Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Symbol table lookup for the GNU debugger, GDB. |
8926118c | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
0fb0cc75 | 4 | 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009 |
083ae935 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "call-cmds.h" | |
88987551 | 33 | #include "gdb_regex.h" |
c906108c SS |
34 | #include "expression.h" |
35 | #include "language.h" | |
36 | #include "demangle.h" | |
37 | #include "inferior.h" | |
c5f0f3d0 | 38 | #include "linespec.h" |
0378c332 | 39 | #include "source.h" |
a7fdf62f | 40 | #include "filenames.h" /* for FILENAME_CMP */ |
1bae87b9 | 41 | #include "objc-lang.h" |
1f8173e6 | 42 | #include "ada-lang.h" |
cd6c7346 | 43 | #include "p-lang.h" |
ff013f42 | 44 | #include "addrmap.h" |
c906108c | 45 | |
2de7ced7 DJ |
46 | #include "hashtab.h" |
47 | ||
04ea0df1 | 48 | #include "gdb_obstack.h" |
fe898f56 | 49 | #include "block.h" |
de4f826b | 50 | #include "dictionary.h" |
c906108c SS |
51 | |
52 | #include <sys/types.h> | |
53 | #include <fcntl.h> | |
54 | #include "gdb_string.h" | |
55 | #include "gdb_stat.h" | |
56 | #include <ctype.h> | |
015a42b4 | 57 | #include "cp-abi.h" |
71c25dea | 58 | #include "cp-support.h" |
ea53e89f | 59 | #include "observer.h" |
94277a38 | 60 | #include "gdb_assert.h" |
3a40aaa0 | 61 | #include "solist.h" |
9a044a89 TT |
62 | #include "macrotab.h" |
63 | #include "macroscope.h" | |
c906108c | 64 | |
c906108c SS |
65 | /* Prototypes for local functions */ |
66 | ||
a14ed312 | 67 | static void completion_list_add_name (char *, char *, int, char *, char *); |
c906108c | 68 | |
a14ed312 | 69 | static void rbreak_command (char *, int); |
c906108c | 70 | |
a14ed312 | 71 | static void types_info (char *, int); |
c906108c | 72 | |
a14ed312 | 73 | static void functions_info (char *, int); |
c906108c | 74 | |
a14ed312 | 75 | static void variables_info (char *, int); |
c906108c | 76 | |
a14ed312 | 77 | static void sources_info (char *, int); |
c906108c | 78 | |
d092d1a2 | 79 | static void output_source_filename (const char *, int *); |
c906108c | 80 | |
a14ed312 | 81 | static int find_line_common (struct linetable *, int, int *); |
c906108c | 82 | |
50641945 FN |
83 | /* This one is used by linespec.c */ |
84 | ||
85 | char *operator_chars (char *p, char **end); | |
86 | ||
3121eff0 | 87 | static struct symbol *lookup_symbol_aux (const char *name, |
5ad1c190 | 88 | const char *linkage_name, |
3121eff0 | 89 | const struct block *block, |
176620f1 | 90 | const domain_enum domain, |
53c5240f | 91 | enum language language, |
21b556f4 | 92 | int *is_a_field_of_this); |
fba7f19c | 93 | |
e4051eeb DC |
94 | static |
95 | struct symbol *lookup_symbol_aux_local (const char *name, | |
5ad1c190 | 96 | const char *linkage_name, |
e4051eeb | 97 | const struct block *block, |
21b556f4 | 98 | const domain_enum domain); |
8155455b DC |
99 | |
100 | static | |
101 | struct symbol *lookup_symbol_aux_symtabs (int block_index, | |
102 | const char *name, | |
5ad1c190 | 103 | const char *linkage_name, |
21b556f4 | 104 | const domain_enum domain); |
8155455b DC |
105 | |
106 | static | |
107 | struct symbol *lookup_symbol_aux_psymtabs (int block_index, | |
108 | const char *name, | |
5ad1c190 | 109 | const char *linkage_name, |
21b556f4 | 110 | const domain_enum domain); |
fba7f19c | 111 | |
a14ed312 | 112 | static int file_matches (char *, char **, int); |
c906108c | 113 | |
176620f1 | 114 | static void print_symbol_info (domain_enum, |
a14ed312 | 115 | struct symtab *, struct symbol *, int, char *); |
c906108c | 116 | |
a14ed312 | 117 | static void print_msymbol_info (struct minimal_symbol *); |
c906108c | 118 | |
176620f1 | 119 | static void symtab_symbol_info (char *, domain_enum, int); |
c906108c | 120 | |
a14ed312 | 121 | void _initialize_symtab (void); |
c906108c SS |
122 | |
123 | /* */ | |
124 | ||
717d2f5a JB |
125 | /* Allow the user to configure the debugger behavior with respect |
126 | to multiple-choice menus when more than one symbol matches during | |
127 | a symbol lookup. */ | |
128 | ||
7fc830e2 MK |
129 | const char multiple_symbols_ask[] = "ask"; |
130 | const char multiple_symbols_all[] = "all"; | |
131 | const char multiple_symbols_cancel[] = "cancel"; | |
717d2f5a JB |
132 | static const char *multiple_symbols_modes[] = |
133 | { | |
134 | multiple_symbols_ask, | |
135 | multiple_symbols_all, | |
136 | multiple_symbols_cancel, | |
137 | NULL | |
138 | }; | |
139 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
140 | ||
141 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
142 | ||
143 | const char * | |
144 | multiple_symbols_select_mode (void) | |
145 | { | |
146 | return multiple_symbols_mode; | |
147 | } | |
148 | ||
c906108c SS |
149 | /* The single non-language-specific builtin type */ |
150 | struct type *builtin_type_error; | |
151 | ||
152 | /* Block in which the most recently searched-for symbol was found. | |
9af17804 | 153 | Might be better to make this a parameter to lookup_symbol and |
c906108c SS |
154 | value_of_this. */ |
155 | ||
156 | const struct block *block_found; | |
157 | ||
c906108c SS |
158 | /* Check for a symtab of a specific name; first in symtabs, then in |
159 | psymtabs. *If* there is no '/' in the name, a match after a '/' | |
160 | in the symtab filename will also work. */ | |
161 | ||
1b15f1fa TT |
162 | struct symtab * |
163 | lookup_symtab (const char *name) | |
c906108c | 164 | { |
52f0bd74 AC |
165 | struct symtab *s; |
166 | struct partial_symtab *ps; | |
167 | struct objfile *objfile; | |
58d370e0 | 168 | char *real_path = NULL; |
f079a2e5 | 169 | char *full_path = NULL; |
58d370e0 TT |
170 | |
171 | /* Here we are interested in canonicalizing an absolute path, not | |
172 | absolutizing a relative path. */ | |
173 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
174 | { |
175 | full_path = xfullpath (name); | |
176 | make_cleanup (xfree, full_path); | |
177 | real_path = gdb_realpath (name); | |
178 | make_cleanup (xfree, real_path); | |
179 | } | |
c906108c | 180 | |
c5aa993b | 181 | got_symtab: |
c906108c SS |
182 | |
183 | /* First, search for an exact match */ | |
184 | ||
185 | ALL_SYMTABS (objfile, s) | |
58d370e0 | 186 | { |
a7fdf62f | 187 | if (FILENAME_CMP (name, s->filename) == 0) |
58d370e0 | 188 | { |
58d370e0 TT |
189 | return s; |
190 | } | |
9af17804 | 191 | |
58d370e0 TT |
192 | /* If the user gave us an absolute path, try to find the file in |
193 | this symtab and use its absolute path. */ | |
9af17804 | 194 | |
f079a2e5 JB |
195 | if (full_path != NULL) |
196 | { | |
09bcec80 BR |
197 | const char *fp = symtab_to_fullname (s); |
198 | if (fp != NULL && FILENAME_CMP (full_path, fp) == 0) | |
199 | { | |
200 | return s; | |
201 | } | |
f079a2e5 JB |
202 | } |
203 | ||
58d370e0 TT |
204 | if (real_path != NULL) |
205 | { | |
09bcec80 BR |
206 | char *fullname = symtab_to_fullname (s); |
207 | if (fullname != NULL) | |
208 | { | |
209 | char *rp = gdb_realpath (fullname); | |
210 | make_cleanup (xfree, rp); | |
211 | if (FILENAME_CMP (real_path, rp) == 0) | |
212 | { | |
213 | return s; | |
214 | } | |
215 | } | |
58d370e0 TT |
216 | } |
217 | } | |
218 | ||
c906108c SS |
219 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
220 | ||
caadab2c | 221 | if (lbasename (name) == name) |
c906108c | 222 | ALL_SYMTABS (objfile, s) |
c5aa993b | 223 | { |
31889e00 | 224 | if (FILENAME_CMP (lbasename (s->filename), name) == 0) |
c5aa993b JM |
225 | return s; |
226 | } | |
c906108c SS |
227 | |
228 | /* Same search rules as above apply here, but now we look thru the | |
229 | psymtabs. */ | |
230 | ||
231 | ps = lookup_partial_symtab (name); | |
232 | if (!ps) | |
233 | return (NULL); | |
234 | ||
c5aa993b | 235 | if (ps->readin) |
8a3fe4f8 | 236 | error (_("Internal: readin %s pst for `%s' found when no symtab found."), |
c5aa993b | 237 | ps->filename, name); |
c906108c SS |
238 | |
239 | s = PSYMTAB_TO_SYMTAB (ps); | |
240 | ||
241 | if (s) | |
242 | return s; | |
243 | ||
244 | /* At this point, we have located the psymtab for this file, but | |
245 | the conversion to a symtab has failed. This usually happens | |
246 | when we are looking up an include file. In this case, | |
247 | PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has | |
248 | been created. So, we need to run through the symtabs again in | |
249 | order to find the file. | |
250 | XXX - This is a crock, and should be fixed inside of the the | |
251 | symbol parsing routines. */ | |
252 | goto got_symtab; | |
253 | } | |
254 | ||
c906108c SS |
255 | /* Lookup the partial symbol table of a source file named NAME. |
256 | *If* there is no '/' in the name, a match after a '/' | |
257 | in the psymtab filename will also work. */ | |
258 | ||
259 | struct partial_symtab * | |
1f8cc6db | 260 | lookup_partial_symtab (const char *name) |
c906108c | 261 | { |
52f0bd74 AC |
262 | struct partial_symtab *pst; |
263 | struct objfile *objfile; | |
f079a2e5 | 264 | char *full_path = NULL; |
58d370e0 TT |
265 | char *real_path = NULL; |
266 | ||
267 | /* Here we are interested in canonicalizing an absolute path, not | |
268 | absolutizing a relative path. */ | |
269 | if (IS_ABSOLUTE_PATH (name)) | |
f079a2e5 JB |
270 | { |
271 | full_path = xfullpath (name); | |
272 | make_cleanup (xfree, full_path); | |
273 | real_path = gdb_realpath (name); | |
274 | make_cleanup (xfree, real_path); | |
275 | } | |
c5aa993b | 276 | |
c906108c | 277 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 278 | { |
a7fdf62f | 279 | if (FILENAME_CMP (name, pst->filename) == 0) |
c5aa993b JM |
280 | { |
281 | return (pst); | |
282 | } | |
f079a2e5 | 283 | |
58d370e0 TT |
284 | /* If the user gave us an absolute path, try to find the file in |
285 | this symtab and use its absolute path. */ | |
f079a2e5 | 286 | if (full_path != NULL) |
58d370e0 | 287 | { |
d9c8471e | 288 | psymtab_to_fullname (pst); |
58d370e0 | 289 | if (pst->fullname != NULL |
f079a2e5 | 290 | && FILENAME_CMP (full_path, pst->fullname) == 0) |
58d370e0 | 291 | { |
58d370e0 TT |
292 | return pst; |
293 | } | |
294 | } | |
c906108c | 295 | |
f079a2e5 JB |
296 | if (real_path != NULL) |
297 | { | |
298 | char *rp = NULL; | |
d9c8471e | 299 | psymtab_to_fullname (pst); |
f079a2e5 JB |
300 | if (pst->fullname != NULL) |
301 | { | |
302 | rp = gdb_realpath (pst->fullname); | |
303 | make_cleanup (xfree, rp); | |
304 | } | |
305 | if (rp != NULL && FILENAME_CMP (real_path, rp) == 0) | |
306 | { | |
307 | return pst; | |
308 | } | |
309 | } | |
310 | } | |
58d370e0 | 311 | |
c906108c SS |
312 | /* Now, search for a matching tail (only if name doesn't have any dirs) */ |
313 | ||
caadab2c | 314 | if (lbasename (name) == name) |
c906108c | 315 | ALL_PSYMTABS (objfile, pst) |
c5aa993b | 316 | { |
31889e00 | 317 | if (FILENAME_CMP (lbasename (pst->filename), name) == 0) |
c5aa993b JM |
318 | return (pst); |
319 | } | |
c906108c SS |
320 | |
321 | return (NULL); | |
322 | } | |
323 | \f | |
324 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
325 | full method name, which consist of the class name (from T), the unadorned | |
326 | method name from METHOD_ID, and the signature for the specific overload, | |
327 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
328 | ||
329 | char * | |
fba45db2 | 330 | gdb_mangle_name (struct type *type, int method_id, int signature_id) |
c906108c SS |
331 | { |
332 | int mangled_name_len; | |
333 | char *mangled_name; | |
334 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
335 | struct fn_field *method = &f[signature_id]; | |
336 | char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
337 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
338 | char *newname = type_name_no_tag (type); | |
339 | ||
340 | /* Does the form of physname indicate that it is the full mangled name | |
341 | of a constructor (not just the args)? */ | |
342 | int is_full_physname_constructor; | |
343 | ||
344 | int is_constructor; | |
015a42b4 | 345 | int is_destructor = is_destructor_name (physname); |
c906108c SS |
346 | /* Need a new type prefix. */ |
347 | char *const_prefix = method->is_const ? "C" : ""; | |
348 | char *volatile_prefix = method->is_volatile ? "V" : ""; | |
349 | char buf[20]; | |
350 | int len = (newname == NULL ? 0 : strlen (newname)); | |
351 | ||
43630227 PS |
352 | /* Nothing to do if physname already contains a fully mangled v3 abi name |
353 | or an operator name. */ | |
354 | if ((physname[0] == '_' && physname[1] == 'Z') | |
355 | || is_operator_name (field_name)) | |
235d1e03 EZ |
356 | return xstrdup (physname); |
357 | ||
015a42b4 | 358 | is_full_physname_constructor = is_constructor_name (physname); |
c906108c SS |
359 | |
360 | is_constructor = | |
6314a349 | 361 | is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0); |
c906108c SS |
362 | |
363 | if (!is_destructor) | |
c5aa993b | 364 | is_destructor = (strncmp (physname, "__dt", 4) == 0); |
c906108c SS |
365 | |
366 | if (is_destructor || is_full_physname_constructor) | |
367 | { | |
c5aa993b JM |
368 | mangled_name = (char *) xmalloc (strlen (physname) + 1); |
369 | strcpy (mangled_name, physname); | |
c906108c SS |
370 | return mangled_name; |
371 | } | |
372 | ||
373 | if (len == 0) | |
374 | { | |
375 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); | |
376 | } | |
377 | else if (physname[0] == 't' || physname[0] == 'Q') | |
378 | { | |
379 | /* The physname for template and qualified methods already includes | |
c5aa993b | 380 | the class name. */ |
c906108c SS |
381 | sprintf (buf, "__%s%s", const_prefix, volatile_prefix); |
382 | newname = NULL; | |
383 | len = 0; | |
384 | } | |
385 | else | |
386 | { | |
387 | sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len); | |
388 | } | |
389 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
235d1e03 | 390 | + strlen (buf) + len + strlen (physname) + 1); |
c906108c | 391 | |
c906108c | 392 | { |
c5aa993b | 393 | mangled_name = (char *) xmalloc (mangled_name_len); |
c906108c SS |
394 | if (is_constructor) |
395 | mangled_name[0] = '\0'; | |
396 | else | |
397 | strcpy (mangled_name, field_name); | |
398 | } | |
399 | strcat (mangled_name, buf); | |
400 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
401 | mangle it using 0 for the length of the class. Thus it gets mangled | |
c5aa993b | 402 | as something starting with `::' rather than `classname::'. */ |
c906108c SS |
403 | if (newname != NULL) |
404 | strcat (mangled_name, newname); | |
405 | ||
406 | strcat (mangled_name, physname); | |
407 | return (mangled_name); | |
408 | } | |
12af6855 JB |
409 | |
410 | \f | |
89aad1f9 EZ |
411 | /* Initialize the language dependent portion of a symbol |
412 | depending upon the language for the symbol. */ | |
413 | void | |
414 | symbol_init_language_specific (struct general_symbol_info *gsymbol, | |
415 | enum language language) | |
416 | { | |
417 | gsymbol->language = language; | |
418 | if (gsymbol->language == language_cplus | |
5784d15e AF |
419 | || gsymbol->language == language_java |
420 | || gsymbol->language == language_objc) | |
89aad1f9 EZ |
421 | { |
422 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
423 | } | |
89aad1f9 EZ |
424 | else |
425 | { | |
426 | memset (&gsymbol->language_specific, 0, | |
427 | sizeof (gsymbol->language_specific)); | |
428 | } | |
429 | } | |
430 | ||
2de7ced7 DJ |
431 | /* Functions to initialize a symbol's mangled name. */ |
432 | ||
433 | /* Create the hash table used for demangled names. Each hash entry is | |
434 | a pair of strings; one for the mangled name and one for the demangled | |
435 | name. The entry is hashed via just the mangled name. */ | |
436 | ||
437 | static void | |
438 | create_demangled_names_hash (struct objfile *objfile) | |
439 | { | |
440 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
9af17804 | 441 | The hash table code will round this up to the next prime number. |
2de7ced7 DJ |
442 | Choosing a much larger table size wastes memory, and saves only about |
443 | 1% in symbol reading. */ | |
444 | ||
aa2ee5f6 | 445 | objfile->demangled_names_hash = htab_create_alloc |
2de7ced7 | 446 | (256, htab_hash_string, (int (*) (const void *, const void *)) streq, |
aa2ee5f6 | 447 | NULL, xcalloc, xfree); |
2de7ced7 | 448 | } |
12af6855 | 449 | |
2de7ced7 | 450 | /* Try to determine the demangled name for a symbol, based on the |
12af6855 JB |
451 | language of that symbol. If the language is set to language_auto, |
452 | it will attempt to find any demangling algorithm that works and | |
2de7ced7 DJ |
453 | then set the language appropriately. The returned name is allocated |
454 | by the demangler and should be xfree'd. */ | |
12af6855 | 455 | |
2de7ced7 DJ |
456 | static char * |
457 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
458 | const char *mangled) | |
12af6855 | 459 | { |
12af6855 JB |
460 | char *demangled = NULL; |
461 | ||
462 | if (gsymbol->language == language_unknown) | |
463 | gsymbol->language = language_auto; | |
1bae87b9 AF |
464 | |
465 | if (gsymbol->language == language_objc | |
466 | || gsymbol->language == language_auto) | |
467 | { | |
468 | demangled = | |
469 | objc_demangle (mangled, 0); | |
470 | if (demangled != NULL) | |
471 | { | |
472 | gsymbol->language = language_objc; | |
473 | return demangled; | |
474 | } | |
475 | } | |
12af6855 JB |
476 | if (gsymbol->language == language_cplus |
477 | || gsymbol->language == language_auto) | |
478 | { | |
479 | demangled = | |
2de7ced7 | 480 | cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI); |
12af6855 | 481 | if (demangled != NULL) |
2de7ced7 DJ |
482 | { |
483 | gsymbol->language = language_cplus; | |
484 | return demangled; | |
485 | } | |
12af6855 JB |
486 | } |
487 | if (gsymbol->language == language_java) | |
488 | { | |
489 | demangled = | |
2de7ced7 | 490 | cplus_demangle (mangled, |
12af6855 JB |
491 | DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA); |
492 | if (demangled != NULL) | |
2de7ced7 DJ |
493 | { |
494 | gsymbol->language = language_java; | |
495 | return demangled; | |
496 | } | |
497 | } | |
498 | return NULL; | |
499 | } | |
500 | ||
980cae7a DC |
501 | /* Set both the mangled and demangled (if any) names for GSYMBOL based |
502 | on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE | |
4a146b47 | 503 | is used, and the memory comes from that objfile's objfile_obstack. |
980cae7a DC |
504 | LINKAGE_NAME is copied, so the pointer can be discarded after |
505 | calling this function. */ | |
2de7ced7 | 506 | |
d2a52b27 DC |
507 | /* We have to be careful when dealing with Java names: when we run |
508 | into a Java minimal symbol, we don't know it's a Java symbol, so it | |
509 | gets demangled as a C++ name. This is unfortunate, but there's not | |
510 | much we can do about it: but when demangling partial symbols and | |
511 | regular symbols, we'd better not reuse the wrong demangled name. | |
512 | (See PR gdb/1039.) We solve this by putting a distinctive prefix | |
513 | on Java names when storing them in the hash table. */ | |
514 | ||
515 | /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I | |
516 | don't mind the Java prefix so much: different languages have | |
517 | different demangling requirements, so it's only natural that we | |
518 | need to keep language data around in our demangling cache. But | |
519 | it's not good that the minimal symbol has the wrong demangled name. | |
520 | Unfortunately, I can't think of any easy solution to that | |
521 | problem. */ | |
522 | ||
523 | #define JAVA_PREFIX "##JAVA$$" | |
524 | #define JAVA_PREFIX_LEN 8 | |
525 | ||
2de7ced7 DJ |
526 | void |
527 | symbol_set_names (struct general_symbol_info *gsymbol, | |
980cae7a | 528 | const char *linkage_name, int len, struct objfile *objfile) |
2de7ced7 DJ |
529 | { |
530 | char **slot; | |
980cae7a DC |
531 | /* A 0-terminated copy of the linkage name. */ |
532 | const char *linkage_name_copy; | |
d2a52b27 DC |
533 | /* A copy of the linkage name that might have a special Java prefix |
534 | added to it, for use when looking names up in the hash table. */ | |
535 | const char *lookup_name; | |
536 | /* The length of lookup_name. */ | |
537 | int lookup_len; | |
2de7ced7 DJ |
538 | |
539 | if (objfile->demangled_names_hash == NULL) | |
540 | create_demangled_names_hash (objfile); | |
541 | ||
b06ead72 JB |
542 | if (gsymbol->language == language_ada) |
543 | { | |
544 | /* In Ada, we do the symbol lookups using the mangled name, so | |
545 | we can save some space by not storing the demangled name. | |
546 | ||
547 | As a side note, we have also observed some overlap between | |
548 | the C++ mangling and Ada mangling, similarly to what has | |
549 | been observed with Java. Because we don't store the demangled | |
550 | name with the symbol, we don't need to use the same trick | |
551 | as Java. */ | |
552 | gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1); | |
553 | memcpy (gsymbol->name, linkage_name, len); | |
554 | gsymbol->name[len] = '\0'; | |
555 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
556 | ||
557 | return; | |
558 | } | |
559 | ||
980cae7a DC |
560 | /* The stabs reader generally provides names that are not |
561 | NUL-terminated; most of the other readers don't do this, so we | |
d2a52b27 DC |
562 | can just use the given copy, unless we're in the Java case. */ |
563 | if (gsymbol->language == language_java) | |
564 | { | |
565 | char *alloc_name; | |
566 | lookup_len = len + JAVA_PREFIX_LEN; | |
567 | ||
568 | alloc_name = alloca (lookup_len + 1); | |
569 | memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN); | |
570 | memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len); | |
571 | alloc_name[lookup_len] = '\0'; | |
572 | ||
573 | lookup_name = alloc_name; | |
574 | linkage_name_copy = alloc_name + JAVA_PREFIX_LEN; | |
575 | } | |
576 | else if (linkage_name[len] != '\0') | |
2de7ced7 | 577 | { |
980cae7a | 578 | char *alloc_name; |
d2a52b27 | 579 | lookup_len = len; |
980cae7a | 580 | |
d2a52b27 | 581 | alloc_name = alloca (lookup_len + 1); |
980cae7a | 582 | memcpy (alloc_name, linkage_name, len); |
d2a52b27 | 583 | alloc_name[lookup_len] = '\0'; |
980cae7a | 584 | |
d2a52b27 | 585 | lookup_name = alloc_name; |
980cae7a | 586 | linkage_name_copy = alloc_name; |
2de7ced7 DJ |
587 | } |
588 | else | |
980cae7a | 589 | { |
d2a52b27 DC |
590 | lookup_len = len; |
591 | lookup_name = linkage_name; | |
980cae7a DC |
592 | linkage_name_copy = linkage_name; |
593 | } | |
2de7ced7 | 594 | |
980cae7a | 595 | slot = (char **) htab_find_slot (objfile->demangled_names_hash, |
d2a52b27 | 596 | lookup_name, INSERT); |
2de7ced7 DJ |
597 | |
598 | /* If this name is not in the hash table, add it. */ | |
599 | if (*slot == NULL) | |
600 | { | |
980cae7a DC |
601 | char *demangled_name = symbol_find_demangled_name (gsymbol, |
602 | linkage_name_copy); | |
2de7ced7 DJ |
603 | int demangled_len = demangled_name ? strlen (demangled_name) : 0; |
604 | ||
