*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symtab.c
CommitLineData
c906108c 1/* Symbol table lookup for the GNU debugger, GDB.
8926118c 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4c38e0a4
JB
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "gdbcore.h"
26#include "frame.h"
27#include "target.h"
28#include "value.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcmd.h"
32#include "call-cmds.h"
88987551 33#include "gdb_regex.h"
c906108c
SS
34#include "expression.h"
35#include "language.h"
36#include "demangle.h"
37#include "inferior.h"
c5f0f3d0 38#include "linespec.h"
0378c332 39#include "source.h"
a7fdf62f 40#include "filenames.h" /* for FILENAME_CMP */
1bae87b9 41#include "objc-lang.h"
6aecb9c2 42#include "d-lang.h"
1f8173e6 43#include "ada-lang.h"
cd6c7346 44#include "p-lang.h"
ff013f42 45#include "addrmap.h"
c906108c 46
2de7ced7
DJ
47#include "hashtab.h"
48
04ea0df1 49#include "gdb_obstack.h"
fe898f56 50#include "block.h"
de4f826b 51#include "dictionary.h"
c906108c
SS
52
53#include <sys/types.h>
54#include <fcntl.h>
55#include "gdb_string.h"
56#include "gdb_stat.h"
57#include <ctype.h>
015a42b4 58#include "cp-abi.h"
71c25dea 59#include "cp-support.h"
ea53e89f 60#include "observer.h"
94277a38 61#include "gdb_assert.h"
3a40aaa0 62#include "solist.h"
9a044a89
TT
63#include "macrotab.h"
64#include "macroscope.h"
c906108c 65
ccefe4c4
TT
66#include "psymtab.h"
67
c906108c
SS
68/* Prototypes for local functions */
69
a14ed312 70static void completion_list_add_name (char *, char *, int, char *, char *);
c906108c 71
a14ed312 72static void rbreak_command (char *, int);
c906108c 73
a14ed312 74static void types_info (char *, int);
c906108c 75
a14ed312 76static void functions_info (char *, int);
c906108c 77
a14ed312 78static void variables_info (char *, int);
c906108c 79
a14ed312 80static void sources_info (char *, int);
c906108c 81
d092d1a2 82static void output_source_filename (const char *, int *);
c906108c 83
a14ed312 84static int find_line_common (struct linetable *, int, int *);
c906108c 85
50641945
FN
86/* This one is used by linespec.c */
87
88char *operator_chars (char *p, char **end);
89
3121eff0 90static struct symbol *lookup_symbol_aux (const char *name,
3121eff0 91 const struct block *block,
176620f1 92 const domain_enum domain,
53c5240f 93 enum language language,
21b556f4 94 int *is_a_field_of_this);
fba7f19c 95
e4051eeb
DC
96static
97struct symbol *lookup_symbol_aux_local (const char *name,
e4051eeb 98 const struct block *block,
13387711
SW
99 const domain_enum domain,
100 enum language language);
8155455b
DC
101
102static
103struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
21b556f4 105 const domain_enum domain);
8155455b
DC
106
107static
ccefe4c4
TT
108struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
c906108c 112
176620f1 113static void print_symbol_info (domain_enum,
a14ed312 114 struct symtab *, struct symbol *, int, char *);
c906108c 115
a14ed312 116static void print_msymbol_info (struct minimal_symbol *);
c906108c 117
176620f1 118static void symtab_symbol_info (char *, domain_enum, int);
c906108c 119
a14ed312 120void _initialize_symtab (void);
c906108c
SS
121
122/* */
123
717d2f5a
JB
124/* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
7fc830e2
MK
128const char multiple_symbols_ask[] = "ask";
129const char multiple_symbols_all[] = "all";
130const char multiple_symbols_cancel[] = "cancel";
717d2f5a
JB
131static const char *multiple_symbols_modes[] =
132{
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137};
138static const char *multiple_symbols_mode = multiple_symbols_all;
139
140/* Read-only accessor to AUTO_SELECT_MODE. */
141
142const char *
143multiple_symbols_select_mode (void)
144{
145 return multiple_symbols_mode;
146}
147
c906108c 148/* Block in which the most recently searched-for symbol was found.
9af17804 149 Might be better to make this a parameter to lookup_symbol and
c906108c
SS
150 value_of_this. */
151
152const struct block *block_found;
153
c906108c
SS
154/* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
1b15f1fa
TT
158struct symtab *
159lookup_symtab (const char *name)
c906108c 160{
ccefe4c4
TT
161 int found;
162 struct symtab *s = NULL;
52f0bd74 163 struct objfile *objfile;
58d370e0 164 char *real_path = NULL;
f079a2e5 165 char *full_path = NULL;
58d370e0
TT
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
f079a2e5
JB
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
c906108c 176
c5aa993b 177got_symtab:
c906108c
SS
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
58d370e0 182 {
a7fdf62f 183 if (FILENAME_CMP (name, s->filename) == 0)
58d370e0 184 {
58d370e0
TT
185 return s;
186 }
9af17804 187
58d370e0
TT
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
9af17804 190
f079a2e5
JB
191 if (full_path != NULL)
192 {
09bcec80 193 const char *fp = symtab_to_fullname (s);
433759f7 194
09bcec80
BR
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
f079a2e5
JB
199 }
200
58d370e0
TT
201 if (real_path != NULL)
202 {
09bcec80 203 char *fullname = symtab_to_fullname (s);
433759f7 204
09bcec80
BR
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
433759f7 208
09bcec80
BR
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
58d370e0
TT
215 }
216 }
217
c906108c
SS
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
caadab2c 220 if (lbasename (name) == name)
c906108c 221 ALL_SYMTABS (objfile, s)
c5aa993b 222 {
31889e00 223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
c5aa993b
JM
224 return s;
225 }
c906108c
SS
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
ccefe4c4
TT
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
c906108c 241
ccefe4c4 242 if (s != NULL)
c906108c 243 return s;
ccefe4c4
TT
244 if (!found)
245 return NULL;
c906108c
SS
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256}
c906108c
SS
257\f
258/* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263char *
fba45db2 264gdb_mangle_name (struct type *type, int method_id, int signature_id)
c906108c
SS
265{
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
015a42b4 279 int is_destructor = is_destructor_name (physname);
c906108c
SS
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
43630227
PS
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
235d1e03
EZ
290 return xstrdup (physname);
291
015a42b4 292 is_full_physname_constructor = is_constructor_name (physname);
c906108c
SS
293
294 is_constructor =
6314a349 295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
c906108c
SS
296
297 if (!is_destructor)
c5aa993b 298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
c906108c
SS
299
300 if (is_destructor || is_full_physname_constructor)
301 {
c5aa993b
JM
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
c906108c
SS
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
c5aa993b 314 the class name. */
c906108c
SS
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
235d1e03 324 + strlen (buf) + len + strlen (physname) + 1);
c906108c 325
433759f7
MS
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
c906108c
SS
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
c5aa993b 335 as something starting with `::' rather than `classname::'. */
c906108c
SS
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341}
12af6855
JB
342
343\f
89aad1f9
EZ
344/* Initialize the language dependent portion of a symbol
345 depending upon the language for the symbol. */
346void
347symbol_init_language_specific (struct general_symbol_info *gsymbol,
348 enum language language)
349{
350 gsymbol->language = language;
351 if (gsymbol->language == language_cplus
6aecb9c2 352 || gsymbol->language == language_d
5784d15e
AF
353 || gsymbol->language == language_java
354 || gsymbol->language == language_objc)
89aad1f9
EZ
355 {
356 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
357 }
89aad1f9
EZ
358 else
359 {
360 memset (&gsymbol->language_specific, 0,
361 sizeof (gsymbol->language_specific));
362 }
363}
364
2de7ced7
DJ
365/* Functions to initialize a symbol's mangled name. */
366
04a679b8
TT
367/* Objects of this type are stored in the demangled name hash table. */
368struct demangled_name_entry
369{
370 char *mangled;
371 char demangled[1];
372};
373
374/* Hash function for the demangled name hash. */
375static hashval_t
376hash_demangled_name_entry (const void *data)
377{
378 const struct demangled_name_entry *e = data;
433759f7 379
04a679b8
TT
380 return htab_hash_string (e->mangled);
381}
382
383/* Equality function for the demangled name hash. */
384static int
385eq_demangled_name_entry (const void *a, const void *b)
386{
387 const struct demangled_name_entry *da = a;
388 const struct demangled_name_entry *db = b;
433759f7 389
04a679b8
TT
390 return strcmp (da->mangled, db->mangled) == 0;
391}
392
2de7ced7
DJ
393/* Create the hash table used for demangled names. Each hash entry is
394 a pair of strings; one for the mangled name and one for the demangled
395 name. The entry is hashed via just the mangled name. */
396
397static void
398create_demangled_names_hash (struct objfile *objfile)
399{
400 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
9af17804 401 The hash table code will round this up to the next prime number.
2de7ced7
DJ
402 Choosing a much larger table size wastes memory, and saves only about
403 1% in symbol reading. */
404
aa2ee5f6 405 objfile->demangled_names_hash = htab_create_alloc
04a679b8 406 (256, hash_demangled_name_entry, eq_demangled_name_entry,
aa2ee5f6 407 NULL, xcalloc, xfree);
2de7ced7 408}
12af6855 409
2de7ced7 410/* Try to determine the demangled name for a symbol, based on the
12af6855
JB
411 language of that symbol. If the language is set to language_auto,
412 it will attempt to find any demangling algorithm that works and
2de7ced7
DJ
413 then set the language appropriately. The returned name is allocated
414 by the demangler and should be xfree'd. */
12af6855 415
2de7ced7
DJ
416static char *
417symbol_find_demangled_name (struct general_symbol_info *gsymbol,
418 const char *mangled)
12af6855 419{
12af6855
JB
420 char *demangled = NULL;
421
422 if (gsymbol->language == language_unknown)
423 gsymbol->language = language_auto;
1bae87b9
AF
424
425 if (gsymbol->language == language_objc
426 || gsymbol->language == language_auto)
427 {
428 demangled =
429 objc_demangle (mangled, 0);
430 if (demangled != NULL)
431 {
432 gsymbol->language = language_objc;
433 return demangled;
434 }
435 }
12af6855
JB
436 if (gsymbol->language == language_cplus
437 || gsymbol->language == language_auto)
438 {
439 demangled =
94af9270 440 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
12af6855 441 if (demangled != NULL)
2de7ced7
DJ
442 {
443 gsymbol->language = language_cplus;
444 return demangled;
445 }
12af6855
JB
446 }
447 if (gsymbol->language == language_java)
448 {
449 demangled =
2de7ced7 450 cplus_demangle (mangled,
12af6855
JB
451 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
452 if (demangled != NULL)
2de7ced7
DJ
453 {
454 gsymbol->language = language_java;
455 return demangled;
456 }
457 }
6aecb9c2
JB
458 if (gsymbol->language == language_d
459 || gsymbol->language == language_auto)
460 {
461 demangled = d_demangle(mangled, 0);
462 if (demangled != NULL)
463 {
464 gsymbol->language = language_d;
465 return demangled;
466 }
467 }
2de7ced7
DJ
468 return NULL;
469}
470
980cae7a 471/* Set both the mangled and demangled (if any) names for GSYMBOL based
04a679b8
TT
472 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
473 objfile's obstack; but if COPY_NAME is 0 and if NAME is
474 NUL-terminated, then this function assumes that NAME is already
475 correctly saved (either permanently or with a lifetime tied to the
476 objfile), and it will not be copied.
477
478 The hash table corresponding to OBJFILE is used, and the memory
479 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
480 so the pointer can be discarded after calling this function. */
2de7ced7 481
d2a52b27
DC
482/* We have to be careful when dealing with Java names: when we run
483 into a Java minimal symbol, we don't know it's a Java symbol, so it
484 gets demangled as a C++ name. This is unfortunate, but there's not
485 much we can do about it: but when demangling partial symbols and
486 regular symbols, we'd better not reuse the wrong demangled name.
487 (See PR gdb/1039.) We solve this by putting a distinctive prefix
488 on Java names when storing them in the hash table. */
489
490/* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
491 don't mind the Java prefix so much: different languages have
492 different demangling requirements, so it's only natural that we
493 need to keep language data around in our demangling cache. But
494 it's not good that the minimal symbol has the wrong demangled name.
495 Unfortunately, I can't think of any easy solution to that
496 problem. */
497
498#define JAVA_PREFIX "##JAVA$$"
499#define JAVA_PREFIX_LEN 8
500
2de7ced7
DJ
501void
502symbol_set_names (struct general_symbol_info *gsymbol,
04a679b8
TT
503 const char *linkage_name, int len, int copy_name,
504 struct objfile *objfile)
2de7ced7 505{
04a679b8 506 struct demangled_name_entry **slot;
980cae7a
DC
507 /* A 0-terminated copy of the linkage name. */
508 const char *linkage_name_copy;
d2a52b27
DC
509 /* A copy of the linkage name that might have a special Java prefix
510 added to it, for use when looking names up in the hash table. */
511 const char *lookup_name;
512 /* The length of lookup_name. */
513 int lookup_len;
04a679b8 514 struct demangled_name_entry entry;
2de7ced7 515
b06ead72
JB
516 if (gsymbol->language == language_ada)
517 {
518 /* In Ada, we do the symbol lookups using the mangled name, so
519 we can save some space by not storing the demangled name.
520
521 As a side note, we have also observed some overlap between
522 the C++ mangling and Ada mangling, similarly to what has
523 been observed with Java. Because we don't store the demangled
524 name with the symbol, we don't need to use the same trick
525 as Java. */
04a679b8
TT
526 if (!copy_name)
527 gsymbol->name = (char *) linkage_name;
528 else
529 {
530 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
531 memcpy (gsymbol->name, linkage_name, len);
532 gsymbol->name[len] = '\0';
533 }
b06ead72
JB
534 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
535
536 return;
537 }
538
04a679b8
TT
539 if (objfile->demangled_names_hash == NULL)
540 create_demangled_names_hash (objfile);
541
980cae7a
DC
542 /* The stabs reader generally provides names that are not
543 NUL-terminated; most of the other readers don't do this, so we
d2a52b27
DC
544 can just use the given copy, unless we're in the Java case. */
545 if (gsymbol->language == language_java)
546 {
547 char *alloc_name;
d2a52b27 548
433759f7 549 lookup_len = len + JAVA_PREFIX_LEN;
d2a52b27
DC
550 alloc_name = alloca (lookup_len + 1);
551 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
552 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
553 alloc_name[lookup_len] = '\0';
554
555 lookup_name = alloc_name;
556 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
557 }
558 else if (linkage_name[len] != '\0')
2de7ced7 559 {
980cae7a
DC
560 char *alloc_name;
561
433759f7 562 lookup_len = len;
d2a52b27 563 alloc_name = alloca (lookup_len + 1);
980cae7a 564 memcpy (alloc_name, linkage_name, len);
d2a52b27 565 alloc_name[lookup_len] = '\0';
980cae7a 566
d2a52b27 567 lookup_name = alloc_name;
980cae7a 568 linkage_name_copy = alloc_name;
2de7ced7
DJ
569 }
570 else
980cae7a 571 {
d2a52b27
DC
572 lookup_len = len;
573 lookup_name = linkage_name;
980cae7a
DC
574 linkage_name_copy = linkage_name;
575 }
2de7ced7 576
04a679b8
TT
577 entry.mangled = (char *) lookup_name;
578 slot = ((struct demangled_name_entry **)
579 htab_find_slot (objfile->demangled_names_hash,
580 &entry, INSERT));
2de7ced7
DJ
581
582 /* If this name is not in the hash table, add it. */
583 if (*slot == NULL)
584 {
980cae7a
DC
585 char *demangled_name = symbol_find_demangled_name (gsymbol,
586 linkage_name_copy);
2de7ced7
DJ
587 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
588
04a679b8
TT
589 /* Suppose we have demangled_name==NULL, copy_name==0, and
590 lookup_name==linkage_name. In this case, we already have the
591 mangled name saved, and we don't have a demangled name. So,
592 you might think we could save a little space by not recording
593 this in the hash table at all.
594
595 It turns out that it is actually important to still save such
596 an entry in the hash table, because storing this name gives
705b5767 597 us better bcache hit rates for partial symbols. */
04a679b8
TT
598 if (!copy_name && lookup_name == linkage_name)
599 {
600 *slot = obstack_alloc (&objfile->objfile_obstack,
601 offsetof (struct demangled_name_entry,
602 demangled)
603 + demangled_len + 1);
604 (*slot)->mangled = (char *) lookup_name;
605 }
606 else
607 {
608 /* If we must copy the mangled name, put it directly after
609 the demangled name so we can have a single
610 allocation. */
611 *slot = obstack_alloc (&objfile->objfile_obstack,
612 offsetof (struct demangled_name_entry,
613 demangled)
614 + lookup_len + demangled_len + 2);
615 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
616 strcpy ((*slot)->mangled, lookup_name);
617 }
618
980cae7a 619 if (demangled_name != NULL)
2de7ced7 620 {
04a679b8 621 strcpy ((*slot)->demangled, demangled_name);
2de7ced7
DJ
622 xfree (demangled_name);
623 }
624 else
04a679b8 625 (*slot)->demangled[0] = '\0';
2de7ced7
DJ
626 }
627
72dcaf82 628 gsymbol->name = (*slot)->mangled + lookup_len - len;
04a679b8 629 if ((*slot)->demangled[0] != '\0')
2de7ced7 630 gsymbol->language_specific.cplus_specific.demangled_name
04a679b8 631 = (*slot)->demangled;
2de7ced7
DJ
632 else
633 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
634}
635
22abf04a
DC
636/* Return the source code name of a symbol. In languages where
637 demangling is necessary, this is the demangled name. */
638
639char *
640symbol_natural_name (const struct general_symbol_info *gsymbol)
641{
9af17804 642 switch (gsymbol->language)
22abf04a 643 {
1f8173e6 644 case language_cplus:
6aecb9c2 645 case language_d:
1f8173e6
PH
646 case language_java:
647 case language_objc:
648 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
649 return gsymbol->language_specific.cplus_specific.demangled_name;
650 break;
651 case language_ada:
652 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
653 return gsymbol->language_specific.cplus_specific.demangled_name;
654 else
655 return ada_decode_symbol (gsymbol);
656 break;
657 default:
658 break;
22abf04a 659 }
1f8173e6 660 return gsymbol->name;
22abf04a
DC
661}
662
9cc0d196
EZ
663/* Return the demangled name for a symbol based on the language for
664 that symbol. If no demangled name exists, return NULL. */
665char *
df8a16a1 666symbol_demangled_name (const struct general_symbol_info *gsymbol)
9cc0d196 667{
9af17804 668 switch (gsymbol->language)
1f8173e6
PH
669 {
670 case language_cplus:
6aecb9c2 671 case language_d:
1f8173e6
PH
672 case language_java:
673 case language_objc:
674 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
675 return gsymbol->language_specific.cplus_specific.demangled_name;
676 break;
677 case language_ada:
678 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
679 return gsymbol->language_specific.cplus_specific.demangled_name;
680 else
681 return ada_decode_symbol (gsymbol);
682 break;
683 default:
684 break;
685 }
686 return NULL;
9cc0d196 687}
fe39c653 688
4725b721
PH
689/* Return the search name of a symbol---generally the demangled or
690 linkage name of the symbol, depending on how it will be searched for.
