) == 0) |
2638 | return 1; | |
2639 | ||
2640 | /* No; maybe add it to tab. */ | |
2641 | if (add) | |
c906108c | 2642 | { |
c94fdfd0 EZ |
2643 | if (tab_cur_size == tab_alloc_size) |
2644 | { | |
2645 | tab_alloc_size *= 2; | |
2646 | tab = (const char **) xrealloc ((char *) tab, | |
2647 | tab_alloc_size * sizeof (*tab)); | |
2648 | } | |
2649 | tab[tab_cur_size++] = file; | |
c906108c | 2650 | } |
c906108c | 2651 | |
c94fdfd0 EZ |
2652 | return 0; |
2653 | } | |
2654 | ||
2655 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2656 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2657 | name printed. Set *FIRST to zero. */ | |
2658 | static void | |
d092d1a2 | 2659 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
2660 | { |
2661 | /* Since a single source file can result in several partial symbol | |
2662 | tables, we need to avoid printing it more than once. Note: if | |
2663 | some of the psymtabs are read in and some are not, it gets | |
2664 | printed both under "Source files for which symbols have been | |
2665 | read" and "Source files for which symbols will be read in on | |
2666 | demand". I consider this a reasonable way to deal with the | |
2667 | situation. I'm not sure whether this can also happen for | |
2668 | symtabs; it doesn't hurt to check. */ | |
2669 | ||
2670 | /* Was NAME already seen? */ | |
2671 | if (filename_seen (name, 1, first)) | |
2672 | { | |
2673 | /* Yes; don't print it again. */ | |
2674 | return; | |
2675 | } | |
2676 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2677 | if (*first) |
2678 | { | |
2679 | *first = 0; | |
2680 | } | |
2681 | else | |
2682 | { | |
2683 | printf_filtered (", "); | |
2684 | } | |
2685 | ||
2686 | wrap_here (""); | |
2687 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2688 | } |
c906108c SS |
2689 | |
2690 | static void | |
fba45db2 | 2691 | sources_info (char *ignore, int from_tty) |
c906108c | 2692 | { |
52f0bd74 AC |
2693 | struct symtab *s; |
2694 | struct partial_symtab *ps; | |
2695 | struct objfile *objfile; | |
c906108c | 2696 | int first; |
c5aa993b | 2697 | |
c906108c SS |
2698 | if (!have_full_symbols () && !have_partial_symbols ()) |
2699 | { | |
8a3fe4f8 | 2700 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 2701 | } |
c5aa993b | 2702 | |
c906108c SS |
2703 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2704 | ||
2705 | first = 1; | |
2706 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 2707 | { |
d092d1a2 DJ |
2708 | const char *fullname = symtab_to_fullname (s); |
2709 | output_source_filename (fullname ? fullname : s->filename, &first); | |
c5aa993b | 2710 | } |
c906108c | 2711 | printf_filtered ("\n\n"); |
c5aa993b | 2712 | |
c906108c SS |
2713 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2714 | ||
2715 | first = 1; | |
2716 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2717 | { |
2718 | if (!ps->readin) | |
2719 | { | |
d092d1a2 DJ |
2720 | const char *fullname = psymtab_to_fullname (ps); |
2721 | output_source_filename (fullname ? fullname : ps->filename, &first); | |
c5aa993b JM |
2722 | } |
2723 | } | |
c906108c SS |
2724 | printf_filtered ("\n"); |
2725 | } | |
2726 | ||
2727 | static int | |
fd118b61 | 2728 | file_matches (char *file, char *files[], int nfiles) |
c906108c SS |
2729 | { |
2730 | int i; | |
2731 | ||
2732 | if (file != NULL && nfiles != 0) | |
2733 | { | |
2734 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2735 | { |
31889e00 | 2736 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2737 | return 1; |
2738 | } | |
c906108c SS |
2739 | } |
2740 | else if (nfiles == 0) | |
2741 | return 1; | |
2742 | return 0; | |
2743 | } | |
2744 | ||
2745 | /* Free any memory associated with a search. */ | |
2746 | void | |
fba45db2 | 2747 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2748 | { |
2749 | struct symbol_search *p; | |
2750 | struct symbol_search *next; | |
2751 | ||
2752 | for (p = symbols; p != NULL; p = next) | |
2753 | { | |
2754 | next = p->next; | |
b8c9b27d | 2755 | xfree (p); |
c906108c SS |
2756 | } |
2757 | } | |
2758 | ||
5bd98722 AC |
2759 | static void |
2760 | do_free_search_symbols_cleanup (void *symbols) | |
2761 | { | |
2762 | free_search_symbols (symbols); | |
2763 | } | |
2764 | ||
2765 | struct cleanup * | |
2766 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2767 | { | |
2768 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2769 | } | |
2770 | ||
434d2d4f DJ |
2771 | /* Helper function for sort_search_symbols and qsort. Can only |
2772 | sort symbols, not minimal symbols. */ | |
2773 | static int | |
2774 | compare_search_syms (const void *sa, const void *sb) | |
2775 | { | |
2776 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2777 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2778 | ||
de5ad195 DC |
2779 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2780 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2781 | } |
2782 | ||
2783 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2784 | prevtail where it is, but update its next pointer to point to | |
2785 | the first of the sorted symbols. */ | |
2786 | static struct symbol_search * | |
2787 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2788 | { | |
2789 | struct symbol_search **symbols, *symp, *old_next; | |
2790 | int i; | |
2791 | ||
2792 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2793 | * nfound); | |
2794 | symp = prevtail->next; | |
2795 | for (i = 0; i < nfound; i++) | |
2796 | { | |
2797 | symbols[i] = symp; | |
2798 | symp = symp->next; | |
2799 | } | |
2800 | /* Generally NULL. */ | |
2801 | old_next = symp; | |
2802 | ||
2803 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2804 | compare_search_syms); | |
2805 | ||
2806 | symp = prevtail; | |
2807 | for (i = 0; i < nfound; i++) | |
2808 | { | |
2809 | symp->next = symbols[i]; | |
2810 | symp = symp->next; | |
2811 | } | |
2812 | symp->next = old_next; | |
2813 | ||
8ed32cc0 | 2814 | xfree (symbols); |
434d2d4f DJ |
2815 | return symp; |
2816 | } | |
5bd98722 | 2817 | |
c906108c SS |
2818 | /* Search the symbol table for matches to the regular expression REGEXP, |
2819 | returning the results in *MATCHES. | |
2820 | ||
2821 | Only symbols of KIND are searched: | |
176620f1 EZ |
2822 | FUNCTIONS_DOMAIN - search all functions |
2823 | TYPES_DOMAIN - search all type names | |
2824 | METHODS_DOMAIN - search all methods NOT IMPLEMENTED | |
2825 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, | |
c5aa993b | 2826 | and constants (enums) |
c906108c SS |
2827 | |
2828 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
2829 | |
2830 | The results are sorted locally; each symtab's global and static blocks are | |
2831 | separately alphabetized. | |
c5aa993b | 2832 | */ |
c906108c | 2833 | void |
176620f1 | 2834 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 2835 | struct symbol_search **matches) |
c906108c | 2836 | { |
52f0bd74 AC |
2837 | struct symtab *s; |
2838 | struct partial_symtab *ps; | |
2839 | struct blockvector *bv; | |
c906108c | 2840 | struct blockvector *prev_bv = 0; |
52f0bd74 AC |
2841 | struct block *b; |
2842 | int i = 0; | |
de4f826b | 2843 | struct dict_iterator iter; |