605 | /* If there is a demangled name, place it right after the mangled name. | |
606 | Otherwise, just place a second zero byte after the end of the mangled | |
607 | name. */ | |
4a146b47 | 608 | *slot = obstack_alloc (&objfile->objfile_obstack, |
d2a52b27 DC |
609 | lookup_len + demangled_len + 2); |
610 | memcpy (*slot, lookup_name, lookup_len + 1); | |
980cae7a | 611 | if (demangled_name != NULL) |
2de7ced7 | 612 | { |
d2a52b27 | 613 | memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1); |
2de7ced7 DJ |
614 | xfree (demangled_name); |
615 | } | |
616 | else | |
d2a52b27 | 617 | (*slot)[lookup_len + 1] = '\0'; |
2de7ced7 DJ |
618 | } |
619 | ||
d2a52b27 DC |
620 | gsymbol->name = *slot + lookup_len - len; |
621 | if ((*slot)[lookup_len + 1] != '\0') | |
2de7ced7 | 622 | gsymbol->language_specific.cplus_specific.demangled_name |
d2a52b27 | 623 | = &(*slot)[lookup_len + 1]; |
2de7ced7 DJ |
624 | else |
625 | gsymbol->language_specific.cplus_specific.demangled_name = NULL; | |
626 | } | |
627 | ||
22abf04a DC |
628 | /* Return the source code name of a symbol. In languages where |
629 | demangling is necessary, this is the demangled name. */ | |
630 | ||
631 | char * | |
632 | symbol_natural_name (const struct general_symbol_info *gsymbol) | |
633 | { | |
9af17804 | 634 | switch (gsymbol->language) |
22abf04a | 635 | { |
1f8173e6 PH |
636 | case language_cplus: |
637 | case language_java: | |
638 | case language_objc: | |
639 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
640 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
641 | break; | |
642 | case language_ada: | |
643 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
644 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
645 | else | |
646 | return ada_decode_symbol (gsymbol); | |
647 | break; | |
648 | default: | |
649 | break; | |
22abf04a | 650 | } |
1f8173e6 | 651 | return gsymbol->name; |
22abf04a DC |
652 | } |
653 | ||
9cc0d196 EZ |
654 | /* Return the demangled name for a symbol based on the language for |
655 | that symbol. If no demangled name exists, return NULL. */ | |
656 | char * | |
df8a16a1 | 657 | symbol_demangled_name (const struct general_symbol_info *gsymbol) |
9cc0d196 | 658 | { |
9af17804 | 659 | switch (gsymbol->language) |
1f8173e6 PH |
660 | { |
661 | case language_cplus: | |
662 | case language_java: | |
663 | case language_objc: | |
664 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
665 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
666 | break; | |
667 | case language_ada: | |
668 | if (gsymbol->language_specific.cplus_specific.demangled_name != NULL) | |
669 | return gsymbol->language_specific.cplus_specific.demangled_name; | |
670 | else | |
671 | return ada_decode_symbol (gsymbol); | |
672 | break; | |
673 | default: | |
674 | break; | |
675 | } | |
676 | return NULL; | |
9cc0d196 | 677 | } |
fe39c653 | 678 | |
4725b721 PH |
679 | /* Return the search name of a symbol---generally the demangled or |
680 | linkage name of the symbol, depending on how it will be searched for. | |
9af17804 | 681 | If there is no distinct demangled name, then returns the same value |
4725b721 | 682 | (same pointer) as SYMBOL_LINKAGE_NAME. */ |
fc062ac6 JB |
683 | char * |
684 | symbol_search_name (const struct general_symbol_info *gsymbol) | |
685 | { | |
1f8173e6 PH |
686 | if (gsymbol->language == language_ada) |
687 | return gsymbol->name; | |
688 | else | |
689 | return symbol_natural_name (gsymbol); | |
4725b721 PH |
690 | } |
691 | ||
fe39c653 EZ |
692 | /* Initialize the structure fields to zero values. */ |
693 | void | |
694 | init_sal (struct symtab_and_line *sal) | |
695 | { | |
696 | sal->symtab = 0; | |
697 | sal->section = 0; | |
698 | sal->line = 0; | |
699 | sal->pc = 0; | |
700 | sal->end = 0; | |
ed0616c6 VP |
701 | sal->explicit_pc = 0; |
702 | sal->explicit_line = 0; | |
fe39c653 | 703 | } |
c906108c SS |
704 | \f |
705 | ||
94277a38 DJ |
706 | /* Return 1 if the two sections are the same, or if they could |
707 | plausibly be copies of each other, one in an original object | |
708 | file and another in a separated debug file. */ | |
709 | ||
710 | int | |
714835d5 UW |
711 | matching_obj_sections (struct obj_section *obj_first, |
712 | struct obj_section *obj_second) | |
94277a38 | 713 | { |
714835d5 UW |
714 | asection *first = obj_first? obj_first->the_bfd_section : NULL; |
715 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
94277a38 DJ |
716 | struct objfile *obj; |
717 | ||
718 | /* If they're the same section, then they match. */ | |
719 | if (first == second) | |
720 | return 1; | |
721 | ||
722 | /* If either is NULL, give up. */ | |
723 | if (first == NULL || second == NULL) | |
724 | return 0; | |
725 | ||
726 | /* This doesn't apply to absolute symbols. */ | |
727 | if (first->owner == NULL || second->owner == NULL) | |
728 | return 0; | |
729 | ||
730 | /* If they're in the same object file, they must be different sections. */ | |
731 | if (first->owner == second->owner) | |
732 | return 0; | |
733 | ||
734 | /* Check whether the two sections are potentially corresponding. They must | |
735 | have the same size, address, and name. We can't compare section indexes, | |
736 | which would be more reliable, because some sections may have been | |
737 | stripped. */ | |
738 | if (bfd_get_section_size (first) != bfd_get_section_size (second)) | |
739 | return 0; | |
740 | ||
818f79f6 | 741 | /* In-memory addresses may start at a different offset, relativize them. */ |
94277a38 | 742 | if (bfd_get_section_vma (first->owner, first) |
818f79f6 DJ |
743 | - bfd_get_start_address (first->owner) |
744 | != bfd_get_section_vma (second->owner, second) | |
745 | - bfd_get_start_address (second->owner)) | |
94277a38 DJ |
746 | return 0; |
747 | ||
748 | if (bfd_get_section_name (first->owner, first) == NULL | |
749 | || bfd_get_section_name (second->owner, second) == NULL | |
750 | || strcmp (bfd_get_section_name (first->owner, first), | |
751 | bfd_get_section_name (second->owner, second)) != 0) | |
752 | return 0; | |
753 | ||
754 | /* Otherwise check that they are in corresponding objfiles. */ | |
755 | ||
756 | ALL_OBJFILES (obj) | |
757 | if (obj->obfd == first->owner) | |
758 | break; | |
759 | gdb_assert (obj != NULL); | |
760 | ||
761 | if (obj->separate_debug_objfile != NULL | |
762 | && obj->separate_debug_objfile->obfd == second->owner) | |
763 | return 1; | |
764 | if (obj->separate_debug_objfile_backlink != NULL | |
765 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
766 | return 1; | |
767 | ||
768 | return 0; | |
769 | } | |
c5aa993b | 770 | |
ff013f42 JK |
771 | /* Find which partial symtab contains PC and SECTION starting at psymtab PST. |
772 | We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */ | |
773 | ||
2c0b251b | 774 | static struct partial_symtab * |
714835d5 | 775 | find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section, |
ff013f42 JK |
776 | struct partial_symtab *pst, |
777 | struct minimal_symbol *msymbol) | |
778 | { | |
779 | struct objfile *objfile = pst->objfile; | |
780 | struct partial_symtab *tpst; | |
781 | struct partial_symtab *best_pst = pst; | |
782 | CORE_ADDR best_addr = pst->textlow; | |
783 | ||
784 | /* An objfile that has its functions reordered might have | |
785 | many partial symbol tables containing the PC, but | |
786 | we want the partial symbol table that contains the | |
787 | function containing the PC. */ | |
788 | if (!(objfile->flags & OBJF_REORDERED) && | |
789 | section == 0) /* can't validate section this way */ | |
790 | return pst; | |
791 | ||
792 | if (msymbol == NULL) | |
793 | return (pst); | |
794 | ||
795 | /* The code range of partial symtabs sometimes overlap, so, in | |
796 | the loop below, we need to check all partial symtabs and | |
797 | find the one that fits better for the given PC address. We | |
798 | select the partial symtab that contains a symbol whose | |
799 | address is closest to the PC address. By closest we mean | |
800 | that find_pc_sect_symbol returns the symbol with address | |
801 | that is closest and still less than the given PC. */ | |
802 | for (tpst = pst; tpst != NULL; tpst = tpst->next) | |
803 | { | |
804 | if (pc >= tpst->textlow && pc < tpst->texthigh) | |
805 | { | |
806 | struct partial_symbol *p; | |
807 | CORE_ADDR this_addr; | |
808 | ||
809 | /* NOTE: This assumes that every psymbol has a | |
810 | corresponding msymbol, which is not necessarily | |
811 | true; the debug info might be much richer than the | |
812 | object's symbol table. */ | |
813 | p = find_pc_sect_psymbol (tpst, pc, section); | |
814 | if (p != NULL | |
815 | && SYMBOL_VALUE_ADDRESS (p) | |
816 | == SYMBOL_VALUE_ADDRESS (msymbol)) | |
817 | return tpst; | |
818 | ||
819 | /* Also accept the textlow value of a psymtab as a | |
820 | "symbol", to provide some support for partial | |
821 | symbol tables with line information but no debug | |
822 | symbols (e.g. those produced by an assembler). */ | |
823 | if (p != NULL) | |
824 | this_addr = SYMBOL_VALUE_ADDRESS (p); | |
825 | else | |
826 | this_addr = tpst->textlow; | |
827 | ||
828 | /* Check whether it is closer than our current | |
829 | BEST_ADDR. Since this symbol address is | |
830 | necessarily lower or equal to PC, the symbol closer | |
831 | to PC is the symbol which address is the highest. | |
832 | This way we return the psymtab which contains such | |
833 | best match symbol. This can help in cases where the | |
834 | symbol information/debuginfo is not complete, like | |
835 | for instance on IRIX6 with gcc, where no debug info | |
836 | is emitted for statics. (See also the nodebug.exp | |
837 | testcase.) */ | |
838 | if (this_addr > best_addr) | |
839 | { | |
840 | best_addr = this_addr; | |
841 | best_pst = tpst; | |
842 | } | |
843 | } | |
844 | } | |
845 | return best_pst; | |
846 | } | |
847 | ||
ccefbec3 EZ |
848 | /* Find which partial symtab contains PC and SECTION. Return 0 if |
849 | none. We return the psymtab that contains a symbol whose address | |
850 | exactly matches PC, or, if we cannot find an exact match, the | |
851 | psymtab that contains a symbol whose address is closest to PC. */ | |
c906108c | 852 | struct partial_symtab * |
714835d5 | 853 | find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 854 | { |
52f0bd74 | 855 | struct objfile *objfile; |
8a48e967 DJ |
856 | struct minimal_symbol *msymbol; |
857 | ||
858 | /* If we know that this is not a text address, return failure. This is | |
859 | necessary because we loop based on texthigh and textlow, which do | |
860 | not include the data ranges. */ | |
861 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
862 | if (msymbol | |
712f90be TT |
863 | && (MSYMBOL_TYPE (msymbol) == mst_data |
864 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
865 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
866 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
867 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 868 | return NULL; |
c906108c | 869 | |
ff013f42 JK |
870 | /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity |
871 | than the later used TEXTLOW/TEXTHIGH one. */ | |
872 | ||
873 | ALL_OBJFILES (objfile) | |
874 | if (objfile->psymtabs_addrmap != NULL) | |
c5aa993b | 875 | { |
ff013f42 JK |
876 | struct partial_symtab *pst; |
877 | ||
878 | pst = addrmap_find (objfile->psymtabs_addrmap, pc); | |
879 | if (pst != NULL) | |
c5aa993b | 880 | { |
907fc202 | 881 | /* FIXME: addrmaps currently do not handle overlayed sections, |
9af17804 | 882 | so fall back to the non-addrmap case if we're debugging |
907fc202 UW |
883 | overlays and the addrmap returned the wrong section. */ |
884 | if (overlay_debugging && msymbol && section) | |
885 | { | |
886 | struct partial_symbol *p; | |
887 | /* NOTE: This assumes that every psymbol has a | |
888 | corresponding msymbol, which is not necessarily | |
889 | true; the debug info might be much richer than the | |
890 | object's symbol table. */ | |
891 | p = find_pc_sect_psymbol (pst, pc, section); | |
892 | if (!p | |
893 | || SYMBOL_VALUE_ADDRESS (p) | |
894 | != SYMBOL_VALUE_ADDRESS (msymbol)) | |
895 | continue; | |
896 | } | |
897 | ||
ff013f42 JK |
898 | /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as |
899 | PSYMTABS_ADDRMAP we used has already the best 1-byte | |
900 | granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into | |
901 | a worse chosen section due to the TEXTLOW/TEXTHIGH ranges | |
902 | overlap. */ | |
903 | ||
904 | return pst; | |
c5aa993b | 905 | } |
c5aa993b | 906 | } |
ff013f42 JK |
907 | |
908 | /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs | |
909 | which still have no corresponding full SYMTABs read. But it is not | |
910 | present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB | |
911 | so far. */ | |
912 | ||
913 | ALL_OBJFILES (objfile) | |
914 | { | |
915 | struct partial_symtab *pst; | |
916 | ||
917 | /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of | |
918 | its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying | |
919 | debug info type in single OBJFILE. */ | |
920 | ||
921 | ALL_OBJFILE_PSYMTABS (objfile, pst) | |
922 | if (pc >= pst->textlow && pc < pst->texthigh) | |
923 | { | |
924 | struct partial_symtab *best_pst; | |
925 | ||
926 | best_pst = find_pc_sect_psymtab_closer (pc, section, pst, | |
927 | msymbol); | |
928 | if (best_pst != NULL) | |
929 | return best_pst; | |
930 | } | |
931 | } | |
932 | ||
933 | return NULL; | |
c906108c SS |
934 | } |
935 | ||
9af17804 | 936 | /* Find which partial symtab contains PC. Return 0 if none. |
c906108c SS |
937 | Backward compatibility, no section */ |
938 | ||
939 | struct partial_symtab * | |
fba45db2 | 940 | find_pc_psymtab (CORE_ADDR pc) |
c906108c SS |
941 | { |
942 | return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc)); | |
943 | } | |
944 | ||
9af17804 | 945 | /* Find which partial symbol within a psymtab matches PC and SECTION. |
c906108c SS |
946 | Return 0 if none. Check all psymtabs if PSYMTAB is 0. */ |
947 | ||
948 | struct partial_symbol * | |
fba45db2 | 949 | find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc, |
714835d5 | 950 | struct obj_section *section) |
c906108c SS |
951 | { |
952 | struct partial_symbol *best = NULL, *p, **pp; | |
953 | CORE_ADDR best_pc; | |
c5aa993b | 954 | |
c906108c SS |
955 | if (!psymtab) |
956 | psymtab = find_pc_sect_psymtab (pc, section); | |
957 | if (!psymtab) | |
958 | return 0; | |
959 | ||
960 | /* Cope with programs that start at address 0 */ | |
961 | best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0; | |
962 | ||
963 | /* Search the global symbols as well as the static symbols, so that | |
964 | find_pc_partial_function doesn't use a minimal symbol and thus | |
965 | cache a bad endaddr. */ | |
966 | for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset; | |
c5aa993b JM |
967 | (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset) |
968 | < psymtab->n_global_syms); | |
c906108c SS |
969 | pp++) |
970 | { | |
971 | p = *pp; | |
176620f1 | 972 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
973 | && SYMBOL_CLASS (p) == LOC_BLOCK |
974 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
975 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
976 | || (psymtab->textlow == 0 | |
977 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) | |
978 | { | |
c5aa993b | 979 | if (section) /* match on a specific section */ |
c906108c SS |
980 | { |
981 | fixup_psymbol_section (p, psymtab->objfile); | |
714835d5 | 982 | if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section)) |
c906108c SS |
983 | continue; |
984 | } | |
985 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
986 | best = p; | |
987 | } | |
988 | } | |
989 | ||
990 | for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset; | |
c5aa993b JM |
991 | (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset) |
992 | < psymtab->n_static_syms); | |
c906108c SS |
993 | pp++) |
994 | { | |
995 | p = *pp; | |
176620f1 | 996 | if (SYMBOL_DOMAIN (p) == VAR_DOMAIN |
c906108c SS |
997 | && SYMBOL_CLASS (p) == LOC_BLOCK |
998 | && pc >= SYMBOL_VALUE_ADDRESS (p) | |
999 | && (SYMBOL_VALUE_ADDRESS (p) > best_pc | |
c5aa993b | 1000 | || (psymtab->textlow == 0 |
c906108c SS |
1001 | && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0))) |
1002 | { | |
c5aa993b | 1003 | if (section) /* match on a specific section */ |
c906108c SS |
1004 | { |
1005 | fixup_psymbol_section (p, psymtab->objfile); | |
714835d5 | 1006 | if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section)) |
c906108c SS |
1007 | continue; |
1008 | } | |
1009 | best_pc = SYMBOL_VALUE_ADDRESS (p); | |
1010 | best = p; | |
1011 | } | |
1012 | } | |
1013 | ||
1014 | return best; | |
1015 | } | |
1016 | ||
9af17804 | 1017 | /* Find which partial symbol within a psymtab matches PC. Return 0 if none. |
c906108c SS |
1018 | Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */ |
1019 | ||
1020 | struct partial_symbol * | |
fba45db2 | 1021 | find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc) |
c906108c SS |
1022 | { |
1023 | return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc)); | |
1024 | } | |
1025 | \f | |
1026 | /* Debug symbols usually don't have section information. We need to dig that | |
1027 | out of the minimal symbols and stash that in the debug symbol. */ | |
1028 | ||
1029 | static void | |
907fc202 UW |
1030 | fixup_section (struct general_symbol_info *ginfo, |
1031 | CORE_ADDR addr, struct objfile *objfile) | |
c906108c SS |
1032 | { |
1033 | struct minimal_symbol *msym; | |
c906108c | 1034 | |
bccdca4a UW |
1035 | /* First, check whether a minimal symbol with the same name exists |
1036 | and points to the same address. The address check is required | |
1037 | e.g. on PowerPC64, where the minimal symbol for a function will | |
1038 | point to the function descriptor, while the debug symbol will | |
1039 | point to the actual function code. */ | |
907fc202 UW |
1040 | msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile); |
1041 | if (msym) | |
7a78d0ee | 1042 | { |
714835d5 | 1043 | ginfo->obj_section = SYMBOL_OBJ_SECTION (msym); |
7a78d0ee KB |
1044 | ginfo->section = SYMBOL_SECTION (msym); |
1045 | } | |
907fc202 | 1046 | else |
19e2d14b KB |
1047 | { |
1048 | /* Static, function-local variables do appear in the linker | |
1049 | (minimal) symbols, but are frequently given names that won't | |
1050 | be found via lookup_minimal_symbol(). E.g., it has been | |
1051 | observed in frv-uclinux (ELF) executables that a static, | |
1052 | function-local variable named "foo" might appear in the | |
1053 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
1054 | point in attempting to extend the lookup-by-name mechanism to | |
1055 | handle this case due to the fact that there can be multiple | |
1056 | names. | |
9af17804 | 1057 | |
19e2d14b KB |
1058 | So, instead, search the section table when lookup by name has |
1059 | failed. The ``addr'' and ``endaddr'' fields may have already | |
1060 | been relocated. If so, the relocation offset (i.e. the | |
1061 | ANOFFSET value) needs to be subtracted from these values when | |
1062 | performing the comparison. We unconditionally subtract it, | |
1063 | because, when no relocation has been performed, the ANOFFSET | |
1064 | value will simply be zero. | |
9af17804 | 1065 | |
19e2d14b KB |
1066 | The address of the symbol whose section we're fixing up HAS |
1067 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
1068 | the section isn't yet known and knowing the section is | |
1069 | necessary in order to add the correct relocation value. In | |
1070 | other words, we wouldn't even be in this function (attempting | |
1071 | to compute the section) if it were already known. | |
1072 | ||
1073 | Note that it is possible to search the minimal symbols | |
1074 | (subtracting the relocation value if necessary) to find the | |
1075 | matching minimal symbol, but this is overkill and much less | |
1076 | efficient. It is not necessary to find the matching minimal | |
9af17804 DE |
1077 | symbol, only its section. |
1078 | ||
19e2d14b KB |
1079 | Note that this technique (of doing a section table search) |
1080 | can fail when unrelocated section addresses overlap. For | |
1081 | this reason, we still attempt a lookup by name prior to doing | |
1082 | a search of the section table. */ | |
9af17804 | 1083 | |
19e2d14b | 1084 | struct obj_section *s; |
19e2d14b KB |
1085 | ALL_OBJFILE_OSECTIONS (objfile, s) |
1086 | { | |
1087 | int idx = s->the_bfd_section->index; | |
1088 | CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx); | |
1089 | ||
f1f6aadf PA |
1090 | if (obj_section_addr (s) - offset <= addr |
1091 | && addr < obj_section_endaddr (s) - offset) | |
19e2d14b | 1092 | { |
714835d5 | 1093 | ginfo->obj_section = s; |
19e2d14b KB |
1094 | ginfo->section = idx; |
1095 | return; | |
1096 | } | |
1097 | } | |
1098 | } | |
c906108c SS |
1099 | } |
1100 | ||
1101 | struct symbol * | |
fba45db2 | 1102 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) |
c906108c | 1103 | { |
907fc202 UW |
1104 | CORE_ADDR addr; |
1105 | ||
c906108c SS |
1106 | if (!sym) |
1107 | return NULL; | |
1108 | ||
714835d5 | 1109 | if (SYMBOL_OBJ_SECTION (sym)) |
c906108c SS |
1110 | return sym; |
1111 | ||
907fc202 UW |
1112 | /* We either have an OBJFILE, or we can get at it from the sym's |
1113 | symtab. Anything else is a bug. */ | |
1114 | gdb_assert (objfile || SYMBOL_SYMTAB (sym)); | |
1115 | ||
1116 | if (objfile == NULL) | |
1117 | objfile = SYMBOL_SYMTAB (sym)->objfile; | |
1118 | ||
1119 | /* We should have an objfile by now. */ | |
1120 | gdb_assert (objfile); | |
1121 | ||
1122 | switch (SYMBOL_CLASS (sym)) | |
1123 | { | |
1124 | case LOC_STATIC: | |
1125 | case LOC_LABEL: | |
907fc202 UW |
1126 | addr = SYMBOL_VALUE_ADDRESS (sym); |
1127 | break; | |
1128 | case LOC_BLOCK: | |
1129 | addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1130 | break; | |
1131 | ||
1132 | default: | |
1133 | /* Nothing else will be listed in the minsyms -- no use looking | |
1134 | it up. */ | |
1135 | return sym; | |
1136 | } | |
1137 | ||
1138 | fixup_section (&sym->ginfo, addr, objfile); | |
c906108c SS |
1139 | |
1140 | return sym; | |
1141 | } | |
1142 | ||
7a78d0ee | 1143 | struct partial_symbol * |
fba45db2 | 1144 | fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile) |
c906108c | 1145 | { |
907fc202 UW |
1146 | CORE_ADDR addr; |
1147 | ||
c906108c SS |
1148 | if (!psym) |
1149 | return NULL; | |
1150 | ||
714835d5 | 1151 | if (SYMBOL_OBJ_SECTION (psym)) |
c906108c SS |
1152 | return psym; |
1153 | ||
907fc202 UW |
1154 | gdb_assert (objfile); |
1155 | ||
1156 | switch (SYMBOL_CLASS (psym)) | |
1157 | { | |
1158 | case LOC_STATIC: | |
1159 | case LOC_LABEL: | |
907fc202 UW |
1160 | case LOC_BLOCK: |
1161 | addr = SYMBOL_VALUE_ADDRESS (psym); | |
1162 | break; | |
1163 | default: | |