9af17804 691 If there is no distinct demangled name, then returns the same value
4725b721 692 (same pointer) as SYMBOL_LINKAGE_NAME. */
fc062ac6
JB
693char *
694symbol_search_name (const struct general_symbol_info *gsymbol)
695{
1f8173e6
PH
696 if (gsymbol->language == language_ada)
697 return gsymbol->name;
698 else
699 return symbol_natural_name (gsymbol);
4725b721
PH
700}
701
fe39c653
EZ
702/* Initialize the structure fields to zero values. */
703void
704init_sal (struct symtab_and_line *sal)
705{
6c95b8df 706 sal->pspace = NULL;
fe39c653
EZ
707 sal->symtab = 0;
708 sal->section = 0;
709 sal->line = 0;
710 sal->pc = 0;
711 sal->end = 0;
ed0616c6
VP
712 sal->explicit_pc = 0;
713 sal->explicit_line = 0;
fe39c653 714}
c906108c
SS
715\f
716
94277a38
DJ
717/* Return 1 if the two sections are the same, or if they could
718 plausibly be copies of each other, one in an original object
719 file and another in a separated debug file. */
720
721int
714835d5
UW
722matching_obj_sections (struct obj_section *obj_first,
723 struct obj_section *obj_second)
94277a38 724{
714835d5
UW
725 asection *first = obj_first? obj_first->the_bfd_section : NULL;
726 asection *second = obj_second? obj_second->the_bfd_section : NULL;
94277a38
DJ
727 struct objfile *obj;
728
729 /* If they're the same section, then they match. */
730 if (first == second)
731 return 1;
732
733 /* If either is NULL, give up. */
734 if (first == NULL || second == NULL)
735 return 0;
736
737 /* This doesn't apply to absolute symbols. */
738 if (first->owner == NULL || second->owner == NULL)
739 return 0;
740
741 /* If they're in the same object file, they must be different sections. */
742 if (first->owner == second->owner)
743 return 0;
744
745 /* Check whether the two sections are potentially corresponding. They must
746 have the same size, address, and name. We can't compare section indexes,
747 which would be more reliable, because some sections may have been
748 stripped. */
749 if (bfd_get_section_size (first) != bfd_get_section_size (second))
750 return 0;
751
818f79f6 752 /* In-memory addresses may start at a different offset, relativize them. */
94277a38 753 if (bfd_get_section_vma (first->owner, first)
818f79f6
DJ
754 - bfd_get_start_address (first->owner)
755 != bfd_get_section_vma (second->owner, second)
756 - bfd_get_start_address (second->owner))
94277a38
DJ
757 return 0;
758
759 if (bfd_get_section_name (first->owner, first) == NULL
760 || bfd_get_section_name (second->owner, second) == NULL
761 || strcmp (bfd_get_section_name (first->owner, first),
762 bfd_get_section_name (second->owner, second)) != 0)
763 return 0;
764
765 /* Otherwise check that they are in corresponding objfiles. */
766
767 ALL_OBJFILES (obj)
768 if (obj->obfd == first->owner)
769 break;
770 gdb_assert (obj != NULL);
771
772 if (obj->separate_debug_objfile != NULL
773 && obj->separate_debug_objfile->obfd == second->owner)
774 return 1;
775 if (obj->separate_debug_objfile_backlink != NULL
776 && obj->separate_debug_objfile_backlink->obfd == second->owner)
777 return 1;
778
779 return 0;
780}
c5aa993b 781
ccefe4c4
TT
782struct symtab *
783find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
c906108c 784{
52f0bd74 785 struct objfile *objfile;
8a48e967
DJ
786 struct minimal_symbol *msymbol;
787
788 /* If we know that this is not a text address, return failure. This is
789 necessary because we loop based on texthigh and textlow, which do
790 not include the data ranges. */
791 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
792 if (msymbol
712f90be
TT
793 && (MSYMBOL_TYPE (msymbol) == mst_data
794 || MSYMBOL_TYPE (msymbol) == mst_bss
795 || MSYMBOL_TYPE (msymbol) == mst_abs
796 || MSYMBOL_TYPE (msymbol) == mst_file_data
797 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 798 return NULL;
c906108c 799
ff013f42 800 ALL_OBJFILES (objfile)
ccefe4c4
TT
801 {
802 struct symtab *result = NULL;
433759f7 803
ccefe4c4
TT
804 if (objfile->sf)
805 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
806 pc, section, 0);
807 if (result)
808 return result;
809 }
ff013f42
JK
810
811 return NULL;
c906108c 812}
c906108c
SS
813\f
814/* Debug symbols usually don't have section information. We need to dig that
815 out of the minimal symbols and stash that in the debug symbol. */
816
ccefe4c4 817void
907fc202
UW
818fixup_section (struct general_symbol_info *ginfo,
819 CORE_ADDR addr, struct objfile *objfile)
c906108c
SS
820{
821 struct minimal_symbol *msym;
c906108c 822
bccdca4a
UW
823 /* First, check whether a minimal symbol with the same name exists
824 and points to the same address. The address check is required
825 e.g. on PowerPC64, where the minimal symbol for a function will
826 point to the function descriptor, while the debug symbol will
827 point to the actual function code. */
907fc202
UW
828 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
829 if (msym)
7a78d0ee 830 {
714835d5 831 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
7a78d0ee
KB
832 ginfo->section = SYMBOL_SECTION (msym);
833 }
907fc202 834 else
19e2d14b
KB
835 {
836 /* Static, function-local variables do appear in the linker
837 (minimal) symbols, but are frequently given names that won't
838 be found via lookup_minimal_symbol(). E.g., it has been
839 observed in frv-uclinux (ELF) executables that a static,
840 function-local variable named "foo" might appear in the
841 linker symbols as "foo.6" or "foo.3". Thus, there is no
842 point in attempting to extend the lookup-by-name mechanism to
843 handle this case due to the fact that there can be multiple
844 names.
9af17804 845
19e2d14b
KB
846 So, instead, search the section table when lookup by name has
847 failed. The ``addr'' and ``endaddr'' fields may have already
848 been relocated. If so, the relocation offset (i.e. the
849 ANOFFSET value) needs to be subtracted from these values when
850 performing the comparison. We unconditionally subtract it,
851 because, when no relocation has been performed, the ANOFFSET
852 value will simply be zero.
9af17804 853
19e2d14b
KB
854 The address of the symbol whose section we're fixing up HAS
855 NOT BEEN adjusted (relocated) yet. It can't have been since
856 the section isn't yet known and knowing the section is
857 necessary in order to add the correct relocation value. In
858 other words, we wouldn't even be in this function (attempting
859 to compute the section) if it were already known.
860
861 Note that it is possible to search the minimal symbols
862 (subtracting the relocation value if necessary) to find the
863 matching minimal symbol, but this is overkill and much less
864 efficient. It is not necessary to find the matching minimal
9af17804
DE
865 symbol, only its section.
866
19e2d14b
KB
867 Note that this technique (of doing a section table search)
868 can fail when unrelocated section addresses overlap. For
869 this reason, we still attempt a lookup by name prior to doing
870 a search of the section table. */
9af17804 871
19e2d14b 872 struct obj_section *s;
433759f7 873
19e2d14b
KB
874 ALL_OBJFILE_OSECTIONS (objfile, s)
875 {
876 int idx = s->the_bfd_section->index;
877 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
878
f1f6aadf
PA
879 if (obj_section_addr (s) - offset <= addr
880 && addr < obj_section_endaddr (s) - offset)
19e2d14b 881 {
714835d5 882 ginfo->obj_section = s;
19e2d14b
KB
883 ginfo->section = idx;
884 return;
885 }
886 }
887 }
c906108c
SS
888}
889
890struct symbol *
fba45db2 891fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
c906108c 892{
907fc202
UW
893 CORE_ADDR addr;
894
c906108c
SS
895 if (!sym)
896 return NULL;
897
714835d5 898 if (SYMBOL_OBJ_SECTION (sym))
c906108c
SS
899 return sym;
900
907fc202
UW
901 /* We either have an OBJFILE, or we can get at it from the sym's
902 symtab. Anything else is a bug. */
903 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
904
905 if (objfile == NULL)
906 objfile = SYMBOL_SYMTAB (sym)->objfile;
907
908 /* We should have an objfile by now. */
909 gdb_assert (objfile);
910
911 switch (SYMBOL_CLASS (sym))
912 {
913 case LOC_STATIC:
914 case LOC_LABEL:
907fc202
UW
915 addr = SYMBOL_VALUE_ADDRESS (sym);
916 break;
917 case LOC_BLOCK:
918 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
919 break;
920
921 default:
922 /* Nothing else will be listed in the minsyms -- no use looking
923 it up. */
924 return sym;
925 }
926
927 fixup_section (&sym->ginfo, addr, objfile);
c906108c
SS
928
929 return sym;
930}
931
c906108c 932/* Find the definition for a specified symbol name NAME
176620f1 933 in domain DOMAIN, visible from lexical block BLOCK.
c906108c 934 Returns the struct symbol pointer, or zero if no symbol is found.
c906108c
SS
935 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
936 NAME is a field of the current implied argument `this'. If so set
9af17804 937 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
c906108c
SS
938 BLOCK_FOUND is set to the block in which NAME is found (in the case of
939 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
940
941/* This function has a bunch of loops in it and it would seem to be
942 attractive to put in some QUIT's (though I'm not really sure
943 whether it can run long enough to be really important). But there
944 are a few calls for which it would appear to be bad news to quit
7ca9f392
AC
945 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
946 that there is C++ code below which can error(), but that probably
947 doesn't affect these calls since they are looking for a known
948 variable and thus can probably assume it will never hit the C++
949 code). */
c906108c
SS
950
951struct symbol *
53c5240f
PA
952lookup_symbol_in_language (const char *name, const struct block *block,
953 const domain_enum domain, enum language lang,
2570f2b7 954 int *is_a_field_of_this)
c906108c 955{
729051e6
DJ
956 char *demangled_name = NULL;
957 const char *modified_name = NULL;
fba7f19c 958 struct symbol *returnval;
9ee6bb93 959 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
c906108c 960
729051e6
DJ
961 modified_name = name;
962
433759f7
MS
963 /* If we are using C++, D, or Java, demangle the name before doing a
964 lookup, so we can always binary search. */
53c5240f 965 if (lang == language_cplus)
729051e6
DJ
966 {
967 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
968 if (demangled_name)
969 {
729051e6 970 modified_name = demangled_name;
9ee6bb93 971 make_cleanup (xfree, demangled_name);
729051e6 972 }
71c25dea
TT
973 else
974 {
975 /* If we were given a non-mangled name, canonicalize it
976 according to the language (so far only for C++). */
977 demangled_name = cp_canonicalize_string (name);
978 if (demangled_name)
979 {
980 modified_name = demangled_name;
981 make_cleanup (xfree, demangled_name);
982 }
983 }
729051e6 984 }
53c5240f 985 else if (lang == language_java)
987504bb 986 {
9af17804 987 demangled_name = cplus_demangle (name,
987504bb
JJ
988 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
989 if (demangled_name)
990 {
987504bb 991 modified_name = demangled_name;
9ee6bb93 992 make_cleanup (xfree, demangled_name);
987504bb
JJ
993 }
994 }
6aecb9c2
JB
995 else if (lang == language_d)
996 {
997 demangled_name = d_demangle (name, 0);
998 if (demangled_name)
999 {
1000 modified_name = demangled_name;
1001 make_cleanup (xfree, demangled_name);
1002 }
1003 }
729051e6 1004
63872f9d
JG
1005 if (case_sensitivity == case_sensitive_off)
1006 {
1007 char *copy;
1008 int len, i;
1009
1010 len = strlen (name);
1011 copy = (char *) alloca (len + 1);
1012 for (i= 0; i < len; i++)
1013 copy[i] = tolower (name[i]);
1014 copy[len] = 0;
fba7f19c 1015 modified_name = copy;
63872f9d 1016 }
fba7f19c 1017
94af9270
KS
1018 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1019 is_a_field_of_this);
9ee6bb93 1020 do_cleanups (cleanup);
fba7f19c 1021
9af17804 1022 return returnval;
fba7f19c
EZ
1023}
1024
53c5240f
PA
1025/* Behave like lookup_symbol_in_language, but performed with the
1026 current language. */
1027
1028struct symbol *
1029lookup_symbol (const char *name, const struct block *block,
2570f2b7 1030 domain_enum domain, int *is_a_field_of_this)
53c5240f
PA
1031{
1032 return lookup_symbol_in_language (name, block, domain,
1033 current_language->la_language,
2570f2b7 1034 is_a_field_of_this);
53c5240f
PA
1035}
1036
1037/* Behave like lookup_symbol except that NAME is the natural name
5ad1c190
DC
1038 of the symbol that we're looking for and, if LINKAGE_NAME is
1039 non-NULL, ensure that the symbol's linkage name matches as
1040 well. */
1041
fba7f19c 1042static struct symbol *
94af9270
KS
1043lookup_symbol_aux (const char *name, const struct block *block,
1044 const domain_enum domain, enum language language,
1045 int *is_a_field_of_this)
fba7f19c 1046{
8155455b 1047 struct symbol *sym;
53c5240f 1048 const struct language_defn *langdef;
ccefe4c4 1049 struct objfile *objfile;
406bc4de 1050
9a146a11
EZ
1051 /* Make sure we do something sensible with is_a_field_of_this, since
1052 the callers that set this parameter to some non-null value will
1053 certainly use it later and expect it to be either 0 or 1.
1054 If we don't set it, the contents of is_a_field_of_this are
1055 undefined. */
1056 if (is_a_field_of_this != NULL)
1057 *is_a_field_of_this = 0;
1058
e4051eeb
DC
1059 /* Search specified block and its superiors. Don't search
1060 STATIC_BLOCK or GLOBAL_BLOCK. */
c906108c 1061
13387711 1062 sym = lookup_symbol_aux_local (name, block, domain, language);
8155455b
DC
1063 if (sym != NULL)
1064 return sym;
c906108c 1065
53c5240f 1066 /* If requested to do so by the caller and if appropriate for LANGUAGE,
13387711 1067 check to see if NAME is a field of `this'. */
53c5240f
PA
1068
1069 langdef = language_def (language);
5f9a71c3 1070
2b2d9e11
VP
1071 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1072 && block != NULL)
c906108c 1073 {
2b2d9e11 1074 struct symbol *sym = NULL;
8540c487 1075 const struct block *function_block = block;
433759f7 1076
2b2d9e11
VP
1077 /* 'this' is only defined in the function's block, so find the
1078 enclosing function block. */
8540c487
SW
1079 for (; function_block && !BLOCK_FUNCTION (function_block);
1080 function_block = BLOCK_SUPERBLOCK (function_block));
2b2d9e11 1081
8540c487
SW
1082 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1083 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
94af9270 1084 VAR_DOMAIN);
2b2d9e11 1085 if (sym)
c906108c 1086 {
2b2d9e11 1087 struct type *t = sym->type;
9af17804 1088
2b2d9e11
VP
1089 /* I'm not really sure that type of this can ever
1090 be typedefed; just be safe. */
1091 CHECK_TYPEDEF (t);
1092 if (TYPE_CODE (t) == TYPE_CODE_PTR
1093 || TYPE_CODE (t) == TYPE_CODE_REF)
1094 t = TYPE_TARGET_TYPE (t);
9af17804 1095
2b2d9e11
VP
1096 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1097 && TYPE_CODE (t) != TYPE_CODE_UNION)
9af17804 1098 error (_("Internal error: `%s' is not an aggregate"),
2b2d9e11 1099 langdef->la_name_of_this);
9af17804 1100
2b2d9e11
VP
1101 if (check_field (t, name))
1102 {
1103 *is_a_field_of_this = 1;
2b2d9e11
VP
1104 return NULL;
1105 }
c906108c
SS
1106 }
1107 }
1108
53c5240f 1109 /* Now do whatever is appropriate for LANGUAGE to look
5f9a71c3 1110 up static and global variables. */
c906108c 1111
94af9270 1112 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
8155455b
DC
1113 if (sym != NULL)
1114 return sym;
c906108c 1115
8155455b
DC
1116 /* Now search all static file-level symbols. Not strictly correct,
1117 but more useful than an error. Do the symtabs first, then check
1118 the psymtabs. If a psymtab indicates the existence of the
1119 desired name as a file-level static, then do psymtab-to-symtab
c906108c
SS
1120 conversion on the fly and return the found symbol. */
1121
94af9270 1122 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
8155455b
DC
1123 if (sym != NULL)
1124 return sym;
9af17804 1125
ccefe4c4
TT
1126 ALL_OBJFILES (objfile)
1127 {
1128 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1129 if (sym != NULL)
1130 return sym;
1131 }
c906108c 1132
8155455b 1133 return NULL;
c906108c 1134}
8155455b 1135
e4051eeb 1136/* Check to see if the symbol is defined in BLOCK or its superiors.
89a9d1b1 1137 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
8155455b
DC
1138
1139static struct symbol *
94af9270 1140lookup_symbol_aux_local (const char *name, const struct block *block,
13387711
SW
1141 const domain_enum domain,
1142 enum language language)
8155455b
DC
1143{
1144 struct symbol *sym;
89a9d1b1 1145 const struct block *static_block = block_static_block (block);
13387711
SW
1146 const char *scope = block_scope (block);
1147
e4051eeb
DC
1148 /* Check if either no block is specified or it's a global block. */
1149
89a9d1b1
DC
1150 if (static_block == NULL)
1151 return NULL;
e4051eeb 1152
89a9d1b1 1153 while (block != static_block)
f61e8913 1154 {
94af9270 1155 sym = lookup_symbol_aux_block (name, block, domain);
f61e8913
DC
1156 if (sym != NULL)
1157 return sym;
edb3359d 1158
13387711
SW
1159 if (language == language_cplus)
1160 {
1161 sym = cp_lookup_symbol_imports (scope,
1162 name,
1163 block,
1164 domain,
1165 1,
1166 1);
1167 if (sym != NULL)
1168 return sym;
1169 }
1170
edb3359d
DJ
1171 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1172 break;
f61e8913
DC
1173 block = BLOCK_SUPERBLOCK (block);
1174 }
1175
edb3359d 1176 /* We've reached the edge of the function without finding a result. */
e4051eeb 1177
f61e8913
DC
1178 return NULL;
1179}
1180
3a40aaa0
UW
1181/* Look up OBJFILE to BLOCK. */
1182
c0201579 1183struct objfile *
3a40aaa0
UW
1184lookup_objfile_from_block (const struct block *block)
1185{
1186 struct objfile *obj;
1187 struct symtab *s;
1188
1189 if (block == NULL)
1190 return NULL;
1191
1192 block = block_global_block (block);
1193 /* Go through SYMTABS. */
1194 ALL_SYMTABS (obj, s)
1195 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
61f0d762
JK
1196 {
1197 if (obj->separate_debug_objfile_backlink)
1198 obj = obj->separate_debug_objfile_backlink;
1199
1200 return obj;
1201 }
3a40aaa0
UW
1202
1203 return NULL;
1204}
1205
6c9353d3
PA
1206/* Look up a symbol in a block; if found, fixup the symbol, and set
1207 block_found appropriately. */
f61e8913 1208
5f9a71c3 1209struct symbol *
94af9270 1210lookup_symbol_aux_block (const char *name, const struct block *block,
21b556f4 1211 const domain_enum domain)
f61e8913
DC
1212{
1213 struct symbol *sym;
f61e8913 1214
94af9270 1215 sym = lookup_block_symbol (block, name, domain);
f61e8913 1216 if (sym)
8155455b 1217 {
f61e8913 1218 block_found = block;
21b556f4 1219 return fixup_symbol_section (sym, NULL);
8155455b
DC
1220 }
1221
1222 return NULL;
1223}
1224
3a40aaa0
UW
1225/* Check all global symbols in OBJFILE in symtabs and
1226 psymtabs. */
1227
1228struct symbol *
15d123c9 1229lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
3a40aaa0 1230 const char *name,
21b556f4 1231 const domain_enum domain)
3a40aaa0 1232{
15d123c9 1233 const struct objfile *objfile;
3a40aaa0
UW
1234 struct symbol *sym;
1235 struct blockvector *bv;
1236 const struct block *block;
1237 struct symtab *s;
3a40aaa0 1238
15d123c9
TG
1239 for (objfile = main_objfile;
1240 objfile;
1241 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1242 {
1243 /* Go through symtabs. */
1244 ALL_OBJFILE_SYMTABS (objfile, s)
1245 {
1246 bv = BLOCKVECTOR (s);
1247 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
94af9270 1248 sym = lookup_block_symbol (block, name, domain);
15d123c9
TG
1249 if (sym)
1250 {
1251 block_found = block;
1252 return fixup_symbol_section (sym, (struct objfile *)objfile);
1253 }
1254 }
1255
ccefe4c4
TT
1256 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1257 name, domain);
1258 if (sym)
1259 return sym;
15d123c9 1260 }
56e3f43c 1261
3a40aaa0
UW
1262 return NULL;
1263}
1264
8155455b
DC
1265/* Check to see if the symbol is defined in one of the symtabs.
