gdb
[deliverable/binutils-gdb.git] / gdb / symtab.c
CommitLineData
c906108c 1/* Symbol table lookup for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
083ae935 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
88987551 33#include "gdb_regex.h"
c906108c
SS
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
c5f0f3d0 38#include "linespec.h"
0378c332 39#include "source.h"
a7fdf62f 40#include "filenames.h" /* for FILENAME_CMP */
1bae87b9 41#include "objc-lang.h"
1f8173e6 42#include "ada-lang.h"
cd6c7346 43#include "p-lang.h"
ff013f42 44#include "addrmap.h"
c906108c 45
2de7ced7
DJ
46#include "hashtab.h"
47
04ea0df1 48#include "gdb_obstack.h"
fe898f56 49#include "block.h"
de4f826b 50#include "dictionary.h"
c906108c
SS
51
52#include <sys/types.h>
53#include <fcntl.h>
54#include "gdb_string.h"
55#include "gdb_stat.h"
56#include <ctype.h>
015a42b4 57#include "cp-abi.h"
71c25dea 58#include "cp-support.h"
ea53e89f 59#include "observer.h"
94277a38 60#include "gdb_assert.h"
3a40aaa0 61#include "solist.h"
9a044a89
TT
62#include "macrotab.h"
63#include "macroscope.h"
c906108c 64
c906108c
SS
65/* Prototypes for local functions */
66
a14ed312 67static void completion_list_add_name (char *, char *, int, char *, char *);
c906108c 68
a14ed312 69static void rbreak_command (char *, int);
c906108c 70
a14ed312 71static void types_info (char *, int);
c906108c 72
a14ed312 73static void functions_info (char *, int);
c906108c 74
a14ed312 75static void variables_info (char *, int);
c906108c 76
a14ed312 77static void sources_info (char *, int);
c906108c 78
d092d1a2 79static void output_source_filename (const char *, int *);
c906108c 80
a14ed312 81static int find_line_common (struct linetable *, int, int *);
c906108c 82
50641945
FN
83/* This one is used by linespec.c */
84
85char *operator_chars (char *p, char **end);
86
3121eff0 87static struct symbol *lookup_symbol_aux (const char *name,
5ad1c190 88 const char *linkage_name,
3121eff0 89 const struct block *block,
176620f1 90 const domain_enum domain,
53c5240f 91 enum language language,
21b556f4 92 int *is_a_field_of_this);
fba7f19c 93
e4051eeb
DC
94static
95struct symbol *lookup_symbol_aux_local (const char *name,
5ad1c190 96 const char *linkage_name,
e4051eeb 97 const struct block *block,
21b556f4 98 const domain_enum domain);
8155455b
DC
99
100static
101struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
5ad1c190 103 const char *linkage_name,
21b556f4 104 const domain_enum domain);
8155455b
DC
105
106static
107struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
5ad1c190 109 const char *linkage_name,
21b556f4 110 const domain_enum domain);
fba7f19c 111
a14ed312 112static int file_matches (char *, char **, int);
c906108c 113
176620f1 114static void print_symbol_info (domain_enum,
a14ed312 115 struct symtab *, struct symbol *, int, char *);
c906108c 116
a14ed312 117static void print_msymbol_info (struct minimal_symbol *);
c906108c 118
176620f1 119static void symtab_symbol_info (char *, domain_enum, int);
c906108c 120
a14ed312 121void _initialize_symtab (void);
c906108c
SS
122
123/* */
124
717d2f5a
JB
125/* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
7fc830e2
MK
129const char multiple_symbols_ask[] = "ask";
130const char multiple_symbols_all[] = "all";
131const char multiple_symbols_cancel[] = "cancel";
717d2f5a
JB
132static const char *multiple_symbols_modes[] =
133{
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138};
139static const char *multiple_symbols_mode = multiple_symbols_all;
140
141/* Read-only accessor to AUTO_SELECT_MODE. */
142
143const char *
144multiple_symbols_select_mode (void)
145{
146 return multiple_symbols_mode;
147}
148
c906108c
SS
149/* The single non-language-specific builtin type */
150struct type *builtin_type_error;
151
152/* Block in which the most recently searched-for symbol was found.
9af17804 153 Might be better to make this a parameter to lookup_symbol and
c906108c
SS
154 value_of_this. */
155
156const struct block *block_found;
157
c906108c
SS
158/* Check for a symtab of a specific name; first in symtabs, then in
159 psymtabs. *If* there is no '/' in the name, a match after a '/'
160 in the symtab filename will also work. */
161
1b15f1fa
TT
162struct symtab *
163lookup_symtab (const char *name)
c906108c 164{
52f0bd74
AC
165 struct symtab *s;
166 struct partial_symtab *ps;
167 struct objfile *objfile;
58d370e0 168 char *real_path = NULL;
f079a2e5 169 char *full_path = NULL;
58d370e0
TT
170
171 /* Here we are interested in canonicalizing an absolute path, not
172 absolutizing a relative path. */
173 if (IS_ABSOLUTE_PATH (name))
f079a2e5
JB
174 {
175 full_path = xfullpath (name);
176 make_cleanup (xfree, full_path);
177 real_path = gdb_realpath (name);
178 make_cleanup (xfree, real_path);
179 }
c906108c 180
c5aa993b 181got_symtab:
c906108c
SS
182
183 /* First, search for an exact match */
184
185 ALL_SYMTABS (objfile, s)
58d370e0 186 {
a7fdf62f 187 if (FILENAME_CMP (name, s->filename) == 0)
58d370e0 188 {
58d370e0
TT
189 return s;
190 }
9af17804 191
58d370e0
TT
192 /* If the user gave us an absolute path, try to find the file in
193 this symtab and use its absolute path. */
9af17804 194
f079a2e5
JB
195 if (full_path != NULL)
196 {
09bcec80
BR
197 const char *fp = symtab_to_fullname (s);
198 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
199 {
200 return s;
201 }
f079a2e5
JB
202 }
203
58d370e0
TT
204 if (real_path != NULL)
205 {
09bcec80
BR
206 char *fullname = symtab_to_fullname (s);
207 if (fullname != NULL)
208 {
209 char *rp = gdb_realpath (fullname);
210 make_cleanup (xfree, rp);
211 if (FILENAME_CMP (real_path, rp) == 0)
212 {
213 return s;
214 }
215 }
58d370e0
TT
216 }
217 }
218
c906108c
SS
219 /* Now, search for a matching tail (only if name doesn't have any dirs) */
220
caadab2c 221 if (lbasename (name) == name)
c906108c 222 ALL_SYMTABS (objfile, s)
c5aa993b 223 {
31889e00 224 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
c5aa993b
JM
225 return s;
226 }
c906108c
SS
227
228 /* Same search rules as above apply here, but now we look thru the
229 psymtabs. */
230
231 ps = lookup_partial_symtab (name);
232 if (!ps)
233 return (NULL);
234
c5aa993b 235 if (ps->readin)
8a3fe4f8 236 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
c5aa993b 237 ps->filename, name);
c906108c
SS
238
239 s = PSYMTAB_TO_SYMTAB (ps);
240
241 if (s)
242 return s;
243
244 /* At this point, we have located the psymtab for this file, but
245 the conversion to a symtab has failed. This usually happens
246 when we are looking up an include file. In this case,
247 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
248 been created. So, we need to run through the symtabs again in
249 order to find the file.
250 XXX - This is a crock, and should be fixed inside of the the
251 symbol parsing routines. */
252 goto got_symtab;
253}
254
c906108c
SS
255/* Lookup the partial symbol table of a source file named NAME.
256 *If* there is no '/' in the name, a match after a '/'
257 in the psymtab filename will also work. */
258
259struct partial_symtab *
1f8cc6db 260lookup_partial_symtab (const char *name)
c906108c 261{
52f0bd74
AC
262 struct partial_symtab *pst;
263 struct objfile *objfile;
f079a2e5 264 char *full_path = NULL;
58d370e0
TT
265 char *real_path = NULL;
266
267 /* Here we are interested in canonicalizing an absolute path, not
268 absolutizing a relative path. */
269 if (IS_ABSOLUTE_PATH (name))
f079a2e5
JB
270 {
271 full_path = xfullpath (name);
272 make_cleanup (xfree, full_path);
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 }
c5aa993b 276
c906108c 277 ALL_PSYMTABS (objfile, pst)
c5aa993b 278 {
a7fdf62f 279 if (FILENAME_CMP (name, pst->filename) == 0)
c5aa993b
JM
280 {
281 return (pst);
282 }
f079a2e5 283
58d370e0
TT
284 /* If the user gave us an absolute path, try to find the file in
285 this symtab and use its absolute path. */
f079a2e5 286 if (full_path != NULL)
58d370e0 287 {
d9c8471e 288 psymtab_to_fullname (pst);
58d370e0 289 if (pst->fullname != NULL
f079a2e5 290 && FILENAME_CMP (full_path, pst->fullname) == 0)
58d370e0 291 {
58d370e0
TT
292 return pst;
293 }
294 }
c906108c 295
f079a2e5
JB
296 if (real_path != NULL)
297 {
298 char *rp = NULL;
d9c8471e 299 psymtab_to_fullname (pst);
f079a2e5
JB
300 if (pst->fullname != NULL)
301 {
302 rp = gdb_realpath (pst->fullname);
303 make_cleanup (xfree, rp);
304 }
305 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
306 {
307 return pst;
308 }
309 }
310 }
58d370e0 311
c906108c
SS
312 /* Now, search for a matching tail (only if name doesn't have any dirs) */
313
caadab2c 314 if (lbasename (name) == name)
c906108c 315 ALL_PSYMTABS (objfile, pst)
c5aa993b 316 {
31889e00 317 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
c5aa993b
JM
318 return (pst);
319 }
c906108c
SS
320
321 return (NULL);
322}
323\f
324/* Mangle a GDB method stub type. This actually reassembles the pieces of the
325 full method name, which consist of the class name (from T), the unadorned
326 method name from METHOD_ID, and the signature for the specific overload,
327 specified by SIGNATURE_ID. Note that this function is g++ specific. */
328
329char *
fba45db2 330gdb_mangle_name (struct type *type, int method_id, int signature_id)
c906108c
SS
331{
332 int mangled_name_len;
333 char *mangled_name;
334 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
335 struct fn_field *method = &f[signature_id];
336 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
337 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
338 char *newname = type_name_no_tag (type);
339
340 /* Does the form of physname indicate that it is the full mangled name
341 of a constructor (not just the args)? */
342 int is_full_physname_constructor;
343
344 int is_constructor;
015a42b4 345 int is_destructor = is_destructor_name (physname);
c906108c
SS
346 /* Need a new type prefix. */
347 char *const_prefix = method->is_const ? "C" : "";
348 char *volatile_prefix = method->is_volatile ? "V" : "";
349 char buf[20];
350 int len = (newname == NULL ? 0 : strlen (newname));
351
43630227
PS
352 /* Nothing to do if physname already contains a fully mangled v3 abi name
353 or an operator name. */
354 if ((physname[0] == '_' && physname[1] == 'Z')
355 || is_operator_name (field_name))
235d1e03
EZ
356 return xstrdup (physname);
357
015a42b4 358 is_full_physname_constructor = is_constructor_name (physname);
c906108c
SS
359
360 is_constructor =
6314a349 361 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
c906108c
SS
362
363 if (!is_destructor)
c5aa993b 364 is_destructor = (strncmp (physname, "__dt", 4) == 0);
c906108c
SS
365
366 if (is_destructor || is_full_physname_constructor)
367 {
c5aa993b
JM
368 mangled_name = (char *) xmalloc (strlen (physname) + 1);
369 strcpy (mangled_name, physname);
c906108c
SS
370 return mangled_name;
371 }
372
373 if (len == 0)
374 {
375 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
376 }
377 else if (physname[0] == 't' || physname[0] == 'Q')
378 {
379 /* The physname for template and qualified methods already includes
c5aa993b 380 the class name. */
c906108c
SS
381 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
382 newname = NULL;
383 len = 0;
384 }
385 else
386 {
387 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
388 }
389 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
235d1e03 390 + strlen (buf) + len + strlen (physname) + 1);
c906108c 391
c906108c 392 {
c5aa993b 393 mangled_name = (char *) xmalloc (mangled_name_len);
c906108c
SS
394 if (is_constructor)
395 mangled_name[0] = '\0';
396 else
397 strcpy (mangled_name, field_name);
398 }
399 strcat (mangled_name, buf);
400 /* If the class doesn't have a name, i.e. newname NULL, then we just
401 mangle it using 0 for the length of the class. Thus it gets mangled
c5aa993b 402 as something starting with `::' rather than `classname::'. */
c906108c
SS
403 if (newname != NULL)
404 strcat (mangled_name, newname);
405
406 strcat (mangled_name, physname);
407 return (mangled_name);
408}
12af6855
JB
409
410\f
89aad1f9
EZ
411/* Initialize the language dependent portion of a symbol
412 depending upon the language for the symbol. */
413void
414symbol_init_language_specific (struct general_symbol_info *gsymbol,
415 enum language language)
416{
417 gsymbol->language = language;
418 if (gsymbol->language == language_cplus
5784d15e
AF
419 || gsymbol->language == language_java
420 || gsymbol->language == language_objc)
89aad1f9
EZ
421 {
422 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
423 }
89aad1f9
EZ
424 else
425 {
426 memset (&gsymbol->language_specific, 0,
427 sizeof (gsymbol->language_specific));
428 }
429}
430
2de7ced7
DJ
431/* Functions to initialize a symbol's mangled name. */
432
433/* Create the hash table used for demangled names. Each hash entry is
434 a pair of strings; one for the mangled name and one for the demangled
435 name. The entry is hashed via just the mangled name. */
436
437static void
438create_demangled_names_hash (struct objfile *objfile)
439{
440 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
9af17804 441 The hash table code will round this up to the next prime number.
2de7ced7
DJ
442 Choosing a much larger table size wastes memory, and saves only about
443 1% in symbol reading. */
444
aa2ee5f6 445 objfile->demangled_names_hash = htab_create_alloc
2de7ced7 446 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
aa2ee5f6 447 NULL, xcalloc, xfree);
2de7ced7 448}
12af6855 449
2de7ced7 450/* Try to determine the demangled name for a symbol, based on the
12af6855
JB
451 language of that symbol. If the language is set to language_auto,
452 it will attempt to find any demangling algorithm that works and
2de7ced7
DJ
453 then set the language appropriately. The returned name is allocated
454 by the demangler and should be xfree'd. */
12af6855 455
2de7ced7
DJ
456static char *
457symbol_find_demangled_name (struct general_symbol_info *gsymbol,
458 const char *mangled)
12af6855 459{
12af6855
JB
460 char *demangled = NULL;
461
462 if (gsymbol->language == language_unknown)
463 gsymbol->language = language_auto;
1bae87b9
AF
464
465 if (gsymbol->language == language_objc
466 || gsymbol->language == language_auto)
467 {
468 demangled =
469 objc_demangle (mangled, 0);
470 if (demangled != NULL)
471 {
472 gsymbol->language = language_objc;
473 return demangled;
474 }
475 }
12af6855
JB
476 if (gsymbol->language == language_cplus
477 || gsymbol->language == language_auto)
478 {
479 demangled =
2de7ced7 480 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
12af6855 481 if (demangled != NULL)
2de7ced7
DJ
482 {
483 gsymbol->language = language_cplus;
484 return demangled;
485 }
12af6855
JB
486 }
487 if (gsymbol->language == language_java)
488 {
489 demangled =
2de7ced7 490 cplus_demangle (mangled,
12af6855
JB
491 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
492 if (demangled != NULL)
2de7ced7
DJ
493 {
494 gsymbol->language = language_java;
495 return demangled;
496 }
497 }
498 return NULL;
499}
500
980cae7a
DC
501/* Set both the mangled and demangled (if any) names for GSYMBOL based
502 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
4a146b47 503 is used, and the memory comes from that objfile's objfile_obstack.
980cae7a
DC
504 LINKAGE_NAME is copied, so the pointer can be discarded after
505 calling this function. */
2de7ced7 506
d2a52b27
DC
507/* We have to be careful when dealing with Java names: when we run
508 into a Java minimal symbol, we don't know it's a Java symbol, so it
509 gets demangled as a C++ name. This is unfortunate, but there's not
510 much we can do about it: but when demangling partial symbols and
511 regular symbols, we'd better not reuse the wrong demangled name.
512 (See PR gdb/1039.) We solve this by putting a distinctive prefix
513 on Java names when storing them in the hash table. */
514
515/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
516 don't mind the Java prefix so much: different languages have
517 different demangling requirements, so it's only natural that we
518 need to keep language data around in our demangling cache. But
519 it's not good that the minimal symbol has the wrong demangled name.
520 Unfortunately, I can't think of any easy solution to that
521 problem. */
522
523#define JAVA_PREFIX "##JAVA$$"
524#define JAVA_PREFIX_LEN 8
525
2de7ced7
DJ
526void
527symbol_set_names (struct general_symbol_info *gsymbol,
980cae7a 528 const char *linkage_name, int len, struct objfile *objfile)
2de7ced7
DJ
529{
530 char **slot;
980cae7a
DC
531 /* A 0-terminated copy of the linkage name. */
532 const char *linkage_name_copy;
d2a52b27
DC
533 /* A copy of the linkage name that might have a special Java prefix
534 added to it, for use when looking names up in the hash table. */
535 const char *lookup_name;
536 /* The length of lookup_name. */
537 int lookup_len;
2de7ced7
DJ
538
539 if (objfile->demangled_names_hash == NULL)
540 create_demangled_names_hash (objfile);
541
b06ead72
JB
542 if (gsymbol->language == language_ada)
543 {
544 /* In Ada, we do the symbol lookups using the mangled name, so
545 we can save some space by not storing the demangled name.
546
547 As a side note, we have also observed some overlap between
548 the C++ mangling and Ada mangling, similarly to what has
549 been observed with Java. Because we don't store the demangled
550 name with the symbol, we don't need to use the same trick
551 as Java. */
552 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
553 memcpy (gsymbol->name, linkage_name, len);
554 gsymbol->name[len] = '\0';
555 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
556
557 return;
558 }
559
980cae7a
DC
560 /* The stabs reader generally provides names that are not
561 NUL-terminated; most of the other readers don't do this, so we
d2a52b27
DC
562 can just use the given copy, unless we're in the Java case. */
563 if (gsymbol->language == language_java)
564 {
565 char *alloc_name;
566 lookup_len = len + JAVA_PREFIX_LEN;
567
568 alloc_name = alloca (lookup_len + 1);
569 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
570 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
571 alloc_name[lookup_len] = '\0';
572
573 lookup_name = alloc_name;
574 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
575 }
576 else if (linkage_name[len] != '\0')
2de7ced7 577 {
980cae7a 578 char *alloc_name;
d2a52b27 579 lookup_len = len;
980cae7a 580
d2a52b27 581 alloc_name = alloca (lookup_len + 1);
980cae7a 582 memcpy (alloc_name, linkage_name, len);
d2a52b27 583 alloc_name[lookup_len] = '\0';
980cae7a 584
d2a52b27 585 lookup_name = alloc_name;
980cae7a 586 linkage_name_copy = alloc_name;
2de7ced7
DJ
587 }
588 else
980cae7a 589 {
d2a52b27
DC
590 lookup_len = len;
591 lookup_name = linkage_name;
980cae7a
DC
592 linkage_name_copy = linkage_name;
593 }
2de7ced7 594
980cae7a 595 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
d2a52b27 596 lookup_name, INSERT);
2de7ced7
DJ
597
598 /* If this name is not in the hash table, add it. */
599 if (*slot == NULL)
600 {
980cae7a
DC
601 char *demangled_name = symbol_find_demangled_name (gsymbol,
602 linkage_name_copy);
2de7ced7
DJ
603 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
604
605 /* If there is a demangled name, place it right after the mangled name.