1164 | /* Nothing else will be listed in the minsyms -- no use looking | |
1165 | it up. */ | |
1166 | return psym; | |
1167 | } | |
1168 | ||
1169 | fixup_section (&psym->ginfo, addr, objfile); | |
c906108c SS |
1170 | |
1171 | return psym; | |
1172 | } | |
1173 | ||
1174 | /* Find the definition for a specified symbol name NAME | |
176620f1 | 1175 | in domain DOMAIN, visible from lexical block BLOCK. |
c906108c | 1176 | Returns the struct symbol pointer, or zero if no symbol is found. |
c906108c SS |
1177 | C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if |
1178 | NAME is a field of the current implied argument `this'. If so set | |
9af17804 | 1179 | *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero. |
c906108c SS |
1180 | BLOCK_FOUND is set to the block in which NAME is found (in the case of |
1181 | a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */ | |
1182 | ||
1183 | /* This function has a bunch of loops in it and it would seem to be | |
1184 | attractive to put in some QUIT's (though I'm not really sure | |
1185 | whether it can run long enough to be really important). But there | |
1186 | are a few calls for which it would appear to be bad news to quit | |
7ca9f392 AC |
1187 | out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note |
1188 | that there is C++ code below which can error(), but that probably | |
1189 | doesn't affect these calls since they are looking for a known | |
1190 | variable and thus can probably assume it will never hit the C++ | |
1191 | code). */ | |
c906108c SS |
1192 | |
1193 | struct symbol * | |
53c5240f PA |
1194 | lookup_symbol_in_language (const char *name, const struct block *block, |
1195 | const domain_enum domain, enum language lang, | |
2570f2b7 | 1196 | int *is_a_field_of_this) |
c906108c | 1197 | { |
729051e6 DJ |
1198 | char *demangled_name = NULL; |
1199 | const char *modified_name = NULL; | |
3121eff0 | 1200 | const char *mangled_name = NULL; |
fba7f19c | 1201 | struct symbol *returnval; |
9ee6bb93 | 1202 | struct cleanup *cleanup = make_cleanup (null_cleanup, 0); |
c906108c | 1203 | |
729051e6 DJ |
1204 | modified_name = name; |
1205 | ||
987504bb | 1206 | /* If we are using C++ or Java, demangle the name before doing a lookup, so |
729051e6 | 1207 | we can always binary search. */ |
53c5240f | 1208 | if (lang == language_cplus) |
729051e6 DJ |
1209 | { |
1210 | demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1211 | if (demangled_name) | |
1212 | { | |
1213 | mangled_name = name; | |
1214 | modified_name = demangled_name; | |
9ee6bb93 | 1215 | make_cleanup (xfree, demangled_name); |
729051e6 | 1216 | } |
71c25dea TT |
1217 | else |
1218 | { | |
1219 | /* If we were given a non-mangled name, canonicalize it | |
1220 | according to the language (so far only for C++). */ | |
1221 | demangled_name = cp_canonicalize_string (name); | |
1222 | if (demangled_name) | |
1223 | { | |
1224 | modified_name = demangled_name; | |
1225 | make_cleanup (xfree, demangled_name); | |
1226 | } | |
1227 | } | |
729051e6 | 1228 | } |
53c5240f | 1229 | else if (lang == language_java) |
987504bb | 1230 | { |
9af17804 | 1231 | demangled_name = cplus_demangle (name, |
987504bb JJ |
1232 | DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA); |
1233 | if (demangled_name) | |
1234 | { | |
1235 | mangled_name = name; | |
1236 | modified_name = demangled_name; | |
9ee6bb93 | 1237 | make_cleanup (xfree, demangled_name); |
987504bb JJ |
1238 | } |
1239 | } | |
729051e6 | 1240 | |
63872f9d JG |
1241 | if (case_sensitivity == case_sensitive_off) |
1242 | { | |
1243 | char *copy; | |
1244 | int len, i; | |
1245 | ||
1246 | len = strlen (name); | |
1247 | copy = (char *) alloca (len + 1); | |
1248 | for (i= 0; i < len; i++) | |
1249 | copy[i] = tolower (name[i]); | |
1250 | copy[len] = 0; | |
fba7f19c | 1251 | modified_name = copy; |
63872f9d | 1252 | } |
fba7f19c | 1253 | |
3121eff0 | 1254 | returnval = lookup_symbol_aux (modified_name, mangled_name, block, |
21b556f4 | 1255 | domain, lang, is_a_field_of_this); |
9ee6bb93 | 1256 | do_cleanups (cleanup); |
fba7f19c | 1257 | |
9af17804 | 1258 | return returnval; |
fba7f19c EZ |
1259 | } |
1260 | ||
53c5240f PA |
1261 | /* Behave like lookup_symbol_in_language, but performed with the |
1262 | current language. */ | |
1263 | ||
1264 | struct symbol * | |
1265 | lookup_symbol (const char *name, const struct block *block, | |
2570f2b7 | 1266 | domain_enum domain, int *is_a_field_of_this) |
53c5240f PA |
1267 | { |
1268 | return lookup_symbol_in_language (name, block, domain, | |
1269 | current_language->la_language, | |
2570f2b7 | 1270 | is_a_field_of_this); |
53c5240f PA |
1271 | } |
1272 | ||
1273 | /* Behave like lookup_symbol except that NAME is the natural name | |
5ad1c190 DC |
1274 | of the symbol that we're looking for and, if LINKAGE_NAME is |
1275 | non-NULL, ensure that the symbol's linkage name matches as | |
1276 | well. */ | |
1277 | ||
fba7f19c | 1278 | static struct symbol * |
5ad1c190 | 1279 | lookup_symbol_aux (const char *name, const char *linkage_name, |
176620f1 | 1280 | const struct block *block, const domain_enum domain, |
21b556f4 | 1281 | enum language language, int *is_a_field_of_this) |
fba7f19c | 1282 | { |
8155455b | 1283 | struct symbol *sym; |
53c5240f | 1284 | const struct language_defn *langdef; |
406bc4de | 1285 | |
9a146a11 EZ |
1286 | /* Make sure we do something sensible with is_a_field_of_this, since |
1287 | the callers that set this parameter to some non-null value will | |
1288 | certainly use it later and expect it to be either 0 or 1. | |
1289 | If we don't set it, the contents of is_a_field_of_this are | |
1290 | undefined. */ | |
1291 | if (is_a_field_of_this != NULL) | |
1292 | *is_a_field_of_this = 0; | |
1293 | ||
e4051eeb DC |
1294 | /* Search specified block and its superiors. Don't search |
1295 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
c906108c | 1296 | |
21b556f4 | 1297 | sym = lookup_symbol_aux_local (name, linkage_name, block, domain); |
8155455b DC |
1298 | if (sym != NULL) |
1299 | return sym; | |
c906108c | 1300 | |
53c5240f PA |
1301 | /* If requested to do so by the caller and if appropriate for LANGUAGE, |
1302 | check to see if NAME is a field of `this'. */ | |
1303 | ||
1304 | langdef = language_def (language); | |
5f9a71c3 | 1305 | |
2b2d9e11 VP |
1306 | if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL |
1307 | && block != NULL) | |
c906108c | 1308 | { |
2b2d9e11 VP |
1309 | struct symbol *sym = NULL; |
1310 | /* 'this' is only defined in the function's block, so find the | |
1311 | enclosing function block. */ | |
9af17804 | 1312 | for (; block && !BLOCK_FUNCTION (block); |
2b2d9e11 VP |
1313 | block = BLOCK_SUPERBLOCK (block)); |
1314 | ||
1315 | if (block && !dict_empty (BLOCK_DICT (block))) | |
1316 | sym = lookup_block_symbol (block, langdef->la_name_of_this, | |
1317 | NULL, VAR_DOMAIN); | |
1318 | if (sym) | |
c906108c | 1319 | { |
2b2d9e11 | 1320 | struct type *t = sym->type; |
9af17804 | 1321 | |
2b2d9e11 VP |
1322 | /* I'm not really sure that type of this can ever |
1323 | be typedefed; just be safe. */ | |
1324 | CHECK_TYPEDEF (t); | |
1325 | if (TYPE_CODE (t) == TYPE_CODE_PTR | |
1326 | || TYPE_CODE (t) == TYPE_CODE_REF) | |
1327 | t = TYPE_TARGET_TYPE (t); | |
9af17804 | 1328 | |
2b2d9e11 VP |
1329 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
1330 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
9af17804 | 1331 | error (_("Internal error: `%s' is not an aggregate"), |
2b2d9e11 | 1332 | langdef->la_name_of_this); |
9af17804 | 1333 | |
2b2d9e11 VP |
1334 | if (check_field (t, name)) |
1335 | { | |
1336 | *is_a_field_of_this = 1; | |
2b2d9e11 VP |
1337 | return NULL; |
1338 | } | |
c906108c SS |
1339 | } |
1340 | } | |
1341 | ||
53c5240f | 1342 | /* Now do whatever is appropriate for LANGUAGE to look |
5f9a71c3 | 1343 | up static and global variables. */ |
c906108c | 1344 | |
21b556f4 | 1345 | sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain); |
8155455b DC |
1346 | if (sym != NULL) |
1347 | return sym; | |
c906108c | 1348 | |
8155455b DC |
1349 | /* Now search all static file-level symbols. Not strictly correct, |
1350 | but more useful than an error. Do the symtabs first, then check | |
1351 | the psymtabs. If a psymtab indicates the existence of the | |
1352 | desired name as a file-level static, then do psymtab-to-symtab | |
c906108c SS |
1353 | conversion on the fly and return the found symbol. */ |
1354 | ||
21b556f4 | 1355 | sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain); |
8155455b DC |
1356 | if (sym != NULL) |
1357 | return sym; | |
9af17804 | 1358 | |
21b556f4 | 1359 | sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain); |
8155455b DC |
1360 | if (sym != NULL) |
1361 | return sym; | |
c906108c | 1362 | |
8155455b | 1363 | return NULL; |
c906108c | 1364 | } |
8155455b | 1365 | |
e4051eeb | 1366 | /* Check to see if the symbol is defined in BLOCK or its superiors. |
89a9d1b1 | 1367 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ |
8155455b DC |
1368 | |
1369 | static struct symbol * | |
5ad1c190 | 1370 | lookup_symbol_aux_local (const char *name, const char *linkage_name, |
8155455b | 1371 | const struct block *block, |
21b556f4 | 1372 | const domain_enum domain) |
8155455b DC |
1373 | { |
1374 | struct symbol *sym; | |
89a9d1b1 DC |
1375 | const struct block *static_block = block_static_block (block); |
1376 | ||
e4051eeb DC |
1377 | /* Check if either no block is specified or it's a global block. */ |
1378 | ||
89a9d1b1 DC |
1379 | if (static_block == NULL) |
1380 | return NULL; | |
e4051eeb | 1381 | |
89a9d1b1 | 1382 | while (block != static_block) |
f61e8913 | 1383 | { |
21b556f4 | 1384 | sym = lookup_symbol_aux_block (name, linkage_name, block, domain); |
f61e8913 DC |
1385 | if (sym != NULL) |
1386 | return sym; | |
1387 | block = BLOCK_SUPERBLOCK (block); | |
1388 | } | |
1389 | ||
89a9d1b1 | 1390 | /* We've reached the static block without finding a result. */ |
e4051eeb | 1391 | |
f61e8913 DC |
1392 | return NULL; |
1393 | } | |
1394 | ||
3a40aaa0 UW |
1395 | /* Look up OBJFILE to BLOCK. */ |
1396 | ||
1397 | static struct objfile * | |
1398 | lookup_objfile_from_block (const struct block *block) | |
1399 | { | |
1400 | struct objfile *obj; | |
1401 | struct symtab *s; | |
1402 | ||
1403 | if (block == NULL) | |
1404 | return NULL; | |
1405 | ||
1406 | block = block_global_block (block); | |
1407 | /* Go through SYMTABS. */ | |
1408 | ALL_SYMTABS (obj, s) | |
1409 | if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK)) | |
1410 | return obj; | |
1411 | ||
1412 | return NULL; | |
1413 | } | |
1414 | ||
6c9353d3 PA |
1415 | /* Look up a symbol in a block; if found, fixup the symbol, and set |
1416 | block_found appropriately. */ | |
f61e8913 | 1417 | |
5f9a71c3 | 1418 | struct symbol * |
5ad1c190 | 1419 | lookup_symbol_aux_block (const char *name, const char *linkage_name, |
f61e8913 | 1420 | const struct block *block, |
21b556f4 | 1421 | const domain_enum domain) |
f61e8913 DC |
1422 | { |
1423 | struct symbol *sym; | |
f61e8913 | 1424 | |
5ad1c190 | 1425 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
f61e8913 | 1426 | if (sym) |
8155455b | 1427 | { |
f61e8913 | 1428 | block_found = block; |
21b556f4 | 1429 | return fixup_symbol_section (sym, NULL); |
8155455b DC |
1430 | } |
1431 | ||
1432 | return NULL; | |
1433 | } | |
1434 | ||
3a40aaa0 UW |
1435 | /* Check all global symbols in OBJFILE in symtabs and |
1436 | psymtabs. */ | |
1437 | ||
1438 | struct symbol * | |
1439 | lookup_global_symbol_from_objfile (const struct objfile *objfile, | |
1440 | const char *name, | |
1441 | const char *linkage_name, | |
21b556f4 | 1442 | const domain_enum domain) |
3a40aaa0 UW |
1443 | { |
1444 | struct symbol *sym; | |
1445 | struct blockvector *bv; | |
1446 | const struct block *block; | |
1447 | struct symtab *s; | |
1448 | struct partial_symtab *ps; | |
1449 | ||
1450 | /* Go through symtabs. */ | |
1451 | ALL_OBJFILE_SYMTABS (objfile, s) | |
1452 | { | |
1453 | bv = BLOCKVECTOR (s); | |
1454 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1455 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
1456 | if (sym) | |
1457 | { | |
1458 | block_found = block; | |
3a40aaa0 UW |
1459 | return fixup_symbol_section (sym, (struct objfile *)objfile); |
1460 | } | |
1461 | } | |
1462 | ||
1463 | /* Now go through psymtabs. */ | |
1464 | ALL_OBJFILE_PSYMTABS (objfile, ps) | |
1465 | { | |
1466 | if (!ps->readin | |
1467 | && lookup_partial_symbol (ps, name, linkage_name, | |
1468 | 1, domain)) | |
1469 | { | |
1470 | s = PSYMTAB_TO_SYMTAB (ps); | |
1471 | bv = BLOCKVECTOR (s); | |
1472 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
1473 | sym = lookup_block_symbol (block, name, linkage_name, domain); | |
3a40aaa0 UW |
1474 | return fixup_symbol_section (sym, (struct objfile *)objfile); |
1475 | } | |
1476 | } | |
1477 | ||
56e3f43c DJ |
1478 | if (objfile->separate_debug_objfile) |
1479 | return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile, | |
21b556f4 | 1480 | name, linkage_name, domain); |
56e3f43c | 1481 | |
3a40aaa0 UW |
1482 | return NULL; |
1483 | } | |
1484 | ||
8155455b DC |
1485 | /* Check to see if the symbol is defined in one of the symtabs. |
1486 | BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
1487 | depending on whether or not we want to search global symbols or | |
1488 | static symbols. */ | |
1489 | ||
1490 | static struct symbol * | |
1491 | lookup_symbol_aux_symtabs (int block_index, | |
5ad1c190 | 1492 | const char *name, const char *linkage_name, |
21b556f4 | 1493 | const domain_enum domain) |
8155455b DC |
1494 | { |
1495 | struct symbol *sym; | |
1496 | struct objfile *objfile; | |
1497 | struct blockvector *bv; | |
1498 | const struct block *block; | |
1499 | struct symtab *s; | |
1500 | ||
11309657 | 1501 | ALL_PRIMARY_SYMTABS (objfile, s) |
8155455b DC |
1502 | { |
1503 | bv = BLOCKVECTOR (s); | |
1504 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1505 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1506 | if (sym) |
1507 | { | |
1508 | block_found = block; | |
8155455b DC |
1509 | return fixup_symbol_section (sym, objfile); |
1510 | } | |
1511 | } | |
1512 | ||
1513 | return NULL; | |
1514 | } | |
1515 | ||
1516 | /* Check to see if the symbol is defined in one of the partial | |
1517 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or | |
1518 | STATIC_BLOCK, depending on whether or not we want to search global | |
1519 | symbols or static symbols. */ | |
1520 | ||
1521 | static struct symbol * | |
1522 | lookup_symbol_aux_psymtabs (int block_index, const char *name, | |
5ad1c190 | 1523 | const char *linkage_name, |
21b556f4 | 1524 | const domain_enum domain) |
8155455b DC |
1525 | { |
1526 | struct symbol *sym; | |
1527 | struct objfile *objfile; | |
1528 | struct blockvector *bv; | |
1529 | const struct block *block; | |
1530 | struct partial_symtab *ps; | |
1531 | struct symtab *s; | |
1532 | const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0); | |
1533 | ||
1534 | ALL_PSYMTABS (objfile, ps) | |
1535 | { | |
1536 | if (!ps->readin | |
5ad1c190 | 1537 | && lookup_partial_symbol (ps, name, linkage_name, |
176620f1 | 1538 | psymtab_index, domain)) |
8155455b DC |
1539 | { |
1540 | s = PSYMTAB_TO_SYMTAB (ps); | |
1541 | bv = BLOCKVECTOR (s); | |
1542 | block = BLOCKVECTOR_BLOCK (bv, block_index); | |
5ad1c190 | 1543 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b DC |
1544 | if (!sym) |
1545 | { | |
1546 | /* This shouldn't be necessary, but as a last resort try | |
1547 | looking in the statics even though the psymtab claimed | |
1548 | the symbol was global, or vice-versa. It's possible | |
1549 | that the psymtab gets it wrong in some cases. */ | |
1550 | ||
1551 | /* FIXME: carlton/2002-09-30: Should we really do that? | |
1552 | If that happens, isn't it likely to be a GDB error, in | |
1553 | which case we should fix the GDB error rather than | |
1554 | silently dealing with it here? So I'd vote for | |
1555 | removing the check for the symbol in the other | |
1556 | block. */ | |
1557 | block = BLOCKVECTOR_BLOCK (bv, | |
1558 | block_index == GLOBAL_BLOCK ? | |
1559 | STATIC_BLOCK : GLOBAL_BLOCK); | |
5ad1c190 | 1560 | sym = lookup_block_symbol (block, name, linkage_name, domain); |
8155455b | 1561 | if (!sym) |
8a3fe4f8 | 1562 | error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."), |
8155455b DC |
1563 | block_index == GLOBAL_BLOCK ? "global" : "static", |
1564 | name, ps->filename, name, name); | |
1565 | } | |
8155455b DC |
1566 | return fixup_symbol_section (sym, objfile); |
1567 | } | |
1568 | } | |
1569 | ||
1570 | return NULL; | |
1571 | } | |
1572 | ||
5f9a71c3 DC |
1573 | /* A default version of lookup_symbol_nonlocal for use by languages |
1574 | that can't think of anything better to do. This implements the C | |
1575 | lookup rules. */ | |
1576 | ||
1577 | struct symbol * | |
1578 | basic_lookup_symbol_nonlocal (const char *name, | |
1579 | const char *linkage_name, | |
1580 | const struct block *block, | |
21b556f4 | 1581 | const domain_enum domain) |
5f9a71c3 DC |
1582 | { |
1583 | struct symbol *sym; | |
1584 | ||
1585 | /* NOTE: carlton/2003-05-19: The comments below were written when | |
1586 | this (or what turned into this) was part of lookup_symbol_aux; | |
1587 | I'm much less worried about these questions now, since these | |
1588 | decisions have turned out well, but I leave these comments here | |
1589 | for posterity. */ | |
1590 | ||
1591 | /* NOTE: carlton/2002-12-05: There is a question as to whether or | |
1592 | not it would be appropriate to search the current global block | |
1593 | here as well. (That's what this code used to do before the | |
1594 | is_a_field_of_this check was moved up.) On the one hand, it's | |
1595 | redundant with the lookup_symbol_aux_symtabs search that happens | |
1596 | next. On the other hand, if decode_line_1 is passed an argument | |
1597 | like filename:var, then the user presumably wants 'var' to be | |
1598 | searched for in filename. On the third hand, there shouldn't be | |
1599 | multiple global variables all of which are named 'var', and it's | |
1600 | not like decode_line_1 has ever restricted its search to only | |
1601 | global variables in a single filename. All in all, only | |
1602 | searching the static block here seems best: it's correct and it's | |
1603 | cleanest. */ | |
1604 | ||
1605 | /* NOTE: carlton/2002-12-05: There's also a possible performance | |
1606 | issue here: if you usually search for global symbols in the | |
1607 | current file, then it would be slightly better to search the | |
1608 | current global block before searching all the symtabs. But there | |
1609 | are other factors that have a much greater effect on performance | |
1610 | than that one, so I don't think we should worry about that for | |
1611 | now. */ | |
1612 | ||
21b556f4 | 1613 | sym = lookup_symbol_static (name, linkage_name, block, domain); |
5f9a71c3 DC |
1614 | if (sym != NULL) |
1615 | return sym; | |
1616 | ||
21b556f4 | 1617 | return lookup_symbol_global (name, linkage_name, block, domain); |
5f9a71c3 DC |
1618 | } |
1619 | ||
1620 | /* Lookup a symbol in the static block associated to BLOCK, if there | |
1621 | is one; do nothing if BLOCK is NULL or a global block. */ | |
1622 | ||
1623 | struct symbol * | |
1624 | lookup_symbol_static (const char *name, | |
1625 | const char *linkage_name, | |
1626 | const struct block *block, | |
21b556f4 | 1627 | const domain_enum domain) |
5f9a71c3 DC |
1628 | { |
1629 | const struct block *static_block = block_static_block (block); | |
1630 | ||
1631 | if (static_block != NULL) | |
21b556f4 | 1632 | return lookup_symbol_aux_block (name, linkage_name, static_block, domain); |
5f9a71c3 DC |
1633 | else |
1634 | return NULL; | |
1635 | } | |
1636 | ||
1637 | /* Lookup a symbol in all files' global blocks (searching psymtabs if | |
1638 | necessary). */ | |
1639 | ||
1640 | struct symbol * | |
1641 | lookup_symbol_global (const char *name, | |
1642 | const char *linkage_name, | |
3a40aaa0 | 1643 | const struct block *block, |
21b556f4 | 1644 | const domain_enum domain) |
5f9a71c3 | 1645 | { |
3a40aaa0 UW |
1646 | struct symbol *sym = NULL; |
1647 | struct objfile *objfile = NULL; | |
1648 | ||
1649 | /* Call library-specific lookup procedure. */ | |
1650 | objfile = lookup_objfile_from_block (block); | |
1651 | if (objfile != NULL) | |
21b556f4 | 1652 | sym = solib_global_lookup (objfile, name, linkage_name, domain); |
3a40aaa0 UW |
1653 | if (sym != NULL) |
1654 | return sym; | |
5f9a71c3 | 1655 | |
21b556f4 | 1656 | sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain); |
5f9a71c3 DC |
1657 | if (sym != NULL) |
1658 | return sym; | |
1659 | ||
21b556f4 | 1660 | return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain); |
5f9a71c3 DC |
1661 | } |
1662 | ||
5eeb2539 | 1663 | int |
9af17804 | 1664 | symbol_matches_domain (enum language symbol_language, |
5eeb2539 AR |
1665 | domain_enum symbol_domain, |
1666 | domain_enum domain) | |
1667 | { | |
9af17804 | 1668 | /* For C++ "struct foo { ... }" also defines a typedef for "foo". |
5eeb2539 AR |
1669 | A Java class declaration also defines a typedef for the class. |
1670 | Similarly, any Ada type declaration implicitly defines a typedef. */ | |
1671 | if (symbol_language == language_cplus | |
1672 | || symbol_language == language_java | |
1673 | || symbol_language == language_ada) | |
1674 | { | |
1675 | if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN) | |
1676 | && symbol_domain == STRUCT_DOMAIN) | |
1677 | return 1; | |
1678 | } | |
1679 | /* For all other languages, strict match is required. */ | |
1680 | return (symbol_domain == domain); | |
1681 | } | |
1682 | ||
3d4e8fd2 DC |
1683 | /* Look, in partial_symtab PST, for symbol whose natural name is NAME. |
1684 | If LINKAGE_NAME is non-NULL, check in addition that the symbol's | |
1685 | linkage name matches it. Check the global symbols if GLOBAL, the | |
1686 | static symbols if not */ | |
c906108c | 1687 | |
b6429628 | 1688 | struct partial_symbol * |
3d4e8fd2 DC |
1689 | lookup_partial_symbol (struct partial_symtab *pst, const char *name, |
1690 | const char *linkage_name, int global, | |
176620f1 | 1691 | domain_enum domain) |
c906108c | 1692 | { |
357e46e7 | 1693 | struct partial_symbol *temp; |
c906108c | 1694 | struct partial_symbol **start, **psym; |
38d49aff | 1695 | struct partial_symbol **top, **real_top, **bottom, **center; |
c906108c SS |
1696 | int length = (global ? pst->n_global_syms : pst->n_static_syms); |
1697 | int do_linear_search = 1; | |
9af17804 | 1698 | |
c906108c SS |
1699 | if (length == 0) |
1700 | { | |
1701 | return (NULL); | |
1702 | } | |
c906108c SS |
1703 | start = (global ? |
1704 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
c5aa993b | 1705 | pst->objfile->static_psymbols.list + pst->statics_offset); |
9af17804 | 1706 | |