1266 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1267 depending on whether or not we want to search global symbols or
1268 static symbols. */
1269
1270static struct symbol *
94af9270 1271lookup_symbol_aux_symtabs (int block_index, const char *name,
21b556f4 1272 const domain_enum domain)
8155455b
DC
1273{
1274 struct symbol *sym;
1275 struct objfile *objfile;
1276 struct blockvector *bv;
1277 const struct block *block;
1278 struct symtab *s;
1279
11309657 1280 ALL_PRIMARY_SYMTABS (objfile, s)
8155455b
DC
1281 {
1282 bv = BLOCKVECTOR (s);
1283 block = BLOCKVECTOR_BLOCK (bv, block_index);
94af9270 1284 sym = lookup_block_symbol (block, name, domain);
8155455b
DC
1285 if (sym)
1286 {
1287 block_found = block;
8155455b
DC
1288 return fixup_symbol_section (sym, objfile);
1289 }
1290 }
1291
1292 return NULL;
1293}
1294
ccefe4c4
TT
1295/* A helper function for lookup_symbol_aux that interfaces with the
1296 "quick" symbol table functions. */
8155455b
DC
1297
1298static struct symbol *
ccefe4c4
TT
1299lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1300 const char *name, const domain_enum domain)
8155455b 1301{
ccefe4c4 1302 struct symtab *symtab;
8155455b
DC
1303 struct blockvector *bv;
1304 const struct block *block;
ccefe4c4 1305 struct symbol *sym;
8155455b 1306
ccefe4c4
TT
1307 if (!objfile->sf)
1308 return NULL;
1309 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1310 if (!symtab)
1311 return NULL;
8155455b 1312
ccefe4c4
TT
1313 bv = BLOCKVECTOR (symtab);
1314 block = BLOCKVECTOR_BLOCK (bv, kind);
1315 sym = lookup_block_symbol (block, name, domain);
1316 if (!sym)
1317 {
1318 /* This shouldn't be necessary, but as a last resort try
1319 looking in the statics even though the psymtab claimed
1320 the symbol was global, or vice-versa. It's possible
1321 that the psymtab gets it wrong in some cases. */
1322
1323 /* FIXME: carlton/2002-09-30: Should we really do that?
1324 If that happens, isn't it likely to be a GDB error, in
1325 which case we should fix the GDB error rather than
1326 silently dealing with it here? So I'd vote for
1327 removing the check for the symbol in the other
1328 block. */
1329 block = BLOCKVECTOR_BLOCK (bv,
1330 kind == GLOBAL_BLOCK ?
1331 STATIC_BLOCK : GLOBAL_BLOCK);
1332 sym = lookup_block_symbol (block, name, domain);
1333 if (!sym)
1334 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1335 kind == GLOBAL_BLOCK ? "global" : "static",
1336 name, symtab->filename, name, name);
1337 }
1338 return fixup_symbol_section (sym, objfile);
8155455b
DC
1339}
1340
5f9a71c3
DC
1341/* A default version of lookup_symbol_nonlocal for use by languages
1342 that can't think of anything better to do. This implements the C
1343 lookup rules. */
1344
1345struct symbol *
1346basic_lookup_symbol_nonlocal (const char *name,
5f9a71c3 1347 const struct block *block,
21b556f4 1348 const domain_enum domain)
5f9a71c3
DC
1349{
1350 struct symbol *sym;
1351
1352 /* NOTE: carlton/2003-05-19: The comments below were written when
1353 this (or what turned into this) was part of lookup_symbol_aux;
1354 I'm much less worried about these questions now, since these
1355 decisions have turned out well, but I leave these comments here
1356 for posterity. */
1357
1358 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1359 not it would be appropriate to search the current global block
1360 here as well. (That's what this code used to do before the
1361 is_a_field_of_this check was moved up.) On the one hand, it's
1362 redundant with the lookup_symbol_aux_symtabs search that happens
1363 next. On the other hand, if decode_line_1 is passed an argument
1364 like filename:var, then the user presumably wants 'var' to be
1365 searched for in filename. On the third hand, there shouldn't be
1366 multiple global variables all of which are named 'var', and it's
1367 not like decode_line_1 has ever restricted its search to only
1368 global variables in a single filename. All in all, only
1369 searching the static block here seems best: it's correct and it's
1370 cleanest. */
1371
1372 /* NOTE: carlton/2002-12-05: There's also a possible performance
1373 issue here: if you usually search for global symbols in the
1374 current file, then it would be slightly better to search the
1375 current global block before searching all the symtabs. But there
1376 are other factors that have a much greater effect on performance
1377 than that one, so I don't think we should worry about that for
1378 now. */
1379
94af9270 1380 sym = lookup_symbol_static (name, block, domain);
5f9a71c3
DC
1381 if (sym != NULL)
1382 return sym;
1383
94af9270 1384 return lookup_symbol_global (name, block, domain);
5f9a71c3
DC
1385}
1386
1387/* Lookup a symbol in the static block associated to BLOCK, if there
1388 is one; do nothing if BLOCK is NULL or a global block. */
1389
1390struct symbol *
1391lookup_symbol_static (const char *name,
5f9a71c3 1392 const struct block *block,
21b556f4 1393 const domain_enum domain)
5f9a71c3
DC
1394{
1395 const struct block *static_block = block_static_block (block);
1396
1397 if (static_block != NULL)
94af9270 1398 return lookup_symbol_aux_block (name, static_block, domain);
5f9a71c3
DC
1399 else
1400 return NULL;
1401}
1402
1403/* Lookup a symbol in all files' global blocks (searching psymtabs if
1404 necessary). */
1405
1406struct symbol *
1407lookup_symbol_global (const char *name,
3a40aaa0 1408 const struct block *block,
21b556f4 1409 const domain_enum domain)
5f9a71c3 1410{
3a40aaa0
UW
1411 struct symbol *sym = NULL;
1412 struct objfile *objfile = NULL;
1413
1414 /* Call library-specific lookup procedure. */
1415 objfile = lookup_objfile_from_block (block);
1416 if (objfile != NULL)
94af9270 1417 sym = solib_global_lookup (objfile, name, domain);
3a40aaa0
UW
1418 if (sym != NULL)
1419 return sym;
5f9a71c3 1420
94af9270 1421 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
5f9a71c3
DC
1422 if (sym != NULL)
1423 return sym;
1424
ccefe4c4
TT
1425 ALL_OBJFILES (objfile)
1426 {
1427 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1428 if (sym)
1429 return sym;
1430 }
1431
1432 return NULL;
5f9a71c3
DC
1433}
1434
5eeb2539 1435int
9af17804 1436symbol_matches_domain (enum language symbol_language,
5eeb2539
AR
1437 domain_enum symbol_domain,
1438 domain_enum domain)
1439{
9af17804 1440 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
5eeb2539
AR
1441 A Java class declaration also defines a typedef for the class.
1442 Similarly, any Ada type declaration implicitly defines a typedef. */
1443 if (symbol_language == language_cplus
6aecb9c2 1444 || symbol_language == language_d
5eeb2539
AR
1445 || symbol_language == language_java
1446 || symbol_language == language_ada)
1447 {
1448 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1449 && symbol_domain == STRUCT_DOMAIN)
1450 return 1;
1451 }
1452 /* For all other languages, strict match is required. */
1453 return (symbol_domain == domain);
1454}
1455
ccefe4c4
TT
1456/* Look up a type named NAME in the struct_domain. The type returned
1457 must not be opaque -- i.e., must have at least one field
1458 defined. */
c906108c 1459
ccefe4c4
TT
1460struct type *
1461lookup_transparent_type (const char *name)
c906108c 1462{
ccefe4c4
TT
1463 return current_language->la_lookup_transparent_type (name);
1464}
9af17804 1465
ccefe4c4
TT
1466/* A helper for basic_lookup_transparent_type that interfaces with the
1467 "quick" symbol table functions. */
357e46e7 1468
ccefe4c4
TT
1469static struct type *
1470basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1471 const char *name)
1472{
1473 struct symtab *symtab;
1474 struct blockvector *bv;
1475 struct block *block;
1476 struct symbol *sym;
c906108c 1477
ccefe4c4
TT
1478 if (!objfile->sf)
1479 return NULL;
1480 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1481 if (!symtab)
1482 return NULL;
c906108c 1483
ccefe4c4
TT
1484 bv = BLOCKVECTOR (symtab);
1485 block = BLOCKVECTOR_BLOCK (bv, kind);
1486 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1487 if (!sym)
9af17804 1488 {
ccefe4c4
TT
1489 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1490
1491 /* This shouldn't be necessary, but as a last resort
1492 * try looking in the 'other kind' even though the psymtab
1493 * claimed the symbol was one thing. It's possible that
1494 * the psymtab gets it wrong in some cases.
1495 */
1496 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1497 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1498 if (!sym)
1499 /* FIXME; error is wrong in one case */
1500 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1501%s may be an inlined function, or may be a template function\n\
1502(if a template, try specifying an instantiation: %s<type>)."),
1503 name, symtab->filename, name, name);
c906108c 1504 }
ccefe4c4
TT
1505 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1506 return SYMBOL_TYPE (sym);
c906108c 1507
ccefe4c4 1508 return NULL;
b368761e 1509}
c906108c 1510
b368761e
DC
1511/* The standard implementation of lookup_transparent_type. This code
1512 was modeled on lookup_symbol -- the parts not relevant to looking
1513 up types were just left out. In particular it's assumed here that
1514 types are available in struct_domain and only at file-static or
1515 global blocks. */
c906108c
SS
1516
1517struct type *
b368761e 1518basic_lookup_transparent_type (const char *name)
c906108c 1519{
52f0bd74
AC
1520 struct symbol *sym;
1521 struct symtab *s = NULL;
c906108c 1522 struct blockvector *bv;
52f0bd74
AC
1523 struct objfile *objfile;
1524 struct block *block;
ccefe4c4 1525 struct type *t;
c906108c
SS
1526
1527 /* Now search all the global symbols. Do the symtab's first, then
1528 check the psymtab's. If a psymtab indicates the existence
1529 of the desired name as a global, then do psymtab-to-symtab
1530 conversion on the fly and return the found symbol. */
c5aa993b 1531
11309657 1532 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1533 {
1534 bv = BLOCKVECTOR (s);
1535 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
94af9270 1536 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
c5aa993b
JM
1537 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1538 {
1539 return SYMBOL_TYPE (sym);
1540 }
1541 }
c906108c 1542
ccefe4c4 1543 ALL_OBJFILES (objfile)
c5aa993b 1544 {
ccefe4c4
TT
1545 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1546 if (t)
1547 return t;
c5aa993b 1548 }
c906108c
SS
1549
1550 /* Now search the static file-level symbols.
1551 Not strictly correct, but more useful than an error.
1552 Do the symtab's first, then
1553 check the psymtab's. If a psymtab indicates the existence
1554 of the desired name as a file-level static, then do psymtab-to-symtab
1555 conversion on the fly and return the found symbol.
1556 */
1557
11309657 1558 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1559 {
1560 bv = BLOCKVECTOR (s);
1561 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
94af9270 1562 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
c5aa993b
JM
1563 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1564 {
1565 return SYMBOL_TYPE (sym);
1566 }
1567 }
c906108c 1568
ccefe4c4 1569 ALL_OBJFILES (objfile)
c5aa993b 1570 {
ccefe4c4
TT
1571 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1572 if (t)
1573 return t;
c5aa993b 1574 }
ccefe4c4 1575
c906108c
SS
1576 return (struct type *) 0;
1577}
1578
1579
ccefe4c4 1580/* Find the name of the file containing main(). */
c906108c
SS
1581/* FIXME: What about languages without main() or specially linked
1582 executables that have no main() ? */
1583
ccefe4c4
TT
1584char *
1585find_main_filename (void)
c906108c 1586{
52f0bd74 1587 struct objfile *objfile;
ccefe4c4 1588 char *result, *name = main_name ();
c906108c 1589
ccefe4c4 1590 ALL_OBJFILES (objfile)
c5aa993b 1591 {
ccefe4c4
TT
1592 if (!objfile->sf)
1593 continue;
1594 result = objfile->sf->qf->find_symbol_file (objfile, name);
1595 if (result)
1596 return result;
c5aa993b 1597 }
c906108c
SS
1598 return (NULL);
1599}
1600
176620f1 1601/* Search BLOCK for symbol NAME in DOMAIN.
c906108c
SS
1602
1603 Note that if NAME is the demangled form of a C++ symbol, we will fail
1604 to find a match during the binary search of the non-encoded names, but
1605 for now we don't worry about the slight inefficiency of looking for
1606 a match we'll never find, since it will go pretty quick. Once the
1607 binary search terminates, we drop through and do a straight linear
1bae87b9 1608 search on the symbols. Each symbol which is marked as being a ObjC/C++
9af17804 1609 symbol (language_cplus or language_objc set) has both the encoded and
1bae87b9 1610 non-encoded names tested for a match.
3121eff0 1611*/
c906108c
SS
1612
1613struct symbol *
aa1ee363 1614lookup_block_symbol (const struct block *block, const char *name,
176620f1 1615 const domain_enum domain)
c906108c 1616{
de4f826b
DC
1617 struct dict_iterator iter;
1618 struct symbol *sym;
c906108c 1619
de4f826b 1620 if (!BLOCK_FUNCTION (block))
261397f8 1621 {
de4f826b
DC
1622 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1623 sym != NULL;
1624 sym = dict_iter_name_next (name, &iter))
261397f8 1625 {
5eeb2539 1626 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
94af9270 1627 SYMBOL_DOMAIN (sym), domain))
261397f8
DJ
1628 return sym;
1629 }
1630 return NULL;
1631 }
526e70c0 1632 else
c906108c 1633 {
526e70c0
DC
1634 /* Note that parameter symbols do not always show up last in the
1635 list; this loop makes sure to take anything else other than
1636 parameter symbols first; it only uses parameter symbols as a
1637 last resort. Note that this only takes up extra computation
1638 time on a match. */
de4f826b
DC
1639
1640 struct symbol *sym_found = NULL;
1641
1642 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1643 sym != NULL;
1644 sym = dict_iter_name_next (name, &iter))
c906108c 1645 {
5eeb2539 1646 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
94af9270 1647 SYMBOL_DOMAIN (sym), domain))
c906108c 1648 {
c906108c 1649 sym_found = sym;
2a2d4dc3 1650 if (!SYMBOL_IS_ARGUMENT (sym))
c906108c
SS
1651 {
1652 break;
1653 }
1654 }
c906108c 1655 }
de4f826b 1656 return (sym_found); /* Will be NULL if not found. */
c906108c 1657 }
c906108c
SS
1658}
1659
c906108c
SS
1660/* Find the symtab associated with PC and SECTION. Look through the
1661 psymtabs and read in another symtab if necessary. */
1662
1663struct symtab *
714835d5 1664find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
c906108c 1665{
52f0bd74 1666 struct block *b;
c906108c 1667 struct blockvector *bv;
52f0bd74
AC
1668 struct symtab *s = NULL;
1669 struct symtab *best_s = NULL;
52f0bd74 1670 struct objfile *objfile;
6c95b8df 1671 struct program_space *pspace;
c906108c 1672 CORE_ADDR distance = 0;
8a48e967
DJ
1673 struct minimal_symbol *msymbol;
1674
6c95b8df
PA
1675 pspace = current_program_space;
1676
8a48e967
DJ
1677 /* If we know that this is not a text address, return failure. This is
1678 necessary because we loop based on the block's high and low code
1679 addresses, which do not include the data ranges, and because
1680 we call find_pc_sect_psymtab which has a similar restriction based
1681 on the partial_symtab's texthigh and textlow. */
1682 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1683 if (msymbol
712f90be
TT
1684 && (MSYMBOL_TYPE (msymbol) == mst_data
1685 || MSYMBOL_TYPE (msymbol) == mst_bss
1686 || MSYMBOL_TYPE (msymbol) == mst_abs
1687 || MSYMBOL_TYPE (msymbol) == mst_file_data
1688 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
8a48e967 1689 return NULL;
c906108c
SS
1690
1691 /* Search all symtabs for the one whose file contains our address, and which
1692 is the smallest of all the ones containing the address. This is designed
1693 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1694 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1695 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1696
1697 This happens for native ecoff format, where code from included files
1698 gets its own symtab. The symtab for the included file should have
1699 been read in already via the dependency mechanism.
1700 It might be swifter to create several symtabs with the same name
1701 like xcoff does (I'm not sure).
1702
1703 It also happens for objfiles that have their functions reordered.
1704 For these, the symtab we are looking for is not necessarily read in. */
1705
11309657 1706 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
1707 {
1708 bv = BLOCKVECTOR (s);
1709 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
c906108c 1710
c5aa993b 1711 if (BLOCK_START (b) <= pc
c5aa993b 1712 && BLOCK_END (b) > pc
c5aa993b
JM
1713 && (distance == 0
1714 || BLOCK_END (b) - BLOCK_START (b) < distance))
1715 {
1716 /* For an objfile that has its functions reordered,
1717 find_pc_psymtab will find the proper partial symbol table
1718 and we simply return its corresponding symtab. */
1719 /* In order to better support objfiles that contain both
1720 stabs and coff debugging info, we continue on if a psymtab
1721 can't be found. */
ccefe4c4 1722 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
c5aa993b 1723 {
ccefe4c4 1724 struct symtab *result;
433759f7 1725
ccefe4c4
TT
1726 result
1727 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1728 msymbol,
1729 pc, section,
1730 0);
1731 if (result)
1732 return result;
c5aa993b
JM
1733 }
1734 if (section != 0)
1735 {
de4f826b 1736 struct dict_iterator iter;
261397f8 1737 struct symbol *sym = NULL;
c906108c 1738
de4f826b 1739 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 1740 {
261397f8 1741 fixup_symbol_section (sym, objfile);
714835d5 1742 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
c5aa993b
JM
1743 break;
1744 }
de4f826b 1745 if (sym == NULL)
c5aa993b
JM
1746 continue; /* no symbol in this symtab matches section */
1747 }
1748 distance = BLOCK_END (b) - BLOCK_START (b);
1749 best_s = s;
1750 }
1751 }
c906108c
SS
1752
1753 if (best_s != NULL)
c5aa993b 1754 return (best_s);
c906108c 1755
ccefe4c4
TT
1756 ALL_OBJFILES (objfile)
1757 {
1758 struct symtab *result;
433759f7 1759
ccefe4c4
TT
1760 if (!objfile->sf)
1761 continue;
1762 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1763 msymbol,
1764 pc, section,
1765 1);
1766 if (result)
1767 return result;
1768 }
1769
1770 return NULL;
c906108c
SS
1771}
1772
1773/* Find the symtab associated with PC. Look through the psymtabs and
1774 read in another symtab if necessary. Backward compatibility, no section */
1775
1776struct symtab *
fba45db2 1777find_pc_symtab (CORE_ADDR pc)
c906108c
SS
1778{
1779 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1780}
c906108c 1781\f
c5aa993b 1782
7e73cedf 1783/* Find the source file and line number for a given PC value and SECTION.
c906108c
SS
1784 Return a structure containing a symtab pointer, a line number,
1785 and a pc range for the entire source line.