52f0bd74 | 2844 | struct symbol *sym; |
c906108c SS |
2845 | struct partial_symbol **psym; |
2846 | struct objfile *objfile; | |
2847 | struct minimal_symbol *msymbol; | |
2848 | char *val; | |
2849 | int found_misc = 0; | |
2850 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
2851 | = |
2852 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 2853 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
2854 | = |
2855 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 2856 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
2857 | = |
2858 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 2859 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
2860 | = |
2861 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
2862 | enum minimal_symbol_type ourtype; |
2863 | enum minimal_symbol_type ourtype2; | |
2864 | enum minimal_symbol_type ourtype3; | |
2865 | enum minimal_symbol_type ourtype4; | |
2866 | struct symbol_search *sr; | |
2867 | struct symbol_search *psr; | |
2868 | struct symbol_search *tail; | |
2869 | struct cleanup *old_chain = NULL; | |
2870 | ||
176620f1 | 2871 | if (kind < VARIABLES_DOMAIN) |
8a3fe4f8 | 2872 | error (_("must search on specific domain")); |
c906108c | 2873 | |
176620f1 EZ |
2874 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
2875 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
2876 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
2877 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
2878 | |
2879 | sr = *matches = NULL; | |
2880 | tail = NULL; | |
2881 | ||
2882 | if (regexp != NULL) | |
2883 | { | |
2884 | /* Make sure spacing is right for C++ operators. | |
2885 | This is just a courtesy to make the matching less sensitive | |
2886 | to how many spaces the user leaves between 'operator' | |
2887 | and <TYPENAME> or <OPERATOR>. */ | |
2888 | char *opend; | |
2889 | char *opname = operator_chars (regexp, &opend); | |
2890 | if (*opname) | |
c5aa993b JM |
2891 | { |
2892 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
2893 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
2894 | { | |
2895 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
2896 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
2897 | fix = 1; | |
2898 | } | |
2899 | else | |
2900 | { | |
2901 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
2902 | if (opname[-1] == ' ') | |
2903 | fix = 0; | |
2904 | } | |
2905 | /* If wrong number of spaces, fix it. */ | |
2906 | if (fix >= 0) | |
2907 | { | |
045f55a6 | 2908 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
c5aa993b JM |
2909 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
2910 | regexp = tmp; | |
2911 | } | |
2912 | } | |
2913 | ||
c906108c | 2914 | if (0 != (val = re_comp (regexp))) |
8a3fe4f8 | 2915 | error (_("Invalid regexp (%s): %s"), val, regexp); |
c906108c SS |
2916 | } |
2917 | ||
2918 | /* Search through the partial symtabs *first* for all symbols | |
2919 | matching the regexp. That way we don't have to reproduce all of | |
2920 | the machinery below. */ | |
2921 | ||
2922 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2923 | { |
2924 | struct partial_symbol **bound, **gbound, **sbound; | |
2925 | int keep_going = 1; | |
2926 | ||
2927 | if (ps->readin) | |
2928 | continue; | |
2929 | ||
2930 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
2931 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
2932 | bound = gbound; | |
2933 | ||
2934 | /* Go through all of the symbols stored in a partial | |
2935 | symtab in one loop. */ | |
2936 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
2937 | while (keep_going) | |
2938 | { | |
2939 | if (psym >= bound) | |
2940 | { | |
2941 | if (bound == gbound && ps->n_static_syms != 0) | |
2942 | { | |
2943 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
2944 | bound = sbound; | |
2945 | } | |
2946 | else | |
2947 | keep_going = 0; | |
2948 | continue; | |
2949 | } | |
2950 | else | |
2951 | { | |
2952 | QUIT; | |
2953 | ||
2954 | /* If it would match (logic taken from loop below) | |
2955 | load the file and go on to the next one */ | |
2956 | if (file_matches (ps->filename, files, nfiles) | |
25120b0d DC |
2957 | && ((regexp == NULL |
2958 | || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0) | |
176620f1 | 2959 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF |
c5aa993b | 2960 | && SYMBOL_CLASS (*psym) != LOC_BLOCK) |
176620f1 EZ |
2961 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK) |
2962 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF) | |
2963 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)))) | |
c5aa993b JM |
2964 | { |
2965 | PSYMTAB_TO_SYMTAB (ps); | |
2966 | keep_going = 0; | |
2967 | } | |
2968 | } | |
2969 | psym++; | |
2970 | } | |
2971 | } | |
c906108c SS |
2972 | |
2973 | /* Here, we search through the minimal symbol tables for functions | |
2974 | and variables that match, and force their symbols to be read. | |
2975 | This is in particular necessary for demangled variable names, | |
2976 | which are no longer put into the partial symbol tables. | |
2977 | The symbol will then be found during the scan of symtabs below. | |
2978 | ||
2979 | For functions, find_pc_symtab should succeed if we have debug info | |
2980 | for the function, for variables we have to call lookup_symbol | |
2981 | to determine if the variable has debug info. | |
2982 | If the lookup fails, set found_misc so that we will rescan to print | |
2983 | any matching symbols without debug info. | |
c5aa993b | 2984 | */ |
c906108c | 2985 | |
176620f1 | 2986 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
2987 | { |
2988 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
2989 | { |
2990 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
2991 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
2992 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
2993 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
2994 | { | |
25120b0d DC |
2995 | if (regexp == NULL |
2996 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
2997 | { |
2998 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
2999 | { | |
b1262a02 DC |
3000 | /* FIXME: carlton/2003-02-04: Given that the |
3001 | semantics of lookup_symbol keeps on changing | |
3002 | slightly, it would be a nice idea if we had a | |
3003 | function lookup_symbol_minsym that found the | |
3004 | symbol associated to a given minimal symbol (if | |
3005 | any). */ | |
176620f1 | 3006 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3007 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3008 | (struct block *) NULL, |
176620f1 | 3009 | VAR_DOMAIN, |
b1262a02 DC |
3010 | 0, (struct symtab **) NULL) == NULL) |
3011 | found_misc = 1; | |
c5aa993b JM |
3012 | } |
3013 | } | |
3014 | } | |
3015 | } | |
c906108c SS |
3016 | } |
3017 | ||
3018 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3019 | { |
3020 | bv = BLOCKVECTOR (s); | |
3021 | /* Often many files share a blockvector. | |
3022 | Scan each blockvector only once so that | |
3023 | we don't get every symbol many times. | |
3024 | It happens that the first symtab in the list | |
3025 | for any given blockvector is the main file. */ | |