c5aa993b | 1707 | if (global) /* This means we can use a binary search. */ |
c906108c SS |
1708 | { |
1709 | do_linear_search = 0; | |
1710 | ||
1711 | /* Binary search. This search is guaranteed to end with center | |
0fe19209 DC |
1712 | pointing at the earliest partial symbol whose name might be |
1713 | correct. At that point *all* partial symbols with an | |
1714 | appropriate name will be checked against the correct | |
176620f1 | 1715 | domain. */ |
c906108c SS |
1716 | |
1717 | bottom = start; | |
1718 | top = start + length - 1; | |
38d49aff | 1719 | real_top = top; |
c906108c SS |
1720 | while (top > bottom) |
1721 | { | |
1722 | center = bottom + (top - bottom) / 2; | |
1723 | if (!(center < top)) | |
e2e0b3e5 | 1724 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
c906108c | 1725 | if (!do_linear_search |
357e46e7 | 1726 | && (SYMBOL_LANGUAGE (*center) == language_java)) |
c906108c SS |
1727 | { |
1728 | do_linear_search = 1; | |
1729 | } | |
4725b721 | 1730 | if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0) |
c906108c SS |
1731 | { |
1732 | top = center; | |
1733 | } | |
1734 | else | |
1735 | { | |
1736 | bottom = center + 1; | |
1737 | } | |
1738 | } | |
1739 | if (!(top == bottom)) | |
e2e0b3e5 | 1740 | internal_error (__FILE__, __LINE__, _("failed internal consistency check")); |
357e46e7 | 1741 | |
3d4e8fd2 DC |
1742 | while (top <= real_top |
1743 | && (linkage_name != NULL | |
1744 | ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0 | |
4725b721 | 1745 | : SYMBOL_MATCHES_SEARCH_NAME (*top,name))) |
c906108c | 1746 | { |
5eeb2539 AR |
1747 | if (symbol_matches_domain (SYMBOL_LANGUAGE (*top), |
1748 | SYMBOL_DOMAIN (*top), domain)) | |
1749 | return (*top); | |
c5aa993b | 1750 | top++; |
c906108c SS |
1751 | } |
1752 | } | |
1753 | ||
1754 | /* Can't use a binary search or else we found during the binary search that | |
1755 | we should also do a linear search. */ | |
1756 | ||
1757 | if (do_linear_search) | |
9af17804 | 1758 | { |
c906108c SS |
1759 | for (psym = start; psym < start + length; psym++) |
1760 | { | |
9af17804 | 1761 | if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym), |
5eeb2539 | 1762 | SYMBOL_DOMAIN (*psym), domain)) |
c906108c | 1763 | { |
3d4e8fd2 DC |
1764 | if (linkage_name != NULL |
1765 | ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0 | |
4725b721 | 1766 | : SYMBOL_MATCHES_SEARCH_NAME (*psym, name)) |
c906108c SS |
1767 | { |
1768 | return (*psym); | |
1769 | } | |
1770 | } | |
1771 | } | |
1772 | } | |
1773 | ||
1774 | return (NULL); | |
1775 | } | |
1776 | ||
176620f1 | 1777 | /* Look up a type named NAME in the struct_domain. The type returned |
b368761e DC |
1778 | must not be opaque -- i.e., must have at least one field |
1779 | defined. */ | |
c906108c | 1780 | |
b368761e DC |
1781 | struct type * |
1782 | lookup_transparent_type (const char *name) | |
1783 | { | |
1784 | return current_language->la_lookup_transparent_type (name); | |
1785 | } | |
c906108c | 1786 | |
b368761e DC |
1787 | /* The standard implementation of lookup_transparent_type. This code |
1788 | was modeled on lookup_symbol -- the parts not relevant to looking | |
1789 | up types were just left out. In particular it's assumed here that | |
1790 | types are available in struct_domain and only at file-static or | |
1791 | global blocks. */ | |
c906108c SS |
1792 | |
1793 | struct type * | |
b368761e | 1794 | basic_lookup_transparent_type (const char *name) |
c906108c | 1795 | { |
52f0bd74 AC |
1796 | struct symbol *sym; |
1797 | struct symtab *s = NULL; | |
1798 | struct partial_symtab *ps; | |
c906108c | 1799 | struct blockvector *bv; |
52f0bd74 AC |
1800 | struct objfile *objfile; |
1801 | struct block *block; | |
c906108c SS |
1802 | |
1803 | /* Now search all the global symbols. Do the symtab's first, then | |
1804 | check the psymtab's. If a psymtab indicates the existence | |
1805 | of the desired name as a global, then do psymtab-to-symtab | |
1806 | conversion on the fly and return the found symbol. */ | |
c5aa993b | 1807 | |
11309657 | 1808 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1809 | { |
1810 | bv = BLOCKVECTOR (s); | |
1811 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1812 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1813 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1814 | { | |
1815 | return SYMBOL_TYPE (sym); | |
1816 | } | |
1817 | } | |
c906108c SS |
1818 | |
1819 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1820 | { |
3d4e8fd2 | 1821 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, |
176620f1 | 1822 | 1, STRUCT_DOMAIN)) |
c5aa993b JM |
1823 | { |
1824 | s = PSYMTAB_TO_SYMTAB (ps); | |
1825 | bv = BLOCKVECTOR (s); | |
1826 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1827 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1828 | if (!sym) |
1829 | { | |
1830 | /* This shouldn't be necessary, but as a last resort | |
1831 | * try looking in the statics even though the psymtab | |
1832 | * claimed the symbol was global. It's possible that | |
1833 | * the psymtab gets it wrong in some cases. | |
1834 | */ | |
1835 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1836 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1837 | if (!sym) |
8a3fe4f8 | 1838 | error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1839 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1840 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1841 | name, ps->filename, name, name); |
1842 | } | |
1843 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1844 | return SYMBOL_TYPE (sym); | |
1845 | } | |
1846 | } | |
c906108c SS |
1847 | |
1848 | /* Now search the static file-level symbols. | |
1849 | Not strictly correct, but more useful than an error. | |
1850 | Do the symtab's first, then | |
1851 | check the psymtab's. If a psymtab indicates the existence | |
1852 | of the desired name as a file-level static, then do psymtab-to-symtab | |
1853 | conversion on the fly and return the found symbol. | |
1854 | */ | |
1855 | ||
11309657 | 1856 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
1857 | { |
1858 | bv = BLOCKVECTOR (s); | |
1859 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1860 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1861 | if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) |
1862 | { | |
1863 | return SYMBOL_TYPE (sym); | |
1864 | } | |
1865 | } | |
c906108c SS |
1866 | |
1867 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b | 1868 | { |
176620f1 | 1869 | if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN)) |
c5aa993b JM |
1870 | { |
1871 | s = PSYMTAB_TO_SYMTAB (ps); | |
1872 | bv = BLOCKVECTOR (s); | |
1873 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
176620f1 | 1874 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b JM |
1875 | if (!sym) |
1876 | { | |
1877 | /* This shouldn't be necessary, but as a last resort | |
1878 | * try looking in the globals even though the psymtab | |
1879 | * claimed the symbol was static. It's possible that | |
1880 | * the psymtab gets it wrong in some cases. | |
1881 | */ | |
1882 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
176620f1 | 1883 | sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN); |
c5aa993b | 1884 | if (!sym) |
8a3fe4f8 | 1885 | error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\ |
c906108c | 1886 | %s may be an inlined function, or may be a template function\n\ |
8a3fe4f8 | 1887 | (if a template, try specifying an instantiation: %s<type>)."), |
c5aa993b JM |
1888 | name, ps->filename, name, name); |
1889 | } | |
1890 | if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym))) | |
1891 | return SYMBOL_TYPE (sym); | |
1892 | } | |
1893 | } | |
c906108c SS |
1894 | return (struct type *) 0; |
1895 | } | |
1896 | ||
1897 | ||
1898 | /* Find the psymtab containing main(). */ | |
1899 | /* FIXME: What about languages without main() or specially linked | |
1900 | executables that have no main() ? */ | |
1901 | ||
1902 | struct partial_symtab * | |
fba45db2 | 1903 | find_main_psymtab (void) |
c906108c | 1904 | { |
52f0bd74 AC |
1905 | struct partial_symtab *pst; |
1906 | struct objfile *objfile; | |
c906108c SS |
1907 | |
1908 | ALL_PSYMTABS (objfile, pst) | |
c5aa993b | 1909 | { |
176620f1 | 1910 | if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN)) |
c5aa993b JM |
1911 | { |
1912 | return (pst); | |
1913 | } | |
1914 | } | |
c906108c SS |
1915 | return (NULL); |
1916 | } | |
1917 | ||
176620f1 | 1918 | /* Search BLOCK for symbol NAME in DOMAIN. |
c906108c SS |
1919 | |
1920 | Note that if NAME is the demangled form of a C++ symbol, we will fail | |
1921 | to find a match during the binary search of the non-encoded names, but | |
1922 | for now we don't worry about the slight inefficiency of looking for | |
1923 | a match we'll never find, since it will go pretty quick. Once the | |
1924 | binary search terminates, we drop through and do a straight linear | |
1bae87b9 | 1925 | search on the symbols. Each symbol which is marked as being a ObjC/C++ |
9af17804 | 1926 | symbol (language_cplus or language_objc set) has both the encoded and |
1bae87b9 | 1927 | non-encoded names tested for a match. |
3121eff0 | 1928 | |
5ad1c190 | 1929 | If LINKAGE_NAME is non-NULL, verify that any symbol we find has this |
3121eff0 DJ |
1930 | particular mangled name. |
1931 | */ | |
c906108c SS |
1932 | |
1933 | struct symbol * | |
aa1ee363 | 1934 | lookup_block_symbol (const struct block *block, const char *name, |
5ad1c190 | 1935 | const char *linkage_name, |
176620f1 | 1936 | const domain_enum domain) |
c906108c | 1937 | { |
de4f826b DC |
1938 | struct dict_iterator iter; |
1939 | struct symbol *sym; | |
c906108c | 1940 | |
de4f826b | 1941 | if (!BLOCK_FUNCTION (block)) |
261397f8 | 1942 | { |
de4f826b DC |
1943 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); |
1944 | sym != NULL; | |
1945 | sym = dict_iter_name_next (name, &iter)) | |
261397f8 | 1946 | { |
5eeb2539 AR |
1947 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
1948 | SYMBOL_DOMAIN (sym), domain) | |
de4f826b DC |
1949 | && (linkage_name != NULL |
1950 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
261397f8 DJ |
1951 | return sym; |
1952 | } | |
1953 | return NULL; | |
1954 | } | |
526e70c0 | 1955 | else |
c906108c | 1956 | { |
526e70c0 DC |
1957 | /* Note that parameter symbols do not always show up last in the |
1958 | list; this loop makes sure to take anything else other than | |
1959 | parameter symbols first; it only uses parameter symbols as a | |
1960 | last resort. Note that this only takes up extra computation | |
1961 | time on a match. */ | |
de4f826b DC |
1962 | |
1963 | struct symbol *sym_found = NULL; | |
1964 | ||
1965 | for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter); | |
1966 | sym != NULL; | |
1967 | sym = dict_iter_name_next (name, &iter)) | |
c906108c | 1968 | { |
5eeb2539 AR |
1969 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
1970 | SYMBOL_DOMAIN (sym), domain) | |
de4f826b DC |
1971 | && (linkage_name != NULL |
1972 | ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1)) | |
c906108c | 1973 | { |
c906108c | 1974 | sym_found = sym; |
2a2d4dc3 | 1975 | if (!SYMBOL_IS_ARGUMENT (sym)) |
c906108c SS |
1976 | { |
1977 | break; | |
1978 | } | |
1979 | } | |
c906108c | 1980 | } |
de4f826b | 1981 | return (sym_found); /* Will be NULL if not found. */ |
c906108c | 1982 | } |
c906108c SS |
1983 | } |
1984 | ||
c906108c SS |
1985 | /* Find the symtab associated with PC and SECTION. Look through the |
1986 | psymtabs and read in another symtab if necessary. */ | |
1987 | ||
1988 | struct symtab * | |
714835d5 | 1989 | find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section) |
c906108c | 1990 | { |
52f0bd74 | 1991 | struct block *b; |
c906108c | 1992 | struct blockvector *bv; |
52f0bd74 AC |
1993 | struct symtab *s = NULL; |
1994 | struct symtab *best_s = NULL; | |
1995 | struct partial_symtab *ps; | |
1996 | struct objfile *objfile; | |
c906108c | 1997 | CORE_ADDR distance = 0; |
8a48e967 DJ |
1998 | struct minimal_symbol *msymbol; |
1999 | ||
2000 | /* If we know that this is not a text address, return failure. This is | |
2001 | necessary because we loop based on the block's high and low code | |
2002 | addresses, which do not include the data ranges, and because | |
2003 | we call find_pc_sect_psymtab which has a similar restriction based | |
2004 | on the partial_symtab's texthigh and textlow. */ | |
2005 | msymbol = lookup_minimal_symbol_by_pc_section (pc, section); | |
2006 | if (msymbol | |
712f90be TT |
2007 | && (MSYMBOL_TYPE (msymbol) == mst_data |
2008 | || MSYMBOL_TYPE (msymbol) == mst_bss | |
2009 | || MSYMBOL_TYPE (msymbol) == mst_abs | |
2010 | || MSYMBOL_TYPE (msymbol) == mst_file_data | |
2011 | || MSYMBOL_TYPE (msymbol) == mst_file_bss)) | |
8a48e967 | 2012 | return NULL; |
c906108c SS |
2013 | |
2014 | /* Search all symtabs for the one whose file contains our address, and which | |
2015 | is the smallest of all the ones containing the address. This is designed | |
2016 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
2017 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
2018 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
2019 | ||
2020 | This happens for native ecoff format, where code from included files | |
2021 | gets its own symtab. The symtab for the included file should have | |
2022 | been read in already via the dependency mechanism. | |
2023 | It might be swifter to create several symtabs with the same name | |
2024 | like xcoff does (I'm not sure). | |
2025 | ||
2026 | It also happens for objfiles that have their functions reordered. | |
2027 | For these, the symtab we are looking for is not necessarily read in. */ | |
2028 | ||
11309657 | 2029 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
2030 | { |
2031 | bv = BLOCKVECTOR (s); | |
2032 | b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
c906108c | 2033 | |
c5aa993b | 2034 | if (BLOCK_START (b) <= pc |
c5aa993b | 2035 | && BLOCK_END (b) > pc |
c5aa993b JM |
2036 | && (distance == 0 |
2037 | || BLOCK_END (b) - BLOCK_START (b) < distance)) | |
2038 | { | |
2039 | /* For an objfile that has its functions reordered, | |
2040 | find_pc_psymtab will find the proper partial symbol table | |
2041 | and we simply return its corresponding symtab. */ | |
2042 | /* In order to better support objfiles that contain both | |
2043 | stabs and coff debugging info, we continue on if a psymtab | |
2044 | can't be found. */ | |
2045 | if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs) | |
2046 | { | |
2047 | ps = find_pc_sect_psymtab (pc, section); | |
2048 | if (ps) | |
2049 | return PSYMTAB_TO_SYMTAB (ps); | |
2050 | } | |
2051 | if (section != 0) | |
2052 | { | |
de4f826b | 2053 | struct dict_iterator iter; |
261397f8 | 2054 | struct symbol *sym = NULL; |
c906108c | 2055 | |
de4f826b | 2056 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 2057 | { |
261397f8 | 2058 | fixup_symbol_section (sym, objfile); |
714835d5 | 2059 | if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section)) |
c5aa993b JM |
2060 | break; |
2061 | } | |
de4f826b | 2062 | if (sym == NULL) |
c5aa993b JM |
2063 | continue; /* no symbol in this symtab matches section */ |
2064 | } | |
2065 | distance = BLOCK_END (b) - BLOCK_START (b); | |
2066 | best_s = s; | |
2067 | } | |
2068 | } | |
c906108c SS |
2069 | |
2070 | if (best_s != NULL) | |
c5aa993b | 2071 | return (best_s); |
c906108c SS |
2072 | |
2073 | s = NULL; | |
2074 | ps = find_pc_sect_psymtab (pc, section); | |
2075 | if (ps) | |
2076 | { | |
2077 | if (ps->readin) | |
2078 | /* Might want to error() here (in case symtab is corrupt and | |
2079 | will cause a core dump), but maybe we can successfully | |
2080 | continue, so let's not. */ | |
8a3fe4f8 AC |
2081 | warning (_("\ |
2082 | (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"), | |
d730266b | 2083 | paddr_nz (pc)); |
c906108c SS |
2084 | s = PSYMTAB_TO_SYMTAB (ps); |
2085 | } | |
2086 | return (s); | |
2087 | } | |
2088 | ||
2089 | /* Find the symtab associated with PC. Look through the psymtabs and | |
2090 | read in another symtab if necessary. Backward compatibility, no section */ | |
2091 | ||
2092 | struct symtab * | |
fba45db2 | 2093 | find_pc_symtab (CORE_ADDR pc) |
c906108c SS |
2094 | { |
2095 | return find_pc_sect_symtab (pc, find_pc_mapped_section (pc)); | |
2096 | } | |
c906108c | 2097 | \f |
c5aa993b | 2098 | |
7e73cedf | 2099 | /* Find the source file and line number for a given PC value and SECTION. |
c906108c SS |
2100 | Return a structure containing a symtab pointer, a line number, |
2101 | and a pc range for the entire source line. | |
2102 | The value's .pc field is NOT the specified pc. | |
2103 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
2104 | use the line that ends there. Otherwise, in that case, the line | |
2105 | that begins there is used. */ | |
2106 | ||
2107 | /* The big complication here is that a line may start in one file, and end just | |
2108 | before the start of another file. This usually occurs when you #include | |
2109 | code in the middle of a subroutine. To properly find the end of a line's PC | |
2110 | range, we must search all symtabs associated with this compilation unit, and | |
2111 | find the one whose first PC is closer than that of the next line in this | |
2112 | symtab. */ | |
2113 | ||
2114 | /* If it's worth the effort, we could be using a binary search. */ | |
2115 | ||
2116 | struct symtab_and_line | |
714835d5 | 2117 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) |
c906108c SS |
2118 | { |
2119 | struct symtab *s; | |
52f0bd74 AC |
2120 | struct linetable *l; |
2121 | int len; | |
2122 | int i; | |
2123 | struct linetable_entry *item; | |
c906108c SS |
2124 | struct symtab_and_line val; |
2125 | struct blockvector *bv; | |
2126 | struct minimal_symbol *msymbol; | |
2127 | struct minimal_symbol *mfunsym; | |
2128 | ||
2129 | /* Info on best line seen so far, and where it starts, and its file. */ | |
2130 | ||
2131 | struct linetable_entry *best = NULL; | |
2132 | CORE_ADDR best_end = 0; | |
2133 | struct symtab *best_symtab = 0; | |
2134 | ||
2135 | /* Store here the first line number | |
2136 | of a file which contains the line at the smallest pc after PC. | |
2137 | If we don't find a line whose range contains PC, | |
2138 | we will use a line one less than this, | |
2139 | with a range from the start of that file to the first line's pc. */ | |
2140 | struct linetable_entry *alt = NULL; | |
2141 | struct symtab *alt_symtab = 0; | |
2142 | ||
2143 | /* Info on best line seen in this file. */ | |
2144 | ||
2145 | struct linetable_entry *prev; | |
2146 | ||
2147 | /* If this pc is not from the current frame, | |
2148 | it is the address of the end of a call instruction. | |
2149 | Quite likely that is the start of the following statement. | |
2150 | But what we want is the statement containing the instruction. | |
2151 | Fudge the pc to make sure we get that. */ | |
2152 | ||
fe39c653 | 2153 | init_sal (&val); /* initialize to zeroes */ |
c906108c | 2154 | |
b77b1eb7 JB |
2155 | /* It's tempting to assume that, if we can't find debugging info for |
2156 | any function enclosing PC, that we shouldn't search for line | |
2157 | number info, either. However, GAS can emit line number info for | |
2158 | assembly files --- very helpful when debugging hand-written | |
2159 | assembly code. In such a case, we'd have no debug info for the | |
2160 | function, but we would have line info. */ | |
648f4f79 | 2161 | |
c906108c SS |
2162 | if (notcurrent) |
2163 | pc -= 1; | |
2164 | ||
c5aa993b | 2165 | /* elz: added this because this function returned the wrong |
c906108c SS |
2166 | information if the pc belongs to a stub (import/export) |
2167 | to call a shlib function. This stub would be anywhere between | |
9af17804 DE |
2168 | two functions in the target, and the line info was erroneously |
2169 | taken to be the one of the line before the pc. | |
c5aa993b | 2170 | */ |
c906108c | 2171 | /* RT: Further explanation: |
c5aa993b | 2172 | |
c906108c SS |
2173 | * We have stubs (trampolines) inserted between procedures. |
2174 | * | |
2175 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
2176 | * exists in the main image. | |
2177 | * | |
2178 | * In the minimal symbol table, we have a bunch of symbols | |
2179 | * sorted by start address. The stubs are marked as "trampoline", | |
2180 | * the others appear as text. E.g.: | |
2181 | * | |
9af17804 | 2182 | * Minimal symbol table for main image |
c906108c SS |
2183 | * main: code for main (text symbol) |
2184 | * shr1: stub (trampoline symbol) | |
2185 | * foo: code for foo (text symbol) | |
2186 | * ... | |
2187 | * Minimal symbol table for "shr1" image: | |
2188 | * ... | |
2189 | * shr1: code for shr1 (text symbol) | |
2190 | * ... | |
2191 | * | |
2192 | * So the code below is trying to detect if we are in the stub | |
2193 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
2194 | * and if found, do the symbolization from the real-code address | |
2195 | * rather than the stub address. | |
2196 | * | |
2197 | * Assumptions being made about the minimal symbol table: | |
2198 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
2199 | * if we're really in the trampoline. If we're beyond it (say | |
9af17804 | 2200 | * we're in "foo" in the above example), it'll have a closer |
c906108c SS |
2201 | * symbol (the "foo" text symbol for example) and will not |
2202 | * return the trampoline. | |
2203 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
2204 | * corresponding to the trampoline, and whose address will | |
2205 | * be different than the trampoline address. I put in a sanity | |
2206 | * check for the address being the same, to avoid an | |
2207 | * infinite recursion. | |
2208 | */ | |
c5aa993b JM |
2209 | msymbol = lookup_minimal_symbol_by_pc (pc); |
2210 | if (msymbol != NULL) | |
c906108c | 2211 | if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
c5aa993b | 2212 | { |
2335f48e | 2213 | mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol), |
5520a790 | 2214 | NULL); |
c5aa993b JM |
2215 | if (mfunsym == NULL) |
2216 | /* I eliminated this warning since it is coming out | |
2217 | * in the following situation: | |
2218 | * gdb shmain // test program with shared libraries | |
2219 | * (gdb) break shr1 // function in shared lib | |
2220 | * Warning: In stub for ... | |
9af17804 | 2221 | * In the above situation, the shared lib is not loaded yet, |
c5aa993b JM |
2222 | * so of course we can't find the real func/line info, |
2223 | * but the "break" still works, and the warning is annoying. | |
2224 | * So I commented out the warning. RT */ | |
2335f48e | 2225 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b | 2226 | /* fall through */ |
82cf6c60 | 2227 | else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol)) |
c5aa993b JM |
2228 | /* Avoid infinite recursion */ |