606 Otherwise, just place a second zero byte after the end of the mangled
607 name. */
4a146b47 608 *slot = obstack_alloc (&objfile->objfile_obstack,
d2a52b27
DC
609 lookup_len + demangled_len + 2);
610 memcpy (*slot, lookup_name, lookup_len + 1);
980cae7a 611 if (demangled_name != NULL)
2de7ced7 612 {
d2a52b27 613 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
2de7ced7
DJ
614 xfree (demangled_name);
615 }
616 else
d2a52b27 617 (*slot)[lookup_len + 1] = '\0';
2de7ced7
DJ
618 }
619
d2a52b27
DC
620 gsymbol->name = *slot + lookup_len - len;
621 if ((*slot)[lookup_len + 1] != '\0')
2de7ced7 622 gsymbol->language_specific.cplus_specific.demangled_name
d2a52b27 623 = &(*slot)[lookup_len + 1];
2de7ced7
DJ
624 else
625 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
626}
627
22abf04a
DC
628/* Return the source code name of a symbol. In languages where
629 demangling is necessary, this is the demangled name. */
630
631char *
632symbol_natural_name (const struct general_symbol_info *gsymbol)
633{
9af17804 634 switch (gsymbol->language)
22abf04a 635 {
1f8173e6
PH
636 case language_cplus:
637 case language_java:
638 case language_objc:
639 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
640 return gsymbol->language_specific.cplus_specific.demangled_name;
641 break;
642 case language_ada:
643 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
644 return gsymbol->language_specific.cplus_specific.demangled_name;
645 else
646 return ada_decode_symbol (gsymbol);
647 break;
648 default:
649 break;
22abf04a 650 }
1f8173e6 651 return gsymbol->name;
22abf04a
DC
652}
653
9cc0d196
EZ
654/* Return the demangled name for a symbol based on the language for
655 that symbol. If no demangled name exists, return NULL. */
656char *
df8a16a1 657symbol_demangled_name (const struct general_symbol_info *gsymbol)
9cc0d196 658{
9af17804 659 switch (gsymbol->language)
1f8173e6
PH
660 {
661 case language_cplus:
662 case language_java:
663 case language_objc:
664 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
665 return gsymbol->language_specific.cplus_specific.demangled_name;
666 break;
667 case language_ada:
668 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
669 return gsymbol->language_specific.cplus_specific.demangled_name;
670 else
671 return ada_decode_symbol (gsymbol);
672 break;
673 default:
674 break;
675 }
676 return NULL;
9cc0d196 677}
fe39c653 678
4725b721
PH
679/* Return the search name of a symbol---generally the demangled or
680 linkage name of the symbol, depending on how it will be searched for.
9af17804 681 If there is no distinct demangled name, then returns the same value
4725b721 682 (same pointer) as SYMBOL_LINKAGE_NAME. */
fc062ac6
JB
683char *
684symbol_search_name (const struct general_symbol_info *gsymbol)
685{
1f8173e6
PH
686 if (gsymbol->language == language_ada)
687 return gsymbol->name;
688 else
689 return symbol_natural_name (gsymbol);
4725b721
PH
690}
691
fe39c653
EZ
692/* Initialize the structure fields to zero values. */
693void
694init_sal (struct symtab_and_line *sal)
695{
696 sal->symtab = 0;
697 sal->section = 0;
698 sal->line = 0;
699 sal->pc = 0;
700 sal->end = 0;
ed0616c6
VP
701 sal->explicit_pc = 0;
702 sal->explicit_line = 0;
fe39c653 703}
c906108c
SS
704\f
705
94277a38
DJ
706/* Return 1 if the two sections are the same, or if they could
707 plausibly be copies of each other, one in an original object
708 file and another in a separated debug file. */
709
710int
714835d5
UW
711matching_obj_sections (struct obj_section *obj_first,
712 struct obj_section *obj_second)
94277a38 713{
714835d5
UW
714 asection *first = obj_first? obj_first->the_bfd_section : NULL;
715 asection *second = obj_second? obj_second->the_bfd_section : NULL;
94277a38
DJ
716 struct objfile *obj;
717
718 /* If they're the same section, then they match. */
719 if (first == second)
720 return 1;
721
722 /* If either is NULL, give up. */
723 if (first == NULL || second == NULL)
724 return 0;
725
726 /* This doesn't apply to absolute symbols. */
727 if (first->owner == NULL || second->owner == NULL)
728 return 0;
729
730 /* If they're in the same object file, they must be different sections. */
731 if (first->owner == second->owner)
732 return 0;
733
734 /* Check whether the two sections are potentially corresponding. They must
735 have the same size, address, and name. We can't compare section indexes,
736 which would be more reliable, because some sections may have been
737 stripped. */
738 if (bfd_get_section_size (first) != bfd_get_section_size (second))
739 return 0;
740
818f79f6 741 /* In-memory addresses may start at a different offset, relativize them. */
94277a38 742 if (bfd_get_section_vma (first->owner, first)
818f79f6
DJ
743 - bfd_get_start_address (first->owner)
744 != bfd_get_section_vma (second->owner, second)
745 - bfd_get_start_address (second->owner))
94277a38
DJ
746 return 0;
747
748 if (bfd_get_section_name (first->owner, first) == NULL
749 || bfd_get_section_name (second->owner, second) == NULL
750 || strcmp (bfd_get_section_name (first->owner, first),
751 bfd_get_section_name (second->owner, second)) != 0)
752 return 0;
753
754 /* Otherwise check that they are in corresponding objfiles. */
755
756 ALL_OBJFILES (obj)
757 if (obj->obfd == first->owner)
758 break;
759 gdb_assert (obj != NULL);
760
761 if (obj->separate_debug_objfile != NULL
762 && obj->separate_debug_objfile->obfd == second->owner)
763 return 1;
764 if (obj->separate_debug_objfile_backlink != NULL
765 && obj->separate_debug_objfile_backlink->obfd == second->owner)
766 return 1;
767
768 return 0;
769}
c5aa993b 770
ff013f42
JK
771/* Find which partial symtab contains PC and SECTION starting at psymtab PST.
772 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
773
2c0b251b 774static struct partial_symtab *
714835d5 775find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
ff013f42
JK
776 struct partial_symtab *pst,
777 struct minimal_symbol *msymbol)
778{
779 struct objfile *objfile = pst->objfile;
780 struct partial_symtab *tpst;
781 struct partial_symtab *best_pst = pst;
782 CORE_ADDR best_addr = pst->textlow;
783
784 /* An objfile that has its functions reordered might have
785 many partial symbol tables containing the PC, but
786 we want the partial symbol table that contains the
787 function containing the PC. */
788 if (!(objfile->flags & OBJF_REORDERED) &&
789 section == 0) /* can't validate section this way */
790 return pst;
791
792 if (msymbol == NULL)
793 return (pst);
794
795 /* The code range of partial symtabs sometimes overlap, so, in
796 the loop below, we need to check all partial symtabs and
797 find the one that fits better for the given PC address. We
798 select the partial symtab that contains a symbol whose
799 address is closest to the PC address. By closest we mean
800 that find_pc_sect_symbol returns the symbol with address
801 that is closest and still less than the given PC. */
802 for (tpst = pst; tpst != NULL; tpst = tpst->next)
803 {
804 if (pc >= tpst->textlow && pc < tpst->texthigh)
805 {
806 struct partial_symbol *p;
807 CORE_ADDR this_addr;
808
809 /* NOTE: This assumes that every psymbol has a
810 corresponding msymbol, which is not necessarily
811 true; the debug info might be much richer than the
812 object's symbol table. */
813 p = find_pc_sect_psymbol (tpst, pc, section);
814 if (p != NULL
815 && SYMBOL_VALUE_ADDRESS (p)
816 == SYMBOL_VALUE_ADDRESS (msymbol))
817 return tpst;
818
819 /* Also accept the textlow value of a psymtab as a
820 "symbol", to provide some support for partial
821 symbol tables with line information but no debug
822 symbols (e.g. those produced by an assembler). */
823 if (p != NULL)
824 this_addr = SYMBOL_VALUE_ADDRESS (p);
825 else
826 this_addr = tpst->textlow;
827
828 /* Check whether it is closer than our current
829 BEST_ADDR. Since this symbol address is
830 necessarily lower or equal to PC, the symbol closer
831 to PC is the symbol which address is the highest.
832 This way we return the psymtab which contains such
833 best match symbol. This can help in cases where the
834 symbol information/debuginfo is not complete, like
835 for instance on IRIX6 with gcc, where no debug info
836 is emitted for statics. (See also the nodebug.exp
837 testcase.) */
838 if (this_addr > best_addr)
839 {
840 best_addr = this_addr;
841 best_pst = tpst;
842 }
843 }
844 }
845 return best_pst;
846}
847
ccefbec3
EZ
848/* Find which partial symtab contains PC and SECTION. Return 0 if
849 none. We return the psymtab that contains a symbol whose address
850 exactly matches PC, or, if we cannot find an exact match, the
851 psymtab that contains a symbol whose address is closest to PC. */
c906108c 852struct partial_symtab *
714835d5 853find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
c906108c 854{
52f0bd74 855 struct objfile *objfile;
8a48e967
DJ
856 struct minimal_symbol *msymbol;
857
858 /* If we know that this is not a text address, return failure. This is
859 necessary because we loop based on texthigh and textlow, which do
860 not include the data ranges. */
861 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
862 if (msymbol
712f90be
TT
863 && (MSYMBOL_TYPE (msymbol) == mst_data
864 || MSYMBOL_TYPE (msymbol) == mst_bss
865 || MSYMBOL_TYPE (msymbol) == mst_abs
866 || MSYMBOL_TYPE (msymbol) == mst_file_data
867 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 868 return NULL;
c906108c 869
ff013f42
JK
870 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
871 than the later used TEXTLOW/TEXTHIGH one. */
872
873 ALL_OBJFILES (objfile)
874 if (objfile->psymtabs_addrmap != NULL)
c5aa993b 875 {
ff013f42
JK
876 struct partial_symtab *pst;
877
878 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
879 if (pst != NULL)
c5aa993b 880 {
907fc202 881 /* FIXME: addrmaps currently do not handle overlayed sections,
9af17804 882 so fall back to the non-addrmap case if we're debugging
907fc202
UW
883 overlays and the addrmap returned the wrong section. */
884 if (overlay_debugging && msymbol && section)
885 {
886 struct partial_symbol *p;
887 /* NOTE: This assumes that every psymbol has a
888 corresponding msymbol, which is not necessarily
889 true; the debug info might be much richer than the
890 object's symbol table. */
891 p = find_pc_sect_psymbol (pst, pc, section);
892 if (!p
893 || SYMBOL_VALUE_ADDRESS (p)
894 != SYMBOL_VALUE_ADDRESS (msymbol))
895 continue;
896 }
897
ff013f42
JK
898 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
899 PSYMTABS_ADDRMAP we used has already the best 1-byte
900 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
901 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
902 overlap. */
903
904 return pst;
c5aa993b 905 }
c5aa993b 906 }
ff013f42
JK
907
908 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
909 which still have no corresponding full SYMTABs read. But it is not
910 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
911 so far. */
912
913 ALL_OBJFILES (objfile)
914 {
915 struct partial_symtab *pst;
916
917 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
918 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
919 debug info type in single OBJFILE. */
920
921 ALL_OBJFILE_PSYMTABS (objfile, pst)
922 if (pc >= pst->textlow && pc < pst->texthigh)
923 {
924 struct partial_symtab *best_pst;
925
926 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
927 msymbol);
928 if (best_pst != NULL)
929 return best_pst;
930 }
931 }
932
933 return NULL;
c906108c
SS
934}
935
9af17804 936/* Find which partial symtab contains PC. Return 0 if none.
c906108c
SS
937 Backward compatibility, no section */
938
939struct partial_symtab *
fba45db2 940find_pc_psymtab (CORE_ADDR pc)
c906108c
SS
941{
942 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
943}
944
9af17804 945/* Find which partial symbol within a psymtab matches PC and SECTION.
c906108c
SS
946 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
947
948struct partial_symbol *
fba45db2 949find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
714835d5 950 struct obj_section *section)
c906108c
SS
951{
952 struct partial_symbol *best = NULL, *p, **pp;
953 CORE_ADDR best_pc;
c5aa993b 954
c906108c
SS
955 if (!psymtab)
956 psymtab = find_pc_sect_psymtab (pc, section);
957 if (!psymtab)
958 return 0;
959
960 /* Cope with programs that start at address 0 */
961 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
962
963 /* Search the global symbols as well as the static symbols, so that
964 find_pc_partial_function doesn't use a minimal symbol and thus
965 cache a bad endaddr. */
966 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
c5aa993b
JM
967 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
968 < psymtab->n_global_syms);
c906108c
SS
969 pp++)
970 {
971 p = *pp;
176620f1 972 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
c906108c
SS
973 && SYMBOL_CLASS (p) == LOC_BLOCK
974 && pc >= SYMBOL_VALUE_ADDRESS (p)
975 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
976 || (psymtab->textlow == 0
977 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
978 {
c5aa993b 979 if (section) /* match on a specific section */
c906108c
SS
980 {
981 fixup_psymbol_section (p, psymtab->objfile);
714835d5 982 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
c906108c
SS
983 continue;
984 }
985 best_pc = SYMBOL_VALUE_ADDRESS (p);
986 best = p;
987 }
988 }
989
990 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
c5aa993b
JM
991 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
992 < psymtab->n_static_syms);
c906108c
SS
993 pp++)
994 {
995 p = *pp;
176620f1 996 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
c906108c
SS
997 && SYMBOL_CLASS (p) == LOC_BLOCK
998 && pc >= SYMBOL_VALUE_ADDRESS (p)
999 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
c5aa993b 1000 || (psymtab->textlow == 0
c906108c
SS
1001 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1002 {
c5aa993b 1003 if (section) /* match on a specific section */
c906108c
SS
1004 {
1005 fixup_psymbol_section (p, psymtab->objfile);
714835d5 1006 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
c906108c
SS
1007 continue;
1008 }
1009 best_pc = SYMBOL_VALUE_ADDRESS (p);
1010 best = p;
1011 }
1012 }
1013
1014 return best;
1015}
1016
9af17804 1017/* Find which partial symbol within a psymtab matches PC. Return 0 if none.
c906108c
SS
1018 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1019
1020struct partial_symbol *
fba45db2 1021find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
c906108c
SS
1022{
1023 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1024}
1025\f
1026/* Debug symbols usually don't have section information. We need to dig that
1027 out of the minimal symbols and stash that in the debug symbol. */
1028
1029static void
907fc202
UW
1030fixup_section (struct general_symbol_info *ginfo,
1031 CORE_ADDR addr, struct objfile *objfile)
c906108c
SS
1032{
1033 struct minimal_symbol *msym;
c906108c 1034
bccdca4a
UW
1035 /* First, check whether a minimal symbol with the same name exists
1036 and points to the same address. The address check is required
1037 e.g. on PowerPC64, where the minimal symbol for a function will
1038 point to the function descriptor, while the debug symbol will
1039 point to the actual function code. */
907fc202
UW
1040 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1041 if (msym)
7a78d0ee 1042 {
714835d5 1043 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
7a78d0ee
KB
1044 ginfo->section = SYMBOL_SECTION (msym);
1045 }
907fc202 1046 else
19e2d14b
KB
1047 {
1048 /* Static, function-local variables do appear in the linker
1049 (minimal) symbols, but are frequently given names that won't
1050 be found via lookup_minimal_symbol(). E.g., it has been
1051 observed in frv-uclinux (ELF) executables that a static,
1052 function-local variable named "foo" might appear in the
1053 linker symbols as "foo.6" or "foo.3". Thus, there is no
1054 point in attempting to extend the lookup-by-name mechanism to
1055 handle this case due to the fact that there can be multiple
1056 names.
9af17804 1057
19e2d14b
KB
1058 So, instead, search the section table when lookup by name has
1059 failed. The ``addr'' and ``endaddr'' fields may have already
1060 been relocated. If so, the relocation offset (i.e. the
1061 ANOFFSET value) needs to be subtracted from these values when
1062 performing the comparison. We unconditionally subtract it,
1063 because, when no relocation has been performed, the ANOFFSET
1064 value will simply be zero.
9af17804 1065
19e2d14b
KB
1066 The address of the symbol whose section we're fixing up HAS
1067 NOT BEEN adjusted (relocated) yet. It can't have been since
1068 the section isn't yet known and knowing the section is
1069 necessary in order to add the correct relocation value. In
1070 other words, we wouldn't even be in this function (attempting
1071 to compute the section) if it were already known.
1072
1073 Note that it is possible to search the minimal symbols
1074 (subtracting the relocation value if necessary) to find the
1075 matching minimal symbol, but this is overkill and much less
1076 efficient. It is not necessary to find the matching minimal
9af17804
DE
1077 symbol, only its section.
1078
19e2d14b
KB
1079 Note that this technique (of doing a section table search)
1080 can fail when unrelocated section addresses overlap. For
1081 this reason, we still attempt a lookup by name prior to doing
1082 a search of the section table. */
9af17804 1083
19e2d14b 1084 struct obj_section *s;
19e2d14b
KB
1085 ALL_OBJFILE_OSECTIONS (objfile, s)
1086 {
1087 int idx = s->the_bfd_section->index;
1088 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1089
f1f6aadf
PA
1090 if (obj_section_addr (s) - offset <= addr
1091 && addr < obj_section_endaddr (s) - offset)
19e2d14b 1092 {
714835d5 1093 ginfo->obj_section = s;
19e2d14b
KB
1094 ginfo->section = idx;
1095 return;
1096 }
1097 }
1098 }
c906108c
SS
1099}
1100
1101struct symbol *
fba45db2 1102fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
c906108c 1103{
907fc202
UW
1104 CORE_ADDR addr;
1105
c906108c
SS
1106 if (!sym)
1107 return NULL;
1108
714835d5 1109 if (SYMBOL_OBJ_SECTION (sym))
c906108c
SS
1110 return sym;
1111
907fc202
UW
1112 /* We either have an OBJFILE, or we can get at it from the sym's
1113 symtab. Anything else is a bug. */
1114 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1115
1116 if (objfile == NULL)
1117 objfile = SYMBOL_SYMTAB (sym)->objfile;
1118
1119 /* We should have an objfile by now. */
1120 gdb_assert (objfile);
1121
1122 switch (SYMBOL_CLASS (sym))
1123 {
1124 case LOC_STATIC:
1125 case LOC_LABEL:
907fc202
UW
1126 addr = SYMBOL_VALUE_ADDRESS (sym);
1127 break;
1128 case LOC_BLOCK:
1129 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1130 break;
1131
1132 default:
1133 /* Nothing else will be listed in the minsyms -- no use looking
1134 it up. */
1135 return sym;
1136 }
1137
1138 fixup_section (&sym->ginfo, addr, objfile);
c906108c
SS
1139
1140 return sym;
1141}
1142
7a78d0ee 1143struct partial_symbol *
fba45db2 1144fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
c906108c 1145{
907fc202
UW
1146 CORE_ADDR addr;
1147
c906108c
SS
1148 if (!psym)
1149 return NULL;
1150
714835d5 1151 if (SYMBOL_OBJ_SECTION (psym))
c906108c
SS
1152 return psym;
1153
907fc202
UW
1154 gdb_assert (objfile);
1155
1156 switch (SYMBOL_CLASS (psym))
1157 {
1158 case LOC_STATIC:
1159 case LOC_LABEL:
907fc202
UW
1160 case LOC_BLOCK:
1161 addr = SYMBOL_VALUE_ADDRESS (psym);
1162 break;
1163 default:
1164 /* Nothing else will be listed in the minsyms -- no use looking
1165 it up. */
1166 return psym;
1167 }
1168
1169 fixup_section (&psym->ginfo, addr, objfile);
c906108c
SS
1170
1171 return psym;
1172}
1173
1174/* Find the definition for a specified symbol name NAME
176620f1 1175 in domain DOMAIN, visible from lexical block BLOCK.
c906108c 1176 Returns the struct symbol pointer, or zero if no symbol is found.