3026 | if (bv != prev_bv) | |
3027 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
3028 | { | |
434d2d4f DJ |
3029 | struct symbol_search *prevtail = tail; |
3030 | int nfound = 0; | |
c5aa993b | 3031 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 3032 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b JM |
3033 | { |
3034 | QUIT; | |
c5aa993b | 3035 | if (file_matches (s->filename, files, nfiles) |
25120b0d DC |
3036 | && ((regexp == NULL |
3037 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
176620f1 | 3038 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF |
c5aa993b JM |
3039 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
3040 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
176620f1 EZ |
3041 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
3042 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3043 | || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)))) | |
c5aa993b JM |
3044 | { |
3045 | /* match */ | |
3046 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3047 | psr->block = i; | |
3048 | psr->symtab = s; | |
3049 | psr->symbol = sym; | |
3050 | psr->msymbol = NULL; | |
3051 | psr->next = NULL; | |
3052 | if (tail == NULL) | |
434d2d4f | 3053 | sr = psr; |
c5aa993b JM |
3054 | else |
3055 | tail->next = psr; | |
3056 | tail = psr; | |
434d2d4f DJ |
3057 | nfound ++; |
3058 | } | |
3059 | } | |
3060 | if (nfound > 0) | |
3061 | { | |
3062 | if (prevtail == NULL) | |
3063 | { | |
3064 | struct symbol_search dummy; | |
3065 | ||
3066 | dummy.next = sr; | |
3067 | tail = sort_search_symbols (&dummy, nfound); | |
3068 | sr = dummy.next; | |
3069 | ||
3070 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 3071 | } |
434d2d4f DJ |
3072 | else |
3073 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
3074 | } |
3075 | } | |
3076 | prev_bv = bv; | |
3077 | } | |
c906108c SS |
3078 | |
3079 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3080 | no debug symbols, then print directly from the msymbol_vector. */ | |
3081 | ||
176620f1 | 3082 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3083 | { |
3084 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3085 | { |
3086 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3087 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3088 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3089 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3090 | { | |
25120b0d DC |
3091 | if (regexp == NULL |
3092 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3093 | { |
3094 | /* Functions: Look up by address. */ | |
176620f1 | 3095 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3096 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3097 | { | |
3098 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3099 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
176620f1 | 3100 | (struct block *) NULL, VAR_DOMAIN, |
c5aa993b JM |
3101 | 0, (struct symtab **) NULL) == NULL) |
3102 | { | |
3103 | /* match */ | |
3104 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3105 | psr->block = i; | |
3106 | psr->msymbol = msymbol; | |
3107 | psr->symtab = NULL; | |
3108 | psr->symbol = NULL; | |
3109 | psr->next = NULL; | |
3110 | if (tail == NULL) | |
3111 | { | |
3112 | sr = psr; | |
5bd98722 | 3113 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3114 | } |
3115 | else | |
3116 | tail->next = psr; | |
3117 | tail = psr; | |
3118 | } | |
3119 | } | |
3120 | } | |
3121 | } | |
3122 | } | |
c906108c SS |
3123 | } |
3124 | ||
3125 | *matches = sr; | |
3126 | if (sr != NULL) | |
3127 | discard_cleanups (old_chain); | |
3128 | } | |
3129 | ||
3130 | /* Helper function for symtab_symbol_info, this function uses | |
3131 | the data returned from search_symbols() to print information | |
3132 | regarding the match to gdb_stdout. | |
c5aa993b | 3133 | */ |
c906108c | 3134 | static void |
176620f1 | 3135 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3136 | int block, char *last) |
c906108c SS |
3137 | { |
3138 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3139 | { | |
3140 | fputs_filtered ("\nFile ", gdb_stdout); | |
3141 | fputs_filtered (s->filename, gdb_stdout); | |
3142 | fputs_filtered (":\n", gdb_stdout); | |
3143 | } | |
3144 | ||
176620f1 | 3145 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3146 | printf_filtered ("static "); |
c5aa993b | 3147 | |
c906108c | 3148 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3149 | if (kind == TYPES_DOMAIN |
3150 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3151 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3152 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3153 | else if (kind < TYPES_DOMAIN || |
3154 | (kind == TYPES_DOMAIN && | |
3155 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3156 | { |
3157 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3158 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3159 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3160 | gdb_stdout, 0); |
c906108c SS |
3161 | |
3162 | printf_filtered (";\n"); | |
3163 | } | |
c906108c SS |
3164 | } |
3165 | ||
3166 | /* This help function for symtab_symbol_info() prints information | |
3167 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3168 | */ |
c906108c | 3169 | static void |
fba45db2 | 3170 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3171 | { |
3ac4495a MS |
3172 | char *tmp; |
3173 | ||
3174 | if (TARGET_ADDR_BIT <= 32) | |
bb599908 PH |
3175 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3176 | & (CORE_ADDR) 0xffffffff, | |
3177 | 8); | |
3ac4495a | 3178 | else |
bb599908 PH |
3179 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3180 | 16); | |
3ac4495a | 3181 | printf_filtered ("%s %s\n", |
de5ad195 | 3182 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3183 | } |
3184 | ||
3185 | /* This is the guts of the commands "info functions", "info types", and | |
3186 | "info variables". It calls search_symbols to find all matches and then | |
3187 | print_[m]symbol_info to print out some useful information about the | |
3188 | matches. | |
c5aa993b | 3189 | */ |
c906108c | 3190 | static void |
176620f1 | 3191 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c SS |
3192 | { |
3193 | static char *classnames[] | |
c5aa993b JM |
3194 | = |
3195 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3196 | struct symbol_search *symbols; |
3197 | struct symbol_search *p; | |
3198 | struct cleanup *old_chain; | |
3199 | char *last_filename = NULL; | |
3200 | int first = 1; | |
3201 | ||
3202 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3203 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3204 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3205 | |
3206 | printf_filtered (regexp | |
c5aa993b JM |
3207 | ? "All %ss matching regular expression \"%s\":\n" |
3208 | : "All defined %ss:\n", | |
176620f1 | 3209 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3210 | |
3211 | for (p = symbols; p != NULL; p = p->next) | |
3212 | { | |
3213 | QUIT; | |
3214 | ||
3215 | if (p->msymbol != NULL) | |
c5aa993b JM |
3216 | { |
3217 | if (first) | |
3218 | { | |
3219 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3220 | first = 0; | |
3221 | } | |