2229 | /* See above comment about why warning is commented out */ | |
2335f48e | 2230 | /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ; |
c5aa993b JM |
2231 | /* fall through */ |
2232 | else | |
82cf6c60 | 2233 | return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0); |
c5aa993b | 2234 | } |
c906108c SS |
2235 | |
2236 | ||
2237 | s = find_pc_sect_symtab (pc, section); | |
2238 | if (!s) | |
2239 | { | |
2240 | /* if no symbol information, return previous pc */ | |
2241 | if (notcurrent) | |
2242 | pc++; | |
2243 | val.pc = pc; | |
2244 | return val; | |
2245 | } | |
2246 | ||
2247 | bv = BLOCKVECTOR (s); | |
2248 | ||
2249 | /* Look at all the symtabs that share this blockvector. | |
2250 | They all have the same apriori range, that we found was right; | |
2251 | but they have different line tables. */ | |
2252 | ||
2253 | for (; s && BLOCKVECTOR (s) == bv; s = s->next) | |
2254 | { | |
2255 | /* Find the best line in this symtab. */ | |
2256 | l = LINETABLE (s); | |
2257 | if (!l) | |
c5aa993b | 2258 | continue; |
c906108c SS |
2259 | len = l->nitems; |
2260 | if (len <= 0) | |
2261 | { | |
2262 | /* I think len can be zero if the symtab lacks line numbers | |
2263 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
2264 | I'm not sure which, and maybe it depends on the symbol | |
2265 | reader). */ | |
2266 | continue; | |
2267 | } | |
2268 | ||
2269 | prev = NULL; | |
2270 | item = l->item; /* Get first line info */ | |
2271 | ||
2272 | /* Is this file's first line closer than the first lines of other files? | |
c5aa993b | 2273 | If so, record this file, and its first line, as best alternate. */ |
c906108c SS |
2274 | if (item->pc > pc && (!alt || item->pc < alt->pc)) |
2275 | { | |
2276 | alt = item; | |
2277 | alt_symtab = s; | |
2278 | } | |
2279 | ||
2280 | for (i = 0; i < len; i++, item++) | |
2281 | { | |
2282 | /* Leave prev pointing to the linetable entry for the last line | |
2283 | that started at or before PC. */ | |
2284 | if (item->pc > pc) | |
2285 | break; | |
2286 | ||
2287 | prev = item; | |
2288 | } | |
2289 | ||
2290 | /* At this point, prev points at the line whose start addr is <= pc, and | |
c5aa993b JM |
2291 | item points at the next line. If we ran off the end of the linetable |
2292 | (pc >= start of the last line), then prev == item. If pc < start of | |
2293 | the first line, prev will not be set. */ | |
c906108c SS |
2294 | |
2295 | /* Is this file's best line closer than the best in the other files? | |
083ae935 DJ |
2296 | If so, record this file, and its best line, as best so far. Don't |
2297 | save prev if it represents the end of a function (i.e. line number | |
2298 | 0) instead of a real line. */ | |
c906108c | 2299 | |
083ae935 | 2300 | if (prev && prev->line && (!best || prev->pc > best->pc)) |
c906108c SS |
2301 | { |
2302 | best = prev; | |
2303 | best_symtab = s; | |
25d53da1 KB |
2304 | |
2305 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
2306 | if (best_end <= best->pc) | |
2307 | best_end = 0; | |
c906108c | 2308 | } |
25d53da1 KB |
2309 | |
2310 | /* If another line (denoted by ITEM) is in the linetable and its | |
2311 | PC is after BEST's PC, but before the current BEST_END, then | |
2312 | use ITEM's PC as the new best_end. */ | |
2313 | if (best && i < len && item->pc > best->pc | |
2314 | && (best_end == 0 || best_end > item->pc)) | |
2315 | best_end = item->pc; | |
c906108c SS |
2316 | } |
2317 | ||
2318 | if (!best_symtab) | |
2319 | { | |
e86e87f7 DJ |
2320 | /* If we didn't find any line number info, just return zeros. |
2321 | We used to return alt->line - 1 here, but that could be | |
2322 | anywhere; if we don't have line number info for this PC, | |
2323 | don't make some up. */ | |
2324 | val.pc = pc; | |
c906108c | 2325 | } |
e8717518 FF |
2326 | else if (best->line == 0) |
2327 | { | |
2328 | /* If our best fit is in a range of PC's for which no line | |
2329 | number info is available (line number is zero) then we didn't | |
2330 | find any valid line information. */ | |
2331 | val.pc = pc; | |
2332 | } | |
c906108c SS |
2333 | else |
2334 | { | |
2335 | val.symtab = best_symtab; | |
2336 | val.line = best->line; | |
2337 | val.pc = best->pc; | |
2338 | if (best_end && (!alt || best_end < alt->pc)) | |
2339 | val.end = best_end; | |
2340 | else if (alt) | |
2341 | val.end = alt->pc; | |
2342 | else | |
2343 | val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)); | |
2344 | } | |
2345 | val.section = section; | |
2346 | return val; | |
2347 | } | |
2348 | ||
2349 | /* Backward compatibility (no section) */ | |
2350 | ||
2351 | struct symtab_and_line | |
fba45db2 | 2352 | find_pc_line (CORE_ADDR pc, int notcurrent) |
c906108c | 2353 | { |
714835d5 | 2354 | struct obj_section *section; |
c906108c SS |
2355 | |
2356 | section = find_pc_overlay (pc); | |
2357 | if (pc_in_unmapped_range (pc, section)) | |
2358 | pc = overlay_mapped_address (pc, section); | |
2359 | return find_pc_sect_line (pc, section, notcurrent); | |
2360 | } | |
c906108c | 2361 | \f |
c906108c SS |
2362 | /* Find line number LINE in any symtab whose name is the same as |
2363 | SYMTAB. | |
2364 | ||
2365 | If found, return the symtab that contains the linetable in which it was | |
2366 | found, set *INDEX to the index in the linetable of the best entry | |
2367 | found, and set *EXACT_MATCH nonzero if the value returned is an | |
2368 | exact match. | |
2369 | ||
2370 | If not found, return NULL. */ | |
2371 | ||
50641945 | 2372 | struct symtab * |
fba45db2 | 2373 | find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match) |
c906108c | 2374 | { |
6f43c46f | 2375 | int exact = 0; /* Initialized here to avoid a compiler warning. */ |
c906108c SS |
2376 | |
2377 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
2378 | so far seen. */ | |
2379 | ||
2380 | int best_index; | |
2381 | struct linetable *best_linetable; | |
2382 | struct symtab *best_symtab; | |
2383 | ||
2384 | /* First try looking it up in the given symtab. */ | |
2385 | best_linetable = LINETABLE (symtab); | |
2386 | best_symtab = symtab; | |
2387 | best_index = find_line_common (best_linetable, line, &exact); | |
2388 | if (best_index < 0 || !exact) | |
2389 | { | |
2390 | /* Didn't find an exact match. So we better keep looking for | |
c5aa993b JM |
2391 | another symtab with the same name. In the case of xcoff, |
2392 | multiple csects for one source file (produced by IBM's FORTRAN | |
2393 | compiler) produce multiple symtabs (this is unavoidable | |
2394 | assuming csects can be at arbitrary places in memory and that | |
2395 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
c906108c SS |
2396 | |
2397 | /* BEST is the smallest linenumber > LINE so far seen, | |
c5aa993b JM |
2398 | or 0 if none has been seen so far. |
2399 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
c906108c SS |
2400 | int best; |
2401 | ||
2402 | struct objfile *objfile; | |
2403 | struct symtab *s; | |
51432cca | 2404 | struct partial_symtab *p; |
c906108c SS |
2405 | |
2406 | if (best_index >= 0) | |
2407 | best = best_linetable->item[best_index].line; | |
2408 | else | |
2409 | best = 0; | |
2410 | ||
51432cca CES |
2411 | ALL_PSYMTABS (objfile, p) |
2412 | { | |
2413 | if (strcmp (symtab->filename, p->filename) != 0) | |
2414 | continue; | |
2415 | PSYMTAB_TO_SYMTAB (p); | |
2416 | } | |
2417 | ||
c906108c | 2418 | ALL_SYMTABS (objfile, s) |
c5aa993b JM |
2419 | { |
2420 | struct linetable *l; | |
2421 | int ind; | |
c906108c | 2422 | |
6314a349 | 2423 | if (strcmp (symtab->filename, s->filename) != 0) |
c5aa993b JM |
2424 | continue; |
2425 | l = LINETABLE (s); | |
2426 | ind = find_line_common (l, line, &exact); | |
2427 | if (ind >= 0) | |
2428 | { | |
2429 | if (exact) | |
2430 | { | |
2431 | best_index = ind; | |
2432 | best_linetable = l; | |
2433 | best_symtab = s; | |
2434 | goto done; | |
2435 | } | |
2436 | if (best == 0 || l->item[ind].line < best) | |
2437 | { | |
2438 | best = l->item[ind].line; | |
2439 | best_index = ind; | |
2440 | best_linetable = l; | |
2441 | best_symtab = s; | |
2442 | } | |
2443 | } | |
2444 | } | |
c906108c | 2445 | } |
c5aa993b | 2446 | done: |
c906108c SS |
2447 | if (best_index < 0) |
2448 | return NULL; | |
2449 | ||
2450 | if (index) | |
2451 | *index = best_index; | |
2452 | if (exact_match) | |
2453 | *exact_match = exact; | |
2454 | ||
2455 | return best_symtab; | |
2456 | } | |
2457 | \f | |
2458 | /* Set the PC value for a given source file and line number and return true. | |
2459 | Returns zero for invalid line number (and sets the PC to 0). | |
2460 | The source file is specified with a struct symtab. */ | |
2461 | ||
2462 | int | |
fba45db2 | 2463 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) |
c906108c SS |
2464 | { |
2465 | struct linetable *l; | |
2466 | int ind; | |
2467 | ||
2468 | *pc = 0; | |
2469 | if (symtab == 0) | |
2470 | return 0; | |
2471 | ||
2472 | symtab = find_line_symtab (symtab, line, &ind, NULL); | |
2473 | if (symtab != NULL) | |
2474 | { | |
2475 | l = LINETABLE (symtab); | |
2476 | *pc = l->item[ind].pc; | |
2477 | return 1; | |
2478 | } | |
2479 | else | |
2480 | return 0; | |
2481 | } | |
2482 | ||
2483 | /* Find the range of pc values in a line. | |
2484 | Store the starting pc of the line into *STARTPTR | |
2485 | and the ending pc (start of next line) into *ENDPTR. | |
2486 | Returns 1 to indicate success. | |
2487 | Returns 0 if could not find the specified line. */ | |
2488 | ||
2489 | int | |
fba45db2 KB |
2490 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, |
2491 | CORE_ADDR *endptr) | |
c906108c SS |
2492 | { |
2493 | CORE_ADDR startaddr; | |
2494 | struct symtab_and_line found_sal; | |
2495 | ||
2496 | startaddr = sal.pc; | |
c5aa993b | 2497 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) |
c906108c SS |
2498 | return 0; |
2499 | ||
2500 | /* This whole function is based on address. For example, if line 10 has | |
2501 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
2502 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
2503 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
2504 | This also insures that we never give a range like "starts at 0x134 | |
2505 | and ends at 0x12c". */ | |
2506 | ||
2507 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
2508 | if (found_sal.line != sal.line) | |
2509 | { | |
2510 | /* The specified line (sal) has zero bytes. */ | |
2511 | *startptr = found_sal.pc; | |
2512 | *endptr = found_sal.pc; | |
2513 | } | |
2514 | else | |
2515 | { | |
2516 | *startptr = found_sal.pc; | |
2517 | *endptr = found_sal.end; | |
2518 | } | |
2519 | return 1; | |
2520 | } | |
2521 | ||
2522 | /* Given a line table and a line number, return the index into the line | |
2523 | table for the pc of the nearest line whose number is >= the specified one. | |
2524 | Return -1 if none is found. The value is >= 0 if it is an index. | |
2525 | ||
2526 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
2527 | ||
2528 | static int | |
aa1ee363 | 2529 | find_line_common (struct linetable *l, int lineno, |
fba45db2 | 2530 | int *exact_match) |
c906108c | 2531 | { |
52f0bd74 AC |
2532 | int i; |
2533 | int len; | |
c906108c SS |
2534 | |
2535 | /* BEST is the smallest linenumber > LINENO so far seen, | |
2536 | or 0 if none has been seen so far. | |
2537 | BEST_INDEX identifies the item for it. */ | |
2538 | ||
2539 | int best_index = -1; | |
2540 | int best = 0; | |
2541 | ||
b7589f7d DJ |
2542 | *exact_match = 0; |
2543 | ||
c906108c SS |
2544 | if (lineno <= 0) |
2545 | return -1; | |
2546 | if (l == 0) | |
2547 | return -1; | |
2548 | ||
2549 | len = l->nitems; | |
2550 | for (i = 0; i < len; i++) | |
2551 | { | |
aa1ee363 | 2552 | struct linetable_entry *item = &(l->item[i]); |
c906108c SS |
2553 | |
2554 | if (item->line == lineno) | |
2555 | { | |
2556 | /* Return the first (lowest address) entry which matches. */ | |
2557 | *exact_match = 1; | |
2558 | return i; | |
2559 | } | |
2560 | ||
2561 | if (item->line > lineno && (best == 0 || item->line < best)) | |
2562 | { | |
2563 | best = item->line; | |
2564 | best_index = i; | |
2565 | } | |
2566 | } | |
2567 | ||
2568 | /* If we got here, we didn't get an exact match. */ | |
c906108c SS |
2569 | return best_index; |
2570 | } | |
2571 | ||
2572 | int | |
fba45db2 | 2573 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) |
c906108c SS |
2574 | { |
2575 | struct symtab_and_line sal; | |
2576 | sal = find_pc_line (pc, 0); | |
2577 | *startptr = sal.pc; | |
2578 | *endptr = sal.end; | |
2579 | return sal.symtab != 0; | |
2580 | } | |
2581 | ||
bccdca4a UW |
2582 | /* Given a function start address PC and SECTION, find the first |
2583 | address after the function prologue. */ | |
2584 | CORE_ADDR | |
2585 | find_function_start_pc (struct gdbarch *gdbarch, | |
714835d5 | 2586 | CORE_ADDR pc, struct obj_section *section) |
bccdca4a UW |
2587 | { |
2588 | /* If the function is in an unmapped overlay, use its unmapped LMA address, | |
2589 | so that gdbarch_skip_prologue has something unique to work on. */ | |
2590 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
2591 | pc = overlay_unmapped_address (pc, section); | |
2592 | ||
2593 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
2594 | pc = gdbarch_skip_prologue (gdbarch, pc); | |
2595 | ||
2596 | /* For overlays, map pc back into its mapped VMA range. */ | |
2597 | pc = overlay_mapped_address (pc, section); | |
2598 | ||
2599 | return pc; | |
2600 | } | |
2601 | ||
c906108c SS |
2602 | /* Given a function symbol SYM, find the symtab and line for the start |
2603 | of the function. | |
2604 | If the argument FUNFIRSTLINE is nonzero, we want the first line | |
2605 | of real code inside the function. */ | |
2606 | ||
50641945 | 2607 | struct symtab_and_line |
fba45db2 | 2608 | find_function_start_sal (struct symbol *sym, int funfirstline) |
c906108c | 2609 | { |
bccdca4a UW |
2610 | struct block *block = SYMBOL_BLOCK_VALUE (sym); |
2611 | struct objfile *objfile = lookup_objfile_from_block (block); | |
2612 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
2613 | ||
c906108c SS |
2614 | CORE_ADDR pc; |
2615 | struct symtab_and_line sal; | |
2616 | ||
bccdca4a UW |
2617 | pc = BLOCK_START (block); |
2618 | fixup_symbol_section (sym, objfile); | |
c906108c | 2619 | if (funfirstline) |
bccdca4a UW |
2620 | { |
2621 | /* Skip "first line" of function (which is actually its prologue). */ | |
714835d5 | 2622 | pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym)); |
c906108c | 2623 | } |
714835d5 | 2624 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
c906108c | 2625 | |
a433963d | 2626 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next |
c906108c SS |
2627 | line is still part of the same function. */ |
2628 | if (sal.pc != pc | |
bccdca4a UW |
2629 | && BLOCK_START (block) <= sal.end |
2630 | && sal.end < BLOCK_END (block)) | |
c906108c SS |
2631 | { |
2632 | /* First pc of next line */ | |
2633 | pc = sal.end; | |
2634 | /* Recalculate the line number (might not be N+1). */ | |
714835d5 | 2635 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
c906108c | 2636 | } |
4309257c PM |
2637 | |
2638 | /* On targets with executable formats that don't have a concept of | |
2639 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
2640 | to `__main' in `main' between the prologue and before user | |
2641 | code. */ | |
2642 | if (funfirstline | |
2643 | && gdbarch_skip_main_prologue_p (current_gdbarch) | |
2644 | && SYMBOL_LINKAGE_NAME (sym) | |
2645 | && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0) | |
2646 | { | |
2647 | pc = gdbarch_skip_main_prologue (current_gdbarch, pc); | |
2648 | /* Recalculate the line number (might not be N+1). */ | |
714835d5 | 2649 | sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0); |
4309257c PM |
2650 | } |
2651 | ||
c906108c | 2652 | sal.pc = pc; |
c906108c SS |
2653 | |
2654 | return sal; | |
2655 | } | |
50641945 | 2656 | |
c906108c SS |
2657 | /* If P is of the form "operator[ \t]+..." where `...' is |
2658 | some legitimate operator text, return a pointer to the | |
2659 | beginning of the substring of the operator text. | |
2660 | Otherwise, return "". */ | |
2661 | char * | |
fba45db2 | 2662 | operator_chars (char *p, char **end) |
c906108c SS |
2663 | { |
2664 | *end = ""; | |
2665 | if (strncmp (p, "operator", 8)) | |
2666 | return *end; | |
2667 | p += 8; | |
2668 | ||
2669 | /* Don't get faked out by `operator' being part of a longer | |
2670 | identifier. */ | |
c5aa993b | 2671 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') |
c906108c SS |
2672 | return *end; |
2673 | ||
2674 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
2675 | while (*p == ' ' || *p == '\t') | |
2676 | p++; | |
2677 | ||
2678 | /* Recognize 'operator TYPENAME'. */ | |
2679 | ||
c5aa993b | 2680 | if (isalpha (*p) || *p == '_' || *p == '$') |
c906108c | 2681 | { |
aa1ee363 | 2682 | char *q = p + 1; |
c5aa993b | 2683 | while (isalnum (*q) || *q == '_' || *q == '$') |
c906108c SS |
2684 | q++; |
2685 | *end = q; | |
2686 | return p; | |
2687 | } | |
2688 | ||
53e8ad3d MS |
2689 | while (*p) |
2690 | switch (*p) | |
2691 | { | |
2692 | case '\\': /* regexp quoting */ | |
2693 | if (p[1] == '*') | |
2694 | { | |
2695 | if (p[2] == '=') /* 'operator\*=' */ | |
2696 | *end = p + 3; | |
2697 | else /* 'operator\*' */ | |
2698 | *end = p + 2; | |
2699 | return p; | |
2700 | } | |
2701 | else if (p[1] == '[') | |
2702 | { | |
2703 | if (p[2] == ']') | |
8a3fe4f8 | 2704 | error (_("mismatched quoting on brackets, try 'operator\\[\\]'")); |
53e8ad3d MS |
2705 | else if (p[2] == '\\' && p[3] == ']') |
2706 | { | |
2707 | *end = p + 4; /* 'operator\[\]' */ | |
2708 | return p; | |
2709 | } | |
2710 | else | |
8a3fe4f8 | 2711 | error (_("nothing is allowed between '[' and ']'")); |
53e8ad3d | 2712 | } |
9af17804 | 2713 | else |
53e8ad3d MS |
2714 | { |
2715 | /* Gratuitous qoute: skip it and move on. */ | |
2716 | p++; | |
2717 | continue; | |
2718 | } | |
2719 | break; | |
2720 | case '!': | |
2721 | case '=': | |
2722 | case '*': | |
2723 | case '/': | |
2724 | case '%': | |
2725 | case '^': | |
2726 | if (p[1] == '=') | |
2727 | *end = p + 2; | |
2728 | else | |
2729 | *end = p + 1; | |
2730 | return p; | |
2731 | case '<': | |
2732 | case '>': | |
2733 | case '+': | |
2734 | case '-': | |
2735 | case '&': | |
2736 | case '|': | |
2737 | if (p[0] == '-' && p[1] == '>') | |
2738 | { | |
2739 | /* Struct pointer member operator 'operator->'. */ | |
2740 | if (p[2] == '*') | |
2741 | { | |
2742 | *end = p + 3; /* 'operator->*' */ | |
2743 | return p; | |
2744 | } | |
2745 | else if (p[2] == '\\') | |
2746 | { | |
2747 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
2748 | return p; | |
2749 | } | |
2750 | else | |
2751 | { | |
2752 | *end = p + 2; /* 'operator->' */ | |
2753 | return p; | |
2754 | } | |
2755 | } | |
2756 | if (p[1] == '=' || p[1] == p[0]) | |
2757 | *end = p + 2; | |
2758 | else | |
2759 | *end = p + 1; | |
2760 | return p; | |
2761 | case '~': | |
2762 | case ',': | |
c5aa993b | 2763 | *end = p + 1; |
53e8ad3d MS |
2764 | return p; |
2765 | case '(': | |
2766 | if (p[1] != ')') | |
8a3fe4f8 | 2767 | error (_("`operator ()' must be specified without whitespace in `()'")); |
c5aa993b | 2768 | *end = p + 2; |
53e8ad3d MS |
2769 | return p; |
2770 | case '?': | |
2771 | if (p[1] != ':') | |
8a3fe4f8 | 2772 | error (_("`operator ?:' must be specified without whitespace in `?:'")); |
53e8ad3d MS |
2773 | *end = p + 2; |
2774 | return p; | |
2775 | case '[': | |
2776 | if (p[1] != ']') | |
8a3fe4f8 | 2777 | error (_("`operator []' must be specified without whitespace in `[]'")); |
53e8ad3d MS |
2778 | *end = p + 2; |
2779 | return p; | |
2780 | default: | |
8a3fe4f8 | 2781 | error (_("`operator %s' not supported"), p); |
53e8ad3d MS |
2782 | break; |
2783 | } | |
2784 | ||
c906108c SS |
2785 | *end = ""; |
2786 | return *end; | |
2787 | } | |
c906108c | 2788 | \f |
c5aa993b | 2789 | |
c94fdfd0 EZ |
2790 | /* If FILE is not already in the table of files, return zero; |
2791 | otherwise return non-zero. Optionally add FILE to the table if ADD | |
2792 | is non-zero. If *FIRST is non-zero, forget the old table | |
2793 | contents. */ | |
2794 | static int | |
2795 | filename_seen (const char *file, int add, int *first) | |
c906108c | 2796 | { |
c94fdfd0 EZ |
2797 | /* Table of files seen so far. */ |
2798 | static const char **tab = NULL; | |
c906108c SS |
2799 | /* Allocated size of tab in elements. |
2800 | Start with one 256-byte block (when using GNU malloc.c). | |
2801 | 24 is the malloc overhead when range checking is in effect. */ | |
2802 | static int tab_alloc_size = (256 - 24) / sizeof (char *); | |
2803 | /* Current size of tab in elements. */ | |
2804 | static int tab_cur_size; | |
c94fdfd0 | 2805 | const char **p; |
c906108c SS |
2806 | |
2807 | if (*first) | |
2808 | { | |
2809 | if (tab == NULL) | |
c94fdfd0 | 2810 | tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab)); |
c906108c SS |
2811 | tab_cur_size = 0; |
2812 | } | |
2813 | ||
c94fdfd0 | 2814 | /* Is FILE in tab? */ |
c906108c | 2815 | for (p = tab; p < tab + tab_cur_size; p++) |
c94fdfd0 EZ |
2816 | if (strcmp (*p, file) == 0) |
2817 | return 1; | |
2818 | ||
2819 | /* No; maybe add it to tab. */ | |
2820 | if (add) | |
c906108c | 2821 | { |
c94fdfd0 EZ |
2822 | if (tab_cur_size == tab_alloc_size) |
2823 | { | |
2824 | tab_alloc_size *= 2; | |
2825 | tab = (const char **) xrealloc ((char *) tab, | |
2826 | tab_alloc_size * sizeof (*tab)); | |
2827 | } | |
2828 | tab[tab_cur_size++] = file; | |
c906108c | 2829 | } |
c906108c | 2830 | |
c94fdfd0 EZ |
2831 | return 0; |
2832 | } | |
2833 | ||
2834 | /* Slave routine for sources_info. Force line breaks at ,'s. | |
2835 | NAME is the name to print and *FIRST is nonzero if this is the first | |
2836 | name printed. Set *FIRST to zero. */ | |
2837 | static void | |
d092d1a2 | 2838 | output_source_filename (const char *name, int *first) |
c94fdfd0 EZ |
2839 | { |
2840 | /* Since a single source file can result in several partial symbol | |
2841 | tables, we need to avoid printing it more than once. Note: if | |
2842 | some of the psymtabs are read in and some are not, it gets | |
2843 | printed both under "Source files for which symbols have been | |
2844 | read" and "Source files for which symbols will be read in on | |
2845 | demand". I consider this a reasonable way to deal with the | |
2846 | situation. I'm not sure whether this can also happen for | |
2847 | symtabs; it doesn't hurt to check. */ | |
2848 | ||
2849 | /* Was NAME already seen? */ | |
2850 | if (filename_seen (name, 1, first)) | |
2851 | { | |
2852 | /* Yes; don't print it again. */ | |
2853 | return; | |
2854 | } | |
2855 | /* No; print it and reset *FIRST. */ | |
c906108c SS |
2856 | if (*first) |
2857 | { | |
2858 | *first = 0; | |
2859 | } | |
2860 | else | |
2861 | { | |
2862 | printf_filtered (", "); | |