c906108c
SS
1177 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1178 NAME is a field of the current implied argument `this'. If so set
9af17804 1179 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
c906108c
SS
1180 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1181 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1182
1183/* This function has a bunch of loops in it and it would seem to be
1184 attractive to put in some QUIT's (though I'm not really sure
1185 whether it can run long enough to be really important). But there
1186 are a few calls for which it would appear to be bad news to quit
7ca9f392
AC
1187 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1188 that there is C++ code below which can error(), but that probably
1189 doesn't affect these calls since they are looking for a known
1190 variable and thus can probably assume it will never hit the C++
1191 code). */
c906108c
SS
1192
1193struct symbol *
53c5240f
PA
1194lookup_symbol_in_language (const char *name, const struct block *block,
1195 const domain_enum domain, enum language lang,
2570f2b7 1196 int *is_a_field_of_this)
c906108c 1197{
729051e6
DJ
1198 char *demangled_name = NULL;
1199 const char *modified_name = NULL;
3121eff0 1200 const char *mangled_name = NULL;
fba7f19c 1201 struct symbol *returnval;
9ee6bb93 1202 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
c906108c 1203
729051e6
DJ
1204 modified_name = name;
1205
987504bb 1206 /* If we are using C++ or Java, demangle the name before doing a lookup, so
729051e6 1207 we can always binary search. */
53c5240f 1208 if (lang == language_cplus)
729051e6
DJ
1209 {
1210 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1211 if (demangled_name)
1212 {
1213 mangled_name = name;
1214 modified_name = demangled_name;
9ee6bb93 1215 make_cleanup (xfree, demangled_name);
729051e6 1216 }
71c25dea
TT
1217 else
1218 {
1219 /* If we were given a non-mangled name, canonicalize it
1220 according to the language (so far only for C++). */
1221 demangled_name = cp_canonicalize_string (name);
1222 if (demangled_name)
1223 {
1224 modified_name = demangled_name;
1225 make_cleanup (xfree, demangled_name);
1226 }
1227 }
729051e6 1228 }
53c5240f 1229 else if (lang == language_java)
987504bb 1230 {
9af17804 1231 demangled_name = cplus_demangle (name,
987504bb
JJ
1232 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1233 if (demangled_name)
1234 {
1235 mangled_name = name;
1236 modified_name = demangled_name;
9ee6bb93 1237 make_cleanup (xfree, demangled_name);
987504bb
JJ
1238 }
1239 }
729051e6 1240
63872f9d
JG
1241 if (case_sensitivity == case_sensitive_off)
1242 {
1243 char *copy;
1244 int len, i;
1245
1246 len = strlen (name);
1247 copy = (char *) alloca (len + 1);
1248 for (i= 0; i < len; i++)
1249 copy[i] = tolower (name[i]);
1250 copy[len] = 0;
fba7f19c 1251 modified_name = copy;
63872f9d 1252 }
fba7f19c 1253
3121eff0 1254 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
21b556f4 1255 domain, lang, is_a_field_of_this);
9ee6bb93 1256 do_cleanups (cleanup);
fba7f19c 1257
9af17804 1258 return returnval;
fba7f19c
EZ
1259}
1260
53c5240f
PA
1261/* Behave like lookup_symbol_in_language, but performed with the
1262 current language. */
1263
1264struct symbol *
1265lookup_symbol (const char *name, const struct block *block,
2570f2b7 1266 domain_enum domain, int *is_a_field_of_this)
53c5240f
PA
1267{
1268 return lookup_symbol_in_language (name, block, domain,
1269 current_language->la_language,
2570f2b7 1270 is_a_field_of_this);
53c5240f
PA
1271}
1272
1273/* Behave like lookup_symbol except that NAME is the natural name
5ad1c190
DC
1274 of the symbol that we're looking for and, if LINKAGE_NAME is
1275 non-NULL, ensure that the symbol's linkage name matches as
1276 well. */
1277
fba7f19c 1278static struct symbol *
5ad1c190 1279lookup_symbol_aux (const char *name, const char *linkage_name,
176620f1 1280 const struct block *block, const domain_enum domain,
21b556f4 1281 enum language language, int *is_a_field_of_this)
fba7f19c 1282{
8155455b 1283 struct symbol *sym;
53c5240f 1284 const struct language_defn *langdef;
406bc4de 1285
9a146a11
EZ
1286 /* Make sure we do something sensible with is_a_field_of_this, since
1287 the callers that set this parameter to some non-null value will
1288 certainly use it later and expect it to be either 0 or 1.
1289 If we don't set it, the contents of is_a_field_of_this are
1290 undefined. */
1291 if (is_a_field_of_this != NULL)
1292 *is_a_field_of_this = 0;
1293
e4051eeb
DC
1294 /* Search specified block and its superiors. Don't search
1295 STATIC_BLOCK or GLOBAL_BLOCK. */
c906108c 1296
21b556f4 1297 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
8155455b
DC
1298 if (sym != NULL)
1299 return sym;
c906108c 1300
53c5240f
PA
1301 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1302 check to see if NAME is a field of `this'. */
1303
1304 langdef = language_def (language);
5f9a71c3 1305
2b2d9e11
VP
1306 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1307 && block != NULL)
c906108c 1308 {
2b2d9e11
VP
1309 struct symbol *sym = NULL;
1310 /* 'this' is only defined in the function's block, so find the
1311 enclosing function block. */
9af17804 1312 for (; block && !BLOCK_FUNCTION (block);
2b2d9e11
VP
1313 block = BLOCK_SUPERBLOCK (block));
1314
1315 if (block && !dict_empty (BLOCK_DICT (block)))
1316 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1317 NULL, VAR_DOMAIN);
1318 if (sym)
c906108c 1319 {
2b2d9e11 1320 struct type *t = sym->type;
9af17804 1321
2b2d9e11
VP
1322 /* I'm not really sure that type of this can ever
1323 be typedefed; just be safe. */
1324 CHECK_TYPEDEF (t);
1325 if (TYPE_CODE (t) == TYPE_CODE_PTR
1326 || TYPE_CODE (t) == TYPE_CODE_REF)
1327 t = TYPE_TARGET_TYPE (t);
9af17804 1328
2b2d9e11
VP
1329 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1330 && TYPE_CODE (t) != TYPE_CODE_UNION)
9af17804 1331 error (_("Internal error: `%s' is not an aggregate"),
2b2d9e11 1332 langdef->la_name_of_this);
9af17804 1333
2b2d9e11
VP
1334 if (check_field (t, name))
1335 {
1336 *is_a_field_of_this = 1;
2b2d9e11
VP
1337 return NULL;
1338 }
c906108c
SS
1339 }
1340 }
1341
53c5240f 1342 /* Now do whatever is appropriate for LANGUAGE to look
5f9a71c3 1343 up static and global variables. */
c906108c 1344
21b556f4 1345 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
8155455b
DC
1346 if (sym != NULL)
1347 return sym;
c906108c 1348
8155455b
DC
1349 /* Now search all static file-level symbols. Not strictly correct,
1350 but more useful than an error. Do the symtabs first, then check
1351 the psymtabs. If a psymtab indicates the existence of the
1352 desired name as a file-level static, then do psymtab-to-symtab
c906108c
SS
1353 conversion on the fly and return the found symbol. */
1354
21b556f4 1355 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
8155455b
DC
1356 if (sym != NULL)
1357 return sym;
9af17804 1358
21b556f4 1359 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
8155455b
DC
1360 if (sym != NULL)
1361 return sym;
c906108c 1362
8155455b 1363 return NULL;
c906108c 1364}
8155455b 1365
e4051eeb 1366/* Check to see if the symbol is defined in BLOCK or its superiors.
89a9d1b1 1367 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
8155455b
DC
1368
1369static struct symbol *
5ad1c190 1370lookup_symbol_aux_local (const char *name, const char *linkage_name,
8155455b 1371 const struct block *block,
21b556f4 1372 const domain_enum domain)
8155455b
DC
1373{
1374 struct symbol *sym;
89a9d1b1
DC
1375 const struct block *static_block = block_static_block (block);
1376
e4051eeb
DC
1377 /* Check if either no block is specified or it's a global block. */
1378
89a9d1b1
DC
1379 if (static_block == NULL)
1380 return NULL;
e4051eeb 1381
89a9d1b1 1382 while (block != static_block)
f61e8913 1383 {
21b556f4 1384 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
f61e8913
DC
1385 if (sym != NULL)
1386 return sym;
1387 block = BLOCK_SUPERBLOCK (block);
1388 }
1389
89a9d1b1 1390 /* We've reached the static block without finding a result. */
e4051eeb 1391
f61e8913
DC
1392 return NULL;
1393}
1394
3a40aaa0
UW
1395/* Look up OBJFILE to BLOCK. */
1396
1397static struct objfile *
1398lookup_objfile_from_block (const struct block *block)
1399{
1400 struct objfile *obj;
1401 struct symtab *s;
1402
1403 if (block == NULL)
1404 return NULL;
1405
1406 block = block_global_block (block);
1407 /* Go through SYMTABS. */
1408 ALL_SYMTABS (obj, s)
1409 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1410 return obj;
1411
1412 return NULL;
1413}
1414
6c9353d3
PA
1415/* Look up a symbol in a block; if found, fixup the symbol, and set
1416 block_found appropriately. */
f61e8913 1417
5f9a71c3 1418struct symbol *
5ad1c190 1419lookup_symbol_aux_block (const char *name, const char *linkage_name,
f61e8913 1420 const struct block *block,
21b556f4 1421 const domain_enum domain)
f61e8913
DC
1422{
1423 struct symbol *sym;
f61e8913 1424
5ad1c190 1425 sym = lookup_block_symbol (block, name, linkage_name, domain);
f61e8913 1426 if (sym)
8155455b 1427 {
f61e8913 1428 block_found = block;
21b556f4 1429 return fixup_symbol_section (sym, NULL);
8155455b
DC
1430 }
1431
1432 return NULL;
1433}
1434
3a40aaa0
UW
1435/* Check all global symbols in OBJFILE in symtabs and
1436 psymtabs. */
1437
1438struct symbol *
1439lookup_global_symbol_from_objfile (const struct objfile *objfile,
1440 const char *name,
1441 const char *linkage_name,
21b556f4 1442 const domain_enum domain)
3a40aaa0
UW
1443{
1444 struct symbol *sym;
1445 struct blockvector *bv;
1446 const struct block *block;
1447 struct symtab *s;
1448 struct partial_symtab *ps;
1449
1450 /* Go through symtabs. */
1451 ALL_OBJFILE_SYMTABS (objfile, s)
1452 {
1453 bv = BLOCKVECTOR (s);
1454 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1455 sym = lookup_block_symbol (block, name, linkage_name, domain);
1456 if (sym)
1457 {
1458 block_found = block;
3a40aaa0
UW
1459 return fixup_symbol_section (sym, (struct objfile *)objfile);
1460 }
1461 }
1462
1463 /* Now go through psymtabs. */
1464 ALL_OBJFILE_PSYMTABS (objfile, ps)
1465 {
1466 if (!ps->readin
1467 && lookup_partial_symbol (ps, name, linkage_name,
1468 1, domain))
1469 {
1470 s = PSYMTAB_TO_SYMTAB (ps);
1471 bv = BLOCKVECTOR (s);
1472 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1473 sym = lookup_block_symbol (block, name, linkage_name, domain);
3a40aaa0
UW
1474 return fixup_symbol_section (sym, (struct objfile *)objfile);
1475 }
1476 }
1477
56e3f43c
DJ
1478 if (objfile->separate_debug_objfile)
1479 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
21b556f4 1480 name, linkage_name, domain);
56e3f43c 1481
3a40aaa0
UW
1482 return NULL;
1483}
1484
8155455b
DC
1485/* Check to see if the symbol is defined in one of the symtabs.
1486 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1487 depending on whether or not we want to search global symbols or
1488 static symbols. */
1489
1490static struct symbol *
1491lookup_symbol_aux_symtabs (int block_index,
5ad1c190 1492 const char *name, const char *linkage_name,
21b556f4 1493 const domain_enum domain)
8155455b
DC
1494{
1495 struct symbol *sym;
1496 struct objfile *objfile;
1497 struct blockvector *bv;
1498 const struct block *block;
1499 struct symtab *s;
1500
11309657 1501 ALL_PRIMARY_SYMTABS (objfile, s)
8155455b
DC
1502 {
1503 bv = BLOCKVECTOR (s);
1504 block = BLOCKVECTOR_BLOCK (bv, block_index);
5ad1c190 1505 sym = lookup_block_symbol (block, name, linkage_name, domain);
8155455b
DC
1506 if (sym)
1507 {
1508 block_found = block;
8155455b
DC
1509 return fixup_symbol_section (sym, objfile);
1510 }
1511 }
1512
1513 return NULL;
1514}
1515
1516/* Check to see if the symbol is defined in one of the partial
1517 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1518 STATIC_BLOCK, depending on whether or not we want to search global
1519 symbols or static symbols. */
1520
1521static struct symbol *
1522lookup_symbol_aux_psymtabs (int block_index, const char *name,
5ad1c190 1523 const char *linkage_name,
21b556f4 1524 const domain_enum domain)
8155455b
DC
1525{
1526 struct symbol *sym;
1527 struct objfile *objfile;
1528 struct blockvector *bv;
1529 const struct block *block;
1530 struct partial_symtab *ps;
1531 struct symtab *s;
1532 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1533
1534 ALL_PSYMTABS (objfile, ps)
1535 {
1536 if (!ps->readin
5ad1c190 1537 && lookup_partial_symbol (ps, name, linkage_name,
176620f1 1538 psymtab_index, domain))
8155455b
DC
1539 {
1540 s = PSYMTAB_TO_SYMTAB (ps);
1541 bv = BLOCKVECTOR (s);
1542 block = BLOCKVECTOR_BLOCK (bv, block_index);
5ad1c190 1543 sym = lookup_block_symbol (block, name, linkage_name, domain);
8155455b
DC
1544 if (!sym)
1545 {
1546 /* This shouldn't be necessary, but as a last resort try
1547 looking in the statics even though the psymtab claimed
1548 the symbol was global, or vice-versa. It's possible
1549 that the psymtab gets it wrong in some cases. */
1550
1551 /* FIXME: carlton/2002-09-30: Should we really do that?
1552 If that happens, isn't it likely to be a GDB error, in
1553 which case we should fix the GDB error rather than
1554 silently dealing with it here? So I'd vote for
1555 removing the check for the symbol in the other
1556 block. */
1557 block = BLOCKVECTOR_BLOCK (bv,
1558 block_index == GLOBAL_BLOCK ?
1559 STATIC_BLOCK : GLOBAL_BLOCK);
5ad1c190 1560 sym = lookup_block_symbol (block, name, linkage_name, domain);
8155455b 1561 if (!sym)
8a3fe4f8 1562 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
8155455b
DC
1563 block_index == GLOBAL_BLOCK ? "global" : "static",
1564 name, ps->filename, name, name);
1565 }
8155455b
DC
1566 return fixup_symbol_section (sym, objfile);
1567 }
1568 }
1569
1570 return NULL;
1571}
1572
5f9a71c3
DC
1573/* A default version of lookup_symbol_nonlocal for use by languages
1574 that can't think of anything better to do. This implements the C
1575 lookup rules. */
1576
1577struct symbol *
1578basic_lookup_symbol_nonlocal (const char *name,
1579 const char *linkage_name,
1580 const struct block *block,
21b556f4 1581 const domain_enum domain)
5f9a71c3
DC
1582{
1583 struct symbol *sym;
1584
1585 /* NOTE: carlton/2003-05-19: The comments below were written when
1586 this (or what turned into this) was part of lookup_symbol_aux;
1587 I'm much less worried about these questions now, since these
1588 decisions have turned out well, but I leave these comments here
1589 for posterity. */
1590
1591 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1592 not it would be appropriate to search the current global block
1593 here as well. (That's what this code used to do before the
1594 is_a_field_of_this check was moved up.) On the one hand, it's
1595 redundant with the lookup_symbol_aux_symtabs search that happens
1596 next. On the other hand, if decode_line_1 is passed an argument
1597 like filename:var, then the user presumably wants 'var' to be
1598 searched for in filename. On the third hand, there shouldn't be
1599 multiple global variables all of which are named 'var', and it's
1600 not like decode_line_1 has ever restricted its search to only
1601 global variables in a single filename. All in all, only
1602 searching the static block here seems best: it's correct and it's
1603 cleanest. */
1604
1605 /* NOTE: carlton/2002-12-05: There's also a possible performance
1606 issue here: if you usually search for global symbols in the
1607 current file, then it would be slightly better to search the
1608 current global block before searching all the symtabs. But there
1609 are other factors that have a much greater effect on performance
1610 than that one, so I don't think we should worry about that for
1611 now. */
1612
21b556f4 1613 sym = lookup_symbol_static (name, linkage_name, block, domain);
5f9a71c3
DC
1614 if (sym != NULL)
1615 return sym;
1616
21b556f4 1617 return lookup_symbol_global (name, linkage_name, block, domain);
5f9a71c3
DC
1618}
1619
1620/* Lookup a symbol in the static block associated to BLOCK, if there
1621 is one; do nothing if BLOCK is NULL or a global block. */
1622
1623struct symbol *
1624lookup_symbol_static (const char *name,
1625 const char *linkage_name,
1626 const struct block *block,
21b556f4 1627 const domain_enum domain)
5f9a71c3
DC
1628{
1629 const struct block *static_block = block_static_block (block);
1630
1631 if (static_block != NULL)
21b556f4 1632 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
5f9a71c3
DC
1633 else
1634 return NULL;
1635}
1636
1637/* Lookup a symbol in all files' global blocks (searching psymtabs if
1638 necessary). */
1639
1640struct symbol *
1641lookup_symbol_global (const char *name,
1642 const char *linkage_name,
3a40aaa0 1643 const struct block *block,
21b556f4 1644 const domain_enum domain)
5f9a71c3 1645{
3a40aaa0
UW
1646 struct symbol *sym = NULL;
1647 struct objfile *objfile = NULL;
1648
1649 /* Call library-specific lookup procedure. */
1650 objfile = lookup_objfile_from_block (block);
1651 if (objfile != NULL)
21b556f4 1652 sym = solib_global_lookup (objfile, name, linkage_name, domain);
3a40aaa0
UW
1653 if (sym != NULL)
1654 return sym;
5f9a71c3 1655
21b556f4 1656 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
5f9a71c3
DC
1657 if (sym != NULL)
1658 return sym;
1659
21b556f4 1660 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
5f9a71c3
DC
1661}
1662
5eeb2539 1663int
9af17804 1664symbol_matches_domain (enum language symbol_language,
5eeb2539
AR
1665 domain_enum symbol_domain,
1666 domain_enum domain)
1667{
9af17804 1668 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
5eeb2539
AR
1669 A Java class declaration also defines a typedef for the class.
1670 Similarly, any Ada type declaration implicitly defines a typedef. */
1671 if (symbol_language == language_cplus
1672 || symbol_language == language_java
1673 || symbol_language == language_ada)
1674 {
1675 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1676 && symbol_domain == STRUCT_DOMAIN)
1677 return 1;
1678 }
1679 /* For all other languages, strict match is required. */
1680 return (symbol_domain == domain);
1681}
1682
3d4e8fd2
DC
1683/* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1684 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1685 linkage name matches it. Check the global symbols if GLOBAL, the
1686 static symbols if not */
c906108c 1687
b6429628 1688struct partial_symbol *
3d4e8fd2
DC
1689lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1690 const char *linkage_name, int global,
176620f1 1691 domain_enum domain)
c906108c 1692{
357e46e7 1693 struct partial_symbol *temp;
c906108c 1694 struct partial_symbol **start, **psym;
38d49aff 1695 struct partial_symbol **top, **real_top, **bottom, **center;
c906108c
SS
1696 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1697 int do_linear_search = 1;
9af17804 1698
c906108c
SS
1699 if (length == 0)
1700 {
1701 return (NULL);
1702 }
c906108c
SS
1703 start = (global ?