1786 The value's .pc field is NOT the specified pc.
1787 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1788 use the line that ends there. Otherwise, in that case, the line
1789 that begins there is used. */
1790
1791/* The big complication here is that a line may start in one file, and end just
1792 before the start of another file. This usually occurs when you #include
1793 code in the middle of a subroutine. To properly find the end of a line's PC
1794 range, we must search all symtabs associated with this compilation unit, and
1795 find the one whose first PC is closer than that of the next line in this
1796 symtab. */
1797
1798/* If it's worth the effort, we could be using a binary search. */
1799
1800struct symtab_and_line
714835d5 1801find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
c906108c
SS
1802{
1803 struct symtab *s;
52f0bd74
AC
1804 struct linetable *l;
1805 int len;
1806 int i;
1807 struct linetable_entry *item;
c906108c
SS
1808 struct symtab_and_line val;
1809 struct blockvector *bv;
1810 struct minimal_symbol *msymbol;
1811 struct minimal_symbol *mfunsym;
1812
1813 /* Info on best line seen so far, and where it starts, and its file. */
1814
1815 struct linetable_entry *best = NULL;
1816 CORE_ADDR best_end = 0;
1817 struct symtab *best_symtab = 0;
1818
1819 /* Store here the first line number
1820 of a file which contains the line at the smallest pc after PC.
1821 If we don't find a line whose range contains PC,
1822 we will use a line one less than this,
1823 with a range from the start of that file to the first line's pc. */
1824 struct linetable_entry *alt = NULL;
1825 struct symtab *alt_symtab = 0;
1826
1827 /* Info on best line seen in this file. */
1828
1829 struct linetable_entry *prev;
1830
1831 /* If this pc is not from the current frame,
1832 it is the address of the end of a call instruction.
1833 Quite likely that is the start of the following statement.
1834 But what we want is the statement containing the instruction.
1835 Fudge the pc to make sure we get that. */
1836
fe39c653 1837 init_sal (&val); /* initialize to zeroes */
c906108c 1838
6c95b8df
PA
1839 val.pspace = current_program_space;
1840
b77b1eb7
JB
1841 /* It's tempting to assume that, if we can't find debugging info for
1842 any function enclosing PC, that we shouldn't search for line
1843 number info, either. However, GAS can emit line number info for
1844 assembly files --- very helpful when debugging hand-written
1845 assembly code. In such a case, we'd have no debug info for the
1846 function, but we would have line info. */
648f4f79 1847
c906108c
SS
1848 if (notcurrent)
1849 pc -= 1;
1850
c5aa993b 1851 /* elz: added this because this function returned the wrong
c906108c
SS
1852 information if the pc belongs to a stub (import/export)
1853 to call a shlib function. This stub would be anywhere between
9af17804
DE
1854 two functions in the target, and the line info was erroneously
1855 taken to be the one of the line before the pc.
c5aa993b 1856 */
c906108c 1857 /* RT: Further explanation:
c5aa993b 1858
c906108c
SS
1859 * We have stubs (trampolines) inserted between procedures.
1860 *
1861 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1862 * exists in the main image.
1863 *
1864 * In the minimal symbol table, we have a bunch of symbols
1865 * sorted by start address. The stubs are marked as "trampoline",
1866 * the others appear as text. E.g.:
1867 *
9af17804 1868 * Minimal symbol table for main image
c906108c
SS
1869 * main: code for main (text symbol)
1870 * shr1: stub (trampoline symbol)
1871 * foo: code for foo (text symbol)
1872 * ...
1873 * Minimal symbol table for "shr1" image:
1874 * ...
1875 * shr1: code for shr1 (text symbol)
1876 * ...
1877 *
1878 * So the code below is trying to detect if we are in the stub
1879 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1880 * and if found, do the symbolization from the real-code address
1881 * rather than the stub address.
1882 *
1883 * Assumptions being made about the minimal symbol table:
1884 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1885 * if we're really in the trampoline. If we're beyond it (say
9af17804 1886 * we're in "foo" in the above example), it'll have a closer
c906108c
SS
1887 * symbol (the "foo" text symbol for example) and will not
1888 * return the trampoline.
1889 * 2. lookup_minimal_symbol_text() will find a real text symbol
1890 * corresponding to the trampoline, and whose address will
1891 * be different than the trampoline address. I put in a sanity
1892 * check for the address being the same, to avoid an
1893 * infinite recursion.
1894 */
c5aa993b
JM
1895 msymbol = lookup_minimal_symbol_by_pc (pc);
1896 if (msymbol != NULL)
c906108c 1897 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
c5aa993b 1898 {
2335f48e 1899 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
5520a790 1900 NULL);
c5aa993b
JM
1901 if (mfunsym == NULL)
1902 /* I eliminated this warning since it is coming out
1903 * in the following situation:
1904 * gdb shmain // test program with shared libraries
1905 * (gdb) break shr1 // function in shared lib
1906 * Warning: In stub for ...
9af17804 1907 * In the above situation, the shared lib is not loaded yet,
c5aa993b
JM
1908 * so of course we can't find the real func/line info,
1909 * but the "break" still works, and the warning is annoying.
1910 * So I commented out the warning. RT */
2335f48e 1911 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b 1912 /* fall through */
82cf6c60 1913 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
c5aa993b
JM
1914 /* Avoid infinite recursion */
1915 /* See above comment about why warning is commented out */
2335f48e 1916 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
c5aa993b
JM
1917 /* fall through */
1918 else
82cf6c60 1919 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
c5aa993b 1920 }
c906108c
SS
1921
1922
1923 s = find_pc_sect_symtab (pc, section);
1924 if (!s)
1925 {
1926 /* if no symbol information, return previous pc */
1927 if (notcurrent)
1928 pc++;
1929 val.pc = pc;
1930 return val;
1931 }
1932
1933 bv = BLOCKVECTOR (s);
1934
1935 /* Look at all the symtabs that share this blockvector.
1936 They all have the same apriori range, that we found was right;
1937 but they have different line tables. */
1938
1939 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1940 {
1941 /* Find the best line in this symtab. */
1942 l = LINETABLE (s);
1943 if (!l)
c5aa993b 1944 continue;
c906108c
SS
1945 len = l->nitems;
1946 if (len <= 0)
1947 {
1948 /* I think len can be zero if the symtab lacks line numbers
1949 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1950 I'm not sure which, and maybe it depends on the symbol
1951 reader). */
1952 continue;
1953 }
1954
1955 prev = NULL;
1956 item = l->item; /* Get first line info */
1957
1958 /* Is this file's first line closer than the first lines of other files?
c5aa993b 1959 If so, record this file, and its first line, as best alternate. */
c906108c
SS
1960 if (item->pc > pc && (!alt || item->pc < alt->pc))
1961 {
1962 alt = item;
1963 alt_symtab = s;
1964 }
1965
1966 for (i = 0; i < len; i++, item++)
1967 {
1968 /* Leave prev pointing to the linetable entry for the last line
1969 that started at or before PC. */
1970 if (item->pc > pc)
1971 break;
1972
1973 prev = item;
1974 }
1975
1976 /* At this point, prev points at the line whose start addr is <= pc, and
c5aa993b
JM
1977 item points at the next line. If we ran off the end of the linetable
1978 (pc >= start of the last line), then prev == item. If pc < start of
1979 the first line, prev will not be set. */
c906108c
SS
1980
1981 /* Is this file's best line closer than the best in the other files?
083ae935
DJ
1982 If so, record this file, and its best line, as best so far. Don't
1983 save prev if it represents the end of a function (i.e. line number
1984 0) instead of a real line. */
c906108c 1985
083ae935 1986 if (prev && prev->line && (!best || prev->pc > best->pc))
c906108c
SS
1987 {
1988 best = prev;
1989 best_symtab = s;
25d53da1
KB
1990
1991 /* Discard BEST_END if it's before the PC of the current BEST. */
1992 if (best_end <= best->pc)
1993 best_end = 0;
c906108c 1994 }
25d53da1
KB
1995
1996 /* If another line (denoted by ITEM) is in the linetable and its
1997 PC is after BEST's PC, but before the current BEST_END, then
1998 use ITEM's PC as the new best_end. */
1999 if (best && i < len && item->pc > best->pc
2000 && (best_end == 0 || best_end > item->pc))
2001 best_end = item->pc;
c906108c
SS
2002 }
2003
2004 if (!best_symtab)
2005 {
e86e87f7
DJ
2006 /* If we didn't find any line number info, just return zeros.
2007 We used to return alt->line - 1 here, but that could be
2008 anywhere; if we don't have line number info for this PC,
2009 don't make some up. */
2010 val.pc = pc;
c906108c 2011 }
e8717518
FF
2012 else if (best->line == 0)
2013 {
2014 /* If our best fit is in a range of PC's for which no line
2015 number info is available (line number is zero) then we didn't
2016 find any valid line information. */
2017 val.pc = pc;
2018 }
c906108c
SS
2019 else
2020 {
2021 val.symtab = best_symtab;
2022 val.line = best->line;
2023 val.pc = best->pc;
2024 if (best_end && (!alt || best_end < alt->pc))
2025 val.end = best_end;
2026 else if (alt)
2027 val.end = alt->pc;
2028 else
2029 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2030 }
2031 val.section = section;
2032 return val;
2033}
2034
2035/* Backward compatibility (no section) */
2036
2037struct symtab_and_line
fba45db2 2038find_pc_line (CORE_ADDR pc, int notcurrent)
c906108c 2039{
714835d5 2040 struct obj_section *section;
c906108c
SS
2041
2042 section = find_pc_overlay (pc);
2043 if (pc_in_unmapped_range (pc, section))
2044 pc = overlay_mapped_address (pc, section);
2045 return find_pc_sect_line (pc, section, notcurrent);
2046}
c906108c 2047\f
c906108c
SS
2048/* Find line number LINE in any symtab whose name is the same as
2049 SYMTAB.
2050
2051 If found, return the symtab that contains the linetable in which it was
2052 found, set *INDEX to the index in the linetable of the best entry
2053 found, and set *EXACT_MATCH nonzero if the value returned is an
2054 exact match.
2055
2056 If not found, return NULL. */
2057
50641945 2058struct symtab *
433759f7
MS
2059find_line_symtab (struct symtab *symtab, int line,
2060 int *index, int *exact_match)
c906108c 2061{
6f43c46f 2062 int exact = 0; /* Initialized here to avoid a compiler warning. */
c906108c
SS
2063
2064 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2065 so far seen. */
2066
2067 int best_index;
2068 struct linetable *best_linetable;
2069 struct symtab *best_symtab;
2070
2071 /* First try looking it up in the given symtab. */
2072 best_linetable = LINETABLE (symtab);
2073 best_symtab = symtab;
2074 best_index = find_line_common (best_linetable, line, &exact);
2075 if (best_index < 0 || !exact)
2076 {
2077 /* Didn't find an exact match. So we better keep looking for
c5aa993b
JM
2078 another symtab with the same name. In the case of xcoff,
2079 multiple csects for one source file (produced by IBM's FORTRAN
2080 compiler) produce multiple symtabs (this is unavoidable
2081 assuming csects can be at arbitrary places in memory and that
2082 the GLOBAL_BLOCK of a symtab has a begin and end address). */
c906108c
SS
2083
2084 /* BEST is the smallest linenumber > LINE so far seen,
c5aa993b
JM
2085 or 0 if none has been seen so far.
2086 BEST_INDEX and BEST_LINETABLE identify the item for it. */
c906108c
SS
2087 int best;
2088
2089 struct objfile *objfile;
2090 struct symtab *s;
2091
2092 if (best_index >= 0)
2093 best = best_linetable->item[best_index].line;
2094 else
2095 best = 0;
2096
ccefe4c4 2097 ALL_OBJFILES (objfile)
51432cca 2098 {
ccefe4c4
TT
2099 if (objfile->sf)
2100 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2101 symtab->filename);
51432cca
CES
2102 }
2103
3ffc00b8
JB
2104 /* Get symbol full file name if possible. */
2105 symtab_to_fullname (symtab);
2106
c906108c 2107 ALL_SYMTABS (objfile, s)
c5aa993b
JM
2108 {
2109 struct linetable *l;
2110 int ind;
c906108c 2111
3ffc00b8 2112 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
c5aa993b 2113 continue;
3ffc00b8
JB
2114 if (symtab->fullname != NULL
2115 && symtab_to_fullname (s) != NULL
2116 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2117 continue;
c5aa993b
JM
2118 l = LINETABLE (s);
2119 ind = find_line_common (l, line, &exact);
2120 if (ind >= 0)
2121 {
2122 if (exact)
2123 {
2124 best_index = ind;
2125 best_linetable = l;
2126 best_symtab = s;
2127 goto done;
2128 }
2129 if (best == 0 || l->item[ind].line < best)
2130 {
2131 best = l->item[ind].line;
2132 best_index = ind;
2133 best_linetable = l;
2134 best_symtab = s;
2135 }
2136 }
2137 }
c906108c 2138 }
c5aa993b 2139done:
c906108c
SS
2140 if (best_index < 0)
2141 return NULL;
2142
2143 if (index)
2144 *index = best_index;
2145 if (exact_match)
2146 *exact_match = exact;
2147
2148 return best_symtab;
2149}
2150\f
2151/* Set the PC value for a given source file and line number and return true.
2152 Returns zero for invalid line number (and sets the PC to 0).
2153 The source file is specified with a struct symtab. */
2154
2155int
fba45db2 2156find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
c906108c
SS
2157{
2158 struct linetable *l;
2159 int ind;
2160
2161 *pc = 0;
2162 if (symtab == 0)
2163 return 0;
2164
2165 symtab = find_line_symtab (symtab, line, &ind, NULL);
2166 if (symtab != NULL)
2167 {
2168 l = LINETABLE (symtab);
2169 *pc = l->item[ind].pc;
2170 return 1;
2171 }
2172 else
2173 return 0;
2174}
2175
2176/* Find the range of pc values in a line.
2177 Store the starting pc of the line into *STARTPTR
2178 and the ending pc (start of next line) into *ENDPTR.
2179 Returns 1 to indicate success.
2180 Returns 0 if could not find the specified line. */
2181
2182int
fba45db2
KB
2183find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2184 CORE_ADDR *endptr)
c906108c
SS
2185{
2186 CORE_ADDR startaddr;
2187 struct symtab_and_line found_sal;
2188
2189 startaddr = sal.pc;
c5aa993b 2190 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
c906108c
SS
2191 return 0;
2192
2193 /* This whole function is based on address. For example, if line 10 has
2194 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2195 "info line *0x123" should say the line goes from 0x100 to 0x200
2196 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2197 This also insures that we never give a range like "starts at 0x134
2198 and ends at 0x12c". */
2199
2200 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2201 if (found_sal.line != sal.line)
2202 {
2203 /* The specified line (sal) has zero bytes. */
2204 *startptr = found_sal.pc;
2205 *endptr = found_sal.pc;
2206 }
2207 else
2208 {
2209 *startptr = found_sal.pc;
2210 *endptr = found_sal.end;
2211 }
2212 return 1;
2213}
2214
2215/* Given a line table and a line number, return the index into the line
2216 table for the pc of the nearest line whose number is >= the specified one.
2217 Return -1 if none is found. The value is >= 0 if it is an index.
2218
2219 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2220
2221static int
aa1ee363 2222find_line_common (struct linetable *l, int lineno,
fba45db2 2223 int *exact_match)
c906108c 2224{
52f0bd74
AC
2225 int i;
2226 int len;
c906108c
SS
2227
2228 /* BEST is the smallest linenumber > LINENO so far seen,
2229 or 0 if none has been seen so far.
2230 BEST_INDEX identifies the item for it. */
2231
2232 int best_index = -1;
2233 int best = 0;
2234
b7589f7d
DJ
2235 *exact_match = 0;
2236
c906108c
SS
2237 if (lineno <= 0)
2238 return -1;
2239 if (l == 0)
2240 return -1;
2241
2242 len = l->nitems;
2243 for (i = 0; i < len; i++)
2244 {
aa1ee363 2245 struct linetable_entry *item = &(l->item[i]);
c906108c
SS
2246
2247 if (item->line == lineno)
2248 {
2249 /* Return the first (lowest address) entry which matches. */
2250 *exact_match = 1;
2251 return i;
2252 }
2253
2254 if (item->line > lineno && (best == 0 || item->line < best))
2255 {
2256 best = item->line;
2257 best_index = i;
2258 }
2259 }
2260
2261 /* If we got here, we didn't get an exact match. */
c906108c
SS
2262 return best_index;
2263}
2264
2265int
fba45db2 2266find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
c906108c
SS
2267{
2268 struct symtab_and_line sal;
433759f7 2269
c906108c
SS
2270 sal = find_pc_line (pc, 0);
2271 *startptr = sal.pc;
2272 *endptr = sal.end;
2273 return sal.symtab != 0;
2274}
2275
8c7a1ee8
EZ
2276/* Given a function start address FUNC_ADDR and SYMTAB, find the first
2277 address for that function that has an entry in SYMTAB's line info
2278 table. If such an entry cannot be found, return FUNC_ADDR
2279 unaltered. */
2280CORE_ADDR
2281skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2282{
2283 CORE_ADDR func_start, func_end;
2284 struct linetable *l;
952a6d41 2285 int i;
8c7a1ee8
EZ
2286
2287 /* Give up if this symbol has no lineinfo table. */
2288 l = LINETABLE (symtab);
2289 if (l == NULL)
2290 return func_addr;
2291
2292 /* Get the range for the function's PC values, or give up if we
2293 cannot, for some reason. */
2294 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2295 return func_addr;
2296
2297 /* Linetable entries are ordered by PC values, see the commentary in
2298 symtab.h where `struct linetable' is defined. Thus, the first
2299 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2300 address we are looking for. */
2301 for (i = 0; i < l->nitems; i++)
2302 {
2303 struct linetable_entry *item = &(l->item[i]);
2304
2305 /* Don't use line numbers of zero, they mark special entries in
2306 the table. See the commentary on symtab.h before the
2307 definition of struct linetable. */
2308 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2309 return item->pc;
2310 }
2311
2312 return func_addr;
2313}
2314
c906108c
SS
2315/* Given a function symbol SYM, find the symtab and line for the start
2316 of the function.
2317 If the argument FUNFIRSTLINE is nonzero, we want the first line
2318 of real code inside the function. */
2319
50641945 2320struct symtab_and_line
fba45db2 2321find_function_start_sal (struct symbol *sym, int funfirstline)
c906108c 2322{
059acae7
UW
2323 struct symtab_and_line sal;
2324
2325 fixup_symbol_section (sym, NULL);
2326 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2327 SYMBOL_OBJ_SECTION (sym), 0);
2328
86da934b
UW
2329 /* We always should have a line for the function start address.
2330 If we don't, something is odd. Create a plain SAL refering
2331 just the PC and hope that skip_prologue_sal (if requested)
2332 can find a line number for after the prologue. */
2333 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2334 {
2335 init_sal (&sal);
2336 sal.pspace = current_program_space;
2337 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2338 sal.section = SYMBOL_OBJ_SECTION (sym);
2339 }
2340
059acae7
UW
2341 if (funfirstline)
2342 skip_prologue_sal (&sal);
bccdca4a 2343
059acae7
UW
2344 return sal;
2345}
2346
2347/* Adjust SAL to the first instruction past the function prologue.