2863 | } | |
2864 | ||
2865 | wrap_here (""); | |
2866 | fputs_filtered (name, gdb_stdout); | |
c5aa993b | 2867 | } |
c906108c SS |
2868 | |
2869 | static void | |
fba45db2 | 2870 | sources_info (char *ignore, int from_tty) |
c906108c | 2871 | { |
52f0bd74 AC |
2872 | struct symtab *s; |
2873 | struct partial_symtab *ps; | |
2874 | struct objfile *objfile; | |
c906108c | 2875 | int first; |
c5aa993b | 2876 | |
c906108c SS |
2877 | if (!have_full_symbols () && !have_partial_symbols ()) |
2878 | { | |
8a3fe4f8 | 2879 | error (_("No symbol table is loaded. Use the \"file\" command.")); |
c906108c | 2880 | } |
c5aa993b | 2881 | |
c906108c SS |
2882 | printf_filtered ("Source files for which symbols have been read in:\n\n"); |
2883 | ||
2884 | first = 1; | |
2885 | ALL_SYMTABS (objfile, s) | |
c5aa993b | 2886 | { |
d092d1a2 DJ |
2887 | const char *fullname = symtab_to_fullname (s); |
2888 | output_source_filename (fullname ? fullname : s->filename, &first); | |
c5aa993b | 2889 | } |
c906108c | 2890 | printf_filtered ("\n\n"); |
c5aa993b | 2891 | |
c906108c SS |
2892 | printf_filtered ("Source files for which symbols will be read in on demand:\n\n"); |
2893 | ||
2894 | first = 1; | |
2895 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
2896 | { |
2897 | if (!ps->readin) | |
2898 | { | |
d092d1a2 DJ |
2899 | const char *fullname = psymtab_to_fullname (ps); |
2900 | output_source_filename (fullname ? fullname : ps->filename, &first); | |
c5aa993b JM |
2901 | } |
2902 | } | |
c906108c SS |
2903 | printf_filtered ("\n"); |
2904 | } | |
2905 | ||
2906 | static int | |
fd118b61 | 2907 | file_matches (char *file, char *files[], int nfiles) |
c906108c SS |
2908 | { |
2909 | int i; | |
2910 | ||
2911 | if (file != NULL && nfiles != 0) | |
2912 | { | |
2913 | for (i = 0; i < nfiles; i++) | |
c5aa993b | 2914 | { |
31889e00 | 2915 | if (strcmp (files[i], lbasename (file)) == 0) |
c5aa993b JM |
2916 | return 1; |
2917 | } | |
c906108c SS |
2918 | } |
2919 | else if (nfiles == 0) | |
2920 | return 1; | |
2921 | return 0; | |
2922 | } | |
2923 | ||
2924 | /* Free any memory associated with a search. */ | |
2925 | void | |
fba45db2 | 2926 | free_search_symbols (struct symbol_search *symbols) |
c906108c SS |
2927 | { |
2928 | struct symbol_search *p; | |
2929 | struct symbol_search *next; | |
2930 | ||
2931 | for (p = symbols; p != NULL; p = next) | |
2932 | { | |
2933 | next = p->next; | |
b8c9b27d | 2934 | xfree (p); |
c906108c SS |
2935 | } |
2936 | } | |
2937 | ||
5bd98722 AC |
2938 | static void |
2939 | do_free_search_symbols_cleanup (void *symbols) | |
2940 | { | |
2941 | free_search_symbols (symbols); | |
2942 | } | |
2943 | ||
2944 | struct cleanup * | |
2945 | make_cleanup_free_search_symbols (struct symbol_search *symbols) | |
2946 | { | |
2947 | return make_cleanup (do_free_search_symbols_cleanup, symbols); | |
2948 | } | |
2949 | ||
434d2d4f DJ |
2950 | /* Helper function for sort_search_symbols and qsort. Can only |
2951 | sort symbols, not minimal symbols. */ | |
2952 | static int | |
2953 | compare_search_syms (const void *sa, const void *sb) | |
2954 | { | |
2955 | struct symbol_search **sym_a = (struct symbol_search **) sa; | |
2956 | struct symbol_search **sym_b = (struct symbol_search **) sb; | |
2957 | ||
de5ad195 DC |
2958 | return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol), |
2959 | SYMBOL_PRINT_NAME ((*sym_b)->symbol)); | |
434d2d4f DJ |
2960 | } |
2961 | ||
2962 | /* Sort the ``nfound'' symbols in the list after prevtail. Leave | |
2963 | prevtail where it is, but update its next pointer to point to | |
2964 | the first of the sorted symbols. */ | |
2965 | static struct symbol_search * | |
2966 | sort_search_symbols (struct symbol_search *prevtail, int nfound) | |
2967 | { | |
2968 | struct symbol_search **symbols, *symp, *old_next; | |
2969 | int i; | |
2970 | ||
2971 | symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *) | |
2972 | * nfound); | |
2973 | symp = prevtail->next; | |
2974 | for (i = 0; i < nfound; i++) | |
2975 | { | |
2976 | symbols[i] = symp; | |
2977 | symp = symp->next; | |
2978 | } | |
2979 | /* Generally NULL. */ | |
2980 | old_next = symp; | |
2981 | ||
2982 | qsort (symbols, nfound, sizeof (struct symbol_search *), | |
2983 | compare_search_syms); | |
2984 | ||
2985 | symp = prevtail; | |
2986 | for (i = 0; i < nfound; i++) | |
2987 | { | |
2988 | symp->next = symbols[i]; | |
2989 | symp = symp->next; | |
2990 | } | |
2991 | symp->next = old_next; | |
2992 | ||
8ed32cc0 | 2993 | xfree (symbols); |
434d2d4f DJ |
2994 | return symp; |
2995 | } | |
5bd98722 | 2996 | |
c906108c SS |
2997 | /* Search the symbol table for matches to the regular expression REGEXP, |
2998 | returning the results in *MATCHES. | |
2999 | ||
3000 | Only symbols of KIND are searched: | |
176620f1 EZ |
3001 | FUNCTIONS_DOMAIN - search all functions |
3002 | TYPES_DOMAIN - search all type names | |
176620f1 | 3003 | VARIABLES_DOMAIN - search all symbols, excluding functions, type names, |
c5aa993b | 3004 | and constants (enums) |
c906108c SS |
3005 | |
3006 | free_search_symbols should be called when *MATCHES is no longer needed. | |
434d2d4f DJ |
3007 | |
3008 | The results are sorted locally; each symtab's global and static blocks are | |
3009 | separately alphabetized. | |
c5aa993b | 3010 | */ |
c906108c | 3011 | void |
176620f1 | 3012 | search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[], |
fd118b61 | 3013 | struct symbol_search **matches) |
c906108c | 3014 | { |
52f0bd74 AC |
3015 | struct symtab *s; |
3016 | struct partial_symtab *ps; | |
3017 | struct blockvector *bv; | |
52f0bd74 AC |
3018 | struct block *b; |
3019 | int i = 0; | |
de4f826b | 3020 | struct dict_iterator iter; |
52f0bd74 | 3021 | struct symbol *sym; |
c906108c SS |
3022 | struct partial_symbol **psym; |
3023 | struct objfile *objfile; | |
3024 | struct minimal_symbol *msymbol; | |
3025 | char *val; | |
3026 | int found_misc = 0; | |
3027 | static enum minimal_symbol_type types[] | |
c5aa993b JM |
3028 | = |
3029 | {mst_data, mst_text, mst_abs, mst_unknown}; | |
c906108c | 3030 | static enum minimal_symbol_type types2[] |
c5aa993b JM |
3031 | = |
3032 | {mst_bss, mst_file_text, mst_abs, mst_unknown}; | |
c906108c | 3033 | static enum minimal_symbol_type types3[] |
c5aa993b JM |
3034 | = |
3035 | {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown}; | |
c906108c | 3036 | static enum minimal_symbol_type types4[] |
c5aa993b JM |
3037 | = |
3038 | {mst_file_bss, mst_text, mst_abs, mst_unknown}; | |
c906108c SS |
3039 | enum minimal_symbol_type ourtype; |
3040 | enum minimal_symbol_type ourtype2; | |
3041 | enum minimal_symbol_type ourtype3; | |
3042 | enum minimal_symbol_type ourtype4; | |
3043 | struct symbol_search *sr; | |
3044 | struct symbol_search *psr; | |
3045 | struct symbol_search *tail; | |
3046 | struct cleanup *old_chain = NULL; | |
3047 | ||
176620f1 | 3048 | if (kind < VARIABLES_DOMAIN) |
8a3fe4f8 | 3049 | error (_("must search on specific domain")); |
c906108c | 3050 | |
176620f1 EZ |
3051 | ourtype = types[(int) (kind - VARIABLES_DOMAIN)]; |
3052 | ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)]; | |
3053 | ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)]; | |
3054 | ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)]; | |
c906108c SS |
3055 | |
3056 | sr = *matches = NULL; | |
3057 | tail = NULL; | |
3058 | ||
3059 | if (regexp != NULL) | |
3060 | { | |
3061 | /* Make sure spacing is right for C++ operators. | |
3062 | This is just a courtesy to make the matching less sensitive | |
3063 | to how many spaces the user leaves between 'operator' | |
3064 | and <TYPENAME> or <OPERATOR>. */ | |
3065 | char *opend; | |
3066 | char *opname = operator_chars (regexp, &opend); | |
3067 | if (*opname) | |
c5aa993b JM |
3068 | { |
3069 | int fix = -1; /* -1 means ok; otherwise number of spaces needed. */ | |
3070 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
3071 | { | |
3072 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
3073 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
3074 | fix = 1; | |
3075 | } | |
3076 | else | |
3077 | { | |
3078 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
3079 | if (opname[-1] == ' ') | |
3080 | fix = 0; | |
3081 | } | |
3082 | /* If wrong number of spaces, fix it. */ | |
3083 | if (fix >= 0) | |
3084 | { | |
045f55a6 | 3085 | char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1); |
c5aa993b JM |
3086 | sprintf (tmp, "operator%.*s%s", fix, " ", opname); |
3087 | regexp = tmp; | |
3088 | } | |
3089 | } | |
3090 | ||
c906108c | 3091 | if (0 != (val = re_comp (regexp))) |
8a3fe4f8 | 3092 | error (_("Invalid regexp (%s): %s"), val, regexp); |
c906108c SS |
3093 | } |
3094 | ||
3095 | /* Search through the partial symtabs *first* for all symbols | |
3096 | matching the regexp. That way we don't have to reproduce all of | |
3097 | the machinery below. */ | |
3098 | ||
3099 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3100 | { |
3101 | struct partial_symbol **bound, **gbound, **sbound; | |
3102 | int keep_going = 1; | |
3103 | ||
3104 | if (ps->readin) | |
3105 | continue; | |
3106 | ||
3107 | gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms; | |
3108 | sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms; | |
3109 | bound = gbound; | |
3110 | ||
3111 | /* Go through all of the symbols stored in a partial | |
3112 | symtab in one loop. */ | |
3113 | psym = objfile->global_psymbols.list + ps->globals_offset; | |
3114 | while (keep_going) | |
3115 | { | |
3116 | if (psym >= bound) | |
3117 | { | |
3118 | if (bound == gbound && ps->n_static_syms != 0) | |
3119 | { | |
3120 | psym = objfile->static_psymbols.list + ps->statics_offset; | |
3121 | bound = sbound; | |
3122 | } | |
3123 | else | |
3124 | keep_going = 0; | |
3125 | continue; | |
3126 | } | |
3127 | else | |
3128 | { | |
3129 | QUIT; | |
3130 | ||
3131 | /* If it would match (logic taken from loop below) | |
cb1df416 DJ |
3132 | load the file and go on to the next one. We check the |
3133 | filename here, but that's a bit bogus: we don't know | |
3134 | what file it really comes from until we have full | |
3135 | symtabs. The symbol might be in a header file included by | |
3136 | this psymtab. This only affects Insight. */ | |
c5aa993b | 3137 | if (file_matches (ps->filename, files, nfiles) |
25120b0d DC |
3138 | && ((regexp == NULL |
3139 | || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0) | |
176620f1 | 3140 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF |
c5aa993b | 3141 | && SYMBOL_CLASS (*psym) != LOC_BLOCK) |
176620f1 | 3142 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK) |
bd2e94ce | 3143 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)))) |
c5aa993b JM |
3144 | { |
3145 | PSYMTAB_TO_SYMTAB (ps); | |
3146 | keep_going = 0; | |
3147 | } | |
3148 | } | |
3149 | psym++; | |
3150 | } | |
3151 | } | |
c906108c SS |
3152 | |
3153 | /* Here, we search through the minimal symbol tables for functions | |
3154 | and variables that match, and force their symbols to be read. | |
3155 | This is in particular necessary for demangled variable names, | |
3156 | which are no longer put into the partial symbol tables. | |
3157 | The symbol will then be found during the scan of symtabs below. | |
3158 | ||
3159 | For functions, find_pc_symtab should succeed if we have debug info | |
3160 | for the function, for variables we have to call lookup_symbol | |
3161 | to determine if the variable has debug info. | |
3162 | If the lookup fails, set found_misc so that we will rescan to print | |
3163 | any matching symbols without debug info. | |
c5aa993b | 3164 | */ |
c906108c | 3165 | |
176620f1 | 3166 | if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN)) |
c906108c SS |
3167 | { |
3168 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3169 | { |
3170 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3171 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3172 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3173 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3174 | { | |
25120b0d DC |
3175 | if (regexp == NULL |
3176 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3177 | { |
3178 | if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))) | |
3179 | { | |
b1262a02 DC |
3180 | /* FIXME: carlton/2003-02-04: Given that the |
3181 | semantics of lookup_symbol keeps on changing | |
3182 | slightly, it would be a nice idea if we had a | |
3183 | function lookup_symbol_minsym that found the | |
3184 | symbol associated to a given minimal symbol (if | |
3185 | any). */ | |
176620f1 | 3186 | if (kind == FUNCTIONS_DOMAIN |
2335f48e | 3187 | || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
b1262a02 | 3188 | (struct block *) NULL, |
2570f2b7 | 3189 | VAR_DOMAIN, 0) |
53c5240f | 3190 | == NULL) |
b1262a02 | 3191 | found_misc = 1; |
c5aa993b JM |
3192 | } |
3193 | } | |
3194 | } | |
3195 | } | |
c906108c SS |
3196 | } |
3197 | ||
11309657 | 3198 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3199 | { |
3200 | bv = BLOCKVECTOR (s); | |
c5aa993b JM |
3201 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) |
3202 | { | |
434d2d4f DJ |
3203 | struct symbol_search *prevtail = tail; |
3204 | int nfound = 0; | |
c5aa993b | 3205 | b = BLOCKVECTOR_BLOCK (bv, i); |
de4f826b | 3206 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3207 | { |
cb1df416 | 3208 | struct symtab *real_symtab = SYMBOL_SYMTAB (sym); |
c5aa993b | 3209 | QUIT; |
cb1df416 DJ |
3210 | |
3211 | if (file_matches (real_symtab->filename, files, nfiles) | |
25120b0d DC |
3212 | && ((regexp == NULL |
3213 | || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0) | |
176620f1 | 3214 | && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF |
c5aa993b JM |
3215 | && SYMBOL_CLASS (sym) != LOC_BLOCK |
3216 | && SYMBOL_CLASS (sym) != LOC_CONST) | |
176620f1 | 3217 | || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK) |
bd2e94ce | 3218 | || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)))) |
c5aa993b JM |
3219 | { |
3220 | /* match */ | |
3221 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3222 | psr->block = i; | |
cb1df416 | 3223 | psr->symtab = real_symtab; |
c5aa993b JM |
3224 | psr->symbol = sym; |
3225 | psr->msymbol = NULL; | |
3226 | psr->next = NULL; | |
3227 | if (tail == NULL) | |
434d2d4f | 3228 | sr = psr; |
c5aa993b JM |
3229 | else |
3230 | tail->next = psr; | |
3231 | tail = psr; | |
434d2d4f DJ |
3232 | nfound ++; |
3233 | } | |
3234 | } | |
3235 | if (nfound > 0) | |
3236 | { | |
3237 | if (prevtail == NULL) | |
3238 | { | |
3239 | struct symbol_search dummy; | |
3240 | ||
3241 | dummy.next = sr; | |
3242 | tail = sort_search_symbols (&dummy, nfound); | |
3243 | sr = dummy.next; | |
3244 | ||
3245 | old_chain = make_cleanup_free_search_symbols (sr); | |
c5aa993b | 3246 | } |
434d2d4f DJ |
3247 | else |
3248 | tail = sort_search_symbols (prevtail, nfound); | |
c5aa993b JM |
3249 | } |
3250 | } | |
c5aa993b | 3251 | } |
c906108c SS |
3252 | |
3253 | /* If there are no eyes, avoid all contact. I mean, if there are | |
3254 | no debug symbols, then print directly from the msymbol_vector. */ | |
3255 | ||
176620f1 | 3256 | if (found_misc || kind != FUNCTIONS_DOMAIN) |
c906108c SS |
3257 | { |
3258 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3259 | { |
3260 | if (MSYMBOL_TYPE (msymbol) == ourtype || | |
3261 | MSYMBOL_TYPE (msymbol) == ourtype2 || | |
3262 | MSYMBOL_TYPE (msymbol) == ourtype3 || | |
3263 | MSYMBOL_TYPE (msymbol) == ourtype4) | |
3264 | { | |
25120b0d DC |
3265 | if (regexp == NULL |
3266 | || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0) | |
c5aa993b JM |
3267 | { |
3268 | /* Functions: Look up by address. */ | |
176620f1 | 3269 | if (kind != FUNCTIONS_DOMAIN || |
c5aa993b JM |
3270 | (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))) |
3271 | { | |
3272 | /* Variables/Absolutes: Look up by name */ | |
2335f48e | 3273 | if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol), |
2570f2b7 UW |
3274 | (struct block *) NULL, VAR_DOMAIN, 0) |
3275 | == NULL) | |
c5aa993b JM |
3276 | { |
3277 | /* match */ | |
3278 | psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search)); | |
3279 | psr->block = i; | |
3280 | psr->msymbol = msymbol; | |
3281 | psr->symtab = NULL; | |
3282 | psr->symbol = NULL; | |
3283 | psr->next = NULL; | |
3284 | if (tail == NULL) | |
3285 | { | |
3286 | sr = psr; | |
5bd98722 | 3287 | old_chain = make_cleanup_free_search_symbols (sr); |
c5aa993b JM |
3288 | } |
3289 | else | |
3290 | tail->next = psr; | |
3291 | tail = psr; | |
3292 | } | |
3293 | } | |
3294 | } | |
3295 | } | |
3296 | } | |
c906108c SS |
3297 | } |
3298 | ||
3299 | *matches = sr; | |
3300 | if (sr != NULL) | |
3301 | discard_cleanups (old_chain); | |
3302 | } | |
3303 | ||
3304 | /* Helper function for symtab_symbol_info, this function uses | |
3305 | the data returned from search_symbols() to print information | |
3306 | regarding the match to gdb_stdout. | |
c5aa993b | 3307 | */ |
c906108c | 3308 | static void |
176620f1 | 3309 | print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym, |
fba45db2 | 3310 | int block, char *last) |
c906108c SS |
3311 | { |
3312 | if (last == NULL || strcmp (last, s->filename) != 0) | |
3313 | { | |
3314 | fputs_filtered ("\nFile ", gdb_stdout); | |
3315 | fputs_filtered (s->filename, gdb_stdout); | |
3316 | fputs_filtered (":\n", gdb_stdout); | |
3317 | } | |
3318 | ||
176620f1 | 3319 | if (kind != TYPES_DOMAIN && block == STATIC_BLOCK) |
c906108c | 3320 | printf_filtered ("static "); |
c5aa993b | 3321 | |
c906108c | 3322 | /* Typedef that is not a C++ class */ |
176620f1 EZ |
3323 | if (kind == TYPES_DOMAIN |
3324 | && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN) | |
a5238fbc | 3325 | typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout); |
c906108c | 3326 | /* variable, func, or typedef-that-is-c++-class */ |
176620f1 EZ |
3327 | else if (kind < TYPES_DOMAIN || |
3328 | (kind == TYPES_DOMAIN && | |
3329 | SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)) | |
c906108c SS |
3330 | { |
3331 | type_print (SYMBOL_TYPE (sym), | |
c5aa993b | 3332 | (SYMBOL_CLASS (sym) == LOC_TYPEDEF |
de5ad195 | 3333 | ? "" : SYMBOL_PRINT_NAME (sym)), |
c5aa993b | 3334 | gdb_stdout, 0); |
c906108c SS |
3335 | |
3336 | printf_filtered (";\n"); | |
3337 | } | |
c906108c SS |
3338 | } |
3339 | ||
3340 | /* This help function for symtab_symbol_info() prints information | |
3341 | for non-debugging symbols to gdb_stdout. | |
c5aa993b | 3342 | */ |
c906108c | 3343 | static void |
fba45db2 | 3344 | print_msymbol_info (struct minimal_symbol *msymbol) |
c906108c | 3345 | { |
3ac4495a MS |
3346 | char *tmp; |
3347 | ||
17a912b6 | 3348 | if (gdbarch_addr_bit (current_gdbarch) <= 32) |
bb599908 PH |
3349 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol) |
3350 | & (CORE_ADDR) 0xffffffff, | |
3351 | 8); | |
3ac4495a | 3352 | else |
bb599908 PH |
3353 | tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol), |
3354 | 16); | |
3ac4495a | 3355 | printf_filtered ("%s %s\n", |
de5ad195 | 3356 | tmp, SYMBOL_PRINT_NAME (msymbol)); |
c906108c SS |
3357 | } |
3358 | ||
3359 | /* This is the guts of the commands "info functions", "info types", and | |
3360 | "info variables". It calls search_symbols to find all matches and then | |
3361 | print_[m]symbol_info to print out some useful information about the | |
3362 | matches. | |
c5aa993b | 3363 | */ |
c906108c | 3364 | static void |
176620f1 | 3365 | symtab_symbol_info (char *regexp, domain_enum kind, int from_tty) |
c906108c SS |
3366 | { |
3367 | static char *classnames[] | |
c5aa993b JM |
3368 | = |
3369 | {"variable", "function", "type", "method"}; | |
c906108c SS |
3370 | struct symbol_search *symbols; |
3371 | struct symbol_search *p; | |
3372 | struct cleanup *old_chain; | |
3373 | char *last_filename = NULL; | |
3374 | int first = 1; | |
3375 | ||
3376 | /* must make sure that if we're interrupted, symbols gets freed */ | |
3377 | search_symbols (regexp, kind, 0, (char **) NULL, &symbols); | |
5bd98722 | 3378 | old_chain = make_cleanup_free_search_symbols (symbols); |
c906108c SS |
3379 | |
3380 | printf_filtered (regexp | |
c5aa993b JM |
3381 | ? "All %ss matching regular expression \"%s\":\n" |
3382 | : "All defined %ss:\n", | |
176620f1 | 3383 | classnames[(int) (kind - VARIABLES_DOMAIN)], regexp); |
c906108c SS |
3384 | |
3385 | for (p = symbols; p != NULL; p = p->next) | |
3386 | { | |
3387 | QUIT; | |
3388 | ||
3389 | if (p->msymbol != NULL) | |
c5aa993b JM |
3390 | { |
3391 | if (first) | |
3392 | { | |
3393 | printf_filtered ("\nNon-debugging symbols:\n"); | |
3394 | first = 0; | |
3395 | } | |
3396 | print_msymbol_info (p->msymbol); | |
3397 | } | |
c906108c | 3398 | else |
c5aa993b JM |
3399 | { |
3400 | print_symbol_info (kind, | |
3401 | p->symtab, | |
3402 | p->symbol, | |
3403 | p->block, | |
3404 | last_filename); | |
3405 | last_filename = p->symtab->filename; | |
3406 | } | |
c906108c SS |
3407 | } |
3408 | ||
3409 | do_cleanups (old_chain); | |
3410 | } | |
3411 | ||
3412 | static void | |
fba45db2 | 3413 | variables_info (char *regexp, int from_tty) |
c906108c | 3414 | { |
176620f1 | 3415 | symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty); |
c906108c SS |
3416 | } |
3417 | ||
3418 | static void | |
fba45db2 | 3419 | functions_info (char *regexp, int from_tty) |
c906108c | 3420 | { |
176620f1 | 3421 | symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty); |
c906108c SS |
3422 | } |
3423 | ||
357e46e7 | 3424 | |
c906108c | 3425 | static void |
fba45db2 | 3426 | types_info (char *regexp, int from_tty) |
c906108c | 3427 | { |
176620f1 | 3428 | symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty); |
c906108c SS |
3429 | } |
3430 | ||
c906108c | 3431 | /* Breakpoint all functions matching regular expression. */ |
8926118c | 3432 | |
8b93c638 | 3433 | void |
fba45db2 | 3434 | rbreak_command_wrapper (char *regexp, int from_tty) |
8b93c638 JM |
3435 | { |
3436 | rbreak_command (regexp, from_tty); | |
3437 | } | |
8926118c | 3438 | |
c906108c | 3439 | static void |
fba45db2 | 3440 | rbreak_command (char *regexp, int from_tty) |
c906108c SS |
3441 | { |
3442 | struct symbol_search *ss; | |
3443 | struct symbol_search *p; | |
3444 | struct cleanup *old_chain; | |
3445 | ||
176620f1 | 3446 | search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss); |
5bd98722 | 3447 | old_chain = make_cleanup_free_search_symbols (ss); |
c906108c SS |
3448 | |
3449 | for (p = ss; p != NULL; p = p->next) | |
3450 | { | |
3451 | if (p->msymbol == NULL) | |
c5aa993b | 3452 | { |
2335f48e DC |
3453 | char *string = alloca (strlen (p->symtab->filename) |
3454 | + strlen (SYMBOL_LINKAGE_NAME (p->symbol)) | |
3455 | + 4); | |
c5aa993b JM |
3456 | strcpy (string, p->symtab->filename); |
3457 | strcat (string, ":'"); | |
2335f48e | 3458 | strcat (string, SYMBOL_LINKAGE_NAME (p->symbol)); |
c5aa993b JM |
3459 | strcat (string, "'"); |