3222 | print_msymbol_info (p->msymbol); | |
3223 | } | |
c906108c | 3224 | else |
c5aa993b JM |
3225 | { |
3226 | print_symbol_info (kind, | |
3227 | p->symtab, | |
3228 | p->symbol, | |
3229 | p->block, | |
3230 | last_filename); | |
3231 | last_filename = p->symtab->filename; | |
3232 | } | |
c906108c SS |
3233 | } |
3234 | ||
3235 | do_cleanups (old_chain); | |
3236 | } | |
3237 | ||
3238 | static void | |
fba45db2 | 3239 | variables_info (char *regexp, int from_tty) |
c906108c | 3240 | { |
176620f1 | 3241 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3242 | } |
3243 | ||
3244 | static void | |
fba45db2 | 3245 | functions_info (char *regexp, int from_tty) |
c906108c | 3246 | { |
176620f1 | 3247 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3248 | } |
3249 | ||
357e46e7 | 3250 | |
c906108c | 3251 | static void |
fba45db2 | 3252 | types_info (char *regexp, int from_tty) |
c906108c | 3253 | { |
176620f1 | 3254 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3255 | } |
3256 | ||
c906108c | 3257 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3258 | |
8b93c638 | 3259 | void |
fba45db2 | 3260 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3261 | { |
3262 | rbreak_command (regexp, from_tty); | |
3263 | } | |
8926118c | 3264 | |
c906108c | 3265 | static void |
fba45db2 | 3266 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3267 | { |
3268 | struct symbol_search *ss; | |
3269 | struct symbol_search *p; | |
3270 | struct cleanup *old_chain; | |
3271 | ||
176620f1 | 3272 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss); |
5bd98722 | 3273 | old_chain = make_cleanup_free_search_symbols (ss); |
c906108c SS |
3274 | |
3275 | for (p = ss; p != NULL; p = p->next) | |
3276 | { | |
3277 | if (p->msymbol == NULL) | |
c5aa993b | 3278 | { |
2335f48e DC |
3279 | char *string = alloca (strlen (p->symtab->filename) |
3280 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3281 | + 4); | |
c5aa993b JM |
3282 | strcpy (string, p->symtab->filename); |
3283 | strcat (string, ":'"); | |
2335f48e | 3284 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3285 | strcat (string, "'"); |
3286 | break_command (string, from_tty); | |
176620f1 | 3287 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3288 | p->symtab, |
3289 | p->symbol, | |
3290 | p->block, | |
3291 | p->symtab->filename); | |
3292 | } | |
c906108c | 3293 | else |
c5aa993b | 3294 | { |
2335f48e | 3295 | break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty); |
c5aa993b | 3296 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3297 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3298 | } |
c906108c SS |
3299 | } |
3300 | ||
3301 | do_cleanups (old_chain); | |
3302 | } | |
c906108c | 3303 | \f |
c5aa993b | 3304 | |
c906108c SS |
3305 | /* Helper routine for make_symbol_completion_list. */ |
3306 | ||
3307 | static int return_val_size; | |
3308 | static int return_val_index; | |
3309 | static char **return_val; | |
3310 | ||
3311 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3312 | completion_list_add_name \ |
2335f48e | 3313 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3314 | |
3315 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3316 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3317 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3318 | |
3319 | static void | |
fba45db2 KB |
3320 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3321 | char *text, char *word) | |
c906108c SS |
3322 | { |
3323 | int newsize; | |
3324 | int i; | |
3325 | ||
3326 | /* clip symbols that cannot match */ | |
3327 | ||
3328 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3329 | { | |
3330 | return; | |
3331 | } | |
3332 | ||
c906108c SS |
3333 | /* We have a match for a completion, so add SYMNAME to the current list |
3334 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3335 | ||
3336 | { | |
3337 | char *new; | |
3338 | if (word == sym_text) | |
3339 | { | |
3340 | new = xmalloc (strlen (symname) + 5); | |
3341 | strcpy (new, symname); | |
3342 | } | |
3343 | else if (word > sym_text) | |
3344 | { | |
3345 | /* Return some portion of symname. */ | |
3346 | new = xmalloc (strlen (symname) + 5); | |
3347 | strcpy (new, symname + (word - sym_text)); | |
3348 | } | |
3349 | else | |
3350 | { | |
3351 | /* Return some of SYM_TEXT plus symname. */ | |
3352 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3353 | strncpy (new, word, sym_text - word); | |
3354 | new[sym_text - word] = '\0'; | |
3355 | strcat (new, symname); | |
3356 | } | |
3357 | ||
c906108c SS |
3358 | if (return_val_index + 3 > return_val_size) |
3359 | { | |
3360 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3361 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3362 | } | |
3363 | return_val[return_val_index++] = new; | |
3364 | return_val[return_val_index] = NULL; | |
3365 | } | |
3366 | } | |
3367 | ||
69636828 AF |
3368 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3369 | again and feed all the selectors into the mill. */ | |
3370 | ||
3371 | static void | |
3372 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3373 | int sym_text_len, char *text, char *word) | |
3374 | { | |
3375 | static char *tmp = NULL; | |
3376 | static unsigned int tmplen = 0; | |
3377 | ||
3378 | char *method, *category, *selector; | |
3379 | char *tmp2 = NULL; | |
3380 | ||
3381 | method = SYMBOL_NATURAL_NAME (msymbol); | |
3382 | ||
3383 | /* Is it a method? */ | |
3384 | if ((method[0] != '-') && (method[0] != '+')) | |
3385 | return; | |
3386 | ||
3387 | if (sym_text[0] == '[') | |
3388 | /* Complete on shortened method method. */ | |
3389 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
3390 | ||
3391 | while ((strlen (method) + 1) >= tmplen) | |
3392 | { | |
3393 | if (tmplen == 0) | |
3394 | tmplen = 1024; | |
3395 | else | |
3396 | tmplen *= 2; | |
3397 | tmp = xrealloc (tmp, tmplen); | |
3398 | } | |
3399 | selector = strchr (method, ' '); | |
3400 | if (selector != NULL) | |
3401 | selector++; | |
3402 | ||
3403 | category = strchr (method, '('); | |
3404 | ||
3405 | if ((category != NULL) && (selector != NULL)) | |
3406 | { | |
3407 | memcpy (tmp, method, (category - method)); | |
3408 | tmp[category - method] = ' '; | |
3409 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3410 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3411 | if (sym_text[0] == '[') | |
3412 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3413 | } | |
3414 | ||
3415 | if (selector != NULL) | |
3416 | { | |
3417 | /* Complete on selector only. */ | |
3418 | strcpy (tmp, selector); | |
3419 | tmp2 = strchr (tmp, ']'); | |
3420 | if (tmp2 != NULL) | |
3421 | *tmp2 = '\0'; | |
3422 | ||
3423 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3424 | } | |
3425 | } | |
3426 | ||
3427 | /* Break the non-quoted text based on the characters which are in | |
3428 | symbols. FIXME: This should probably be language-specific. */ | |
3429 | ||
3430 | static char * | |
3431 | language_search_unquoted_string (char *text, char *p) | |
3432 | { | |
3433 | for (; p > text; --p) | |
3434 | { | |
3435 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3436 | continue; | |
3437 | else | |