2348 If the PC was explicitly specified, the SAL is not changed.
2349 If the line number was explicitly specified, at most the SAL's PC
2350 is updated. If SAL is already past the prologue, then do nothing. */
2351void
2352skip_prologue_sal (struct symtab_and_line *sal)
2353{
2354 struct symbol *sym;
2355 struct symtab_and_line start_sal;
2356 struct cleanup *old_chain;
c906108c 2357 CORE_ADDR pc;
059acae7
UW
2358 struct obj_section *section;
2359 const char *name;
2360 struct objfile *objfile;
2361 struct gdbarch *gdbarch;
edb3359d 2362 struct block *b, *function_block;
c906108c 2363
059acae7
UW
2364 /* Do not change the SAL is PC was specified explicitly. */
2365 if (sal->explicit_pc)
2366 return;
6c95b8df
PA
2367
2368 old_chain = save_current_space_and_thread ();
059acae7 2369 switch_to_program_space_and_thread (sal->pspace);
6c95b8df 2370
059acae7
UW
2371 sym = find_pc_sect_function (sal->pc, sal->section);
2372 if (sym != NULL)
bccdca4a 2373 {
059acae7
UW
2374 fixup_symbol_section (sym, NULL);
2375
2376 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2377 section = SYMBOL_OBJ_SECTION (sym);
2378 name = SYMBOL_LINKAGE_NAME (sym);
2379 objfile = SYMBOL_SYMTAB (sym)->objfile;
c906108c 2380 }
059acae7
UW
2381 else
2382 {
2383 struct minimal_symbol *msymbol
2384 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
433759f7 2385
059acae7
UW
2386 if (msymbol == NULL)
2387 {
2388 do_cleanups (old_chain);
2389 return;
2390 }
2391
2392 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2393 section = SYMBOL_OBJ_SECTION (msymbol);
2394 name = SYMBOL_LINKAGE_NAME (msymbol);
2395 objfile = msymbol_objfile (msymbol);
2396 }
2397
2398 gdbarch = get_objfile_arch (objfile);
2399
2400 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2401 so that gdbarch_skip_prologue has something unique to work on. */
2402 if (section_is_overlay (section) && !section_is_mapped (section))
2403 pc = overlay_unmapped_address (pc, section);
2404
2405 /* Skip "first line" of function (which is actually its prologue). */
2406 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2407 pc = gdbarch_skip_prologue (gdbarch, pc);
2408
2409 /* For overlays, map pc back into its mapped VMA range. */
2410 pc = overlay_mapped_address (pc, section);
2411
2412 /* Calculate line number. */
2413 start_sal = find_pc_sect_line (pc, section, 0);
c906108c 2414
a433963d 2415 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
c906108c 2416 line is still part of the same function. */
059acae7
UW
2417 if (start_sal.pc != pc
2418 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2419 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2420 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2421 == lookup_minimal_symbol_by_pc_section (pc, section))))
c906108c
SS
2422 {
2423 /* First pc of next line */
059acae7 2424 pc = start_sal.end;
c906108c 2425 /* Recalculate the line number (might not be N+1). */
059acae7 2426 start_sal = find_pc_sect_line (pc, section, 0);
c906108c 2427 }
4309257c
PM
2428
2429 /* On targets with executable formats that don't have a concept of
2430 constructors (ELF with .init has, PE doesn't), gcc emits a call
2431 to `__main' in `main' between the prologue and before user
2432 code. */
059acae7
UW
2433 if (gdbarch_skip_main_prologue_p (gdbarch)
2434 && name && strcmp (name, "main") == 0)
4309257c 2435 {
d80b854b 2436 pc = gdbarch_skip_main_prologue (gdbarch, pc);
4309257c 2437 /* Recalculate the line number (might not be N+1). */
059acae7 2438 start_sal = find_pc_sect_line (pc, section, 0);
4309257c
PM
2439 }
2440
8c7a1ee8
EZ
2441 /* If we still don't have a valid source line, try to find the first
2442 PC in the lineinfo table that belongs to the same function. This
2443 happens with COFF debug info, which does not seem to have an
2444 entry in lineinfo table for the code after the prologue which has
2445 no direct relation to source. For example, this was found to be
2446 the case with the DJGPP target using "gcc -gcoff" when the
2447 compiler inserted code after the prologue to make sure the stack
2448 is aligned. */
059acae7 2449 if (sym && start_sal.symtab == NULL)
8c7a1ee8
EZ
2450 {
2451 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2452 /* Recalculate the line number. */
059acae7 2453 start_sal = find_pc_sect_line (pc, section, 0);
8c7a1ee8
EZ
2454 }
2455
059acae7
UW
2456 do_cleanups (old_chain);
2457
2458 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2459 forward SAL to the end of the prologue. */
2460 if (sal->pc >= pc)
2461 return;
2462
2463 sal->pc = pc;
2464 sal->section = section;
2465
2466 /* Unless the explicit_line flag was set, update the SAL line
2467 and symtab to correspond to the modified PC location. */
2468 if (sal->explicit_line)
2469 return;
2470
2471 sal->symtab = start_sal.symtab;
2472 sal->line = start_sal.line;
2473 sal->end = start_sal.end;
c906108c 2474
edb3359d
DJ
2475 /* Check if we are now inside an inlined function. If we can,
2476 use the call site of the function instead. */
059acae7 2477 b = block_for_pc_sect (sal->pc, sal->section);
edb3359d
DJ
2478 function_block = NULL;
2479 while (b != NULL)
2480 {
2481 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2482 function_block = b;
2483 else if (BLOCK_FUNCTION (b) != NULL)
2484 break;
2485 b = BLOCK_SUPERBLOCK (b);
2486 }
2487 if (function_block != NULL
2488 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2489 {
059acae7
UW
2490 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2491 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
edb3359d 2492 }
c906108c 2493}
50641945 2494
c906108c
SS
2495/* If P is of the form "operator[ \t]+..." where `...' is
2496 some legitimate operator text, return a pointer to the
2497 beginning of the substring of the operator text.
2498 Otherwise, return "". */
2499char *
fba45db2 2500operator_chars (char *p, char **end)
c906108c
SS
2501{
2502 *end = "";
2503 if (strncmp (p, "operator", 8))
2504 return *end;
2505 p += 8;
2506
2507 /* Don't get faked out by `operator' being part of a longer
2508 identifier. */
c5aa993b 2509 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
c906108c
SS
2510 return *end;
2511
2512 /* Allow some whitespace between `operator' and the operator symbol. */
2513 while (*p == ' ' || *p == '\t')
2514 p++;
2515
2516 /* Recognize 'operator TYPENAME'. */
2517
c5aa993b 2518 if (isalpha (*p) || *p == '_' || *p == '$')
c906108c 2519 {
aa1ee363 2520 char *q = p + 1;
433759f7 2521
c5aa993b 2522 while (isalnum (*q) || *q == '_' || *q == '$')
c906108c
SS
2523 q++;
2524 *end = q;
2525 return p;
2526 }
2527
53e8ad3d
MS
2528 while (*p)
2529 switch (*p)
2530 {
2531 case '\\': /* regexp quoting */
2532 if (p[1] == '*')
2533 {
2534 if (p[2] == '=') /* 'operator\*=' */
2535 *end = p + 3;
2536 else /* 'operator\*' */
2537 *end = p + 2;
2538 return p;
2539 }
2540 else if (p[1] == '[')
2541 {
2542 if (p[2] == ']')
8a3fe4f8 2543 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
53e8ad3d
MS
2544 else if (p[2] == '\\' && p[3] == ']')
2545 {
2546 *end = p + 4; /* 'operator\[\]' */
2547 return p;
2548 }
2549 else
8a3fe4f8 2550 error (_("nothing is allowed between '[' and ']'"));
53e8ad3d 2551 }
9af17804 2552 else
53e8ad3d
MS
2553 {
2554 /* Gratuitous qoute: skip it and move on. */
2555 p++;
2556 continue;
2557 }
2558 break;
2559 case '!':
2560 case '=':
2561 case '*':
2562 case '/':
2563 case '%':
2564 case '^':
2565 if (p[1] == '=')
2566 *end = p + 2;
2567 else
2568 *end = p + 1;
2569 return p;
2570 case '<':
2571 case '>':
2572 case '+':
2573 case '-':
2574 case '&':
2575 case '|':
2576 if (p[0] == '-' && p[1] == '>')
2577 {
2578 /* Struct pointer member operator 'operator->'. */
2579 if (p[2] == '*')
2580 {
2581 *end = p + 3; /* 'operator->*' */
2582 return p;
2583 }
2584 else if (p[2] == '\\')
2585 {
2586 *end = p + 4; /* Hopefully 'operator->\*' */
2587 return p;
2588 }
2589 else
2590 {
2591 *end = p + 2; /* 'operator->' */
2592 return p;
2593 }
2594 }
2595 if (p[1] == '=' || p[1] == p[0])
2596 *end = p + 2;
2597 else
2598 *end = p + 1;
2599 return p;
2600 case '~':
2601 case ',':
c5aa993b 2602 *end = p + 1;
53e8ad3d
MS
2603 return p;
2604 case '(':
2605 if (p[1] != ')')
8a3fe4f8 2606 error (_("`operator ()' must be specified without whitespace in `()'"));
c5aa993b 2607 *end = p + 2;
53e8ad3d
MS
2608 return p;
2609 case '?':
2610 if (p[1] != ':')
8a3fe4f8 2611 error (_("`operator ?:' must be specified without whitespace in `?:'"));
53e8ad3d
MS
2612 *end = p + 2;
2613 return p;
2614 case '[':
2615 if (p[1] != ']')
8a3fe4f8 2616 error (_("`operator []' must be specified without whitespace in `[]'"));
53e8ad3d
MS
2617 *end = p + 2;
2618 return p;
2619 default:
8a3fe4f8 2620 error (_("`operator %s' not supported"), p);
53e8ad3d
MS
2621 break;
2622 }
2623
c906108c
SS
2624 *end = "";
2625 return *end;
2626}
c906108c 2627\f
c5aa993b 2628
c94fdfd0
EZ
2629/* If FILE is not already in the table of files, return zero;
2630 otherwise return non-zero. Optionally add FILE to the table if ADD
2631 is non-zero. If *FIRST is non-zero, forget the old table
2632 contents. */
2633static int
2634filename_seen (const char *file, int add, int *first)
c906108c 2635{
c94fdfd0
EZ
2636 /* Table of files seen so far. */
2637 static const char **tab = NULL;
c906108c
SS
2638 /* Allocated size of tab in elements.
2639 Start with one 256-byte block (when using GNU malloc.c).
2640 24 is the malloc overhead when range checking is in effect. */
2641 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2642 /* Current size of tab in elements. */
2643 static int tab_cur_size;
c94fdfd0 2644 const char **p;
c906108c
SS
2645
2646 if (*first)
2647 {
2648 if (tab == NULL)
c94fdfd0 2649 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
c906108c
SS
2650 tab_cur_size = 0;
2651 }
2652
c94fdfd0 2653 /* Is FILE in tab? */
c906108c 2654 for (p = tab; p < tab + tab_cur_size; p++)
c94fdfd0
EZ
2655 if (strcmp (*p, file) == 0)
2656 return 1;
2657
2658 /* No; maybe add it to tab. */
2659 if (add)
c906108c 2660 {
c94fdfd0
EZ
2661 if (tab_cur_size == tab_alloc_size)
2662 {
2663 tab_alloc_size *= 2;
2664 tab = (const char **) xrealloc ((char *) tab,
2665 tab_alloc_size * sizeof (*tab));
2666 }
2667 tab[tab_cur_size++] = file;
c906108c 2668 }
c906108c 2669
c94fdfd0
EZ
2670 return 0;
2671}
2672
2673/* Slave routine for sources_info. Force line breaks at ,'s.
2674 NAME is the name to print and *FIRST is nonzero if this is the first
2675 name printed. Set *FIRST to zero. */
2676static void
d092d1a2 2677output_source_filename (const char *name, int *first)
c94fdfd0
EZ
2678{
2679 /* Since a single source file can result in several partial symbol
2680 tables, we need to avoid printing it more than once. Note: if
2681 some of the psymtabs are read in and some are not, it gets
2682 printed both under "Source files for which symbols have been
2683 read" and "Source files for which symbols will be read in on
2684 demand". I consider this a reasonable way to deal with the
2685 situation. I'm not sure whether this can also happen for
2686 symtabs; it doesn't hurt to check. */
2687
2688 /* Was NAME already seen? */
2689 if (filename_seen (name, 1, first))
2690 {
2691 /* Yes; don't print it again. */
2692 return;
2693 }
2694 /* No; print it and reset *FIRST. */
c906108c
SS
2695 if (*first)
2696 {
2697 *first = 0;
2698 }
2699 else
2700 {
2701 printf_filtered (", ");
2702 }
2703
2704 wrap_here ("");
2705 fputs_filtered (name, gdb_stdout);
c5aa993b 2706}
c906108c 2707
ccefe4c4
TT
2708/* A callback for map_partial_symbol_filenames. */
2709static void
2710output_partial_symbol_filename (const char *fullname, const char *filename,
2711 void *data)
2712{
2713 output_source_filename (fullname ? fullname : filename, data);
2714}
2715
c906108c 2716static void
fba45db2 2717sources_info (char *ignore, int from_tty)
c906108c 2718{
52f0bd74 2719 struct symtab *s;
52f0bd74 2720 struct objfile *objfile;
c906108c 2721 int first;
c5aa993b 2722
c906108c
SS
2723 if (!have_full_symbols () && !have_partial_symbols ())
2724 {
8a3fe4f8 2725 error (_("No symbol table is loaded. Use the \"file\" command."));
c906108c 2726 }
c5aa993b 2727
c906108c
SS
2728 printf_filtered ("Source files for which symbols have been read in:\n\n");
2729
2730 first = 1;
2731 ALL_SYMTABS (objfile, s)
c5aa993b 2732 {
d092d1a2 2733 const char *fullname = symtab_to_fullname (s);
433759f7 2734
d092d1a2 2735 output_source_filename (fullname ? fullname : s->filename, &first);
c5aa993b 2736 }
c906108c 2737 printf_filtered ("\n\n");
c5aa993b 2738
c906108c
SS
2739 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2740
2741 first = 1;
ccefe4c4 2742 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
c906108c
SS
2743 printf_filtered ("\n");
2744}
2745
2746static int
ccefe4c4 2747file_matches (const char *file, char *files[], int nfiles)
c906108c
SS
2748{
2749 int i;
2750
2751 if (file != NULL && nfiles != 0)
2752 {
2753 for (i = 0; i < nfiles; i++)
c5aa993b 2754 {
31889e00 2755 if (strcmp (files[i], lbasename (file)) == 0)
c5aa993b
JM
2756 return 1;
2757 }
c906108c
SS
2758 }
2759 else if (nfiles == 0)
2760 return 1;
2761 return 0;
2762}
2763
2764/* Free any memory associated with a search. */
2765void
fba45db2 2766free_search_symbols (struct symbol_search *symbols)
c906108c
SS
2767{
2768 struct symbol_search *p;
2769 struct symbol_search *next;
2770
2771 for (p = symbols; p != NULL; p = next)
2772 {
2773 next = p->next;
b8c9b27d 2774 xfree (p);
c906108c
SS
2775 }
2776}
2777
5bd98722
AC
2778static void
2779do_free_search_symbols_cleanup (void *symbols)
2780{
2781 free_search_symbols (symbols);
2782}
2783
2784struct cleanup *
2785make_cleanup_free_search_symbols (struct symbol_search *symbols)
2786{
2787 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2788}
2789
434d2d4f
DJ
2790/* Helper function for sort_search_symbols and qsort. Can only
2791 sort symbols, not minimal symbols. */
2792static int
2793compare_search_syms (const void *sa, const void *sb)
2794{
2795 struct symbol_search **sym_a = (struct symbol_search **) sa;
2796 struct symbol_search **sym_b = (struct symbol_search **) sb;
2797
de5ad195
DC
2798 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2799 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
434d2d4f
DJ
2800}
2801
2802/* Sort the ``nfound'' symbols in the list after prevtail. Leave
2803 prevtail where it is, but update its next pointer to point to
2804 the first of the sorted symbols. */
2805static struct symbol_search *
2806sort_search_symbols (struct symbol_search *prevtail, int nfound)
2807{
2808 struct symbol_search **symbols, *symp, *old_next;
2809 int i;
2810
2811 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2812 * nfound);
2813 symp = prevtail->next;
2814 for (i = 0; i < nfound; i++)
2815 {
2816 symbols[i] = symp;
2817 symp = symp->next;
2818 }
2819 /* Generally NULL. */
2820 old_next = symp;
2821
2822 qsort (symbols, nfound, sizeof (struct symbol_search *),
2823 compare_search_syms);
2824
2825 symp = prevtail;
2826 for (i = 0; i < nfound; i++)
2827 {
2828 symp->next = symbols[i];
2829 symp = symp->next;
2830 }
2831 symp->next = old_next;
2832
8ed32cc0 2833 xfree (symbols);
434d2d4f
DJ
2834 return symp;
2835}
5bd98722 2836
ccefe4c4
TT
2837/* An object of this type is passed as the user_data to the
2838 expand_symtabs_matching method. */
2839struct search_symbols_data
2840{
2841 int nfiles;
2842 char **files;
2843 char *regexp;
2844};
2845
2846/* A callback for expand_symtabs_matching. */
2847static int
2848search_symbols_file_matches (const char *filename, void *user_data)
2849{
2850 struct search_symbols_data *data = user_data;
433759f7 2851
ccefe4c4
TT
2852 return file_matches (filename, data->files, data->nfiles);
2853}
2854
2855/* A callback for expand_symtabs_matching. */
2856static int
2857search_symbols_name_matches (const char *symname, void *user_data)
2858{
2859 struct search_symbols_data *data = user_data;
433759f7 2860
ccefe4c4
TT
2861 return data->regexp == NULL || re_exec (symname);
2862}
2863
c906108c
SS
2864/* Search the symbol table for matches to the regular expression REGEXP,
2865 returning the results in *MATCHES.
2866
2867 Only symbols of KIND are searched:
176620f1
EZ
2868 FUNCTIONS_DOMAIN - search all functions
2869 TYPES_DOMAIN - search all type names
176620f1 2870 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
c5aa993b 2871 and constants (enums)
c906108c
SS
2872
2873 free_search_symbols should be called when *MATCHES is no longer needed.
434d2d4f
DJ
2874
2875 The results are sorted locally; each symtab's global and static blocks are
2876 separately alphabetized.
c5aa993b 2877 */
c906108c 2878void
176620f1 2879search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
fd118b61 2880 struct symbol_search **matches)
c906108c 2881{
52f0bd74 2882 struct symtab *s;
52f0bd74 2883 struct blockvector *bv;
52f0bd74
AC
2884 struct block *b;
2885 int i = 0;
de4f826b 2886 struct dict_iterator iter;
52f0bd74 2887 struct symbol *sym;
c906108c
SS
2888 struct objfile *objfile;
2889 struct minimal_symbol *msymbol;
2890 char *val;
2891 int found_misc = 0;
2892 static enum minimal_symbol_type types[]
433759f7 2893 = {mst_data, mst_text, mst_abs, mst_unknown};
c906108c 2894 static enum minimal_symbol_type types2[]
433759f7 2895 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
c906108c 2896 static enum minimal_symbol_type types3[]
433759f7 2897 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
c906108c 2898 static enum minimal_symbol_type types4[]
433759f7 2899 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
c906108c
SS
2900 enum minimal_symbol_type ourtype;
2901 enum minimal_symbol_type ourtype2;
2902 enum minimal_symbol_type ourtype3;
2903 enum minimal_symbol_type ourtype4;
2904 struct symbol_search *sr;
2905 struct symbol_search *psr;
2906 struct symbol_search *tail;
2907 struct cleanup *old_chain = NULL;
ccefe4c4 2908 struct search_symbols_data datum;
c906108c 2909
176620f1 2910 if (kind < VARIABLES_DOMAIN)
8a3fe4f8 2911 error (_("must search on specific domain"));
c906108c 2912
176620f1
EZ
2913 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2914 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2915 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2916 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
c906108c
SS
2917
2918 sr = *matches = NULL;
2919 tail = NULL;
2920
2921 if (regexp != NULL)
2922 {
2923 /* Make sure spacing is right for C++ operators.