3460 | break_command (string, from_tty); | |
176620f1 | 3461 | print_symbol_info (FUNCTIONS_DOMAIN, |
c5aa993b JM |
3462 | p->symtab, |
3463 | p->symbol, | |
3464 | p->block, | |
3465 | p->symtab->filename); | |
3466 | } | |
c906108c | 3467 | else |
c5aa993b | 3468 | { |
6214f497 DJ |
3469 | char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) |
3470 | + 3); | |
3471 | strcpy (string, "'"); | |
3472 | strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol)); | |
3473 | strcat (string, "'"); | |
3474 | ||
3475 | break_command (string, from_tty); | |
c5aa993b | 3476 | printf_filtered ("<function, no debug info> %s;\n", |
de5ad195 | 3477 | SYMBOL_PRINT_NAME (p->msymbol)); |
c5aa993b | 3478 | } |
c906108c SS |
3479 | } |
3480 | ||
3481 | do_cleanups (old_chain); | |
3482 | } | |
c906108c | 3483 | \f |
c5aa993b | 3484 | |
c906108c SS |
3485 | /* Helper routine for make_symbol_completion_list. */ |
3486 | ||
3487 | static int return_val_size; | |
3488 | static int return_val_index; | |
3489 | static char **return_val; | |
3490 | ||
3491 | #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \ | |
c906108c | 3492 | completion_list_add_name \ |
2335f48e | 3493 | (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word)) |
c906108c SS |
3494 | |
3495 | /* Test to see if the symbol specified by SYMNAME (which is already | |
c5aa993b JM |
3496 | demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN |
3497 | characters. If so, add it to the current completion list. */ | |
c906108c SS |
3498 | |
3499 | static void | |
fba45db2 KB |
3500 | completion_list_add_name (char *symname, char *sym_text, int sym_text_len, |
3501 | char *text, char *word) | |
c906108c SS |
3502 | { |
3503 | int newsize; | |
3504 | int i; | |
3505 | ||
3506 | /* clip symbols that cannot match */ | |
3507 | ||
3508 | if (strncmp (symname, sym_text, sym_text_len) != 0) | |
3509 | { | |
3510 | return; | |
3511 | } | |
3512 | ||
c906108c SS |
3513 | /* We have a match for a completion, so add SYMNAME to the current list |
3514 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
3515 | ||
3516 | { | |
3517 | char *new; | |
3518 | if (word == sym_text) | |
3519 | { | |
3520 | new = xmalloc (strlen (symname) + 5); | |
3521 | strcpy (new, symname); | |
3522 | } | |
3523 | else if (word > sym_text) | |
3524 | { | |
3525 | /* Return some portion of symname. */ | |
3526 | new = xmalloc (strlen (symname) + 5); | |
3527 | strcpy (new, symname + (word - sym_text)); | |
3528 | } | |
3529 | else | |
3530 | { | |
3531 | /* Return some of SYM_TEXT plus symname. */ | |
3532 | new = xmalloc (strlen (symname) + (sym_text - word) + 5); | |
3533 | strncpy (new, word, sym_text - word); | |
3534 | new[sym_text - word] = '\0'; | |
3535 | strcat (new, symname); | |
3536 | } | |
3537 | ||
c906108c SS |
3538 | if (return_val_index + 3 > return_val_size) |
3539 | { | |
3540 | newsize = (return_val_size *= 2) * sizeof (char *); | |
3541 | return_val = (char **) xrealloc ((char *) return_val, newsize); | |
3542 | } | |
3543 | return_val[return_val_index++] = new; | |
3544 | return_val[return_val_index] = NULL; | |
3545 | } | |
3546 | } | |
3547 | ||
69636828 AF |
3548 | /* ObjC: In case we are completing on a selector, look as the msymbol |
3549 | again and feed all the selectors into the mill. */ | |
3550 | ||
3551 | static void | |
3552 | completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text, | |
3553 | int sym_text_len, char *text, char *word) | |
3554 | { | |
3555 | static char *tmp = NULL; | |
3556 | static unsigned int tmplen = 0; | |
9af17804 | 3557 | |
69636828 AF |
3558 | char *method, *category, *selector; |
3559 | char *tmp2 = NULL; | |
9af17804 | 3560 | |
69636828 AF |
3561 | method = SYMBOL_NATURAL_NAME (msymbol); |
3562 | ||
3563 | /* Is it a method? */ | |
3564 | if ((method[0] != '-') && (method[0] != '+')) | |
3565 | return; | |
3566 | ||
3567 | if (sym_text[0] == '[') | |
3568 | /* Complete on shortened method method. */ | |
3569 | completion_list_add_name (method + 1, sym_text, sym_text_len, text, word); | |
9af17804 | 3570 | |
69636828 AF |
3571 | while ((strlen (method) + 1) >= tmplen) |
3572 | { | |
3573 | if (tmplen == 0) | |
3574 | tmplen = 1024; | |
3575 | else | |
3576 | tmplen *= 2; | |
3577 | tmp = xrealloc (tmp, tmplen); | |
3578 | } | |
3579 | selector = strchr (method, ' '); | |
3580 | if (selector != NULL) | |
3581 | selector++; | |
9af17804 | 3582 | |
69636828 | 3583 | category = strchr (method, '('); |
9af17804 | 3584 | |
69636828 AF |
3585 | if ((category != NULL) && (selector != NULL)) |
3586 | { | |
3587 | memcpy (tmp, method, (category - method)); | |
3588 | tmp[category - method] = ' '; | |
3589 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
3590 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); | |
3591 | if (sym_text[0] == '[') | |
3592 | completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word); | |
3593 | } | |
9af17804 | 3594 | |
69636828 AF |
3595 | if (selector != NULL) |
3596 | { | |
3597 | /* Complete on selector only. */ | |
3598 | strcpy (tmp, selector); | |
3599 | tmp2 = strchr (tmp, ']'); | |
3600 | if (tmp2 != NULL) | |
3601 | *tmp2 = '\0'; | |
9af17804 | 3602 | |
69636828 AF |
3603 | completion_list_add_name (tmp, sym_text, sym_text_len, text, word); |
3604 | } | |
3605 | } | |
3606 | ||
3607 | /* Break the non-quoted text based on the characters which are in | |
3608 | symbols. FIXME: This should probably be language-specific. */ | |
3609 | ||
3610 | static char * | |
3611 | language_search_unquoted_string (char *text, char *p) | |
3612 | { | |
3613 | for (; p > text; --p) | |
3614 | { | |
3615 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3616 | continue; | |
3617 | else | |
3618 | { | |
3619 | if ((current_language->la_language == language_objc)) | |
3620 | { | |
3621 | if (p[-1] == ':') /* might be part of a method name */ | |
3622 | continue; | |
3623 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
3624 | p -= 2; /* beginning of a method name */ | |
3625 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
3626 | { /* might be part of a method name */ | |
3627 | char *t = p; | |
3628 | ||
3629 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
3630 | that we are in the middle of a method name. However, | |
3631 | finding "-[" or "+[" should be pretty un-ambiguous. | |
3632 | Unfortunately we have to find it now to decide. */ | |
3633 | ||
3634 | while (t > text) | |
3635 | if (isalnum (t[-1]) || t[-1] == '_' || | |
3636 | t[-1] == ' ' || t[-1] == ':' || | |
3637 | t[-1] == '(' || t[-1] == ')') | |
3638 | --t; | |
3639 | else | |
3640 | break; | |
3641 | ||
3642 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
3643 | p = t - 2; /* method name detected */ | |
3644 | /* else we leave with p unchanged */ | |
3645 | } | |
3646 | } | |
3647 | break; | |
3648 | } | |
3649 | } | |
3650 | return p; | |
3651 | } | |
3652 | ||
9a044a89 TT |
3653 | /* Type of the user_data argument passed to add_macro_name. The |
3654 | contents are simply whatever is needed by | |
3655 | completion_list_add_name. */ | |
3656 | struct add_macro_name_data | |
3657 | { | |
3658 | char *sym_text; | |
3659 | int sym_text_len; | |
3660 | char *text; | |
3661 | char *word; | |
3662 | }; | |
3663 | ||
3664 | /* A callback used with macro_for_each and macro_for_each_in_scope. | |
3665 | This adds a macro's name to the current completion list. */ | |
3666 | static void | |
3667 | add_macro_name (const char *name, const struct macro_definition *ignore, | |
3668 | void *user_data) | |
3669 | { | |
3670 | struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data; | |
3671 | completion_list_add_name ((char *) name, | |
3672 | datum->sym_text, datum->sym_text_len, | |
3673 | datum->text, datum->word); | |
3674 | } | |
3675 | ||
c906108c | 3676 | char ** |
41d27058 | 3677 | default_make_symbol_completion_list (char *text, char *word) |
c906108c | 3678 | { |
41d27058 JB |
3679 | /* Problem: All of the symbols have to be copied because readline |
3680 | frees them. I'm not going to worry about this; hopefully there | |
3681 | won't be that many. */ | |
3682 | ||
de4f826b DC |
3683 | struct symbol *sym; |
3684 | struct symtab *s; | |
3685 | struct partial_symtab *ps; | |
3686 | struct minimal_symbol *msymbol; | |
3687 | struct objfile *objfile; | |
3688 | struct block *b, *surrounding_static_block = 0; | |
3689 | struct dict_iterator iter; | |
3690 | int j; | |
c906108c SS |
3691 | struct partial_symbol **psym; |
3692 | /* The symbol we are completing on. Points in same buffer as text. */ | |
3693 | char *sym_text; | |
3694 | /* Length of sym_text. */ | |
3695 | int sym_text_len; | |
3696 | ||
41d27058 | 3697 | /* Now look for the symbol we are supposed to complete on. */ |
c906108c SS |
3698 | { |
3699 | char *p; | |
3700 | char quote_found; | |
3701 | char *quote_pos = NULL; | |
3702 | ||
3703 | /* First see if this is a quoted string. */ | |
3704 | quote_found = '\0'; | |
3705 | for (p = text; *p != '\0'; ++p) | |
3706 | { | |
3707 | if (quote_found != '\0') | |
3708 | { | |
3709 | if (*p == quote_found) | |
3710 | /* Found close quote. */ | |
3711 | quote_found = '\0'; | |
3712 | else if (*p == '\\' && p[1] == quote_found) | |
3713 | /* A backslash followed by the quote character | |
c5aa993b | 3714 | doesn't end the string. */ |
c906108c SS |
3715 | ++p; |
3716 | } | |
3717 | else if (*p == '\'' || *p == '"') | |
3718 | { | |
3719 | quote_found = *p; | |
3720 | quote_pos = p; | |
3721 | } | |
3722 | } | |
3723 | if (quote_found == '\'') | |
3724 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3725 | sym_text = quote_pos + 1; | |
3726 | else if (quote_found == '"') | |
3727 | /* A double-quoted string is never a symbol, nor does it make sense | |
c5aa993b | 3728 | to complete it any other way. */ |
c94fdfd0 EZ |
3729 | { |
3730 | return_val = (char **) xmalloc (sizeof (char *)); | |
3731 | return_val[0] = NULL; | |
3732 | return return_val; | |
3733 | } | |
c906108c SS |
3734 | else |
3735 | { | |
3736 | /* It is not a quoted string. Break it based on the characters | |
3737 | which are in symbols. */ | |
3738 | while (p > text) | |
3739 | { | |
3740 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
3741 | --p; | |
3742 | else | |
3743 | break; | |
3744 | } | |
3745 | sym_text = p; | |
3746 | } | |
3747 | } | |
3748 | ||
3749 | sym_text_len = strlen (sym_text); | |
3750 | ||
3751 | return_val_size = 100; | |
3752 | return_val_index = 0; | |
3753 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3754 | return_val[0] = NULL; | |
3755 | ||
3756 | /* Look through the partial symtabs for all symbols which begin | |
3757 | by matching SYM_TEXT. Add each one that you find to the list. */ | |
3758 | ||
3759 | ALL_PSYMTABS (objfile, ps) | |
c5aa993b JM |
3760 | { |
3761 | /* If the psymtab's been read in we'll get it when we search | |
3762 | through the blockvector. */ | |
3763 | if (ps->readin) | |
3764 | continue; | |
3765 | ||
3766 | for (psym = objfile->global_psymbols.list + ps->globals_offset; | |
3767 | psym < (objfile->global_psymbols.list + ps->globals_offset | |
3768 | + ps->n_global_syms); | |
3769 | psym++) | |
3770 | { | |
3771 | /* If interrupted, then quit. */ | |
3772 | QUIT; | |
3773 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3774 | } | |
3775 | ||
3776 | for (psym = objfile->static_psymbols.list + ps->statics_offset; | |
3777 | psym < (objfile->static_psymbols.list + ps->statics_offset | |
3778 | + ps->n_static_syms); | |
3779 | psym++) | |
3780 | { | |
3781 | QUIT; | |
3782 | COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word); | |
3783 | } | |
3784 | } | |
c906108c SS |
3785 | |
3786 | /* At this point scan through the misc symbol vectors and add each | |
3787 | symbol you find to the list. Eventually we want to ignore | |
3788 | anything that isn't a text symbol (everything else will be | |
3789 | handled by the psymtab code above). */ | |
3790 | ||
3791 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
3792 | { |
3793 | QUIT; | |
3794 | COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word); | |
9af17804 | 3795 | |
69636828 | 3796 | completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word); |
c5aa993b | 3797 | } |
c906108c SS |
3798 | |
3799 | /* Search upwards from currently selected frame (so that we can | |
3800 | complete on local vars. */ | |
3801 | ||
ae767bfb | 3802 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) |
c906108c SS |
3803 | { |
3804 | if (!BLOCK_SUPERBLOCK (b)) | |
3805 | { | |
c5aa993b | 3806 | surrounding_static_block = b; /* For elmin of dups */ |
c906108c | 3807 | } |
c5aa993b | 3808 | |
c906108c | 3809 | /* Also catch fields of types defined in this places which match our |
c5aa993b | 3810 | text string. Only complete on types visible from current context. */ |
c906108c | 3811 | |
de4f826b | 3812 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c906108c | 3813 | { |
69636828 | 3814 | QUIT; |
c906108c SS |
3815 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3816 | if (SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
3817 | { | |
3818 | struct type *t = SYMBOL_TYPE (sym); | |
3819 | enum type_code c = TYPE_CODE (t); | |
3820 | ||
3821 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
3822 | { | |
3823 | for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++) | |
3824 | { | |
3825 | if (TYPE_FIELD_NAME (t, j)) | |
3826 | { | |
3827 | completion_list_add_name (TYPE_FIELD_NAME (t, j), | |
c5aa993b | 3828 | sym_text, sym_text_len, text, word); |
c906108c SS |
3829 | } |
3830 | } | |
3831 | } | |
3832 | } | |
3833 | } | |
3834 | } | |
3835 | ||
3836 | /* Go through the symtabs and check the externs and statics for | |
3837 | symbols which match. */ | |
3838 | ||
11309657 | 3839 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3840 | { |
3841 | QUIT; | |
3842 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 3843 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3844 | { |
c5aa993b JM |
3845 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3846 | } | |
3847 | } | |
c906108c | 3848 | |
11309657 | 3849 | ALL_PRIMARY_SYMTABS (objfile, s) |
c5aa993b JM |
3850 | { |
3851 | QUIT; | |
3852 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
3853 | /* Don't do this block twice. */ | |
3854 | if (b == surrounding_static_block) | |
3855 | continue; | |
de4f826b | 3856 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c5aa993b | 3857 | { |
c5aa993b JM |
3858 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
3859 | } | |
3860 | } | |
c906108c | 3861 | |
9a044a89 TT |
3862 | if (current_language->la_macro_expansion == macro_expansion_c) |
3863 | { | |
3864 | struct macro_scope *scope; | |
3865 | struct add_macro_name_data datum; | |
3866 | ||
3867 | datum.sym_text = sym_text; | |
3868 | datum.sym_text_len = sym_text_len; | |
3869 | datum.text = text; | |
3870 | datum.word = word; | |
3871 | ||
3872 | /* Add any macros visible in the default scope. Note that this | |
3873 | may yield the occasional wrong result, because an expression | |
3874 | might be evaluated in a scope other than the default. For | |
3875 | example, if the user types "break file:line if <TAB>", the | |
3876 | resulting expression will be evaluated at "file:line" -- but | |
3877 | at there does not seem to be a way to detect this at | |
3878 | completion time. */ | |
3879 | scope = default_macro_scope (); | |
3880 | if (scope) | |
3881 | { | |
3882 | macro_for_each_in_scope (scope->file, scope->line, | |
3883 | add_macro_name, &datum); | |
3884 | xfree (scope); | |
3885 | } | |
3886 | ||
3887 | /* User-defined macros are always visible. */ | |
3888 | macro_for_each (macro_user_macros, add_macro_name, &datum); | |
3889 | } | |
3890 | ||
c906108c SS |
3891 | return (return_val); |
3892 | } | |
3893 | ||
41d27058 JB |
3894 | /* Return a NULL terminated array of all symbols (regardless of class) |
3895 | which begin by matching TEXT. If the answer is no symbols, then | |
3896 | the return value is an array which contains only a NULL pointer. */ | |
3897 | ||
3898 | char ** | |
3899 | make_symbol_completion_list (char *text, char *word) | |
3900 | { | |
3901 | return current_language->la_make_symbol_completion_list (text, word); | |
3902 | } | |
3903 | ||
d8906c6f TJB |
3904 | /* Like make_symbol_completion_list, but suitable for use as a |
3905 | completion function. */ | |
3906 | ||
3907 | char ** | |
3908 | make_symbol_completion_list_fn (struct cmd_list_element *ignore, | |
3909 | char *text, char *word) | |
3910 | { | |
3911 | return make_symbol_completion_list (text, word); | |
3912 | } | |
3913 | ||
c94fdfd0 EZ |
3914 | /* Like make_symbol_completion_list, but returns a list of symbols |
3915 | defined in a source file FILE. */ | |
3916 | ||
3917 | char ** | |
3918 | make_file_symbol_completion_list (char *text, char *word, char *srcfile) | |
3919 | { | |
52f0bd74 AC |
3920 | struct symbol *sym; |
3921 | struct symtab *s; | |
3922 | struct block *b; | |
de4f826b | 3923 | struct dict_iterator iter; |
c94fdfd0 EZ |
3924 | /* The symbol we are completing on. Points in same buffer as text. */ |
3925 | char *sym_text; | |
3926 | /* Length of sym_text. */ | |
3927 | int sym_text_len; | |
3928 | ||
3929 | /* Now look for the symbol we are supposed to complete on. | |
3930 | FIXME: This should be language-specific. */ | |
3931 | { | |
3932 | char *p; | |
3933 | char quote_found; | |
3934 | char *quote_pos = NULL; | |
3935 | ||
3936 | /* First see if this is a quoted string. */ | |
3937 | quote_found = '\0'; | |
3938 | for (p = text; *p != '\0'; ++p) | |
3939 | { | |
3940 | if (quote_found != '\0') | |
3941 | { | |
3942 | if (*p == quote_found) | |
3943 | /* Found close quote. */ | |
3944 | quote_found = '\0'; | |
3945 | else if (*p == '\\' && p[1] == quote_found) | |
3946 | /* A backslash followed by the quote character | |
3947 | doesn't end the string. */ | |
3948 | ++p; | |
3949 | } | |
3950 | else if (*p == '\'' || *p == '"') | |
3951 | { | |
3952 | quote_found = *p; | |
3953 | quote_pos = p; | |
3954 | } | |
3955 | } | |
3956 | if (quote_found == '\'') | |
3957 | /* A string within single quotes can be a symbol, so complete on it. */ | |
3958 | sym_text = quote_pos + 1; | |
3959 | else if (quote_found == '"') | |
3960 | /* A double-quoted string is never a symbol, nor does it make sense | |
3961 | to complete it any other way. */ | |
3962 | { | |
3963 | return_val = (char **) xmalloc (sizeof (char *)); | |
3964 | return_val[0] = NULL; | |
3965 | return return_val; | |
3966 | } | |
3967 | else | |
3968 | { | |
69636828 AF |
3969 | /* Not a quoted string. */ |
3970 | sym_text = language_search_unquoted_string (text, p); | |
c94fdfd0 EZ |
3971 | } |
3972 | } | |
3973 | ||
3974 | sym_text_len = strlen (sym_text); | |
3975 | ||
3976 | return_val_size = 10; | |
3977 | return_val_index = 0; | |
3978 | return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *)); | |
3979 | return_val[0] = NULL; | |
3980 | ||
3981 | /* Find the symtab for SRCFILE (this loads it if it was not yet read | |
3982 | in). */ | |
3983 | s = lookup_symtab (srcfile); | |
3984 | if (s == NULL) | |
3985 | { | |
3986 | /* Maybe they typed the file with leading directories, while the | |
3987 | symbol tables record only its basename. */ | |
31889e00 | 3988 | const char *tail = lbasename (srcfile); |
c94fdfd0 EZ |
3989 | |
3990 | if (tail > srcfile) | |
3991 | s = lookup_symtab (tail); | |
3992 | } | |
3993 | ||
3994 | /* If we have no symtab for that file, return an empty list. */ | |
3995 | if (s == NULL) | |
3996 | return (return_val); | |
3997 | ||
3998 | /* Go through this symtab and check the externs and statics for | |
3999 | symbols which match. */ | |
4000 | ||
4001 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
de4f826b | 4002 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4003 | { |
c94fdfd0 EZ |
4004 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4005 | } | |
4006 | ||
4007 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
de4f826b | 4008 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
c94fdfd0 | 4009 | { |
c94fdfd0 EZ |
4010 | COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word); |
4011 | } | |
4012 | ||
4013 | return (return_val); | |
4014 | } | |
4015 | ||
4016 | /* A helper function for make_source_files_completion_list. It adds | |
4017 | another file name to a list of possible completions, growing the | |
4018 | list as necessary. */ | |
4019 | ||
4020 | static void | |
4021 | add_filename_to_list (const char *fname, char *text, char *word, | |
4022 | char ***list, int *list_used, int *list_alloced) | |
4023 | { | |
4024 | char *new; | |
4025 | size_t fnlen = strlen (fname); | |
4026 | ||
4027 | if (*list_used + 1 >= *list_alloced) | |
4028 | { | |
4029 | *list_alloced *= 2; | |
4030 | *list = (char **) xrealloc ((char *) *list, | |
4031 | *list_alloced * sizeof (char *)); | |
4032 | } | |
4033 | ||
4034 | if (word == text) | |
4035 | { | |
4036 | /* Return exactly fname. */ | |
4037 | new = xmalloc (fnlen + 5); | |
4038 | strcpy (new, fname); | |
4039 | } | |
4040 | else if (word > text) | |
4041 | { | |
4042 | /* Return some portion of fname. */ | |
4043 | new = xmalloc (fnlen + 5); | |
4044 | strcpy (new, fname + (word - text)); | |
4045 | } | |
4046 | else | |
4047 | { | |
4048 | /* Return some of TEXT plus fname. */ | |
4049 | new = xmalloc (fnlen + (text - word) + 5); | |
4050 | strncpy (new, word, text - word); | |
4051 | new[text - word] = '\0'; | |
4052 | strcat (new, fname); | |
4053 | } | |
4054 | (*list)[*list_used] = new; | |
4055 | (*list)[++*list_used] = NULL; | |
4056 | } | |
4057 | ||
4058 | static int | |
4059 | not_interesting_fname (const char *fname) | |
4060 | { | |
4061 | static const char *illegal_aliens[] = { | |
4062 | "_globals_", /* inserted by coff_symtab_read */ | |
4063 | NULL | |
4064 | }; | |
4065 | int i; | |
4066 | ||
4067 | for (i = 0; illegal_aliens[i]; i++) | |
4068 | { | |
4069 | if (strcmp (fname, illegal_aliens[i]) == 0) | |
4070 | return 1; | |
4071 | } | |
4072 | return 0; | |
4073 | } | |
4074 | ||
4075 | /* Return a NULL terminated array of all source files whose names | |
4076 | begin with matching TEXT. The file names are looked up in the | |
4077 | symbol tables of this program. If the answer is no matchess, then | |
4078 | the return value is an array which contains only a NULL pointer. */ | |
4079 | ||
4080 | char ** | |
4081 | make_source_files_completion_list (char *text, char *word) | |
4082 | { | |
52f0bd74 AC |
4083 | struct symtab *s; |
4084 | struct partial_symtab *ps; | |
4085 | struct objfile *objfile; | |
c94fdfd0 EZ |
4086 | int first = 1; |
4087 | int list_alloced = 1; | |
4088 | int list_used = 0; | |
4089 | size_t text_len = strlen (text); | |
4090 | char **list = (char **) xmalloc (list_alloced * sizeof (char *)); | |
31889e00 | 4091 | const char *base_name; |
c94fdfd0 EZ |
4092 | |
4093 | list[0] = NULL; | |
4094 | ||