3438 | { | |
3439 | if ((current_language->la_language == language_objc)) | |
3440 | { | |
3441 | if (p[-1] == ':') /* might be part of a method name */ | |
3442 | continue; | |
3443 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3444 | p -= 2; /* beginning of a method name */ | |
3445 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3446 | { /* might be part of a method name */ | |
3447 | char *t = p; | |
3448 | ||
3449 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3450 | that we are in the middle of a method name. However, | |
3451 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3452 | Unfortunately we have to find it now to decide. */ | |
3453 | ||
3454 | while (t > text) | |
3455 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3456 | t[-1] == ' ' || t[-1] == ':' || | |
3457 | t[-1] == '(' || t[-1] == ')') | |
3458 | --t; | |
3459 | else | |
3460 | break; | |
3461 | ||
3462 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3463 | p = t - 2; /* method name detected */ | |
3464 | /* else we leave with p unchanged */ | |
3465 | } | |
3466 | } | |
3467 | break; | |
3468 | } | |
3469 | } | |
3470 | return p; | |
3471 | } | |
3472 | ||
3473 | ||
c94fdfd0 EZ |
3474 | /* Return a NULL terminated array of all symbols (regardless of class) |
3475 | which begin by matching TEXT. If the answer is no symbols, then | |
3476 | the return value is an array which contains only a NULL pointer. | |
c906108c SS |
3477 | |
3478 | Problem: All of the symbols have to be copied because readline frees them. | |
3479 | I'm not going to worry about this; hopefully there won't be that many. */ | |
3480 | ||
3481 | char ** | |
fba45db2 | 3482 | make_symbol_completion_list (char *text, char *word) |
c906108c | 3483 | { |
de4f826b DC |
3484 | struct symbol *sym; |
3485 | struct symtab *s; | |
3486 | struct partial_symtab *ps; | |
3487 | struct minimal_symbol *msymbol; | |
3488 | struct objfile *objfile; | |
3489 | struct block *b, *surrounding_static_block = 0; | |
3490 | struct dict_iterator iter; | |
3491 | int j; | |
c906108c SS |
3492 | struct partial_symbol **psym; |
3493 | /* The symbol we are completing on. Points in same buffer as text. */ | |
3494 | char *sym_text; | |
3495 | /* Length of sym_text. */ | |
3496 | int sym_text_len; | |
3497 | ||
3498 | /* Now look for the symbol we are supposed to complete on. | |
3499 | FIXME: This should be language-specific. */ | |
3500 | { | |
3501 | char *p; | |
3502 | char quote_found; | |
3503 | char *quote_pos = NULL; | |
3504 | ||
3505 | /* First see if this is a quoted string. */ | |
3506 | quote_found = '\0'; | |
3507 | for (p = text; *p != '\0'; ++p) | |
3508 | { | |
3509 | if (quote_found != '\0') | |
3510 | { | |
3511 | if (*p == quote_found) | |
3512 | /* Found close quote. */ | |
3513 | quote_found = '\0'; | |
3514 | else if (*p == '\\' && p[1] == quote_found) | |
3515 | /* A backslash followed by the quote character | |
c5aa993b | 3516 | doesn't end the string. */ |
c906108c SS |
3517 | ++p; |
3518 | } | |
3519 | else if (*p == '\'' || *p == '"') | |
3520 | { | |
3521 | quote_found = *p; | |
3522 | quote_pos = p; | |
3523 | } | |
3524 | } | |
3525 | if (quote_found == '\'') | |
3526 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3527 | sym_text = quote_pos + 1; | |
3528 | else if (quote_found == '"') | |
3529 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3530 | to complete it any other way. */ |
c94fdfd0 EZ |
3531 | { |
3532 | return_val = (char **) xmalloc (sizeof (char *)); | |
3533 | return_val[0] = NULL; | |
3534 | return return_val; | |
3535 | } | |
c906108c SS |
3536 | else |
3537 | { | |
3538 | /* It is not a quoted string. Break it based on the characters | |
3539 | which are in symbols. */ | |
3540 | while (p > text) | |
3541 | { | |
3542 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3543 | --p; | |
3544 | else | |
3545 | break; | |
3546 | } | |
3547 | sym_text = p; | |
3548 | } | |
3549 | } | |
3550 | ||
3551 | sym_text_len = strlen (sym_text); | |
3552 | ||
3553 | return_val_size = 100; | |
3554 | return_val_index = 0; | |
3555 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3556 | return_val[0] = NULL; | |
3557 | ||
3558 | /* Look through the partial symtabs for all symbols which begin | |
3559 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
3560 | ||
3561 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3562 | { |
3563 | /* If the psymtab's been read in we'll get it when we search | |
3564 | through the blockvector. */ | |
3565 | if (ps->readin) | |
3566 | continue; | |
3567 | ||
3568 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
3569 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
3570 | + ps->n_global_syms); | |
3571 | psym++) | |
3572 | { | |
3573 | /* If interrupted, then quit. */ | |
3574 | QUIT; | |
3575 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3576 | } | |
3577 | ||
3578 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
3579 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
3580 | + ps->n_static_syms); | |
3581 | psym++) | |
3582 | { | |
3583 | QUIT; | |
3584 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3585 | } | |
3586 | } | |
c906108c SS |
3587 | |
3588 | /* At this point scan through the misc symbol vectors and add each | |
3589 | symbol you find to the list. Eventually we want to ignore | |
3590 | anything that isn't a text symbol (everything else will be | |
3591 | handled by the psymtab code above). */ | |
3592 | ||
3593 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3594 | { |
3595 | QUIT; | |
3596 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
69636828 AF |
3597 | |
3598 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); | |
c5aa993b | 3599 | } |
c906108c SS |
3600 | |
3601 | /* Search upwards from currently selected frame (so that we can | |
3602 | complete on local vars. */ | |
3603 | ||
ae767bfb | 3604 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) |
c906108c SS |
3605 | { |
3606 | if (!BLOCK_SUPERBLOCK (b)) | |
3607 | { | |
c5aa993b | 3608 | surrounding_static_block = b; /* For elmin of dups */ |
c906108c | 3609 | } |
c5aa993b | 3610 | |
c906108c | 3611 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 3612 | text string. Only complete on types visible from current context. */ |
c906108c | 3613 | |
de4f826b | 3614 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c906108c | 3615 | { |
69636828 | 3616 | QUIT; |
c906108c SS |
3617 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3618 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3619 | { | |
3620 | struct type *t = SYMBOL_TYPE (sym); | |
3621 | enum type_code c = TYPE_CODE (t); | |
3622 | ||
3623 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3624 | { | |
3625 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3626 | { | |
3627 | if (TYPE_FIELD_NAME (t, j)) | |
3628 | { | |
3629 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
c5aa993b | 3630 | sym_text, sym_text_len, text, word); |
c906108c SS |
3631 | } |
3632 | } | |
3633 | } | |
3634 | } | |
3635 | } | |
3636 | } | |
3637 | ||
3638 | /* Go through the symtabs and check the externs and statics for | |
3639 | symbols which match. */ | |
3640 | ||