2924 This is just a courtesy to make the matching less sensitive
2925 to how many spaces the user leaves between 'operator'
2926 and <TYPENAME> or <OPERATOR>. */
2927 char *opend;
2928 char *opname = operator_chars (regexp, &opend);
433759f7 2929
c906108c 2930 if (*opname)
c5aa993b
JM
2931 {
2932 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
433759f7 2933
c5aa993b
JM
2934 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2935 {
2936 /* There should 1 space between 'operator' and 'TYPENAME'. */
2937 if (opname[-1] != ' ' || opname[-2] == ' ')
2938 fix = 1;
2939 }
2940 else
2941 {
2942 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2943 if (opname[-1] == ' ')
2944 fix = 0;
2945 }
2946 /* If wrong number of spaces, fix it. */
2947 if (fix >= 0)
2948 {
045f55a6 2949 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
433759f7 2950
c5aa993b
JM
2951 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2952 regexp = tmp;
2953 }
2954 }
2955
c906108c 2956 if (0 != (val = re_comp (regexp)))
8a3fe4f8 2957 error (_("Invalid regexp (%s): %s"), val, regexp);
c906108c
SS
2958 }
2959
2960 /* Search through the partial symtabs *first* for all symbols
2961 matching the regexp. That way we don't have to reproduce all of
2962 the machinery below. */
2963
ccefe4c4
TT
2964 datum.nfiles = nfiles;
2965 datum.files = files;
2966 datum.regexp = regexp;
2967 ALL_OBJFILES (objfile)
c5aa993b 2968 {
ccefe4c4
TT
2969 if (objfile->sf)
2970 objfile->sf->qf->expand_symtabs_matching (objfile,
2971 search_symbols_file_matches,
2972 search_symbols_name_matches,
2973 kind,
2974 &datum);
c5aa993b 2975 }
c906108c
SS
2976
2977 /* Here, we search through the minimal symbol tables for functions
2978 and variables that match, and force their symbols to be read.
2979 This is in particular necessary for demangled variable names,
2980 which are no longer put into the partial symbol tables.
2981 The symbol will then be found during the scan of symtabs below.
2982
2983 For functions, find_pc_symtab should succeed if we have debug info
2984 for the function, for variables we have to call lookup_symbol
2985 to determine if the variable has debug info.
2986 If the lookup fails, set found_misc so that we will rescan to print
2987 any matching symbols without debug info.
c5aa993b 2988 */
c906108c 2989
176620f1 2990 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
c906108c
SS
2991 {
2992 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b 2993 {
89295b4d
PP
2994 QUIT;
2995
c5aa993b
JM
2996 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2997 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2998 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2999 MSYMBOL_TYPE (msymbol) == ourtype4)
3000 {
25120b0d
DC
3001 if (regexp == NULL
3002 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
3003 {
3004 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3005 {
b1262a02
DC
3006 /* FIXME: carlton/2003-02-04: Given that the
3007 semantics of lookup_symbol keeps on changing
3008 slightly, it would be a nice idea if we had a
3009 function lookup_symbol_minsym that found the
3010 symbol associated to a given minimal symbol (if
3011 any). */
176620f1 3012 if (kind == FUNCTIONS_DOMAIN
2335f48e 3013 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
b1262a02 3014 (struct block *) NULL,
2570f2b7 3015 VAR_DOMAIN, 0)
53c5240f 3016 == NULL)
b1262a02 3017 found_misc = 1;
c5aa993b
JM
3018 }
3019 }
3020 }
3021 }
c906108c
SS
3022 }
3023
11309657 3024 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3025 {
3026 bv = BLOCKVECTOR (s);
c5aa993b
JM
3027 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3028 {
434d2d4f
DJ
3029 struct symbol_search *prevtail = tail;
3030 int nfound = 0;
433759f7 3031
c5aa993b 3032 b = BLOCKVECTOR_BLOCK (bv, i);
de4f826b 3033 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3034 {
cb1df416 3035 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
433759f7 3036
c5aa993b 3037 QUIT;
cb1df416
DJ
3038
3039 if (file_matches (real_symtab->filename, files, nfiles)
25120b0d
DC
3040 && ((regexp == NULL
3041 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
176620f1 3042 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
0fe7935b 3043 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
c5aa993b
JM
3044 && SYMBOL_CLASS (sym) != LOC_BLOCK
3045 && SYMBOL_CLASS (sym) != LOC_CONST)
176620f1 3046 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
bd2e94ce 3047 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
c5aa993b
JM
3048 {
3049 /* match */
3050 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3051 psr->block = i;
cb1df416 3052 psr->symtab = real_symtab;
c5aa993b
JM
3053 psr->symbol = sym;
3054 psr->msymbol = NULL;
3055 psr->next = NULL;
3056 if (tail == NULL)
434d2d4f 3057 sr = psr;
c5aa993b
JM
3058 else
3059 tail->next = psr;
3060 tail = psr;
434d2d4f
DJ
3061 nfound ++;
3062 }
3063 }
3064 if (nfound > 0)
3065 {
3066 if (prevtail == NULL)
3067 {
3068 struct symbol_search dummy;
3069
3070 dummy.next = sr;
3071 tail = sort_search_symbols (&dummy, nfound);
3072 sr = dummy.next;
3073
3074 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b 3075 }
434d2d4f
DJ
3076 else
3077 tail = sort_search_symbols (prevtail, nfound);
c5aa993b
JM
3078 }
3079 }
c5aa993b 3080 }
c906108c
SS
3081
3082 /* If there are no eyes, avoid all contact. I mean, if there are
3083 no debug symbols, then print directly from the msymbol_vector. */
3084
176620f1 3085 if (found_misc || kind != FUNCTIONS_DOMAIN)
c906108c
SS
3086 {
3087 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b 3088 {
89295b4d
PP
3089 QUIT;
3090
c5aa993b
JM
3091 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3092 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3093 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3094 MSYMBOL_TYPE (msymbol) == ourtype4)
3095 {
25120b0d
DC
3096 if (regexp == NULL
3097 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
c5aa993b
JM
3098 {
3099 /* Functions: Look up by address. */
176620f1 3100 if (kind != FUNCTIONS_DOMAIN ||
c5aa993b
JM
3101 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3102 {
3103 /* Variables/Absolutes: Look up by name */
2335f48e 3104 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2570f2b7
UW
3105 (struct block *) NULL, VAR_DOMAIN, 0)
3106 == NULL)
c5aa993b
JM
3107 {
3108 /* match */
3109 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3110 psr->block = i;
3111 psr->msymbol = msymbol;
3112 psr->symtab = NULL;
3113 psr->symbol = NULL;
3114 psr->next = NULL;
3115 if (tail == NULL)
3116 {
3117 sr = psr;
5bd98722 3118 old_chain = make_cleanup_free_search_symbols (sr);
c5aa993b
JM
3119 }
3120 else
3121 tail->next = psr;
3122 tail = psr;
3123 }
3124 }
3125 }
3126 }
3127 }
c906108c
SS
3128 }
3129
3130 *matches = sr;
3131 if (sr != NULL)
3132 discard_cleanups (old_chain);
3133}
3134
3135/* Helper function for symtab_symbol_info, this function uses
3136 the data returned from search_symbols() to print information
3137 regarding the match to gdb_stdout.
c5aa993b 3138 */
c906108c 3139static void
176620f1 3140print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
fba45db2 3141 int block, char *last)
c906108c
SS
3142{
3143 if (last == NULL || strcmp (last, s->filename) != 0)
3144 {
3145 fputs_filtered ("\nFile ", gdb_stdout);
3146 fputs_filtered (s->filename, gdb_stdout);
3147 fputs_filtered (":\n", gdb_stdout);
3148 }
3149
176620f1 3150 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
c906108c 3151 printf_filtered ("static ");
c5aa993b 3152
c906108c 3153 /* Typedef that is not a C++ class */
176620f1
EZ
3154 if (kind == TYPES_DOMAIN
3155 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
a5238fbc 3156 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
c906108c 3157 /* variable, func, or typedef-that-is-c++-class */
176620f1
EZ
3158 else if (kind < TYPES_DOMAIN ||
3159 (kind == TYPES_DOMAIN &&
3160 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
c906108c
SS
3161 {
3162 type_print (SYMBOL_TYPE (sym),
c5aa993b 3163 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
de5ad195 3164 ? "" : SYMBOL_PRINT_NAME (sym)),
c5aa993b 3165 gdb_stdout, 0);
c906108c
SS
3166
3167 printf_filtered (";\n");
3168 }
c906108c
SS
3169}
3170
3171/* This help function for symtab_symbol_info() prints information
3172 for non-debugging symbols to gdb_stdout.
c5aa993b 3173 */
c906108c 3174static void
fba45db2 3175print_msymbol_info (struct minimal_symbol *msymbol)
c906108c 3176{
d80b854b 3177 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3ac4495a
MS
3178 char *tmp;
3179
d80b854b 3180 if (gdbarch_addr_bit (gdbarch) <= 32)
bb599908
PH
3181 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3182 & (CORE_ADDR) 0xffffffff,
3183 8);
3ac4495a 3184 else
bb599908
PH
3185 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3186 16);
3ac4495a 3187 printf_filtered ("%s %s\n",
de5ad195 3188 tmp, SYMBOL_PRINT_NAME (msymbol));
c906108c
SS
3189}
3190
3191/* This is the guts of the commands "info functions", "info types", and
3192 "info variables". It calls search_symbols to find all matches and then
3193 print_[m]symbol_info to print out some useful information about the
3194 matches.
c5aa993b 3195 */
c906108c 3196static void
176620f1 3197symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
c906108c 3198{
433759f7 3199 static char *classnames[] = {"variable", "function", "type", "method"};
c906108c
SS
3200 struct symbol_search *symbols;
3201 struct symbol_search *p;
3202 struct cleanup *old_chain;
3203 char *last_filename = NULL;
3204 int first = 1;
3205
3206 /* must make sure that if we're interrupted, symbols gets freed */
3207 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
5bd98722 3208 old_chain = make_cleanup_free_search_symbols (symbols);
c906108c
SS
3209
3210 printf_filtered (regexp
c5aa993b
JM
3211 ? "All %ss matching regular expression \"%s\":\n"
3212 : "All defined %ss:\n",
176620f1 3213 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
c906108c
SS
3214
3215 for (p = symbols; p != NULL; p = p->next)
3216 {
3217 QUIT;
3218
3219 if (p->msymbol != NULL)
c5aa993b
JM
3220 {
3221 if (first)
3222 {
3223 printf_filtered ("\nNon-debugging symbols:\n");
3224 first = 0;
3225 }
3226 print_msymbol_info (p->msymbol);
3227 }
c906108c 3228 else
c5aa993b
JM
3229 {
3230 print_symbol_info (kind,
3231 p->symtab,
3232 p->symbol,
3233 p->block,
3234 last_filename);
3235 last_filename = p->symtab->filename;
3236 }
c906108c
SS
3237 }
3238
3239 do_cleanups (old_chain);
3240}
3241
3242static void
fba45db2 3243variables_info (char *regexp, int from_tty)
c906108c 3244{
176620f1 3245 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
c906108c
SS
3246}
3247
3248static void
fba45db2 3249functions_info (char *regexp, int from_tty)
c906108c 3250{
176620f1 3251 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
c906108c
SS
3252}
3253
357e46e7 3254
c906108c 3255static void
fba45db2 3256types_info (char *regexp, int from_tty)
c906108c 3257{
176620f1 3258 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
c906108c
SS
3259}
3260
c906108c 3261/* Breakpoint all functions matching regular expression. */
8926118c 3262
8b93c638 3263void
fba45db2 3264rbreak_command_wrapper (char *regexp, int from_tty)
8b93c638
JM
3265{
3266 rbreak_command (regexp, from_tty);
3267}
8926118c 3268
95a42b64
TT
3269/* A cleanup function that calls end_rbreak_breakpoints. */
3270
3271static void
3272do_end_rbreak_breakpoints (void *ignore)
3273{
3274 end_rbreak_breakpoints ();
3275}
3276
c906108c 3277static void
fba45db2 3278rbreak_command (char *regexp, int from_tty)
c906108c
SS
3279{
3280 struct symbol_search *ss;
3281 struct symbol_search *p;
3282 struct cleanup *old_chain;
95a42b64
TT
3283 char *string = NULL;
3284 int len = 0;
8bd10a10
CM
3285 char **files = NULL;
3286 int nfiles = 0;
c906108c 3287
8bd10a10
CM
3288 if (regexp)
3289 {
3290 char *colon = strchr (regexp, ':');
433759f7 3291
8bd10a10
CM
3292 if (colon && *(colon + 1) != ':')
3293 {
3294 int colon_index;
3295 char * file_name;
3296
3297 colon_index = colon - regexp;
3298 file_name = alloca (colon_index + 1);
3299 memcpy (file_name, regexp, colon_index);
3300 file_name[colon_index--] = 0;
3301 while (isspace (file_name[colon_index]))
3302 file_name[colon_index--] = 0;
3303 files = &file_name;
3304 nfiles = 1;
3305 regexp = colon + 1;
3306 while (isspace (*regexp)) regexp++;
3307 }
3308 }
3309
3310 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
5bd98722 3311 old_chain = make_cleanup_free_search_symbols (ss);
95a42b64 3312 make_cleanup (free_current_contents, &string);
c906108c 3313
95a42b64
TT
3314 start_rbreak_breakpoints ();
3315 make_cleanup (do_end_rbreak_breakpoints, NULL);
c906108c
SS
3316 for (p = ss; p != NULL; p = p->next)
3317 {
3318 if (p->msymbol == NULL)
c5aa993b 3319 {
95a42b64
TT
3320 int newlen = (strlen (p->symtab->filename)
3321 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3322 + 4);
433759f7 3323
95a42b64
TT
3324 if (newlen > len)
3325 {
3326 string = xrealloc (string, newlen);
3327 len = newlen;
3328 }
c5aa993b
JM
3329 strcpy (string, p->symtab->filename);
3330 strcat (string, ":'");
2335f48e 3331 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
c5aa993b
JM
3332 strcat (string, "'");
3333 break_command (string, from_tty);
176620f1 3334 print_symbol_info (FUNCTIONS_DOMAIN,
c5aa993b
JM
3335 p->symtab,
3336 p->symbol,
3337 p->block,
3338 p->symtab->filename);
3339 }
c906108c 3340 else
c5aa993b 3341 {
433759f7
MS
3342 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3343
95a42b64
TT
3344 if (newlen > len)
3345 {
3346 string = xrealloc (string, newlen);
3347 len = newlen;
3348 }
6214f497
DJ
3349 strcpy (string, "'");
3350 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3351 strcat (string, "'");
3352
3353 break_command (string, from_tty);
c5aa993b 3354 printf_filtered ("<function, no debug info> %s;\n",
de5ad195 3355 SYMBOL_PRINT_NAME (p->msymbol));
c5aa993b 3356 }
c906108c
SS
3357 }
3358
3359 do_cleanups (old_chain);
3360}
c906108c 3361\f
c5aa993b 3362
c906108c
SS
3363/* Helper routine for make_symbol_completion_list. */
3364
3365static int return_val_size;
3366static int return_val_index;
3367static char **return_val;
3368
3369#define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
c906108c 3370 completion_list_add_name \
2335f48e 3371 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
c906108c
SS
3372
3373/* Test to see if the symbol specified by SYMNAME (which is already
c5aa993b
JM
3374 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3375 characters. If so, add it to the current completion list. */
c906108c
SS
3376
3377static void
fba45db2
KB
3378completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3379 char *text, char *word)
c906108c
SS
3380{
3381 int newsize;
c906108c
SS
3382
3383 /* clip symbols that cannot match */
3384
3385 if (strncmp (symname, sym_text, sym_text_len) != 0)
3386 {
3387 return;
3388 }
3389
c906108c
SS
3390 /* We have a match for a completion, so add SYMNAME to the current list
3391 of matches. Note that the name is moved to freshly malloc'd space. */
3392
3393 {
3394 char *new;
433759f7 3395
c906108c
SS
3396 if (word == sym_text)
3397 {
3398 new = xmalloc (strlen (symname) + 5);
3399 strcpy (new, symname);
3400 }
3401 else if (word > sym_text)
3402 {
3403 /* Return some portion of symname. */
3404 new = xmalloc (strlen (symname) + 5);
3405 strcpy (new, symname + (word - sym_text));
3406 }
3407 else
3408 {
3409 /* Return some of SYM_TEXT plus symname. */
3410 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3411 strncpy (new, word, sym_text - word);
3412 new[sym_text - word] = '\0';
3413 strcat (new, symname);
3414 }
3415
c906108c
SS
3416 if (return_val_index + 3 > return_val_size)
3417 {
3418 newsize = (return_val_size *= 2) * sizeof (char *);
3419 return_val = (char **) xrealloc ((char *) return_val, newsize);
3420 }
3421 return_val[return_val_index++] = new;
3422 return_val[return_val_index] = NULL;
3423 }
3424}
3425
69636828
AF
3426/* ObjC: In case we are completing on a selector, look as the msymbol
3427 again and feed all the selectors into the mill. */
3428
3429static void
3430completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3431 int sym_text_len, char *text, char *word)
3432{
3433 static char *tmp = NULL;
3434 static unsigned int tmplen = 0;
9af17804 3435
69636828
AF
3436 char *method, *category, *selector;
3437 char *tmp2 = NULL;
9af17804 3438
69636828
AF
3439 method = SYMBOL_NATURAL_NAME (msymbol);
3440
3441 /* Is it a method? */
3442 if ((method[0] != '-') && (method[0] != '+'))
3443 return;
3444
3445 if (sym_text[0] == '[')
3446 /* Complete on shortened method method. */
3447 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
9af17804 3448
69636828
AF
3449 while ((strlen (method) + 1) >= tmplen)
3450 {
3451 if (tmplen == 0)
3452 tmplen = 1024;
3453 else
3454 tmplen *= 2;
3455 tmp = xrealloc (tmp, tmplen);
3456 }
3457 selector = strchr (method, ' ');
3458 if (selector != NULL)
3459 selector++;
9af17804 3460
69636828 3461 category = strchr (method, '(');
9af17804 3462
69636828
AF
3463 if ((category != NULL) && (selector != NULL))
3464 {
3465 memcpy (tmp, method, (category - method));
3466 tmp[category - method] = ' ';
3467 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3468 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3469 if (sym_text[0] == '[')
3470 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3471 }
9af17804 3472
69636828
AF
3473 if (selector != NULL)
3474 {
3475 /* Complete on selector only. */
3476 strcpy (tmp, selector);
3477 tmp2 = strchr (tmp, ']');
3478 if (tmp2 != NULL)
3479 *tmp2 = '\0';
9af17804 3480
69636828
AF
3481 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3482 }
3483}
3484
3485/* Break the non-quoted text based on the characters which are in
3486 symbols. FIXME: This should probably be language-specific. */
3487
3488static char *
3489language_search_unquoted_string (char *text, char *p)
3490{
3491 for (; p > text; --p)
3492 {
3493 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3494 continue;
3495 else
3496 {
3497 if ((current_language->la_language == language_objc))
3498 {
3499 if (p[-1] == ':') /* might be part of a method name */
3500 continue;
3501 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3502 p -= 2; /* beginning of a method name */
3503 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3504 { /* might be part of a method name */
3505 char *t = p;
3506
3507 /* Seeing a ' ' or a '(' is not conclusive evidence
3508 that we are in the middle of a method name. However,
3509 finding "-[" or "+[" should be pretty un-ambiguous.