1704 pst->objfile->global_psymbols.list + pst->globals_offset :
c5aa993b 1705 pst->objfile->static_psymbols.list + pst->statics_offset);
9af17804 1706
c5aa993b 1707 if (global) /* This means we can use a binary search. */
c906108c
SS
1708 {
1709 do_linear_search = 0;
1710
1711 /* Binary search. This search is guaranteed to end with center
0fe19209
DC
1712 pointing at the earliest partial symbol whose name might be
1713 correct. At that point *all* partial symbols with an
1714 appropriate name will be checked against the correct
176620f1 1715 domain. */
c906108c
SS
1716
1717 bottom = start;
1718 top = start + length - 1;
38d49aff 1719 real_top = top;
c906108c
SS
1720 while (top > bottom)
1721 {
1722 center = bottom + (top - bottom) / 2;
1723 if (!(center < top))
e2e0b3e5 1724 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
c906108c 1725 if (!do_linear_search
357e46e7 1726 && (SYMBOL_LANGUAGE (*center) == language_java))
c906108c
SS
1727 {
1728 do_linear_search = 1;
1729 }
4725b721 1730 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
c906108c
SS
1731 {
1732 top = center;
1733 }
1734 else
1735 {
1736 bottom = center + 1;
1737 }
1738 }
1739 if (!(top == bottom))
e2e0b3e5 1740 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
357e46e7 1741
3d4e8fd2
DC
1742 while (top <= real_top
1743 && (linkage_name != NULL
1744 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
4725b721 1745 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
c906108c 1746 {
5eeb2539
AR
1747 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1748 SYMBOL_DOMAIN (*top), domain))
1749 return (*top);
c5aa993b 1750 top++;
c906108c
SS
1751 }
1752 }
1753
1754 /* Can't use a binary search or else we found during the binary search that
1755 we should also do a linear search. */
1756
1757 if (do_linear_search)
9af17804 1758 {
c906108c
SS
1759 for (psym = start; psym < start + length; psym++)
1760 {
9af17804 1761 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
5eeb2539 1762 SYMBOL_DOMAIN (*psym), domain))
c906108c 1763 {
3d4e8fd2
DC
1764 if (linkage_name != NULL
1765 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
4725b721 1766 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
c906108c
SS
1767 {
1768 return (*psym);
1769 }
1770 }
1771 }
1772 }
1773
1774 return (NULL);
1775}
1776
176620f1 1777/* Look up a type named NAME in the struct_domain. The type returned
b368761e
DC
1778 must not be opaque -- i.e., must have at least one field
1779 defined. */
c906108c 1780
b368761e
DC
1781struct type *
1782lookup_transparent_type (const char *name)
1783{
1784 return current_language->la_lookup_transparent_type (name);
1785}
c906108c 1786
b368761e
DC
1787/* The standard implementation of lookup_transparent_type. This code
1788 was modeled on lookup_symbol -- the parts not relevant to looking
1789 up types were just left out. In particular it's assumed here that
1790 types are available in struct_domain and only at file-static or
1791 global blocks. */
c906108c
SS
1792
1793struct type *
b368761e 1794basic_lookup_transparent_type (const char *name)
c906108c 1795{
52f0bd74
AC
1796 struct symbol *sym;
1797 struct symtab *s = NULL;
1798 struct partial_symtab *ps;
c906108c 1799 struct blockvector *bv;
52f0bd74
AC
1800 struct objfile *objfile;
1801 struct block *block;
c906108c
SS
1802
1803 /* Now search all the global symbols. Do the symtab's first, then
1804 check the psymtab's. If a psymtab indicates the existence
1805 of the desired name as a global, then do psymtab-to-symtab
1806 conversion on the fly and return the found symbol. */
c5aa993b 1807
11309657 1808 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1809 {
1810 bv = BLOCKVECTOR (s);
1811 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
176620f1 1812 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
c5aa993b
JM
1813 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1814 {
1815 return SYMBOL_TYPE (sym);
1816 }
1817 }
c906108c
SS
1818
1819 ALL_PSYMTABS (objfile, ps)
c5aa993b 1820 {
3d4e8fd2 1821 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
176620f1 1822 1, STRUCT_DOMAIN))
c5aa993b
JM
1823 {
1824 s = PSYMTAB_TO_SYMTAB (ps);
1825 bv = BLOCKVECTOR (s);
1826 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
176620f1 1827 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
c5aa993b
JM
1828 if (!sym)
1829 {
1830 /* This shouldn't be necessary, but as a last resort
1831 * try looking in the statics even though the psymtab
1832 * claimed the symbol was global. It's possible that
1833 * the psymtab gets it wrong in some cases.
1834 */
1835 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
176620f1 1836 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
c5aa993b 1837 if (!sym)
8a3fe4f8 1838 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
c906108c 1839%s may be an inlined function, or may be a template function\n\
8a3fe4f8 1840(if a template, try specifying an instantiation: %s<type>)."),
c5aa993b
JM
1841 name, ps->filename, name, name);
1842 }
1843 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1844 return SYMBOL_TYPE (sym);
1845 }
1846 }
c906108c
SS
1847
1848 /* Now search the static file-level symbols.
1849 Not strictly correct, but more useful than an error.
1850 Do the symtab's first, then
1851 check the psymtab's. If a psymtab indicates the existence
1852 of the desired name as a file-level static, then do psymtab-to-symtab
1853 conversion on the fly and return the found symbol.
1854 */
1855
11309657 1856 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1857 {
1858 bv = BLOCKVECTOR (s);
1859 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
176620f1 1860 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
c5aa993b
JM
1861 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1862 {
1863 return SYMBOL_TYPE (sym);
1864 }
1865 }
c906108c
SS
1866
1867 ALL_PSYMTABS (objfile, ps)
c5aa993b 1868 {
176620f1 1869 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
c5aa993b
JM
1870 {
1871 s = PSYMTAB_TO_SYMTAB (ps);
1872 bv = BLOCKVECTOR (s);
1873 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
176620f1 1874 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
c5aa993b
JM
1875 if (!sym)
1876 {
1877 /* This shouldn't be necessary, but as a last resort
1878 * try looking in the globals even though the psymtab
1879 * claimed the symbol was static. It's possible that
1880 * the psymtab gets it wrong in some cases.
1881 */
1882 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
176620f1 1883 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
c5aa993b 1884 if (!sym)
8a3fe4f8 1885 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
c906108c 1886%s may be an inlined function, or may be a template function\n\
8a3fe4f8 1887(if a template, try specifying an instantiation: %s<type>)."),
c5aa993b
JM
1888 name, ps->filename, name, name);
1889 }
1890 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1891 return SYMBOL_TYPE (sym);
1892 }
1893 }
c906108c
SS
1894 return (struct type *) 0;
1895}
1896
1897
1898/* Find the psymtab containing main(). */
1899/* FIXME: What about languages without main() or specially linked
1900 executables that have no main() ? */
1901
1902struct partial_symtab *
fba45db2 1903find_main_psymtab (void)
c906108c 1904{
52f0bd74
AC
1905 struct partial_symtab *pst;
1906 struct objfile *objfile;
c906108c
SS
1907
1908 ALL_PSYMTABS (objfile, pst)
c5aa993b 1909 {
176620f1 1910 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
c5aa993b
JM
1911 {
1912 return (pst);
1913 }
1914 }
c906108c
SS
1915 return (NULL);
1916}
1917
176620f1 1918/* Search BLOCK for symbol NAME in DOMAIN.
c906108c
SS
1919
1920 Note that if NAME is the demangled form of a C++ symbol, we will fail
1921 to find a match during the binary search of the non-encoded names, but
1922 for now we don't worry about the slight inefficiency of looking for
1923 a match we'll never find, since it will go pretty quick. Once the
1924 binary search terminates, we drop through and do a straight linear
1bae87b9 1925 search on the symbols. Each symbol which is marked as being a ObjC/C++
9af17804 1926 symbol (language_cplus or language_objc set) has both the encoded and
1bae87b9 1927 non-encoded names tested for a match.
3121eff0 1928
5ad1c190 1929 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
3121eff0
DJ
1930 particular mangled name.
1931*/
c906108c
SS
1932
1933struct symbol *
aa1ee363 1934lookup_block_symbol (const struct block *block, const char *name,
5ad1c190 1935 const char *linkage_name,
176620f1 1936 const domain_enum domain)
c906108c 1937{
de4f826b
DC
1938 struct dict_iterator iter;
1939 struct symbol *sym;
c906108c 1940
de4f826b 1941 if (!BLOCK_FUNCTION (block))
261397f8 1942 {
de4f826b
DC
1943 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1944 sym != NULL;
1945 sym = dict_iter_name_next (name, &iter))
261397f8 1946 {
5eeb2539
AR
1947 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1948 SYMBOL_DOMAIN (sym), domain)
de4f826b
DC
1949 && (linkage_name != NULL
1950 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
261397f8
DJ
1951 return sym;
1952 }
1953 return NULL;
1954 }
526e70c0 1955 else
c906108c 1956 {
526e70c0
DC
1957 /* Note that parameter symbols do not always show up last in the
1958 list; this loop makes sure to take anything else other than
1959 parameter symbols first; it only uses parameter symbols as a
1960 last resort. Note that this only takes up extra computation
1961 time on a match. */
de4f826b
DC
1962
1963 struct symbol *sym_found = NULL;
1964
1965 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1966 sym != NULL;
1967 sym = dict_iter_name_next (name, &iter))
c906108c 1968 {
5eeb2539
AR
1969 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1970 SYMBOL_DOMAIN (sym), domain)
de4f826b
DC
1971 && (linkage_name != NULL
1972 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
c906108c 1973 {
c906108c 1974 sym_found = sym;
2a2d4dc3 1975 if (!SYMBOL_IS_ARGUMENT (sym))
c906108c
SS
1976 {
1977 break;
1978 }
1979 }
c906108c 1980 }
de4f826b 1981 return (sym_found); /* Will be NULL if not found. */
c906108c 1982 }
c906108c
SS
1983}
1984
c906108c
SS
1985/* Find the symtab associated with PC and SECTION. Look through the
1986 psymtabs and read in another symtab if necessary. */
1987
1988struct symtab *
714835d5 1989find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
c906108c 1990{
52f0bd74 1991 struct block *b;
c906108c 1992 struct blockvector *bv;
52f0bd74
AC
1993 struct symtab *s = NULL;
1994 struct symtab *best_s = NULL;
1995 struct partial_symtab *ps;
1996 struct objfile *objfile;
c906108c 1997 CORE_ADDR distance = 0;
8a48e967
DJ
1998 struct minimal_symbol *msymbol;
1999
2000 /* If we know that this is not a text address, return failure. This is
2001 necessary because we loop based on the block's high and low code
2002 addresses, which do not include the data ranges, and because
2003 we call find_pc_sect_psymtab which has a similar restriction based
2004 on the partial_symtab's texthigh and textlow. */
2005 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2006 if (msymbol
712f90be
TT
2007 && (MSYMBOL_TYPE (msymbol) == mst_data
2008 || MSYMBOL_TYPE (msymbol) == mst_bss
2009 || MSYMBOL_TYPE (msymbol) == mst_abs
2010 || MSYMBOL_TYPE (msymbol) == mst_file_data
2011 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 2012 return NULL;
c906108c
SS
2013
2014 /* Search all symtabs for the one whose file contains our address, and which
2015 is the smallest of all the ones containing the address. This is designed
2016 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2017 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2018 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2019
2020 This happens for native ecoff format, where code from included files
2021 gets its own symtab. The symtab for the included file should have
2022 been read in already via the dependency mechanism.
2023 It might be swifter to create several symtabs with the same name
2024 like xcoff does (I'm not sure).
2025
2026 It also happens for objfiles that have their functions reordered.
2027 For these, the symtab we are looking for is not necessarily read in. */
2028
11309657 2029 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
2030 {
2031 bv = BLOCKVECTOR (s);
2032 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
c906108c 2033
c5aa993b 2034 if (BLOCK_START (b) <= pc
c5aa993b 2035 && BLOCK_END (b) > pc
c5aa993b
JM
2036 && (distance == 0
2037 || BLOCK_END (b) - BLOCK_START (b) < distance))
2038 {
2039 /* For an objfile that has its functions reordered,
2040 find_pc_psymtab will find the proper partial symbol table
2041 and we simply return its corresponding symtab. */
2042 /* In order to better support objfiles that contain both
2043 stabs and coff debugging info, we continue on if a psymtab
2044 can't be found. */
2045 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2046 {
2047 ps = find_pc_sect_psymtab (pc, section);
2048 if (ps)
2049 return PSYMTAB_TO_SYMTAB (ps);
2050 }
2051 if (section != 0)
2052 {
de4f826b 2053 struct dict_iterator iter;
261397f8 2054 struct symbol *sym = NULL;
c906108c 2055
de4f826b 2056 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 2057 {
261397f8 2058 fixup_symbol_section (sym, objfile);
714835d5 2059 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
c5aa993b
JM
2060 break;
2061 }
de4f826b 2062 if (sym == NULL)
c5aa993b
JM
2063 continue; /* no symbol in this symtab matches section */
2064 }
2065 distance = BLOCK_END (b) - BLOCK_START (b);
2066 best_s = s;
2067 }
2068 }
c906108c
SS
2069
2070 if (best_s != NULL)
c5aa993b 2071 return (best_s);
c906108c
SS
2072
2073 s = NULL;
2074 ps = find_pc_sect_psymtab (pc, section);
2075 if (ps)
2076 {
2077 if (ps->readin)
2078 /* Might want to error() here (in case symtab is corrupt and
2079 will cause a core dump), but maybe we can successfully
2080 continue, so let's not. */
8a3fe4f8
AC
2081 warning (_("\
2082(Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
d730266b 2083 paddr_nz (pc));
c906108c
SS
2084 s = PSYMTAB_TO_SYMTAB (ps);
2085 }
2086 return (s);
2087}
2088
2089/* Find the symtab associated with PC. Look through the psymtabs and
2090 read in another symtab if necessary. Backward compatibility, no section */
2091
2092struct symtab *
fba45db2 2093find_pc_symtab (CORE_ADDR pc)
c906108c
SS
2094{
2095 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2096}
c906108c 2097\f
c5aa993b 2098
7e73cedf 2099/* Find the source file and line number for a given PC value and SECTION.
c906108c
SS
2100 Return a structure containing a symtab pointer, a line number,
2101 and a pc range for the entire source line.
2102 The value's .pc field is NOT the specified pc.
2103 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2104 use the line that ends there. Otherwise, in that case, the line
2105 that begins there is used. */
2106
2107/* The big complication here is that a line may start in one file, and end just
2108 before the start of another file. This usually occurs when you #include
2109 code in the middle of a subroutine. To properly find the end of a line's PC
2110 range, we must search all symtabs associated with this compilation unit, and
2111 find the one whose first PC is closer than that of the next line in this
2112 symtab. */
2113
2114/* If it's worth the effort, we could be using a binary search. */
2115
2116struct symtab_and_line
714835d5 2117find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
c906108c
SS
2118{
2119 struct symtab *s;
52f0bd74
AC
2120 struct linetable *l;
2121 int len;
2122 int i;
2123 struct linetable_entry *item;
c906108c
SS
2124 struct symtab_and_line val;
2125 struct blockvector *bv;
2126 struct minimal_symbol *msymbol;
2127 struct minimal_symbol *mfunsym;
2128
2129 /* Info on best line seen so far, and where it starts, and its file. */
2130
2131 struct linetable_entry *best = NULL;
2132 CORE_ADDR best_end = 0;
2133 struct symtab *best_symtab = 0;
2134
2135 /* Store here the first line number
2136 of a file which contains the line at the smallest pc after PC.
2137 If we don't find a line whose range contains PC,
2138 we will use a line one less than this,
2139 with a range from the start of that file to the first line's pc. */
2140 struct linetable_entry *alt = NULL;
2141 struct symtab *alt_symtab = 0;
2142
2143 /* Info on best line seen in this file. */
2144
2145 struct linetable_entry *prev;
2146
2147 /* If this pc is not from the current frame,
2148 it is the address of the end of a call instruction.
2149 Quite likely that is the start of the following statement.
2150 But what we want is the statement containing the instruction.
2151 Fudge the pc to make sure we get that. */
2152
fe39c653 2153 init_sal (&val); /* initialize to zeroes */
c906108c 2154
b77b1eb7
JB
2155 /* It's tempting to assume that, if we can't find debugging info for
2156 any function enclosing PC, that we shouldn't search for line
2157 number info, either. However, GAS can emit line number info for
2158 assembly files --- very helpful when debugging hand-written
2159 assembly code. In such a case, we'd have no debug info for the
2160 function, but we would have line info. */
648f4f79 2161
c906108c
SS
2162 if (notcurrent)
2163 pc -= 1;
2164
c5aa993b 2165 /* elz: added this because this function returned the wrong
c906108c
SS
2166 information if the pc belongs to a stub (import/export)
2167 to call a shlib function. This stub would be anywhere between
9af17804
DE
2168 two functions in the target, and the line info was erroneously
2169 taken to be the one of the line before the pc.
c5aa993b 2170 */
c906108c 2171 /* RT: Further explanation:
c5aa993b 2172
c906108c
SS
2173 * We have stubs (trampolines) inserted between procedures.
2174 *
2175 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2176 * exists in the main image.
2177 *
2178 * In the minimal symbol table, we have a bunch of symbols
2179 * sorted by start address. The stubs are marked as "trampoline",
2180 * the others appear as text. E.g.:
2181 *
9af17804 2182 * Minimal symbol table for main image
c906108c
SS
2183 * main: code for main (text symbol)
2184 * shr1: stub (trampoline symbol)
2185 * foo: code for foo (text symbol)
2186 * ...
2187 * Minimal symbol table for "shr1" image:
2188 * ...
2189 * shr1: code for shr1 (text symbol)
2190 * ...
2191 *
2192 * So the code below is trying to detect if we are in the stub
2193 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2194 * and if found, do the symbolization from the real-code address
2195 * rather than the stub address.
2196 *
2197 * Assumptions being made about the minimal symbol table:
2198 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2199 * if we're really in the trampoline. If we're beyond it (say
9af17804 2200 * we're in "foo" in the above example), it'll have a closer
c906108c
SS
2201 * symbol (the "foo" text symbol for example) and will not
2202 * return the trampoline.
2203 * 2. lookup_minimal_symbol_text() will find a real text symbol
2204 * corresponding to the trampoline, and whose address will
2205 * be different than the trampoline address. I put in a sanity
2206 * check for the address being the same, to avoid an
2207 * infinite recursion.
2208 */
c5aa993b
JM
2209 msymbol = lookup_minimal_symbol_by_pc (pc);
2210 if (msymbol != NULL)
c906108c 2211 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
c5aa993b 2212 {
2335f48e 2213 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
5520a790 2214 NULL);
c5aa993b
JM
2215 if (mfunsym == NULL)
2216 /* I eliminated this warning since it is coming out
2217 * in the following situation:
2218 * gdb shmain // test program with shared libraries
2219 * (gdb) break shr1 // function in shared lib
2220 * Warning: In stub for ...
9af17804 2221 * In the above situation, the shared lib is not loaded yet,
c5aa993b
JM
2222 * so of course we can't find the real func/line info,
2223 * but the "break" still works, and the warning is annoying.
2224 * So I commented out the warning. RT */
2335f48e 2225 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b 2226 /* fall through */
82cf6c60 2227 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
c5aa993b
JM
2228 /* Avoid infinite recursion */
2229 /* See above comment about why warning is commented out */
2335f48e 2230 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b
JM
2231 /* fall through */
2232 else
82cf6c60 2233 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
c5aa993b 2234 }
c906108c
SS
2235
2236
2237 s = find_pc_sect_symtab (pc, section);
2238 if (!s)
2239 {
2240 /* if no symbol information, return previous pc */
2241 if (notcurrent)
2242 pc++;
2243 val.pc = pc;
2244 return val;
2245 }
2246
2247 bv = BLOCKVECTOR (s);
2248
2249 /* Look at all the symtabs that share this blockvector.