3641 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3642 | { |
3643 | QUIT; | |
3644 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3645 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3646 | { |
c5aa993b JM |
3647 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3648 | } | |
3649 | } | |
c906108c SS |
3650 | |
3651 | ALL_SYMTABS (objfile, s) | |
c5aa993b JM |
3652 | { |
3653 | QUIT; | |
3654 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
3655 | /* Don't do this block twice. */ | |
3656 | if (b == surrounding_static_block) | |
3657 | continue; | |
de4f826b | 3658 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3659 | { |
c5aa993b JM |
3660 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3661 | } | |
3662 | } | |
c906108c SS |
3663 | |
3664 | return (return_val); | |
3665 | } | |
3666 | ||
c94fdfd0 EZ |
3667 | /* Like make_symbol_completion_list, but returns a list of symbols |
3668 | defined in a source file FILE. */ | |
3669 | ||
3670 | char ** | |
3671 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3672 | { | |
52f0bd74 AC |
3673 | struct symbol *sym; |
3674 | struct symtab *s; | |
3675 | struct block *b; | |
de4f826b | 3676 | struct dict_iterator iter; |
c94fdfd0 EZ |
3677 | /* The symbol we are completing on. Points in same buffer as text. */ |
3678 | char *sym_text; | |
3679 | /* Length of sym_text. */ | |
3680 | int sym_text_len; | |
3681 | ||
3682 | /* Now look for the symbol we are supposed to complete on. | |
3683 | FIXME: This should be language-specific. */ | |
3684 | { | |
3685 | char *p; | |
3686 | char quote_found; | |
3687 | char *quote_pos = NULL; | |
3688 | ||
3689 | /* First see if this is a quoted string. */ | |
3690 | quote_found = '\0'; | |
3691 | for (p = text; *p != '\0'; ++p) | |
3692 | { | |
3693 | if (quote_found != '\0') | |
3694 | { | |
3695 | if (*p == quote_found) | |
3696 | /* Found close quote. */ | |
3697 | quote_found = '\0'; | |
3698 | else if (*p == '\\' && p[1] == quote_found) | |
3699 | /* A backslash followed by the quote character | |
3700 | doesn't end the string. */ | |
3701 | ++p; | |
3702 | } | |
3703 | else if (*p == '\'' || *p == '"') | |
3704 | { | |
3705 | quote_found = *p; | |
3706 | quote_pos = p; | |
3707 | } | |
3708 | } | |
3709 | if (quote_found == '\'') | |
3710 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3711 | sym_text = quote_pos + 1; | |
3712 | else if (quote_found == '"') | |
3713 | /* A double-quoted string is never a symbol, nor does it make sense | |
3714 | to complete it any other way. */ | |
3715 | { | |
3716 | return_val = (char **) xmalloc (sizeof (char *)); | |
3717 | return_val[0] = NULL; | |
3718 | return return_val; | |
3719 | } | |
3720 | else | |
3721 | { | |
69636828 AF |
3722 | /* Not a quoted string. */ |
3723 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3724 | } |
3725 | } | |
3726 | ||
3727 | sym_text_len = strlen (sym_text); | |
3728 | ||
3729 | return_val_size = 10; | |
3730 | return_val_index = 0; | |
3731 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3732 | return_val[0] = NULL; | |
3733 | ||
3734 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3735 | in). */ | |
3736 | s = lookup_symtab (srcfile); | |
3737 | if (s == NULL) | |
3738 | { | |
3739 | /* Maybe they typed the file with leading directories, while the | |
3740 | symbol tables record only its basename. */ | |
31889e00 | 3741 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3742 | |
3743 | if (tail > srcfile) | |
3744 | s = lookup_symtab (tail); | |
3745 | } | |
3746 | ||
3747 | /* If we have no symtab for that file, return an empty list. */ | |
3748 | if (s == NULL) | |
3749 | return (return_val); | |
3750 | ||
3751 | /* Go through this symtab and check the externs and statics for | |
3752 | symbols which match. */ | |
3753 | ||
3754 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3755 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3756 | { |
c94fdfd0 EZ |
3757 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3758 | } | |
3759 | ||
3760 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 3761 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 3762 | { |
c94fdfd0 EZ |
3763 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3764 | } | |
3765 | ||
3766 | return (return_val); | |
3767 | } | |
3768 | ||
3769 | /* A helper function for make_source_files_completion_list. It adds | |
3770 | another file name to a list of possible completions, growing the | |
3771 | list as necessary. */ | |
3772 | ||
3773 | static void | |
3774 | add_filename_to_list (const char *fname, char *text, char *word, | |
3775 | char ***list, int *list_used, int *list_alloced) | |
3776 | { | |
3777 | char *new; | |
3778 | size_t fnlen = strlen (fname); | |
3779 | ||
3780 | if (*list_used + 1 >= *list_alloced) | |
3781 | { | |
3782 | *list_alloced *= 2; | |
3783 | *list = (char **) xrealloc ((char *) *list, | |
3784 | *list_alloced * sizeof (char *)); | |
3785 | } | |
3786 | ||
3787 | if (word == text) | |
3788 | { | |
3789 | /* Return exactly fname. */ | |
3790 | new = xmalloc (fnlen + 5); | |
3791 | strcpy (new, fname); | |
3792 | } | |
3793 | else if (word > text) | |
3794 | { | |
3795 | /* Return some portion of fname. */ | |
3796 | new = xmalloc (fnlen + 5); | |
3797 | strcpy (new, fname + (word - text)); | |
3798 | } | |
3799 | else | |
3800 | { | |
3801 | /* Return some of TEXT plus fname. */ | |
3802 | new = xmalloc (fnlen + (text - word) + 5); | |
3803 | strncpy (new, word, text - word); | |
3804 | new[text - word] = '\0'; | |
3805 | strcat (new, fname); | |
3806 | } | |
3807 | (*list)[*list_used] = new; | |
3808 | (*list)[++*list_used] = NULL; | |
3809 | } | |
3810 | ||
3811 | static int | |
3812 | not_interesting_fname (const char *fname) | |
3813 | { | |
3814 | static const char *illegal_aliens[] = { | |
3815 | "_globals_", /* inserted by coff_symtab_read */ | |
3816 | NULL | |
3817 | }; | |
3818 | int i; | |
3819 | ||
3820 | for (i = 0; illegal_aliens[i]; i++) | |
3821 | { | |
3822 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
3823 | return 1; | |
3824 | } | |
3825 | return 0; | |
3826 | } | |
3827 | ||
3828 | /* Return a NULL terminated array of all source files whose names | |
3829 | begin with matching TEXT. The file names are looked up in the | |
3830 | symbol tables of this program. If the answer is no matchess, then | |
3831 | the return value is an array which contains only a NULL pointer. */ | |
3832 | ||
3833 | char ** | |
3834 | make_source_files_completion_list (char *text, char *word) | |
3835 | { | |
52f0bd74 AC |
3836 | struct symtab *s; |
3837 | struct partial_symtab *ps; | |
3838 | struct objfile *objfile; | |
c94fdfd0 EZ |
3839 | int first = 1; |
3840 | int list_alloced = 1; | |
3841 | int list_used = 0; | |
3842 | size_t text_len = strlen (text); | |
3843 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 3844 | const char *base_name; |
c94fdfd0 EZ |
3845 | |
3846 | list[0] = NULL; | |
3847 | ||
3848 | if (!have_full_symbols () && !have_partial_symbols ()) | |
3849 | return list; | |
3850 | ||
3851 | ALL_SYMTABS (objfile, s) | |
3852 | { | |
3853 | if (not_interesting_fname (s->filename)) | |
3854 | continue; | |