3510 Unfortunately we have to find it now to decide. */
3511
3512 while (t > text)
3513 if (isalnum (t[-1]) || t[-1] == '_' ||
3514 t[-1] == ' ' || t[-1] == ':' ||
3515 t[-1] == '(' || t[-1] == ')')
3516 --t;
3517 else
3518 break;
3519
3520 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3521 p = t - 2; /* method name detected */
3522 /* else we leave with p unchanged */
3523 }
3524 }
3525 break;
3526 }
3527 }
3528 return p;
3529}
3530
edb3359d
DJ
3531static void
3532completion_list_add_fields (struct symbol *sym, char *sym_text,
3533 int sym_text_len, char *text, char *word)
3534{
3535 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3536 {
3537 struct type *t = SYMBOL_TYPE (sym);
3538 enum type_code c = TYPE_CODE (t);
3539 int j;
3540
3541 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3542 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3543 if (TYPE_FIELD_NAME (t, j))
3544 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3545 sym_text, sym_text_len, text, word);
3546 }
3547}
3548
ccefe4c4
TT
3549/* Type of the user_data argument passed to add_macro_name or
3550 add_partial_symbol_name. The contents are simply whatever is
3551 needed by completion_list_add_name. */
3552struct add_name_data
9a044a89
TT
3553{
3554 char *sym_text;
3555 int sym_text_len;
3556 char *text;
3557 char *word;
3558};
3559
3560/* A callback used with macro_for_each and macro_for_each_in_scope.
3561 This adds a macro's name to the current completion list. */
3562static void
3563add_macro_name (const char *name, const struct macro_definition *ignore,
3564 void *user_data)
3565{
ccefe4c4 3566 struct add_name_data *datum = (struct add_name_data *) user_data;
433759f7 3567
ccefe4c4
TT
3568 completion_list_add_name ((char *) name,
3569 datum->sym_text, datum->sym_text_len,
3570 datum->text, datum->word);
3571}
3572
3573/* A callback for map_partial_symbol_names. */
3574static void
3575add_partial_symbol_name (const char *name, void *user_data)
3576{
3577 struct add_name_data *datum = (struct add_name_data *) user_data;
433759f7 3578
9a044a89
TT
3579 completion_list_add_name ((char *) name,
3580 datum->sym_text, datum->sym_text_len,
3581 datum->text, datum->word);
3582}
3583
c906108c 3584char **
41d27058 3585default_make_symbol_completion_list (char *text, char *word)
c906108c 3586{
41d27058
JB
3587 /* Problem: All of the symbols have to be copied because readline
3588 frees them. I'm not going to worry about this; hopefully there
3589 won't be that many. */
3590
de4f826b
DC
3591 struct symbol *sym;
3592 struct symtab *s;
de4f826b
DC
3593 struct minimal_symbol *msymbol;
3594 struct objfile *objfile;
edb3359d
DJ
3595 struct block *b;
3596 const struct block *surrounding_static_block, *surrounding_global_block;
de4f826b 3597 struct dict_iterator iter;
c906108c
SS
3598 /* The symbol we are completing on. Points in same buffer as text. */
3599 char *sym_text;
3600 /* Length of sym_text. */
3601 int sym_text_len;
ccefe4c4 3602 struct add_name_data datum;
c906108c 3603
41d27058 3604 /* Now look for the symbol we are supposed to complete on. */
c906108c
SS
3605 {
3606 char *p;
3607 char quote_found;
3608 char *quote_pos = NULL;
3609
3610 /* First see if this is a quoted string. */
3611 quote_found = '\0';
3612 for (p = text; *p != '\0'; ++p)
3613 {
3614 if (quote_found != '\0')
3615 {
3616 if (*p == quote_found)
3617 /* Found close quote. */
3618 quote_found = '\0';
3619 else if (*p == '\\' && p[1] == quote_found)
3620 /* A backslash followed by the quote character
c5aa993b 3621 doesn't end the string. */
c906108c
SS
3622 ++p;
3623 }
3624 else if (*p == '\'' || *p == '"')
3625 {
3626 quote_found = *p;
3627 quote_pos = p;
3628 }
3629 }
3630 if (quote_found == '\'')
3631 /* A string within single quotes can be a symbol, so complete on it. */
3632 sym_text = quote_pos + 1;
3633 else if (quote_found == '"')
3634 /* A double-quoted string is never a symbol, nor does it make sense
c5aa993b 3635 to complete it any other way. */
c94fdfd0
EZ
3636 {
3637 return_val = (char **) xmalloc (sizeof (char *));
3638 return_val[0] = NULL;
3639 return return_val;
3640 }
c906108c
SS
3641 else
3642 {
3643 /* It is not a quoted string. Break it based on the characters
3644 which are in symbols. */
3645 while (p > text)
3646 {
95699ff0
KS
3647 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3648 || p[-1] == ':')
c906108c
SS
3649 --p;
3650 else
3651 break;
3652 }
3653 sym_text = p;
3654 }
3655 }
3656
3657 sym_text_len = strlen (sym_text);
3658
3659 return_val_size = 100;
3660 return_val_index = 0;
3661 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3662 return_val[0] = NULL;
3663
ccefe4c4
TT
3664 datum.sym_text = sym_text;
3665 datum.sym_text_len = sym_text_len;
3666 datum.text = text;
3667 datum.word = word;
3668
c906108c
SS
3669 /* Look through the partial symtabs for all symbols which begin
3670 by matching SYM_TEXT. Add each one that you find to the list. */
ccefe4c4 3671 map_partial_symbol_names (add_partial_symbol_name, &datum);
c906108c
SS
3672
3673 /* At this point scan through the misc symbol vectors and add each
3674 symbol you find to the list. Eventually we want to ignore
3675 anything that isn't a text symbol (everything else will be
3676 handled by the psymtab code above). */
3677
3678 ALL_MSYMBOLS (objfile, msymbol)
c5aa993b
JM
3679 {
3680 QUIT;
3681 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
9af17804 3682
69636828 3683 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
c5aa993b 3684 }
c906108c
SS
3685
3686 /* Search upwards from currently selected frame (so that we can
edb3359d
DJ
3687 complete on local vars). Also catch fields of types defined in
3688 this places which match our text string. Only complete on types
3689 visible from current context. */
3690
3691 b = get_selected_block (0);
3692 surrounding_static_block = block_static_block (b);
3693 surrounding_global_block = block_global_block (b);
3694 if (surrounding_static_block != NULL)
3695 while (b != surrounding_static_block)
3696 {
3697 QUIT;
c906108c 3698
edb3359d
DJ
3699 ALL_BLOCK_SYMBOLS (b, iter, sym)
3700 {
3701 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3702 word);
3703 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3704 word);
3705 }
c5aa993b 3706
edb3359d
DJ
3707 /* Stop when we encounter an enclosing function. Do not stop for
3708 non-inlined functions - the locals of the enclosing function
3709 are in scope for a nested function. */
3710 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3711 break;
3712 b = BLOCK_SUPERBLOCK (b);
3713 }
c906108c 3714
edb3359d 3715 /* Add fields from the file's types; symbols will be added below. */
c906108c 3716
edb3359d
DJ
3717 if (surrounding_static_block != NULL)
3718 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3719 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3720
3721 if (surrounding_global_block != NULL)
3722 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3723 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
c906108c
SS
3724
3725 /* Go through the symtabs and check the externs and statics for
3726 symbols which match. */
3727
11309657 3728 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3729 {
3730 QUIT;
3731 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 3732 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3733 {
c5aa993b
JM
3734 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3735 }
3736 }
c906108c 3737
11309657 3738 ALL_PRIMARY_SYMTABS (objfile, s)
c5aa993b
JM
3739 {
3740 QUIT;
3741 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
de4f826b 3742 ALL_BLOCK_SYMBOLS (b, iter, sym)
c5aa993b 3743 {
c5aa993b
JM
3744 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3745 }
3746 }
c906108c 3747
9a044a89
TT
3748 if (current_language->la_macro_expansion == macro_expansion_c)
3749 {
3750 struct macro_scope *scope;
9a044a89
TT
3751
3752 /* Add any macros visible in the default scope. Note that this
3753 may yield the occasional wrong result, because an expression
3754 might be evaluated in a scope other than the default. For
3755 example, if the user types "break file:line if <TAB>", the
3756 resulting expression will be evaluated at "file:line" -- but
3757 at there does not seem to be a way to detect this at
3758 completion time. */
3759 scope = default_macro_scope ();
3760 if (scope)
3761 {
3762 macro_for_each_in_scope (scope->file, scope->line,
3763 add_macro_name, &datum);
3764 xfree (scope);
3765 }
3766
3767 /* User-defined macros are always visible. */
3768 macro_for_each (macro_user_macros, add_macro_name, &datum);
3769 }
3770
c906108c
SS
3771 return (return_val);
3772}
3773
41d27058
JB
3774/* Return a NULL terminated array of all symbols (regardless of class)
3775 which begin by matching TEXT. If the answer is no symbols, then
3776 the return value is an array which contains only a NULL pointer. */
3777
3778char **
3779make_symbol_completion_list (char *text, char *word)
3780{
3781 return current_language->la_make_symbol_completion_list (text, word);
3782}
3783
d8906c6f
TJB
3784/* Like make_symbol_completion_list, but suitable for use as a
3785 completion function. */
3786
3787char **
3788make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3789 char *text, char *word)
3790{
3791 return make_symbol_completion_list (text, word);
3792}
3793
c94fdfd0
EZ
3794/* Like make_symbol_completion_list, but returns a list of symbols
3795 defined in a source file FILE. */
3796
3797char **
3798make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3799{
52f0bd74
AC
3800 struct symbol *sym;
3801 struct symtab *s;
3802 struct block *b;
de4f826b 3803 struct dict_iterator iter;
c94fdfd0
EZ
3804 /* The symbol we are completing on. Points in same buffer as text. */
3805 char *sym_text;
3806 /* Length of sym_text. */
3807 int sym_text_len;
3808
3809 /* Now look for the symbol we are supposed to complete on.
3810 FIXME: This should be language-specific. */
3811 {
3812 char *p;
3813 char quote_found;
3814 char *quote_pos = NULL;
3815
3816 /* First see if this is a quoted string. */
3817 quote_found = '\0';
3818 for (p = text; *p != '\0'; ++p)
3819 {
3820 if (quote_found != '\0')
3821 {
3822 if (*p == quote_found)
3823 /* Found close quote. */
3824 quote_found = '\0';
3825 else if (*p == '\\' && p[1] == quote_found)
3826 /* A backslash followed by the quote character
3827 doesn't end the string. */
3828 ++p;
3829 }
3830 else if (*p == '\'' || *p == '"')
3831 {
3832 quote_found = *p;
3833 quote_pos = p;
3834 }
3835 }
3836 if (quote_found == '\'')
3837 /* A string within single quotes can be a symbol, so complete on it. */
3838 sym_text = quote_pos + 1;
3839 else if (quote_found == '"')
3840 /* A double-quoted string is never a symbol, nor does it make sense
3841 to complete it any other way. */
3842 {
3843 return_val = (char **) xmalloc (sizeof (char *));
3844 return_val[0] = NULL;
3845 return return_val;
3846 }
3847 else
3848 {
69636828
AF
3849 /* Not a quoted string. */
3850 sym_text = language_search_unquoted_string (text, p);
c94fdfd0
EZ
3851 }
3852 }
3853
3854 sym_text_len = strlen (sym_text);
3855
3856 return_val_size = 10;
3857 return_val_index = 0;
3858 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3859 return_val[0] = NULL;
3860
3861 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3862 in). */
3863 s = lookup_symtab (srcfile);
3864 if (s == NULL)
3865 {
3866 /* Maybe they typed the file with leading directories, while the
3867 symbol tables record only its basename. */
31889e00 3868 const char *tail = lbasename (srcfile);
c94fdfd0
EZ
3869
3870 if (tail > srcfile)
3871 s = lookup_symtab (tail);
3872 }
3873
3874 /* If we have no symtab for that file, return an empty list. */
3875 if (s == NULL)
3876 return (return_val);
3877
3878 /* Go through this symtab and check the externs and statics for
3879 symbols which match. */
3880
3881 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
de4f826b 3882 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 3883 {
c94fdfd0
EZ
3884 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3885 }
3886
3887 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
de4f826b 3888 ALL_BLOCK_SYMBOLS (b, iter, sym)
c94fdfd0 3889 {
c94fdfd0
EZ
3890 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3891 }
3892
3893 return (return_val);
3894}
3895
3896/* A helper function for make_source_files_completion_list. It adds
3897 another file name to a list of possible completions, growing the
3898 list as necessary. */
3899
3900static void
3901add_filename_to_list (const char *fname, char *text, char *word,
3902 char ***list, int *list_used, int *list_alloced)
3903{
3904 char *new;
3905 size_t fnlen = strlen (fname);
3906
3907 if (*list_used + 1 >= *list_alloced)
3908 {
3909 *list_alloced *= 2;
3910 *list = (char **) xrealloc ((char *) *list,
3911 *list_alloced * sizeof (char *));
3912 }
3913
3914 if (word == text)
3915 {
3916 /* Return exactly fname. */
3917 new = xmalloc (fnlen + 5);
3918 strcpy (new, fname);
3919 }
3920 else if (word > text)
3921 {
3922 /* Return some portion of fname. */
3923 new = xmalloc (fnlen + 5);
3924 strcpy (new, fname + (word - text));
3925 }
3926 else
3927 {
3928 /* Return some of TEXT plus fname. */
3929 new = xmalloc (fnlen + (text - word) + 5);
3930 strncpy (new, word, text - word);
3931 new[text - word] = '\0';
3932 strcat (new, fname);
3933 }
3934 (*list)[*list_used] = new;
3935 (*list)[++*list_used] = NULL;
3936}
3937
3938static int
3939not_interesting_fname (const char *fname)
3940{
3941 static const char *illegal_aliens[] = {
3942 "_globals_", /* inserted by coff_symtab_read */
3943 NULL
3944 };
3945 int i;
3946
3947 for (i = 0; illegal_aliens[i]; i++)
3948 {
3949 if (strcmp (fname, illegal_aliens[i]) == 0)
3950 return 1;
3951 }
3952 return 0;
3953}
3954
ccefe4c4
TT
3955/* An object of this type is passed as the user_data argument to
3956 map_partial_symbol_filenames. */
3957struct add_partial_filename_data
3958{
3959 int *first;
3960 char *text;
3961 char *word;
3962 int text_len;
3963 char ***list;
3964 int *list_used;
3965 int *list_alloced;
3966};
3967
3968/* A callback for map_partial_symbol_filenames. */
3969static void
3970maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3971 void *user_data)
3972{
3973 struct add_partial_filename_data *data = user_data;
3974
3975 if (not_interesting_fname (filename))
3976 return;
3977 if (!filename_seen (filename, 1, data->first)
3978#if HAVE_DOS_BASED_FILE_SYSTEM
3979 && strncasecmp (filename, data->text, data->text_len) == 0
3980#else
3981 && strncmp (filename, data->text, data->text_len) == 0
3982#endif
3983 )
3984 {
3985 /* This file matches for a completion; add it to the
3986 current list of matches. */
3987 add_filename_to_list (filename, data->text, data->word,
3988 data->list, data->list_used, data->list_alloced);
3989 }
3990 else
3991 {
3992 const char *base_name = lbasename (filename);
433759f7 3993
ccefe4c4
TT
3994 if (base_name != filename
3995 && !filename_seen (base_name, 1, data->first)
3996#if HAVE_DOS_BASED_FILE_SYSTEM
3997 && strncasecmp (base_name, data->text, data->text_len) == 0
3998#else
3999 && strncmp (base_name, data->text, data->text_len) == 0
4000#endif
4001 )
4002 add_filename_to_list (base_name, data->text, data->word,
4003 data->list, data->list_used, data->list_alloced);
4004 }
4005}
4006
c94fdfd0
EZ
4007/* Return a NULL terminated array of all source files whose names
4008 begin with matching TEXT. The file names are looked up in the
4009 symbol tables of this program. If the answer is no matchess, then
4010 the return value is an array which contains only a NULL pointer. */
4011
4012char **
4013make_source_files_completion_list (char *text, char *word)
4014{
52f0bd74 4015 struct symtab *s;
52f0bd74 4016 struct objfile *objfile;
c94fdfd0
EZ
4017 int first = 1;
4018 int list_alloced = 1;
4019 int list_used = 0;
4020 size_t text_len = strlen (text);
4021 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
31889e00 4022 const char *base_name;
ccefe4c4 4023 struct add_partial_filename_data datum;
c94fdfd0
EZ
4024
4025 list[0] = NULL;
4026
4027 if (!have_full_symbols () && !have_partial_symbols ())
4028 return list;
4029
4030 ALL_SYMTABS (objfile, s)
4031 {
4032 if (not_interesting_fname (s->filename))
4033 continue;
4034 if (!filename_seen (s->filename, 1, &first)
4035#if HAVE_DOS_BASED_FILE_SYSTEM
4036 && strncasecmp (s->filename, text, text_len) == 0
4037#else
4038 && strncmp (s->filename, text, text_len) == 0
4039#endif
4040 )
4041 {
4042 /* This file matches for a completion; add it to the current
4043 list of matches. */
4044 add_filename_to_list (s->filename, text, word,
4045 &list, &list_used, &list_alloced);
4046 }
4047 else
4048 {
4049 /* NOTE: We allow the user to type a base name when the
4050 debug info records leading directories, but not the other
4051 way around. This is what subroutines of breakpoint
4052 command do when they parse file names. */
31889e00 4053 base_name = lbasename (s->filename);
c94fdfd0
EZ
4054 if (base_name != s->filename
4055 && !filename_seen (base_name, 1, &first)
4056#if HAVE_DOS_BASED_FILE_SYSTEM
4057 && strncasecmp (base_name, text, text_len) == 0
4058#else
4059 && strncmp (base_name, text, text_len) == 0
4060#endif
4061 )
4062 add_filename_to_list (base_name, text, word,
4063 &list, &list_used, &list_alloced);
4064 }
4065 }
4066
ccefe4c4
TT
4067 datum.first = &first;
4068 datum.text = text;
4069 datum.word = word;
4070 datum.text_len = text_len;
4071 datum.list = &list;
4072 datum.list_used = &list_used;
4073 datum.list_alloced = &list_alloced;
4074 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
c94fdfd0
EZ
4075
4076 return list;
4077}
4078
c906108c
SS
4079/* Determine if PC is in the prologue of a function. The prologue is the area
4080 between the first instruction of a function, and the first executable line.
4081 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4082
4083 If non-zero, func_start is where we think the prologue starts, possibly
4084 by previous examination of symbol table information.
4085 */
4086
4087int
d80b854b 4088in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
c906108c
SS
4089{
4090 struct symtab_and_line sal;
4091 CORE_ADDR func_addr, func_end;
4092
54cf9c03
EZ
4093 /* We have several sources of information we can consult to figure
4094 this out.
4095 - Compilers usually emit line number info that marks the prologue
4096 as its own "source line". So the ending address of that "line"
4097 is the end of the prologue. If available, this is the most
4098 reliable method.
4099 - The minimal symbols and partial symbols, which can usually tell
4100 us the starting and ending addresses of a function.
4101 - If we know the function's start address, we can call the
a433963d 4102 architecture-defined gdbarch_skip_prologue function to analyze the
54cf9c03
EZ
4103 instruction stream and guess where the prologue ends.
4104 - Our `func_start' argument; if non-zero, this is the caller's
4105 best guess as to the function's entry point. At the time of
4106 this writing, handle_inferior_event doesn't get this right, so
4107 it should be our last resort. */
4108
4109 /* Consult the partial symbol table, to find which function
4110 the PC is in. */
4111 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4112 {
4113 CORE_ADDR prologue_end;
c906108c 4114
54cf9c03
EZ
4115 /* We don't even have minsym information, so fall back to using
4116 func_start, if given. */
4117 if (! func_start)
4118 return 1; /* We *might* be in a prologue. */
c906108c 4119
d80b854b 4120 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
c906108c 4121
54cf9c03
EZ
4122 return func_start <= pc && pc < prologue_end;
4123 }
c906108c 4124
54cf9c03
EZ
4125 /* If we have line number information for the function, that's
4126 usually pretty reliable. */
4127 sal = find_pc_line (func_addr, 0);
c906108c 4128
54cf9c03
EZ
4129 /* Now sal describes the source line at the function's entry point,
4130 which (by convention) is the prologue. The end of that "line",
4131 sal.end, is the end of the prologue.