2250 They all have the same apriori range, that we found was right;
2251 but they have different line tables. */
2252
2253 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2254 {
2255 /* Find the best line in this symtab. */
2256 l = LINETABLE (s);
2257 if (!l)
c5aa993b 2258 continue;
c906108c
SS
2259 len = l->nitems;
2260 if (len <= 0)
2261 {
2262 /* I think len can be zero if the symtab lacks line numbers
2263 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2264 I'm not sure which, and maybe it depends on the symbol
2265 reader). */
2266 continue;
2267 }
2268
2269 prev = NULL;
2270 item = l->item; /* Get first line info */
2271
2272 /* Is this file's first line closer than the first lines of other files?
c5aa993b 2273 If so, record this file, and its first line, as best alternate. */
c906108c
SS
2274 if (item->pc > pc && (!alt || item->pc < alt->pc))
2275 {
2276 alt = item;
2277 alt_symtab = s;
2278 }
2279
2280 for (i = 0; i < len; i++, item++)
2281 {
2282 /* Leave prev pointing to the linetable entry for the last line
2283 that started at or before PC. */
2284 if (item->pc > pc)
2285 break;
2286
2287 prev = item;
2288 }
2289
2290 /* At this point, prev points at the line whose start addr is <= pc, and
c5aa993b
JM
2291 item points at the next line. If we ran off the end of the linetable
2292 (pc >= start of the last line), then prev == item. If pc < start of
2293 the first line, prev will not be set. */
c906108c
SS
2294
2295 /* Is this file's best line closer than the best in the other files?
083ae935
DJ
2296 If so, record this file, and its best line, as best so far. Don't
2297 save prev if it represents the end of a function (i.e. line number
2298 0) instead of a real line. */
c906108c 2299
083ae935 2300 if (prev && prev->line && (!best || prev->pc > best->pc))
c906108c
SS
2301 {
2302 best = prev;
2303 best_symtab = s;
25d53da1
KB
2304
2305 /* Discard BEST_END if it's before the PC of the current BEST. */
2306 if (best_end <= best->pc)
2307 best_end = 0;
c906108c 2308 }
25d53da1
KB
2309
2310 /* If another line (denoted by ITEM) is in the linetable and its
2311 PC is after BEST's PC, but before the current BEST_END, then
2312 use ITEM's PC as the new best_end. */
2313 if (best && i < len && item->pc > best->pc
2314 && (best_end == 0 || best_end > item->pc))
2315 best_end = item->pc;
c906108c
SS
2316 }
2317
2318 if (!best_symtab)
2319 {
e86e87f7
DJ
2320 /* If we didn't find any line number info, just return zeros.
2321 We used to return alt->line - 1 here, but that could be
2322 anywhere; if we don't have line number info for this PC,
2323 don't make some up. */
2324 val.pc = pc;
c906108c 2325 }
e8717518
FF
2326 else if (best->line == 0)
2327 {
2328 /* If our best fit is in a range of PC's for which no line
2329 number info is available (line number is zero) then we didn't
2330 find any valid line information. */
2331 val.pc = pc;
2332 }
c906108c
SS
2333 else
2334 {
2335 val.symtab = best_symtab;
2336 val.line = best->line;
2337 val.pc = best->pc;
2338 if (best_end && (!alt || best_end < alt->pc))
2339 val.end = best_end;
2340 else if (alt)
2341 val.end = alt->pc;
2342 else
2343 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2344 }
2345 val.section = section;
2346 return val;
2347}
2348
2349/* Backward compatibility (no section) */
2350
2351struct symtab_and_line
fba45db2 2352find_pc_line (CORE_ADDR pc, int notcurrent)
c906108c 2353{
714835d5 2354 struct obj_section *section;
c906108c
SS
2355
2356 section = find_pc_overlay (pc);
2357 if (pc_in_unmapped_range (pc, section))
2358 pc = overlay_mapped_address (pc, section);
2359 return find_pc_sect_line (pc, section, notcurrent);
2360}
c906108c 2361\f
c906108c
SS
2362/* Find line number LINE in any symtab whose name is the same as
2363 SYMTAB.
2364
2365 If found, return the symtab that contains the linetable in which it was
2366 found, set *INDEX to the index in the linetable of the best entry
2367 found, and set *EXACT_MATCH nonzero if the value returned is an
2368 exact match.
2369
2370 If not found, return NULL. */
2371
50641945 2372struct symtab *
fba45db2 2373find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
c906108c 2374{
6f43c46f 2375 int exact = 0; /* Initialized here to avoid a compiler warning. */
c906108c
SS
2376
2377 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2378 so far seen. */
2379
2380 int best_index;
2381 struct linetable *best_linetable;
2382 struct symtab *best_symtab;
2383
2384 /* First try looking it up in the given symtab. */
2385 best_linetable = LINETABLE (symtab);
2386 best_symtab = symtab;
2387 best_index = find_line_common (best_linetable, line, &exact);
2388 if (best_index < 0 || !exact)
2389 {
2390 /* Didn't find an exact match. So we better keep looking for
c5aa993b
JM
2391 another symtab with the same name. In the case of xcoff,
2392 multiple csects for one source file (produced by IBM's FORTRAN
2393 compiler) produce multiple symtabs (this is unavoidable
2394 assuming csects can be at arbitrary places in memory and that
2395 the GLOBAL_BLOCK of a symtab has a begin and end address). */
c906108c
SS
2396
2397 /* BEST is the smallest linenumber > LINE so far seen,
c5aa993b
JM
2398 or 0 if none has been seen so far.
2399 BEST_INDEX and BEST_LINETABLE identify the item for it. */
c906108c
SS
2400 int best;
2401
2402 struct objfile *objfile;
2403 struct symtab *s;
51432cca 2404 struct partial_symtab *p;
c906108c
SS
2405
2406 if (best_index >= 0)
2407 best = best_linetable->item[best_index].line;
2408 else
2409 best = 0;
2410
51432cca
CES
2411 ALL_PSYMTABS (objfile, p)
2412 {
2413 if (strcmp (symtab->filename, p->filename) != 0)
2414 continue;
2415 PSYMTAB_TO_SYMTAB (p);
2416 }
2417
c906108c 2418 ALL_SYMTABS (objfile, s)
c5aa993b
JM
2419 {
2420 struct linetable *l;
2421 int ind;
c906108c 2422
6314a349 2423 if (strcmp (symtab->filename, s->filename) != 0)
c5aa993b
JM
2424 continue;
2425 l = LINETABLE (s);
2426 ind = find_line_common (l, line, &exact);
2427 if (ind >= 0)
2428 {
2429 if (exact)
2430 {
2431 best_index = ind;
2432 best_linetable = l;
2433 best_symtab = s;
2434 goto done;
2435 }
2436 if (best == 0 || l->item[ind].line < best)
2437 {
2438 best = l->item[ind].line;
2439 best_index = ind;
2440 best_linetable = l;
2441 best_symtab = s;
2442 }
2443 }
2444 }
c906108c 2445 }
c5aa993b 2446done:
c906108c
SS
2447 if (best_index < 0)
2448 return NULL;
2449
2450 if (index)
2451 *index = best_index;
2452 if (exact_match)
2453 *exact_match = exact;
2454
2455 return best_symtab;
2456}
2457\f
2458/* Set the PC value for a given source file and line number and return true.
2459 Returns zero for invalid line number (and sets the PC to 0).
2460 The source file is specified with a struct symtab. */
2461
2462int
fba45db2 2463find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
c906108c
SS
2464{
2465 struct linetable *l;
2466 int ind;
2467
2468 *pc = 0;
2469 if (symtab == 0)
2470 return 0;
2471
2472 symtab = find_line_symtab (symtab, line, &ind, NULL);
2473 if (symtab != NULL)
2474 {
2475 l = LINETABLE (symtab);
2476 *pc = l->item[ind].pc;
2477 return 1;
2478 }
2479 else
2480 return 0;
2481}
2482
2483/* Find the range of pc values in a line.
2484 Store the starting pc of the line into *STARTPTR
2485 and the ending pc (start of next line) into *ENDPTR.
2486 Returns 1 to indicate success.
2487 Returns 0 if could not find the specified line. */
2488
2489int
fba45db2
KB
2490find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2491 CORE_ADDR *endptr)
c906108c
SS
2492{
2493 CORE_ADDR startaddr;
2494 struct symtab_and_line found_sal;
2495
2496 startaddr = sal.pc;
c5aa993b 2497 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
c906108c
SS
2498 return 0;
2499
2500 /* This whole function is based on address. For example, if line 10 has
2501 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2502 "info line *0x123" should say the line goes from 0x100 to 0x200
2503 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2504 This also insures that we never give a range like "starts at 0x134
2505 and ends at 0x12c". */
2506
2507 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2508 if (found_sal.line != sal.line)
2509 {
2510 /* The specified line (sal) has zero bytes. */
2511 *startptr = found_sal.pc;
2512 *endptr = found_sal.pc;
2513 }
2514 else
2515 {
2516 *startptr = found_sal.pc;
2517 *endptr = found_sal.end;
2518 }
2519 return 1;
2520}
2521
2522/* Given a line table and a line number, return the index into the line
2523 table for the pc of the nearest line whose number is >= the specified one.
2524 Return -1 if none is found. The value is >= 0 if it is an index.
2525
2526 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2527
2528static int
aa1ee363 2529find_line_common (struct linetable *l, int lineno,
fba45db2 2530 int *exact_match)
c906108c 2531{
52f0bd74
AC
2532 int i;
2533 int len;
c906108c
SS
2534
2535 /* BEST is the smallest linenumber > LINENO so far seen,
2536 or 0 if none has been seen so far.
2537 BEST_INDEX identifies the item for it. */
2538
2539 int best_index = -1;
2540 int best = 0;
2541
b7589f7d
DJ
2542 *exact_match = 0;
2543
c906108c
SS
2544 if (lineno <= 0)
2545 return -1;
2546 if (l == 0)
2547 return -1;
2548
2549 len = l->nitems;
2550 for (i = 0; i < len; i++)
2551 {
aa1ee363 2552 struct linetable_entry *item = &(l->item[i]);
c906108c
SS
2553
2554 if (item->line == lineno)
2555 {
2556 /* Return the first (lowest address) entry which matches. */
2557 *exact_match = 1;
2558 return i;
2559 }
2560
2561 if (item->line > lineno && (best == 0 || item->line < best))
2562 {
2563 best = item->line;
2564 best_index = i;
2565 }
2566 }
2567
2568 /* If we got here, we didn't get an exact match. */
c906108c
SS
2569 return best_index;
2570}
2571
2572int
fba45db2 2573find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
c906108c
SS
2574{
2575 struct symtab_and_line sal;
2576 sal = find_pc_line (pc, 0);
2577 *startptr = sal.pc;
2578 *endptr = sal.end;
2579 return sal.symtab != 0;
2580}
2581
bccdca4a
UW
2582/* Given a function start address PC and SECTION, find the first
2583 address after the function prologue. */
2584CORE_ADDR
2585find_function_start_pc (struct gdbarch *gdbarch,
714835d5 2586 CORE_ADDR pc, struct obj_section *section)
bccdca4a
UW
2587{
2588 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2589 so that gdbarch_skip_prologue has something unique to work on. */
2590 if (section_is_overlay (section) && !section_is_mapped (section))
2591 pc = overlay_unmapped_address (pc, section);
2592
2593 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2594 pc = gdbarch_skip_prologue (gdbarch, pc);
2595
2596 /* For overlays, map pc back into its mapped VMA range. */
2597 pc = overlay_mapped_address (pc, section);
2598
2599 return pc;
2600}
2601
c906108c
SS
2602/* Given a function symbol SYM, find the symtab and line for the start
2603 of the function.
2604 If the argument FUNFIRSTLINE is nonzero, we want the first line
2605 of real code inside the function. */
2606
50641945 2607struct symtab_and_line
fba45db2 2608find_function_start_sal (struct symbol *sym, int funfirstline)
c906108c 2609{
bccdca4a
UW
2610 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2611 struct objfile *objfile = lookup_objfile_from_block (block);
2612 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2613
c906108c
SS
2614 CORE_ADDR pc;
2615 struct symtab_and_line sal;
2616
bccdca4a
UW
2617 pc = BLOCK_START (block);
2618 fixup_symbol_section (sym, objfile);
c906108c 2619 if (funfirstline)
bccdca4a
UW
2620 {
2621 /* Skip "first line" of function (which is actually its prologue). */
714835d5 2622 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
c906108c 2623 }
714835d5 2624 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
c906108c 2625
a433963d 2626 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
c906108c
SS
2627 line is still part of the same function. */
2628 if (sal.pc != pc
bccdca4a
UW
2629 && BLOCK_START (block) <= sal.end
2630 && sal.end < BLOCK_END (block))
c906108c
SS
2631 {
2632 /* First pc of next line */
2633 pc = sal.end;
2634 /* Recalculate the line number (might not be N+1). */
714835d5 2635 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
c906108c 2636 }
4309257c
PM
2637
2638 /* On targets with executable formats that don't have a concept of
2639 constructors (ELF with .init has, PE doesn't), gcc emits a call
2640 to `__main' in `main' between the prologue and before user
2641 code. */
2642 if (funfirstline
2643 && gdbarch_skip_main_prologue_p (current_gdbarch)
2644 && SYMBOL_LINKAGE_NAME (sym)
2645 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2646 {
2647 pc = gdbarch_skip_main_prologue (current_gdbarch, pc);
2648 /* Recalculate the line number (might not be N+1). */
714835d5 2649 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
4309257c
PM
2650 }
2651
c906108c 2652 sal.pc = pc;
c906108c
SS
2653
2654 return sal;
2655}
50641945 2656
c906108c
SS
2657/* If P is of the form "operator[ \t]+..." where `...' is
2658 some legitimate operator text, return a pointer to the
2659 beginning of the substring of the operator text.
2660 Otherwise, return "". */
2661char *
fba45db2 2662operator_chars (char *p, char **end)
c906108c
SS
2663{
2664 *end = "";
2665 if (strncmp (p, "operator", 8))
2666 return *end;
2667 p += 8;
2668
2669 /* Don't get faked out by `operator' being part of a longer
2670 identifier. */
c5aa993b 2671 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
c906108c
SS
2672 return *end;
2673
2674 /* Allow some whitespace between `operator' and the operator symbol. */
2675 while (*p == ' ' || *p == '\t')
2676 p++;
2677
2678 /* Recognize 'operator TYPENAME'. */
2679
c5aa993b 2680 if (isalpha (*p) || *p == '_' || *p == '$')
c906108c 2681 {
aa1ee363 2682 char *q = p + 1;
c5aa993b 2683 while (isalnum (*q) || *q == '_' || *q == '$')
c906108c
SS
2684 q++;
2685 *end = q;
2686 return p;
2687 }
2688
53e8ad3d
MS
2689 while (*p)
2690 switch (*p)
2691 {
2692 case '\\': /* regexp quoting */
2693 if (p[1] == '*')
2694 {
2695 if (p[2] == '=') /* 'operator\*=' */
2696 *end = p + 3;
2697 else /* 'operator\*' */
2698 *end = p + 2;
2699 return p;
2700 }
2701 else if (p[1] == '[')
2702 {
2703 if (p[2] == ']')
8a3fe4f8 2704 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
53e8ad3d
MS
2705 else if (p[2] == '\\' && p[3] == ']')
2706 {
2707 *end = p + 4; /* 'operator\[\]' */
2708 return p;
2709 }
2710 else
8a3fe4f8 2711 error (_("nothing is allowed between '[' and ']'"));
53e8ad3d 2712 }
9af17804 2713 else
53e8ad3d
MS
2714 {
2715 /* Gratuitous qoute: skip it and move on. */
2716 p++;
2717 continue;
2718 }
2719 break;
2720 case '!':
2721 case '=':
2722 case '*':
2723 case '/':
2724 case '%':
2725 case '^':
2726 if (p[1] == '=')
2727 *end = p + 2;
2728 else
2729 *end = p + 1;
2730 return p;
2731 case '<':
2732 case '>':
2733 case '+':
2734 case '-':
2735 case '&':
2736 case '|':
2737 if (p[0] == '-' && p[1] == '>')
2738 {
2739 /* Struct pointer member operator 'operator->'. */
2740 if (p[2] == '*')
2741 {
2742 *end = p + 3; /* 'operator->*' */
2743 return p;
2744 }
2745 else if (p[2] == '\\')
2746 {
2747 *end = p + 4; /* Hopefully 'operator->\*' */
2748 return p;
2749 }
2750 else
2751 {
2752 *end = p + 2; /* 'operator->' */
2753 return p;
2754 }
2755 }
2756 if (p[1] == '=' || p[1] == p[0])
2757 *end = p + 2;
2758 else
2759 *end = p + 1;
2760 return p;
2761 case '~':
2762 case ',':
c5aa993b 2763 *end = p + 1;
53e8ad3d
MS
2764 return p;
2765 case '(':
2766 if (p[1] != ')')
8a3fe4f8 2767 error (_("`operator ()' must be specified without whitespace in `()'"));
c5aa993b 2768 *end = p + 2;
53e8ad3d
MS
2769 return p;
2770 case '?':
2771 if (p[1] != ':')
8a3fe4f8 2772 error (_("`operator ?:' must be specified without whitespace in `?:'"));
53e8ad3d
MS
2773 *end = p + 2;
2774 return p;
2775 case '[':
2776 if (p[1] != ']')
8a3fe4f8 2777 error (_("`operator []' must be specified without whitespace in `[]'"));
53e8ad3d
MS
2778 *end = p + 2;
2779 return p;
2780 default:
8a3fe4f8 2781 error (_("`operator %s' not supported"), p);
53e8ad3d
MS
2782 break;
2783 }
2784
c906108c
SS
2785 *end = "";
2786 return *end;
2787}
c906108c 2788\f
c5aa993b 2789
c94fdfd0
EZ
2790/* If FILE is not already in the table of files, return zero;
2791 otherwise return non-zero. Optionally add FILE to the table if ADD
2792 is non-zero. If *FIRST is non-zero, forget the old table
2793 contents. */
2794static int
2795filename_seen (const char *file, int add, int *first)
c906108c 2796{
c94fdfd0
EZ
2797 /* Table of files seen so far. */
2798 static const char **tab = NULL;
c906108c
SS
2799 /* Allocated size of tab in elements.
2800 Start with one 256-byte block (when using GNU malloc.c).
2801 24 is the malloc overhead when range checking is in effect. */
2802 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2803 /* Current size of tab in elements. */
2804 static int tab_cur_size;
c94fdfd0 2805 const char **p;
c906108c
SS
2806
2807 if (*first)
2808 {
2809 if (tab == NULL)
c94fdfd0 2810 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
c906108c
SS
2811 tab_cur_size = 0;
2812 }
2813
c94fdfd0 2814 /* Is FILE in tab? */
c906108c 2815 for (p = tab; p < tab + tab_cur_size; p++)
c94fdfd0
EZ
2816 if (strcmp (*p, file) == 0)
2817 return 1;
2818
2819 /* No; maybe add it to tab. */
2820 if (add)
c906108c 2821 {
c94fdfd0
EZ
2822 if (tab_cur_size == tab_alloc_size)
2823 {
2824 tab_alloc_size *= 2;
2825 tab = (const char **) xrealloc ((char *) tab,
2826 tab_alloc_size * sizeof (*tab));
2827 }
2828 tab[tab_cur_size++] = file;
c906108c 2829 }
c906108c 2830
c94fdfd0
EZ
2831 return 0;
2832}
2833
2834/* Slave routine for sources_info. Force line breaks at ,'s.