3855 | if (!filename_seen (s->filename, 1, &first) | |
3856 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3857 | && strncasecmp (s->filename, text, text_len) == 0 | |
3858 | #else | |
3859 | && strncmp (s->filename, text, text_len) == 0 | |
3860 | #endif | |
3861 | ) | |
3862 | { | |
3863 | /* This file matches for a completion; add it to the current | |
3864 | list of matches. */ | |
3865 | add_filename_to_list (s->filename, text, word, | |
3866 | &list, &list_used, &list_alloced); | |
3867 | } | |
3868 | else | |
3869 | { | |
3870 | /* NOTE: We allow the user to type a base name when the | |
3871 | debug info records leading directories, but not the other | |
3872 | way around. This is what subroutines of breakpoint | |
3873 | command do when they parse file names. */ | |
31889e00 | 3874 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
3875 | if (base_name != s->filename |
3876 | && !filename_seen (base_name, 1, &first) | |
3877 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3878 | && strncasecmp (base_name, text, text_len) == 0 | |
3879 | #else | |
3880 | && strncmp (base_name, text, text_len) == 0 | |
3881 | #endif | |
3882 | ) | |
3883 | add_filename_to_list (base_name, text, word, | |
3884 | &list, &list_used, &list_alloced); | |
3885 | } | |
3886 | } | |
3887 | ||
3888 | ALL_PSYMTABS (objfile, ps) | |
3889 | { | |
3890 | if (not_interesting_fname (ps->filename)) | |
3891 | continue; | |
3892 | if (!ps->readin) | |
3893 | { | |
3894 | if (!filename_seen (ps->filename, 1, &first) | |
3895 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3896 | && strncasecmp (ps->filename, text, text_len) == 0 | |
3897 | #else | |
3898 | && strncmp (ps->filename, text, text_len) == 0 | |
3899 | #endif | |
3900 | ) | |
3901 | { | |
3902 | /* This file matches for a completion; add it to the | |
3903 | current list of matches. */ | |
3904 | add_filename_to_list (ps->filename, text, word, | |
3905 | &list, &list_used, &list_alloced); | |
3906 | ||
3907 | } | |
3908 | else | |
3909 | { | |
31889e00 | 3910 | base_name = lbasename (ps->filename); |
c94fdfd0 EZ |
3911 | if (base_name != ps->filename |
3912 | && !filename_seen (base_name, 1, &first) | |
3913 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
3914 | && strncasecmp (base_name, text, text_len) == 0 | |
3915 | #else | |
3916 | && strncmp (base_name, text, text_len) == 0 | |
3917 | #endif | |
3918 | ) | |
3919 | add_filename_to_list (base_name, text, word, | |
3920 | &list, &list_used, &list_alloced); | |
3921 | } | |
3922 | } | |
3923 | } | |
3924 | ||
3925 | return list; | |
3926 | } | |
3927 | ||
c906108c SS |
3928 | /* Determine if PC is in the prologue of a function. The prologue is the area |
3929 | between the first instruction of a function, and the first executable line. | |
3930 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
3931 | ||
3932 | If non-zero, func_start is where we think the prologue starts, possibly | |
3933 | by previous examination of symbol table information. | |
3934 | */ | |
3935 | ||
3936 | int | |
fba45db2 | 3937 | in_prologue (CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
3938 | { |
3939 | struct symtab_and_line sal; | |
3940 | CORE_ADDR func_addr, func_end; | |
3941 | ||
54cf9c03 EZ |
3942 | /* We have several sources of information we can consult to figure |
3943 | this out. | |
3944 | - Compilers usually emit line number info that marks the prologue | |
3945 | as its own "source line". So the ending address of that "line" | |
3946 | is the end of the prologue. If available, this is the most | |
3947 | reliable method. | |
3948 | - The minimal symbols and partial symbols, which can usually tell | |
3949 | us the starting and ending addresses of a function. | |
3950 | - If we know the function's start address, we can call the | |
3951 | architecture-defined SKIP_PROLOGUE function to analyze the | |
3952 | instruction stream and guess where the prologue ends. | |
3953 | - Our `func_start' argument; if non-zero, this is the caller's | |
3954 | best guess as to the function's entry point. At the time of | |
3955 | this writing, handle_inferior_event doesn't get this right, so | |
3956 | it should be our last resort. */ | |
3957 | ||
3958 | /* Consult the partial symbol table, to find which function | |
3959 | the PC is in. */ | |
3960 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
3961 | { | |
3962 | CORE_ADDR prologue_end; | |
c906108c | 3963 | |
54cf9c03 EZ |
3964 | /* We don't even have minsym information, so fall back to using |
3965 | func_start, if given. */ | |
3966 | if (! func_start) | |
3967 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 3968 | |
54cf9c03 | 3969 | prologue_end = SKIP_PROLOGUE (func_start); |
c906108c | 3970 | |
54cf9c03 EZ |
3971 | return func_start <= pc && pc < prologue_end; |
3972 | } | |
c906108c | 3973 | |
54cf9c03 EZ |
3974 | /* If we have line number information for the function, that's |
3975 | usually pretty reliable. */ | |
3976 | sal = find_pc_line (func_addr, 0); | |
c906108c | 3977 | |
54cf9c03 EZ |
3978 | /* Now sal describes the source line at the function's entry point, |
3979 | which (by convention) is the prologue. The end of that "line", | |
3980 | sal.end, is the end of the prologue. | |
3981 | ||
3982 | Note that, for functions whose source code is all on a single | |
3983 | line, the line number information doesn't always end up this way. | |
3984 | So we must verify that our purported end-of-prologue address is | |
3985 | *within* the function, not at its start or end. */ | |
3986 | if (sal.line == 0 | |
3987 | || sal.end <= func_addr | |
3988 | || func_end <= sal.end) | |
3989 | { | |
3990 | /* We don't have any good line number info, so use the minsym | |
3991 | information, together with the architecture-specific prologue | |
3992 | scanning code. */ | |
3993 | CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr); | |
c906108c | 3994 | |
54cf9c03 EZ |
3995 | return func_addr <= pc && pc < prologue_end; |
3996 | } | |
c906108c | 3997 | |
54cf9c03 EZ |
3998 | /* We have line number info, and it looks good. */ |
3999 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4000 | } |
4001 | ||
634aa483 AC |
4002 | /* Given PC at the function's start address, attempt to find the |
4003 | prologue end using SAL information. Return zero if the skip fails. | |
4004 | ||
4005 | A non-optimized prologue traditionally has one SAL for the function | |
4006 | and a second for the function body. A single line function has | |
4007 | them both pointing at the same line. | |
4008 | ||
4009 | An optimized prologue is similar but the prologue may contain | |
4010 | instructions (SALs) from the instruction body. Need to skip those | |
4011 | while not getting into the function body. | |
4012 | ||
4013 | The functions end point and an increasing SAL line are used as | |
4014 | indicators of the prologue's endpoint. | |
4015 | ||
4016 | This code is based on the function refine_prologue_limit (versions | |
4017 | found in both ia64 and ppc). */ | |
4018 | ||
4019 | CORE_ADDR | |
4020 | skip_prologue_using_sal (CORE_ADDR func_addr) | |
4021 | { | |
4022 | struct symtab_and_line prologue_sal; | |