4095 | if (!have_full_symbols () && !have_partial_symbols ()) | |
4096 | return list; | |
4097 | ||
4098 | ALL_SYMTABS (objfile, s) | |
4099 | { | |
4100 | if (not_interesting_fname (s->filename)) | |
4101 | continue; | |
4102 | if (!filename_seen (s->filename, 1, &first) | |
4103 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4104 | && strncasecmp (s->filename, text, text_len) == 0 | |
4105 | #else | |
4106 | && strncmp (s->filename, text, text_len) == 0 | |
4107 | #endif | |
4108 | ) | |
4109 | { | |
4110 | /* This file matches for a completion; add it to the current | |
4111 | list of matches. */ | |
4112 | add_filename_to_list (s->filename, text, word, | |
4113 | &list, &list_used, &list_alloced); | |
4114 | } | |
4115 | else | |
4116 | { | |
4117 | /* NOTE: We allow the user to type a base name when the | |
4118 | debug info records leading directories, but not the other | |
4119 | way around. This is what subroutines of breakpoint | |
4120 | command do when they parse file names. */ | |
31889e00 | 4121 | base_name = lbasename (s->filename); |
c94fdfd0 EZ |
4122 | if (base_name != s->filename |
4123 | && !filename_seen (base_name, 1, &first) | |
4124 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4125 | && strncasecmp (base_name, text, text_len) == 0 | |
4126 | #else | |
4127 | && strncmp (base_name, text, text_len) == 0 | |
4128 | #endif | |
4129 | ) | |
4130 | add_filename_to_list (base_name, text, word, | |
4131 | &list, &list_used, &list_alloced); | |
4132 | } | |
4133 | } | |
4134 | ||
4135 | ALL_PSYMTABS (objfile, ps) | |
4136 | { | |
4137 | if (not_interesting_fname (ps->filename)) | |
4138 | continue; | |
4139 | if (!ps->readin) | |
4140 | { | |
4141 | if (!filename_seen (ps->filename, 1, &first) | |
4142 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4143 | && strncasecmp (ps->filename, text, text_len) == 0 | |
4144 | #else | |
4145 | && strncmp (ps->filename, text, text_len) == 0 | |
4146 | #endif | |
4147 | ) | |
4148 | { | |
4149 | /* This file matches for a completion; add it to the | |
4150 | current list of matches. */ | |
4151 | add_filename_to_list (ps->filename, text, word, | |
4152 | &list, &list_used, &list_alloced); | |
4153 | ||
4154 | } | |
4155 | else | |
4156 | { | |
31889e00 | 4157 | base_name = lbasename (ps->filename); |
c94fdfd0 EZ |
4158 | if (base_name != ps->filename |
4159 | && !filename_seen (base_name, 1, &first) | |
4160 | #if HAVE_DOS_BASED_FILE_SYSTEM | |
4161 | && strncasecmp (base_name, text, text_len) == 0 | |
4162 | #else | |
4163 | && strncmp (base_name, text, text_len) == 0 | |
4164 | #endif | |
4165 | ) | |
4166 | add_filename_to_list (base_name, text, word, | |
4167 | &list, &list_used, &list_alloced); | |
4168 | } | |
4169 | } | |
4170 | } | |
4171 | ||
4172 | return list; | |
4173 | } | |
4174 | ||
c906108c SS |
4175 | /* Determine if PC is in the prologue of a function. The prologue is the area |
4176 | between the first instruction of a function, and the first executable line. | |
4177 | Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue. | |
4178 | ||
4179 | If non-zero, func_start is where we think the prologue starts, possibly | |
4180 | by previous examination of symbol table information. | |
4181 | */ | |
4182 | ||
4183 | int | |
fba45db2 | 4184 | in_prologue (CORE_ADDR pc, CORE_ADDR func_start) |
c906108c SS |
4185 | { |
4186 | struct symtab_and_line sal; | |
4187 | CORE_ADDR func_addr, func_end; | |
4188 | ||
54cf9c03 EZ |
4189 | /* We have several sources of information we can consult to figure |
4190 | this out. | |
4191 | - Compilers usually emit line number info that marks the prologue | |
4192 | as its own "source line". So the ending address of that "line" | |
4193 | is the end of the prologue. If available, this is the most | |
4194 | reliable method. | |
4195 | - The minimal symbols and partial symbols, which can usually tell | |
4196 | us the starting and ending addresses of a function. | |
4197 | - If we know the function's start address, we can call the | |
a433963d | 4198 | architecture-defined gdbarch_skip_prologue function to analyze the |
54cf9c03 EZ |
4199 | instruction stream and guess where the prologue ends. |
4200 | - Our `func_start' argument; if non-zero, this is the caller's | |
4201 | best guess as to the function's entry point. At the time of | |
4202 | this writing, handle_inferior_event doesn't get this right, so | |
4203 | it should be our last resort. */ | |
4204 | ||
4205 | /* Consult the partial symbol table, to find which function | |
4206 | the PC is in. */ | |
4207 | if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
4208 | { | |
4209 | CORE_ADDR prologue_end; | |
c906108c | 4210 | |
54cf9c03 EZ |
4211 | /* We don't even have minsym information, so fall back to using |
4212 | func_start, if given. */ | |
4213 | if (! func_start) | |
4214 | return 1; /* We *might* be in a prologue. */ | |
c906108c | 4215 | |
a433963d | 4216 | prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start); |
c906108c | 4217 | |
54cf9c03 EZ |
4218 | return func_start <= pc && pc < prologue_end; |
4219 | } | |
c906108c | 4220 | |
54cf9c03 EZ |
4221 | /* If we have line number information for the function, that's |
4222 | usually pretty reliable. */ | |
4223 | sal = find_pc_line (func_addr, 0); | |
c906108c | 4224 | |
54cf9c03 EZ |
4225 | /* Now sal describes the source line at the function's entry point, |
4226 | which (by convention) is the prologue. The end of that "line", | |
4227 | sal.end, is the end of the prologue. | |
4228 | ||
4229 | Note that, for functions whose source code is all on a single | |
4230 | line, the line number information doesn't always end up this way. | |
4231 | So we must verify that our purported end-of-prologue address is | |
4232 | *within* the function, not at its start or end. */ | |
4233 | if (sal.line == 0 | |
4234 | || sal.end <= func_addr | |
4235 | || func_end <= sal.end) | |
4236 | { | |
4237 | /* We don't have any good line number info, so use the minsym | |
4238 | information, together with the architecture-specific prologue | |
4239 | scanning code. */ | |
a433963d UW |
4240 | CORE_ADDR prologue_end = gdbarch_skip_prologue |
4241 | (current_gdbarch, func_addr); | |
c906108c | 4242 | |
54cf9c03 EZ |
4243 | return func_addr <= pc && pc < prologue_end; |
4244 | } | |
c906108c | 4245 | |
54cf9c03 EZ |
4246 | /* We have line number info, and it looks good. */ |
4247 | return func_addr <= pc && pc < sal.end; | |
c906108c SS |
4248 | } |
4249 | ||
634aa483 AC |
4250 | /* Given PC at the function's start address, attempt to find the |
4251 | prologue end using SAL information. Return zero if the skip fails. | |
4252 | ||
4253 | A non-optimized prologue traditionally has one SAL for the function | |
4254 | and a second for the function body. A single line function has | |
4255 | them both pointing at the same line. | |
4256 | ||
4257 | An optimized prologue is similar but the prologue may contain | |
4258 | instructions (SALs) from the instruction body. Need to skip those | |
4259 | while not getting into the function body. | |
4260 | ||
4261 | The functions end point and an increasing SAL line are used as | |
4262 | indicators of the prologue's endpoint. | |
4263 | ||
4264 | This code is based on the function refine_prologue_limit (versions | |
4265 | found in both ia64 and ppc). */ | |
4266 | ||
4267 | CORE_ADDR | |
4268 | skip_prologue_using_sal (CORE_ADDR func_addr) | |
4269 | { | |
4270 | struct symtab_and_line prologue_sal; | |
4271 | CORE_ADDR start_pc; | |
4272 | CORE_ADDR end_pc; | |
d54be744 | 4273 | struct block *bl; |
634aa483 AC |
4274 | |
4275 | /* Get an initial range for the function. */ | |
4276 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
cbf3b44a | 4277 | start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch); |
634aa483 AC |
4278 | |
4279 | prologue_sal = find_pc_line (start_pc, 0); | |
4280 | if (prologue_sal.line != 0) | |
4281 | { | |
d54be744 DJ |
4282 | /* For langauges other than assembly, treat two consecutive line |
4283 | entries at the same address as a zero-instruction prologue. | |
4284 | The GNU assembler emits separate line notes for each instruction | |
4285 | in a multi-instruction macro, but compilers generally will not | |
4286 | do this. */ | |
4287 | if (prologue_sal.symtab->language != language_asm) | |
4288 | { | |
4289 | struct linetable *linetable = LINETABLE (prologue_sal.symtab); | |
4290 | int exact; | |
4291 | int idx = 0; | |
4292 | ||
4293 | /* Skip any earlier lines, and any end-of-sequence marker | |
4294 | from a previous function. */ | |
4295 | while (linetable->item[idx].pc != prologue_sal.pc | |
4296 | || linetable->item[idx].line == 0) | |
4297 | idx++; | |
4298 | ||
4299 | if (idx+1 < linetable->nitems | |
4300 | && linetable->item[idx+1].line != 0 | |
4301 | && linetable->item[idx+1].pc == start_pc) | |
4302 | return start_pc; | |
4303 | } | |
4304 | ||
576c2025 FF |
4305 | /* If there is only one sal that covers the entire function, |
4306 | then it is probably a single line function, like | |
4307 | "foo(){}". */ | |
91934273 | 4308 | if (prologue_sal.end >= end_pc) |
4e463ff5 | 4309 | return 0; |
d54be744 | 4310 | |
634aa483 AC |
4311 | while (prologue_sal.end < end_pc) |
4312 | { | |
4313 | struct symtab_and_line sal; | |
4314 | ||
4315 | sal = find_pc_line (prologue_sal.end, 0); | |
4316 | if (sal.line == 0) | |
4317 | break; | |
4318 | /* Assume that a consecutive SAL for the same (or larger) | |
4319 | line mark the prologue -> body transition. */ | |
4320 | if (sal.line >= prologue_sal.line) | |
4321 | break; | |
4322 | /* The case in which compiler's optimizer/scheduler has | |
4323 | moved instructions into the prologue. We look ahead in | |
4324 | the function looking for address ranges whose | |
4325 | corresponding line number is less the first one that we | |
4326 | found for the function. This is more conservative then | |
4327 | refine_prologue_limit which scans a large number of SALs | |
4328 | looking for any in the prologue */ | |
4329 | prologue_sal = sal; | |
4330 | } | |
4331 | } | |
d54be744 DJ |
4332 | |
4333 | if (prologue_sal.end < end_pc) | |
4334 | /* Return the end of this line, or zero if we could not find a | |
4335 | line. */ | |
4336 | return prologue_sal.end; | |
4337 | else | |
4338 | /* Don't return END_PC, which is past the end of the function. */ | |
4339 | return prologue_sal.pc; | |
634aa483 | 4340 | } |
c906108c | 4341 | \f |
50641945 FN |
4342 | struct symtabs_and_lines |
4343 | decode_line_spec (char *string, int funfirstline) | |
4344 | { | |
4345 | struct symtabs_and_lines sals; | |
0378c332 | 4346 | struct symtab_and_line cursal; |
9af17804 | 4347 | |
50641945 | 4348 | if (string == 0) |
8a3fe4f8 | 4349 | error (_("Empty line specification.")); |
9af17804 | 4350 | |
0378c332 | 4351 | /* We use whatever is set as the current source line. We do not try |
9af17804 | 4352 | and get a default or it will recursively call us! */ |
0378c332 | 4353 | cursal = get_current_source_symtab_and_line (); |
9af17804 | 4354 | |
50641945 | 4355 | sals = decode_line_1 (&string, funfirstline, |
0378c332 | 4356 | cursal.symtab, cursal.line, |
bffe1ece | 4357 | (char ***) NULL, NULL); |
0378c332 | 4358 | |
50641945 | 4359 | if (*string) |
8a3fe4f8 | 4360 | error (_("Junk at end of line specification: %s"), string); |
50641945 FN |
4361 | return sals; |
4362 | } | |
c5aa993b | 4363 | |
51cc5b07 AC |
4364 | /* Track MAIN */ |
4365 | static char *name_of_main; | |
4366 | ||
4367 | void | |
4368 | set_main_name (const char *name) | |
4369 | { | |
4370 | if (name_of_main != NULL) | |
4371 | { | |
4372 | xfree (name_of_main); | |
4373 | name_of_main = NULL; | |
4374 | } | |
4375 | if (name != NULL) | |
4376 | { | |
4377 | name_of_main = xstrdup (name); | |
4378 | } | |
4379 | } | |
4380 | ||
ea53e89f JB |
4381 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN |
4382 | accordingly. */ | |
4383 | ||
4384 | static void | |
4385 | find_main_name (void) | |
4386 | { | |
cd6c7346 | 4387 | const char *new_main_name; |
ea53e89f JB |
4388 | |
4389 | /* Try to see if the main procedure is in Ada. */ | |
4390 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
4391 | be to add a new method in the language vector, and call this | |
4392 | method for each language until one of them returns a non-empty | |
4393 | name. This would allow us to remove this hard-coded call to | |
4394 | an Ada function. It is not clear that this is a better approach | |
4395 | at this point, because all methods need to be written in a way | |
4396 | such that false positives never be returned. For instance, it is | |
4397 | important that a method does not return a wrong name for the main | |
4398 | procedure if the main procedure is actually written in a different | |
4399 | language. It is easy to guaranty this with Ada, since we use a | |
4400 | special symbol generated only when the main in Ada to find the name | |
4401 | of the main procedure. It is difficult however to see how this can | |
4402 | be guarantied for languages such as C, for instance. This suggests | |
4403 | that order of call for these methods becomes important, which means | |
4404 | a more complicated approach. */ | |
4405 | new_main_name = ada_main_name (); | |
4406 | if (new_main_name != NULL) | |
9af17804 | 4407 | { |
ea53e89f JB |
4408 | set_main_name (new_main_name); |
4409 | return; | |
4410 | } | |
4411 | ||
cd6c7346 PM |
4412 | new_main_name = pascal_main_name (); |
4413 | if (new_main_name != NULL) | |
9af17804 | 4414 | { |
cd6c7346 PM |
4415 | set_main_name (new_main_name); |
4416 | return; | |
4417 | } | |
4418 | ||
ea53e89f JB |
4419 | /* The languages above didn't identify the name of the main procedure. |
4420 | Fallback to "main". */ | |
4421 | set_main_name ("main"); | |
4422 | } | |
4423 | ||
51cc5b07 AC |
4424 | char * |
4425 | main_name (void) | |
4426 | { | |
ea53e89f JB |
4427 | if (name_of_main == NULL) |
4428 | find_main_name (); | |
4429 | ||
4430 | return name_of_main; | |
51cc5b07 AC |
4431 | } |
4432 | ||
ea53e89f JB |
4433 | /* Handle ``executable_changed'' events for the symtab module. */ |
4434 | ||
4435 | static void | |
781b42b0 | 4436 | symtab_observer_executable_changed (void) |
ea53e89f JB |
4437 | { |
4438 | /* NAME_OF_MAIN may no longer be the same, so reset it for now. */ | |
4439 | set_main_name (NULL); | |
4440 | } | |
51cc5b07 | 4441 | |
ed0616c6 VP |
4442 | /* Helper to expand_line_sal below. Appends new sal to SAL, |
4443 | initializing it from SYMTAB, LINENO and PC. */ | |
4444 | static void | |
4445 | append_expanded_sal (struct symtabs_and_lines *sal, | |
4446 | struct symtab *symtab, | |
4447 | int lineno, CORE_ADDR pc) | |
4448 | { | |
4449 | CORE_ADDR func_addr, func_end; | |
9af17804 DE |
4450 | |
4451 | sal->sals = xrealloc (sal->sals, | |
4452 | sizeof (sal->sals[0]) | |
ed0616c6 VP |
4453 | * (sal->nelts + 1)); |
4454 | init_sal (sal->sals + sal->nelts); | |
4455 | sal->sals[sal->nelts].symtab = symtab; | |
4456 | sal->sals[sal->nelts].section = NULL; | |
4457 | sal->sals[sal->nelts].end = 0; | |
9af17804 | 4458 | sal->sals[sal->nelts].line = lineno; |
ed0616c6 | 4459 | sal->sals[sal->nelts].pc = pc; |
9af17804 | 4460 | ++sal->nelts; |
ed0616c6 VP |
4461 | } |
4462 | ||
4463 | /* Compute a set of all sals in | |
4464 | the entire program that correspond to same file | |
4465 | and line as SAL and return those. If there | |
4466 | are several sals that belong to the same block, | |
4467 | only one sal for the block is included in results. */ | |
9af17804 | 4468 | |
ed0616c6 VP |
4469 | struct symtabs_and_lines |
4470 | expand_line_sal (struct symtab_and_line sal) | |
4471 | { | |
4472 | struct symtabs_and_lines ret, this_line; | |
4473 | int i, j; | |
4474 | struct objfile *objfile; | |
4475 | struct partial_symtab *psymtab; | |
4476 | struct symtab *symtab; | |
4477 | int lineno; | |
4478 | int deleted = 0; | |
4479 | struct block **blocks = NULL; | |
4480 | int *filter; | |
4481 | ||
4482 | ret.nelts = 0; | |
4483 | ret.sals = NULL; | |
4484 | ||
4485 | if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0) | |
4486 | { | |
4487 | ret.sals = xmalloc (sizeof (struct symtab_and_line)); | |
4488 | ret.sals[0] = sal; | |
4489 | ret.nelts = 1; | |
4490 | return ret; | |
4491 | } | |
4492 | else | |
4493 | { | |
4494 | struct linetable_entry *best_item = 0; | |
4495 | struct symtab *best_symtab = 0; | |
4496 | int exact = 0; | |
4497 | ||
4498 | lineno = sal.line; | |
4499 | ||
9af17804 DE |
4500 | /* We need to find all symtabs for a file which name |
4501 | is described by sal. We cannot just directly | |
ed0616c6 | 4502 | iterate over symtabs, since a symtab might not be |
9af17804 | 4503 | yet created. We also cannot iterate over psymtabs, |
ed0616c6 VP |
4504 | calling PSYMTAB_TO_SYMTAB and working on that symtab, |
4505 | since PSYMTAB_TO_SYMTAB will return NULL for psymtab | |
9af17804 | 4506 | corresponding to an included file. Therefore, we do |
ed0616c6 VP |
4507 | first pass over psymtabs, reading in those with |
4508 | the right name. Then, we iterate over symtabs, knowing | |
4509 | that all symtabs we're interested in are loaded. */ | |
4510 | ||
4511 | ALL_PSYMTABS (objfile, psymtab) | |
4512 | { | |
4513 | if (strcmp (sal.symtab->filename, | |
4514 | psymtab->filename) == 0) | |
4515 | PSYMTAB_TO_SYMTAB (psymtab); | |
4516 | } | |
4517 | ||
9af17804 | 4518 | /* For each symtab, we add all pcs to ret.sals. I'm actually |
ed0616c6 | 4519 | not sure what to do if we have exact match in one symtab, |
9af17804 DE |
4520 | and non-exact match on another symtab. */ |
4521 | ||
ed0616c6 VP |
4522 | ALL_SYMTABS (objfile, symtab) |
4523 | { | |
4524 | if (strcmp (sal.symtab->filename, | |
4525 | symtab->filename) == 0) | |
4526 | { | |
4527 | struct linetable *l; | |
4528 | int len; | |
4529 | l = LINETABLE (symtab); | |
4530 | if (!l) | |
4531 | continue; | |
4532 | len = l->nitems; | |
4533 | ||
4534 | for (j = 0; j < len; j++) | |
4535 | { | |
4536 | struct linetable_entry *item = &(l->item[j]); | |
4537 | ||
4538 | if (item->line == lineno) | |
4539 | { | |
4540 | exact = 1; | |
4541 | append_expanded_sal (&ret, symtab, lineno, item->pc); | |
9af17804 | 4542 | } |
ed0616c6 VP |
4543 | else if (!exact && item->line > lineno |
4544 | && (best_item == NULL || item->line < best_item->line)) | |
ed0616c6 VP |
4545 | { |
4546 | best_item = item; | |
4547 | best_symtab = symtab; | |
4548 | } | |
4549 | } | |
4550 | } | |
4551 | } | |
4552 | if (!exact && best_item) | |
4553 | append_expanded_sal (&ret, best_symtab, lineno, best_item->pc); | |
4554 | } | |
4555 | ||
4556 | /* For optimized code, compiler can scatter one source line accross | |
4557 | disjoint ranges of PC values, even when no duplicate functions | |
4558 | or inline functions are involved. For example, 'for (;;)' inside | |
4559 | non-template non-inline non-ctor-or-dtor function can result | |
4560 | in two PC ranges. In this case, we don't want to set breakpoint | |
4561 | on first PC of each range. To filter such cases, we use containing | |
4562 | blocks -- for each PC found above we see if there are other PCs | |
9af17804 | 4563 | that are in the same block. If yes, the other PCs are filtered out. */ |
ed0616c6 | 4564 | |
db009c8a JB |
4565 | filter = alloca (ret.nelts * sizeof (int)); |
4566 | blocks = alloca (ret.nelts * sizeof (struct block *)); | |
ed0616c6 VP |
4567 | for (i = 0; i < ret.nelts; ++i) |
4568 | { | |
4569 | filter[i] = 1; | |
4570 | blocks[i] = block_for_pc (ret.sals[i].pc); | |
4571 | } | |
4572 | ||
4573 | for (i = 0; i < ret.nelts; ++i) | |
4574 | if (blocks[i] != NULL) | |
4575 | for (j = i+1; j < ret.nelts; ++j) | |
4576 | if (blocks[j] == blocks[i]) | |
4577 | { | |
4578 | filter[j] = 0; | |
4579 | ++deleted; | |
4580 | break; | |
4581 | } | |
9af17804 | 4582 | |
ed0616c6 | 4583 | { |
9af17804 | 4584 | struct symtab_and_line *final = |
ed0616c6 | 4585 | xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted)); |
9af17804 | 4586 | |
ed0616c6 VP |
4587 | for (i = 0, j = 0; i < ret.nelts; ++i) |
4588 | if (filter[i]) | |
4589 | final[j++] = ret.sals[i]; | |
9af17804 | 4590 | |
ed0616c6 VP |
4591 | ret.nelts -= deleted; |
4592 | xfree (ret.sals); | |
4593 | ret.sals = final; | |
4594 | } | |
4595 | ||
4596 | return ret; | |
4597 | } | |
4598 | ||
4599 | ||
c906108c | 4600 | void |
fba45db2 | 4601 | _initialize_symtab (void) |
c906108c | 4602 | { |
1bedd215 AC |
4603 | add_info ("variables", variables_info, _("\ |
4604 | All global and static variable names, or those matching REGEXP.")); | |
c906108c | 4605 | if (dbx_commands) |
1bedd215 AC |
4606 | add_com ("whereis", class_info, variables_info, _("\ |
4607 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4608 | |
4609 | add_info ("functions", functions_info, | |
1bedd215 | 4610 | _("All function names, or those matching REGEXP.")); |
c906108c SS |
4611 | |
4612 | /* FIXME: This command has at least the following problems: | |
4613 | 1. It prints builtin types (in a very strange and confusing fashion). | |
4614 | 2. It doesn't print right, e.g. with | |
c5aa993b JM |
4615 | typedef struct foo *FOO |
4616 | type_print prints "FOO" when we want to make it (in this situation) | |
4617 | print "struct foo *". | |
c906108c SS |
4618 | I also think "ptype" or "whatis" is more likely to be useful (but if |
4619 | there is much disagreement "info types" can be fixed). */ | |
4620 | add_info ("types", types_info, | |
1bedd215 | 4621 | _("All type names, or those matching REGEXP.")); |
c906108c | 4622 | |
c906108c | 4623 | add_info ("sources", sources_info, |
1bedd215 | 4624 | _("Source files in the program.")); |
c906108c SS |
4625 | |
4626 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
1bedd215 | 4627 | _("Set a breakpoint for all functions matching REGEXP.")); |
c906108c SS |
4628 | |
4629 | if (xdb_commands) | |
4630 | { | |
1bedd215 AC |
4631 | add_com ("lf", class_info, sources_info, |
4632 | _("Source files in the program")); | |
4633 | add_com ("lg", class_info, variables_info, _("\ | |
4634 | All global and static variable names, or those matching REGEXP.")); | |
c906108c SS |
4635 | } |
4636 | ||
717d2f5a JB |
4637 | add_setshow_enum_cmd ("multiple-symbols", no_class, |
4638 | multiple_symbols_modes, &multiple_symbols_mode, | |
4639 | _("\ | |
4640 | Set the debugger behavior when more than one symbol are possible matches\n\ | |
4641 | in an expression."), _("\ | |
4642 | Show how the debugger handles ambiguities in expressions."), _("\ | |
4643 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
4644 | NULL, NULL, &setlist, &showlist); | |
4645 | ||
c906108c SS |
4646 | /* Initialize the one built-in type that isn't language dependent... */ |
4647 | builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0, | |
4648 | "<unknown type>", (struct objfile *) NULL); | |
ea53e89f JB |
4649 | |
4650 | observer_attach_executable_changed (symtab_observer_executable_changed); | |
c906108c | 4651 | } |