2835 NAME is the name to print and *FIRST is nonzero if this is the first
2836 name printed. Set *FIRST to zero. */
2837static void
d092d1a2 2838output_source_filename (const char *name, int *first)
c94fdfd0
EZ
2839{
2840 /* Since a single source file can result in several partial symbol
2841 tables, we need to avoid printing it more than once. Note: if
2842 some of the psymtabs are read in and some are not, it gets
2843 printed both under "Source files for which symbols have been
2844 read" and "Source files for which symbols will be read in on
2845 demand". I consider this a reasonable way to deal with the
2846 situation. I'm not sure whether this can also happen for
2847 symtabs; it doesn't hurt to check. */
2848
2849 /* Was NAME already seen? */
2850 if (filename_seen (name, 1, first))
2851 {
2852 /* Yes; don't print it again. */
2853 return;
2854 }
2855 /* No; print it and reset *FIRST. */
c906108c
SS
2856 if (*first)
2857 {
2858 *first = 0;
2859 }
2860 else
2861 {
2862 printf_filtered (", ");
2863 }
2864
2865 wrap_here ("");
2866 fputs_filtered (name, gdb_stdout);
c5aa993b 2867}
c906108c
SS
2868
2869static void
fba45db2 2870sources_info (char *ignore, int from_tty)
c906108c 2871{
52f0bd74
AC
2872 struct symtab *s;
2873 struct partial_symtab *ps;
2874 struct objfile *objfile;
c906108c 2875 int first;
c5aa993b 2876
c906108c
SS
2877 if (!have_full_symbols () && !have_partial_symbols ())
2878 {
8a3fe4f8 2879 error (_("No symbol table is loaded. Use the \"file\" command."));
c906108c 2880 }
c5aa993b 2881
c906108c
SS
2882 printf_filtered ("Source files for which symbols have been read in:\n\n");
2883
2884 first = 1;
2885 ALL_SYMTABS (objfile, s)
c5aa993b 2886 {
d092d1a2
DJ
2887 const char *fullname = symtab_to_fullname (s);
2888 output_source_filename (fullname ? fullname : s->filename, &first);
c5aa993b 2889 }
c906108c 2890 printf_filtered ("\n\n");
c5aa993b 2891
c906108c
SS
2892 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2893
2894 first = 1;
2895 ALL_PSYMTABS (objfile, ps)
c5aa993b
JM
2896 {
2897 if (!ps->readin)
2898 {
d092d1a2
DJ
2899 const char *fullname = psymtab_to_fullname (ps);
2900 output_source_filename (fullname ? fullname : ps->filename, &first);
c5aa993b
JM
2901 }
2902 }
c906108c
SS
2903 printf_filtered ("\n");
2904}
2905
2906static int
fd118b61 2907file_matches (char *file, char *files[], int nfiles)
c906108c
SS
2908{
2909 int i;
2910
2911 if (file != NULL && nfiles != 0)
2912 {
2913 for (i = 0; i < nfiles; i++)
c5aa993b 2914 {
31889e00 2915 if (strcmp (files[i], lbasename (file)) == 0)
c5aa993b
JM
2916 return 1;
2917 }
c906108c
SS
2918 }
2919 else if (nfiles == 0)
2920 return 1;
2921 return 0;
2922}
2923
2924/* Free any memory associated with a search. */
2925void
fba45db2 2926free_search_symbols (struct symbol_search *symbols)
c906108c
SS
2927{
2928 struct symbol_search *p;
2929 struct symbol_search *next;
2930
2931 for (p = symbols; p != NULL; p = next)
2932 {
2933 next = p->next;
b8c9b27d 2934 xfree (p);
c906108c
SS
2935 }
2936}
2937
5bd98722
AC
2938static void
2939do_free_search_symbols_cleanup (void *symbols)
2940{
2941 free_search_symbols (symbols);
2942}
2943
2944struct cleanup *
2945make_cleanup_free_search_symbols (struct symbol_search *symbols)
2946{
2947 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2948}
2949
434d2d4f
DJ
2950/* Helper function for sort_search_symbols and qsort. Can only
2951 sort symbols, not minimal symbols. */
2952static int
2953compare_search_syms (const void *sa, const void *sb)
2954{
2955 struct symbol_search **sym_a = (struct symbol_search **) sa;
2956 struct symbol_search **sym_b = (struct symbol_search **) sb;
2957
de5ad195
DC
2958 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2959 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
434d2d4f
DJ
2960}
2961
2962/* Sort the ``nfound'' symbols in the list after prevtail. Leave
2963 prevtail where it is, but update its next pointer to point to
2964 the first of the sorted symbols. */
2965static struct symbol_search *
2966sort_search_symbols (struct symbol_search *prevtail, int nfound)
2967{
2968 struct symbol_search **symbols, *symp, *old_next;
2969 int i;
2970
2971 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2972 * nfound);
2973 symp = prevtail->next;
2974 for (i = 0; i < nfound; i++)
2975 {
2976 symbols[i] = symp;
2977 symp = symp->next;
2978 }
2979 /* Generally NULL. */
2980 old_next = symp;
2981
2982 qsort (symbols, nfound, sizeof (struct symbol_search *),
2983 compare_search_syms);
2984
2985 symp = prevtail;
2986 for (i = 0; i < nfound; i++)
2987 {
2988 symp->next = symbols[i];
2989 symp = symp->next;
2990 }
2991 symp->next = old_next;
2992
8ed32cc0 2993 xfree (symbols);
434d2d4f
DJ
2994 return symp;
2995}
5bd98722 2996
c906108c
SS
2997/* Search the symbol table for matches to the regular expression REGEXP,
2998 returning the results in *MATCHES.
2999
3000 Only symbols of KIND are searched:
176620f1
EZ
3001 FUNCTIONS_DOMAIN - search all functions
3002 TYPES_DOMAIN - search all type names
176620f1 3003 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
c5aa993b 3004 and constants (enums)
c906108c
SS
3005
3006 free_search_symbols should be called when *MATCHES is no longer needed.
434d2d4f
DJ
3007
3008 The results are sorted locally; each symtab's global and static blocks are
3009 separately alphabetized.
c5aa993b 3010 */
c906108c 3011void
176620f1 3012search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
fd118b61 3013 struct symbol_search **matches)
c906108c 3014{
52f0bd74
AC
3015 struct symtab *s;
3016 struct partial_symtab *ps;
3017 struct blockvector *bv;
52f0bd74
AC
3018 struct block *b;
3019 int i = 0;
de4f826b 3020 struct dict_iterator iter;
52f0bd74 3021 struct symbol *sym;
c906108c
SS
3022 struct partial_symbol **psym;
3023 struct objfile *objfile;
3024 struct minimal_symbol *msymbol;
3025 char *val;
3026 int found_misc = 0;
3027 static enum minimal_symbol_type types[]
c5aa993b
JM
3028 =
3029 {mst_data, mst_text, mst_abs, mst_unknown};
c906108c 3030 static enum minimal_symbol_type types2[]
c5aa993b
JM
3031 =
3032 {mst_bss, mst_file_text, mst_abs, mst_unknown};
c906108c 3033 static enum minimal_symbol_type types3[]
c5aa993b
JM
3034 =
3035 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
c906108c 3036 static enum minimal_symbol_type types4[]
c5aa993b
JM
3037 =
3038 {mst_file_bss, mst_text, mst_abs, mst_unknown};
c906108c
SS
3039 enum minimal_symbol_type ourtype;
3040 enum minimal_symbol_type ourtype2;
3041 enum minimal_symbol_type ourtype3;
3042 enum minimal_symbol_type ourtype4;
3043 struct symbol_search *sr;
3044 struct symbol_search *psr;
3045 struct symbol_search *tail;
3046 struct cleanup *old_chain = NULL;
3047
176620f1 3048 if (kind < VARIABLES_DOMAIN)
8a3fe4f8 3049 error (_("must search on specific domain"));
c906108c 3050
176620f1
EZ
3051 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3052 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3053 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3054 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
c906108c
SS
3055
3056 sr = *matches = NULL;
3057 tail = NULL;
3058
3059 if (regexp != NULL)
3060 {
3061 /* Make sure spacing is right for C++ operators.
3062 This is just a courtesy to make the matching less sensitive
3063 to how many spaces the user leaves between 'operator'
3064 and <TYPENAME> or <OPERATOR>. */
3065 char *opend;
3066 char *opname = operator_chars (regexp, &opend);
3067 if (*opname)
c5aa993b
JM
3068 {
3069 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3070 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3071 {
3072 /* There should 1 space between 'operator' and 'TYPENAME'. */
3073 if (opname[-1] != ' ' || opname[-2] == ' ')
3074 fix = 1;
3075 }
3076 else
3077 {
3078 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3079 if (opname[-1] == ' ')
3080 fix = 0;
3081 }
3082 /* If wrong number of spaces, fix it. */
3083 if (fix >= 0)
3084 {
045f55a6 3085 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
c5aa993b
JM
3086 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3087 regexp = tmp;
3088 }
3089 }
3090
c906108c 3091 if (0 != (val = re_comp (regexp)))
8a3fe4f8 3092 error (_("Invalid regexp (%s): %s"), val, regexp);
c906108c
SS
3093 }
3094
3095 /* Search through the partial symtabs *first* for all symbols
3096 matching the regexp. That way we don't have to reproduce all of
3097 the machinery below. */
3098
3099 ALL_PSYMTABS (objfile, ps)
c5aa993b
JM
3100 {
3101 struct partial_symbol **bound, **gbound, **sbound;
3102 int keep_going = 1;
3103
3104 if (ps->readin)
3105 continue;
3106
3107 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3108 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3109 bound = gbound;
3110
3111 /* Go through all of the symbols stored in a partial
3112 symtab in one loop. */
3113 psym = objfile->global_psymbols.list + ps->globals_offset;
3114 while (keep_going)
3115 {
3116 if (psym >= bound)
3117 {
3118 if (bound == gbound && ps->n_static_syms != 0)
3119 {
3120 psym = objfile->static_psymbols.list + ps->statics_offset;
3121 bound = sbound;
3122 }
3123 else
3124 keep_going = 0;
3125 continue;
3126 }
3127 else
3128 {
3129 QUIT;
3130
3131 /* If it would match (logic taken from loop below)
cb1df416
DJ
3132 load the file and go on to the next one. We check the
3133 filename here, but that's a bit bogus: we don't know
3134 what file it really comes from until we have full
3135 symtabs. The symbol might be in a header file included by
3136 this psymtab. This only affects Insight. */
c5aa993b 3137 if (file_matches (ps->filename, files, nfiles)
25120b0d
DC
3138 && ((regexp == NULL
3139 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
176620f1 3140 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
c5aa993b 3141 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
176620f1 3142 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
bd2e94ce 3143 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
c5aa993b
JM
3144 {
3145 PSYMTAB_TO_SYMTAB (ps);
3146 keep_going = 0;
3147 }
3148 }
3149 psym++;
3150 }
3151 }
c906108c
SS
3152
3153 /* Here, we search through the minimal symbol tables for functions
3154 and variables that match, and force their symbols to be read.
3155 This is in particular necessary for demangled variable names,
3156 which are no longer put into the partial symbol tables.
3157 The symbol will then be found during the scan of symtabs below.
3158
3159 For functions, find_pc_symtab should succeed if we have debug info
3160 for the function, for variables we have to call lookup_symbol
3161 to determine if the variable has debug info.
3162 If the lookup fails, set found_misc so that we will rescan to print
3163 any matching symbols without debug info.
c5aa993b 3164 */
c906108c 3165
176620f1 3166 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
c906108c
SS
3167 {
3168 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b
JM
3169 {
3170 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3171 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3172 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3173 MSYMBOL_TYPE (msymbol) == ourtype4)
3174 {
25120b0d
DC
3175 if (regexp == NULL
3176 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
3177 {
3178 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3179 {
b1262a02
DC
3180 /* FIXME: carlton/2003-02-04: Given that the
3181 semantics of lookup_symbol keeps on changing
3182 slightly, it would be a nice idea if we had a
3183 function lookup_symbol_minsym that found the
3184 symbol associated to a given minimal symbol (if
3185 any). */
176620f1 3186 if (kind == FUNCTIONS_DOMAIN
2335f48e 3187 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
b1262a02 3188 (struct block *) NULL,
2570f2b7 3189 VAR_DOMAIN, 0)
53c5240f 3190 == NULL)
b1262a02 3191 found_misc = 1;
c5aa993b
JM
3192 }
3193 }
3194 }
3195 }
c906108c
SS
3196 }
3197
11309657 3198 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3199 {
3200 bv = BLOCKVECTOR (s);
c5aa993b
JM
3201 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3202 {
434d2d4f
DJ
3203 struct symbol_search *prevtail = tail;
3204 int nfound = 0;
c5aa993b 3205 b = BLOCKVECTOR_BLOCK (bv, i);
de4f826b 3206 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3207 {
cb1df416 3208 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
c5aa993b 3209 QUIT;
cb1df416
DJ
3210
3211 if (file_matches (real_symtab->filename, files, nfiles)
25120b0d
DC
3212 && ((regexp == NULL
3213 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
176620f1 3214 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
c5aa993b
JM
3215 && SYMBOL_CLASS (sym) != LOC_BLOCK
3216 && SYMBOL_CLASS (sym) != LOC_CONST)
176620f1 3217 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
bd2e94ce 3218 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
c5aa993b
JM
3219 {
3220 /* match */
3221 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3222 psr->block = i;
cb1df416 3223 psr->symtab = real_symtab;
c5aa993b
JM
3224 psr->symbol = sym;
3225 psr->msymbol = NULL;
3226 psr->next = NULL;
3227 if (tail == NULL)
434d2d4f 3228 sr = psr;
c5aa993b
JM
3229 else
3230 tail->next = psr;
3231 tail = psr;
434d2d4f
DJ
3232 nfound ++;
3233 }
3234 }
3235 if (nfound > 0)
3236 {
3237 if (prevtail == NULL)
3238 {
3239 struct symbol_search dummy;
3240
3241 dummy.next = sr;
3242 tail = sort_search_symbols (&dummy, nfound);
3243 sr = dummy.next;
3244
3245 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b 3246 }
434d2d4f
DJ
3247 else
3248 tail = sort_search_symbols (prevtail, nfound);
c5aa993b
JM
3249 }
3250 }
c5aa993b 3251 }
c906108c
SS
3252
3253 /* If there are no eyes, avoid all contact. I mean, if there are
3254 no debug symbols, then print directly from the msymbol_vector. */
3255
176620f1 3256 if (found_misc || kind != FUNCTIONS_DOMAIN)
c906108c
SS
3257 {
3258 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b
JM
3259 {
3260 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3261 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3262 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3263 MSYMBOL_TYPE (msymbol) == ourtype4)
3264 {
25120b0d
DC
3265 if (regexp == NULL
3266 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
3267 {
3268 /* Functions: Look up by address. */
176620f1 3269 if (kind != FUNCTIONS_DOMAIN ||
c5aa993b
JM
3270 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3271 {
3272 /* Variables/Absolutes: Look up by name */
2335f48e 3273 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2570f2b7
UW
3274 (struct block *) NULL, VAR_DOMAIN, 0)
3275 == NULL)
c5aa993b
JM
3276 {
3277 /* match */
3278 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3279 psr->block = i;
3280 psr->msymbol = msymbol;
3281 psr->symtab = NULL;
3282 psr->symbol = NULL;
3283 psr->next = NULL;
3284 if (tail == NULL)
3285 {
3286 sr = psr;
5bd98722 3287 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b
JM
3288 }
3289 else
3290 tail->next = psr;
3291 tail = psr;
3292 }
3293 }
3294 }
3295 }
3296 }
c906108c
SS
3297 }
3298
3299 *matches = sr;
3300 if (sr != NULL)
3301 discard_cleanups (old_chain);
3302}
3303
3304/* Helper function for symtab_symbol_info, this function uses
3305 the data returned from search_symbols() to print information
3306 regarding the match to gdb_stdout.
c5aa993b 3307 */
c906108c 3308static void
176620f1 3309print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
fba45db2 3310 int block, char *last)
c906108c
SS
3311{
3312 if (last == NULL || strcmp (last, s->filename) != 0)
3313 {
3314 fputs_filtered ("\nFile ", gdb_stdout);
3315 fputs_filtered (s->filename, gdb_stdout);
3316 fputs_filtered (":\n", gdb_stdout);
3317 }
3318
176620f1 3319 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
c906108c 3320 printf_filtered ("static ");
c5aa993b 3321
c906108c 3322 /* Typedef that is not a C++ class */
176620f1
EZ
3323 if (kind == TYPES_DOMAIN
3324 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
a5238fbc 3325 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
c906108c 3326 /* variable, func, or typedef-that-is-c++-class */
176620f1
EZ
3327 else if (kind < TYPES_DOMAIN ||
3328 (kind == TYPES_DOMAIN &&
3329 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
c906108c
SS
3330 {
3331 type_print (SYMBOL_TYPE (sym),
c5aa993b 3332 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
de5ad195 3333 ? "" : SYMBOL_PRINT_NAME (sym)),
c5aa993b 3334 gdb_stdout, 0);
c906108c
SS
3335
3336 printf_filtered (";\n");
3337 }
c906108c
SS
3338}
3339
3340/* This help function for symtab_symbol_info() prints information
3341 for non-debugging symbols to gdb_stdout.
c5aa993b 3342 */
c906108c 3343static void
fba45db2 3344print_msymbol_info (struct minimal_symbol *msymbol)
c906108c 3345{
3ac4495a
MS
3346 char *tmp;
3347
17a912b6 3348 if (gdbarch_addr_bit (current_gdbarch) <= 32)
bb599908
PH
3349 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3350 & (CORE_ADDR) 0xffffffff,
3351 8);
3ac4495a 3352 else
bb599908
PH
3353 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3354 16);
3ac4495a 3355 printf_filtered ("%s %s\n",
de5ad195 3356 tmp, SYMBOL_PRINT_NAME (msymbol));
c906108c
SS
3357}
3358
3359/* This is the guts of the commands "info functions", "info types", and
3360 "info variables". It calls search_symbols to find all matches and then
3361 print_[m]symbol_info to print out some useful information about the
3362 matches.