4023 | CORE_ADDR start_pc; | |
4024 | CORE_ADDR end_pc; | |
4025 | ||
4026 | /* Get an initial range for the function. */ | |
4027 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
782263ab | 4028 | start_pc += DEPRECATED_FUNCTION_START_OFFSET; |
634aa483 AC |
4029 | |
4030 | prologue_sal = find_pc_line (start_pc, 0); | |
4031 | if (prologue_sal.line != 0) | |
4032 | { | |
576c2025 FF |
4033 | /* If there is only one sal that covers the entire function, |
4034 | then it is probably a single line function, like | |
4035 | "foo(){}". */ | |
4036 | if (prologue_sal.end == end_pc) | |
4037 | return start_pc; | |
634aa483 AC |
4038 | while (prologue_sal.end < end_pc) |
4039 | { | |
4040 | struct symtab_and_line sal; | |
4041 | ||
4042 | sal = find_pc_line (prologue_sal.end, 0); | |
4043 | if (sal.line == 0) | |
4044 | break; | |
4045 | /* Assume that a consecutive SAL for the same (or larger) | |
4046 | line mark the prologue -> body transition. */ | |
4047 | if (sal.line >= prologue_sal.line) | |
4048 | break; | |
4049 | /* The case in which compiler's optimizer/scheduler has | |
4050 | moved instructions into the prologue. We look ahead in | |
4051 | the function looking for address ranges whose | |
4052 | corresponding line number is less the first one that we | |
4053 | found for the function. This is more conservative then | |
4054 | refine_prologue_limit which scans a large number of SALs | |
4055 | looking for any in the prologue */ | |
4056 | prologue_sal = sal; | |
4057 | } | |
4058 | } | |
4059 | return prologue_sal.end; | |
4060 | } | |
c906108c | 4061 | \f |
50641945 FN |
4062 | struct symtabs_and_lines |
4063 | decode_line_spec (char *string, int funfirstline) | |
4064 | { | |
4065 | struct symtabs_and_lines sals; | |
0378c332 FN |
4066 | struct symtab_and_line cursal; |
4067 | ||
50641945 | 4068 | if (string == 0) |
8a3fe4f8 | 4069 | error (_("Empty line specification.")); |
0378c332 FN |
4070 | |
4071 | /* We use whatever is set as the current source line. We do not try | |
4072 | and get a default or it will recursively call us! */ | |
4073 | cursal = get_current_source_symtab_and_line (); | |
4074 | ||
50641945 | 4075 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 4076 | cursal.symtab, cursal.line, |
bffe1ece | 4077 | (char ***) NULL, NULL); |
0378c332 | 4078 | |
50641945 | 4079 | if (*string) |
8a3fe4f8 | 4080 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4081 | return sals; |
4082 | } | |
c5aa993b | 4083 | |
51cc5b07 AC |
4084 | /* Track MAIN */ |
4085 | static char *name_of_main; | |
4086 | ||
4087 | void | |
4088 | set_main_name (const char *name) | |
4089 | { | |
4090 | if (name_of_main != NULL) | |
4091 | { | |
4092 | xfree (name_of_main); | |
4093 | name_of_main = NULL; | |
4094 | } | |
4095 | if (name != NULL) | |
4096 | { | |
4097 | name_of_main = xstrdup (name); | |
4098 | } | |
4099 | } | |
4100 | ||
ea53e89f JB |
4101 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4102 | accordingly. */ | |
4103 | ||
4104 | static void | |
4105 | find_main_name (void) | |
4106 | { | |
4107 | char *new_main_name; | |
4108 | ||
4109 | /* Try to see if the main procedure is in Ada. */ | |
4110 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4111 | be to add a new method in the language vector, and call this | |
4112 | method for each language until one of them returns a non-empty | |
4113 | name. This would allow us to remove this hard-coded call to | |
4114 | an Ada function. It is not clear that this is a better approach | |
4115 | at this point, because all methods need to be written in a way | |
4116 | such that false positives never be returned. For instance, it is | |
4117 | important that a method does not return a wrong name for the main | |
4118 | procedure if the main procedure is actually written in a different | |
4119 | language. It is easy to guaranty this with Ada, since we use a | |
4120 | special symbol generated only when the main in Ada to find the name | |
4121 | of the main procedure. It is difficult however to see how this can | |
4122 | be guarantied for languages such as C, for instance. This suggests | |
4123 | that order of call for these methods becomes important, which means | |
4124 | a more complicated approach. */ | |
4125 | new_main_name = ada_main_name (); | |
4126 | if (new_main_name != NULL) | |
4127 | { | |
4128 | set_main_name (new_main_name); | |
4129 | return; | |
4130 | } | |
4131 | ||
4132 | /* The languages above didn't identify the name of the main procedure. | |
4133 | Fallback to "main". */ | |
4134 | set_main_name ("main"); | |
4135 | } | |
4136 | ||
51cc5b07 AC |
4137 | char * |
4138 | main_name (void) | |
4139 | { | |
ea53e89f JB |
4140 | if (name_of_main == NULL) |
4141 | find_main_name (); | |
4142 | ||
4143 | return name_of_main; | |
51cc5b07 AC |
4144 | } |
4145 | ||
ea53e89f JB |
4146 | /* Handle ``executable_changed'' events for the symtab module. */ |
4147 | ||
4148 | static void | |
4149 | symtab_observer_executable_changed (void *unused) | |
4150 | { | |
4151 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4152 | set_main_name (NULL); | |
4153 | } | |
51cc5b07 | 4154 | |
c906108c | 4155 | void |
fba45db2 | 4156 | _initialize_symtab (void) |
c906108c | 4157 | { |
1bedd215 AC |
4158 | add_info ("variables", variables_info, _("\ |
4159 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4160 | if (dbx_commands) |
1bedd215 AC |
4161 | add_com ("whereis", class_info, variables_info, _("\ |
4162 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4163 | |
4164 | add_info ("functions", functions_info, | |
1bedd215 | 4165 | _("All function names, or those matching REGEXP.")); |
c906108c | 4166 | |
357e46e7 | 4167 | |
c906108c SS |
4168 | /* FIXME: This command has at least the following problems: |
4169 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4170 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4171 | typedef struct foo *FOO |
4172 | type_print prints "FOO" when we want to make it (in this situation) | |
4173 | print "struct foo *". | |
c906108c SS |
4174 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4175 | there is much disagreement "info types" can be fixed). */ | |
4176 | add_info ("types", types_info, | |
1bedd215 | 4177 | _("All type names, or those matching REGEXP.")); |
c906108c | 4178 | |
c906108c | 4179 | add_info ("sources", sources_info, |
1bedd215 | 4180 | _("Source files in the program.")); |
c906108c SS |
4181 | |
4182 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4183 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4184 | |
4185 | if (xdb_commands) | |
4186 | { | |
1bedd215 AC |
4187 | add_com ("lf", class_info, sources_info, |
4188 | _("Source files in the program")); | |
4189 | add_com ("lg", class_info, variables_info, _("\ | |
4190 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4191 | } |
4192 | ||
4193 | /* Initialize the one built-in type that isn't language dependent... */ | |
4194 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, | |
4195 | "<unknown type>", (struct objfile *) NULL); | |
ea53e89f JB |
4196 | |
4197 | observer_attach_executable_changed (symtab_observer_executable_changed); | |
c906108c | 4198 | } |