4132
4133 Note that, for functions whose source code is all on a single
4134 line, the line number information doesn't always end up this way.
4135 So we must verify that our purported end-of-prologue address is
4136 *within* the function, not at its start or end. */
4137 if (sal.line == 0
4138 || sal.end <= func_addr
4139 || func_end <= sal.end)
4140 {
4141 /* We don't have any good line number info, so use the minsym
4142 information, together with the architecture-specific prologue
4143 scanning code. */
d80b854b 4144 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
c906108c 4145
54cf9c03
EZ
4146 return func_addr <= pc && pc < prologue_end;
4147 }
c906108c 4148
54cf9c03
EZ
4149 /* We have line number info, and it looks good. */
4150 return func_addr <= pc && pc < sal.end;
c906108c
SS
4151}
4152
634aa483
AC
4153/* Given PC at the function's start address, attempt to find the
4154 prologue end using SAL information. Return zero if the skip fails.
4155
4156 A non-optimized prologue traditionally has one SAL for the function
4157 and a second for the function body. A single line function has
4158 them both pointing at the same line.
4159
4160 An optimized prologue is similar but the prologue may contain
4161 instructions (SALs) from the instruction body. Need to skip those
4162 while not getting into the function body.
4163
4164 The functions end point and an increasing SAL line are used as
4165 indicators of the prologue's endpoint.
4166
4167 This code is based on the function refine_prologue_limit (versions
4168 found in both ia64 and ppc). */
4169
4170CORE_ADDR
d80b854b 4171skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
634aa483
AC
4172{
4173 struct symtab_and_line prologue_sal;
4174 CORE_ADDR start_pc;
4175 CORE_ADDR end_pc;
d54be744 4176 struct block *bl;
634aa483
AC
4177
4178 /* Get an initial range for the function. */
4179 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
d80b854b 4180 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
634aa483
AC
4181
4182 prologue_sal = find_pc_line (start_pc, 0);
4183 if (prologue_sal.line != 0)
4184 {
d54be744
DJ
4185 /* For langauges other than assembly, treat two consecutive line
4186 entries at the same address as a zero-instruction prologue.
4187 The GNU assembler emits separate line notes for each instruction
4188 in a multi-instruction macro, but compilers generally will not
4189 do this. */
4190 if (prologue_sal.symtab->language != language_asm)
4191 {
4192 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
d54be744
DJ
4193 int idx = 0;
4194
4195 /* Skip any earlier lines, and any end-of-sequence marker
4196 from a previous function. */
4197 while (linetable->item[idx].pc != prologue_sal.pc
4198 || linetable->item[idx].line == 0)
4199 idx++;
4200
4201 if (idx+1 < linetable->nitems
4202 && linetable->item[idx+1].line != 0
4203 && linetable->item[idx+1].pc == start_pc)
4204 return start_pc;
4205 }
4206
576c2025
FF
4207 /* If there is only one sal that covers the entire function,
4208 then it is probably a single line function, like
4209 "foo(){}". */
91934273 4210 if (prologue_sal.end >= end_pc)
4e463ff5 4211 return 0;
d54be744 4212
634aa483
AC
4213 while (prologue_sal.end < end_pc)
4214 {
4215 struct symtab_and_line sal;
4216
4217 sal = find_pc_line (prologue_sal.end, 0);
4218 if (sal.line == 0)
4219 break;
4220 /* Assume that a consecutive SAL for the same (or larger)
4221 line mark the prologue -> body transition. */
4222 if (sal.line >= prologue_sal.line)
4223 break;
edb3359d
DJ
4224
4225 /* The line number is smaller. Check that it's from the
4226 same function, not something inlined. If it's inlined,
4227 then there is no point comparing the line numbers. */
4228 bl = block_for_pc (prologue_sal.end);
4229 while (bl)
4230 {
4231 if (block_inlined_p (bl))
4232 break;
4233 if (BLOCK_FUNCTION (bl))
4234 {
4235 bl = NULL;
4236 break;
4237 }
4238 bl = BLOCK_SUPERBLOCK (bl);
4239 }
4240 if (bl != NULL)
4241 break;
4242
634aa483
AC
4243 /* The case in which compiler's optimizer/scheduler has
4244 moved instructions into the prologue. We look ahead in
4245 the function looking for address ranges whose
4246 corresponding line number is less the first one that we
4247 found for the function. This is more conservative then
4248 refine_prologue_limit which scans a large number of SALs
4249 looking for any in the prologue */
4250 prologue_sal = sal;
4251 }
4252 }
d54be744
DJ
4253
4254 if (prologue_sal.end < end_pc)
4255 /* Return the end of this line, or zero if we could not find a
4256 line. */
4257 return prologue_sal.end;
4258 else
4259 /* Don't return END_PC, which is past the end of the function. */
4260 return prologue_sal.pc;
634aa483 4261}
c906108c 4262\f
50641945
FN
4263struct symtabs_and_lines
4264decode_line_spec (char *string, int funfirstline)
4265{
4266 struct symtabs_and_lines sals;
0378c332 4267 struct symtab_and_line cursal;
9af17804 4268
50641945 4269 if (string == 0)
8a3fe4f8 4270 error (_("Empty line specification."));
9af17804 4271
0378c332 4272 /* We use whatever is set as the current source line. We do not try
9af17804 4273 and get a default or it will recursively call us! */
0378c332 4274 cursal = get_current_source_symtab_and_line ();
9af17804 4275
50641945 4276 sals = decode_line_1 (&string, funfirstline,
0378c332 4277 cursal.symtab, cursal.line,
bffe1ece 4278 (char ***) NULL, NULL);
0378c332 4279
50641945 4280 if (*string)
8a3fe4f8 4281 error (_("Junk at end of line specification: %s"), string);
50641945
FN
4282 return sals;
4283}
c5aa993b 4284
51cc5b07
AC
4285/* Track MAIN */
4286static char *name_of_main;
4287
4288void
4289set_main_name (const char *name)
4290{
4291 if (name_of_main != NULL)
4292 {
4293 xfree (name_of_main);
4294 name_of_main = NULL;
4295 }
4296 if (name != NULL)
4297 {
4298 name_of_main = xstrdup (name);
4299 }
4300}
4301
ea53e89f
JB
4302/* Deduce the name of the main procedure, and set NAME_OF_MAIN
4303 accordingly. */
4304
4305static void
4306find_main_name (void)
4307{
cd6c7346 4308 const char *new_main_name;
ea53e89f
JB
4309
4310 /* Try to see if the main procedure is in Ada. */
4311 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4312 be to add a new method in the language vector, and call this
4313 method for each language until one of them returns a non-empty
4314 name. This would allow us to remove this hard-coded call to
4315 an Ada function. It is not clear that this is a better approach
4316 at this point, because all methods need to be written in a way
4317 such that false positives never be returned. For instance, it is
4318 important that a method does not return a wrong name for the main
4319 procedure if the main procedure is actually written in a different
4320 language. It is easy to guaranty this with Ada, since we use a
4321 special symbol generated only when the main in Ada to find the name
4322 of the main procedure. It is difficult however to see how this can
4323 be guarantied for languages such as C, for instance. This suggests
4324 that order of call for these methods becomes important, which means
4325 a more complicated approach. */
4326 new_main_name = ada_main_name ();
4327 if (new_main_name != NULL)
9af17804 4328 {
ea53e89f
JB
4329 set_main_name (new_main_name);
4330 return;
4331 }
4332
cd6c7346
PM
4333 new_main_name = pascal_main_name ();
4334 if (new_main_name != NULL)
9af17804 4335 {
cd6c7346
PM
4336 set_main_name (new_main_name);
4337 return;
4338 }
4339
ea53e89f
JB
4340 /* The languages above didn't identify the name of the main procedure.
4341 Fallback to "main". */
4342 set_main_name ("main");
4343}
4344
51cc5b07
AC
4345char *
4346main_name (void)
4347{
ea53e89f
JB
4348 if (name_of_main == NULL)
4349 find_main_name ();
4350
4351 return name_of_main;
51cc5b07
AC
4352}
4353
ea53e89f
JB
4354/* Handle ``executable_changed'' events for the symtab module. */
4355
4356static void
781b42b0 4357symtab_observer_executable_changed (void)
ea53e89f
JB
4358{
4359 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4360 set_main_name (NULL);
4361}
51cc5b07 4362
ed0616c6
VP
4363/* Helper to expand_line_sal below. Appends new sal to SAL,
4364 initializing it from SYMTAB, LINENO and PC. */
4365static void
4366append_expanded_sal (struct symtabs_and_lines *sal,
6c95b8df 4367 struct program_space *pspace,
ed0616c6
VP
4368 struct symtab *symtab,
4369 int lineno, CORE_ADDR pc)
4370{
9af17804
DE
4371 sal->sals = xrealloc (sal->sals,
4372 sizeof (sal->sals[0])
ed0616c6
VP
4373 * (sal->nelts + 1));
4374 init_sal (sal->sals + sal->nelts);
6c95b8df 4375 sal->sals[sal->nelts].pspace = pspace;
ed0616c6
VP
4376 sal->sals[sal->nelts].symtab = symtab;
4377 sal->sals[sal->nelts].section = NULL;
4378 sal->sals[sal->nelts].end = 0;
9af17804 4379 sal->sals[sal->nelts].line = lineno;
ed0616c6 4380 sal->sals[sal->nelts].pc = pc;
9af17804 4381 ++sal->nelts;
ed0616c6
VP
4382}
4383
aad80b26 4384/* Helper to expand_line_sal below. Search in the symtabs for any
3ffc00b8
JB
4385 linetable entry that exactly matches FULLNAME and LINENO and append
4386 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4387 use FILENAME and LINENO instead. If there is at least one match,
4388 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4389 and BEST_SYMTAB. */
aad80b26
JG
4390
4391static int
3ffc00b8 4392append_exact_match_to_sals (char *filename, char *fullname, int lineno,
aad80b26
JG
4393 struct symtabs_and_lines *ret,
4394 struct linetable_entry **best_item,
4395 struct symtab **best_symtab)
4396{
6c95b8df 4397 struct program_space *pspace;
aad80b26
JG
4398 struct objfile *objfile;
4399 struct symtab *symtab;
4400 int exact = 0;
4401 int j;
4402 *best_item = 0;
4403 *best_symtab = 0;
6c95b8df
PA
4404
4405 ALL_PSPACES (pspace)
4406 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
aad80b26 4407 {
3ffc00b8 4408 if (FILENAME_CMP (filename, symtab->filename) == 0)
aad80b26
JG
4409 {
4410 struct linetable *l;
4411 int len;
433759f7 4412
3ffc00b8
JB
4413 if (fullname != NULL
4414 && symtab_to_fullname (symtab) != NULL
4415 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4416 continue;
aad80b26
JG
4417 l = LINETABLE (symtab);
4418 if (!l)
4419 continue;
4420 len = l->nitems;
4421
4422 for (j = 0; j < len; j++)
4423 {
4424 struct linetable_entry *item = &(l->item[j]);
4425
4426 if (item->line == lineno)
4427 {
4428 exact = 1;
6c95b8df
PA
4429 append_expanded_sal (ret, objfile->pspace,
4430 symtab, lineno, item->pc);
aad80b26
JG
4431 }
4432 else if (!exact && item->line > lineno
4433 && (*best_item == NULL
4434 || item->line < (*best_item)->line))
4435 {
4436 *best_item = item;
4437 *best_symtab = symtab;
4438 }
4439 }
4440 }
4441 }
4442 return exact;
4443}
4444
6c95b8df
PA
4445/* Compute a set of all sals in all program spaces that correspond to
4446 same file and line as SAL and return those. If there are several
4447 sals that belong to the same block, only one sal for the block is
4448 included in results. */
9af17804 4449
ed0616c6
VP
4450struct symtabs_and_lines
4451expand_line_sal (struct symtab_and_line sal)
4452{
952a6d41 4453 struct symtabs_and_lines ret;
ed0616c6
VP
4454 int i, j;
4455 struct objfile *objfile;
ed0616c6
VP
4456 int lineno;
4457 int deleted = 0;
4458 struct block **blocks = NULL;
4459 int *filter;
6c95b8df 4460 struct cleanup *old_chain;
ed0616c6
VP
4461
4462 ret.nelts = 0;
4463 ret.sals = NULL;
4464
6c95b8df 4465 /* Only expand sals that represent file.c:line. */
ed0616c6
VP
4466 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4467 {
4468 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4469 ret.sals[0] = sal;
4470 ret.nelts = 1;
4471 return ret;
4472 }
4473 else
4474 {
6c95b8df 4475 struct program_space *pspace;
ed0616c6
VP
4476 struct linetable_entry *best_item = 0;
4477 struct symtab *best_symtab = 0;
4478 int exact = 0;
6c95b8df 4479 char *match_filename;
ed0616c6
VP
4480
4481 lineno = sal.line;
6c95b8df 4482 match_filename = sal.symtab->filename;
ed0616c6 4483
9af17804
DE
4484 /* We need to find all symtabs for a file which name
4485 is described by sal. We cannot just directly
ed0616c6 4486 iterate over symtabs, since a symtab might not be
9af17804 4487 yet created. We also cannot iterate over psymtabs,
ed0616c6
VP
4488 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4489 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
9af17804 4490 corresponding to an included file. Therefore, we do
ed0616c6
VP
4491 first pass over psymtabs, reading in those with
4492 the right name. Then, we iterate over symtabs, knowing
4493 that all symtabs we're interested in are loaded. */
4494
6c95b8df
PA
4495 old_chain = save_current_program_space ();
4496 ALL_PSPACES (pspace)
ccefe4c4
TT
4497 {
4498 set_current_program_space (pspace);
4499 ALL_PSPACE_OBJFILES (pspace, objfile)
ed0616c6 4500 {
ccefe4c4
TT
4501 if (objfile->sf)
4502 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4503 sal.symtab->filename);
ed0616c6 4504 }
ccefe4c4 4505 }
6c95b8df 4506 do_cleanups (old_chain);
ed0616c6 4507
aad80b26
JG
4508 /* Now search the symtab for exact matches and append them. If
4509 none is found, append the best_item and all its exact
4510 matches. */
3ffc00b8
JB
4511 symtab_to_fullname (sal.symtab);
4512 exact = append_exact_match_to_sals (sal.symtab->filename,
4513 sal.symtab->fullname, lineno,
aad80b26 4514 &ret, &best_item, &best_symtab);
ed0616c6 4515 if (!exact && best_item)
3ffc00b8
JB
4516 append_exact_match_to_sals (best_symtab->filename,
4517 best_symtab->fullname, best_item->line,
aad80b26 4518 &ret, &best_item, &best_symtab);
ed0616c6
VP
4519 }
4520
4521 /* For optimized code, compiler can scatter one source line accross
4522 disjoint ranges of PC values, even when no duplicate functions
4523 or inline functions are involved. For example, 'for (;;)' inside
4524 non-template non-inline non-ctor-or-dtor function can result
4525 in two PC ranges. In this case, we don't want to set breakpoint
4526 on first PC of each range. To filter such cases, we use containing
4527 blocks -- for each PC found above we see if there are other PCs
9af17804 4528 that are in the same block. If yes, the other PCs are filtered out. */
ed0616c6 4529
6c95b8df 4530 old_chain = save_current_program_space ();
db009c8a
JB
4531 filter = alloca (ret.nelts * sizeof (int));
4532 blocks = alloca (ret.nelts * sizeof (struct block *));
ed0616c6
VP
4533 for (i = 0; i < ret.nelts; ++i)
4534 {
6c95b8df
PA
4535 set_current_program_space (ret.sals[i].pspace);
4536
ed0616c6 4537 filter[i] = 1;
6c95b8df
PA
4538 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4539
ed0616c6 4540 }
6c95b8df 4541 do_cleanups (old_chain);
ed0616c6
VP
4542
4543 for (i = 0; i < ret.nelts; ++i)
4544 if (blocks[i] != NULL)
4545 for (j = i+1; j < ret.nelts; ++j)
4546 if (blocks[j] == blocks[i])
4547 {
4548 filter[j] = 0;
4549 ++deleted;
4550 break;
4551 }
9af17804 4552
ed0616c6 4553 {
9af17804 4554 struct symtab_and_line *final =
ed0616c6 4555 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
9af17804 4556
ed0616c6
VP
4557 for (i = 0, j = 0; i < ret.nelts; ++i)
4558 if (filter[i])
4559 final[j++] = ret.sals[i];
9af17804 4560
ed0616c6
VP
4561 ret.nelts -= deleted;
4562 xfree (ret.sals);
4563 ret.sals = final;
4564 }
4565
4566 return ret;
4567}
4568
a6c727b2
DJ
4569/* Return 1 if the supplied producer string matches the ARM RealView
4570 compiler (armcc). */
4571
4572int
4573producer_is_realview (const char *producer)
4574{
4575 static const char *const arm_idents[] = {
4576 "ARM C Compiler, ADS",
4577 "Thumb C Compiler, ADS",
4578 "ARM C++ Compiler, ADS",
4579 "Thumb C++ Compiler, ADS",
4580 "ARM/Thumb C/C++ Compiler, RVCT",
4581 "ARM C/C++ Compiler, RVCT"
4582 };
4583 int i;
4584
4585 if (producer == NULL)
4586 return 0;
4587
4588 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4589 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4590 return 1;
4591
4592 return 0;
4593}
ed0616c6 4594
c906108c 4595void
fba45db2 4596_initialize_symtab (void)
c906108c 4597{
1bedd215
AC
4598 add_info ("variables", variables_info, _("\
4599All global and static variable names, or those matching REGEXP."));
c906108c 4600 if (dbx_commands)
1bedd215
AC
4601 add_com ("whereis", class_info, variables_info, _("\
4602All global and static variable names, or those matching REGEXP."));
c906108c
SS
4603
4604 add_info ("functions", functions_info,
1bedd215 4605 _("All function names, or those matching REGEXP."));
c906108c
SS
4606
4607 /* FIXME: This command has at least the following problems:
4608 1. It prints builtin types (in a very strange and confusing fashion).
4609 2. It doesn't print right, e.g. with
c5aa993b
JM
4610 typedef struct foo *FOO
4611 type_print prints "FOO" when we want to make it (in this situation)
4612 print "struct foo *".
c906108c
SS
4613 I also think "ptype" or "whatis" is more likely to be useful (but if
4614 there is much disagreement "info types" can be fixed). */
4615 add_info ("types", types_info,
1bedd215 4616 _("All type names, or those matching REGEXP."));
c906108c 4617
c906108c 4618 add_info ("sources", sources_info,
1bedd215 4619 _("Source files in the program."));
c906108c
SS
4620
4621 add_com ("rbreak", class_breakpoint, rbreak_command,
1bedd215 4622 _("Set a breakpoint for all functions matching REGEXP."));
c906108c
SS
4623
4624 if (xdb_commands)
4625 {
1bedd215
AC
4626 add_com ("lf", class_info, sources_info,
4627 _("Source files in the program"));
4628 add_com ("lg", class_info, variables_info, _("\
4629All global and static variable names, or those matching REGEXP."));
c906108c
SS
4630 }
4631
717d2f5a
JB
4632 add_setshow_enum_cmd ("multiple-symbols", no_class,
4633 multiple_symbols_modes, &multiple_symbols_mode,
4634 _("\
4635Set the debugger behavior when more than one symbol are possible matches\n\
4636in an expression."), _("\
4637Show how the debugger handles ambiguities in expressions."), _("\
4638Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4639 NULL, NULL, &setlist, &showlist);
4640
ea53e89f 4641 observer_attach_executable_changed (symtab_observer_executable_changed);
c906108c 4642}
This page took 1.298123 seconds and 4 git commands to generate.