c5aa993b 3363 */
c906108c 3364static void
176620f1 3365symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
c906108c
SS
3366{
3367 static char *classnames[]
c5aa993b
JM
3368 =
3369 {"variable", "function", "type", "method"};
c906108c
SS
3370 struct symbol_search *symbols;
3371 struct symbol_search *p;
3372 struct cleanup *old_chain;
3373 char *last_filename = NULL;
3374 int first = 1;
3375
3376 /* must make sure that if we're interrupted, symbols gets freed */
3377 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
5bd98722 3378 old_chain = make_cleanup_free_search_symbols (symbols);
c906108c
SS
3379
3380 printf_filtered (regexp
c5aa993b
JM
3381 ? "All %ss matching regular expression \"%s\":\n"
3382 : "All defined %ss:\n",
176620f1 3383 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
c906108c
SS
3384
3385 for (p = symbols; p != NULL; p = p->next)
3386 {
3387 QUIT;
3388
3389 if (p->msymbol != NULL)
c5aa993b
JM
3390 {
3391 if (first)
3392 {
3393 printf_filtered ("\nNon-debugging symbols:\n");
3394 first = 0;
3395 }
3396 print_msymbol_info (p->msymbol);
3397 }
c906108c 3398 else
c5aa993b
JM
3399 {
3400 print_symbol_info (kind,
3401 p->symtab,
3402 p->symbol,
3403 p->block,
3404 last_filename);
3405 last_filename = p->symtab->filename;
3406 }
c906108c
SS
3407 }
3408
3409 do_cleanups (old_chain);
3410}
3411
3412static void
fba45db2 3413variables_info (char *regexp, int from_tty)
c906108c 3414{
176620f1 3415 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
c906108c
SS
3416}
3417
3418static void
fba45db2 3419functions_info (char *regexp, int from_tty)
c906108c 3420{
176620f1 3421 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
c906108c
SS
3422}
3423
357e46e7 3424
c906108c 3425static void
fba45db2 3426types_info (char *regexp, int from_tty)
c906108c 3427{
176620f1 3428 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
c906108c
SS
3429}
3430
c906108c 3431/* Breakpoint all functions matching regular expression. */
8926118c 3432
8b93c638 3433void
fba45db2 3434rbreak_command_wrapper (char *regexp, int from_tty)
8b93c638
JM
3435{
3436 rbreak_command (regexp, from_tty);
3437}
8926118c 3438
c906108c 3439static void
fba45db2 3440rbreak_command (char *regexp, int from_tty)
c906108c
SS
3441{
3442 struct symbol_search *ss;
3443 struct symbol_search *p;
3444 struct cleanup *old_chain;
3445
176620f1 3446 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
5bd98722 3447 old_chain = make_cleanup_free_search_symbols (ss);
c906108c
SS
3448
3449 for (p = ss; p != NULL; p = p->next)
3450 {
3451 if (p->msymbol == NULL)
c5aa993b 3452 {
2335f48e
DC
3453 char *string = alloca (strlen (p->symtab->filename)
3454 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3455 + 4);
c5aa993b
JM
3456 strcpy (string, p->symtab->filename);
3457 strcat (string, ":'");
2335f48e 3458 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
c5aa993b
JM
3459 strcat (string, "'");
3460 break_command (string, from_tty);
176620f1 3461 print_symbol_info (FUNCTIONS_DOMAIN,
c5aa993b
JM
3462 p->symtab,
3463 p->symbol,
3464 p->block,
3465 p->symtab->filename);
3466 }
c906108c 3467 else
c5aa993b 3468 {
6214f497
DJ
3469 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3470 + 3);
3471 strcpy (string, "'");
3472 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3473 strcat (string, "'");
3474
3475 break_command (string, from_tty);
c5aa993b 3476 printf_filtered ("<function, no debug info> %s;\n",
de5ad195 3477 SYMBOL_PRINT_NAME (p->msymbol));
c5aa993b 3478 }
c906108c
SS
3479 }
3480
3481 do_cleanups (old_chain);
3482}
c906108c 3483\f
c5aa993b 3484
c906108c
SS
3485/* Helper routine for make_symbol_completion_list. */
3486
3487static int return_val_size;
3488static int return_val_index;
3489static char **return_val;
3490
3491#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
c906108c 3492 completion_list_add_name \
2335f48e 3493 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
c906108c
SS
3494
3495/* Test to see if the symbol specified by SYMNAME (which is already
c5aa993b
JM
3496 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3497 characters. If so, add it to the current completion list. */
c906108c
SS
3498
3499static void
fba45db2
KB
3500completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3501 char *text, char *word)
c906108c
SS
3502{
3503 int newsize;
3504 int i;
3505
3506 /* clip symbols that cannot match */
3507
3508 if (strncmp (symname, sym_text, sym_text_len) != 0)
3509 {
3510 return;
3511 }
3512
c906108c
SS
3513 /* We have a match for a completion, so add SYMNAME to the current list
3514 of matches. Note that the name is moved to freshly malloc'd space. */
3515
3516 {
3517 char *new;
3518 if (word == sym_text)
3519 {
3520 new = xmalloc (strlen (symname) + 5);
3521 strcpy (new, symname);
3522 }
3523 else if (word > sym_text)
3524 {
3525 /* Return some portion of symname. */
3526 new = xmalloc (strlen (symname) + 5);
3527 strcpy (new, symname + (word - sym_text));
3528 }
3529 else
3530 {
3531 /* Return some of SYM_TEXT plus symname. */
3532 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3533 strncpy (new, word, sym_text - word);
3534 new[sym_text - word] = '\0';
3535 strcat (new, symname);
3536 }
3537
c906108c
SS
3538 if (return_val_index + 3 > return_val_size)
3539 {
3540 newsize = (return_val_size *= 2) * sizeof (char *);
3541 return_val = (char **) xrealloc ((char *) return_val, newsize);
3542 }
3543 return_val[return_val_index++] = new;
3544 return_val[return_val_index] = NULL;
3545 }
3546}
3547
69636828
AF
3548/* ObjC: In case we are completing on a selector, look as the msymbol
3549 again and feed all the selectors into the mill. */
3550
3551static void
3552completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3553 int sym_text_len, char *text, char *word)
3554{
3555 static char *tmp = NULL;
3556 static unsigned int tmplen = 0;
9af17804 3557
69636828
AF
3558 char *method, *category, *selector;
3559 char *tmp2 = NULL;
9af17804 3560
69636828
AF
3561 method = SYMBOL_NATURAL_NAME (msymbol);
3562
3563 /* Is it a method? */
3564 if ((method[0] != '-') && (method[0] != '+'))
3565 return;
3566
3567 if (sym_text[0] == '[')
3568 /* Complete on shortened method method. */
3569 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
9af17804 3570
69636828
AF
3571 while ((strlen (method) + 1) >= tmplen)
3572 {
3573 if (tmplen == 0)
3574 tmplen = 1024;
3575 else
3576 tmplen *= 2;
3577 tmp = xrealloc (tmp, tmplen);
3578 }
3579 selector = strchr (method, ' ');
3580 if (selector != NULL)
3581 selector++;
9af17804 3582
69636828 3583 category = strchr (method, '(');
9af17804 3584
69636828
AF
3585 if ((category != NULL) && (selector != NULL))
3586 {
3587 memcpy (tmp, method, (category - method));
3588 tmp[category - method] = ' ';
3589 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3590 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3591 if (sym_text[0] == '[')
3592 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3593 }
9af17804 3594
69636828
AF
3595 if (selector != NULL)
3596 {
3597 /* Complete on selector only. */
3598 strcpy (tmp, selector);
3599 tmp2 = strchr (tmp, ']');
3600 if (tmp2 != NULL)
3601 *tmp2 = '\0';
9af17804 3602
69636828
AF
3603 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3604 }
3605}
3606
3607/* Break the non-quoted text based on the characters which are in
3608 symbols. FIXME: This should probably be language-specific. */
3609
3610static char *
3611language_search_unquoted_string (char *text, char *p)
3612{
3613 for (; p > text; --p)
3614 {
3615 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3616 continue;
3617 else
3618 {
3619 if ((current_language->la_language == language_objc))
3620 {
3621 if (p[-1] == ':') /* might be part of a method name */
3622 continue;
3623 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3624 p -= 2; /* beginning of a method name */
3625 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3626 { /* might be part of a method name */
3627 char *t = p;
3628
3629 /* Seeing a ' ' or a '(' is not conclusive evidence
3630 that we are in the middle of a method name. However,
3631 finding "-[" or "+[" should be pretty un-ambiguous.
3632 Unfortunately we have to find it now to decide. */
3633
3634 while (t > text)
3635 if (isalnum (t[-1]) || t[-1] == '_' ||
3636 t[-1] == ' ' || t[-1] == ':' ||
3637 t[-1] == '(' || t[-1] == ')')
3638 --t;
3639 else
3640 break;
3641
3642 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3643 p = t - 2; /* method name detected */
3644 /* else we leave with p unchanged */
3645 }
3646 }
3647 break;
3648 }
3649 }
3650 return p;
3651}
3652
9a044a89
TT
3653/* Type of the user_data argument passed to add_macro_name. The
3654 contents are simply whatever is needed by
3655 completion_list_add_name. */
3656struct add_macro_name_data
3657{
3658 char *sym_text;
3659 int sym_text_len;
3660 char *text;
3661 char *word;
3662};
3663
3664/* A callback used with macro_for_each and macro_for_each_in_scope.
3665 This adds a macro's name to the current completion list. */
3666static void
3667add_macro_name (const char *name, const struct macro_definition *ignore,
3668 void *user_data)
3669{
3670 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3671 completion_list_add_name ((char *) name,
3672 datum->sym_text, datum->sym_text_len,
3673 datum->text, datum->word);
3674}
3675
c906108c 3676char **
41d27058 3677default_make_symbol_completion_list (char *text, char *word)
c906108c 3678{
41d27058
JB
3679 /* Problem: All of the symbols have to be copied because readline
3680 frees them. I'm not going to worry about this; hopefully there
3681 won't be that many. */
3682
de4f826b
DC
3683 struct symbol *sym;
3684 struct symtab *s;
3685 struct partial_symtab *ps;
3686 struct minimal_symbol *msymbol;
3687 struct objfile *objfile;
3688 struct block *b, *surrounding_static_block = 0;
3689 struct dict_iterator iter;
3690 int j;
c906108c
SS
3691 struct partial_symbol **psym;
3692 /* The symbol we are completing on. Points in same buffer as text. */
3693 char *sym_text;
3694 /* Length of sym_text. */
3695 int sym_text_len;
3696
41d27058 3697 /* Now look for the symbol we are supposed to complete on. */
c906108c
SS
3698 {
3699 char *p;
3700 char quote_found;
3701 char *quote_pos = NULL;
3702
3703 /* First see if this is a quoted string. */
3704 quote_found = '\0';
3705 for (p = text; *p != '\0'; ++p)
3706 {
3707 if (quote_found != '\0')
3708 {
3709 if (*p == quote_found)
3710 /* Found close quote. */
3711 quote_found = '\0';
3712 else if (*p == '\\' && p[1] == quote_found)
3713 /* A backslash followed by the quote character
c5aa993b 3714 doesn't end the string. */
c906108c
SS
3715 ++p;
3716 }
3717 else if (*p == '\'' || *p == '"')
3718 {
3719 quote_found = *p;
3720 quote_pos = p;
3721 }
3722 }
3723 if (quote_found == '\'')
3724 /* A string within single quotes can be a symbol, so complete on it. */
3725 sym_text = quote_pos + 1;
3726 else if (quote_found == '"')
3727 /* A double-quoted string is never a symbol, nor does it make sense
c5aa993b 3728 to complete it any other way. */
c94fdfd0
EZ
3729 {
3730 return_val = (char **) xmalloc (sizeof (char *));
3731 return_val[0] = NULL;
3732 return return_val;
3733 }
c906108c
SS
3734 else
3735 {
3736 /* It is not a quoted string. Break it based on the characters
3737 which are in symbols. */
3738 while (p > text)
3739 {
3740 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3741 --p;
3742 else
3743 break;
3744 }
3745 sym_text = p;
3746 }
3747 }
3748
3749 sym_text_len = strlen (sym_text);
3750
3751 return_val_size = 100;
3752 return_val_index = 0;
3753 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3754 return_val[0] = NULL;
3755
3756 /* Look through the partial symtabs for all symbols which begin
3757 by matching SYM_TEXT. Add each one that you find to the list. */
3758
3759 ALL_PSYMTABS (objfile, ps)
c5aa993b
JM
3760 {
3761 /* If the psymtab's been read in we'll get it when we search
3762 through the blockvector. */
3763 if (ps->readin)
3764 continue;
3765
3766 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3767 psym < (objfile->global_psymbols.list + ps->globals_offset
3768 + ps->n_global_syms);
3769 psym++)
3770 {
3771 /* If interrupted, then quit. */
3772 QUIT;
3773 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3774 }
3775
3776 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3777 psym < (objfile->static_psymbols.list + ps->statics_offset
3778 + ps->n_static_syms);
3779 psym++)
3780 {
3781 QUIT;
3782 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3783 }
3784 }
c906108c
SS
3785
3786 /* At this point scan through the misc symbol vectors and add each
3787 symbol you find to the list. Eventually we want to ignore
3788 anything that isn't a text symbol (everything else will be
3789 handled by the psymtab code above). */
3790
3791 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b
JM
3792 {
3793 QUIT;
3794 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
9af17804 3795
69636828 3796 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
c5aa993b 3797 }
c906108c
SS
3798
3799 /* Search upwards from currently selected frame (so that we can
3800 complete on local vars. */
3801
ae767bfb 3802 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
c906108c
SS
3803 {
3804 if (!BLOCK_SUPERBLOCK (b))
3805 {
c5aa993b 3806 surrounding_static_block = b; /* For elmin of dups */
c906108c 3807 }
c5aa993b 3808
c906108c 3809 /* Also catch fields of types defined in this places which match our
c5aa993b 3810 text string. Only complete on types visible from current context. */
c906108c 3811
de4f826b 3812 ALL_BLOCK_SYMBOLS (b, iter, sym)
c906108c 3813 {
69636828 3814 QUIT;
c906108c
SS
3815 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3816 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3817 {
3818 struct type *t = SYMBOL_TYPE (sym);
3819 enum type_code c = TYPE_CODE (t);
3820
3821 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3822 {
3823 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3824 {
3825 if (TYPE_FIELD_NAME (t, j))
3826 {
3827 completion_list_add_name (TYPE_FIELD_NAME (t, j),
c5aa993b 3828 sym_text, sym_text_len, text, word);
c906108c
SS
3829 }
3830 }
3831 }
3832 }
3833 }
3834 }
3835
3836 /* Go through the symtabs and check the externs and statics for
3837 symbols which match. */
3838
11309657 3839 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3840 {
3841 QUIT;
3842 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 3843 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3844 {
c5aa993b
JM
3845 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3846 }
3847 }
c906108c 3848
11309657 3849 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3850 {
3851 QUIT;
3852 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3853 /* Don't do this block twice. */
3854 if (b == surrounding_static_block)
3855 continue;
de4f826b 3856 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3857 {
c5aa993b
JM
3858 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3859 }
3860 }
c906108c 3861
9a044a89
TT
3862 if (current_language->la_macro_expansion == macro_expansion_c)
3863 {
3864 struct macro_scope *scope;
3865 struct add_macro_name_data datum;
3866
3867 datum.sym_text = sym_text;
3868 datum.sym_text_len = sym_text_len;
3869 datum.text = text;
3870 datum.word = word;
3871
3872 /* Add any macros visible in the default scope. Note that this
3873 may yield the occasional wrong result, because an expression
3874 might be evaluated in a scope other than the default. For
3875 example, if the user types "break file:line if <TAB>", the
3876 resulting expression will be evaluated at "file:line" -- but
3877 at there does not seem to be a way to detect this at
3878 completion time. */
3879 scope = default_macro_scope ();
3880 if (scope)
3881 {
3882 macro_for_each_in_scope (scope->file, scope->line,
3883 add_macro_name, &datum);
3884 xfree (scope);
3885 }
3886
3887 /* User-defined macros are always visible. */
3888 macro_for_each (macro_user_macros, add_macro_name, &datum);
3889 }
3890
c906108c
SS
3891 return (return_val);
3892}
3893
41d27058
JB
3894/* Return a NULL terminated array of all symbols (regardless of class)
3895 which begin by matching TEXT. If the answer is no symbols, then
3896 the return value is an array which contains only a NULL pointer. */
3897
3898char **
3899make_symbol_completion_list (char *text, char *word)
3900{
3901 return current_language->la_make_symbol_completion_list (text, word);
3902}
3903
d8906c6f
TJB
3904/* Like make_symbol_completion_list, but suitable for use as a
3905 completion function. */
3906
3907char **
3908make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3909 char *text, char *word)
3910{
3911 return make_symbol_completion_list (text, word);
3912}
3913
c94fdfd0
EZ
3914/* Like make_symbol_completion_list, but returns a list of symbols
3915 defined in a source file FILE. */
3916
3917char **
3918make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3919{
52f0bd74
AC
3920 struct symbol *sym;
3921 struct symtab *s;
3922 struct block *b;
de4f826b 3923 struct dict_iterator iter;
c94fdfd0
EZ
3924 /* The symbol we are completing on. Points in same buffer as text. */
3925 char *sym_text;
3926 /* Length of sym_text. */
3927 int sym_text_len;
3928
3929 /* Now look for the symbol we are supposed to complete on.
3930 FIXME: This should be language-specific. */
3931 {
3932 char *p;
3933 char quote_found;
3934 char *quote_pos = NULL;
3935
3936 /* First see if this is a quoted string. */
3937 quote_found = '\0';
3938 for (p = text; *p != '\0'; ++p)
3939 {
3940 if (quote_found != '\0')
3941 {
3942 if (*p == quote_found)
3943 /* Found close quote. */
3944 quote_found = '\0';
3945 else if (*p == '\\' && p[1] == quote_found)
3946 /* A backslash followed by the quote character
3947 doesn't end the string. */
3948 ++p;
3949 }
3950 else if (*p == '\'' || *p == '"')
3951 {
3952 quote_found = *p;
3953 quote_pos = p;
3954 }
3955 }
3956 if (quote_found == '\'')
3957 /* A string within single quotes can be a symbol, so complete on it. */
3958 sym_text = quote_pos + 1;
3959 else if (quote_found == '"')
3960 /* A double-quoted string is never a symbol, nor does it make sense
3961 to complete it any other way. */
3962 {
3963 return_val = (char **) xmalloc (sizeof (char *));
3964 return_val[0] = NULL;
3965 return return_val;
3966 }
3967 else
3968 {
69636828
AF
3969 /* Not a quoted string. */
3970 sym_text = language_search_unquoted_string (text, p);
c94fdfd0
EZ
3971 }
3972 }
3973
3974 sym_text_len = strlen (sym_text);
3975
3976 return_val_size = 10;
3977 return_val_index = 0;
3978 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3979 return_val[0] = NULL;
3980
3981 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3982 in). */
3983 s = lookup_symtab (srcfile);
3984 if (s == NULL)
3985 {
3986 /* Maybe they typed the file with leading directories, while the
3987 symbol tables record only its basename. */
31889e00 3988 const char *tail = lbasename (srcfile);
c94fdfd0
EZ
3989
3990 if (tail > srcfile)
3991 s = lookup_symtab (tail);
3992 }
3993
3994 /* If we have no symtab for that file, return an empty list. */
3995 if (s == NULL)
3996 return (return_val);
3997
3998 /* Go through this symtab and check the externs and statics for
3999 symbols which match. */
4000
4001 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 4002 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 4003 {
c94fdfd0
EZ
4004 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4005 }
4006
4007 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
de4f826b 4008 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 4009 {
c94fdfd0
EZ
4010 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4011 }
4012
4013 return (return_val);
4014}
4015
4016/* A helper function for make_source_files_completion_list. It adds
4017 another file name to a list of possible completions, growing the
4018 list as necessary. */
4019
4020static void
4021add_filename_to_list (const char *fname, char *text, char *word,
4022 char ***list, int *list_used, int *list_alloced)
4023{
4024 char *new;
4025 size_t fnlen = strlen (fname);
4026
4027 if (*list_used + 1 >= *list_alloced)
4028 {
4029 *list_alloced *= 2;
4030 *list = (char **) xrealloc ((char *) *list,
4031 *list_alloced * sizeof (char *));
4032 }
4033
4034 if (word == text)
4035 {
4036 /* Return exactly fname. */
4037 new = xmalloc (fnlen + 5);
4038 strcpy (new, fname);
4039 }
4040 else if (word > text)
4041 {
4042 /* Return some portion of fname. */
4043 new = xmalloc (fnlen + 5);
4044 strcpy (new, fname + (word - text));
4045 }
4046 else
4047 {
4048 /* Return some of TEXT plus fname. */
4049 new = xmalloc (fnlen + (text - word) + 5);
4050 strncpy (new, word, text - word);
4051 new[text - word] = '\0';
4052 strcat (new, fname);
4053 }
4054 (*list)[*list_used] = new;
4055 (*list)[++*list_used] = NULL;
4056}
4057
4058static int
4059not_interesting_fname (const char *fname)
4060{
4061 static const char *illegal_aliens[] = {
4062 "_globals_", /* inserted by coff_symtab_read */
4063 NULL
4064 };
4065 int i;
4066
4067 for (i = 0; illegal_aliens[i]; i++)
4068 {
4069 if (strcmp (fname, illegal_aliens[i]) == 0)
4070 return 1;
4071 }
4072 return 0;
4073}
4074
4075/* Return a NULL terminated array of all source files whose names
4076 begin with matching TEXT. The file names are looked up in the
4077 symbol tables of this program. If the answer is no matchess, then
4078 the return value is an array which contains only a NULL pointer. */
4079
4080char **
4081make_source_files_completion_list (char *text, char *word)
4082{
52f0bd74
AC
4083 struct symtab *s;
4084 struct partial_symtab *ps;
4085 struct objfile *objfile;
c94fdfd0
EZ
4086 int first = 1;
4087 int list_alloced = 1;
4088 int list_used = 0;
4089 size_t text_len = strlen (text);
4090 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
31889e00 4091 const char *base_name;
c94fdfd0
EZ
4092
4093 list[0] = NULL;
4094
4095 if (!have_full_symbols () && !have_partial_symbols ())
4096 return list;
4097
4098 ALL_SYMTABS (objfile, s)
4099 {
4100 if (not_interesting_fname (s->filename))
4101 continue;
4102 if (!filename_seen (s->filename, 1, &first)
4103#if HAVE_DOS_BASED_FILE_SYSTEM
4104 && strncasecmp (s->filename, text, text_len) == 0
4105#else
4106 && strncmp (s->filename, text, text_len) == 0
4107#endif
4108 )
4109 {
4110 /* This file matches for a completion; add it to the current
4111 list of matches. */
4112 add_filename_to_list (s->filename, text, word,
4113 &list, &list_used, &list_alloced);
4114 }
4115 else
4116 {
4117 /* NOTE: We allow the user to type a base name when the
4118 debug info records leading directories, but not the other
4119 way around. This is what subroutines of breakpoint
4120 command do when they parse file names. */
31889e00 4121 base_name = lbasename (s->filename);
c94fdfd0
EZ
4122 if (base_name != s->filename
4123 && !filename_seen (base_name, 1, &first)
4124#if HAVE_DOS_BASED_FILE_SYSTEM
4125 && strncasecmp (base_name, text, text_len) == 0
4126#else
4127 && strncmp (base_name, text, text_len) == 0
4128#endif
4129 )
4130 add_filename_to_list (base_name, text, word,
4131 &list, &list_used, &list_alloced);
4132 }
4133 }
4134
4135 ALL_PSYMTABS (objfile, ps)
4136 {
4137 if (not_interesting_fname (ps->filename))
4138 continue;
4139 if (!ps->readin)
4140 {
4141 if (!filename_seen (ps->filename, 1, &first)
4142#if HAVE_DOS_BASED_FILE_SYSTEM
4143 && strncasecmp (ps->filename, text, text_len) == 0
4144#else
4145 && strncmp (ps->filename, text, text_len) == 0
4146#endif
4147 )
4148 {
4149 /* This file matches for a completion; add it to the
4150 current list of matches. */
4151 add_filename_to_list (ps->filename, text, word,
4152 &list, &list_used, &list_alloced);
4153
4154 }
4155 else
4156 {
31889e00 4157 base_name = lbasename (ps->filename);
c94fdfd0
EZ
4158 if (base_name != ps->filename
4159 && !filename_seen (base_name, 1, &first)
4160#if HAVE_DOS_BASED_FILE_SYSTEM
4161 && strncasecmp (base_name, text, text_len) == 0
4162#else
4163 && strncmp (base_name, text, text_len) == 0
4164#endif
4165 )
4166 add_filename_to_list (base_name, text, word,
4167 &list, &list_used, &list_alloced);
4168 }
4169 }
4170 }
4171
4172 return list;
4173}
4174
c906108c
SS
4175/* Determine if PC is in the prologue of a function. The prologue is the area
4176 between the first instruction of a function, and the first executable line.
4177 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4178
4179 If non-zero, func_start is where we think the prologue starts, possibly
4180 by previous examination of symbol table information.
4181 */
4182
4183int
fba45db2 4184in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
c906108c
SS
4185{
4186 struct symtab_and_line sal;
4187 CORE_ADDR func_addr, func_end;
4188
54cf9c03
EZ
4189 /* We have several sources of information we can consult to figure
4190 this out.
4191 - Compilers usually emit line number info that marks the prologue
4192 as its own "source line". So the ending address of that "line"
4193 is the end of the prologue. If available, this is the most
4194 reliable method.
4195 - The minimal symbols and partial symbols, which can usually tell
4196 us the starting and ending addresses of a function.
4197 - If we know the function's start address, we can call the
a433963d 4198 architecture-defined gdbarch_skip_prologue function to analyze the
54cf9c03
EZ
4199 instruction stream and guess where the prologue ends.
4200 - Our `func_start' argument; if non-zero, this is the caller's
4201 best guess as to the function's entry point. At the time of
4202 this writing, handle_inferior_event doesn't get this right, so
4203 it should be our last resort. */
4204
4205 /* Consult the partial symbol table, to find which function
4206 the PC is in. */
4207 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4208 {
4209 CORE_ADDR prologue_end;
c906108c 4210
54cf9c03
EZ
4211 /* We don't even have minsym information, so fall back to using
4212 func_start, if given. */
4213 if (! func_start)
4214 return 1; /* We *might* be in a prologue. */
c906108c 4215
a433963d 4216 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
c906108c 4217
54cf9c03
EZ
4218 return func_start <= pc && pc < prologue_end;
4219 }
c906108c 4220
54cf9c03
EZ
4221 /* If we have line number information for the function, that's
4222 usually pretty reliable. */
4223 sal = find_pc_line (func_addr, 0);
c906108c 4224
54cf9c03
EZ
4225 /* Now sal describes the source line at the function's entry point,
4226 which (by convention) is the prologue. The end of that "line",
4227 sal.end, is the end of the prologue.
4228
4229 Note that, for functions whose source code is all on a single
4230 line, the line number information doesn't always end up this way.
4231 So we must verify that our purported end-of-prologue address is
4232 *within* the function, not at its start or end. */
4233 if (sal.line == 0
4234 || sal.end <= func_addr
4235 || func_end <= sal.end)
4236 {
4237 /* We don't have any good line number info, so use the minsym
4238 information, together with the architecture-specific prologue
4239 scanning code. */
a433963d
UW
4240 CORE_ADDR prologue_end = gdbarch_skip_prologue
4241 (current_gdbarch, func_addr);
c906108c 4242
54cf9c03
EZ
4243 return func_addr <= pc && pc < prologue_end;
4244 }
c906108c 4245
54cf9c03
EZ
4246 /* We have line number info, and it looks good. */
4247 return func_addr <= pc && pc < sal.end;
c906108c
SS
4248}
4249
634aa483
AC
4250/* Given PC at the function's start address, attempt to find the
4251 prologue end using SAL information. Return zero if the skip fails.
4252
4253 A non-optimized prologue traditionally has one SAL for the function
4254 and a second for the function body. A single line function has
4255 them both pointing at the same line.
4256
4257 An optimized prologue is similar but the prologue may contain
4258 instructions (SALs) from the instruction body. Need to skip those
4259 while not getting into the function body.
4260
4261 The functions end point and an increasing SAL line are used as
4262 indicators of the prologue's endpoint.
4263
4264 This code is based on the function refine_prologue_limit (versions
4265 found in both ia64 and ppc). */
4266
4267CORE_ADDR
4268skip_prologue_using_sal (CORE_ADDR func_addr)
4269{
4270 struct symtab_and_line prologue_sal;
4271 CORE_ADDR start_pc;
4272 CORE_ADDR end_pc;
d54be744 4273 struct block *bl;
634aa483
AC
4274
4275 /* Get an initial range for the function. */
4276 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
cbf3b44a 4277 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
634aa483
AC
4278
4279 prologue_sal = find_pc_line (start_pc, 0);
4280 if (prologue_sal.line != 0)
4281 {
d54be744
DJ
4282 /* For langauges other than assembly, treat two consecutive line
4283 entries at the same address as a zero-instruction prologue.
4284 The GNU assembler emits separate line notes for each instruction
4285 in a multi-instruction macro, but compilers generally will not
4286 do this. */
4287 if (prologue_sal.symtab->language != language_asm)
4288 {
4289 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4290 int exact;
4291 int idx = 0;
4292
4293 /* Skip any earlier lines, and any end-of-sequence marker
4294 from a previous function. */
4295 while (linetable->item[idx].pc != prologue_sal.pc
4296 || linetable->item[idx].line == 0)
4297 idx++;
4298
4299 if (idx+1 < linetable->nitems
4300 && linetable->item[idx+1].line != 0
4301 && linetable->item[idx+1].pc == start_pc)
4302 return start_pc;
4303 }
4304
576c2025
FF
4305 /* If there is only one sal that covers the entire function,
4306 then it is probably a single line function, like
4307 "foo(){}". */
91934273 4308 if (prologue_sal.end >= end_pc)
4e463ff5 4309 return 0;
d54be744 4310
634aa483
AC
4311 while (prologue_sal.end < end_pc)
4312 {
4313 struct symtab_and_line sal;
4314
4315 sal = find_pc_line (prologue_sal.end, 0);
4316 if (sal.line == 0)
4317 break;
4318 /* Assume that a consecutive SAL for the same (or larger)
4319 line mark the prologue -> body transition. */
4320 if (sal.line >= prologue_sal.line)
4321 break;
4322 /* The case in which compiler's optimizer/scheduler has
4323 moved instructions into the prologue. We look ahead in
4324 the function looking for address ranges whose
4325 corresponding line number is less the first one that we
4326 found for the function. This is more conservative then
4327 refine_prologue_limit which scans a large number of SALs
4328 looking for any in the prologue */
4329 prologue_sal = sal;
4330 }
4331 }
d54be744
DJ
4332
4333 if (prologue_sal.end < end_pc)
4334 /* Return the end of this line, or zero if we could not find a
4335 line. */
4336 return prologue_sal.end;
4337 else
4338 /* Don't return END_PC, which is past the end of the function. */
4339 return prologue_sal.pc;
634aa483 4340}
c906108c 4341\f
50641945
FN
4342struct symtabs_and_lines
4343decode_line_spec (char *string, int funfirstline)
4344{
4345 struct symtabs_and_lines sals;
0378c332 4346 struct symtab_and_line cursal;
9af17804 4347
50641945 4348 if (string == 0)
8a3fe4f8 4349 error (_("Empty line specification."));
9af17804 4350
0378c332 4351 /* We use whatever is set as the current source line. We do not try
9af17804 4352 and get a default or it will recursively call us! */
0378c332 4353 cursal = get_current_source_symtab_and_line ();
9af17804 4354
50641945 4355 sals = decode_line_1 (&string, funfirstline,
0378c332 4356 cursal.symtab, cursal.line,
bffe1ece 4357 (char ***) NULL, NULL);
0378c332 4358
50641945 4359 if (*string)
8a3fe4f8 4360 error (_("Junk at end of line specification: %s"), string);
50641945
FN
4361 return sals;
4362}
c5aa993b 4363
51cc5b07
AC
4364/* Track MAIN */
4365static char *name_of_main;
4366
4367void
4368set_main_name (const char *name)
4369{
4370 if (name_of_main != NULL)
4371 {
4372 xfree (name_of_main);
4373 name_of_main = NULL;
4374 }
4375 if (name != NULL)
4376 {
4377 name_of_main = xstrdup (name);
4378 }
4379}
4380
ea53e89f
JB
4381/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4382 accordingly. */
4383
4384static void
4385find_main_name (void)
4386{
cd6c7346 4387 const char *new_main_name;
ea53e89f
JB
4388
4389 /* Try to see if the main procedure is in Ada. */
4390 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4391 be to add a new method in the language vector, and call this
4392 method for each language until one of them returns a non-empty
4393 name. This would allow us to remove this hard-coded call to
4394 an Ada function. It is not clear that this is a better approach
4395 at this point, because all methods need to be written in a way
4396 such that false positives never be returned. For instance, it is
4397 important that a method does not return a wrong name for the main
4398 procedure if the main procedure is actually written in a different
4399 language. It is easy to guaranty this with Ada, since we use a
4400 special symbol generated only when the main in Ada to find the name
4401 of the main procedure. It is difficult however to see how this can
4402 be guarantied for languages such as C, for instance. This suggests
4403 that order of call for these methods becomes important, which means
4404 a more complicated approach. */
4405 new_main_name = ada_main_name ();
4406 if (new_main_name != NULL)
9af17804 4407 {
ea53e89f
JB
4408 set_main_name (new_main_name);
4409 return;
4410 }
4411
cd6c7346
PM
4412 new_main_name = pascal_main_name ();
4413 if (new_main_name != NULL)
9af17804 4414 {
cd6c7346
PM
4415 set_main_name (new_main_name);
4416 return;
4417 }
4418
ea53e89f
JB
4419 /* The languages above didn't identify the name of the main procedure.
4420 Fallback to "main". */
4421 set_main_name ("main");
4422}
4423
51cc5b07
AC
4424char *
4425main_name (void)
4426{
ea53e89f
JB
4427 if (name_of_main == NULL)
4428 find_main_name ();
4429
4430 return name_of_main;
51cc5b07
AC
4431}
4432
ea53e89f
JB
4433/* Handle ``executable_changed'' events for the symtab module. */
4434
4435static void
781b42b0 4436symtab_observer_executable_changed (void)
ea53e89f
JB
4437{
4438 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4439 set_main_name (NULL);
4440}
51cc5b07 4441
ed0616c6
VP
4442/* Helper to expand_line_sal below. Appends new sal to SAL,
4443 initializing it from SYMTAB, LINENO and PC. */
4444static void
4445append_expanded_sal (struct symtabs_and_lines *sal,
4446 struct symtab *symtab,
4447 int lineno, CORE_ADDR pc)
4448{
4449 CORE_ADDR func_addr, func_end;
9af17804
DE
4450
4451 sal->sals = xrealloc (sal->sals,
4452 sizeof (sal->sals[0])
ed0616c6
VP
4453 * (sal->nelts + 1));
4454 init_sal (sal->sals + sal->nelts);
4455 sal->sals[sal->nelts].symtab = symtab;
4456 sal->sals[sal->nelts].section = NULL;
4457 sal->sals[sal->nelts].end = 0;
9af17804 4458 sal->sals[sal->nelts].line = lineno;
ed0616c6 4459 sal->sals[sal->nelts].pc = pc;
9af17804 4460 ++sal->nelts;
ed0616c6
VP
4461}
4462
4463/* Compute a set of all sals in
4464 the entire program that correspond to same file
4465 and line as SAL and return those. If there
4466 are several sals that belong to the same block,
4467 only one sal for the block is included in results. */
9af17804 4468
ed0616c6
VP
4469struct symtabs_and_lines
4470expand_line_sal (struct symtab_and_line sal)
4471{
4472 struct symtabs_and_lines ret, this_line;
4473 int i, j;
4474 struct objfile *objfile;
4475 struct partial_symtab *psymtab;
4476 struct symtab *symtab;
4477 int lineno;
4478 int deleted = 0;
4479 struct block **blocks = NULL;
4480 int *filter;
4481
4482 ret.nelts = 0;
4483 ret.sals = NULL;
4484
4485 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4486 {
4487 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4488 ret.sals[0] = sal;
4489 ret.nelts = 1;
4490 return ret;
4491 }
4492 else
4493 {
4494 struct linetable_entry *best_item = 0;
4495 struct symtab *best_symtab = 0;
4496 int exact = 0;
4497
4498 lineno = sal.line;
4499
9af17804
DE
4500 /* We need to find all symtabs for a file which name
4501 is described by sal. We cannot just directly
ed0616c6 4502 iterate over symtabs, since a symtab might not be
9af17804 4503 yet created. We also cannot iterate over psymtabs,
ed0616c6
VP
4504 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4505 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
9af17804 4506 corresponding to an included file. Therefore, we do
ed0616c6
VP
4507 first pass over psymtabs, reading in those with
4508 the right name. Then, we iterate over symtabs, knowing
4509 that all symtabs we're interested in are loaded. */
4510
4511 ALL_PSYMTABS (objfile, psymtab)
4512 {
4513 if (strcmp (sal.symtab->filename,
4514 psymtab->filename) == 0)
4515 PSYMTAB_TO_SYMTAB (psymtab);
4516 }
4517
9af17804 4518 /* For each symtab, we add all pcs to ret.sals. I'm actually
ed0616c6 4519 not sure what to do if we have exact match in one symtab,
9af17804
DE
4520 and non-exact match on another symtab. */
4521
ed0616c6
VP
4522 ALL_SYMTABS (objfile, symtab)
4523 {
4524 if (strcmp (sal.symtab->filename,
4525 symtab->filename) == 0)
4526 {
4527 struct linetable *l;
4528 int len;
4529 l = LINETABLE (symtab);
4530 if (!l)
4531 continue;
4532 len = l->nitems;
4533
4534 for (j = 0; j < len; j++)
4535 {
4536 struct linetable_entry *item = &(l->item[j]);
4537
4538 if (item->line == lineno)
4539 {
4540 exact = 1;
4541 append_expanded_sal (&ret, symtab, lineno, item->pc);
9af17804 4542 }
ed0616c6
VP
4543 else if (!exact && item->line > lineno
4544 && (best_item == NULL || item->line < best_item->line))
ed0616c6
VP
4545 {
4546 best_item = item;
4547 best_symtab = symtab;
4548 }
4549 }
4550 }
4551 }
4552 if (!exact && best_item)
4553 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4554 }
4555
4556 /* For optimized code, compiler can scatter one source line accross
4557 disjoint ranges of PC values, even when no duplicate functions
4558 or inline functions are involved. For example, 'for (;;)' inside
4559 non-template non-inline non-ctor-or-dtor function can result
4560 in two PC ranges. In this case, we don't want to set breakpoint
4561 on first PC of each range. To filter such cases, we use containing
4562 blocks -- for each PC found above we see if there are other PCs
9af17804 4563 that are in the same block. If yes, the other PCs are filtered out. */
ed0616c6 4564
db009c8a
JB
4565 filter = alloca (ret.nelts * sizeof (int));
4566 blocks = alloca (ret.nelts * sizeof (struct block *));
ed0616c6
VP
4567 for (i = 0; i < ret.nelts; ++i)
4568 {
4569 filter[i] = 1;
4570 blocks[i] = block_for_pc (ret.sals[i].pc);
4571 }
4572
4573 for (i = 0; i < ret.nelts; ++i)
4574 if (blocks[i] != NULL)
4575 for (j = i+1; j < ret.nelts; ++j)
4576 if (blocks[j] == blocks[i])
4577 {
4578 filter[j] = 0;
4579 ++deleted;
4580 break;
4581 }
9af17804 4582
ed0616c6 4583 {
9af17804 4584 struct symtab_and_line *final =
ed0616c6 4585 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
9af17804 4586
ed0616c6
VP
4587 for (i = 0, j = 0; i < ret.nelts; ++i)
4588 if (filter[i])
4589 final[j++] = ret.sals[i];
9af17804 4590
ed0616c6
VP
4591 ret.nelts -= deleted;
4592 xfree (ret.sals);
4593 ret.sals = final;
4594 }
4595
4596 return ret;
4597}
4598
4599
c906108c 4600void
fba45db2 4601_initialize_symtab (void)
c906108c 4602{
1bedd215
AC
4603 add_info ("variables", variables_info, _("\
4604All global and static variable names, or those matching REGEXP."));
c906108c 4605 if (dbx_commands)
1bedd215
AC
4606 add_com ("whereis", class_info, variables_info, _("\
4607All global and static variable names, or those matching REGEXP."));
c906108c
SS
4608
4609 add_info ("functions", functions_info,
1bedd215 4610 _("All function names, or those matching REGEXP."));
c906108c
SS
4611
4612 /* FIXME: This command has at least the following problems:
4613 1. It prints builtin types (in a very strange and confusing fashion).
4614 2. It doesn't print right, e.g. with
c5aa993b
JM
4615 typedef struct foo *FOO
4616 type_print prints "FOO" when we want to make it (in this situation)
4617 print "struct foo *".
c906108c
SS
4618 I also think "ptype" or "whatis" is more likely to be useful (but if
4619 there is much disagreement "info types" can be fixed). */
4620 add_info ("types", types_info,
1bedd215 4621 _("All type names, or those matching REGEXP."));
c906108c 4622
c906108c 4623 add_info ("sources", sources_info,
1bedd215 4624 _("Source files in the program."));
c906108c
SS
4625
4626 add_com ("rbreak", class_breakpoint, rbreak_command,
1bedd215 4627 _("Set a breakpoint for all functions matching REGEXP."));
c906108c
SS
4628
4629 if (xdb_commands)
4630 {
1bedd215
AC
4631 add_com ("lf", class_info, sources_info,
4632 _("Source files in the program"));
4633 add_com ("lg", class_info, variables_info, _("\
4634All global and static variable names, or those matching REGEXP."));
c906108c
SS
4635 }
4636
717d2f5a
JB
4637 add_setshow_enum_cmd ("multiple-symbols", no_class,
4638 multiple_symbols_modes, &multiple_symbols_mode,
4639 _("\
4640Set the debugger behavior when more than one symbol are possible matches\n\
4641in an expression."), _("\
4642Show how the debugger handles ambiguities in expressions."), _("\
4643Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4644 NULL, NULL, &setlist, &showlist);
4645
c906108c
SS
4646 /* Initialize the one built-in type that isn't language dependent... */
4647 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4648 "<unknown type>", (struct objfile *) NULL);
ea53e89f
JB
4649
4650 observer_attach_executable_changed (symtab_observer_executable_changed);
c906108c 4651}
This page took 1.179701 seconds and 4 git commands to generate.